Compiler Support for Hardware Accelerators

Jackson Woodruff

University of Edinburgh

9 September, 2021

Big-Step Hardware Acceleration

- ▶ Big-Step Accelerators do lots of things in one step:
 - ► FFT
 - ► CRC32
- The more an accelerator does, the more overhead can be amortized

Existing Compiler Technology

Matching Isn't Enough

Accelerator is useful

Near or exactly shared behaviour

User code supports all values and is subset

supports some values and is subset Accelerator may be useful Condition: Size of overlap region

Accelerator is a subset

Partial overlap

Supporting Hardware Accelerators

Regular Expression Acceleration Input Data (e.g. Packets) **CPU RXPSC** Match Indexes Configuration **Updates** Regex Regex

Regular Expression Accelerator

Regular Expression Acceleration

Regular Expression Acceleration

Fourier Transform Acceleration

Fourier Transform Acceleration: Method

Fourier Transform Acceleration: Results

Conclusion

- Hardware accelerators lack:
 - Portability
 - ► Ease-of-use
 - Integration into software-based development pipelines
- Solutions to close the gap between software programming and hardware accelerators required