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What are the opportunities for ARM? 
- innovate, design and develop accelerator IP others will miss 

How could ARM help? 
- engage with research; ARM researchers + funded PhDs 
- explore impact on accelerator roadmap 

How does your work compare against rest of world? 
-  Top conferences: PLDI, ASPLOS, HPCA, Micro, CGO, NeurIPS 
- 3 Best paper awards: ACM GPCE20,  HPCA21, ASPLOS21 
- “highest ranked software” DARPA ERI SDH program 
- World-leading compiler group at Edinburgh
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Adapting to Change

New Application/Legacy Code

Language Approach

Parallel Language

User rewrites

Write new 
compiler

A universal parallel language + opt compiler per ISA/platform 
                                                + smart runtime/glue?



Adapting to Change

New Application/Legacy Code

DSL approach

DSL DSL DSL DSL 

Many specialised languages. Rewrite and hope it works on your (next) machine?
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Rather than building a new optimising compiler for each platform 

Pick the best Library/API/DSL  and FIT the code to it

Libraries/DSLs are the new ISA
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Program ARMvX Hardware

Program OpenCL Hardware

Program clBLAS
Halide

Hardware

 + Interface nearer to algorithm  
 -  Interface complex and changeable



Program

Automatic discovery  by Program SynthesisDetect code structures that match interface

Match  
Software

Learn 
Hardware



Program

Automatic discovery  by Program SynthesisDetect code structures that match interface

Match  
Software

Learn 
HardwareUse IO grey-box program synthesis



Program

Automatic discovery  by Program SynthesisDetect code structures that match interface

Match  
Software

Learn 
Hardware

Use SMT solver/graph matching/synthesis

Use IO grey-box program synthesis
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Fig. 6: Performance achievable by adopting code replacements suggested by our tools, for both Intel MKL and Nvidia CUDA
libraries across the set of benchmarks listed.

the Nvidia libraries by a small margin in both cases. If we
only used Nvidia libraries, there would be speedup available
in the case of NGT.

This pattern continues with NWChem where MKL signifi-
cantly outperforms the Nvidia libraries. Modest speedups are
available for both configurations with an end-end speedup of
1.2× Abinit shows a different behavior, where the Nvidia
libraries outperform MKL, giving 1.2 to 1.9× speedup. This
is possibly due to the increased array sizes where the benefits
of acceleration outweigh communication overhead. Unlike
NWChem, both acceleration libraries improve performance.

We see more significant improvement for the DNNs as
the amount of time spent in accelerator code sections is
much greater. Improvements range from 5.5× for the smaller
DenseNet-201 to 11× for the largest network: VGG-16. Like
Pathsample and NWChem, all the the DNNs achieve the
greatest performance with MKL, though Nvidia libraries still
give improvements: 3.2× to 7.7×. The impact of Amdahl’s
law can be clearly seen for Parboil SGEMM. Here there is
just one kernel that can be readily accelerated. It achieves
15× to 19× speedups and provides a best case example.

B. Porting to New Hardware

Within Darknet, the use of optimized GPU libraries is built
into the code: CUDA and CPU implementations are mixed
together using preprocessor directives and the build system.
As CUDA is not available on AMD GPU platforms, porting
Darknet to such a platform means targeting OpenCL based
libraries such as the CLBlast library [19], the results of which
are shown in Figure 7.

We compared the performance of “out-of-the-box” Darknet
against a handwritten OpenMP version [20], and our approach.
The results of this comparison are shown in Figure 7. On
all three networks, our approach outperforms the OpenMP
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Fig. 7: Performance results for neural network inference on
an AMD device with no CUDA support.

implementation which represents the best readily-available
CPU performance on an AMD processor. We achieve speedups
from 2.4× on DenseNet-201 to 9× on VGG-16. DenseNet-
201 performs smaller matrix multiplications than the other
networks, and so benefits less from GPU execution. Our
results show that our approach allows for programmers to
port applications to other platforms, without having to support
multiple code bases for each possible implementation.

C. Library API usage

Table III shows the number of library call sites we de-
tected in the original applications. For simplicity. we group
functions that perform the same abstract computation to-
gether. For example, cublas_sgemm, cblas_sgemm and
clblast::Gemm<float> are all considered together in
the GEMM group.

Some of the applications we examined make extensive
use of library functions. For example, Abinit links against
an installed standard BLAS library, and so all the instances
we detect in its code are from inlined library calls. Other
applications bundle their own implementations; our approach
detects this code rather than the corresponding call sites which
results in a smaller overall number of matches. The true

It works

[ASPLOS18]  [PACT19]  [GPCE20]  [PACT21]  
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the Nvidia libraries by a small margin in both cases. If we
only used Nvidia libraries, there would be speedup available
in the case of NGT.

This pattern continues with NWChem where MKL signifi-
cantly outperforms the Nvidia libraries. Modest speedups are
available for both configurations with an end-end speedup of
1.2× Abinit shows a different behavior, where the Nvidia
libraries outperform MKL, giving 1.2 to 1.9× speedup. This
is possibly due to the increased array sizes where the benefits
of acceleration outweigh communication overhead. Unlike
NWChem, both acceleration libraries improve performance.

We see more significant improvement for the DNNs as
the amount of time spent in accelerator code sections is
much greater. Improvements range from 5.5× for the smaller
DenseNet-201 to 11× for the largest network: VGG-16. Like
Pathsample and NWChem, all the the DNNs achieve the
greatest performance with MKL, though Nvidia libraries still
give improvements: 3.2× to 7.7×. The impact of Amdahl’s
law can be clearly seen for Parboil SGEMM. Here there is
just one kernel that can be readily accelerated. It achieves
15× to 19× speedups and provides a best case example.

B. Porting to New Hardware

Within Darknet, the use of optimized GPU libraries is built
into the code: CUDA and CPU implementations are mixed
together using preprocessor directives and the build system.
As CUDA is not available on AMD GPU platforms, porting
Darknet to such a platform means targeting OpenCL based
libraries such as the CLBlast library [19], the results of which
are shown in Figure 7.

We compared the performance of “out-of-the-box” Darknet
against a handwritten OpenMP version [20], and our approach.
The results of this comparison are shown in Figure 7. On
all three networks, our approach outperforms the OpenMP

0

2

4

ResNet-152

0

5

VGG-16

0

1

2

DenseNet-201
Sp

ee
du

p 
(×

)

Fig. 7: Performance results for neural network inference on
an AMD device with no CUDA support.

implementation which represents the best readily-available
CPU performance on an AMD processor. We achieve speedups
from 2.4× on DenseNet-201 to 9× on VGG-16. DenseNet-
201 performs smaller matrix multiplications than the other
networks, and so benefits less from GPU execution. Our
results show that our approach allows for programmers to
port applications to other platforms, without having to support
multiple code bases for each possible implementation.

C. Library API usage

Table III shows the number of library call sites we de-
tected in the original applications. For simplicity. we group
functions that perform the same abstract computation to-
gether. For example, cublas_sgemm, cblas_sgemm and
clblast::Gemm<float> are all considered together in
the GEMM group.

Some of the applications we examined make extensive
use of library functions. For example, Abinit links against
an installed standard BLAS library, and so all the instances
we detect in its code are from inlined library calls. Other
applications bundle their own implementations; our approach
detects this code rather than the corresponding call sites which
results in a smaller overall number of matches. The true

It worksAutomatically matches  
accelerator libraries to 

legacy code

[ASPLOS18]  [PACT19]  [GPCE20]  [PACT21]  
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the Nvidia libraries by a small margin in both cases. If we
only used Nvidia libraries, there would be speedup available
in the case of NGT.

This pattern continues with NWChem where MKL signifi-
cantly outperforms the Nvidia libraries. Modest speedups are
available for both configurations with an end-end speedup of
1.2× Abinit shows a different behavior, where the Nvidia
libraries outperform MKL, giving 1.2 to 1.9× speedup. This
is possibly due to the increased array sizes where the benefits
of acceleration outweigh communication overhead. Unlike
NWChem, both acceleration libraries improve performance.

We see more significant improvement for the DNNs as
the amount of time spent in accelerator code sections is
much greater. Improvements range from 5.5× for the smaller
DenseNet-201 to 11× for the largest network: VGG-16. Like
Pathsample and NWChem, all the the DNNs achieve the
greatest performance with MKL, though Nvidia libraries still
give improvements: 3.2× to 7.7×. The impact of Amdahl’s
law can be clearly seen for Parboil SGEMM. Here there is
just one kernel that can be readily accelerated. It achieves
15× to 19× speedups and provides a best case example.

B. Porting to New Hardware

Within Darknet, the use of optimized GPU libraries is built
into the code: CUDA and CPU implementations are mixed
together using preprocessor directives and the build system.
As CUDA is not available on AMD GPU platforms, porting
Darknet to such a platform means targeting OpenCL based
libraries such as the CLBlast library [19], the results of which
are shown in Figure 7.

We compared the performance of “out-of-the-box” Darknet
against a handwritten OpenMP version [20], and our approach.
The results of this comparison are shown in Figure 7. On
all three networks, our approach outperforms the OpenMP
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Fig. 7: Performance results for neural network inference on
an AMD device with no CUDA support.

implementation which represents the best readily-available
CPU performance on an AMD processor. We achieve speedups
from 2.4× on DenseNet-201 to 9× on VGG-16. DenseNet-
201 performs smaller matrix multiplications than the other
networks, and so benefits less from GPU execution. Our
results show that our approach allows for programmers to
port applications to other platforms, without having to support
multiple code bases for each possible implementation.

C. Library API usage

Table III shows the number of library call sites we de-
tected in the original applications. For simplicity. we group
functions that perform the same abstract computation to-
gether. For example, cublas_sgemm, cblas_sgemm and
clblast::Gemm<float> are all considered together in
the GEMM group.

Some of the applications we examined make extensive
use of library functions. For example, Abinit links against
an installed standard BLAS library, and so all the instances
we detect in its code are from inlined library calls. Other
applications bundle their own implementations; our approach
detects this code rather than the corresponding call sites which
results in a smaller overall number of matches. The true

It worksAutomatically matches  
accelerator libraries to 

legacy code

No programmer in the loop
[ASPLOS18]  [PACT19]  [GPCE20]  [PACT21]  



Automatically matching APIs frees up hardware creativity
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How we deploy neural networks

Neural

Architecture


Search

Optimising 

Compiler

[ASPLOS 2021 Distinguished paper]



Unifying the optimisation steps

Magic box



Optimising

Compiler



Neural 

Architecture


Search

conv3x3 
conv1x1

identity 
zeroize 



Very different networks loosely “equivalent”



Can we find  better equivalent networks?



Neural 

Architecture


Search

conv3x3 
conv1x1

identity 
zeroize 

Neural Architectures are just programs

Can we characterise options as transformations?

Can we characterise loosely equivalent?

Then mix with compiler transformations



Example



Example optimisation target: convolution

Input Weight Output

Inputs Weights Outputs Code

1

2

3

4



Example optimisation target: convolution

Input Weight Output

for ci in range(4):
    for co in range(4):
        spatial_conv(O, W, I, co, ci)



interchange (ci,co)

for ci in range(4):
    for co in range(4):
        spatial_conv(O, W, I, co, ci)

for co in range(4):
    for ci in range(4):
        spatial_conv(O, W, I, co, ci)

Reorder changes data  
access pattern



bottleneck

for co in range(4):
    for ci in range(4):
        spatial_conv(O, W, I, co, ci)

for co in range(4/B):
    for ci in range(4):
        spatial_conv(O, W, I, co, ci)

Reduce iteration domain  
by factor B

When is this OK?



bottleneck

for co in range(4):
    for ci in range(4):
        spatial_conv(O, W, I, co, ci)

for co in range(4/B):
    for ci in range(4):
        spatial_conv(O, W, I, co, ci)

Reduce iteration domain  
by factor B

When is this OK?
Fisher 
See Amos Storkey talk



Transformations



Bottlenecking

Input Weight Output

T (co, Jʹ) = (coʹ, Jʹ) | coʹ < Co/B 



Grouping

Input Weight Output

T(co, ci, Jʹʹ) = (g, co/G, ci/G, Jʹ) 



Transformation space

interchange 

tile

unroll

prefetch

split

fuse

bottleneck

group

Compiler optimisations: Network optimisations:

Can mix and match to give new convolutions



Example: unrolled group convolution

“unroll” output 
channels

“group” the remainder



T: [Co, Ci, H, W, Kh, Kw] ->
    [H, W, Co, Ci, Kh, Kw]  ->
    [H(b), W, Co, Ci, Kh, Kw]  ->
    [W, H(b), Co, Ci, Kh, Kw] ->
    [W(b), H(b), Co, Ci, Kh, Kw]  ->
    [Co, Ci, H(b), W(b), Kh, Kw] 

Spatial bottlenecking is bottlenecking plus interchange



Results



CIFAR-10:  average 4x speedup over best

Compiling the original network 
with TVM 

NAS-compression, compiled 

by TVM

TVM with our additional 
transformations as options.



ImageNet: order magnitude improvement

Ported to Transmuter - see next topic 
Darpa workloads: 
- reduce exec time by 80.6% 
- reduce energy by 79.4%
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Transmuter HW

LCP GPE

C++ Intrinsics

Host API

HLL Libraries

NumPy SciPy

LCP GPE GPEGPE…

Host CPU

LCP API GPE API

…

Application 
Code

Host Code GPE Code
GPE Code

LCP Code
GPE Code

GPE Code
GPE Code

Transmuter: Software Defined Hardware

DARPA
-  ARM, U Michigan, ASU, Edinburgh
-  Python Stack, NumPy/SciPy acceleration 
-  Software monitors hardware and reconfigures

Coarse Grain Reconfigurable Multi-core
-  ARM M-Class cores
-  Fast reconfiguration 
-  Reconfigure cache/scratchpad, interconnect

Prodigy 
-  Software assisted prefetcher(HPCA21 Best Paper) 

SparseAdapt
-   Runtime reconfiguration (Micro21)



Software

Hardware

DIG

Compiler Analysis
int bfs() {
[…]
regNode(…)
[…]
}

11101001
11100011
00011000
10011111

Ctrl

Mem

Programmable 
Prefetching Hardware Prodigy Operation

Core $ + DRAM

Prod

Program 
Annotated

59

Irregular Memory 
Accesses



Graph Analytics Mat Ops Sci Comp

Effect on Performance  
Speedup vs. No-Prefetching
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On average, 2.6x speedup compared to no prefetching 
Reduction in DRAM-stalls by 80.3% and branch-stalls by 65.3%

Geo 
Mean



Program Phase 2

 

 

 

Reconfiguration overhead

Program Phase 1 Program Phase 3

Time

Model learns mapping f : X → Y 
X: the space of performance counters 
Y: best micro-architectural configurations 

Sparse Adapt: Hardware Reconfiguration
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Sparse Adapt: Hardware Reconfiguration

Model learns mapping f : X → Y 
X: the space of performance counters 
Y: best micro-architectural configurations 
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phase change

Sparse Adapt: Hardware Reconfiguration

Model learns mapping f : X → Y 
X: the space of performance counters 
Y: best micro-architectural configurations 

2.9x energy-efficiency
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call FFTA 

call FFTA 

API

Accel

Code

Modified Code

Accel

APIUser FFT

Acc FFT

Big-step Acceleration: FFT

Matching complex accelerators is challenging 

- Behaviour unlikely to match user code 

- FFT  acceleration a good example 



call FFTA 

call FFTA 

API

Accel

Code

Modified Code

Accel

APIUser FFT

Acc FFT

Big-step Acceleration: FFT

Matching complex accelerators is challenging 

- Behaviour unlikely to match user code 

- FFT  acceleration a good example 

Need to bridge gap 

- Applied to GitHub code 

- Significant speedups 

See Jackson Woodruff presentation 



Beyond fixed function: Neural Compilation

Significant accelerators will be programmable 

- Likely to have specialised prog lang 

Can we learn how to translate existing code into new lang? 



Beyond fixed function: Neural Compilation

Significant accelerators will be programmable 

- Likely to have specialised prog lang 

Can we learn how to translate existing code into new lang? 

Proof of concept: Learn C->x86 

- Used Transformer model 



Learning C to x86 Translation: An Experiment in Neural Compilation PREPRINT

A Output samples

We include some model output samples, together with the reference GCC output and the original C, selected as follows:

• All outputs belong to the best model, specifically they are one of the top 5 hypothesis.

• All outputs belong to Synthesis-Bench.

• They have not been randomly sampled, or cherry-picked to show the best outputs only, but manually curated
to try to provide representative outputs of different cases, which may not appear proportionally.

Listing 1: C input

i n t t r i a n g l e s u m ( i n t n ) {
i n t r = 0 ;
f o r ( i n t i = 1 ; i < n ;

++ i ) {
f o r ( i n t m = 1 ; m < i ;

++m) {
r += m;

}
}
r e t u r n r ;

}

Listing 2: Model assembler

t r i a n g l e s u m :
. LFB0 :
. c f i s t a r t p r o c
pushq %rbp
. c f i d e f c f a o f f s e t 16
. c f i o f f s e t 6 , −16
movq %rsp , %rbp
. c f i d e f c f a r e g i s t e r 6
movl %edi , −20(% rbp )
movl $0 , −12(% rbp )
movl $1 , −8(% rbp )
jmp . L2
. L5 :
movl $1 , −4(% rbp )
jmp . L3
. L4 :
movl −4 (% rbp ) , %eax
a d d l %eax , −12(% rbp )
a d d l $1 , −4(% rbp )
. L3 :
movl −4(% rbp ) , %eax
cmpl −8(% rbp ) , %eax
j l . L4
a d d l $1 , −8(% rbp )
. L2 :
movl −8(% rbp ) , %eax
cmpl −20(% rbp ) , %eax
j l . L5
movl −12(% rbp ) , %eax
popq %rbp
. c f i d e f c f a 7 , 8
r e t
. c f i e n d p r o c

Listing 3: Ground truth Assembler

t r i a n g l e s u m :
. LFB0 :

. c f i s t a r t p r o c
endbr64
pushq %rbp
. c f i d e f c f a o f f s e t 16
. c f i o f f s e t 6 , −16
movq %rsp , %rbp
. c f i d e f c f a r e g i s t e r 6
movl %edi , −20(% rbp )
movl $0 , −12(% rbp )
movl $1 , −8(% rbp )
jmp . L2

. L5 :
movl $1 , −4(% rbp )
jmp . L3

. L4 :
movl −4(% rbp ) , %eax
a d d l %eax , −12(% rbp )
a d d l $1 , −4(% rbp )

. L3 :
movl −4(% rbp ) , %eax
cmpl −8(% rbp ) , %eax
j l . L4
a d d l $1 , −8(% rbp )

. L2 :
movl −8(% rbp ) , %eax
cmpl −20(% rbp ) , %eax
j l . L5
movl −12(% rbp ) , %eax
popq %rbp
. c f i d e f c f a 7 , 8
r e t
. c f i e n d p r o c

Figure 1: Correct output sample in which the system output is almost identical to the GCC
one. The only difference is the inclusion of the new instruction endbr64, which is used
for security reasons and is executed as a NOPs in targets that do not support it. See
https://stackoverflow.com/questions/59896145/why-endbr64-instruction-is-always-executed?noredirect=1&lq=1.
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Beyond fixed function: Neural Compilation

Significant accelerators will be programmable 

- Likely to have specialised prog lang 

Can we learn how to translate existing code into new lang? 

Proof of concept: Learn C->x86 

- Used Transformer model 

Surprising results!



Conclusion 
Program

M

Matching Hardware to Software  
- enables hardware innovation 

Expressing  NAS as program transformation  
- generates new designs  

Software can help hardware improve performance  
- prefetching and reconfiguration 

Going beyond simple acceleration requires new approaches 


