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I Cyber-attacks on the rise, more than ever

e Cybercrime to cost the world $10.5 Trillion
annually by 2025 (Cybersecurity Ventures)

Ransomware cost

* 1.14 billion malware instances registered
by the end Of 2020 (AV—TEST) $25,000,000,000

Predicted Ransomware Damages 2015-2021

$208
$20,000,000,000

e Number of DDoS attacks worldwide to
hit 15.4 million by 2023 (Cisco)
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https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/
https://www.av-test.org/en/statistics/malware/
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

I Cyber-attacks on the rise, more than ever

e Cybercrime to cost the world $10.5 Trillion
annually by 2025 (Cybersecurity Ventures)

= ® 275bn loT
* 1.14 billion malware instances registered
by the end of 2020 (AV-TEST) Over 1 trillion
loT devices
* Number of DDoS attacks worldwide to (accumulated in 2016-2035)
hit 15.4 million by 2023 (Cisco)
* 1 trillion connected devices expected 7bn L 13.5bn Mobile
by 2035 (ARM) e mee Ll L
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https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/
https://www.av-test.org/en/statistics/malware/
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.arm.com/company/news/2019/09/an-update-on-arm-s-ai-journey-toward-a-trillion-connected-devices

I Bluetooth reborn with loT

* 5 billion Bluetooth devices to be shipped in 2021 (Statista)
* Bluetooth BR/EDR (or Bluetooth Classic) widespread
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Connections are hard to sniff

Frequency Hopping
* Pseudo-random hopping across 79 channels
= 1600 hop/s

frequency
| [ ]

The Master address is
" in every packet!

All channels -
Just one -
channel
>
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De-anonymizing Bluetooth Devices

* LAP present in clear in every packet
* Two quantities missing

Master's Clock (6 bit) . .
- 214 bl
Master's UAP (8 bit) POSSIDIE palrs

Brutetorcing all possible Clock + UAP pairs is feasiblel!
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I Building a full-band Bluetooth sniffer

Boards have to be
synchronized!

Separate and process
narrow-band channels

/
AAAAAAAA --- ccc AAAAAAAA |

2402 MHz 2480 MHz
« 79 channels -

M. Cominelli, F. Gringoli, M. Lind, P. Patras and G. Noubir, "Even Black Cats Cannot Stay Hidden in the Dark: Full-band De-anonymization of Bluetooth Classic Devices," IEEE S&P 2020.
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I SDR Architecture

SDR front-end

P. Patras, loT Security on the Edge
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Performance

* Majority of 25 connections detected in e Car audio system detected orders of

Probability
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I Tracking commute patterns
Monitoring traffic at a road junction
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I Al/ML-based NIDS solutions getting traction

Rule-/signature-based detection Deep learning approaches

Too many false positives  Easier to detect illicit activity hidden in data traffic
* No need to look at every packet

e Should have decent generalization abilities

Significant ongoing maintenance

Cannot detect unknow attacks
* Etc.
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I Al/ML-based NIDS solutions getting traction

Rule-/signature-based detection Deep learning approaches

Too many false positives  Easier to detect illicit activity hidden in data traffic
* No need to look at every packet

Significant ongoing maintenance
e Should have decent generalization abilities

Cannot detect unknow attacks
* Etc.

Question: Is DL reliable for intrusion detection?
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I Threat model

P. Patras, loT Security on the Edge
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I Tiki-Taka: Adversarial Attacks and Defenses against Them

Candidate NN-based NID models

MLP

C. Zhang, X. Costa-Perez, P. Patras, “Tiki-Taka: Attacking and Defending Deep Learning-based Intrusion Detection Systems”, ACM CCSW 2020.
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I Tiki-Taka: Adversarial Attacks and Defenses against Them

Candidate NN-based NID models

MLP

layers

LSTM
layers

1D CNN

OO0 (ayers
Lo 000000

C. Zhang, X. Costa-Perez, P. Patras, “Tiki-Taka: Attacking and Defending Deep Learning-based Intrusion Detection Systems”, ACM CCSW 2020.
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I Adversarial attack performance
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* Average attack success rates up to
35.7%



I Adversarial attack performance
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I Adversarial attack performance
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I Adversarial attack performance

80
S 60

& 40
<
20

0

1
=1 CNN

C-LSTM
I Average

=100

Confidence [%]
N w ~J
Q w o LU
A o

MAPE [%]
N = (o))

o

i\

* Average attgcClks=s ites up to

35 2

Y,

PRON\\SE /

le7
wn 1eb
o
o le5
V
= led
o

le3 ny oy W oy

le2

Opt-fittack IIc-pSkipJu'r*'np/\ttack Boundary attack
Attack Type

P. Patras, loT Security on the Edge

> scale of the perturbations is subtle

* As little as 300 queries
needed to succeed



Performance after introducing defenses
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I Performance after introducing defenses
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Can we build smarter lines of defense?

* What if you could exploit temporal ML models to detect threats before
attacks proliferate?

. Repetition :

Information gathering Syst

| »[ ety } B t hared
7] Onstonn ; common stages share

« API discovery...
V3 by different large-scale
{V.“'S?Jiﬁi',‘féf;a""‘“g H Targais | L Piviege cyber attacks

« XSS/SQL injection ¢ Malware : EESCaIlla.:lc:_n &
¢ CSRF scanning... » Credentials theft... Xploitation

Botnet Web intrusion Ransomware
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Feature augmentation is key

* Training data largely collected in

t | | d . t Subset of original features Subset of augmented features
controlled environments -

—> no accurate view of real-world &°

network threats 3% $ i

E 0.4 1 —_ — PN

* Models learn superficially and 2] & i

cannot generalise well Tool ' = ,
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Bidirectional Asymmetric LSTM

* Train two separate LSTM units,
one for each processing direction

e Use future context to help the
downstream classification task

* Different structures produce
hidden states with different
dimension (avoid redundancy)

P. Patras, loT Security on the Edge

CSE-CIC-IDS2018

CIC-IDS-2017 (X-eval)

Algorithm L .
precision recall  F1 precision recall  F1

RIPPER 0.9983 0.0981  0.1786 | 0.0873 0.0106  0.0190
Decision Tree 0.9989 0.9990  0.9990 | 0.5385 0.3717  0.4398
MLP 0.9989 0.9962  0.9976 0.6736 0.4631 0.5435
CNN 0.9947 0.9951  0.9949 | 0.7705 0.6344  0.6958
Autoencoder 0.7783 0.7500  0.7639 | 0.4362 0.4197  0.4278
OC-NN 0.9722 0.5310  0.6868 | 0.7844 0.5136  0.6208
Kitsune 0.6310 0.6081  0.6193 | 0.4086 0.3932  0.4007
DAGMM 0.8666 0.8253  0.8454 0.4159 0.3116  0.3576
Bi-LSTM 0.9990 0.9979  0.9985 | 0.7258 0.4209  0.5317
CNN-Bi-LSTM 0.9996 0.9982  0.9989 | 0.8813 0.3750  0.5261
Bi-ConvLSTM 0.9984 0.9971 0.9977 0.8721 0.9693 0.9178
Bi-ALSTM 0.9994 0.9990 0.9992 | 0.9116 0.9446  0.9275

well to previously unseen data

* Feature augmentation boosts

performance of other models

* Bi-ALSTM generalizes remarkably



Can we do reliable NID at the edge?

ACID: Adaptive Clustering-based Intrusion Detection

Feature Extraction
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A. Diallo and P. Patras, “Adaptive Clustering-based Malicious Traffic Classification at the Network Edge”, IEEE INFOCOM 2021.
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Adaptive Clustering network (AC-Net)

Kernel
Encoder
g Network | 9| ® Y
o Encoder =9 Kernel -f
. Network . __)@__) .
o Softmax
Kernel j ® ®
Network Flow Encoder
Features Network Similarity Output
Scores Probabilities
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Key Advantages:

e Highly parallelizable

e Small computation/memory requirements
e Optimal separation of different classes

e Learns cluster centers on the fly



Performance

* 100% accuracy

* 0% false alarm rate
(even 0.1% would be too high at current traffic speeds)

* 100% F1-score

* Inference time/sample:
* 0.78 ms (without payload features)
e 145ms (with payload features)

* Batch processing gives 100x speed-ups

P. Patras, loT Security on the Edge



I Summary
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Widespread Lots of work remains
technology broken. to be done to
Can we improve traffic
change/amend classification
standards? robustness
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Additional research
on traffic analysis and
mobile security &
privacy

Hardware support
essential for
deploying ML at the
edge for security

Pioneering work on deep
learning-based NIDS and
defending against
adversarial attacks



