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Cyber-attacks on the rise, more  than ever 

• Cybercrime to cost the world $10.5 Trillion
annually by 2025 (Cybersecurity Ventures)

• 1.14 billion malware instances registered 
by the end of 2020 (AV-TEST)

• Number of DDoS attacks worldwide to 
hit 15.4 million by 2023 (Cisco)

Ransomware cost

https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/
https://www.av-test.org/en/statistics/malware/
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
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Cyber-attacks on the rise, more  than ever 

• Cybercrime to cost the world $10.5 Trillion
annually by 2025 (Cybersecurity Ventures)

• 1.14 billion malware instances registered 
by the end of 2020 (AV-TEST)

• Number of DDoS attacks worldwide to 
hit 15.4 million by 2023 (Cisco)

• 1 trillion connected devices expected 
by 2035 (ARM)

https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/
https://www.av-test.org/en/statistics/malware/
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.arm.com/company/news/2019/09/an-update-on-arm-s-ai-journey-toward-a-trillion-connected-devices
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Bluetooth reborn with IoT
• 5 billion Bluetooth devices to be shipped in 2021 (Statista)
• Bluetooth BR/EDR (or Bluetooth Classic) widespread
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Connections are hard to sniff

§ Pseudo-random hopping across 79 channels
§ 1600 hop/s

Frequency Hopping

time

frequency

Just one 
channel

All channels

The Master address is 
“hidden” in every packet!
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De-anonymizing Bluetooth Devices
• LAP present in clear in every packet
• Two quantities missing

Master’s Clock (6 bit)
Master’s UAP (8 bit)

214 possible pairs

Bruteforcing all possible Clock + UAP pairs is feasible!
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Building a full-band Bluetooth sniffer
Boards have to be

synchronized!

2402 MHz 2480 MHz
79 channels

Separate and process 
narrow-band channels

M. Cominelli, F. Gringoli, M. Lind, P. Patras and G. Noubir, "Even Black Cats Cannot Stay Hidden in the Dark: Full-band De-anonymization of Bluetooth Classic Devices," IEEE S&P 2020.
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SDR Architecture
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Performance
• Majority of 25 connections detected in 

<1 second
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• Car audio system detected orders of 
magnitude faster than Ubertooth
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Tracking commute patterns
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Monitoring traffic at a road junction
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AI/ML-based NIDS solutions getting traction

• Too many false positives

• Significant ongoing maintenance

• Cannot detect unknow attacks
• Etc.

Rule-/signature-based detection Deep learning approaches

• Easier to detect illicit activity hidden in data traffic
• No need to look at every packet
• Should have decent generalization abilities

Question: Is DL reliable for NID?
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AI/ML-based NIDS solutions getting traction

• Too many false positives

• Significant ongoing maintenance

• Cannot detect unknow attacks
• Etc.

Rule-/signature-based detection Deep learning approaches

• Easier to detect illicit activity hidden in data traffic
• No need to look at every packet
• Should have decent generalization abilities

Question: Is DL reliable for intrusion detection?
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Threat model

Network intrusion detection system (NIDS)

Traffic flows
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Threat model

Network intrusion detection system (NIDS)
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Candidate NN-based NID models

MLP

CNN

C-LSTM

Tiki-Taka: Adversarial Attacks and Defenses against Them 

C. Zhang, X. Costa-Perez, P. Patras, “Tiki-Taka: Attacking and Defending Deep Learning-based Intrusion Detection Systems”, ACM CCSW 2020.
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Tiki-Taka: Adversarial Attacks and Defenses against Them 
Candidate NN-based NID models

MLP

CNN

C-LSTM

NES

Pointwise

Boundary

HopSkipJumpAttack

Opt-Attack

Adversarial attacks

C. Zhang, X. Costa-Perez, P. Patras, “Tiki-Taka: Attacking and Defending Deep Learning-based Intrusion Detection Systems”, ACM CCSW 2020.
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Tiki-Taka: Adversarial Attacks and Defenses against Them 
Candidate NN-based NID models

MLP

CNN

C-LSTM

NES

Pointwise

Boundary

HopSkipJumpAttack

Opt-Attack

Adversarial attacks Defense
Mechanisms

Model Voting 
Ensembling

Ensemble Adversarial 
Training

Adversarial Query 
Detetion

C. Zhang, X. Costa-Perez, P. Patras, “Tiki-Taka: Attacking and Defending Deep Learning-based Intrusion Detection Systems”, ACM CCSW 2020.
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Adversarial attack performance
• Average attack success rates up to 

35.7%
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Adversarial attack performance
• Average attack success rates up to 

35.7%

• NIDS subverted while having up to 
92.9% confidence in decision

• The scale of the perturbations is subtle

• As little as 300 queries 
needed to succeed

Intrusion detection

COMPROMISED
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Performance after introducing defenses
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Performance after introducing defenses

ASR drops 
significantly 

after defenses
applied
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Can we build smarter lines of defense?
• What if you could exploit temporal ML models to detect threats before 

attacks proliferate?

common stages shared 
by different large-scale 

cyber attacks
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Feature augmentation is key
• Training data largely collected in 

controlled environments 
→ no  accurate view of real-world 
network threats

• Models learn superficially and 
cannot generalise well
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Bidirectional Asymmetric LSTM
• Train two separate LSTM units, 

one for each processing direction
• Use future context to help the 

downstream classification task
• Different structures produce 

hidden states with different 
dimension (avoid redundancy)

• Bi-ALSTM generalizes remarkably 
well  to previously unseen data
• Feature augmentation boosts 

performance of other models
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Can we do reliable NID at the edge?
ACID: Adaptive Clustering-based Intrusion Detection

Feature Extraction Clustering Classification

A. Diallo and P. Patras, “Adaptive Clustering-based Malicious Traffic Classification at the Network Edge”, IEEE INFOCOM 2021.
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Adaptive Clustering network (AC-Net)

• Highly parallelizable

• Small computation/memory requirements
• Optimal separation of different classes

also adaptive to complex and intertwined
data structures

• Learns cluster centers on the fly

Key Advantages:
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Performance
• 100% accuracy
• 0% false alarm rate 

(even 0.1% would be too high at current traffic speeds)
• 100% F1-score
• Inference time/sample: 
• 0.78 ms (without payload features)
• 145ms (with payload features)

• Batch processing gives 100x speed-ups
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Summary

Widespread 
technology broken. 

Can we 
change/amend 

standards?

Lots of work remains 
to be done to 

improve traffic 
classification 
robustness

Pioneering work on deep 
learning-based NIDS and 

defending against 
adversarial attacks

Hardware support 
essential for 

deploying ML at the 
edge for security

Additional research 
on traffic analysis and 

mobile security & 
privacy


