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Existing approach and its limitations

• Suppose one wants to build a multiprocessor SoC

- Read ~100-500 page prose document (e.g., CHI).

- Implement protocol by hand in Verilog 
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Existing approach and its limitations

• Suppose one wants to build a multiprocessor SoC

- Read ~100-300 page prose document (Tilelink, CHI).

- Implement protocol by hand in Verilog 

• Limitations
• Prose = Imprecise
• Non-exhaustive and conservative 
• Only MOESI
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Outline

• Background and Motivation

• Concurrency: ProtoGen

• Hierarchy: HieraGen

• Heterogeneity: HeteroGen

• Coherence for the cloud
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• SWMR: single-writer, multiple-reader invariant 



Consistency-directed Cache Coherence
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“Cache coherence protocols are notoriously 
difficult to implement” [DSL 1997]“Sophisticated cache coherence protocols are notoriously 

difficult to get right” [ICS 1999]

“Cache coherence protocols for distributed shared 
memory multiprocessors are notoriously difficult
to design” [ICFS 1996]

“Cache coherence protocols are notoriously 
difficult to design and verify” [High Perf. 
Memory Systems, 2004]

“… directory-based cache coherence protocols 
are notoriously complex” [PACT 2011]

“The coherence problem is difficult, because it 
requires coordinating events across nodes” 
[IEEE Concurrency 2000]

“Coherence protocols are notoriously difficult to 
design and implement correctly” [ASPLOS 2017]

“… designing and verifying a new hardware coherence 
protocol is difficult” 
[Spandex: A Flexible Interface for Efficient Heterogeneous 
Coherence - ISCA 2018]



From AnandTech: “… coherency was broken and 
manually disabled on the Galaxy S 4. The 
implications are serious from a power 
consumption (and performance) standpoint.” 

Bugs in the Wild



Why is Coherence Hard? 

• Concurrency

• Hierarchy

• Heterogeneity
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To Summarize…

§ Stable state protocols assume physically atomic transactions

§ Need to support concurrency for performance

§ Transient states required to provide logically atomic transactions



Key realization…

§ Stable state protocol is a sequential specification

§ The final protocol is a non-blocking concurrent implementation

§ Transient states are  synchronization operations 



Insight
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No wonder cache coherence protocols are Hard!



Insight
concurrent Method-1 {
…
RMW(…); //linearization point
…
}

time
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Demystifying Transient States

How do transient states provide logical atomicity?

§ Convey directory serialization order to caches

§ Transient states ensure that caches obey this order

ProtoGen  automates by leveraging this insight!



How does cache infer serialization order?
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ProtoGen Summary

§ Infer serialization order from incoming messages

§ Rename messages in order to achieve this

§ React like in stable state 



ProtoGen Tool
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ProtoGen IR for protocolsProtoGen DSL

ProtoGen as good (or better) than manually generated protocols

*ISCA’18, IEEE Top Picks Honourable mention
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HieraGen* tool flow
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HeteroGen

• How do you stich together two different protocols?
• HieraGen should work!

• What is the correctness condition? 
• MOESI style protocols SC
• RC-style protocols…RC
• Compound consistency models!

[under submission]



Compound Consistency

• Correctness condition for heterogeneous coherence

• Foundation for heterogeneous consistency

• Each cluster can assume its own memory model
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In-memory with read/write API

Backbone of online services

Need:

Consistency (Programmability)

High performance

Fault tolerance (Availability)

Distributed datastores

5
0

Distributed 
DatastoreHigh-performance Reliable Replication Protocol!



The problem

51

Performance Strong
Consistency

Replication ⇒ Performance vs Consistency



Existing Solution: Multiple Consistency 
Levels (MCL)

MCL Replicated 
KVS

Strong/Weak 
Write

Strong/Weak 
ReadAmazon DB

App Engine

PNUTS

Manhattan

Pileus

What about programmability? 
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Datacentre Distributed datastore 
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Shared-memory multiprocessor!



Hermes [ASPLOS ’20] [Top Picks honorable mention]
Kite [PPoPP’20] [Best paper nominee]

Datacentre replication = Fast-path coherence + slow-path consensus?



Coherence-inspired Hermes

Broadcast-based invalidating

*ASPLOS’20, IEEE Top Picks Honourable mention



Coherence-inspired Hermes

Broadcast-based invalidating

Local reads

Fast, concurrent writes

Protocol reliable but blocking



Shared Memory World

Sweet-spot in the Performance-vs-
Consistency?

Data-race-free! Yes, label synchronisation!



Alice
Release
Consistency
DRF-compliant 
memory model

DRF-SC
Programming 
Paradigm

Can we do the same for KVSes?

Replicated KVS



Kite 

Kite Replicated KVS

A  Replicated KVS with
➢Release Consistency
➢High Availability

*PPoPP’20, Best paper nomination



Rethinking Datacentre Memory
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Revolutionizing Mobile/Cloud via Coherence

• Raise abstraction of coherence protocol design and automate
• Concurrency
• Hierarchy
• Heterogeneity

• Datacentre coherence a great opportunity but needs new family of 
high-performance fault-tolerant coherence protocols. 


