Revolutionizing Mobile and
Cloud via Coherence

Vijay Nagarajan

S‘O NI " THE UNIVERSITY of EDINBURGH

e&f informatics

Nicolai Oswald Adarsh Patil Mahesh Dananjaya Carr Reece

Theo Olausson

Antonis Katsarakais Vasilis Gavrielatos
s e iE.

Boris Grot Tobias Grosser

THE UNIVERSITY of EDINBURGH

informatics

Modified

Shared

Invalid

THE UNIVERSITY of EDINBURGH

informatics

THE UNIVERSITY of EDINBURGH

informatics

Concurrency!

Directory/cache

Private cache Private cache

THE UNIVERSITY of EDINBURGH

informatics

Directory/cache

Private cache

Private cache

CPU

yZg - THE UNIVERSITY of EDINBURGH

& informatics

CPU

Directory/cache

Private cache

Private cache

/

CPU

Directory/cache

Private cache

Private cache

Directory/cache

/N

CPU

. THE UNIVERSITY of EDINBURGH

- informatics

CPU >

Private cache

Private cache

/

v D

Hierarchy!

directory / shared cache

private cache

private cache

private cache

directory

directory

—— T =

private cache private cache

private cache

private cache

directory / shared cache

private cache

private cache

private cache

directory Heterogeneity!

private cache private cache

S

yZg - THE UNIVERSITY of EDINBURGH

30

)- informatics

Existing approach and its limitations

e Suppose one wants to build a multiprocessor SoC
- Read ~100-500 page prose document (e.g., CHI).

- Implement protocol by hand in Verilog

AMBA' 5 CHI

Architecture Specification

arm

@ THE UNIVERSITY of EDINBURGH

4 informatics

Existing approach and its limitations

e Suppose one wants to build a multiprocessor SoC
- Read ~100-300 page prose document (Tilelink, CHI).

- Implement protocol by hand in Verilog

* Limitations
* Prose = Imprecise
 Non-exhaustive and conservative

AMBA' 5 CHI

Architecture Specification

arm

* Only MOESI

@ THE UNIVERSITY of EDINBURGH

4 informatics

Our Approach: i/p

directory / shared cache

private cache
private cache private cache
directory

private cache private cache

HE UNIVERSITY of EDINBURGH

nformatics

Our Approach: o/p

V] directory / shared cache

private cache

private cache

private cache

Murphi
Gem5

directory

private cache private cache

m’/\ THE UNIVERSITY of EDINBURGH

¢ informatics

Outline

e Background and Motivation
* Concurrency: ProtoGen

* Hierarchy: HieraGen

* Heterogeneity: HeteroGen

e Coherence for the cloud

.
@) THE UNIVERSITY of EDINBURGH

%): informatics

40
0‘5

Cache Coherence

HM

S

 SWMR: single-writer, multiple-reader invariant

\". THE UNIVERSITY of EDINBURGH

. informatics

= ey
&D S

Consistency-directed Cache Coherence

X=1
Directory

Release
(write back)

Acquire
(self-invalidate)

E'?\p
. THE UNIVERSITY of ED

& informatics

“Cache coherence protocols are notoriously

difficult to design and veri]l “The coherence problem is difficult, because it
Memory Systems, 2004] |requires coordinating events across nodes”

“ directorv-based cacH [IEEE Concurrency 2000]

arl “... designing and verifying a new hardware coherence

sly

- - protocol is difficult”
Sophis

[Spandex: A Flexible Interface for Efficient Heterogeneous

difficult

Coherence - ISCA 2018] It to

design and implement correctly” [ASPLOS 2017]
“Cache coherence protocols for distributed shared

memory multiprocessors are notoriously difficult
to design” [ICFS 1996]

SEalls
VI ~77 & THE UNIVERSITY quDINBURGH

&) informatics

Bugs in the Wild

63 TLB Flush Filter Causes Coherency Problem in Multiprocessor |

Systems From AnandTech: “... coherency was broken and
=| Description manually disabled on the Galaxy S 4. The
If the TLB flush filter 1s enabled 1n a multiprocessor co impIiCationS are serious from a power

between the page tables 1n memory and the translations

ss| the possible use of stale translations even after software consum pt| on (a nd pe rforman Ce) stand p0| nt.”
51| Potential Effect on System

52| Unpredictable system failure.

83| Suggested Workaround
84| In MP systems. disable the TLB flush filter by setting HWCR FFDIS (bit 6 of MSR 0xC001_0013).

Fix Planned
Yes

66

68

69 | NMultiprecessor Coherency Problem with Hardware
Prefetch Mechanism

70 Microcode Patch Leading in 64-bit Mode Fails To
Use EDX

S

yZg - THE UNIVERSITY of EDINBURGH

=) informatics

A £

Why is Coherence Hard?

* Concurrency
* Hierarchy

* Heterogeneity

4
z &C\ THE UNIVERSITY g[EDINBURGH

Q)A<
‘e °
- informatics
z
@01%\5{&~

Outline

* Background and Motivation
* Concurrency: ProtoGen

* Hierarchy: HieraGen

* Heterogeneity: HeteroGen

e Coherence for the cloud

\". THE UNIVERSITY of EDINBURGH

&Y informatics

ogical atomicity

recv Acks—(:°

recv Data + Ack

physical atomicity

recv Acki’m
A

T recv Data + Ack
recv Data

IM”?s|

recv Inv

A
recv Data | M S

recv Fwd-Get

‘ AD ‘ recv Data
”V| Sl ‘ recv Inv

<‘recv Fwd-GetS

recv Fwd-GetM

recv Data + Ack

recv Acks

HE UNIVERSITY of EDINBURGH

nformatics

Atomic S to M Transition

store / send GetM / recv Ack

4
m,/\ THE UNIVERSITY grEDINBURGH

&) informatics

Transient States

store / send GetM SMAD recv Ack

non-atomic transaction

4
m’a THE UNIVERSITY grEDINBURGH

informatics

Concurrent Transactions

recv
Fwd-GetS

\ 4 \ 4
‘store / send GetM@ recv Ack—>°

\". THE UNIVERSITY of EDINBURGH

‘&) informatics

recv Inv

Concurrent Transactions

recv Inv recv Inv recv recv
Fwd-GetS Fwd-GetS

\ 4 \ 4
‘store / send GetM SMAD recv Ack—>°

non-atomic transactions + concurrency = complexity

4
m’a THE UNIVERSITY grEDINBURGH

informatics

To Summarize...

= Stable state protocols assume physically atomic transactions
" Need to support concurrency for performance

" Transient states required to provide logically atomic transactions

@ THE UNIVERSITY of EDINBURGH

8 informatics

Key realization...

= Stable state protocol is a sequential specification
" The final protocol is a non-blocking concurrent implementation

" Transient states are synchronization operations

@ THE UNIVERSITY of EDINBURGH

8 informatics

Sequential object {

Non-blocking concurrent {

No wonder cache coherence protocols are Hard!

4
m’,\ THE UNIVERSITYofEDINBURGH

@\)A ‘

2ABE,

N M2) °
AoN: informatics
@ Jj\‘ Qp

&DINB“

Insight

concurrent Method-1 {
Method-1()
| 1
tlmel HCIEE L) \& Method-2() RMW(...); //linearization point
Method-2() }

S
il

K
4_, Directory is the Linearization point!
‘O\)NE,?

. THE UNIVERSITY of EDINBURGH

&) informatics

Demystifying Transient States

How do transient states provide logical atomicity?

= Convey directory serialization order to caches

" Transient states ensure that caches obey this order

ProtoGen automates by leveraging this insight!

4
X &C\ THE UNIVERSITY@FEDINBURGH

& informatics

How does cache infer serialization order?

recv Inv recv Inv recv recv

Fwd-GetS Fwd-GetS
\ 4 \ 4

‘store / send GetM recv Ack—>°

m’/\ THE UNIVERSITY (jEDINBURGH

‘&) informatics

How to resolve name conflicts?

recv recv recv recv
Fwd-GetM Fwd-GetM Fwd-GetM Fwd-GetM

\ 4
recv Data + Ack—Po

) 4

store / send GetM

m’/\ THE UNIVERSITY of EDINBURGH

¢ informatics

Rename Messages

recv recv recv recv
Fwd-GetM-O Fwd-GetM-O Fwd-GetM-M Fwd-GetM-M

) 4)\ 4

store / send GetM recv Data + Ack

m’/\ THE UNIVERSITY of EDINBURGH

¢ informatics

ProtoGen Summary

" Infer serialization order from incoming messages
=" Rename messages in order to achieve this

= React like in stable state

2@\ THE UNIVERSITY of EDINBURGH

8 informatics

ProtoGen DSL

ProtoGen Tool

ProtoGen IR for protocols

ProtoGen

[ProtoGen as good (or better) than manually generated protocols

4
m’a THE UNIVERSITY grEDINBURGH

) informatics

*ISCA’18, IEEE Top Picks Honourable mention

Outline

* Background and Motivation
* Concurrency: ProtoGen

* Hierarchy: HieraGen

* Heterogeneity: HeteroGen

e Coherence for the cloud

\". THE UNIVERSITY of EDINBURGH

&Y informatics

L3

L2

L1

Hierarchical protocols

directory / shared cache

/\

directory / shared cache

PN

private cache

2@\ THE UNIVERSITY of EDINBURGH

P
£
(<]

informatics

directory / shared cache

private cache private cache

N

private cache

CPU

The Complexity of Hierarchical protocols

directory / shared cache
SSP-H
MOESI
private cache
private cache private cache !
directory
dlrectory
prlvate cache private cache
MOESI
private cache private cache

m’/\ THE UNIVERSITY of EDINBURGH

¢ informatics

HieraGen™ tool flow

SSP-H
4)

atomic directory

concurrent
directory

atomic directory

atomic private

cache atomic private

Step #1: cache
generate
hierarchical

concurrent
cache-H

Step #2:
generate
concurrent
protocol

concurrent dir/
cache

SSP atomic dir/cache

controllers
atomic directory

atomic private

h concurrent
cache
atomic private cache-L
cache
- /
HE UNIVERSITY of EDINBURGH k I SCAI 2 O

nformatics

directory / shared cache

MOESI

private cache
private cache

private cache
directory

RC-directed

private cache private cache

S

yZg - THE UNIVERSITY of EDINBURGH

30

)- informatics

HeteroGen

* How do you stich together two different protocols?
* HieraGen should work!

* What is the correctness condition?
 MOESI style protocols SC
* RC-style protocols...RC
* Compound consistency models!

4
z &C\ THE UNIVERSITY g[EDINBURGH

€9 informatics [under submission]

Compound Consistency

e Correctness condition for heterogeneous coherence
* Foundation for heterogeneous consistency

* Each cluster can assume its own memory model

@ THE UNIVERSITY of EDINBURGH

8 informatics

*Gen: i/p

directory / shared cache

private cache
private cache private cache
directory

private cache private cache

*Gen: o/p

V] directory / shared cache

private cache

private cache

private cache
directory

private cache private cache

S

yZg - THE UNIVERSITY of EDINBURGH

1 peiq B

)- informatics

Outline

* Background and Motivation

* Concurrency: ProtoGen

Hierarchy: HieraGen
* Heterogeneity: HeteroGen

e Coherence for the cloud

\". THE UNIVERSITY of EDINBURGH

. informatics

= ey
B

Datacentre Distributed datastores

In-memory with read/write API e redis ﬁ /E‘m? & l.
cassandra hazelcast
Backbone of online services 'W"q k glgm[e .mongo

Q Distributed
3“ % m’,\ THE UNIVERSITYfEDINBURGH
ey informatics Datastore

Distributed datastores

“ &‘ &
In-memory with read/write API “‘A“‘ 1 ‘m
\ /
facebook

amazon Google

Backbone of online services

B® Microsoft

Need:
Consistency (Programmability) *

High performance

Fault tolerance (Availability) ’

E Distributed
4 " IHE UNIVERSITYofEDINlSURGH
- informatics Datastore

o1
0Q~

Distributed datastores
Y YY Y
aaaad | AAAAL
\ /.
facebook

amazon Google

In-memory with read/write API

Backbone of online services

B® Microsoft

Need:
Consistency (Programmability) ‘

High performance

Fault tolerance (Availability) '

Nictrihi I+Qd

(OO vpresmerossian - High-performance Reliable Replication Protocol!
«y: informatics -~ F

The problem

Strong

Performance)
Consistency

[Replication = Performance vs Consistency }

THE UNIVERSITY of EDINBURGH

informatics o

Existing Solution: Multiple Consistency
Levels (MCL)

Strong/Weak Strong/Weak
aWS Amazon DB Write Read
\-/‘7

G App Engine

YaHOO! PNUTS

: 4 Manhattan \

~

A\ Microsoft Azure Pileus M C I_ Re p I icate d
KVS
[What about programmability? }
A THE UNIVERSITY of EDINBURGH

Y~

o RE ‘e °
AoN: informatics
o ; Q~O

&DINB\)

Datacentre Distributed datastore

get()
put()
Tx()
Rare
i

Fast LAN

\ Y
g LY
d“‘ £\
&\
\.
\
\
\
\
i \
2 1 \

4
m’a THE UNIVERSITY grEDINBURGH

informatics

Datacentre Distributed datastore

Shared-memory multiprocessor!

Fast LAN

!’ -
m’a THE UNIVERSITY grEDINBURGH -

&) informatics

get()
put()
Tx()

Rare

=5

In-memory

Rep

[Datacentre replication = Fast-path coherence + slow-path consensus?

< UNIVERSITY of EDINBURGH ~ Hermes [ASPLOS ’20] [Top Picks honorable mention]
t e

E [] H ’ .
&) Informa-hcs Kite [PPoPP’20] [Best paper nominee]

Coherence-inspired Hermes

Y .
--

Broadcast-based invalidating

B RSy EDINBURGH *ASPLOS’20, IEEE Top Picks Honourable mention
&y informatics

Coherence-inspired Hermes

Y .
--

Broadcast-based invalidating

/ Local reads \

Fast, concurrent writes

Protocol reliable but blocking

\ /

£
Q> THE UNIVERSITY of EDINBURGH

&y informatics

Shared Memory World

&

~—

Sweet-spot in the Performance-vs-
Consistency?

Data-race-free! Yes, label synchronisation!

@) |HE UNIVERSITY of EDII . N \\ 7
SE . e S &}:\l«
- informal.
OIN . s

Can we do the same for KVSes?

'DRF-SC .
Programming

................. 'Release
Consistency

P
=

4

I

1

I

I

I

1

1

1

\
\

Replicated KVS

4
m/A THE UNIVERSITY gFEDINBURGH

&Y informatics

Kite

R

A Replicated KVS with
> Release Consistency
> High Availability

Kite Replicated KVS

*PPoPP’20, Best paper nomination

Rethinking Datacentre Memory

F~2al A4S
\e-es-ll\

3
\". THE UNIVERSITY of EDINBURG

~

) informatics

\7\\
OrneY

Revolutionizing Mobile/Cloud via Coherence

* Raise abstraction of coherence protocol design and automate
* Concurrency
* Hierarchy
* Heterogeneity

e Datacentre coherence a great opportunity but needs new family of
high-performance fault-tolerant coherence protocols.

SEalls
Vo ",\ THE UNIVERSITY@FEDINBURGH

&) informatics

