
Revolutionizing Mobile and
Cloud via Coherence

Vijay Nagarajan

Nicolai Oswald Adarsh Patil Mahesh Dananjaya Carr Reece

Theo Olausson Antonis Katsarakais Vasilis Gavrielatos

Boris Grot Dan Sorin Nikos Nikoleris Tobias Grosser

M

S

I

Modified

Shared

Invalid

M

S

I

I

IMAD

M

IMA

IMADI

IMADS

IMAI

IMAS

IMADSI

IMASI
S

Concurrency!

Directory/cache

Private cache Private cache

CPU CPU

Directory/cache

Private cache Private cache

CPU CPU

Directory/cache

Private cache Private cache

CPU CPU

Directory/cache

Private cache Private cache

CPU CPU

Directory/cache

Private cache Private cache

CPU CPU

CPU CPU

CPU CPU

private cacheprivate cache

directory / shared cache

private cacheprivate cache

private cache

directory

CPU CPU

private cacheprivate cache

directory
CPU CPU

private cacheprivate cache

directory / shared cache

private cache

Hierarchy!

CPU CPU

CPU CPU

private cacheprivate cache

directory / shared cache

private cacheprivate cache

private cache

directory

CPU CPU

private cacheprivate cache

directory / shared cache

private cache

GPU

private cache

directory

private cache

GPU

Heterogeneity!

Existing approach and its limitations

• Suppose one wants to build a multiprocessor SoC

- Read ~100-500 page prose document (e.g., CHI).

- Implement protocol by hand in Verilog

Copyright © 2014, 2017-2020 Arm Limited or its affiliates. All rights reserved.
ARM IHI 0050E.a (ID081920)

AMBA® 5 CHI
Architecture Specification

Existing approach and its limitations

• Suppose one wants to build a multiprocessor SoC

- Read ~100-300 page prose document (Tilelink, CHI).

- Implement protocol by hand in Verilog

• Limitations
• Prose = Imprecise
• Non-exhaustive and conservative
• Only MOESI

Copyright © 2014, 2017-2020 Arm Limited or its affiliates. All rights reserved.
ARM IHI 0050E.a (ID081920)

AMBA® 5 CHI
Architecture Specification

Our Approach: i/p

tory

M

S

I
DSL

I

V

DSL

CPU CPU

CPU CPU

private cacheprivate cache

directory / shared cache

private cacheprivate cache

private cache

directory

CPU CPU

private cacheprivate cache

directory / shared cache

private cache

GPU

private cache

directory

private cache

GPU

M

S

I
DSL

I

V
DSL

Our Approach: o/p

tory
I

IMAD

M

IMA

IMADI

IMADS

IMAI

IMAS

IMADSI

IMASI
S M

I

CPU CPU

CPU CPU

private cacheprivate cache

directory / shared cache

private cacheprivate cache

private cache

directory

CPU CPU

private cacheprivate cache

directory / shared cache

private cache

GPU

private cache

directory

private cache

GPU

I

IMAD

M

IMA

IMADI

IMADS

IMAI

IMAS

IMADSI

IMASI
S M

I

I

IMAD

M

IMA

IMADI

IMADS

IMAI

IMAS

IMADSI

IMASI
S M

I

I

IMAD

M

IMA

IMADI

IMADS

IMAI

IMAS

IMADSI

IMASI
S M

I

Murphi
Gem5
Verilog

Outline

• Background and Motivation

• Concurrency: ProtoGen

• Hierarchy: HieraGen

• Heterogeneity: HeteroGen

• Coherence for the cloud

Cache Coherence

Core N

Cache X = 0

Core 0

Cache X = 0

Interconnect

Directory Memory

Core N

Cache X = 0

Core 0

Cache X = 1

Interconnect

Directory Memory

Core N

Cache

Core 0

Cache X = 1

Interconnect

Directory Memory

• SWMR: single-writer, multiple-reader invariant

Consistency-directed Cache Coherence

Core N

Cache X = 0

Core 0

Cache X = 0

Interconnect

Directory Memory
X = 0

Core N

Cache X = 0

Core 0

Cache X = 1

Interconnect

Directory Memory
X = 0

Core N

Cache X = 0

Core 0

Cache X = 1

Interconnect

Directory Memory
X = 1

Core N

Cache

Core 0

Cache X = 1

Interconnect

Directory Memory
X = 1

Release
(write back)

Acquire
(self-invalidate)

“Cache coherence protocols are notoriously
difficult to implement” [DSL 1997]“Sophisticated cache coherence protocols are notoriously

difficult to get right” [ICS 1999]

“Cache coherence protocols for distributed shared
memory multiprocessors are notoriously difficult
to design” [ICFS 1996]

“Cache coherence protocols are notoriously
difficult to design and verify” [High Perf.
Memory Systems, 2004]

“… directory-based cache coherence protocols
are notoriously complex” [PACT 2011]

“The coherence problem is difficult, because it
requires coordinating events across nodes”
[IEEE Concurrency 2000]

“Coherence protocols are notoriously difficult to
design and implement correctly” [ASPLOS 2017]

“… designing and verifying a new hardware coherence
protocol is difficult”
[Spandex: A Flexible Interface for Efficient Heterogeneous
Coherence - ISCA 2018]

From AnandTech: “… coherency was broken and
manually disabled on the Galaxy S 4. The
implications are serious from a power
consumption (and performance) standpoint.”

Bugs in the Wild

Why is Coherence Hard?

• Concurrency

• Hierarchy

• Heterogeneity

Outline

• Background and Motivation

• Concurrency: ProtoGen

• Hierarchy: HieraGen

• Heterogeneity: HeteroGen

• Coherence for the cloud

S

I

M

I

IMAD

M

store / send GetM to Dir

IMA

recv Data + Ack
recv Data

recv Acks

IMADI recv Fwd-GetM

IMADS recv Fwd-GetS

IMAI

IMAS

recv Fwd-GetM

recv Fwd-GetS

recv Data

recv Data

IMADSI

IMASI

recv Acks

recv Inv

recv Inv

recv Data

recv Acks recv Data + Ack

recv Data + Ack

S
recv Data + Ack

recv Acks

physical atomicity logical atomicity

S Mstore / send GetM / recv Ack

Atomic S to M Transition

S SMAD Mstore / send GetM recv Ack

Transient States

non-atomic transaction

SMAD

recv Inv recv
Fwd-GetS

S Mstore / send GetM recv Ack

Concurrent Transactions

SMAD

recv Inv recv
Fwd-GetS

S Mstore / send GetM recv Ack

recv Inv recv
Fwd-GetS

Concurrent Transactions

non-atomic transactions + concurrency = complexity

To Summarize…

§ Stable state protocols assume physically atomic transactions

§ Need to support concurrency for performance

§ Transient states required to provide logically atomic transactions

Key realization…

§ Stable state protocol is a sequential specification

§ The final protocol is a non-blocking concurrent implementation

§ Transient states are synchronization operations

Insight

S

I

M

I

IMAD

M

IMA

IMADI

IMADS

IMAI

IMAS

IMADSI

IMASI

S

Sequential object {
…
…
…
}

Non-blocking concurrent {
…
…
…
}

No wonder cache coherence protocols are Hard!

Insight
concurrent Method-1 {
…
RMW(…); //linearization point
…
}

time
Method-1()

Method-2()

Method-1()
Method-2()

Interconnect

Directory Memory

Core

Cache X = 0

Core

Cache X = 0

Directory is the Linearization point!

Demystifying Transient States

How do transient states provide logical atomicity?

§ Convey directory serialization order to caches

§ Transient states ensure that caches obey this order

ProtoGen automates by leveraging this insight!

How does cache infer serialization order?

recv Inv recv
Fwd-GetS

S Mstore / send GetM recv Ack

recv Inv recv
Fwd-GetS

S MAD

recv
Fwd-GetM

recv
Fwd-GetM

O Mstore / send GetM recv Data + Ack

recv
Fwd-GetM

recv
Fwd-GetM

O MAC

How to resolve name conflicts?

recv
Fwd-GetM-O

recv
Fwd-GetM-M

O Mstore / send GetM recv Data + Ack

recv
Fwd-GetM-O

recv
Fwd-GetM-M

O MAC

Rename Messages

ProtoGen Summary

§ Infer serialization order from incoming messages

§ Rename messages in order to achieve this

§ React like in stable state

ProtoGen Tool

S

I

M

I

IMAD

M

IMA

IMADI

IMADS

IMAI

IMAS

IMADSI

IMASI

S

ProtoGen Murϕ
(DSL)

ProtoGen IR for protocolsProtoGen DSL

ProtoGen as good (or better) than manually generated protocols

*ISCA’18, IEEE Top Picks Honourable mention

Outline

• Background and Motivation

• Concurrency: ProtoGen

• Hierarchy: HieraGen

• Heterogeneity: HeteroGen

• Coherence for the cloud

Hierarchical protocols

L1

L2

L3

CPU CPU

CPU CPU

private cacheprivate cache

directory / shared cache

private cacheprivate cache

private cache

directory

CPU CPU

private cacheprivate cache

directory

The Complexity of Hierarchical protocols

CPU CPU

private cacheprivate cache

directory / shared cache

private cache

SSP-H
MOESI

SSP-L
MOESI

HieraGen* tool flow

concurrent
directory

concurrent
cache-H

atomic directory

atomic private
cache

SSP-H

atomic directory

atomic private
cache

SSP-L
concurrent dir/

cache

concurrent
cache-L

atomic directory

atomic private
cache

atomic dir/cache

atomic private
cache

Step #1:
generate

hierarchical
SSP

Step #2:
generate

concurrent
protocol

controllers

atomic directory

atomic private
cache

SSP-H

atomic directory

atomic private
cache

SSP-L

atomic directory

atomic private
cache

atomic dir/cache

atomic private
cache

Step #1:
generate

hierarchical
SSP

atomic directory

atomic private
cache

SSP-H

atomic directory

atomic private
cache

SSP-L

*ISCA’20

CPU CPU

CPU CPU

private cacheprivate cache

directory / shared cache

private cacheprivate cache

private cache

directory

CPU CPU

private cacheprivate cache

directory / shared cache

private cache

GPU

private cache

directory

private cache

GPU

MOESI

RC-directed

HeteroGen

• How do you stich together two different protocols?
• HieraGen should work!

• What is the correctness condition?
• MOESI style protocols SC
• RC-style protocols…RC
• Compound consistency models!

[under submission]

Compound Consistency

• Correctness condition for heterogeneous coherence

• Foundation for heterogeneous consistency

• Each cluster can assume its own memory model

*Gen: i/p

tory

M

S

I
DSL

I

V

DSL

CPU CPU

CPU CPU

private cacheprivate cache

directory / shared cache

private cacheprivate cache

private cache

directory

CPU CPU

private cacheprivate cache

directory / shared cache

private cache

GPU

private cache

directory

private cache

GPU

M

S

I
DSL

I

V
DSL

*Gen: o/p

tory
I

IMAD

M

IMA

IMADI

IMADS

IMAI

IMAS

IMADSI

IMASI
S M

I

CPU CPU

CPU CPU

private cacheprivate cache

directory / shared cache

private cacheprivate cache

private cache

directory

CPU CPU

private cacheprivate cache

directory / shared cache

private cache

GPU

private cache

directory

private cache

GPU

I

IMAD

M

IMA

IMADI

IMADS

IMAI

IMAS

IMADSI

IMASI
S M

I

I

IMAD

M

IMA

IMADI

IMADS

IMAI

IMAS

IMADSI

IMASI
S M

I

I

IMAD

M

IMA

IMADI

IMADS

IMAI

IMAS

IMADSI

IMASI
S M

I

Outline

• Background and Motivation

• Concurrency: ProtoGen

• Hierarchy: HieraGen

• Heterogeneity: HeteroGen

• Coherence for the cloud

In-memory with read/write API

Backbone of online services

Datacentre Distributed datastores

4
8

Distributed
Datastore

In-memory with read/write API

Backbone of online services

Need:

Consistency (Programmability)

High performance

Fault tolerance (Availability)

Distributed datastores

4
9

Distributed
Datastore

In-memory with read/write API

Backbone of online services

Need:

Consistency (Programmability)

High performance

Fault tolerance (Availability)

Distributed datastores

5
0

Distributed
DatastoreHigh-performance Reliable Replication Protocol!

The problem

51

Performance Strong
Consistency

Replication ⇒ Performance vs Consistency

Existing Solution: Multiple Consistency
Levels (MCL)

MCL Replicated
KVS

Strong/Weak
Write

Strong/Weak
ReadAmazon DB

App Engine

PNUTS

Manhattan

Pileus

What about programmability?

Datacentre Distributed datastore

Rep Rep Rep Rep

P P P P

get()
put()
Tx()

Fast LAN

In-memory

Rare

Datacentre Distributed datastore

Rep Rep Rep Rep

P P P P

get()
put()
Tx()

Fast LAN

In-memory

Rare

Shared-memory multiprocessor!

Hermes [ASPLOS ’20] [Top Picks honorable mention]
Kite [PPoPP’20] [Best paper nominee]

Datacentre replication = Fast-path coherence + slow-path consensus?

Coherence-inspired Hermes

Broadcast-based invalidating

*ASPLOS’20, IEEE Top Picks Honourable mention

Coherence-inspired Hermes

Broadcast-based invalidating

Local reads

Fast, concurrent writes

Protocol reliable but blocking

Shared Memory World

Sweet-spot in the Performance-vs-
Consistency?

Data-race-free! Yes, label synchronisation!

Alice
Release
Consistency
DRF-compliant
memory model

DRF-SC
Programming
Paradigm

Can we do the same for KVSes?

Replicated KVS

Kite

Kite Replicated KVS

A Replicated KVS with
➢Release Consistency
➢High Availability

*PPoPP’20, Best paper nomination

Rethinking Datacentre Memory

Rep Rep Rep Rep

P P P P

get()
put()
Tx()

Fast LAN

Revolutionizing Mobile/Cloud via Coherence

• Raise abstraction of coherence protocol design and automate
• Concurrency
• Hierarchy
• Heterogeneity

• Datacentre coherence a great opportunity but needs new family of
high-performance fault-tolerant coherence protocols.

