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Abstract

This report is concerned with the efficient execution of array computation on Distributed Memory Architectures
by applying compiler-directed program and data transformations. By trandating a sub-set of a single-assignment
language, Sisal, into a linear algebraic framework it is possible to transform a program so as to reduce load
imbal ance and non-local memory access. A new test ispresented which allowsthe construction of transformations
to reduce load imbalance. By anew expression of data alignment, transformationsto reduce non-local access are
derived. A new pre-fetching procedure, which prevents redundant non-local accesses, is presented and formsthe
basis of a new data partitioning methodology. By applying these transformations in a straightforward manner to
some well known scientific programs, it is shown that this approach is competitive with hand-crafted methods.
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alignment vector
integer constraint vector
kth row of Identity

outer strip-mined iterator

inner strip-mined iterator

nested loop lower bound vector
non-local access in processor z
number of processors

nested |oop upper bound vector
processor number

integer constraint matrix

identity matrix with rows k and j interchanged
hit function

identity matrix

iterator vector

outermost iteration vector
invariant iteration vector

scalar expanded iteration vector
nested loop lower bound matrix
number of rows of matrix x

Zero matrix

Processor space

computation set

hyperplanewhere X = Y

linear transformation matrix
nested |oop upper bound matrix
alignment matrix

subscript matrix for c-occurrence of variable v
nested |oop extra constraint matrix
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Superscripts on matrices or vectors indicate dimension rather than exponentiation, unless otherwise stated.

iterator type vector

innermost iteration vector

null space of X

projection matrix

range space of X

serialising matrix

interchange matrix

subscript matrix for u-occurrence of variable v
set of al (Uy,Vry) matrix-vector pairs of variable v
union of al i, sets

occurrence matrix

occurrence matrix

partitioned occurrence matrix

serialised occurrence matrix

occurrence matrix

cardinality of variable x

size of vector x

lower bound index vector

nested |oop extra constraint vector
subscript vector for u-occurrence of variable v
transformation

load imbalance in processor z

number of u-occurrences of varigble v
upper bound index vector

one to many transformation

multiple hit function

lattice of points denoting iteration space
interleave function

inverse of interleave function



Chapter 1

| ntroduction

The exploitation of pardlelism to achieve faster computation has been a subject of research for many years
[HOCKS8S]. As the physical limit of sequential processor performance is approached, more attention is focused
on designing parallel hardware, where more than one task may be performed simultaneoudly.

Using paralldlismto achieve increased performance hastwo major difficulties. Firstly, thediscovery of appropriate
paralelism, if it exists, in the input language will require a certain amount of program analysis [WOLF89].
Secondly once the parald activities have been identified, they must be organised so as to efficiently utilise any
paralel hardware.

Initial attempts at exploiting parallelism were rel atively modest. 1n the CDC6600 [THORT70], up to 10 operations
could be performed in paralldl, using multiplefunctionunits. Multiplefunction unitsare still used today to provide
parallelism, a good example being the superscalar Intel i860 [MARG90]. A more ambitious approach has been
the the construction of computers with multiple processors, such that the parallel work is spread throughout the
machine [HOCK 88].

The first section of this chapter gives a brief description of existing parallel machines and provides motivation
for research into compiling for distributed memory architectures (DMAS). The second section briefly describes
background material specific to compiling for DMASs. It first describes the form of pardlelism, data parallelism,
investigated in this thesis and then gives an outline of some of the languages used for programming DMAs and
amethod for the implementation of such languages. The third section covers the main implementation issuesin
compiling for DMAs in more detail, which include parallelism detection, load balancing, communication over-
head, scalability and memory coherence. The fourth section gives abrief summary of existing related work which
consists of shared memory program transformations, existing DMA implementations and automated trandation
schemes. This chapter is concluded with an outline of the remainder of the thesis.
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1.1 Overview

1.1.1 Parallel Machines

There have been many attempts to classify computer architectures [SHOR73] and [KUCK77], so only a brief
overview, based on Flynn’staxonomy [FLYN72], will be given. Flynn classifies architectures by the number of
instruction and data streams they possess. The two paralléel classifications, which describe present day computers,
are SIMD (single instruction multiple data) and MIM D (multiple instruction multiple data).

In SIMD architectures, oneinstructionisapplied to multipledataelements. Thisgroup includesvector processorsf HOCK 88|
such as the CRAY-1 [RUSS78], which has specia instructionsfor handling vectors, and array processors such as

the DAP [REDD73] and CM-1[HILL85]. Array processors have one control unit and multiple processors which

apply the same instruction to their own local data which operates in alock-step manner.

The MIMD classification includes a diverse range of computers including reduction machines, dataflow machines
and shared memory and distributed memory multiprocessors. Reduction machines such as GRIP [CLAC86] and
Flagship [WATS88], employ graph reduction, where computation operates in a demand driven manner upon a
set of program functions while dataflow machines, by contrast, execute in a data-driven manner. A discussion of
the relative merits of these architectures is beyond the scope of this thesis; for a discussion of dataflow refer to
[GURDS85] and for graph reduction refer to [WATS88]

At present thereare many commercially available shared memory multiprocessorse.g. Sequent Balance [ SEQU87]
and the Alliant [ALLI190]. These machines consist of von Neumann processors which may have a small amount
of local memory, or cache, but all share the same physica main memory to which they are all connected by an
interconnection network or bus. While these machines have been very successful there is an architectural limit
on the performance available. As the number of processors is increased, the processor to memory bandwidth
becomes saturated and therefore these architectures are not scalable.

Several commercialy available distributed memory architectures are in existence. All have the advantage of
scalability but are generally more difficult to program than shared memory architectures. Typica machines of
thisclass are the Intel hypercube [INTEQQ], the Meiko Computing Surface [MEIK87] and the WARP [ANNAS6].
Such machines consist of several processor-memory pairs that are interconnected by a network. Each processor
is von Neumann in design having its own program, data and program counter. As the number of processors
increases so does the processor to memory bandwidth, or interconnect, which avoids the architectural bottleneck
of shared memory machines. As there isno physicaly shared memory, memory access time is non-uniform so
data that resides in a processor’s own memory will take less time to access than data that is remote. However it
isprecisely thislack of shared memory and non-uniform access time that has made programming and compiling
for distributed memory architectures so difficult.

1.1.2 Motivation

While there has been a steady increase in the power of parallel machines, the software to exploit them has lagged
behind. When the CRAY-1 was first launched in the mid 1970s, the compiler’s vectorising ability was poor and
today if a programmer wishesto exploit the parallelism of, say, the Intel Hypercube [INTE9Q], much of the work
must be done by hand. Thisthesisis concerned with the compilation of a high level languageto produce efficient
implementations on DMASs.

Thelanguages used to program DM As have been, traditionally, imperative with message passing constructsadded.
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In such languages, it isthe programmer’ sresponsibility to decompose the program and datainto processes and data
partitions. This error-prone and time-consuming procedure must then be repeated for each new target machine.

The major barrier to wide acceptance of distributed memory computing isthe primitive state of compiler technol-
ogy. If DMAsareto besuccessful then the programming effort must bereduced. Thisthesis describes compilation
transformations which allow a programmer to write a program, in a high level language, without regard to the
target architecture such that, after compilation, the program may be executed efficiently on DMAs.

Thisthesisshowsthat it is possible, for alarge class of problems, to achieve the automatic mapping of programs
written in an array orientated language to a paralle distributed memory architecture which is competitive with
hand-crafted methods. Thismapping isbased upon analysisand transformations so as to minimise execution time.
By using asimple architectural modd, it is possibleto compare the results acquired by using the transformations
developed in this thesis with existing hand-coded methods.

1.2 Compiling for DMASs

1.2.1 DataParallelism

A large amount of research into compilers for distributed memory architectures has been concerned with the
exploitation of data parallelism where the elements of an array may be evaluated in paralel. This approach has
been widely used in hand-written implementations [FOX86] and has been shown to be very effective. Thereis
a strong relationship between data parallelism and loop paralléisation which is often used when compiling for
shared memory machines [PADUS86]. Arrays are manipulated by loops and, conversdly loops create arrays and
so the parallel evaluation of oneimpliesthe paralel evaluation of the other. This duality allows transformations,
which have been originally devel oped for shared memory machines, to be used, in amodified manner, in compiling
for DMAs.

Although this approach is by definition limited and exploits program parallelism to a much lesser degree than,
say, dataflow [GURDB85], there exist a very large number of scientific programs where program parallelism of
this nature is much greater than machine parallelism and therefore this approach is more than adequate.

1.2.2 Languages

This section presents a brief summary of languages that have been used for programming DMAs. The summary
isrestricted to languages which contain the array data structure, alowing the expression of data parallelism These
programming languages can be split in to four main groups.

explicit process / explicit distributed memory e.g. occam, csp, cstools
explicit process / implicit distributed memory e.g. MultiLisp

implicit process / explicit distributed memory e.g. FORTRAN D, Kali

A W NP

implicit process/ implicit distributed memory e.g. FORTRAN 90, Crystal



CHAPTER 1. INTRODUCTION 9

This classification is based on just two criteria which are thought to be relevant in compiling for DMAs. For a
more comprehensive survey of languages see [SARK89].

The first group illustrates one extreme of the programmer/compiler trade-off. Implementations using these lan-
guages have produced good performance as the compiler has little analysis or work to perform. However this
is at the expense of large programmer effort. Programming in occam requires the programmer to express any
parallelism within the problem as a group of communicating sequential processes, each with its own local data.
After determining the message passing between processes, the processes have to be schedul ed to processors. New
problems now arise, such as non-determinacy and deadlock, which have to be considered along-side performance
issues.

The second group include languages such as MultiLisp [HALS86]. Although several implementations of this
class of languages exist on shared memory machines, no well known implementations are available on DMAs.
This is probably due to their explicit shared memory moddl, which is difficult to map to a distributed memory
space.

The majority of recent research has been focused on thethird group of languages. Theuser isrequired to determine
the distribution of array data in a particular program by the embedding of pragmas. Although explicit process
decomposition is not always necessary, usually the marking of loops that may be executed in paralée isrequired.
In section 1.4.2 there is areview of such languages and their implementations.

With languages in the final category, the programmer simply writes a program without regard to machine archi-
tecture, let alone how the data and computation are to be sub-divided and scheduled for DMAs. The primary
concern iswriting a program with enough inherent parallelism. Informally thisis governed by the algorithm used
and the data dependencies within the program.

This thesis is concerned with the compilation of SISAL [MCGRS85], a language which belongs to the fourth
group. In chapter 2, the important features of SISAL are detailed however the advantages of writing in a high-
level architecture-independent language as opposed to a machine specific one are obvious. The cost, however,
is that the compiler must now perform the necessary anaysis to map the program to the particular architecture
in such a manner as to be competitive with hand-crafted methods. Until recently this seemed to be very difficult
for DMAs. This thesis proposes a methodology for efficient mapping of SISAL, an architecture independent
language, to DMASs.

SISAL isafirst-order functional language supportingarray structures, where computationis performed by expres-
sion evaluation. As SISAL has no notion of process, it is the responsibility of the compiler to map the program
to a particular parale architecture and not the programmer.

SISAL has been chosen not only from the point of view of ease of programming but also because problems
encountered whilst compiling imperative languages for parallel machines, such as aiasing, are absent due to the
single assignment semantics. In fact in [WOLF89], it is stated that having a very high level language makes
things easier for an optimising compiler, as it has more freedom in implementation.

1.2.3 SPMD Computation

Once any data parall€lism has been detected by the compiler, amethod to exploit thisparallelism on aDMA must
be used. The method of evaluation has invariably been single process multiple data, SPMD [DARES88], where
the array datais distributed across the processors so that each processor works upon a separate section of the array
inparallel. Essentialy each process runs the same program but operates on different data which are independent
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portions of an array. Each processor has one process and its own, statically assigned, local data. In this thesis,
two useful methods of exploiting parallelism are considered.

 Creation Parallelism Each process accesses any data required for the calculation of itslocal portion of a
distributed array. After accessing the necessary data, each locd array is calculated in paralld.

» Reduction Parallelism Each process first performs computation upon its own local datain parallel which
is then accessed by another processor.

Creation parallelism can be viewed as accessing data before computation is performed at the site where the
write will take place. In contrast, reduction parallelism implies that every processor performs part of the tota
computation on itsown local datain parallel before its results are accessed by the processor which will perform
the write. Some systems such as [GERN89] only consider creation paralelism, while others rely on reduction
paralelism, eg. [TSEN89].

1.3 Implementation | ssues

1.3.1 Parallelism and Overheads

There has been a large amount of research into the detection of program parallelism and in the review section
1.4.1 an overview of such work is given. The identification of data parallelism requires the detection of arrays
whose elements may be evaluated in parallel. The easiest way to achieve thisis to ensure that there is no data
dependency between two e ements of the same array which may be manifested as aloop carried data dependency.
In Sisal, the for loop guarantees that there are no such dependencies and for this reason it forms the basis of
exploitation of paralelism in thisthesis. All arrays that are generated by a for loop may be distributed across
the DMA's processors and evaluated in parallel. A pre-processor using paralelising transforms as described in
[LU90] and [PUGH91], would be required to make the results of this thesis applicable to existing imperative
languages.

In shared memory machines, it is usua to partition the program graph into processes. This may be viewed as a
procedure, usualy performed at compile time, where the graph is chopped into a number of sub graphs which
are called processes. These processes are then scheduled to physical processors either at compile or run-time.
However, for DMAs it has been more usual to partition and schedule the data (array) to physical processors at
compile time.

A completdy static, compiletime, approach to the mapping of data and computation to processorsisused in this
thesis. Thisis not only to reduce the complexity of the problem but also to demonstrate that such an approach
can be successful. Run-time methods have been particularly popular for balancing the work load [SARG86] but,
in chapter 3, it is shown that it is possible to determine a compile time what the work load would be given
a particular partitioning. While such analysis, in genera, cannot work in the case of compile time unknowns,
there are many programs [SHEN90], where thisis not the case. At the heart of this static approach is the fact
that a compiler knows more about the program, than a run-time system can. Armed with this knowledge, it can
transform the program into a form which will run efficiently without incurring any run-time overheads. To aid
thisstatic approach, dynamic arrays and recursion are not addressed in thisthesisand it is assumed that array sizes
are known a compile time. Finally on this point, Sarkar [SARK89], in his concluding chapter, compares static
and dynamic approaches to compiling Sisa for a shared memory multi-processor. In al but one of his examples,
the compile time method gave better results.
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Using a static SPMD model of computation implies a coarse-grain approach, as there is only one process per
processor. The advantage of this scheme is that no context-switching overhead is incurred. This, however,
prevents the hiding of memory latency by switching out a process that has made anon-local access and executing
one which isready to run. By making a memory access ahead of time it is possible, by pre-fetching, to provide
latency tolerance even with a coarse granularity. Latency was considered a critical issue in [ARVI187] but it is
not considered in this thesis as it has been extensively covered in Rogers thesis [ROGE9]] in the context of
compiling for DMAs.

Once the program parallelism has been identified, it is the task of the compiler to transform the program so as to
fully utilise the available machine parallelism and to reduce any overheads. In thisthesisit is assumed that the
problem sizes are much larger than the number of processors and that the amount of program datapardlelismis
greater than the available machine parallelism. Therefore, as it is reatively easy to utilise the available machine
parallelism, then the compiler must focus its attention on finding a mapping that minimises overhead. The major
overheads are load imbalance and non-local access. Load imbalance occurs when work is unevenly distributed
across the processors so that some processes take longer to execute than others. A compiler should employ
a scheme whereby the work load is as evenly distributed as is possible. The other mgjor overhead, non-local
access, occurs when there exists a data dependence between two items of data on separate processors. Non-local
access, often referred to as communication overhead, should be minimised by a compiler for DMAs. However
these objectives conflict and generdly there exists a trade-off between them.

1.3.2 Parallelism v Non-L ocal Accessv Load Balance

By distributing the computation and data over several processors, the execution time may be reduced. As the
number of processors utilised increases, each processor will perform less work and hence the execution time
should decrease. However as the number of processors increases, the amount of data local to a processor will
decrease and hence the number of non-local accesses will increase. This will manifest itself as communication
overhead and tends to increase the execution time. Thisisthe well known trade-off between locaity and paral-
lelism[PEYT86]. It isreasonable to adopt the strategy where, firstly, a compiler must use all the processors and,
secondly, determine mappings to reduce non-local access. It is possible that for some programs, a more efficient
implementation will take place if not al the processors are used. Thisis not considered in thisthesis.

Lessimmediately apparent is the trade-off between load bal ancing and non-local access. Onemethod of balancing
the work load is to randomly distribute the data and, hence, computation across the processors. This can have
the effect of decreasing the overhead due to load imbalance but it also destroys any spatial and temporal locality
withinthe program. Thiswill have the effect of increasing the number of non-local accesses. Itisnot clear how to
reconcilethisconflict asit will depend on the particular program concerned and therel ative cost of communication
and computation for a particular machine.

1.3.3 Distributed Memory

One of the mgor reasons for investigating DMASs is their potential scalable performance and if this potential
is to be redlised, dl implementations should also be scalable. The major impact on compilation is that array
data should not be replicated across the processor. If replication is used then as the problem size and number of
processors grow linearly, the amount of memory needed grows quadratically.

Within thisthesis a global address space is assumed. Machines such as EDS [HAYW90] and KSR support thisat
the hardware level. In other machines, such as the Meiko and Intel Hypercube where each processor has its own
local address space, each memory reference must be trandated. Successful schemes for message based machines
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have been described by [RUHL90] and [ROGE91]. Implementing a globa address space on message passing
machines was one of the first issues tackled by researchers in this area [CALL8S].

One of the benefits of considering a single-assignment language is that a dataitem may only be written to once.
In imperative languages such as FORTRAN or Pascal, a variable may be overwritten many times. Thisisared
problemin parallel machines asthe most recent value of avariable hasto be maintained. This problem of memory
coherence has normally been solved by the use of expensive hardware mechanisms. The Sequent Symmetry,
for instance, has a snoopy-bus which monitors the memory addresses to see if a locd copy of a variable has
been updated. In [LI89], severa methods for ensuring memory coherence in a distributed memory machine are
discussed. SISAL does not require any memory coherence mechanisms to ensure a correct implementation.

1.4 Review of Related Work

The first part of this review section surveys the transformations currently in use. Most were originaly devel-
oped for vector and shared memory multiprocessors but are beginning to be used in the context of DMAs. The
second part addresses compiling for DMASs and describes systems where the user has added some pragmeas di-
recting the compiler how to map the data and computation to the processors. The compiler then applies smple
transformations or mappings to produce a local program for each processor.

The third part describes those few systems where an attempt to automate the whole process with no user in-
tervention is attempted. In these systems much analysisis required before appropriate transformations may be

applied.

1.4.1 Analysisand Transformations

There has been much work published on program restructuring to discover parallelism. The mgor constraint is
data dependence. Determining whether two occurrences of aparticular array reference the same data element and
hence form a data dependence is non-trivial. Over the years, successively more accurate tests have been derived
which isimportant as al program transformations based upon loop restructuring rely upon dependency analysis.
A transformislegal only if data dependency is preserved. In [WOLF89] agood survey of classicd techniquesis
given. In [GOFF91] the application of such analysisin a mature compiler is described and recently, increasingly
more sophisticated analysis has become available [L190b], [MAYD91] and [LU90]. The relationship between
data dependency and restructuring is described in [WOLF90b]. A particularly interesting techniquefor analysing
data dependence, by describing access regions, is given in [BALA89]. This data access summary, rather than
giving ayes/no decision of existence, can be used for purposes other than determining data dependency such as
determining a caching strategy.

Traditionally, program transformation research has largely focused upon two areas, paraldism detection and
memory management. Some of the earliest work to uncover parallelism can be found in [LAMP74]. A good
survey of such transformsis given in [ALLE86], [PADU86] and [WOLF91] which describe loop interchange,
reversa, etc. Recently tools have been designed to alow the user to apply program transformationsin an interac-
tive manner to determine the parallel forms [WOLF90d]. These transformations are described using a functional
notation. However, recently, some researchers have looked to unimodular matrix transformations as a more ele-
gant approach [DOWL90], [BANJOQ], but there exist legal loop transformations which are not unimodular and
thus this approach is limited.

A major difficulty in applying transformations is determining in which order to apply them. In [WHIT90] and
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[WOLF90c], thisissue is discussed, but in general the relative merit of each transformation depends on the target
architecture involved and in which phase of the compiler the transformations can take place.

Because of the problems of ordering in ad hoc approaches, there have been recent moves towards a unification
of transformations. In both [LU90] and [PUGH91] a methodol ogy to determine the maximum parallelism within
a particular loop structure is given. Rather than applying transformations in a piece-wise fashion, a schedule is
determined which maximises parallelism. The major drawback of this scheme isits computational complexity but
by restricting the number of schedules considered, it is possible to determine the best form for many reasonable
programs.

Although many transformations have been aimed at detecting pardlelism, there has been a large amount of
research in finding transforms to use local memory or cache more effectively. In [CARR89], the use of strip-
mining and loop interchange is discussed so as to maximise accesses to local cache rather than main memory in
a hierarchical memory. In this paper, blocking methods, as studied by numerical anaysts, are used to minimise
communication to main memory. Although a uni-processor is assumed, it is apparent that the same arguments
apply to multi-processor systems.

In [GANNBS8S] the concept of a reference window is introduced. By transforming the program such that loca
dataisused by al that need it, efficiency may be improved. In [WOLF914a], further work in thisareais detailed
and an algorithm to transform a restricted set of programs to increase locality is given. In [LAM91] there are
presented experiments which verify the usefulness of such an approach. As well as increasing access to local
memory, transformationsto hide memory latency for non-local memory have been addressed. In [GORN90] and
[CALL91], prefetching of databefore it is required helps to hide latency.

1.4.2 Pragma based DMA Implementations

The state of research in compiling for DMAs is much less advanced than for shared memory machines. Firstly
those loops that may be performed in parallel are denoted as such by the programmer using specia constructs
such as DOALL. Once the compiler knows which regions may be executed in paraléd, it has to decide how
to decompose the data over the processor. The decomposition of data is often crucia to the performance of
a program on DMAs. It eventually determines the amount of communication required, the work distribution
and hence load balancing. This is directed by the programmer and can be broken into two parts, aignment
and distribution. Alignment is concerned with the réelative orientation of arrays stored in distributed memory
and is largely independent of machine considerations. If two arrays should be stored transposed relative to one
another, thisisindependent of the number of processors available or the underlying interconnection network. The
distribution of arraysis concerned with the partitioning of arraysinto rows, columns, blocks etc. and the mapping
to processors, whether it be in afolded or interleaved manner.

Once the data distribution has been given, the compiler has to determine what computation is to be performed on
each processor. Either thisis given by the programmer or it may be derived by some form of loop elimination.
Once the data and computation for each processor is known, then the compiler inserts the necessary sends and
receives. This insertion of message passing code has been the main focus of attention in the schemes outlined
bel ow.

Thefirst significant description of thisapproach isgivenin [CALL88]. In thispaper the authorsderive an efficient
message passi ng program from a sequentia shared memory program annotated with directionson how el ements of
shared arrays are decomposed and distributed to processors. In particular all communications are managed by the
compiler. The user defines how the dataiis to be broken up or decomposed. Such decompositionsare restricted to
rows or blocksetc. which are mapped toavirtua array. The user then defines how thevirtua array isbedistributed
or mapped to an array of virtual processors. They alow folded or wrapped mappings. Optimisationsfor compiling
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such programs are given which include strip-mining, loop interchange and loop elimination. They concentrate on
the issue of inserting message passing code and describe a technique where redundant messages can be removed.
The mgjor difficulty with this paper is its applicability to problems other than the matrix multiplication example
given. There isno systematic description of why, how or when atransformation should take place. Nevertheless
this approach spawned severa projects, wherein the mapping of data and computation is directed by pragmas.

The programmer usually defines the partitioning of an array and its allocation, usually with respect to virtua pro-
cessors. Some systems allow alignment constructs, while for others each distribution has to be given. Such sys-
tems include Pandore [ANDR90a] [ANDR90b], Oxygen [RUHL90], Kali [KOEL90],[KOEL91], AL [TSEN89]
and Superb [GERN89], [GERN91]. In the following brief descriptions an indication of the form of pragmas
required will be given. Some are at a more developed stage than others.

No description of the Pandore implementationis given in [ANDR904 and an excessive amount of user pragmas
are needed, some of which seem redundant. Here the user must define pardlel loops and indicatethat an array is
to be distributed. The user a'so has to define how an array is to be partitioned, and how it is to be mapped on to
avirtual processor domain. The Oxygen project is more comprehensive. Here pragmas are added to FORTRAN
and a working system is available. But once again the programmer must insert a wide range of pragmas as
in Pandore. Its main drawback is the run-time determination of communication, therefore the programmer is
required to insert some communication primitivesin order to give an efficient implementation. Much of thiscan
be discovered at compile time, reducing overhead, and they are presently looking at such a scheme.

Kali is a functional language annotated with partitioning and virtual processor directives. They have recently
concentrated on generating efficient code in the prescence of compile time unknown dependencies. They store
such patterns at compile time if they will be repeated rather than recomputing them. Sdltz et. a. take asimilar
approach [SALT90]. In the DINO [ROSI90] project, asimilar approach to Pandore istaken. A particular feature
of DINO is that by annotating assignments with a “#”, the programmer indicates that non-loca data will be
required.

The AL compiler for the WARP is more sophisticated in that it requires less user pragmas to perform an effective
mapping. The user does not have to define the data over avirtual processor space or define the exact datamapping.
Instead those arrays to be distributed are marked by a key word and the compiler determines whether they should
be folded or interleaved. However the class of loopsand array references are restrictive and the programmer must
add some information on reference patternsin the form of data relation pragmas.

Other implementationsinclude[BABE9Q] and the Booster language [PAAL90] . Inthelatter the data partitioning
is specified by a functiona description which is separate from the imperative program. In Booster, it isintended
that the user experiment with different data mappings. This idea has been extended in [BALA91] where the
environment tries to determine the suitability of such a mapping.

One of the most comprehensive and advanced approachesis given in [ROGE91], and [PING90] where thewhole
compilation process is described. Once the data partition has been described by the user, an optimising compiler
maps the program to the Intel Hypercube to give a performance comparabl e with hand written methods. What is
interesting in this approach is that compile time transformations are used wherever possible. In the case where
thisis not possible, an efficient run-time mechanism is used.

Recently an attempt to provide a consistent set of pragmas for FORTRAN on DMASs has been made [FOX91].
The pragmas include alignment, data partitioning and parallel loops.
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1.4.3 Automated Trandation

Not al research has been based upon pragmas. For a restricted set of programs with nearest neighbour data
dependencies, known as stencil problems, a mapping known as tiling has been used. Papers using this method
include [RAMA90] and [HUDA9Q]. Here the optimal size of the tiles for data distribution is considered using
a surface area to volume argument. The tiling transformation is placed in a more general context in [ANCO91]
where arbitrary data dependence are alowed.

The unimodular transformations described by [BANJO0] are proposed as a method for compiling for DMAsin
[KULK91]. They describe the effect of transformationson certain important machine characteristics such asload
balancing and communication. However they only consider doubleloopsand no strategy isgiven as how to apply
them for compilation.

An interesting approach isgiven in [RIBA90]. Here arestricted set of programs is mapped to the systolic WARP
machine. By using amatrix representation, he is able to detect a parallelism enhancing ordering and hence com-
putation and data distribution. The compiler performs very well for the examples given. No user interventionwas
required. The main limitation is that genera while loops and non-constant data dependencies cannot be imple-
mented in thisapproach. Automatic data distribution so asto minimise non-local access for SIMD architecturesis
described in[WEIS91] and [KNOB90]. Many of the techniques are applicableto an SPMD model. Unfortunately
the issue of load balancing is not addressed and the class of programsis once again quite restrictive. Only array
references which have one iterator accessing any one index are considered. Additionally each occurrence of a
particular iterator in an array reference has to have the same coefficient.

The methods described in [DENN89] and [IKUD90] do not require user pragmas. However they are only exploit-
ing certain very restricted program structures. For instance in [IKUD90] only 4 very specific program patterns
are considered for parallelisation. Thus while awider class of programs can be accepted than in [RIBA90], only
arelatively small number of programs can be compiled, for any advantage. In addition they lack any analysison
which decisions are made.

By far the most advanced project is the Crystal project at Yale [CHENSS], [L190]and [YANG91]. They consider
all issuesinvolvedin mapping Crystal to DMAs. Throughout thisthesisrelevant comparisonswill be made where
appropriate. [GUPT90] based their alignment strategy upon the work at Yale. The Crystal project is the most
ambitiousin that it encompasses dl the issues involved in compiling for DMAs. They intend to fully automate
all aspects of the compilation process.

Oneof themgjor focusesin the Crystal project isreducing communication overhead. In[L190], apolynomid ago-
rithmis given to determine the relative alignment of all the arraysin a program. Although thisis an NP-complete
problem, the approximating algorithm gives good performance. Once a data partition has been determined, the
necessary sends and receives can be planted [L190a]. In trying to determine the best data layout, the compiler
searches through a vari ety of schemes suggested by thearray reference patterns. For each layout, acommunication
cost is calculated. Less emphasisis placed upon load balancing.

1.5 Outlineof Thesis

In chapter 2 the computation set notation used throughout this thesis, based upon linear algebra, is introduced.
The basic trand ation from Sisal to computation sets to an imperative language is outlined. A basic architectura
model, with associated metrics, is defined so as to allow later evaluation of the compilation scheme.
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Chapter 3 investigates |oad balancing. By describing the amount of work per processor for a particular partition,
it is possible to determine whether there exists a transformation to achieve even distribution of work and what
that transformationiis.

Before the data and computation are mapped to the processors it is necessary to determine the relative alignment
of the arrays. This will crucialy determine the amount of non-local access and is the subject of chapter 4.
Transformations to improve locality are described.

In chapter 5, the folded and interleaved mapping of data and computation to the processors is first described.
Pre-fetching transformations to reduce redundant non-local access are then given. Finally a method to determine
the data partition that reduces non-local access is presented.

In chapter 6 all these techniques are ordered and applied to eight well known problems. The implementationsare
evaluated using the metrics devel oped in chapter 2 and compared with hand written implementations.

Finally in chapter 7, the work is critically evaluated and suggestions for further work are outlined.



Chapter 2

Notation

This chapter describes the language Sisal and a restricted form which is used throughout this thesis. Each Sisd
program is expressed in a computation set notation, which is amenable to analysis and transformation. The
target language, a description of the trand ation scheme used and the constraints upon program transformation are
outlined. Finally a simple machine model is presented, alowing later evaluation of the compilation scheme.

The trand ation scheme for Sisal can be summarised as follows:

Ps P4 Ps
P P P

Po Ak P Y Py ii — S _4 > _5 (21)
3 Py 5

Po is the original Sisal program and Ps the local imperative program for a particular processor. To represents
the trandlation of Sisal into a computation set representation Py, as described in section 2.2. 4 represents any
pre-partitioning transformation which transforms P; into a new computation set P,. The { transformation maps
P2 into p separate computation sets [Ps, ... ,&]T, one per processor. The underline symbol implies that the
particular representation is local to a particular processor. 7% represents any post-partitioning transformation
which is applied to each local computation set to give the new local computation sets [Py, ..., P4]™. Findly 1,
represents the translation of the computation sets into the local imperative programs [Ps, ..., Ps]" written in the
imperative language described in section 2.3 The T and  transformations form the body of thisthesis. In this
chapter, however, we are concerned with 1o and 13 which trandate Sisd, first, into a sequence of computation
sets and then into the imperative language. The proof of correctness of such trand ation schemes is important but
beyond the scope of thisthesis. Instead an intuitive description is given.

2.1 Sisal

Sisal is a strongly-typed single-assignment |language where a name has only one value associated with it. It
can be considered to be a first-order functional language, where each function is evaluated without side-effect.
Its functiona nature provides referentia transparency and computation should be thought of as proceeding by

17
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expression evauation rather than state-transition. As values are bound to names, rather than memory locations,
thereisno adiasing.

Sisal has the usua primitive data types. integer, real, double, boolean and character. The aggregate data-types
are array,record, union and stream. The array data structure is one-dimensional; multi-dimensiona arrays are
represented as arrays of arrays. Each component of an array may itsef be an array and, since they may be of
different lengths, jagged arrays are allowed. A streamissimilar to an array in that it, too, is one-dimensiond; the
major differenceisthat access is restricted, so that only the head of a stream may be accessed a atime. Arrays
are defined as strict data-structures, while streams are intended to be implemented non-strictly. Each element of a
stream is available as soon as it is produced, and streams are often used in producer-consumer type applications.

2.1.1 Definition before use

As in many languages, such as Pascal, an object must be declared before it is used. If afunction isto be used
in a mutually recursive manner, then it is necessary to declare it using a forward function definition. Sisal,
however, does not allow recursive or implicit definitions of value names. One conseguence of thisis that array
data structures may not be defined in terms of themselves and are, therefore, strict data structures. In other words,
an array element cannot be accessed until all of the array has been created. This simplifies the implementation
of array structures [FEO90B]. In addition, every element of an array is defined once only. Thus, if an array is
distributed, each element is written just once and, hence, there will be no memory coherence problems.

2.1.2 Constructs

Sisal hasthe usud language constructs including functions, conditionals, and iteration. Computation proceeds by
evaluation, so just as afunction returns avalue, so do the if and for constructs. Sisal programs can use recursion
to express repetitive computation but, unlike most functiona languages, Sisal aso supportsiteration.

Sisal has two iterative constructs, the for initial and for loops. The former allows cross-iteration data depen-
dencies while the latter does not. The for initial construct consists of an initialisation section, a loop body, a
termination test and areturn clause. Cross-iteration data-dependency is restricted to values of the previousiter-
ation only, which may be accessed using the old prefix. For example consider the for initial loop in figure 2.1.
The loop body could be writtenin FORTRAN as A(l) = 1 OA(l — 1) + b. Dependencies such as A(l) = ..A(l +1)..,
Al = ..A(l = J).. are not permissiblein Sisal.

The for construct consists of a range generator, aloop body and a return clause. The range generator defines
the values a loop or iterator ranges over. These may be combined by the dot or cross product operator which
correspond to the dot and cross product in linear algebra.

The for construct is less genera than the for initial loop, in that the number of iterations must be known on
entering the loop and no reference to the previous value of avariable may be made. Finally, Sisal supports seven
return operators:value of, array of, stream of, catenate, sum, product, least and greatest. More details on the
structure of both for loops may be found in [MCGR85)].
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d:=for initial

i:=1, -- Initialisation
a.= 0; -- Section
while (i <=n) -- Termination Test
r epeat

i c=oldi +1; -- Loop

a:=(i *olda) +b -- Body

returns val ue of -- Returns

product a -- O ause
end for

Figure 2.1: A for initial Loop

e:=foriinlncrossj inl,i -- Range Generator
a:=cli,j] -- Loop Body
returns val ue of suma -- Returns O ause
end for

Figure 2.2; A for Loop

213 Redricted Sisal

The aim of this thesis is to automatically detect and exploit parallelism within a Sisa program suitable for a
DMA using an SPMD model of computation. To this end, we are primarily concerned with programs involving
the array data structure. Thus, no consideration is given to the implementation of the record, union and stream
data types. All functions are assumed to be inlined to simplify analysis. Thisis clearly impossible for programs
with recursive forms and, therefore, attention is limited to non-recursive programs.

With respect to arrays, thefollowing restrictionsare imposed: firstly, all arrays must be rectangular and, secondly,
all array name instances, includingthose pre-fixed by the old keyword, withina particular lexical scope must have
a fixed size associated with them which can be determined at compile-time. This greatly aids data partitioning
and allows a simple policy of memory allocation so as to maintain scalability.

Sisal has arich set of array creation operators. In this thesis the only array create operation considered is the
array gather. Infigure 2.3 ageneric array gather is shown, where J isa set of iteratorsand x any set of variables.
All the remaining array creators can be expressed in terms of the array gather operator. For example consider
the array creationsin figures 2.4 to 2.6. Figure 2.4 shows an array, a, being created whose elements are the same
as array b except that the 7th dement is replaced by the value n. This can be re-written using an array gather as
shown in figure 2.7.

for J
returns array of x
end for

Figure 2.3: Generic Array Gather
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a:=b[7:n]
Figure 2.4: Replace Operator
a:=array_fill(1,n,0.0)
Figure 2.5; Array Fill

Figure 2.5 shows the creation of an n dement array where every element is set to 0.0. This can be re-written
using an array gather as shown in figure 2.8.

Figure 2.6 shows the creation of anew array a by the concatenation of two n-element arrays, b and c. This can
be re-written using an array gather as shownin figure 2.9. Finaly arestriction isimposed upon the format of the
for initial loop, it may only have value of asitsreturn argument.

At first these conditionsmay seem overly restrictive, but they are introduced only in order to focus attention upon
the mainissues. In Sisd it is possible to express the same problem in many different ways, the consideration of
which would be distracting.

2.2 Computation Sets

In this section theform of acomputation set, array occurrence, iteration space and index domain are defined. This
notation is based upon the formalism developed in [RIBA9Q]. A program consists of a sequence of computation
sets where each computation set describes the creation of an array variable. An array occurrence describes how
an array is accessed, while the iteration space determines the work to be performed. The index domain describes
the size and form of an array, and is required when partitioni ng data across the processors. In this thesis those
programs with affine loop and occurrence structures are of primary interest. An affine function is one that can
be represented as a matrix/vector pair. The focus of attention upon affine forms is justified by an empirical
study [SHEN90], where 80% of the program structures were found to be affine. However, whenever non-affine
constructs are found it is important that they can be represented otherwise trandation is impossible. Where
appropriate, procedures for handling non-affine structures will be explained.

Definition 1 A program consists of a sequence of computation sets (Q, ..., Q) where n is the number of
computation setsand Q = (A, J, 7, b, S) isa computation set.

Each of the terms contained within this definition will be described in the subsequent sections.

a:=b||c

Figure 2.6: Array Concatenate
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a:=for i inln
returns array of
if (i =7)
then n
el se b[i]
end if
end for

Figure 2.7: Array Gather

a:=for i in1l,n
returns array of
0.0
end for

Figure 2.8: Array Gather

a:=for i in1,2*n
returns array of
if (i<=n)
then b[i]
el se c[i-n]
end if
end for

Figure 2.9: Array Gather

21
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a;=for i inl,n crossj inln
returns array of
b[i,j] * b[j,i+3]
end for

Figure 2.10: A Sisd Program
2.2.1 Array Occurrence

In this section the subscripts of each of the array occurrences are of interest. Consider the Sisal fragment in figure
2.10 where the sub-scripts are of the form:

afi,j], bfi,j], blj,i+3] (2.2)

The subscripts of the two occurrences of b are obvious but the subscripts of a are inferred from the iteratorsin
the array gather, i and j. These subscripts can be written in matrix form:

[ ][ ane[2 2]}

This representation of an array’s sub-scriptsis called an occurrence matrix/vector pair. There are two distinct
types of occurrences matrix.

Definition 2 A c-occurrence isthe occurrence matrix of thearray being created where each element of thisarray
isgiven avalue. Dueto the strictness of array structures in Ssal it isnot possibleto create or writeto part of an
array structure.

Definition 3 A u-occurrence isthe occurrence matrix of an array referenced or used in an array creation. It is
possible to use or read part of an array structure. There is no restriction on the number of u-occurrences of an
array.

Definition 4 A segment is a fragment of a program which contains no iterators and has only one c-occurrence.

Let 6, be the number of distinct u-occurrences of avariable vin a segment.

Let Uy, Vrv),r O 1, ..., 6, be the matrix/vector pair corresponding to the rth distinct u-occurrence of avariable
V.

Let Uy = {(Ury, vry),0Or 01, ..., 6,} bethe set of al u-occurrences of variable v in a particular segment.



CHAPTER 2. NOTATION 23

Let Y be the set of array variablesin a segment.
Let &/ = Oyoyldy bethe set of al u-occurrences in a segment
Let C, be the c-occurrence matrix in a segment.

For a segment within m nested |oops, each occurrence of avariable v isrepresented by a Ny x mmatrix and N, x 1
vector pair where N, is the number of array dimensions of variable v.

Definition 5 A segment, S, is defined as the tuple (F, C,4/) where F is a parse tree of the segment.

In Sisa the c-occurrence can always be represented in matrix form. However it is possible for u-occurrences to
have non-affine form, i.e. they cannot be represented by a matrix-vector pair. For example, theindirectionin the
array occurrence, d[a[i]], cannot be represented. In such cases aspecia entry, [], will be made inify, signifying
that the particular array occurrence cannot be represented in matrix form. No information will be lost, as the
occurrence will remain in the parse tree F.

2.2.2 Iteration Space

Theloopsin aSisal program surrounding a segment can be represented as an mx 1 vector where misthe number
of loops or iterators.

Let
J:[j11j21---1jm]T (23)

be the iterators surrounding a segment. In the example 2.10, J is as follows:

J= [ ! ] (2.4)
In thisthesis three types of loops are identified.

Definition 6 The forall form corresponds to the Sisal for construct, where each iteration may be evaluated in
paralld.

Definition 7 Theforiter form corresponds to the Sisal for initial construct, where the number of iterationsto be
performed can be calculated on entry of the loop. In particular there exists one loop induction variable which is
incremented by one on each iteration and the termination test is an affine function of the enclosing iterators.

Definition 8 The while form corresponds to all other Sisal for initial constructs. In particular it corresponds to
loops where the number of iterations depends on the loop bodly.

To ensure lega program transformations, it is necessary to record the type of each loop. It is aso important to
record information about the return clause. In the restricted form of Sisal, for initial loops may only have a
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a;=for i inl,n crossj inn-i,2*n+
returns array of
for kin 3* +i +6, 4*i -7
returns val ue of sum
b[i, k]
end for
end for

Figure 2.11: A Sisa Program

returns value of clause. for loops may have returns array of, or a reduction operator such as returns value of
sum. For the purposes of compiling for parallelism, the threeterms value, array and reduction will be recorded.

Let 7 bethemx 1 vector describing the form of each of theiteratorsand its return clause. Each entry in 7 will
be atuple of theform (itypertype) whereitype= (forall | foriter | while) and rtype= (value| array | reduction)

Affine bounds of the iterators are described by the following set of inequalities which can be determined from
the Sisal program :
Li=| (2.5)

Ul<u (2.6)

where L and U are (m x m) lower unit triangular matrices | and u are (mx 1) vectors. The range of values taken
on by J define the iteration space of a segment. This set of inequalities can be re-written as:

SINE

AJ<b (2.8)

or as

where A = [-L, U]", b = [-I,u]".

Definition 9 Given A, an integer (I xm) matrix and b an integer (I x 1) vector, where misthe number of iterators
then Latt(A.b) isthe set of pointsp [0 Z™ such that p [ poly(A.b) where poly(A.b) isthe m-dimensional polytope
given by the set of inequalities AJ < b. Thus the lattice is a subset of a polytope [ SCHR86] that have integer
coordinates.

The convex lattice of integer points corresponds directly to the iteration space. More generd, i.e non-affine,
iteration spaces cannot be represented in thisway. Once again, in such cases a specia entry, [(], will bemadein
A, signifying that the particular iteration space cannot be represented in matrix form. For example consider the
Sisal program in figure 2.11 It is possible to represent the loop bounds as follows:

1 0 o0 -1
-1 -1 0. n
1 3 1| -6
1 0 0 [ . ] = n (2:9)
1 1 0 20n
4 0 1 -7

In genera al affine bounds can be represented in this form.
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a:=for i in1l,n

returns array of

for kin1l,n returns value of sum
if i>k
then b[i,k] * c[K]
else 0
end if

end for

end for

Figure 2.12: A Sisd Program
2.2.3 Incorporating Conditionalsin Polytopes

In the program in figure 2.12, both branches of the if expression can be expressed as a condition that may be
added to a polytope.
i>k = -i+k<-1 (2.10)

isk-i-k<0 (2.12)
In this example there are two polytopes describing the calculation of two different regions of the same array, a.
Each polytope will have a different segment associated with it corresponding to the two expressions in the two

if branches. This process of splitting the calculation of array, a, is similar to loop distribution [WOLF89]. The
polytope corresponding to the first branch is:

[ -1 0] =
0 -1 : -1
1 0 [ ll ] <| n (2.12)
0 1 n

| -1 1] =

while the second is given by:

[ -1 0] [ -1
0 -1 : -1
1 0 [ ll ] <| n (2.13)
0 1 n

1 -1 | | 0|

The polytopes will only describe uniqueregionsif the branches of theif expression are mutually exclusive. For
a discussion of loop distribution in the presence of conditionals, see [KENN9OA]. For those cases where the
conditionals cannot be expressed as a constraint matrix/ vector pair, the special entry [[] is used.

Definition 10 The canonical form of a polytope of a segment is

-L -
[—U] J< [T] (2.14)
& £

where £, € are a matrix/vector pair consisting of extra constraints due to loop body conditionals.
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a;=for i in1,17 crossj in 1,53
returns array of
for kinl, i cross| in1,32-j
returns val ue of sum
b[i+l,j+k] * b[j+k,i+3]
end for
end for

Figure 2.13: A Sisd Program
224 Index Domain

To alow data partitioning it is necessary to record the size and dimensionality of each array. Each array, v, has
the following form:
[il,iz,... ,iNV]T =7V (2.15)

where N, isthe number of array dimensions, iy isthe xth index of the array v, and ZV is the vector containing all
the indices of that array. The indices have a certain range which describe the size of the array as follows:

A<T<u (2.16)

where A = [Ag, ..., Ay, ]T and U = [Us, ..., UN,]T @e Ny x 1 vectors. AsZ is restricted to rectangular forms, only
constant vectors are required to describe its bounds. Each array, in genera, has a different range of indices and
thus has a different Z".

The upper and lower bounds of each array are defined by the range of array iterators enclosing its creation
occurrence. That is, the range of the iterators which are used to create the c-occurrence of an array determine its
size.

The range of the array, a, infigure 2.13 is given by:

[”S[:i]s[g] (247)

Within an array computation only one array is created, so only one index vector, Z, is defined corresponding to
the c-occurrence. The sizes of the u-occurrence arrays involved are determined by their own c-occurrences. In
the case of arrays that are input parameters to the programit isassumed that their sizes are given at compiletime.

2.25 Local Notation

When the many computation setsare mapped to several processors, each processor will haveitsown local iteration
and data spaces. In thisthesis, the convention is to represent local objects by underlining them. For example the
polytope enclosing the local iteration space isAJ < b, and the loca index domain of an array, v, isZ".
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for initial
i 1;
a:=init-a;
b:=init-b;
whi l e (i<=n)
r epeat
i =oldi +1;
a:=forjinln
returns array of
for kinloldi
returns val ue of sumold a [k]*c[k,]|]
end for
end for;
b:=for | in1,2*n
returns array of old b[i] * d[I]
end for;
returns val ue of a
value of b
end for

Figure 2.14: A Sisd Program

226 Sisal — Computation Sets

The basic trand ation scheme, Ty, creates a sequence of computation sets and index vectors from a Sisa program
as described in section 2.2 defining the computation set notation. For example consider the Sisal program in
figure 2.14.

Adi <bgis

-1 0O O -1

0 -1 0 i -1

0O 0 -1 . -1
1 0 o [ ) ] e (2.18)

0O 1 O n

-1 0 1 0

and J1=[(forinit,value), (forall,array), (forall,reduction)]. Sy = (F,C,U) where F is the segment parse tree

and C, = [0,1,0] and ¢/qi4a= [0,0,1], uc:[ 8 g.) g-)

Similarly for Q.:

The polytope AxJ; < by is

1
Cl’ -1 [:]S -1 (2.19)
0
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alo =7
ahi =15
Al (alo..ahi)]:real

Figure 2.15: Array Declaration

and Jo=[(forinit,value), (forall,array)]. S, = (F,C,U) where F is the segment parse tree and C, = [0, 1],
Uoldo = [1,0], Ug = [0, 1]

The index domains for the two c-occurrences are:
[1]<7%<[n] (2.20)

and
[1]<7P<[ 20n] (2.21)

2.3 Imperative Language

The target architecture consists of multiple von Neumann memory processor pairs and it is appropriate for the
target language of the Sisal compiler to be imperative. Each processor will have its own imperative program
which can be compiled by the machin€'s native compiler.

The language described here closely mimics the restricted Sisal form. The mgor difference is that Sisd is
functional whilethe semantics of thisform areimperative. A complete WBNF syntax description of theimperative
language used inthisthesisisgivenin appendix A. Theimportant features of theimperative language are described
in the following sub-sections.

2.3.1 Datatypes

The same scalar types as found in Sisal are present in this intermediate form. The only aggregate data type
allowed isthe multiple dimensiona array whose elements are scalars. All variables are declared locally but may
be accessed globally. The arrays are static and declared at the beginning of the program and can have any constant
lower bound. The declaration in figure 2.15 istypical.

2.3.2 Constructs

Astheintermediate language is imperative, the most basic construct is assignment, denoted, as usua, by :=. The
usua constructs of repetitive and conditional evaluation are provided by the IF, FOR, FORITER and WHILE
congtructs. The FOR construct corresponds to the for loop in Sisal where there are no cross-iteration data
dependencies and the number of iterations is known on entering theloop. The FORITER construct corresponds
to the Sisa for initial loop where the number of iterations is known on entering the | oop body. As a sequential
implementation of the for initial is assumed, a barrier synchronisation occurs at the end of each iteration so as
to ensure that the processors do not become out of step. The WHIL E construct corresponds to al the remaining
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a[(1..n),(1..n)]:real
b[(1..n),(1..n)]:real
c[(1..n),(1..n)]:real
FORi =1TOn
FORj =1TOn
c[i,j] :=0
FORk=1TOn
c[i,j] :=c[i,j] + Cet(a[i, k]) * Get(b[k,j])
END FOR
END FOR
END FOR

Figure 2.16: An Imperative Program

forms of the Sisal for initial loop. Again, asit isimplemented sequentially, abarrier synchronisation takes place
after each iteration.

Access to potentialy non-local array elements is made via the Get function which takes a u-occurrence as its
argument. If the data to be accessed isloca then a simple memory transfer takes place. If however the data is
non-local, then communication with another processor will take place.

An example of thisimperative language is the matrix multiplication program in figure 2.16.

2.3.3 Matrix Notation — Imperative Language

The trandation of matrix notation into the imperative form is described in two parts: firstly, the trandation of a
particular computation set into theimperative language and, secondly, thetrandl ation of asequence of computation
sets into the imperative language.

GivenQ=(A,J, J,b,8) and S = (F, C,U). the basic trandation scheme is to produce a nest of appropriate loops
given by the J and 7 vectors with an assignment as the loop body whose formis governed by S.

Essentially each iterator is printed out, depending on its type, with its loop bounds determined by A, b. The &, €
entries in the polytope AJ < b are represented as | F statements. These are placed immediately after the iterators
they reference. An agorithm to perform this trandation is given in appendix B. In the simple case of addition,
the loop body will be asin 2.22. However, in general, the exact form will depend upon the operandsin F.

V[CJI]:=Get(v1[l/1] + v1])+ I+ Get(vg, [Ug,d + Va,]) (2.22)

All u-occurrences are preceded by the Get operator as they are potentiadly distributed. Sisa requires a c-
occurrence of an array to occur only once. In addition every element is defined once only. Because of this,
the trand ation scheme must guarantee that all c-occurrence writes are local.

All array references to the old value of array v will be referenced as oldv. Thus those arrays which are defined
withinafor initial loop have two copies in the imperative form. At the end of each for initial loop the contents
are swapped. Thisisavery conservativeimplementation. In [CANNB89A] a sophisticated copy avoidance method
isgiven.
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FORi =j TOj+n
FORj =1 TOn
END FOR

END FOR

Figure 2.17: Anlllegd Imperative Program

a:=for i in1,15
returns array of b[i]
end for

Figure 2.18: A Sisd Program

It is now possibleto determine restrictions upon transformations for each computation set.

» The form of the AJ < b polytope must represent alegal program in the imperative language.

Essentially this means that one iterator’s loop bounds cannot make reference to an iterator deeper in the
nest. Thisimpliesthat AJ < b must bein canonical form. For examplethe following polytopeis prohibited

-1 1 0
0 -1 i -1

1 1 [ j ] |7 (223)
0 1 n

as the corresponding program in figure 2.17 isillegal.

» The size of an array must, obviously, remain the same. Consider the program in figure 2.18
with
[1]<[i1]<[15] (2.24)

clearly shrinking the array to give the followingisillegal
[1]<[i1]<[10] (2.25)
because it will give the imperative program in figure 2.19

* Inorder to preserve data dependence, no transformation is allowed on any sequentia iterator. Thisrestric-
tion will result in the preservation of the sequential ordering. Thisis a conservative approach since data
dependence may only require that part of an iteration is performed before the next one commences.

FORi =1 TO 10
ali] := Get(b[i])
END FOR

Figure 2.19: An Imperative Program
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a;=for i in 2,7crossj in2, 7
returns array of b[i,]]

end for
Figure 2.20: A Sisal Program
FORi =2T07
FORj =2T07
afi,i] ;= Get(b[i,i])
END FCR
END FCR

Figure 2.21: An Imperative Program

» The occurrence matrices must still reference the same number of points. For example consider the Sisa
program in 2.20 with has the occurrence matrices:

cx[3 9)as[3 )

If the occurrence matrices are transformed into

c:[ig],u:[i 8] 2.27)

then the imperative program in figure 2.21 results, which defines only the diagona elements of a, rather
than the whole array.

When trand ating multiple computation setsinto imperative form it is essential that data dependenceis preserved.
The simplest method is to ensure that each foriter and while loop is neither distributed nor transformed in any
manner. An agorithm to translate multiple computation sets with this restriction is given in appendix B.

The major consequence of thisrequirement isthat any two computati on sets sharing acommon sequential iterator
at, say, loop nest depth k, 1 < k < mmust have all the previous iterators in the same order with the same loop
bounds so that the two computation sets may be merged.

To illustrate this point consider the program in figure 2.22, where arrays a and b have the same iteration space.

-1 0 O -1
0O -1 O i -1
0O 0 -1 . -1
10 0 [ lj( ] < — (2.28)
O 1 O n
O 0 1 n

If it was decided to interchange the iteratorsi and j in the polytope of b to give the new polytope:
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c,d:=foriinlncrossjinln
returns array of

for initial
k :=1;
a:=init-a;
b:=init-b;

whi | e (k<=n)

r epeat
k:=oldk + 1;

a:=olda+(3*oldb);
b:=a+(2*olda) +(3*oldb);
returns value of a
value of b
end for
end for

Figure 2.22: A Sisd Program

-1 0 O -1
0O -1 O j -1
0O 0 -1 . -1
10 0 [ IL ] < — (2.29)
O 1 O n
O 0 1 n

then, on tranglating to the imperative language, it would be impossible to fuse the loops and thus the program in
figure 2.23 would result, which clearly does not preserve data dependence.

If the interchange had not taken place then the lega program in figure 2.24 would be given.

Thus when more than one computation set shares a nested sequential iterator, the analysis and transformations
must be performed simultaneously with respect to the computation sets involved.

With the aforementioned conditions, transformations upon each computation set can proceed largely indepen-
dently. Only the condition regarding a shared sequentia loop restricts this.

2.3.4 Creation and Reduction Paralldism

As mentioned in the introductory chapter, two forms of paral lelism are exploited, namely creation and reduction
paralelism. Trandating for creation parallelismis essentially the method described in the previous sub-section.
Trand ating for reduction parallelism requires a small modification.

Consider the Sisal program in figure 2.25 which has the following polytope, occurrence matrices and index
domains:
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FORi =1T0On

FORj =1T0On
FORITERk =1 TOn
a := ol da+(3* ol db)
END FOR
c[i,j] :=a

END FOR

END FOR

FORj =1T0On

FORi =1T0On
FORITERk =1 TOn
b :=a+ (2* olda) + (3* oldh)
END FOR
dli,j] :=b

END FOR

END FOR

Figure 2.23: An Imperative Program

FORi =1T0On

FORj =1T0On
FORITERk =1 TOn
a :=oldat+ (3* ol db)
b:=a+ (2 olda) +3*old b
END FOR
cl[i,j] :
dli,j] :

END FOR

END FOR

a
b

Figure 2.24: An Imperative Program

a:=for i inl,64
returns array of
for kinl, 64
returns val ue of sum
b[i, K]
end for
end for

Figure 2.25: A Sisd Program

33
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sum: real

a[(17..32)] : real

b[(17..32),(1..64)] :real

FORi =17 TO 32

sum:=0

FORk =1 TO 64
sum: = sum+ Get (b[i,Kk])
END FOR

afi] :=sum

END FOR

Figure 2.26: An Imperative Program

10 1

cl’ "é “]s g—i (2.30)
0 1 64

Ca=] 1 o]ul,b_[cl) Cl’ (2.31)
(1]<[i2]<[64] (2.3
e[ (8]

Consider the case when there are 4 processors and we are interested in the the local iteration space and index
domain of processor 2. In compiling for creation parallelism, thei loop will be parallelised which impliesthat b
isto be partitioned along the first index. This gives the following local values:

-1 O -17

0 -1 i -1

0 -] |2 23
0 1 64

[17 ] <[i§] <[ 32] (2.35)

] < [ 23 ] (2.36)

[4]<[

thisresultsin the local program given in figure 2.26

ISl

The method by which the particular local polytope and index domain are formed is not the concern here. The
important feature is that the processor accesses potentially non-local data which is used to assign values to the
local portion of the distributed array.
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sum: real
psunf(2..2)]:real
a[(17..32)] : real
b[(1..64),(17..32)] :real
FORi =1 TO 64

psunf2] :=0

FOR k = 17 TO 32

psunf2] := psunf2] + b[i,k]

END FOR
I F (i>=17) AND (i<=32)
THEN sum= 0
FORx =1TO 4
sum: = sum+ Get(psunix])
END FOR
afi] :=sum
END | F
Sync
END FOR

Figure 2.27: An Imperative Program

Exploiting reduction parallelism implies parallelising the k |oop and partitioning the b array on the second index.
This gives the following locd iteration space and index domain:

10 1
Cl’ ‘cl) [ H < ‘T}Z (2.37)
0 1 32

[17]<[8]<[32] (2.39)
[4)-(]

In trand ating into the imperative language the program, shown in figure 2.27, is derived.

Severa pointsare worth noting. Firstly no Get operator prefixes the u-occurrence of b[i, k]. Thisis because, in
reduction parallelism, all work is performed upon loca data. The | F statement isrequired as only part of thetime
will the accumulated value, calculated locally, be assigned to local data. When aloca dement isto be created,
the partial sums calculated by each of the other 3 processors are accessed and hence the need for the Get operator
around the u-occurrence of psum[x]. Finally the barrier synchronisation Sync isrequired so that the correct value
of psumis accessed. This construct isonly used in compiling for reduction parallelism.

Compiling for reduction pardlelism is dightly more involved in the translation to imperative form stage. An
algorithm to perform this additional work is given in appendix B.
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2.4 Architectura model

A smplemodel of aDMA isused inthisthesis. Firstly they are defined as being homogeneousi.e. each processor
isidentica and has an equal amount of memory. Non-loca access on DMAS, such as the Intel hypercube, for
example, is two orders of magnitude more expensive than local access. The time per hop across the processors
is a small fraction of the totd time to transfer the data and thus it is reasonable to model such DMAS as two-
tier memory hierarchies [ROGEQ0]. Therefore memory access is either local or non-local where there is no
consideration of the distance to non-local memory. No interconnection topology is assumed, except that there
exists apath from any one processor to all others and that multi- dimensional rectangul ar grids may be embedded.

It is important to develop a cost model based on this architectural model to later determine the efficiency of a
transformation. The measures introduced in this section broadly describe the cost of computation and communi-
cation for aDMA. These measures assume a static, one process per processor implementation and, thus, the costs
of process creation or spawning, process migration and context switching are not present.

The execution time will, in general, be a function of the problem size and the number of processors available.
Let Problem size = n, Number of processors =p
The following metrics are largely based on [TSEN89].

24.1 Computation

The first metric is concerned with the amount of “useful work” and is simply the amount of computation per-
formed. Thisisdefined as the number of operations performed including all integer and real arithmetic. Thetime
to execute a program in paralé is assumed to be the number of operations performed on the critica path.

Let thetotal number of operations, if the program were executed upon one processor, be Op, then Op can be split
Op = S+ Co where Co isthe time spent in potentialy parale activity e.g. for loops, and Sistheremainder. The
best execution time would be S+ % but thismay not be achievable due to load imbal ance.

242 Load Balance

Let the average number of parallel operations per processor: ¢o = 2Co. The load balance of a processor is
defined as the difference between the number of computations performed by that processor and the average. If
the modulus of thisvalue is used, then the load imbalance for processor zis oco, = |co, —col,z 1,...,p

2.4.3 Communication

For most non-trivial applications, communication is inevitable when a program is implemented on a DMA, so
references to memory are distinguished by whether or not the accessed memory is loca to the processor. Com-
munication takes place due to non-local access to memory. Let the number of non-local accesses in processor z
be: na;,z0O1,...,p

It is assumed that the maximum values of oco, and na, will dominate the overhead in execution time. Therefore
techniques are developed in chapters 3 to 5 to reduce these values. In chapter 6 the maximum load imbalance
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and non-local access will be calculated for severd transformed programs. These vaues will help evauate the
compilation strategy used.

25 Summary

In this chapter, the source and target languages for compilation have been presented. A computation set notation
has been developed which is suitable for anadysis and transformation. An outline of a scheme for trandating
one program form into another has been given, which included a description of some transformation restrictions.
Finally a simple machine moded has been presented so as to alow later evaluation of the compilation scheme
presented in thisthesis.



Chapter 3

L oad Balancing

This chapter is concerned with the efficient mapping of array computation to processors. The major overhead
associated with the mapping of computationisload imbalance. An optimising compiler must find amapping such
that this overhead is minimised.

Thefirst section describes |oad balancing in general and describes an algorithm to determine how to partition the
computation. In genera the agorithm is very expensive and may not find the best load balancing partition. In
the second section, perfect load balancing is defined as an invariancy condition. A transformation to reveal such
invariancy for conditional-free polytopesis given. Section two is based upon the paper [OBOY 92].

In the subsequent section, the analysisis extended to include if expressions, where, by reordering the iterators, it
is possiblethat they may be removed so asto allow invariant analysis. For those computationswhere no invariant
partitions can be found, interleaving is discussed. Finally a summary of the mgjor pointsis given.

3.1 General Load Balancing

3.1.1 Identification of Parallelism

Compilation should minimise parale time by utilising machine parallelism and reducing overhead. The first
stage of compilation is therefore to identify and match program paralelism to machine paraldism. Machine
paralelism is defined ssimply as the number of processors p. As the underlying model of computation used in
this thesis has one process per processor, it is necessary to identify and divide an array computation into p sub-
computations.

Each iteration of a Sisa for loop may be executed independently and is thusideal for parallel execution. In this
thesis only for loops are considered for exploitation of paralelism. for initial loops are considered to require
sequential execution. Of coursethisisavery conservative view of program paralelism, in particular, itispossible
(though possibly bad programming style) to write a for initial loop describing completely paralel computation.
Compiling for paralelism is the task of selecting one or more iterators which are partitioned into groups and
scheduled across the processors. In effect each processor performs a sub-set of the loop iterations. This has, in
the past, been called loop elimination [CALL8S].

38
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a:=for iin 1,100 crossj in 1,100
returns array of
for k inZ,i
returns value of sumb[i,k]+c [k,]]
end for
end for

Figure 3.1: Nested Computation

To motivate the rest of this chapter consider the example in figure 3.1. If thei loop is partitioned and statically
scheduled across 10 processors, such that the first processor receives the first 10 iterations, the second processor
the next 10 etc., then thefirst processor will perform 5,500 i terations, the last processor will perform 95,500, with
the average being 50,500. If, however, the j loop were chosen all processors would perform 50,500 iterations. If it
isassumed that the time to execute such aprogram is dominated by the processor performing the most iterations,
then clearly partitioning with respect to j is preferable.

3.1.2 Optimisation

Associated with each computation set, Q, there is a polytope, AJ < b, describing the iteration space. In general

this polytopeis of the form:
-L =l
U |J'<| u (3.1
& £

where L, U, |, u are derived from the loop bounds and £, € are conditionals.

The polytope, AJ < b, encloses a lattice of points, Latt(A.b), known as the iteration space. It is assumed that the
amount of work associated with each lattice point is constant. If there are conditionalswhich are a function of the
iterators present, these will be incorporated in the polytope which will restrict the number of lattice points, but
the amount of work per point remains the same. However if the conditionals are not a function of the iterators,
i.e. data dependent, then it is not possible to determine at compile time their effect. Thus it is a reasonable
assumption to ignore their effect by considering the amount of computation associated with each point to be
constant throughout the lattice. A load baanced mapping is one where the number of lattice pointsis the same
in each processors. Thisis subject to the scheduling constraint that partitioning may take place only with respect
to for loops.

Given that m is the number of iterators or the dimension of the iteration space, let r be the number of paralel
iterators. It is necessary to partition the sub-lattice enclosed within A'J" < b, which is a projection aong the
seria iterators [SCHR86], into p sub-spaces. In genera r z mas J™ contains serid for initial loops, which are
not candidates for partitioning.

The points in the sub-lattice Latt(A".b") are those that may be evaluated in parallel. Let q be such a point,
g O Latt(A".b"). Each point g has alattice Latt(A™".b™") associated with it. In other words each point that may
be evaluated in paralle has computation points associated with it, which must be evaluated sequentidly. Let |g|x
be the number of pointsassigned to a processor x. We can state |oad balancing in this case to be find a mapping,
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11, which maps each paralld lattice point to a processor X :
m: g+~ x0OqO Latt(A™b™),x 0 1,...,p (3.2

such that
|Q|X = |Q|y1 DX,y D 11 vp (33)

In genera thisis not achievable and must be expressed as an optimisation problem where 3.3 is replaced by

p
ZX:F:;. |Q|X) (3.4)

Minimise(max(|ak) -

3.1.3 Volume of Polytope

For each iterator j [0 J, if the number of computation points can be determined, then the best choice of iterator
for partitioning is the one where the number of computation points varies the least with respect to the iterator.

One expensive method based on this observation is to partition the iteration space into a number of sub-spaces
say s. The lattice Latt(A.b) will also be partitioned into a similar number of sub-lattices. This is made possible
by forming s instances of the polytope, where the iterator(s) to be partitioned have the added constraint that they
must range over a sub-range(s). Partitioning a lattice into s sub-lattices is realised by intersecting the iteration
space with s— 1 paralel hyperplanes. The choice of hyperplaneis, in generd, arbitrary and can be any linear
combination of the iterators. In practice some constraint must be placed on the number of partitionsinvestigated
to make the scheme computationaly feasible. If the hyperplanes are restricted to being orthogonal with respect
to the iterators, then the number of choices reducesto r or 2" — 1 if the lattice is to be partitioned by more than
one iterator.

It is then necessary to determine the number of integer pointsin each of the sub-polytopes where the maximum
value is recorded as this will dominate the load imbalance. This is repeated for the other partitions where the
partition having the smallest maximum is the best candidate for load balancing.

It is important that finding the number of points in a sub-polytope is relatively easy. There exists an O(m'9)
algorithm [DY ER91] based on random walking for general convex bodies. It determines the volume of euclidian
space rather than the number of integer points. This approxi mation is acceptable for our purposes, however the
probabilistic nature of the algorithm and its high polynomia term are prohibitive. Other methods to calculate
the volume of polytopes have been found [LAWR91]. However in the general case they are #P hard, though the
average complexity for polytopes with integral points may be polynomia [STANS86]. At present the complexity
of determining the best partitioning is O((2" — 1) x s x m'%), where sis the number of partitions.

Ideally the value of s should be exactly p, the number of processors. If however thisis too expensive then a
smaller vaue of s may be used i.e. when s>> 2" — 1 and s>> m'°.

Although this procedure can be used, it is computationally expensive. Additionaly, it may be that there exists a
non-orthogonal partition which gives a better load balanced implementation. Throughout the remainder of this
chapter, a method is devel oped which determines the existence and form of a transformation which will convert a
computation set into aload balanced form. Initialy the analysisis developed for polytopes with no conditionals,
i.e. £ =0,&=0in3.1. Once thishas been established, additional criteriafor the general case are devel oped.
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3.2 Conditional- Free Polytopes

Transforming for load balancing is based upon the following observation: The iterator that neither makes
reference to any other iterator initsloop bounds, nor isreferenced by any other, may be partitioned to give
perfect load balance. A computation set is defined as being in perfect load balanced form when each iteration
of a particular iterator involves exactly the same amount of computation. The following section formalises this
idea and provides a mechanism to transform loops accordingly.

Consider the lattice Latt(A.b). We seek a method of partitioning this polytope into p subsections such that the
number of points scheduled to each is equal. Such a scheme provides perfect load balance. If we consider just
orthogonal partitionsof the polytope (partitionsthat are perpendicul ar to an iterator axis), then we seek the parallel
iterator that may possess this property. In genera we seek an iterator where the number of pointsassociated with
that iterator is not afunction of that iterator, i.e. it isinvariant.

Each iterator j 0 J™ has a lattice Latt(A™2.b™7) of computation points associated with it. We need to find
a pardld iterator, jp, O J', where r is the number of parald iterators, such that the number of pointsin its
associated lattice isinvariant of such an iterator.

For the sub-set of programsthat possess affine loops, it ispossibleto determinewhether alattice may be partitioned
in aload baanced manner. Firstly arepresentation is introduced which describes nested affine loops for which
the criteriafor perfect load baancing can be formally stated. Secondly a method isintroduced which discovers if
aparticular iterator can be transformed into a perfect load balanced iterator. Thistransformationisequivaenttoa
change in basis for the iteration space. An extension to this method follows whereby partitioning with respect to
severd iterators can be determined. Finally the need for reordering the iterators for code generation is explained
and a method to achieve thisfor load balanced iteratorsis described.

We first formally present the invariance condition necessary for load balancing in terms of the loop structure and
provide an example to illustrate this.

Given the system of inequalities described by the loop bounds:
LI=| (3.5)

Ul<u (3.6)

Definition 11 Let g be the bth row of the identity matrix, then the invariance condition is defined as:
fL=gU=6 (37
Ley =Ue = & (3.8)

The significance of the invariance condition is that the iterator j,, satisfying 3.7 and 3.8 isinvariant if it does not

make reference to other iterators nor is it referenced by any other iterator. In general both L and U will be of the
form:

[

;oo Ulofo
YL 1 0 , Yu 0 (39)
ALl x| Ly Ay | Xy | Ug
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a;=for i inlncrossjinin
returns array of
for kin 2%, 3*i
returns val ue of sumb[i,i]-c[k-j]
end for
end for

Figure 3.2: A Sisal Program

where Ly and Uy are (b—1) x (b—1) lower unit diagonal triangular matrices, Ly and Uy are (m—b) x (m—b) lower
unit diagona triangular matrices, y. and yy are 1 x (b — 1) vectors, x_ and xy are (m—b) x 1 vectorsand A, and
Ay are arbitrary integer (m—b) x (b— 1) matrices.

As stated previously a candidate iterator for partitioning is one which does not refer to the bounds of any other
loop. Therefore for an iterator j, 0 J™ to satisfy 3.7 and 3.8 we require the following:

L=y =0 (3.10)
and
X =xy=0 (3.11)

Thereforeit is necessary to inspect each row in L, U to see if these conditionsare satisfied. In general for agiven
set of loopsthiswill not be true.

To illustrate these points, consider the computation in figure 3.2. The range of each of the iteratorsis represented
by two matrix inequalities where each row corresponds to a unique iterator, and each matrix corresponds to the
lower and upper bounds of the loop respectively :

100 i 1
o10||jl=2]1 (3.12)
20 1|[k] |o]
1 007[i]l [n]
0o10]||jls|n (3.13)
| 30 1]||k] [0]

Here conditions 3.10 and 3.11 hold only for the second loop j.

However it ispossiblethat noneof theiteratorshavethisform but may betransformed (with corresponding
adjustmentsto the array occurrences) to aload balanced form. Thisisthe subject of the next section.

3.21 Transformations

Legal transformationsincludeany reordering of the computation that maintai ns the data dependency of theoriginal
program. By restricting this reordering to forall loops which contain no cross-iteration dependencies, all data
dependencies are preserved. Additionally after transformation the polytope representation of the iteration space
should beinthe canonical form so asto allow trandlation to theimperative language described in chapter 2. Finally
itisassumed that if thefollowing transformationsare perf ormed on acomputation set which has acommon nested
serial iterator, then the analysis and transformations are performed simultaneoudly.
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3.2.2 Changeof Basis

Given an L, U and aform LP, UP, where the iterator j, isin aload balanced form satisfying 3.10 and 3.11, find a

transformation, 1, such that:
m:L— LP (3.14)

m:U— UP (3.15)

We look at arestricted set of unimodular transformations [BANJ9I0] which satisfy 3.14 and 3.15 by post multi-
plication by a unit lower triangular matrix T, which changes the basis of J — TJ,. The system of inequalities
described by the loop bounds remains unchanged by this transformation.

LI=>| (3.16)
UJ<u (3.17)
LTTHI=| (3.18)
UMt H<u (3.19)
(LTY(T ) =1 (3.20)
(UTY(T W) <u (3.21)

If in addition an integer matrix T exists such that LT = L°, UT = UP, with J, as the new iterators, then 3.20 and

3.21 may be written:
LPJ, =1 (3.22)

UPJp < u (3.23)

3.2.3 Existence Condition

In this section the necessary and sufficient conditions for the existence of a unimodular unit lower triangular
matrix T is addressed.

Necessity: AssumethereisaT such that LT = L°, UT = UP. The formsof L, U, T are as follows:

L{ 0] O Us| 0] 0 T/ 0|0
o | 1[0 |,| yw]|[2]0 |,|w[L]O (3.24)
AL x| Lg Ay | xu | Ug Ar | x| Tg
To satisfy the invariance condition, we require L? and UP to be of the following form:
L?]o]o u? ol o
010 01|0 (3.25)
ARlojLy ][ A]o]uUl
Condition 3.10 implies that:
YiTr+yr=0 (3.26)
YuTs+yr=0 (3.27)

Therefore
(W -w)Ts=0 (3.28)
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AsT; 7z Othen
Yu =Y (3.29)

Thisisthefirst condition for existence of T. Condition 3.11 implies that:
|_ng ==X (330)

Ugxt = =Xy (3.31)
Thus the solutionsfor xr given by 3.30 and 3.31 must be consistent. Equations 3.30 and 3.31 may be written:;

([x a]-le &Nl o2

[le LOnglT]:[é] (3:33)

Together these form the second and third condition for existence of T. Clearly 3.29, 3.32 and 3.33 must hold if a
transformation is to be determined. This establishes the necessity.

Sufficiency: Assume 3.29 holds, and there is x7 satisfying 3.32 and 3.33 then:

lba| O] O
T=| -w|[1] 0 (3.34)

0 [ % |Imb

isthe desired unimodular transformation corresponding to iterator j,.O

3.24 Algorithm 1

The following agorithm determines whether a transformation T exists and, if it does, findsit. In addition, the
rel ationship between the new iteration space and the old one is determined, so that the relevant array occurrences
may be altered accordingly.

for each jp, O J7

1. Check yp =wy. If not terminate.
2. Choose an arbitrary lower unit diagona T; e.g. unity.

3. Cdculateyr = -y T¢

il (vl i P e

5. Check if consistent. If not terminate

es.Scxlve[XlL LonglT]:H]

7. Check steps 4 and 6 are consistent. If not terminate
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a:=for iinln
returns array of
for j inn+i-1,2*n+i+1 cross k in 1+2%i +2*] , n+3*i +2%]
returns val ue of sumc[i,k]*d[i-j,K]
end for
end for

Figure 3.3: A Sisal Program

8. Choose an arbitrary lower unit diagona Ty e.g. unity.
9. Choose an arbitrary matrix At e.g. the null matrix.
10. Construct T
11. CaculateL® = LT,UP =UT

12. For each j O Jin each array occurrence substitute J = TJ,

The complexity of this algorithm is dominated by steps 4 and 6. Thus the upper bound complexity is O(m?). |If
this process is repeated for all theiterators then the upper bound complexity is O(n?). To illustratethisa gorithm,
consider the programin figure 3.3. Inits present form it does not satisfy the invariance condition. The upper and
lower bounds for each of the iterators are as follows:
1
> n-1 (3.35
1

1 0 i n
-1 10 i 1| 2n+1 (3.36)
-3 -2 1 k n

By applying algorithm 1, it is possible to determine if this program may be transformed into an invariant form.
Test thefirst iterator i:

Not Applicable.
Not Applicable.
Not Applicable.
Find x; where

(EERINEERIIENE.

Thisimplies 1 = 0. A contradiction and thusloop i is rejected.

A w0 DR

Now try the second iterator ji.e. b= 2.

1. yy=-1landy, = -1lthereforeyy =y, is satisfied.
2. Tf =1
3 yr=—(-11=1
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FORi =1TOn

a[i] :=0

FOR| =n-1TO 2*n+l
FOR k = 1+4*i TO n+5*i
a[i] 1=a[i]+ (CGet(c[i, k+2*j])*Cet(d[-], k+2*]]))
END FOR

END FOR

END FOR

Figure 3.4: An Imperative Program

4, Find xr where
(EHNERVIHEN
-2 1 -2 1 X 0|
Thisis true for all x.
5. No contradiction
6. Find xr where
ERIENG
-2 1 X 0|
Thisimplies x=2. No inconsistency
7. 5 and 6 give consistent results for x

Ty =
. Ar=0
1 00
100 T=(1 1 0
0 2 1
1. LP=
r 0 0771 007 [ 1 0 07
-1 1 0 11 0|=] 010
| 2 -2 1]]0 2 1] [ -4 0 1]
ub =
1 0 0771 007 [ 1 0 07
-1 1 0 11 0|=] 010
| 3 2 1]]l0 2 1] |[-50 1]
M 1 00 i i
2. j|=1110 il=1 j+i
| k 0 2 1 K K+2

46

If the same procedure is applied to iterator k, b = 3, it is seen that it fails on the first step. y. = [-2,-2],yu =

[-3,-2],yu #ZyL. Soloop k is not a candidate for partitioning for load balancing.

As only loop j is in invariant form we derive the program given in figure 3.4. For the sake of clarity, the

initialisation of variablesis not shown in the examples in the remainder of this thesis.

Note that the constant terms in the loop are unaffected by the transformation. The array references are adjusted in
accordance with step 12. No other |oop depends on the new j loop, therefore paraleising and partitioning with

respect to thisloop will give aload balanced implementation.
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3.25 Multiplelterators

If each of the r parald loops are successful candidates for load baancing, then there are potentially 2" — 1
permutations which may be used to partition the iteration space. To determine whether a combination of iterators
can partitiontheiteration space in aload bal anced manner, amodification of algorithm 1isrequired. Inthissection
we propose a new agorithm to construct a new transformation T which has the combined effect of transforming
each load balanced loop j =iy, ... ,is Where s< r isthe number of invariant loops and i; < [IIK is are the values
of loopsto be load balanced.

Let T;, betheindividual transformation on a particular iterator k as given by algorithm 1. The first theorem below
shows that given the transformation T;_l that makes invariant al loopsii <i, < .. <i;—; and the transformations
T;, determined by Algorithm 1 for iterator i, done, T, can be constructed to include the new iterator i, . Two
lemmas are required to prove thistheorem. The first isatechnica condition to aid the proof, the second ensures
that the form of the transformation islegal.

T, is defined by a corollary to the main theorem and provides the basis for a simple algorithm to simultaneously
make invariant all load balanced loops.

Lemmal Given T,_; such that LT,_;,UT,_, isjointly invariant for j iy, ... i i.€.

LT,,8, =UT, e = 0k01,..,0-1 (3.37)
aLT,  =qUT,;=¢0k01,..,0-1 (3.38)

then T,_, can be chosen o that:
T8, =8,0k= ¢ (3.39)

Proof of Lemma1 Thisfollowsimmediately by observing that the invariance conditions 3.37,3.38 impose con-
gtraints only on elements in the mx (£ — 1) sub-matrix of T,_; and hence the (m— ¢ + 1) x (m— ¢ + 1) right hand
corner sub-matrix of T,_; can be set to identity without violating 3.37 and 3.38. O

Theorem 1 If T, isdefined as:

T,=T,,-6,68 LT, +T,e,¢ (3.40)
the T, is the transformation that satisfies the invariance condition for all load balanced loopsj O iy, ... i, i.e.

LT,e, =UT,e, =g, 0k01,...,¢ (3.41)

q LT, =g UT, =¢ 0kO1,....0 (342)

The proof requires the following preliminary lemma.

Lemma2 T, given in 3.40 is unit lower triangular.

Only an outline of the proof is presented
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Proof of Lemma 2 Substitutefor T, from 3.40 and use 3.37 and 3.38 to show
e T8 =00i<] (343)

and
eT,e=1 (3.44)

Proof of Theorem 1 It is sufficient to show 3.41 and 3.42 for LT,.
stepl. Show 3.41 and 3.42 istrue 0k O 1, ... ,£ — 1 [ Proof Omitted)]

step2. Show 3.41 and 3.42 istruefor k= ¢

LT,e, =L(T,-;-&,6,LT,; +T,e,6))e, (3.45)

By Lemma 1T, e, =@, , ]
LT,e, =Le, -Le,q,Le, +LTj,q, (3.46)

As€lle, =1andLT,e, =@, byinvariance of i, for LT;, then:

LT,e, =Le, -Le, +&, =8, (3.47)
Smilarly:
LT, =€ LT, & Le,& LT, +€/LT, a6 (3.48)
As€' LT, = €' and simplifying gives
e LT, =6,q,68, =¢| (3.49)

which is theinvariance condition and thus T, is the required transformation. O

It has been shown that T, isthe transformation that load bal ances ¢ iterators provided T,_; isgiven. Thefollowing
corollary constructs the transformation T that load balances al siterators.

Corollary 1 Ty =Ty, - .6 LT, +T.e.€. isthe transformation for joint invariance of j O iy, ... ,is

Proof of Corollary 1 set T; = T, and recursively apply theorem 1 for k=2, ..., s0

3.26 Algorithm 2

It is now possible to give a simple agorithm that uses the result of theorem 1 to construct a transformation that
transforms al load balanceable loops into invariant form.

1. Apply Algorithm 1 to givetheinvariantiteratorsj O iy, ... , is and the canonicd transformations Ti,, ..., T;
If s< 1 Stop.

s*

2. ST, =T,
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a:=foriin 1,n
returns array of
for jin-i+l, n-i
cross kin -1-i-j ,-j+3
cross | in 1-i-2*j-k , 2*n-2*j-k-i
cross min 2*j+6*i +k-1-1, i-k-1+n
returns val ue of sum
2¢(b[i, k] * c[k, 1] +d[mm1])/b[],]]
end for
end for

Figure 3.5: A Sisal Program

3. Forkd2,...,s

T =T~ @& LTiy + T a6 (3.50)

Complexity: The extra cost of computing the transformation T, step 3 of Algorithm 2 has an upper bound less
than O(s.is?) < O(m?). As Algorithm 1 has an upper bound complexity of O(m?) this new algorithm does not
alter the overall complexity of the scheme. To illustrate this a gorithm, consider the following dightly contrived
example in figure 3.5. This example has been chosen to show that load balancing of parallel affine loops is
non-trivial in more complex cases, such as when more than one iterator is a candidate for load balancing.

This loop nest has the following upper and lower bound matrices on J®:

1 0 000 1
1 1 000 1
L= 1 1 100/|I=]-1 (3.51)
1 2 110 1
6 2 -1 1 1 -1
10000 n
11000 n
U=| 01100/ u=| 3 (3.52)
12110 2n
-1 0111 n

On applying algorithm 1, j, and j4 are the only candidates for load baancing, s=2. The corresponding transfor-
mation matrices for both iterators are as follows:

1 0000
-1 100 0
T, 0-1100 (3.53)
0-1010
0 2001
1 0 000
0 1 000
T.=| 0 0 100 (3.54)
-1 2 -1 10
0O 0 001
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To find the transformation T, s = 2 for joint invariance of j, 4, apply step 2 of Algorithm 2.

T, =T, (3.55)
T,=T1-8,6,LT +Tj,8.8, (3.56)
Thisgives
1 0 0 0O
-1 1 0 00
T,=| 0 -1 1 00 (3.57)
1 -1 -1 10
0O 2 0 -11
Applying T, to L and U gives:
1 0 0O0O [ 17
01 00O 1
L=| 00 10 0]I=]|-1 (358)
00 010 1
30 20 1 -1
1 0000 [ n
01 000 n
u=|-10100/u=| 3 (3.59)
0O 0010 2n
00001 o

Note that rows and columns 2 and 4 are in invariant form for both upper and lower bounds. The array occurrences
must be expressed with respect to the new iteration basis:

i 1 0 0 0O i
] -1 1 0 00O ]
k | = 0 -1 1 0O k (3.60)
I 1 -1 -1 10 I
m 0O 2 0 -11 m
[
j J —l
k (3.612)
I I —k - j +i
m m-1"+2f
This give the transformed program of figure 3.6

Although loops|j and | are in load balanced form, they are not outermost. The next section describes a method
whereby the loops may be aways re-ordered so that they are outermost.

3.2.7 Reordering Iterators

Having determined which iterator(s) are to be used to partition the computation | attice, it may be desirableto have
these iterators as far out as possible in the loop structure. In this section it is shown that load balanced iterators
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FORi =1 TOn
FORj =1 TOn
FORk=-1TOi+3
FOR| =1 TO 2*n
FOR m= 3*i+2*k -1 TOn

a[i] :=a[i] +2*(Get(b[i k-j])*Get(c[k-j,I-k-j+])
+ Get(d[ml+2%], m1+2%]-1]))/ Get(b[j-i,j-i])
END FOR
END FOR
END FOR
END FOR

END FOR
Figure 3.6: An Imperative Program

can be moved to the outermost nest by a sequence of unimodular transformations, whilst preserving the affine
structure of the loop.

Theorem 2 shows that one invariant iterator can be moved one nest level up by a unimodular transformation.
By extending this result it is possible to move multiple iterators to the outermost nest by a succession of these
unimodular transformations. To prove this theorem some preliminary definitionsand lemmas are first required.

Let Ex be the permutation of identity with row i and k interchanged. E;y is unimodular, and Ejx™* = E.
Interchange of iterator j; with jx can be represented as:

J=Ed jijx0J (3.62)

Let L,U beinload balanced form with iterator jj O J invariant. The following are defined:

L' =Ei1iLEy (3.63)
U = E1jUE; (3.64)
J=E-;J (3.65)
=Byl (3.66)
U’ = Ei_]_,iu (3.67)

Lemma3 L', U are unit lower triangular.

The importance of Lemma 3 is in establishing that the unimodular transformation described in 3.63 and 3.64
preserve the affine structure of the loop.

Proof of Lemma 3 L, U areinload balanced formand j; is theinvariant iterator. Therefore
e'le1 =g U1 =0 (3.68)

As loop interchange is restricted to neighbouring iterators of j;, in this case ji-1, the only possible non-zeros in
the upper triangular part of L' and U’ are the (i — 1,i) elements. From 3.63 and 3.64 it can be seen that

e le=¢le,=0 (3.69)
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e,Ue=¢gUg;=0 (3.70)

The effect of the transformationsin 3.63 and 3.64 on the diagonal el ements of L and U isto interchangethe (i, i)
and (i — 1,i - 1) dements, which are both equal to one. This establishesthat L" and U" are unit lower triangular.

Lemma4 The iteration spaces represented by

LI=| (3.70)
UJ<u (3.72)
and o
LI =1 (3.73)
UJsu (3.74)
are equivalent.

Proof of Lemma4 By Lemma 3, 3.73 and 3.74 represent a legal affine loop. It remainsto show the equivalence
of system of inequalities3.71, 3.72 and 3.73, 3.74. Ei—1iEi—1; =1 in 3.75 and 3.76 which preserves the system of
inequalities.

LE-1iEi-J 2| (3.75)
UE-1iEiJ<u (3.76)
Now we substitutefrom 3.65: ,
LE_1,;J > (3.77)
UE-1;J <u (3.78)

Now multiply both sides of inequalitiesin 3.77 and 3.78 by E;_;;. This amounts to reordering the inequalities,
thus preserves the iteration space. Substitute from 3.63 to 3.67 to give:

LJ =1l (3.79)

UJ<uDo (3.80)

Theorem 2 Let L' ,U" bedefined asin 3.63 and 3.64, then ji_; 0 J isan invariant iterator for L', U".i.e.
Leqs=Ue1=64 (3.81)
and

el =¢,U=¢, (3.82)

Proof of Theorem 2 It suffices to show 3.81 and 3.82 for L'. By assumption, j; isan invariant iterator for L, U.
Thus

Le =g (3.83)
elL=¢g (3.84)

By definition
Ei-1j6-1=8 (3.85)

e E1j=q (3.86)
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Substitute 3.85 in 3.83:

LEi-1i6-1 = Eij@-1 (3.87)
Multiply both sides of 3.87 by Ei_1; and substitute from 3.63:
Le1=64 (3.88)
Smilarly, substitute 3.86 in 3.84:
8 Ei1iL =g (3.89)

Multiply both sides of 3.89 by E;_1; and substitute from 3.63:
el =¢, (3.90)

which isthe invariant condition and thus ji—; isan invariant iterator. O

Theorem 2 shows that the new transformed iterators have any one load balanced loop one loop nest further out
than before.

Observation 1 Smilarly,it can be shown that any load balanced iterator j; can be moved one loop nest further
in by applying the permutation transformation J = E;;.1J. Thus two neighbouring iterators that are both load
balanced will remain so upon interchange

Given the set of iterators Jg where iteratorsj =iy, o, ... ,is are the values of the iterators in load balanced form
for
LBz =1 (3.91)
UBJg <u (3.92)

It is necessary to find a unimodular transformation E such that:
Jo=EJs (3.93)

and J, is the iteration vector with the first s iterators load balanced. Let E' be the transformation that moves a
particular iterator j; to the outermost scope. It is defined thus:

E = Ej x Ep3 x (X By (3.94)
It should be noted that in general '
E' 7 Ey; (3.95)
E isnow defined as: o '
E=Es x Bt x [IIk E* (3.96)
E isunimodular as it is the product of unimodular transformations. Let
L° = ELBE™? (3.97)
U° = EUBE™? (3.98)
[°=El (3.99)
uw =Eu (3.100)

L% U°,1°u° arein the canonica form. Thisisshown by repeated application of lemma 3. The set of inequalities
given by:
L°J, 2 1° (3.101)
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U°J, < (3.102)
are equivalent to 3.91 and 3.92. This can be shown by observing that:
ELB(EE)Js = El (3.103)
EUB(E'E)Js < Eu (3.104)
(ELBE1)(EJg) = El (3.105)
(EUBE™Y)(EJR) < Eu (3.106)

Substituting from 3.97 to 3.100 gives the required form of 3.101 and 3.102.

Finally, by the repeated application of theorem 2 and using observation 1, it can be shown that thefirst siterators
of J, are load balanced for 3.101 and 3.102.

This analysis gives the following a gorithm to reorder the iterators.

3.28 Algorithm 3

For¢01,...,s
ForkOi,to2step -1
Interchangerows k and k-1 of U, L, I, u

Interchange columns k and k — 1 of U, L, rowsk and k-1 of J

End For

© u ~ w b P

End For

To illustrate this algorithm consider the matrix form of the program given in figure 3.4 after transforming to
invariant form.

100 [ 1
010 i l=z]n-1 (3.107)
-4 0 1 k 1
1 00 [ n
010 i1l 2n+1 (3.108)
5 0 1 k n
Thereisonly oneloop j to move out, i.e. s=1,i = 2,j; = j2 On interchanging rows we have
010 [ n-1
100 iz 1 (3.109)
-4 0 1 k 1
010 [ 2n+1
100 i< n (3.110)
5 0 1 k n
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FOR| =n-1 TO 2*n+l

FORi =1 TOn
FOR k = 1+44*i TO n+5*i
ali] :=afi] + (Get(c[i, k+2*j])*Cet(d[-], k+2*]]))
END FOR
END FOR
END FOR

Figure 3.7: An Imperative Program

Interchanging columns of U, L and rows of J gives

1 00 j n-1
0 10 i =] 1 (3.111)
0 4 1 k 1

2n+1
< n (3.112)
n

This program has aload balanced loop which is outermost. Each iteration of j will have exactly the same amount
of work to perform and al that is now required isfor the n + 3 iterations to be divided amongst the processors.

which finally gives the program in figure 3.7.

3.3 General Polytopes

The previous section has described a method for determining a load balanced form (if it exists) of nested affine
loopswith no | F expressions. This section addresses awider class of computation set which includes conditional
evaluation. Itisshown that a sub-set of the polytopes can be transformed into a condition free form which isthen
amenable to the analysis developed in the previous section. In order to remove conditionds, iterator reordering
is employed which necessitates the addition and removal of constraints. The condition for successful trandation
to a condition free polytopeis presented. An interesting product of this approach is that it includes all the loop
interchange results described by Wolfe [WOLF91] who uses a functiona approach. Finaly, the trandation of a
polytopeinto upper and lower bound constraint matrices is defined, whereupon it may be tested for load balancing
PUrposes.

3.3.1 Polytope Form

The canonical form of a bounded affine polytope

Al<b (3.113)
is defined as:
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a:=foriinlncrossj inln
returns array of
if (i <=7j)
then b[i]*b[j]
else 0
end if
end for

Figure 3.8: A Sisal Program

-L -
[—U] J< [T] (3.114)
& £

where A isa f x minteger matrix, b a£ x 1 vector and £, € are a matrix/vector pair consisting of extra constraints
due to loop body conditionals.

To transformthis polytopeso asto describe an affineform, it isrequired that the additiona constraintsberemoved.
The method applied in this section isto reorder theiteratorsand in the process of removing redundant constraints,
examineif £ =0,& =0, i.e. thereare no conditionals. It is possible to determine the conditions under which such
aconstraint may be removed.

The ability to reorder the iterators of a general polytope is of greater applicability than searching for a load
balanced form. In chapter 5, it isused in a pre-fetching transformation.

3.3.2 Reordering Iterators

In this section, the reordering of iterators is used to form a new polytope. However in genera such reordering
introduces additiona constraints. Rules are derived whereby spurious conditions may be safely removed. By a
combination of these techniques, it is possible to transform some affine loops into a representation without any
conditionals, which is then amenable to perfect load balance analysis. Consider the program in figure 3.8, this
has the following polytope form describing the computation b[i] Ob[j]:

-1 0 -1
0 -1],. -1
1 0 [ ! ] <|n (3.115)
0 1 J n
1 -1 0

which isin the canonical form described in 3.114. Beforeiteratorsi and j may be interchanged, it is necessary
to re-formulate equations 3.63 to 3.67 for polytopes. To interchange an iterator at position r with the preceding
iterator to give a new polytope we have

_LI Er—lyr O O _L
UI = O Er—lyr O U Er—lyr (3.116)
& 0 0o I &
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FRj =17TOn
FRi =17TOn
IF (i <=1])
THEN a[i,j] := Get(b[i]) * Get(b[j])
ELSE a[i,j] := 0
END | F
END FOR
END FOR

Figure 3.9: An Imperative Program

a:=foriinln
returns array of
for jini,n
returns val ue of sum
b[i]*b[j]
end for
end for

Figure 3.10: A Sisd Program
J =E-1,J (3.117)

I E, O O07[H
UI = O Er—lyr O u (3.118)
3 0 0 | £

Where | isthe (¢ —2m) x (£ — 2m) Identity matrix. On applying thisto 3.115 we have

-1 0 -1
0 -1 . -1
1 0 [JI ] <|™n (3.119)
0 1 n
-1 1 0

which gives the imperative program in figure 3.9.

However unlike load balanced iterators in the previous section, it is not aways possible to ssmply interchange
iteratorsin thisway. For instance consider the Sisal program in figure 3.10 and its associated polytope.

-1 0 -1
1 -1 i 0
0 1 n

After column and row interchanging we have the following form:
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-1 1 0

0 -1 |] -1

1 o0 [i]S o (3.121)
0 1 n

Unfortunately thisis not in the canonical form as the first row does not have a 0 as its second element to restore
the lower triangularity. Thisis the subject of the next section.

3.3.3 Constraint Addition

Constraintsare added to maintain the canonical form of the polytope. The canonical form, in genera, isdestroyed
after iterator interchange which introduces non-zeros above the two diagonals. By replacing a constraint which
violates the canonica form with an appropriate one and moving the non-canonical constraint to the £, € portion
of the polytope, it is possible to maintain the correct form.

This substitution involves the creation of a new constraint. A new constraint that can always be legally added is
one which is redundant, i.e. a positive linear combination of 2 or more existing constraints.

Let

E—1r 0O O
B= 0 Er—l,r 0 AEr_]_,r (3122)
0 0 I
E—1r 0O O
c=| 0 Eu O]b (3.123)
0 0 I

After row and column interchange, it is possible that non-zero terms will appear in the elements Br-1 r, Brr—1.mer -
In the following discussion the case that a non-zero may have appeared in B,_1; is examined. The argument is
trivialy extended for the Brur—1 m«r Case.

Let o = Br-1; be the potentia above diagona non-zero.

Let d bea 1l x mrow vector to be known as the desired row constraint such that

Xy y<r-1

=4 1 y=r-1 (3.129)
0 y>r-1

where X, is any integer. In other words d is of the same general form as row r — 1 except that a is set to zero.

Substituting thisrow d in B is only lega if a positive linear combination of two or more other constraint rows

can form such arow, i.e. it isredundant and describes precisdly the same polytope. In fact it can be shown that
d isthe positive combination of two rows of B such that:

d= { B1+aB a>0 (3.125)

Br—l_aBm-H a <O
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In the case a = 0 no constraint need be added. The corresponding right hand constraint valuef is easily derived,

_[ Gatac a>0
f‘{cr_l—acm” 0 <0 (3.126)

The new constraint matrix £ + 1 x mmatrix C, in canonica form, is defined as

By xzr—-10xz£+1
Br_]_,y x=(+1

In other words C is the same as B except that the row containing the extra non-zero element is moved to the £
region of the polytopeand alegal constraint row replacesit. The new constraint vector g issimilarly constructed.

o Ygr-10yz(+1
Oy = f y=r-1 (3.128)

Cr-1 y=(+1

As an example consider the polytope 3.121. Thefirst row is[-1, 1] when [-1,0] is needed. The combination of
row 1+ row 2 isthe necessary combination. Thisgives f = —1. Onreplacing row 1 by [-1, 0], thefirst element of
the constraint vector by —1 and moving the the old row constraint to the £ region, we have the following polytope
which isin the canonical form.

-1 0 -1
0o -1],. -1
1 0 [JI ] <|™n (3.129)
0 1 n
-1 1 0

3.34 Removing Redundant Conditions

In this section it is assumed that the polytopeisin canonical form at dl times, i.e. the procedure described in
the previous section is applied after iterator interchange. The section describes a procedure to find redundant
conditions which can be formed or duplicated by a linear combination of the others.

Firstly =, an (¢ x £) elimination matrix, is created where each =, entry represents whether a positive linear
combination of the row constraints x and y of the polytopewould legally replace an existing one. The elements of
this matrix contain the value null (0) if no such combination exists and the value z if it does exist, where zis the
redundant row conditionin the polytope. Asit is symmetric, only the lower triangular portion need be cal cul ated

Thismatrix is calculated by starting with thefirst condition adding a linear combination of each of the remaining
congtraintsone at atimeto seeif it duplicates another constraint. If thisis so thenitisrecorded in the elimination
matrix. Thisisrepeated for al the constraints. In other words, does there exist an z such that:

(11 12 ] [ o ] =[c |OxO1,...,6y0x+1,...,¢ (3.130)

where ry and r are positive integers, ¢, ¢, and ¢, are rows of the canonically formed C constraint matrix. and

[ 1] [ g; ] =[ g, ]Ox0O1,....6yOx+1,....1 (3.131)
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where gy, gy and g, are rows of the canonically formed c constraint vector. Thisisequivalentto solvingfor ry,roin
an overdetermined system of equations. An additional requirement isthat one of the two constraints must replace
the redundant constraint whilst still preserving the canonical form of the polytope. If it cannot, then the redundant
condition must be maintained. Let Nz() be a function that returns the number of right-hand zero elementsin a
row vector of a constraint matrix and Right() the value of the right most non-zero term. Thus assuming 3.130 and
3.131 are satisfied then:

Zxy = Z1f(NZ(c) = Nz(cz)) O(Right(cy) = Right(cz)) O (x > 2m) (3.132)
Zxy = z1f(Nz(cy) = Nz(c)) O(Right(cy) = Right(cz)) O (y >2m) (3.133)
=xy = 0, otherwise (3.134)

In other wordsit isonly avalid entry if it not only satisfies equations 3.130 and 3.131 but thereis aso arow that
may replace it with the same number of right hand zeros and the same sign of the diagonal term astheonethat is
redundant. Thisisto preserve lower triangularity in accordance with the canonical form. If these conditions do
not hold then the constraint must be retai ned.

When al combinations of rows have been examined the following system of equationswill be formed
Vy =90 (3.135)

where y isa (mx 1) vector variable corresponding to each row of the constraint matrix C and 6 a (sx 1) vector
variable whose s elements represent the s redundant constraintsin C. V isan (s x m) integer matrix defining the
linear combination of redundant rows. This can be re-expressed as:

Wy =0 (3.136)

A negative entry in arow of W impliesthat the corresponding conditionin C isredundant. Furthermore the posi-
tiveentriesin that same row of W, if combined, make the negative entry redundant. Before aredundant condition
can be removed, al references to it must be adjusted. For example if row 3 of C isaredundant condition

row 3=row 4 +row 5

and so isrow 6

row 6 =row 3+ row 9

Then, if row 3 isremoved then itsleft hand side is substituted in row 6 to give:

row 6 =row 4 +row 5 + row 9

Once al possible conditions of C have been eliminated, each condition corresponding to a remaining negative
entry in W may be replaced by any other condition corresponding to a positive entry as long as the new condition
preserves lower triangularity. Thus if the following condition is left.

row 4 =row 2 + row 7

row 4 can only be removed if either row 2 or row 7 can be placed in the fourth row of C without ruining the
canonical form of the polytope If two rows to be eliminated both require the same condition, then either oneis
chosen arbitrarily. So if

row 3 =row 2 + row 8

row 7 =row 4 + row 8

and only row 8 can replace row 3 or row 7 but not both, then a decision is made arbitrarily. Returning to 3.129,
this has the following elimination matrix:

(3.137)

o o |
I s o |
~OODOO
o o |
o o |
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FORj = 1TOn
FORi =1 TOj
afj] 1= a[j] + Get(b[i])* Get(b[j])
END FOR
END FOR

Figure 3.11: An Imperative Program

a:=foriinln
returns array of
for jinl,ncross kinln
returns val ue of sum
if (i>5) &(i>=k) & (j >=k)
then b[i,k]*c[k,j]
else 0
end if
end for
end for

Figure 3.12: A Sisd Program

There isjust one duplicated constraint:

row 3+ row 5 =row 4

Row 4 can be replaced by row 5 maintaining the canonical form. Although row 1 is a combination of row 4 and
row 2 and strictly redundant, it cannot be removed as it would destroy the canonical form. Asthereisonly one
row to be removed it is not necessary to create the system of equations Wy = 0. In the two examples following
the definition of agorithm, its use will be demonstrated. After removing the spurious condition we have the
following polytope form and the corresponding imperative program in figure 3.11 which has maintained its affine
form after reordering, with loops i and | interchanged.

-1 0 -1

0 -1 ] -1
1 0 [i]s o (3138)
-1 1 0

3.35 Example

This fourth agorithm is given appendix c, to illustrate the use of this algorithm consider the Sisal program in
figure 3.12. To illustrate the elimination phase we will first remove any spurious constraints (if conditions) from
the program as it standsi.e. from step 9 onwards. Thisis followed by an loop interchange of i and j obeying all
steps of the algorithm.

Program 3.12 has the following polytope form
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-1 0 O -1
0 -1 O -1
0 0 -1 -1
1 0 O [ n
0O 1 O il n (3.139)
0O 0 1 k n
-1 1 O 0
-1 0 1 0
| 0 -1 1] | 0 |
which is of theform CJ < g. Following the steps up to 12 gives:
12.
row 5 =row 4+ row 7
row 6 =row 4 + row 8
row 6 =row 5+ row 9
row 8 =row 7 + row 9
givingWy = 0i.e.
13.
0001 -1 0100 Vi
0001 0 2010 ]
0000 1 100 1||:]70 (3.140)
0000 O O 1 -11 Yo
14. W1,5 =-1
15. W3,5 =1
16. Add W, to W3, remove W, remove Cs, giving a W:
00010-1010
00010 -11 01 (3.141)
00010 0 1 -11
Repeating the above gives: Remove Cg and
00010 -1101
[00010—1101] (3.142)
20. ReplaceCe by Cy and fe by fo
This then leaves the following polytope
-1 0 O -1
0 -1 O i -1
0 0 -1 . -1
10 0 [ :( ] < W (3.143)
-1 1 0 0
0 -1 1 0
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FORj =1 TOn

FORi =j TOn
FORk =1 TOj
a[i] :=a[i] + CGet(b[i,k]) * Get(c[k,j])
END FOR

END FOR

END FOR

Figure 3.13: An Imperative Program

a:=foriinl,2*n-1
returns array of
for j ini-n+l i
returns array of
if (j >=1) &(j<=n)
t hen
bli]*c[j]
else Oendif
end for
end for

Figure 3.14: A Sisd Program

If algorithm 3 is now repeated from the beginning such that iteratorsi and j are interchanged then the imperative
program 3.13 can be derived.

Notice that the if expression has been removed at the expense of variable loop boundson j and i. To show the
usefulness of such a procedure for load balancing consider the program in figure 3.14 where the existence of a
load balanced partitionis not obvious. The polytope, corresponding to the first branch of the if expression, isas
follows:

-1 0 -1

1 -1 n-1

1 0 i 20n-1

EINEEE (3100
0 -1 -1

0 1 n

At present the computation is not in a load balanced form. However on loop interchange the polytopeis of the
following form:

-1 0 -1

1 -1 ][] -1
1 0o [i]S T (3145)
-1 1 n

Since £ = 0,¢ = 0, load balancing analysis can be performed which gives after transformation the program in
figure 3.15.
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FORj =1 TOn
FR i =1TOn
afi4,j] 1= Cet(b[i+])* Get(c[j])
END FOR
END FOR

Figure 3.15: An Imperative Program

This program may be partitioned along iterator i or j to give a load balanced implementation. This example
illustrates the use of iterator interchange. In the original Sisal program it is far from obviousthat a perfectly load
balanced partitioning can be found. After re-ordering, whenever £ = 0, € = 0, the polytopeisin aform to apply
invariancy anadysis.

3.4 Interleaving

Interleaving is unlike the previous transformations described in this chapter in that it does not ater the order of
the indices or their ranges. It reorders the values that the iterator “passes’ through. For example if an iterator
j passes through the vaues 1,2, 3,4,5,6,7,8, then a particular interleave function gives the following order
1,5,2,6,3,7,4,8. Theform of the interleave function is given in chapter 5, section 5.1.3.

A very good analysis of the properties of the interleave or scatter decomposition is given in [NICO90] where
they show that in general it improves the distribution of work. When no other transformation can be found, it is
a useful method to improve load balancing.

Interleaving performsbadly inthe presence of periodic computation setsif the period coincideswith the number of
processors. Asall polytopesare convex, thisisnot aproblem. A useful heuristicisthat, once the best combination
of iterators has been determined, assuming no perfectly bal anced form, then the interleave transformation may be
applied to each iterator when mapping the iterators to the processors. Thisisdealt with more fully in chapter 5.

3.5 Summary

In this chapter the issue of load balancing has been addressed. After describing it as an optimisation problem, a
method was presented to determine whether there exists a partitioning of the iterators which gives perfect load
balancing. Thiswasinitially developed for conditional free polytopesand later extended to include if statements.
In order to revea invariancy in general polytopes, amethod whereby iterators may be reordered was given In the
case where no load balanced form exists, interleaving may be used.



Chapter 4

Alignment

This chapter is concerned with the relative alignment of arrays. The alignment and subsequent data partitioning
will determine the amount of non-local access exhibited by a program.

The first section describes the alignment problem and derives two measures of alignment. The second section
develops a procedure whereby aignment can be enhanced when compiling for creation parallelism. The third
section extends the alignment transformation to compiling for reduction parallelism and in the fourth section, the
effect of aloca aignment transformation on the whole program is defined. In the fifth section, the interaction
between alignment and partitioning is described and, finally, a summary concludes this chapter.

4.1 Alignment

411 Identification of Partitions

Compilation should minimise parallel time by firstly utilising machine paralelism and secondly reducing over-
head. When mapping array computation to the processors, it is necessary to evenly distribute the array data.
Ideally, this should be done in a manner which reduces non-local access. Asthere are many waysto map any one
array on to an array of processors, thisis, in general, a complex problem.

To simplify thisprocessit isconvenient to break it into two sub-problems[L190] and [FOX91]. All arrays arefirst
mapped to one common array which is then partitioned across the processors. This chapter covers the first stage,
mapping the array datato a common array, known as alignment, which is concerned with the relative orientation
of arrays appearing in a computation set .

Alignment determines which portions of two arrays will be in the same processor for a particular data partition.
Obvioudly if they are digned in such a manner that both portionsare involved in the same computation, then this
will reduce the number of non-local accesses that would have been incurred if they were in separate processors.
Alignment is concerned with the relative allocation of arrays so as to maximise local accesses.

In this chapter, the question of aligning the arrays is focused upon those occurring in a particular computation
set. Because there are many computation sets in a program, and as a computation set has just one array creation

65
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a:=foriinln
returns array of
b[i+1]
end for

Figure4.1: A Sisal Program

associated withiit, theanalysisis correspondingly local in nature. In[L190], the global determination of alignment
is shown to be NP-compl ete so a heuristic method which gives good performance was used. This heuristic could
also be used with the local alignment transformations devel oped in this chapter. In [L190] however only simple
aligning functions are considered. This chapter describes alignment as the intersection of a hyperplane with the
iteration space and considers a greater class of alignment transformations within a linear algebraic framework.
Thus the contributions of this chapter are the formal descri ption of alignment and the introduction of new frame-
work which includes previous results from the Crystal project [L190]and the Compass compiler [KNOB90] and
introduces new aignment transformations.

Only static allocation schemes are addressed, so theissue of redistribution of datais not addressed. By disregard-
ing the issue of data redistribution, it is not necessary to i nvestigate the effect of reordering the computation sets
(whilst preserving data dependence) to exploit the new data allocation. In any alocation scheme, however, once
aparticular alignment of arrays has been decided, the effect of such an alignment must be propagated throughout
the program to preserve meaning. Thisis deadt with in the section 4 of this chapter.

4.1.2 Example

To illustrate the effect of alignment consider the array occurrences of the program in figure 4.1. The ith eement
of a makes reference to i + 1th element of array b:

ali] = b[i +1] (4.1)

If each a[i], b[i + 1] were stored in the same processor, then no non-loca access would be required. Inthiscase if
b were to be allocated such that it were shifted one place to the left, relative to a, then no matter how the iterator
i was partitioned, and hence how a and b were partitioned, they would both reside in the same processor. The
occurrence of iteratorsin each array reference exactly determines the alignment required. To dign b with a, a
function 1T which shiftsb is needed

T b[i +1] — b[i] (4.2)

or, more usually,
m:b[i] — b[i-1] (4.3

Thisideacan easily be extended to higher dimension data spaces. Consider the Sisal fragment infigure 4.2 where:

ali,j] = bfj,i] (4.4)

Here for 0 non-locd access, it is necessary, to store a and b transposed relative to each other which gives the
following alignment function:
e bfi,j] — bfj,i] (4.5)
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a:=foriinlncrossj inln
returns array of
b[j.i]
end for

Figure4.2: A Sisal Program

a:=foriinlncrossj inln
returns array of
for kinl,n
returns val ue of sum
b[i, K]
end for
end for

Figure 4.3: A Sisal Program

4.1.3 Hyperplanesof Alignment

In this section a formal description of alignment is presented. A computation set, Q, consists of, amongst other
things, a computation lattice, Latt(A.b), and a set of occurrence matrices, (C,i).

Let v be any array variable with a (N, x m) occurrence matrix, X', and (N, x 1) vector x pair and w be another
array variable with a (N, x m) occurrence matrix ) and (N, x 1) vector y pair where v and w are referenced in
the same computation set Q . The occurrences (X, X), (I, y) define how v, w are referenced.

If we assume acommon embedding of each array withinthe lattice Latt(A.b), then an element of array wisaligned
with an dement of array v if they are referenced and embedded at the same computation point in the lattice.

Definition 12 An alignment between an element of array w and v with occurrences (', xX) and (), y), occurs at
Jp iff X3 +x =Y +ywhere J; isavalueof Jand J; O Latt(A.b).

In general there is more than one point of alignment between two arrays. The system of equations
Xh+x=Yh+y, 3 OZ" (4.6)

form a hyperplane denoted by Sy y. The intersection, Sy y n Latt(A.b), defines all the pointsin the iteration
space where v and w are aigned.

For example, consider the Sisal program in figure 4.3. Alignment occurs between arrays a and b when i =i and
j = k. Thefirst condition aways holds, whilst there is just one solution to the second condition for each value of
j. These conditions define a 2 dimensiona planein the three dimensiona iteration space spanned by [i, , k] .

The object of compiling for alignment can now be stated as finding atransformation (T;, t;) where Sy 1,y isdefined
as
Sy1y={30Z"MXI+x=TiYI+t+y} 4.7)

such that [Sy 1,y n Latt(A.b)| is maximised.
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a:=foriinlncrossj inln
returns array of
blj]
end for

Figure4.4: A Sisal Program

Even for pairwise aignment the above optimization problem, in genera, involves enumerating the polytope,
Sy 1y n Latt(A.b), for each candidate, (T;,t;), which can be an expensive task. To maximise alignment would
require the determination of the volume of the polytopein equation 4.8

A b
XY-TYy [I"<| ti+y-X (4.8)
TY-X Xt -y

for each transformation (Tj, tj). Determining the volume of a polytope has been described in section 3.1.3 and at
present the best a gorithm has a complexity of O(|T|m'®) where [T| is number of transformations considered. Even
if the m™ term is decreased, there are potentially an infinite number of transformationsto consider. The approach
used in thisthesisis to use an approximate metric of alignment, the hit function, which leads to the derivation of
transformations to improve alignment

414 Hit Function

Before the new metric is introduced, it is necessary to look at the problem of aigning arrays with a differing
number of dimensions. In genera there are difficultiesif N, > N,, or Ny, < N, i.e. the number of occurrences
in one matrix is greater than the other. For example, consider the program in figure 4.4 which has the following
occurrence matrices:

10
X:[Ol],y:[o 1] 49
Whilst it is desirable that b is digned with the second dimension of a, thereis no way to represent thisinal x 2

matrix; one solutionisto use a2 x 2 matrix.

[éﬂ,[gﬂ (4.10)

where a zero row corresponds to a null-occurrence. By adding an extra row of zeros, it is possible to convey
in this example, that b is to be aligned with a on the second dimension. To allow alignment between arrays of
different dimensionality, for the remainder of this chapter all array occurrences X' are defined as being of size
M x mwhere M = max(m, N, N,y) and:

X7 o= [aT, o]

M xm Nyxm M-=NyXxm (4.11)

X will be used throughout the remainder of the chapter and will bereferred to as X'.

The function used to determine the alignment of arrays is called the hit function. Essentially it compares each
sub-script of the digning array for equality. The value of the hit function is the number of equal rows.
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a:=foriiniln
returns array of

for kinl,i
returns val ue of sum
b[ k]
end for
end for

Figure 4.5: A Sisal Program

a:=foriinil, n
returns array of

for kinl,i-1
returns val ue of sum
b[ k]
end for
end for

Figure 4.6: A Sisal Program

Definition 13 The hit function H is defined as:

M
HX,y = Z 5Xk,yk X dl%yk (4.12)
k=1
_| 1 e=f0ez0 |1 e=f
O _{ 0 otherwise  Oef _{ 0 otherwise (4.13)

For example consider the following array occurrences.

100 2 100 1
010 +|4]|,]010]+]|4 (4.14)
ooo], o], looo0], [0],

Here H = 1, which is the number of perfectly aligned sub-scripts of v and w, and is equa to the dimension of
the hyperplane of dignment, dim(Sy y). This approximation does not take into consideration the intersection of
the hyperplane with the iteration space and it is possible that two arrays may be aligned in a region beyond the
iteration space. For example, consider the two Sisal programs in figures 4.5 and 4.6. Both of these programs
have avaue of H = 1. In the first program the dignment line, i = k, falls within the triangular iteration space
along the diagonal. However in the second program k ranges from 1 to i — 1 and thus k can never be equal to i.
In general, perfect aignment occurs when

X =)Y,x=y (4.15)

For perfect alignment we seek a transformation (.4, a) such that:
Ay =x (4.16)
aty=x (4.17)

Equation 4.17 can betrivialy solved by rearrangement, while4.16 may only be solved by finding X' )2, or solving
by Gaussian dimination, as long as ) is non-singular. As the equation 4.17 always has a solution the remaining
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a:=foriinlncrossj iniln
returns array of
b[i+,i-]+1]
end for

Figure4.7: A Sisal Program

a:=foriinlncrossjinl,ncross kinln
returns array of
bl i+ +k, i +k, i +Kk]
end for

Figure 4.8: A Sisal Program

discussion of alignment transformationswill largely focuson .A. To illustrate transforming for perfect alignment,
consider the program in figure 4.7. In this program the arrays a and b have the following array occurrences:

BHAHEREERHEH) @1

Here U1, the occurrence matrix of array b, is non-singular and thus there exists a transformation such that the
arrays may be perfectly aigned.

SHEEEHEHEH

23 4[]

However, thisis not dways the case. Consider the program in figure 4.8 which has the following occurrence

matri ces:
1 00 1
c=1010\|,U=|1
0 0 1 1

There isno solutionto .44 = C, dueto the singularity of i.

oo R
N

] (4.21)

A method to aign u-occurrences with a c-occurrence matrix i s presented in the next section which determines an
alignment function even in the case of singular matrices.

4.2 Creation Alignment

This section investigates the alignment of each u-occurrence of a computation set with the set’s c-occurrence
which is appropriate when compiling for creation paralelism. An important property of the c-occurrence matrix
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isthat each of itsrows are independent. Thisis due to the language definition of Sisal which does not allow part
of an array to be created.

Although it is not possible, in general, to calculate a perfect aignment even for 2 arrays of the same dimension
referencing the same iterators, it is possiblein some cases to determine the best possible aignment. Thisrequires
the finding of an .4 where:

AU =Y (4.22)

such that He y is maximised. Asthe upper bound on H isgivenin theorem 6, it is possible to determine optimal
alignment in some cases.

4.2.1 Legal Alignment Functions

At this point it is important to define the restrictions on the form of V which will define the class of legal
transformations, .A. The matrix, i, references a number of points, determined by the iteration space, which
correspond to array elements. Any matrix ¥V must reference the same points, the same number of times as i/.
This implies, amongst other things, that rank(/) = rank()). Intuitively this means that references can not be
made to new iterators, nor old references dropped. In additi on the constraint that V' be of size M x misimposed.
In other words V' should have the same rank asi/, same size asi{ and, in addition, have the same number of zero
rowsasi/.

A lega transformation, A, is one which preserves the rank of . In genera if ¢/ isrank deficient so may be A.
However in a more genera context if there exists another occurrence of the same array variable in the program
then it must aso be premultiplied by the aignment transformation .A. If this occurrence is not rank deficient
then multiplying by a rank deficient .A will reduce the rank of that occurrence, which isillegal. Therefore A is
restricted to forms which aways preserve the rank of any matrix, &/. Such amatrix isone which has full rank. As
A issquare, M x M, then it follows that A is always invertible We require a V where as many rows are equa to
C aspossible. Each row, i, of C isthe ith row of the identity matrix, where the ith element isone. For dignment
we require that:

dve=10101,..,M (4.23)
or

Vi=ghiOl,...,M (4.24)
thus

AU=cOi01,...,M (4.25)

However, this may be true for few or no values of i. As.4 isM x M and the number of values of i for which there
isasolutionto 4.25 is, say, k then there remains M - k rows of .4 which must be independent of each of the k
solutions so asto maintain the full rank of .A. To maximise aignment in the sense of H, it is necessary to find as
many solutions, y;, to

Yild = ¢ (4.26)

wherey; istheith row of the matrix .4. In the following sections we consider the issues of existence, uniqueness
and independence which are based on well known results from linear agebra.

4.2.2 Existence, Independence and Uniqueness

yild = ¢ (4.27)
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can be written in the more familiar form
utyl =d (4.28)
where y", ¢! are column vectors.

Theorem 3 It is possibleto align a row of a u-occurrence matrix 4 with a c-occurrence iff ¢ is perpendicular
to the null space of / i.e. ¢' 0N (i) where N (i) are the iterators not referenced by .

Proof of Theorem 3 The equation
U =d (4.29)

is of the form
Ax=Db (4.30)

where Aisan (mx M) integer matrix, b isan (M x 1) integer column vector and x is the (M x 1) unknown vector.
This equation has a solution iff b isin the range space of A [NOBL88]i.e.

b O R(A) (4.31)

From linear algebra [ SCHR86]
OM=R(A) O N (AT (4.32)

In other words, the m dimensional real space is a direct sum of the range space of A and the null space of AT.
Thus

O0zOO™uORA),vONAN,ulv st. z=u+v (4.33)
Thus
bOR(A) < bON(AT (4.34)
but
NAY = NUHY =N W) (4.35)
and b = ¢’ hence
¢ ONWU)D (4.36)

It isimportant that each solution to 4.25 is independent, thisis easily shown.

Theorem 4 Each solution row of .A in AU = C isindependent.

Proof of Theorem 4 Assume two solutions of 4.25 are a, and a, and they are dependent thus:

Oo,Blaz0,B70,aa,+Bay,=0 (4.37)

and
aadl = acl (4.38)
Bal = fcy (439)

then
(aac+Bay) =0=ac] +fc (4.40)

But
& =6,C, = § (4.41)

and
ael + Be; z0 (4.42)

as these are independent rows of Identity, thus the assumption that ay, a, are dependent is false. O
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It follows that equation 4.25 may be solved independently for each vadue of i. The remaining rows of A that are
not solutions have to be constructed in away such that they are independent and maintain the full rank of A.

Theorem 5 Thesolutionto 4 Ty" = ¢ isuniqueiff dimV (@T) =0

Proof of Theorem 5 Let a] # a] be two solutionsto/ Ty =c/. Then

U'al =df (4.43)
U'a) =cf (4.44)
Hence
U'al ~UTa) =0 (4.45)
U'(a;-ay) =0 (4.46)
By assumption
(ax—a)" 70 (4.47)
Therefore
dim(V@UT) 20 (4.48)

A contradiction. Conversely let b" z 0 0 A (4T) and a} be a solution, then a +b" isalso a solutionand therefore
non-unique O

Theorem 6 The maximum value of H 4z, ¢ ismin(r,d) wherer = rank(l{) and d = rank(C)

Proof of Theorem 6 By definition, the maximum value of H is the number of solutions to 4.25 There at most
d = rank C columns of C to provide solutions.

From theorem 3y; isa solutionif ¢ O R(UT). Now dim(R (™)) = r,so there are at most r linearly independent
solutions.

Hence there are at most min(r, d) solutionsto 4.25 O

423 Row Echdon Form

In order to determine the form of A, such that Hz/ ¢ is maximised, then it is important, as has been stated
previoudly, to find a solution for as many rows of C to the following equation:

yild = ¢ (4.49)

Transposing gives
utyl =d (4.50)

To solvefory, concatenate?/ and ¢! and reduce by arow operation /T to row echelon form, whilst simultaneously
performing the same operations on ¢. After reducing to row echelon form, the rows are re-ordered such that the
leading element on non-zero rows is the diagonal. Equation 4.50 is re-written as:
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a:=foriinlncrossj inl,ncross kinln
returns array of
for I ini,k
returns val ue of sum
bl +k, k-2*%1+3,2%] -6, 1 +i] * c[l+k, k+l,2%]-6, 1 +k+i]
end for
end for

Figure 4.9: A Sisal Program

m Ut
M-m o]0 (4.51)
M 1

Reducing by any legal row operation, gives the unique row-echelon form:

r Re O |d
m-r (@] (@] :

M-m (@) @) %2 (4.52)
r Mm-r 1

Here Re and Care non-zero sub-matrices. By theorem 3 thereis asolution iff ¢ O A/(¢/). Thisis equivaent to
¢ = 0 which provides a simple existence test. If a solution exists then it forms arow of A.

By theorem 6 there are, a most, min(r,d) solutions and the remaining rows of .A must be filled. It is important
that these additional rows be independent so that .4 isfull rank. One method of achieving this, isto concatenate
the whole C matrix to 24T . After reducing to row echelon form there will be r solutionsand N — r independent
columns which are not solutions, but can form independent rows of .A. There is a problem if M > N¢ as the
remaining rows of .4 have to be filled. By further augmenting the Iy matrix and reducing to row echelon form,
the following augmented matrix is formed.

r Re O |XxXt Y |[w] O
m-r O O |0 Y |[wW]| o
M-m [¢) [e) [¢) [¢] (0] | (459)
r M-r r Ne-r N M-N¢

Nc rows of A are available from the row-echelon form of €. The remainder come from the last section of the
augmented matrix. Asthe W region never gives independent rows of .4 it can be omitted. It is now possible to
define an algorithm to find alegal .4 which is detailed in appendix c.

424 Example

Toillustratethisprocedure, consider the programinfigure 4.9 which hasthefoll owing occurrence matri ces/vectors.
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1000 001 1 07 70 01 1 0
0100 00 1 -2 3 0011 0
oo10|'|lo20 o %|'lo200 6 (4.54)
0000|100 1], 0 1011 | 0

where M = 4.

As long as the u-occurrence matrices refer to different arrays, they may be compared pair-wise with the c-
occurrence matrix. Thus on aligning b with a we have:

0O 00 1|12 0 0 0O
0O 02 0|01 00]0
1 100/0010|0 (4.85)
1 -2 0 1|0 0 0 0]12
On reducing to row-echelon form we have:
1000 —% 0 % 0 %
0100 3 03 0|-3
0 010 O % 0 0| O (4.56)
0001 10 00| O

Columns 5,6,7 are solutions and the ninth column is independent and forms the fourth row of .A. Aslong as the
last row chosen isindependent, it is arbitrary as the maximum number of aignment solutionsis limited here by
the rank of the c-occurrence matrix i.e. 3.

4 30
> 220 (457)
;3 00
3 5 00
Which gives the following occurrence matrix V:
1 000
| 0100
AxUY = 0010 (4.58)
0 001
the new vector a+ u istrivialy calculated and is[0,0,0,0]".
Repeating this procedure for array ¢ we have:
0 00 1(1 00 O0f0O0
0 020(0100|0
1101/001 0|0 (4.59)
1101/0000|1

On reducing to row-echelon form and reordering so that leadi ng elements are on the diagonal:



CHAPTER 4. ALIGNMENT 76

a:=foriinlncrossj inl,ncross kinln
returns array of
for I ini,k
returns val ue of sum
bli,j,k, 1] * c[i,j,k+l , k+l]
end for
end for

Figure 4.10: A Sisd Program

1100[/-100 0|2
0000[0010[-1
0010[0100|0 (4.60)
0001/ 100 0|0

Both columns 5 and 7 of the augmented matrix are legal solutions for rows of .A. Column 6 although a lega
candidate for arow of .4 isnot a solution asit is not perpendicular to the null space of 2/T. This can be seen as
the second row of the row echelon form of #T is zero, but there is a non-zero element in this position in column
6. Again row four of .4 isarbitrary and the fina column is a suitable choice.

-1 0 01
| o o3 o0
A= 0 1.0 0 (4.61)
2 -1 00
Which gives the following occurrence matrix, V:
1 000
| 0100
AxlY = 00 11 (4.62)
0011

Therefore the program in figure 4.9 may be rewritten as the program in figure 4.10. Before the alignment trans-
formations, Hap = 0, Hac = 0 and after aligning Hap = 3, Hac = 2 showing that .A has improved alignment.

4.25 Multiple u-occurrences

If an array, v, has more than one u-occurrence, 6, > 1, then there may be a conflict in alignment between each
occurrence. If H isevaluated for each dignment function, then the best function is the one for which H has the
greatest value. Consider the program fragment in figure 4.11: Here if bj.1o is aligned with a; then ZHc 4;, = 3,
as opposed to 1 if by is adigned with . This may be generalised as follows. The number of occurrences of a
particular array Xis 6. Letr O 1, ..., 64. Thefollowing strategy isemployed to determine the alignment function.
Construct

AOr01,...,6¢ (4.63)
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a:=foriinlncrossj inln
returns array of
b[i,j] + b[i+10,j] +b[i+10,j-1] +b[i+10,]+1]
end for

Figure4.11: A Sisa Program

a:=foriinlncrossj inln
returns array of
for kinln
returns val ue of sum

bli, k] * c[k,j]
end for
end for

Figure 4.12: A Sisd Program

Let

6«
F(r) =Y HaweOr (4.64)
i=1

The aignment matrix chosen will be A" where T is greatest.

4.3 Reduction Alignment

Theforgoing analysis has been based on alignment of arrays when compiling for creation parallelism, A different
approach isrequired when compiling for parallelism associ ated with reductioniterators. Different iterationsof the
reduction iterator are scheduled on different processors. One of the arrays involved in the reduction makes access
to the other u-occurrence arrays involved in the computation. The reduction operationstake place, whereupon the
resulting va ueis accessed by the process cal cul ating the rel evant portion of the c-occurrence array. Partitioning of
datafor reduction parallelism always involves non-local access. Intuitively it is because work is being performed
in paralld on several different processors, the result of which is accumulated by the creating process. It can aso
be demonstrated by looking at the occurrence matrices. A reduction iterator reference only occurs on the right
hand side of a definition and thus can never be aligned with respect to the |left hand, c-occurrence, side.

Toillustrate these points consider the program in figure 4.12. Here the reduction iterator is k, which is recognised
syntactically by the “returns value of sum” operator. On inspection it can be seen that k only appears on the right
hand side of the definition.

afi,j] = b[i, Kk, j] (4.65)

Aligning for reduction necessitates the choice of a u-occurrence with which to align to. In thiscase, the array b
is arbitrarily chosen rather than ¢ which would give a different set of aignments. In general, both b and ¢ should
be considered as one may be preferable in a more global context.

On digning with array b, a retains its present orientation, while c is stored in a transposed manner. It is worth
noting that aligning for creation parallelism would give a different alignment.
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a:=foriinlncrossj inln
returns array of
for kinl,n
returns val ue of sum
blk+j,i]*c[i+],i-]]
end for
end for

Figure 4.13: A Sisd Program

431 Row Echedon

Once again the method for determining alignment transformations is based upon the row echelon form of the
augmented matrix. The mgjor difference is that, in general, the array to be aligned with will be rank deficient.
This implies that some rows of its occurrence matrix may not be independent and thus theorem 4 no longer
applies. Thus each row of .4 must be checked for independence. There are a variety of ways of achieving this
but the method used in the agorithm in appendix c is to reduce a copy of the partialy filled .A to row echelon
form. If the copy has full rank then the row just added is independent.

432 Example

To illustrate aligning for reduction parallelism consider the Sisal program in figure 4.13. In this exampleit is
assumed that both arrays a and ¢ are to be digned with array b as reduction parallelism is to be exploited. They
have the following occurrence matrices:

100 011 1 10
Ca: | 01 O|U:| 1 0O |U:|1 -1 O (4.66)
0 0O 0 0O 0O 0O
Augmenting the transpose of the creation matrix and Identity to that of the reduction matrix gives:
1 0 0/0 10|12 00
0101 000|010 (4.67)
0 001 00|0O01

Only the fifth column is a solution and forms the second row of .A. The remaining rows are picked from the

I dentity region to give:
010 100
1 00|x|010]|=
0 0O 0 0O

Repeating the same process with ¢ and b and by augmenting the transpose of the u- occurrence matrix and identity
matrix gives:

01
10
0 0

0
0 (4.68)
0



CHAPTER 4. ALIGNMENT 79

a:=forjinlncrossi inln
returns array of
for kinl,n
returns val ue of sum
blk+j,i]*c[j,i]
end for
end for

Figure 4.14: A Sisd Program

1 10/{010|1 00
1 -10{12 00(010 (4.69)
0O 0 0|12 00001

Reducing to row echelon form:
1 00/ -2 0|2 Lo
010 g g 0 g g 0 (4.70)
0 000 OO O0O01

The fourth and fifth columns are independent solutions. The remaining independent row of .4 comes from the

fina column of the reduced matrix.
% 0 1 10 010
5 0|x1-10|=|100 (4.71)
0 1 0O 0O 0 0O

Before the alignment transformations, Hpa = 0,Hpc = 0O, after digning Hpa = 1,Hpc = 1, thus improving
alignment and giving the program in figure 4.14.

—
ONIFNI-
|

4.4  Alignment Propagation

Once a new alignment has been chosen for an array, v, the effect must be propagated throughout the program
to maintain meaning. To illustrate this point, consider the program in figure 4.15. When digning b to a for the
creation of a, b will be shifted by one. This effect will have to be propagated to the creation of b asisillustrated
in the imperative trandationin figure 4.16.

However the c-occurrence of b is no longer a ssmple sub-matrix of identity. This makes the partitioning of data
in genera more difficult. In[L191], c-occurrences are assumed to be sub-matrices of identity to aid partitioning.
Restoring b to its previous form will affect the loop body 2(j + 1) to give the program in figure 4.17. Thisidea
can now be formalised.

Given an occurrence say, 41, and the new occurrence of alignment u'LV = Al then, if there is an occurrence
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for initial
k:=1;
a:i=x,
b=y,

while (k <= n)

r epeat
k :=oldk +1

b:=for j in1,n
returns array of 2*(j+1)
end for;
a:=for i inl,n
returns array of
if (i=1)
then 0
else ol d b[i+1]
end if
end for
returns val ue of a
end for

Figure 4.15: A Sisd Program

FORITERk =1 TOn

FORj =1 TOn
b[j-1] = 2*(j+1)
END FOR

a[l] :=0

FORi =2 TOn
af[i]:= oldb[i]
END FOR

END FORI TER

Figure 4.16: An Imperative Program

FORITERk =1 TOn
FORj =1 TOn
b[j] :=2*((j+1) nmod n +1)
END FOR
a[l] :=0
FORi =2 TOn
afi]:= oldb[i]
END FOR
END FORI TER

Figure 4.17: An Imperative Program

80
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a:=for i in1,2*n
returns array of d[i]
end for;

b:=for i inl,n
returns array of a[2*i]
end for;

c:=for i inl,n
returns array of a[2*i-1]
end for;

Figure 4.18: A Sisal Fragment

FORi =1 TO 2*n

ali] :=d[i]
END FOR
FRi =17TOn
b[i] :=afi]
END FOR
FRi =17TOn
cli] :=a[i-1]
END FOR

Figure 4.19: An Imperative Program

of that array in any computation set, transform it to the new alignment i.e
0QUx O 1, ..., 8, Uy, = Allyy,C, = ACy (4.72)
To restore the identity matrix of each c-occurrence, left multiply by A™:
0Qe, z1 - ¢, =A™, (4.73)

where C, = C, and isthusreturned toitsorigina form. All references to i terators which are not array occurrences
must also be adjusted. Let f(J) be ausage of theiterators J in F, the parse tree of a computation set, then the new
usageis f (J) where ,

fQ)=fA™) (4.74)

and the value of the iterators .471J are restricted to the values of J in the lattice Latt(A.b). This procedure can
be used for an arbitrary number of re-alignments. However, at present, a problem occurs if the matrix, A7, is
non-unimodular and there is more than one reference to v with a different occurrence matrix.

Consider the Sisal fragment in figure 4.18. If a isto be aligned with b and the effect propagated, as described
above, then thiswill result in the imperative program shown in figure 4.19. Before alignment propagation, arrays
b and c referred to aternate elements of a but alignment propagation has compressed the reference to a with
the consequence that, now, b and c refer to overlapping regions which no longer preserves meaning. At present
alignment is, therefore, restricted to unimodular alignment transforms, if there is more than one different u-
occurrence of a particular array. Although thisisrestrictive, in [SHEN9Q] it is shown that a large proportion of
scientific programs comply with this, and it seems likely that in the near future this restriction may be relaxed.
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a;=for i inlncrossjinin
returns array of
bli,i]
end for
end for

Figure 4.20: A Sisd Program

45 Data Partition

Once the relative alignment between arrays is determined, by the previous phase, the arrays must be mapped to
processor space. At this stage only orthogonal partitions of the arrays are considered. Thus if an array has N
dimensions, it may be partitionedin 2V1 different ways. If possible, the partitioning of data shoul d be along those
dimensions of the array that may be evaluated in pardlel. In the next chapter, the mapping of datato processors,
so asto determinethe local data and computation space is defined and a method based upon the volume of access
is developed. In this section, however, the influence of alignment on the partitioning process is described. In
particular, the transformations required to partition an array along one dimension and serialise the remainder are
presented.

45.1 Aligned Form

If two arrays are aligned with respect to a particular index, then no matter how those individua array €l ements
are partitioned, any reference between the two arrays with respect to thisindex will always be local. Non-aligned
indices do not have this property and thus partitioning with respect to theseindices should be avoided. If an array
has N dimensions and say k of them are aligned, then there are k dimensions the array may be partitioned along,
and N -k that should be serialised. Asthe size of any one dimension of an array isassumed to be greater than the
number of processorsi.e. n >> p, it isreasonable to consider only one dimension to partition along at this stage.
In chapter 5, the volume of access analysis considers a greater variety of data partitions. Therefore, within this
section, of thek parallel dimensions, only one will be selected to partition the array across the processors and the
remaining N — 1 will be serialised.

Consider the Sisal program in figure 4.20. This program has the following array occurrences:
10 10
[01”10] (4.75)

The first index of b isaigned witha as &; = 1, but the second index isnot §; = 0.

Partitioning an array into k dimensions is the act of projecting an M x m occurrence matrix so that there are k
non-zero rows in the new occurrence matrix, where each of the k rows correspondsto that dimension of the array
being distributed over the p processors. Thus the data partitioning/scheduling function ¢ is defined as follows:

7:X—X (4.76)
where XY =C orf and X =C or i{ and X' isthe partitioned matrix and X' and X’ are both M x m matrices.
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Conversdly a serialising function p can be defined which describes those indices that are not to be partitioned.
i.e

p X=X (4.77)
where X’ isaM x m seridised occurrence matrix with at least k zero rows.

Hence
¢(X) +p(X) = X (4.78)

So the definition of either ¢ or p automatically defines the other function. The particular form of these transfor-
mationsis chosen to be M x M integer matrices P and S respectively, i.e.

PxX=X (4.79)

SxX=X (4.80)
where

P+S =1 (4.81)

Unlike the alignment matrix .4 these transformation matrices are formed to reduce the rank of the occurrence
matrices and thus are singular.

The rows of P are either rows of identity or rows of the null matrix. After pre-multiplying the occurrence
matrix, the new partitioned occurrence matrix has non-zero and zero rows. Non-zero rows are those that are to
be partitioned.

In the previous program, figure 4.20, P is chosen to be of the following form:

|10
P = [ 00 ] (4.82)
which gives the following reduced occurrence matrices:
10 10
[OOHOO] (483)
If He s is determined for non-zero rowsit isfound to be 1. If P was chosen to be
_|10 o0
p=[20] e
thiswould give the following reduced occurrence matrices:
00 00
[01”10] (485)

Here Hczy, is 0. This observation gives a simple method of deciding which index to partition along and hence a
method for constructing P. If two rows of the arrays to be aligned are equal, then let the corresponding row of
P betherelevant row of Identity, otherwise set it equa to zero.

T
_J e G=U
7?._{ ) ez Oi0L..M (4.86)

Perfect data partitioning occurs when al non-zero rows of the reduced occurrence matrices are equal, whereupon
Hpe pue = K. At present only the case k = 1 is considered, i.e. only one dimension to partition aong is sought,
and thus a suitable method of determining P is as follows:

g CG=UOPzelkOL,..,i-1
Pi=} € P=00kO1,..,N-1 0i01,..,M (4.87)
0 otherwise



CHAPTER 4. ALIGNMENT 84

a:=for i inl,n
returns array of
for kinl,n
returns val ue of sum
b[i] * c[i,k]
end for
end for

Figure4.21: A Sisd Program

a;=for i inl,ncrossjinin
returns array of
bli] * c[j]
end for

Figure 4.22: A Sisd Program

45.2 Arrays of Differing Dimensions

Problems occur when the arrays to be partitioned have a different number of dimensions. If two arrays which
reference each other in acomputation have adifferent number of dimensions, then the approach taken hereisthat
they may not be partitioned by more than the lowest dimensioned array’s number of dimensions. Consider the
example in figure 4.21. As a and b are both one-dimensional, ¢ can only be partitioned by rows or columns, not
both. The motivation for this constraint is that it ensures that datais evenly distributed across the processors.

To illustrate this point, consider the program in figure 4.22 with the associated occurrence matrices.

_|l10 |10 _|0 o0

a3 9] w=[ 5 9] e=[2 ] (s
Two equally optimal forms of P can be found using 4.81 and they are:
|10 _|10 o0

7"[0 0]7"[0 1] (489

After applying both partitioning matrices the two possible forms of the reduced occurrence matrices are found:
10 10 00

[o o]'[o o]'[o o] (4.90)
00 00 00

[o 1]'[0 o]'[o 1] (4.91)

In both cases there is a problem as in each case there is a matrix with no non-zero entries after partitioning. This
implies that the array is not partitioned across the processors and hence resides solely in one processor. Due to
the scalability constraint, thisisillega. Because of this there must always be an entry in the partitioned row of
the reduced occurrence matrix , which may be any other non-zero row of the occurrence matrix. By applying this
principleto the present example we have:

0 0)[o0] ][00l o2
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a:=foriinlncrossj inln
returns array of
for kinl, n
returns val ue of sumb[k,j]
end for
end for

Figure 4.23: A Sisd Program

o a) {2 o] 0] 499

If thetotal value of H iscal cul ated for both partitions, they are shown to be equal, and inthis case either partitioning
is equivalent but more importantly the data is evenly distri buted.

In the case of different sized arrays, P is determined as before. For those arrays that are of a smaller dimension
than the creation array, are-ordering of their occurrence matrix isrequired. Let the re-ordered matrix be 7 which

is defined
e’ Uz0Oizt
Ti:{e{[ U=00i=tOizk 0i01,..,M (4.94)
e i=k
where t is the dimension which P has been selected to partitiononi.e P; = € and k isthe row swapped with row
tif row t is zero. Data partitioning can now be defined as findinga?, § and 7 such that:

PxTxX=X (4.95)
SXTxX=X (4.96)

where
P+S= (4.97)

The matrix 7 is also useful in ensuring that there are no later problems in data partitioning due to padding. To
illustrate this, consider the program in figure 4.23. The occurrence matrices of a and b are respectively:

02001 0] (46)

and in padded form

100 0 0 1
010(,[]010 (4.99)
0 0O 0 0O

After aligning the arrays will be of the following form
100 0 0O
010(,[]010 (4.100)
0 0O 0 0 1
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If it is decided to partition along the first index then b is completely serialised. Having an n? sized array resident
on aprocessor isnot desirable. Applyingthe 7 transform gives the following occurrence matrices which ensures
even data distribution when partitioned along the first index.

Bl

The necessity of thisfina transform is because a 2-dimensional object has been embedded in a three dimensional
iteration space. A projectionaong an iterator forming thi s space does not necessarily partitionthe two dimensional
sub-space of the array. This was the case for the array b, where the transformation 7 ensured that the array was
orthogonal to the partitioning direction.

o O
OO

00
10
00

[eoNeNe)

] (4.101)

46 Summary

In this chapter, a formal description of alignment has been given. By considering the arrays as embedded in
the iteration space, it has been possible to describe alignment as a hyperplane whose size can be measured. By
taking an approximate metric H, alignment transformations based on the row echelon transf ormation have been
developed for creation and reduction alignment. How local alignment affects the remainder of the program has
been addressed. Finally a method to allow later data partitioning has been described.



Chapter 5

Partitioning and Pre-Fetching

This chapter describes the mapping of data and computation to processors and the pre-fetching of data to reduce
non-local access. The first section describes how data is scheduled across the processors and, once this has been
performed, how the local iteration space may be determined.

Once the data has been mapped to the processors, it is desirable to minimise any non-local access by adopting
a compiler directed caching policy. An invariancy analysis is presented in the second section to determine any
opportunity for datare-use. Pre-fetching transformations are described which take advantage of any re-use and
can be used in the presence of general affine loop and array occurrences.

In chapters 3 and 4, the criteriafor partitioning of data was either based upon load balancing, or aignment. In
the third section a new method is introduced which attempts to determine the best data partition given that pre-
fetching transformations are available. As this method depends on such transformations, it is presented after the
pre-fetching section. Finally a summary concludes this chapter

5.1 Indices, Iteratorsand Processors

In this section the mapping of data and computation to processors is examined. Initially the mapping of just one
array dimension to severa processorsisderived. Thisisextended to multiple dimensionswhich may be wrapped.
Once thelocal data space for each processor has been determined, a method to cal culate the local iteration space
is shown.

5.1.1 Mapping Indices

Each array, v, in a computation set has the following index domain:
[il,iz,...,iNv]T:I (5.1)
where each iy isthe xth index of the array, and Z is the vector containing all theindices of that array. Each index

corresponds to a non-zero row of the C occurrence matrix of array v. Each non-zero row will have one reference

87
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to an iterator whose boundswill determinethe range of that index. The index range is defined by the inequalities:
A<I<vu (5.2

This set of inequalities can be reordered to give:
=l -A
(<[] 59

where A, v are Ny x 1 vectors. Only constant vectors are required to describe the bounds of 7 because only
rectangular arrays are considered in thisthesis. Each array, in general, has a different range of indices and thus
has a different 7.

If the array is to be partitioned along just one index then that index, say ix, must be divided into p sub-ranges.
Once a particular partition, has been chosen, as defined in section 4.5, then the indices corresponding to PC will
be defined over a sub-range. The remaining serialised ones, corresponding to SC, will be unaffected.

This section is concerned with the function, ¢, which maps the array indices to the various processors. In the
case of partitioning just one index, it has the following form:

{7 — I xIyxOIx T, (5.4)

For some processor, z O 1, ..., p, the bounds on the indices Z, describe the elements of an array, a, local to
processor z. Theindiceslocal to aprocessor zconsist of d separate sequences of index vaues. Z, = 7 1x72x X7,
where d is the number of times an array is wrapped around the processors. In the majority of cases d is equal to
one. The kth sequence 7X,1 < k < d is of the following form:

i

=In : A
In k v
—& ot = “[z-D)xb+kxr+1] (5.5)
e : zxb+kxr
i

where g isthe xth row of theidentity matrix, b isthe amount of continuousdataper processor inindex x, r = bxp
andd = [@] is the number of sequences or wrap arounds.

For example, let an array, a[(1..64)], be partitioned across p = 4 processors in a wrapped manner, such that the
number of continuous data elementsin any processor isb = 8. Now, asr = p x b, 32 = 4 x 8, thisimpliesthat the
data hasto be wrapped around twice, d = [%1 . Therefore processor z = 1 will havethe elementsa[(1..8), (33..40)]
local whilst, processor z = 3 will have the elements a[(17..24), (49..56)] local etc.

It isoften necessary to partitionan array by more than one dimension. If thearray isto be partitioned by qindices
where
1<gsN, (5.6)

then the processor space, P, hasto be rearranged as follows:
P — Py x P, x [IIX Py (5.7

As there are p processors we have
(p1 % p2 x X pg) = p (58
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c:=foriin1l, 200 crossj in 1,300
returns array of i +
end for;

a:=for i in1l, 100 crossj in 1,100
returns array of c[i,j]
end for;

Figure5.1: A Sisal Fragment

where p; is the number of processors in the ith dimension, 1 < i < g. Each dimension of the processor space
corresponds to a particular dimension of the array. Let the array dimension associated with processor dimension
sbe xs. Thusthe array dimensionsto be partitioned are given by:

X11X21 1Xq (59)

Thus 5.3 can be reformed to define the vaue of the local indices in some processor z. The range of the loca
indicesin equation 5.3 is of the form givenin 5.10.

=1 —A;
[ I]_Zs[ &] (5.10)
-
T :_% _ a7
In 2 v
-€y, kf —[(z-1) xby, +kxry, +1]
i .
X .
7| < ' (5.10)
& : —[(z=1) xby, +kxry, +1]
€y, ik Zx by, +KXxry,
Xa .
L qu . illil. L beXq+erXq B

The form of z d and k have to be altered to accommodate the partitioning by more than one index.

2= (2, 2,...,2) (5.12)
d=(d1,dy,...,dy) (5.13)
k= (ki ko, ..., Kg) (5.14)

To illustrate the partitioning of data consider the Sisal fragment described in figure 5.1, where the index ranges
for both arrays, a and c, are to be be determined. Array a has the following bounds.

-1 0 -1
0 -1 i -1
1 0 [ig LS 100 (5.15)
0 1 100
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Which trandlates to the imperative array declaration in 5.16:

a[(1..100), (1..100)] (5.16)
Similarly the array boundsfor c are :
-1 0 -1
0 -1 i1 -1
1 0 [ i) ] < | 200 (17)
0 1 300

In other words the array ¢ has the following size:
c[(1..200), (1..300)] (5.18)

Let the number of processors be p = 16 and let the array be partitioned a ong two dimensions. In other words the
array is to be partitioned into blocks giving g = 2, x1 = 1 and x2 = 2. For conveniencelet py = p2 = /p=4. In
this example a isto be partitioned in a folded manner with no wrap around of data, so the amount of datain each

processor is %) = 25 per row, and %) = 25 per column. This can be represented in the generd case by:

by = "M Dy

" 01,....,q (5.19)

After theremoval of redundant constraints, consider the the index values of array a on, say, processor z = (3, 2):

-1 0 -51

0 -1 || in -26

1 o [ixz] <=7 (5.20)
0 1 - 50

In other words the array a has the following size on this processor:

a[(51..75), (26..50)] (5.21)

The amount of continuous data per processor in each dimensonp; = 1,...,4and p, = 1,...,4is25. Thus
by, =250y, =251y, =4x25=100andry, = 4x 25 = 100. At the stage of mapping data to processors, it is
assumed that the arrays have been aligned so each element ¢fi, j] should be in the same processor as a[i,j]. Asc
isof agreater size than a, ¢ will be mapped in a wrapped manner.

200

d = 155! =2 (5.22)
dy, = fi—?& =3 (5.23)

Thereforek; = 1,...,2, k; =1,...,3 and array ¢ will be wrapped around twice in one direction and three times
in the other. After removing the redundant constraints of the polytope, the index vaues of array ¢ are:

-1 0 -51
0 -1 ix -26
o [ile <|—= (5.24)
0 T c 50
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-1 0 -51
0 -1 i -126
0 1 oC 150
-1 0 -151
0 -1 ix -226
1 o0 [ ixZ] S| 7175 (5.26)
0 1 oc 250

i.e

c[(51..75, 26.50) , (51..75, 126..150) , (51..75 , 226..250) , (151..175, 26..50) , (151..175 , 126..150), (151..175
, 226..250)]

The mapping results in the elements g (51..75),(26..50)] and ¢[ (51 .. 75), (26 .. 50) ] being present in the
same processor which preserves alignment. The mapping of data to processorsis always done with respect to the
smallest range as distributing the data with respect to alargest array implies either non-even distribution of data,
or non-alignment of the smaller array. Hence mapping with respect to the smallest array is employed, despite the
inconvenience of wrapped mappings and discontinuousindex values

5.1.2 Mapping Iterators

Once the indices of a particular processor have been determined, it is necessary to determine the local iteration
space for each processor where all writes are local ! The iteration space is partitioned in a similar manner to that
of the index space, namely:

(= xJxIkJ, (5.27)

The local iterators of a processor z are denoted by J, which are defined over as the lattice points of the local
iteration space:

A, <b (5.28)
This polytope is derived from:
L j1 -
LN I u
& I £ (5.29)
_C _&
C ] U,

Adding the index bounds of the local array to the polytope guarantees local writes. As many of the entriesin the
polytopewill prove to be redundant, they should be removed, using the techniques described in chapter 3. Asan
example, consider the program in figure 5.2.

Wewill assume the data space isto be partitioned by blocks, and the total number of processorsis 16, 4in each di-
mension. Consider the iteration space of processor z = (3, 3) where theindex range of array aisd[(9..12),(9..12)].
The local iteration space is given by:

IThis s true for creation parallelism, however, when transl ating for reduction parallelism, codeis inserted to ensure that writes are local
(see appendix B). The only modification required is that C be replaced by the reduction array 441 in 5.29.
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a: =for i inl,16 crossj in 1,16
returns array of
for kinl,i
returns val ue of sum
if (j>=k)
then b[i, k] * b[],K]
else 0
end if
end for
end for

Figure5.2; A Sisal Program

| |
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92

(5.30)

By removing redundant conditions of the polytope, as described in chapter 3, the following polytopeis found:

IN

(5.31)

which corresponds to the programin figure 5.3. This can be extended to determine the iteration space of wrapped

data, by calculating the separate iteration spaces of the d wrapped sections of an array.

5.1.3 Interleaving

One method to improve theload balancing of asystemistointerleave the work load. In chapter 3 theinterleaving
of iterators was presented for this purpose. This section describes how interleaving affects data distribution and

the iteration space.

Interleaving an iterator, using the interleave function #, implies that every reference to that iterator isinterleaved.
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FRi = 9TO12
FRj = 9 TO12
FR k=1TOi
IF (k<sj)
THEN a[i,j] :=a[i,j] + Cet (b[i, k])
¥ Get (b[j,k])
END | F
END FOR
END FOR
END FOR

Figure 5.3: An Imperative Program

a. =foriinl, 16

returns array of

for jinl,16
returns val ue of sum
if (j<=i)
then b[i] * b[j] +i
else 0
end if

end for

end for

Figure 5.4: A Sisal Program

Thisincludesarray occurrences, conditionalsand general usagein expressions. For example consider the program
in figure 5.4, on interleaving the i iterator, the program in figure 5.5 is formed.

This example illustrates two potentia problems

1. The iteration space is no longer convex and hence cannot be represented as a lattice of points contained
within a polytope

2. The c-occurrence is interleaved and it is not obvious whether the data to be written to islocal.

FRi = 17016
FRj = 17016
IF (] <=#i)
THEN a[#i] := a[#i] + Get ( b[#i])

* Gt (b[j]) + #i

END | F
END FOR

END FOR

Figure5.5: An Imperative Program
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a: =fori in1,16
returns array of

for j inl,i

returns val ue of sum
b[i] * b[j] +i

end for

end for

Figure 5.6; A Sisal Program

Fortunately both these potentia problems can be solved.

1. Ingenera theiteration spaceisnot convex, but each local iteration space after partitioningisin fact convex,
and can be represented as a polytope. The interleave function is defined as

# =z+p(-jlo (5.32)

where | isthe local interleaved iterator, zis the processor number, p is the total number of processors and
jloisthe lower bound of the iterator .

2. The c-occurrence matrix can be restored to its original form by applying the inverse of #, defined as ##, to
theinterleaved indices of the c-occurrence and all aligned arrays, In [ROGE91] the existence and a method
for calculating the inverse interleave function ## is shown.

Rectangular loop bounds are relatively easy to interleave, but not all iteration spaces are rectangular. However it
ispossibleto expressdl iterations spaces as rectangular ones which are cut by hyperplanes, where the hyperplanes
correspond to if conditions.

For example consider the program in 5.6 where the i iterator is to be interleaved. In its present form, it is not
obvious how to perform interleaving.

This program has the following polytope:

[-1 0] [ -1
0 -1 i -1
T 0 [ j ] < |15 (533)
-1 1] | 0]
This can be rewritten as ~ _ _ _
-1 0 -1
0 -1 i -1
1 0 [ ; ] <| 16 (5.34)
o 1|t/ 16
-1 1) 0

Moving from the polytopein 5.34 to 5.33 has been the concern of constraint removal in chapter 3, section 3.3.4,
however, in this example the opposite is required. The necessary techniques required to add constraints have
also been described in chapter 3, section 3.3.3, where it was used for loop interchange. If we consider the local
program on the second of four processors, then figure 5.7 describes the program after interleaving one of the
iterators and one of the indices.
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FRi = 5708
FRj = 1TO16
IF (j <=#)
THEN
ali] :=a[i] + Get (b[i])
* Get (b[##]) + #i
END | F
END FOR
END FOR

Figure5.7: An Imperative Program

Interleaving an array’s indices has similar conseguences to those of the alignment transformations, in that the
effect has to be propagated throughout the remainder of the program. Such a procedure is described in chapter 4,
section 4.4.

5.2 Pre-Fetching

Thissectionisconcerned with the minimisingthe amount of non-local access, once alignment and data partitioning
have taken place. Essentidly if a non-loca data element is to be accessed more than once, then it is preferable
to storeit locally after thefirst access. Thisisachieved by pre-fetching, where the dataitem is accessed before it
is needed and stored in alocal temporary variable. The criteriafor data re-use and the transformations required
to achieve it, are described within the following sub-sections. Other researchers have been working in thisarea,
most notably M.E. Wolf and M. Lam [WOLF91]. One of the contributions of this thesisis that a methodology
for re-use is developed which alows the application of re-use transformations to a wide range of programs.
Specifically, the transformations can be applied to genera affine loops in the presence of affine conditionals and
array occurrences.

If reduction parallelism is exploited, there is no need for pre-fetching transformations as dl the data required for
thelocal computation will belocal. Pre-fetchingis, therefore, only relevant in compiling for creation parallelism.

Initialy, an invariancy condition is derived which determines if pre-fetching is worth while, whereupon a trans-
formation based upon loop interchange is used. In the case of multiple array accesses, it is generally necessary
to scalar expand one or more array references, but thisis limited by the availability of memory and the need to
provide a scal able implementation. These pointsare covered in the next two sub-sections. In thefinal sub-section,
strip-mining is introduced as a means of maximising the amount of pre-fetching but maintaining the scalability
constraint.

5.21 Invariance

To motivate the analysis and the remainder of this section, consider the program in figure 5.8. If the array to be
created is partitioned by j, ‘ column-wise’, thiswill result in the program described in figure 5.9, where jlo and jhi
are thelocal lower and upper bounds of j which have been determined by the mapping transformation.

The amount of array b that is accessed by the reference b[j, K] is j| % k| where |j| and |k| are the number of iteration
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a:=foriinlncrossj inln
returns array of
for kinl,n
returns val ue of sum
b[j, k]
end for
end for

Figure 5.8: A Sisal Program

FRi =17TOn
FORj =jlo TO jhi
FORk =1 TOn
afi,j] :=afi,j] + Get( b[j,k])
END FOR
END FOR
END FOR

Figure5.9: An Imperative Program

points of j and k respectively. The volume of accessis

2
Ulo,...,jhilxn:% (5.35)

However, the number of times b is, at present, accessed is defined by the number of loop iterations performed:

n3
n><|jlo,...,jhi|><n:3 (5.36)

There are an O(n) more non-local accesses than is necessary. To achieve the value determined by the volume of
access calculation, the program has to be re-ordered to give the program in figure 5.10, where tempb is a local
variable. In this example the (potentialy non local) array, b, is referenced the minimum number of times with
the remaining references being made to alocal variable. Thisreordering isbased upon the analysis of datare-use
and generd pre-fetching transformations. Given an (N, x m) u-occurrence I/, and the iteration vector J™, then if
the rank of ¢/ isd, d < m, there are |J™9| points of reuse. The program in figure 5.8 has the occurrence matrix:

FORk =1TOn
FORj :=jlo TO jhi
tenpb: = CGet(b[j,k])
FORi =1T0On
ali,j] :=a[i,j] +tenpb
END FOR
END FOR
END FOR

Figure 5.10: An Imperative Program
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35 90]1]

There isno reference to iterator i in the u-occurrence matrix of b, which implies that the value of /1 ,J™ remains
constant for all values of i. In other words /1, is invariant of thei iterator.

Definition 14 The null space of i/1, N (41y), are the iterators which 2/ isinvariant of.

In chapter 4, section 4.2.2 it was shown that a u-occurrence matrix, /1, could only be aligned with arow of the
c-occurrence matrix, ¢, if ¢ 0N (U1y). Therefore, either an array occurrence may be aigned or it i s a candidate
for re-use.

Before pre-fetching transformations are applied there is one overall restriction, that is, no reference may occur
beforeits definition. Oneimportant example of thisisthat if an array isdefined withinaforiter loop thereference
to it may not be moved outside the loop.

The number of points referenced by a u-occurrence of an array v is [i/1,J™|, where J" isthe local iterator vector.
If therank of /1, isd and m> d, then it is desirable to reduce the iterators enclosing an array reference from J7
to J% where J¢ are the iterators accessed, as thiswill reduce the total potential non-local accesses.

It is necessary to consider the form of a computation set before the pre-fetching transformation can be formally
stated. Q isdefined in chapter 2, section 2.2, as a computation set whose elements are the iteration space, array
occurrences and a parse tree contai ning the operationsto be performed. Q isnow defined as theloca computation
set which isidentical to Q , except for its iteration space. B

In the equation 5.38 the transformation has the form Q — (.., (@,g’)), which is equivaent to creating a new
computation set whose body contains two further computation sets. Transformations of this complexity have not
been previously introduced, but are necessary here. In effect an array creation is split into two parts, the first ac-
cesses non-local dataand storesit in aloca temporary, whilethe second accesses that temporary. These two parts
correspond to the ordered pair (Qy, g ). There isa, transformation introduced, data-dependency between the two
computation sets, which is preserved by nesting them within another computation set. The overall transformation
is

m:Q— (AJDb,(QQ)) (5.38)
where
Q1 = Q" — O, tempv := V[!1,J™]) (5.39)
Q = QU™ — J, V{1, — tempv) (5.40)
and
J=J-NU) (5.41)
J=NY) (5.42)

tempv isatemporary variable introduced to store the prefetched vaue. The mapping v{i/1,J™] — tempv describe
the substitution of an array reference by a local temporary. J is the d dimensional vector of the d iterators that
U1y makes reference to, and conversely J are the m— d iterators that 24, , does not make reference to. Intuitively
J should be the outer most loops and J the inner most ones in the transformed program where [ represents the
empty iterator vector.
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a:=foriinlncrossj inln

returns array of

for kin 2%+, 3*i-j
returns val ue of sum
if k >=n then b[k, 2*k]
else0Oendif

end for

end for

Figure5.11: A Sisa Program

The determination of thistransformation 5.38 is relatively easy if N (/1) is aligned with respect to the iteration
space. Therefore in this section we concentrate on u-occurrences that contain only one iterator variable per
reference such as a[i, k,j + 3], a[2 i, ], j] as opposed to more complex occurrences such as a[i,j + k]. Genera
affine occurrences will be discussed in section 5.2.5. To determine 5.38, the main task isto perform the reordering
transformation: .

J
Thistransformation requires O(m) interchanges of iteratorswhich has been covered in chapter 3, section 3.2.7. To
illustrate the usefulness of thistechnique, consider the program in figure 5.11. If we concentrate on the polytope
involved in the access of array b, then it has the following iteration space:

-1 0 O [ -1
0 -1 0 -1
2 1 -1 i 0
1 0 O jl<| n (5.44)
O 1 O k n
-3 1 1 0
| 0 0 -1| | -n |
Now 5
J=NWU) =1i,i" (5.45)
and
J=J-N(Uw)=[K" (5.46)

Section 5.1.3, dealing with interleaving, described a method whereby general iteration spaces can be re-expressed
as rectangular ones restricted by conditionals. On interchanging the iterators by methods described in chapter 3,
we have:

OrFr OO0Or o

k R
[ i ] <| 31 (5.47)

RO ORrROORr
Rl O O|Fkr OO

N

[

-3

which on applying 5.38 gives the program in figure 5.12. This program illustrates the power of pre-fetching

[E=Y
o
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FOR k =n TO 3*n-1
tempb := Get (b[k, 2*k])

FORi =1TOn
FORj =1T0On
IF ((k+j)<=-2*i) AND ((k+j)<=3*i)
THEN a[i,j] :=a[i,j] + tenpb
END | F
END FOR

END FOR

END FOR

Figure 5.12: An Imperative Program

transformations. By combining the re-use analysis and general loop interchange, the number of potentially non-
local accesses has been significantly reduced and worksin the presence of general affinelooplimitsand conditional
evaluation.

A computation set usually has more than one u-occurrence each with a different J. Let L be the loca invariant
iterators of the rth u-occurrencer 0 1, ..., 6, of array v. The iterators common to each J;, will be the iterators

that al the u-occurrences will beinvariant of. It isconvenient to describe each of the vectors J; in set notation as
the common iterators naturally corresponds to set intersection. Two functions, vtos, stov are required to trandlate
avector into a set and a set into a vector:

VtOS:[jlr"'rjm]TH{jll"'ljm} (548)

aOV:{jlr"'1jl’1’1}'_>[j11'-'1jl’ﬂ]-r (549)

For the sake of convenience, curly brackets, {} surrounding a vector, denote a set representation of that vector,
i.e. the function vtos has been applied. For example, {J™} = {ji, ... ,jm} where J™ = [jy, ... ,jm]". Given {J™} it
is possible to determine J™ by applying the natural ordering function stov.

The intersection of each of the {L} will be the iterators that al of the u-occurrences are invariant of. The size

of this intersection may be much smaller than the {L} of each u-occurrences and an opportunity to exploit
invariance may be lost.

The common invariant iterators are defined by the intersection of each {J;,} whichis {3} = &, {Jn}, Ov.

The difference {L} - {j} isthe shortfall in exploitation of invariance of I, and will lead to excessive non-local
access. To illustrate this point, consider the well known matrix multiplication program shown in figure 5.13.
After a straightforward trand ation the form described in figure 5.14 is derived. Array b isinvariant of iterator j,
but array cisinvariant of iterator i, so there are no common invariant iterators.

Jb=j,k=k {3} ={j} n {k} ={O} (5.50)

so there is a shortfdl in the exploitation of invariancy:
{db} - {3} = {j} (5.51)
{de} - {3} = (K} (552)

By reordering the iterators, the invariancy of either b or ¢ may be redised but not both. This is not really
satisfactory, as the remaining u-occurrence will dominate the non-local access cost.
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a;=for i inl,ncrossjinin
returns array of
for kinln
returns val ue of sum

b[i, k] *c[k,j]
end for
end for
Figure 5.13: A Sisd Program
FOR i=1TOn
FORj = 1TOn
FORk =1 TOn
ali,j] := a[i,j] + CGet(b[i, k]) * Get(c[k,j])
END FOR
END FOR

END FOR

Figure 5.14: An Imperative Program

5.2.2 Scalar Expansion

One approach to improve expl oitation of invariant access, isto pre-fetch datawhichisnot invariant of therelevant
iterator. The temporary introduced will be scalar expanded [PADUS86] by thisaction and will be the same size as
the range of theiterator. This scalar expansion is appropriateif it allowsthe realisation of the invariancy of other
U-OCCUIrences.

Let M bethe iterators that are going to be innermost. Each u-occurrence will be prefetched with respect to M
and may require some scalar expansion. |f L istheinvariant iterators of the rth occurrence of v then prefetching,
which may include scaar expansion, is only appropriate if it exploits, or reveals, some invariancy of access.
Pre-fetching of U, isworth whileif: 5

{M)n {J) 7 {0} (553)

Given M let {J;y} be defined as
(W ={M-{J}0r01,...,60v (5.54)

In other words L are the iterators which any introduced temporary for the rth u-occurrence of v will be scalar
expanded by. The size of any temporary introduced by scalar expansion will be:

e T, (5.55)

Pre-fetching with scalar expansion can be described as the following transformation :

m:Q+— (AJb (Qu. ..., Qs.)IV,Q) (5.56)
Quv = QU™ — iy, temprv{tdr J™ = Vit ™Or 0 1, ..., 6,0v (5.57)
Q = QU™ +— M,V[CI"] — temprvOr O 1, ..., 6,0V) (5.58)

where A
{3} = {37} - {M} (5.59)
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FORk =1 TOn

FORi = ilo TOihi
tempb[i] := Get(b[i,k])

END FOR

FRj = jlo TOjhi
tempc[j] := Get(c[k,j])

END FOR

FORi = ilo TOihi
FRj = jlo TOjhi
afi,j] :=ali,j] + tenpb[i] * tenpc[j]
END FOR

END FOR

END FOR

Figure 5.15: An Imperative Program

Maximum invariancy occurs when:

2Y
{M} = {3} 0v (5.60)
r=1
In other words, the maximum amount of re-use of data occurs when al invariant iterator are placed innermost.

Thisis equivaent to saying if a u-occurrence is sufficiently rank deficient, so as to imply re-use, then the trans-
formation will exploit thisinvariancy. As stated previously, { M} n {L} will be the iterators that 2/, will be
invariant of for a particular M. To illustrate this point consider the matrix multiplicati on program in figure 5.13.
The invariant iterators of arrays b and c are
Jb=ide =1, (5.61)

Using equation 5.60, M is

M} ={j} 0{i}={i.j} (5.62)
In other words, the maximum re-use of datais achieved by pre-fetching with respect to i and j. The temporaries
associated with a and b will be scalar expanded when passing through non-invariant loops.

{3 = {M) = (k) AM) = (o} = (i} {AM) - (I} = {3} (5.63)

So the outer most iterator is k, the reference to array b is scalar expanded by i and the reference to c is scalar
expanded by j. Applying the new transformation and subsequent trand ati on to imperativeform, givesthe program
in figure 5.15. In this program the potential non-local accesses have been reduced by O(%). However it has
incurred the cost of two scalar expanded temporaries, both of which are of size (%), asthesize of thetemporaries
depends on the size of the loopsinvolved in the scalar expansion.

At this point it may be asked why al array u-occurrences are not scaar expanded to the outermost lexical level.
Aside from the constraint that a u-occurrence may not be moved past its definition, the amount by which an
occurrence may beexpanded islimited by the scalability constraint. The determination of the scal ability constraint
is the subject of the next sub-section.

5.2.3 Scalability Constraint

In order to maintain scalability, a limit must be placed upon the size of the temporaries introduced by scalar
expansion. The size of temporaries has to be the same order of magnitude in size, or less, as the data being
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FORi =ilo TOihi
FOR| =jlo TOjhi
FORk =1 TOn
FRI =1 7TOn
ali,j] :=a[i,j] + Get(b[i, K])
* Get(c[l,j])
END FOR
END FOR
END FOR
END FOR

Figure 5.16: An Imperative Program

locally created. For the sake of simplicity, the amount of data allowed to be pre-fetched is restricted to the size
of thethelocal data being created. Any constant multipleis satisfactory and will depend on the actual amount of
memory available in a particular implementation.

If [|Z€]] is the amount of local data per processor being created then the constraint on the amount of scalar
expansion by J.y is given by:
vl < 112€)),0r O 1, ..., 6, Ov (5.64)

To illustrate the effect of this constraint on the exploitation of invariance, consider the program in figure 5.16.
Array a hasbeen partitioned by rowsand columnsand therefore both theiteratorsi and j are partitioned. Assuming
asquare grid of p processors, both theranges of i and j are -%=. The invariant iterators are simply calcul ated:

VP
I =[,1" T =[i,K" {d} n {X} ={0} (5.65)
If M isdefined so as to maximise invariancy then
(M} ={J} O {J} ={i.i.k1} (5.66)
and ) )
J=[K" k=007 (5.67)
where the temporaries will be of the following size:
. 2 . 2
(1o dbl| = 7 [1Ucol| = 7 (5.68)
But
. 2 . 2
o]l > - el > (5.69)

Here scalar expansion with respect to J, and J; invalidatesthe scal ability constraint. Ideally M should be chosen

so that 5.64 holds at equality. If {M} is chosen to be a sub-set of {J,} O {J.} then the constraint 5.64 will
be satisfied, but will not hold at equality, and an opportunity to exploit invariance may be lost. The solution is
presented in the following section.

524 Strip-Mining

By breaking an iterator into two sub-iterators, which cover the same number of lattice points, it is possible to
explait invariancy which would otherwise be lost. The range of one of the iteratorsis chosen so that it is possible
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a;=for i in1,16 crossj in 1,16
returns array of
bli,j]
end for

Figure5.17: A Sisd Program

to scalar expand a temporary, with respect to the iterator, without breaking the scalability constraint. The act of
splitting an iterator into two or sub-iteratorsis known as strip-mining.

On gtrip-mining an iterator, the new loop bounds must be found and al references to the old iterator updated.
Initialy, strip-mining in a rectangular iteration space is described which is easily extended to the genera affine
case. To motivatetheformal analysisof strip-mining, consider the program in figure 5.17. This hasthe following
iteration space:

-1 0 -1
0 -1 [ -1
T [J. ] < | (5.70)
0 1 16
If thej loop is strip-mined to give two new iterators I I then the new polytopeis given by:
-1 0 O -1
0O -1 O i -1
0 0 -1 - -1
10 0|} 16 (571)
0 1 0 J 4
0 0 1 4

Instead of thej loop ranging from 1 to 16, the two new iterators iterate over a smaller range but cover the same
number of points4 x 4 = 16 In generd if an iterator is of the following form:

l<j<u (5.72)

then the corresponding strip-mined iterators will be:
1<j<x (5.73)
l<j< w +(1-1) (5.74)

where x isthe strip-mining ‘width’ which divides the range of j, in this example x = 4. After the strip-mining of
the j loop the u-occurrences must be updated. Before strip-mining the array reference to b was by[i, ], and after

strip-mining it will be b[i,4(I -1+ f] or b[i,4 I -4+ f] on expansion. In general each reference to j must be
replaced by ¢S (j 1)+ .

After strip-mining the j loop and updating the references to j, the program in figure 5.18 is given. Strip-mining
can now be expressed more formally. The local iteration space is of the general form:
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FRi =1 TO 16

FRj1=1TO4
FRj2=1TO4
ali, 4% 1-4+2] = Get (b [i,4*1- 4+ 2])
END FOR

END FOR

END FOR

Figure 5.18: An Imperative Program

-L =l
U J<|u (5.75)
£ £

If the iteration space is rectangular then L = U = |, & = 0 and the strip-mining transformation, 11, on an iterator,
i, has the following effect on the iteration space:

m:A"<b— AJ™ <b (5.76)

where A isa (2(m+ 1) x m) integer matrix, b* a (2(m+ 1) x 1) integer vector and J isthe new iterator vector. This
transformation can be expressed as

[ 2[5 <3 °

where L', U’, 1", U’ represent the new loop bounds and

, [Lr,l..j 0 I—r,j+1..m] r Sj
L=}% [0 1 Ojurm r=j+1 Ordi,..,m+1 (5.78)
[Lrc11j O Ligjerm] r>j+1
, [Ur,l..j 0 Ur,j+1..m] r Sj
U=¢ [O1j 1 Ojum r=j+1 Or01,..,m+1 (5.79)
[U-11j 0 Urgjarm r>j+1
i r<j
I = 1 r=j Ord1,...,m+1 (5.80)
Ir—l r >j
Uy r<j
= X "=l oo +1 5.81
U, = ui_QﬂHj_l =+l r e, M (5.81)
Ur-1 r>j+1
and
Jr r<j
y=¢ 1 "=l orog, . mel (5.82)
jor=j+1

Jr—l r >j +1
where the iterator | has been strip-mined to form two sub-iterators:

jriox] (5.83)
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a;=for i in1,16 cross j in 2*i+1, i+8
returns array of
bli,j]
end for

Figure 5.19: A Sisd Program

and x is the upper bound of the I iterator. To extend strip-mining for non-rectangular regi ons, and to adjust array
occurrences, all usages of | must be updated using the following relationship

j= U g (584)

To illustrate the effect of strip-mining in non-rectangular regions consider the program in figure 5.19.

The iteration space is:

-1 0 -1

2 -1 i -1
T [J. ] < | (5.85)
-1 1 8

which can be re-ordered to give:

-1 0 -1

0 -1 -1

1 0 i 16

T ]| B 520
2 -1 1

-1 1 8

If the strip-mining width is chosen to be 4 i.e. x = 4 then we have:

(5.87)

— =t .
IN

A RO, OOF O

P NOORrROOR
P Rk OOk OO0

After adjusting the array occurrences the program and replacing I by j1 and I by j2, the program in figure 5.20
is derived.

This example illustrates that strip-mining can be performed in generd iteration spaces. Strip-mining was intro-
duced to allow pre-fetching without violating the scalability constraint. An agorithm to perform pre-fetching
transformations so as to exploit invariancy using scalar expansion and strip-mining is given in appendix c. Itis
based upon the following observations.
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FORi = 1 TO 16
FRj1=1T04
FORj2=1T0?2

IF ((2%i-4*]1-]2) <= 5)
AND ((4%j1 +j2-1) <= 12)
THEN
ali, 441 4+2] := Get(b [i,4*]1-4+42] )
END | F
END FOR
END FOR
END FOR

Figure 5.20: An Imperative Program

1. the scalability constraint must be observed
2. aniterator which is expanded upon should redise invariancy in as many other u-occurrences as possible

3. the choice of iterators should be fair so that each u-occurrence is expanded uniformly so as to avoid one
u-occurrence dominating the non-local access.

4. scadar expansion should be with respect to the smallest iterator

5. strip-mine when further expansion by steps 1,2,3,4 is not possible. The choice of iterator should be based
onl234

These points can now be applied to the program of figure 5.16 which motivated this sub-section. After expanding
by iteratorsi and j, the iterators k and | are chosen to be strip-mined, where x is chosen such that it satisfies the
scalability constraint which finaly gives the program in figure 5.21.

This program minimises the non-local access for agiven data partition but it isunlikely that such a program would
be generated by hand and thus demonstrates the usefulness of the pre-fetching technique.

5.25 Affine Occurrences

Previously the case where one of the array sub-scripts makes reference to more than one iterator was ignored
i.e. a[i —j] The conditionswhereby an occurrence of thisform may be prefetched remain the same. However an
additiona result isrequired in order to exploit invariancy. To motivate the remainder of this section consider the
two programsin figures: 5.22 and 5.23.

In thefirst program rank (/1) = 2 = dim(J?) and thusthere is no opportunity to exploit invariance by prefetching.
The second program has rank(Up) = 2 < 3 =dim(J®) and thus there is an opportunity to exploit invariance by
prefetching. However the null space of U4y, in the second program, A (U1p), isj — i, which is not an iterator
but alinear combination of two iterators. Thusit isnot possibleto prefetch an occurrence of this nature without
incurring some scalar expansion. To demonstrate this point consider the program in figure 5.23 which is trans-
formed to give the loca program for the first of sixteen processors, as shown in figure 5.24, after partitioning
and pre-fetching. Though legal thistrandation has had no useful effect. However it can be seen that the accesses
made by tempb are “amost invariant” of the i iterator, with only one e ement changing per iteration. If the basis
of J is changed so that it is orthogonal to {1}, then the new program in figure 5.25 is formed. The change of
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FOR k1 =1 TOp1
FORI1 =1 TOp2
FORk2 =1 TO n/pl
FORi=ilo TOi hi
tenpb[i, k2] := Get(b[i, (k1-1)*(n/pl) + Kk2])
END FOR
END FOR
FORI12 =1TO n/p2
FORj =jlo TOjhi
tenpc[12,j] = CGet(c[(I1-1)*(n/p2)+2,j])
END FOR
END FOR
FORk2 =1 TO n/pl
FORI12 =1TO n/p2
FORi =ilo TOihi
FORj =jlo TOjhi
afi,j] :=ali,j]+ tenpb[i, k2]

*tenpc[l2, |]
END FOR
END FOR
END FOR
END FOR
END FOR
END FOR
Figure 5.21: An Imperative Program
a:= foriinl/16 cross | in1,16
returns array of b[i,i+]
end for
Figure 5.22: A Sisd Program
a:= foriinl/16cross j in1,16
returns array of
for kinl,16
returns val ue of sum
bl k,i+]
end for
end for

Figure 5.23: A Sisd Program
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FORk = 1 TO 16

FRi =1 TO4
FRj =1T04
tenpb[i+] := Get(b[k,i+])
END FOR

END FOR

FRi =1 TO4
FRj =1T04
afi,j] :=tenpb[i+]
END FOR

END FOR

END FOR

Figure 5.24: An Imperative Program

FORk = 1 TO 16

FORi = 1 TO4
FORj =i+l TOi+4
tempb[j] := Get(b[k,j])
END FOR

END FOR

FORi = 1 TO4
FORj =1T04
afi,j] :=tenpb[i+]
END FOR

END FOR

END FOR

Figure 5.25: An Imperative Program

basis transformation has been described in section 3.2.2 where it was used to reved invariancy of work in the
iteration space. It isused here to reved invariancy of access. Re-ordering the polytope associated with the local
imperative program will give the programin 5.26 which now can be finally be written asin figure 5.27. The size
of the temporary remains the same but there are less accesses to b. The strategy for pre-fetching general affine
occurrences is easily summarised:

1. Only consider pre-fetching if the u-occurrence matrix is rank deficient
2. Perform pre-fetching transformations so as to derive J
3. Change the basis of J

4. Perform pre-fetching transformations on the new i

Althoughthisisamore complex procedure than wasrequired f or orthogonal occurrences, it allowsthe exploitation
of invariancy of access, by pre-fetching, in the presence of genera affine occurrences.
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FOR k = 1 TO 16
FRi =1T04
FRj =2 TO8
IF (j>=i+1) AND (j <= i+4)
THEN
tempb[j] := Get(b[k,j])
END | F
END FOR
END FOR
FRi =1T04
FRj =1TO4
afi,j] :=tenpb[i+j]
END FOR
END FOR
END FOR

Figure 5.26: An Imperative Program

FORk = 1 TO 16
FORj =2 TO8
tempb[j] := Get(b[k,j])
END FOR
FRi =1 TO4
FRj =1T04
afi,j] :=tenpb[i+]
END FOR
END FOR
END FOR

Figure 5.27: An Imperative Program
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a:=foriinl,16 crossj in 1,16
returns array of

for kinl,16
returns val ue of sum
b[j, k]
end for
end for

Figure 5.28: A Sisd Program

5.3 Partitioning

The first section described how to map the elements of an array to the processors and how to determine the local
iteration space. A method of choosing the data partition based on alignment, was described in chapter 4. In this
section, a method based on volume of access is explored. The volume of access corresponds to the size of the
region of the data accessed rather than the number of times the data is accessed. |t assumes that a particular
alignment has been determined and it is the role of this strategy to determine which dimension the arrays are to
be partitioned across so as to minimise non-local access. Alignment can be considered as the action of orienting
arrays so as to maximise local access, whilst data partitioning, based on the volume of access, is the process of
partitioning so as to minimise non-local access.

This partitioning scheme is placed after the mapping and pre-fetching sections as it crucialy depends on pre-
fetching to remove redundant non-local accesses. Essentially it searches through several possible data partitions
and determines what amount of non-local data will be accessed for that partition, based on the assumption that
once a dataitem has been accessed it remains local aslong asit is required.

It ispossible to precisely define the amount of data required for a particular computation by examining the array
occurrences and determining how the shape of the local iteration space affects that access pattern.

The amount of data accessed by a program on processor z of an array v, when compiling for creation parallelism,
is the number of points described by 2/1,J; with respect to the local iteration space A,J;, < b,. The amount of
non-local access isthetota access minusthat whichislocal and it isthe purpose of data partitioningto minimise
this amount.

For example consider the Sisal program in figure 5.28. If it is decided to partition by the first dimension of the
aligned arrays a and b, then the volume of access to array b will be:

1Uodo|| = (16— 1+1) x (16 - 1+ 1) = 256 (5.88)

for the second processor, z = 2, of two processors, p = 2.

If, instead, it is decided to partition by the second dimension of the aligned arrays, the volume of access will be;
[|thpd2|| = (16-9+1) x (16 —-1+1) = 128 (5.89)

Thus a makes reference to 256 elements of b in the first case and 128 elements in the second case. The same
is true for the local program on the first processor, z = 1. Clearly for this program, partitioning by the second
index is preferable. Choosing the second index to partition along, has the effect of reducing the loca range of
the | iterator. As| appears in the u-occurrence matrix, the reduction in the range of j impliesthat there will be a
smaller volume of access to b. Thei iterator will have asmaller rangeif a is partitioned by thefirst index, but as
i does not occur in the u-occurrence matrix, it will not reduce the volume of access to b.
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a:=foriinlncrossj inln
returns array of
for kinl,n
returns val ue of sum
blk,i] * c[j,j]
end for
end for

Figure 5.29: A Sisd Program

Now Z; are the local €lements of an array v in processor z, so partitioning should minimise:
(41032 = 2| (5.90)

The amount of accessisin general afunction of the processor z, so the maximum value over the processors should
be minimised. This should be carried out for al the u-occurrences in that particular computation set. Therefore
partitioning should minimise:
Mo &
D> max((itd; - Z)) (5.91)
zZ0P

v=1 r=1

where |v| is the number of arrays in a computation set.

If there are N indices along which the data may be partitioned, then there are 2N — 1 possible data partitions
avalable. In genera the calculation of ||i;vJ;|| is non-trivid. It is usudly a function of the processor z, and
depends on the shape of the iteration lattice. To determine the best partition would take O(2N - 1 x p x |8, x m*®)
operations using Dyer’s dgorithm [DYER91]. This may be acceptable, if the m*® term can be reduced, as the
calculation only has to be performed once for the array to which the othersare aligned. However if the number of
processorsislarge, then even performing thisonce may betoo expensive. If thisisthe case then an approximating
algorithm (given in appendix c) is used. This algorithm is a heuristic approximation to 5.91 and is based upon
the following observations

1. If an iterator isreferenced by a u-occurrence, then parti tioning with respect to that iterator will reduce the
volume of access to that u-occurrence. Therefore partitioning the c-occurrence by all those iterators that
are common to the c-occurrence and any u-occurrence will be beneficial.

2. Thevolumeof accessisreated to therank of the u-occurrence matrices. The higher therank, thegreater the
number of different data points accessed. For example in the program in figure 5.29, there are n? accesses
to b but only n accesses to c. Therefore partitioning is only with respect to the highest rank occurrence
matrices as they will dominate the non-local access cost.

This heuristic works surprisingly well and may be used when the volume of access calculation is considered too
expensive.

To demonstrate the volume of access partitioning strategy, consider the program in figure 5.30 which has the
following array occurrences:
] a [ ] b [

ol o]
oNeoNe]
O O
oNeoNe]
= OO
oNeoNe]
ol e
= OO

| — |
[oNeN

] (5.92)
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a:=foriinlncrossj inln
returns array of
for kinln
returns array of
bli, k] *c[k,j]
end for
end for

Figure 5.30: A Sisd Program

There are three (22 — 1 = 3) possible partitions which are described using the notation devel oped in chapter 4.

o o

, “rows’

oNeoNe]
-

“columns’

o O o o o
L
T

7.

[eoNeNe) oNeoNe] oNeoNe]
&
1
[eoNeN
= O O = OO O O
o O O r o ol o]

o O [oNeN

w
3
1
(o NN
&
1
(o NN
= O O
OO
o O

] “blocks’

If the volume of access is calculated in each of these cases, assuming that py = p2 = \/p

L |o(Z)l| = & xn|Ue(Z)]| = nxn
2. [[Un(B)I| = nxn[Ue()]| = 2 xn

3. (U@l = 5 xn o)) = L5 xn
theloca access is

L (|28 = & xn||Z¢| =nx "
2. |78 =nx 2 78 = 1 xn

3. 128 = 2 x 1z =

Thus the total non-local access for each partitionis:

1L n(n-p)= o(n)

2.n(n-7p) = o(n)
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2 (1- 1y= (™
3. 205(1- L) = O(

Clearly in this example partitioning by “blocks’ is preferable. The same result would have been given by the
heuristic.

1. Partition by dl the indices common to the c-occurrence and aligned u-occurrences. Iterator i iscommon to
arrays a and b, iterator j is common to arrays a and c, so partitionby i and j.

2. Both u-occurrences are full rank and equally important

5.4 Summary

This chapter has developed a method to evenly distribute data across processors whilst maintaining alignment
for arrays of differing sizes. Having determined the local data, it is possibleto calculate the local iteration space
even in the presence of interleaved data and computation. Once data partitioning has taken place, prefetching
transformations to reduce non-local accesses have been presented which can be used in the presence of genera
iteration spaces, affine occurrences and interleaving. Finally adata partitioning method to reduce non-local access
has been developed. If it is assumed that pre-fetching transformations are used then a simple approximation
algorithm can be used to give efficient partitioning.



Chapter 6

Evaluation

This chapter applies the transformation techniques developed in chapters 3,4 and 5 to severa well known prob-
lems. In general the goas of load baancing, aignment and data partitioning may conflict so a heuristic is
developed, in the first section, where these goals are prioritised based upon some simple assumptions.

The programs have been selected so as to illustrate a range of program characteristics that are either common or
are perceived to be difficult for compilers. These include non-rectangular iteration spaces, non-orthogonal array
occurrences, array indirection, sequential computation and genera while loops.

The remaining eight sections describe the application of the heuristic to the selected Sisal programs. With the
aid of Mathematica [WOLF88], it is possible to determine the load imbaance and non-local access using the
machine modd and metrics given in chapter 2. A comparison with well known hand tuned methods is given
where appropriate.

In the conclusion it is noted that the automatically generated solutions are competitive with hand written imple-
mentations.

6.1 Heurigtic

Throughout this thesis the various issues involved in mapping array computation to distributed memory archi-
tectures have been treated separately but, when compiling a particular program, a strategy based on the relative
importance of each issue is required. Finding program parallelism so as to fully exploit machine paralelism
is the most important task. Creation parallelism is preferred over reduction parallelism as it does not require
synchronisation after completion of each local reduction and generaly requires |ess non-local access.

Load balancing, in this heuristic, is considered to be more i mportant than reducing non-local access as non-local
access may be masked by an implementation which hides latency in memory access [ROGE91]].

Alignment is required before data partitioning takes place and is a complementary process. Data partitioning will
be restricted in order to alow as even a distribution of data as is possible. Prefetching will take place subject to
the restriction that it does not violate the scalability constraint.

114
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Thus, the crucia decisions on how to partition the data and computation are based on the following relative
ordering:

Paralelism > Load Imbaance > Non-Local Access

A different ordering based on different architectural and i mplementation assumptions will necessarily lead to a
different heuristic from the one presented bel ow:

1. Determine the array computation of the program which dominates the computation cost. This implies
finding the largest polytope of computation within the program.

2. Within the specific polytope determine the iterators where computation may be performed in parallel

3. Ifany of the selected iteratorsare referenced by the creation occurrence matrix of that polytope, then restrict
the iterators of interest to them.

4. Determine the set of perfectly load balanced iterators and transform the program. If none are perfectly
balanced, then determine the most load ba anced one(s) and restrict later partitioning to just one of them.

5. Alignwith the C occurrence matrix if compiling for creation parallelism, otherwise arbitrarily choose a i/
occurrence containing a reference to the reduction iterator.

6. Perform volume of access analysis to determine which of the remaining iteratorsto partition upon.

7. Given the iterators upon which the data and computation is to be partitioned, determine the form of paral-
lelism and data partitioning for all the other aligned arrays.

8. Partition and map the data space and calculate the local iteration space for each polytope and processor.

9. Perform prefetching on each local program as appropriate.

These transformations within this scheme can be summarised as follows

Py Ps Pe
P P P

P Py Py eyl | | ] R (61)
Py Ps Pe

Po represents any Sisal programand [P, ... , Ps] isan array of imperative programs, onefor each processor. 1o and
T; represent the trandation of Sisal to a computation set representation, and the trandation of the computation
sets into the imperative language respectively. 1 is any load balancing transformation, 7% is the alignment
transformation and is program wide, { is the mapping of data and computation to give p loca programs and it
may includetheinterleaving transformation. Finaly 7g is the prefetching transformation performed on each local
program.

While one particular array computation is chosen as the basis for data partitioning decisions, its effect, viaalign-
ment, is program wide. Within this thesis the global effect of such transformations has not been studied. It is
precisely for this reason that the above heuristic has been devised. An improved heuristic would consider the
global impact of each transformation.
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c:=for i inlncrossjinin
returns array of
for kinl,n
returns val ue of sum
afi, kl*b[k,j]
end for
end for

Figure 6.1: Matrix Multiplication

6.2 Matrix Multiplication

Matrix multiplicationis a very well known program and a compiler must perform at |east reasonably well upon
this problem to be credible. The program, figure 6.1, has just one array computation, the calculation of array c.
There are three parallel iterators defining a rectangular iteration space where each of the three two-dimensiona
arrays makes reference to two iterators.

Applying the heuristic:

All three iterators in the program are paralel and are suitable candidates for partitioning of data and iteration
space.

Any combination of the three iterators can partition the iteration space to give perfect |oad balance.

Creation paralelismis preferred, so the paralel iteratorsto consider are restricted to i and j.

Aligning for creation paralelism leaves the arrays in their present alignment.

To minimise the volume of access, partitioning should be with respect to both i and j.

Arrays c,b and a are partitioned by i and j in afolded manner. Asi and j are perfectly load balanced no inter-
leaving transformations are required. The local iteration spaces are determined.

Access to arrays a and b may be prefetched to exploit invariancy such that there are no multiple accesses to the
same item of non-local data.

By applying the necessary program transformations, the generic program for a processor z = (z, z) isderived as
shown in figure 6.2 whereilo = (z; — 1) x ﬁ +1,ihi =z x ﬁ,jlo =(z-1 x % +1, jhi=2 x %

If it is assumed that the processors are arranged in the form of a square mesh, i.e py = p2 = /p, then as the

non-local access isthe same across al the processors, the maximum valueis 23—%(1 - viﬁ)' Load imbalance = 0

and thus the maximum amount of computation in any one processor is 2% In this example the loca boundson
the first and second indices of arrays A, B, C are equal to the ranges of the iteratorsi and j respectively.

This program gives the best known performance for distributed memory machines. It isequivaent to the blocking
technique used by numerical analysts [GOLU89]. In future examples, in order to aid readability, the declaration
and initialisation of variables will not be shown, nor will the calculation of the bounds of the loca iterators.
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c[(cllo..clhi),(c2lo..c2hi)]:real
a[ (all o..alhi), (a2l o..a2hi)]:real
b[ (b1l o..blhi), (b2l o..b2hi)]:real
tenpa[ (tenpal o..tenpahi)]:real
t enpb[ (t enpbl 0. . t enpbhi )] : real

FORk =1TOn
FORi =ilo TOihi
tenmpa[i] := Get (a[i,k])
END FOR

FCRj =jlo TOjhi
tempb[j] := Get (b[k,j])
END FOR
FORi =ilo TOihi
FORj =jlo TOjhi
cfi,j] :=c[i,j] + tenpal[i]*tenpb[j]
END FOR
END FOR
END FOR

Figure 6.2: An Imperative Program

c:=for i inlncrossjinin
returns array of
for kinj,n
returns val ue of sum
afi,k]*b[k,j]
end for
end for

Figure 6.3; Square x Triangle

6.3 Square x Triangle

Thisproblemisvery similar to matrix multiplicationdescribed inthe previous section 6.2, except that thereduction
iterator, k, has a variable lower bound so the iteration space resembles a “wedge’. This program, figure 6.3,
performs roughly half the amount of work of full matrix multiplication and the compiler’s decisions should
reflect this.

Applying the heuristic:

All three iterators in the program are paralel and are suitable candidates for partitioning of data and iteration
space.

Only iterator i can partition the iteration space to give perfect load balance.

Iterator i occursin the creation matrix and therefore partitioningis for creation parallelism.

Aligning for creation paralelism leaves the arrays in their present alignment.

As only iterator i isto be considered, there is no choice as to how the data space should be partitioned.

Arrays ¢, b and a are partitioned by i in afolded manner. Asi is perfectly load balanced no interleaving transfor-
mations are required. The local iteration spaces are determined.
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FORk =1TOn
FORi =ilo TOihi
tempa[i] :=Get (a[i,k])
END FOR
FORj =1 TOk
tenpb[j] := CGet (b[k,j])
END FOR
FORi =ilo TOihi
FORj =1 TOk
c[i,j] :=c[i,j] + tenpa[i]*tenmpb[j]
END FOR
END FOR
END FOR

Figure 6.4: An Imperative Program

Both arrays a and b may be prefetched to exploit invariancy such that there are no redundant non-local accesses.

This gives the generic program in figure 6.4 for a processor z

The maximum non-local access occursinthefirst processor z = 1. Herethenon-local accessis 2”—;(p2—1)+2—'},(p—1),
load imbalance = 0 and therefore the maximum amount of computation in any one processor is ﬂ';ll)

Whileload balanceisided, thereis more non-local access thanif a“blocking” method were employed. However
in that case load balancing would suffer and thus a tradeoff between load balancing and minimising non-local
access may be seen. The method suggested by [GOLU89], that of interleaved columns, has a dightly reduced
maximum non-local access of zn_:z(p -1+ Zﬂp(p — 1) but has much worse load imbalance, nz“’—;l), and thus the

maximum computation to be performed by any one processor would be "0 + 2@,

6.4 Symmetric Matrix Multiplication

This problem, as shown in figure 6.5, like the previous example, has a “wedge’ like iteration space but thisis
dueto theranges of i and j. The amount of work performed is the same as the previous program, shown in figure
6.3. In Sisal all dements of an array must be defined and as the restricted form used in thisthesisrestricts arrays
to being rectangular, the upper triangular portion of the array must be set to zero.

Applying the heuristic :

There are two polytopes of computation in this program corresponding to the two branches of the if condition.
The first branch has a larger polytope than the second and therefore transformation criteria should be based on
this polytope.

All three iterators of this polytope are paralld and are suitable candidates for partitioning of data and iteration
space.

Only iterator k can partition the iteration space to give perfect load balance but it is a reduction iterator. Either
of the remaining iteratorsi or j can be selected. As neither of them is perfectly load balanced, only one will be
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c:=for i inlncrossjinin
returns array of
ifi>=j
t hen
for kinl,n
returns val ue of sum
ali,k]*a[j, K]
end for
el se
0. 0d0
end if
end for

Figure 6.5; Symmetric Matrix Multiplication

selected for partitioning. Thisis based on the assumption that it is better to partition on one unbalanced iterator
than to partition by two or more unbalanced iterators.

Both iteratorsi and j occur in the creation matrix and thus partitioning is for creation parallelism.

Aligning for creation paralelism leaves the arrays in thei r present orientation.

As only one of theiteratorsi and j is to be considered the data space should be partitioned with respect to the
iterator i in order to minimise the volume of access.

Arrays a and c are partitioned by i in an interleaved manner as i is not perfectly load balanced.

Both occurrences of array a may be prefetched to exploit invariancy such that there are no redundant non-local
accesses.

This gives the generic program shown in figure 6.6 for a processor z

The maximum amount of computation takes place in the last processor and is '%: +n? whilst the average is '%: + '%:

thus the imbalance is n?(1 — ). The maximum non-local access isn?(1 — %). Although this program is related
to the rank-k update implemented in the BLAS3 kernels [DONG90], there are no well-known implementations
of this program. If a blocking method were used the maximum non-local access would be reduced to that of
matrix multiplication 6.2 but the maximum load imbal ance would be O(”—s). If interleaved columns as suggested
by [GOLU89] for the previous example, 6.3, is employed, the load imbalance would remain the same but the
non-local access would increase. Therefore the implementation chosen is a reasonable one.

6.5 LivermorelLoop 6

Unlike the previous three programs which are basic linear a gebra “kernels’, the following is a well known
benchmark based upon segments of programs commonly used at Lawrence Livermore Nationa Laboratories.

This program, figure 6.7, has several interesting features. It has an outer sequentid iterative loop, two array
creations, a non-orthogonal array access Bfj,j — oldi] and different sized arrays.

The update of WOuUt could be rewritten as
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FORk =1TOn
FOR i =ilo TOihi
tempalli] := CGet (a[i,Kk])
END FOR
FORj =1T0On
tempa2[j] := Cet (a[##,k])
END FOR
FORi =ilo TOihi
FORj =1,n
IF (j<=H#i)
THEN
cfi,jl t=c[i,j] +
tenpalli]*tempa2[j]
ELSE
c[i,j] :=0
END | F
END FOR
END FOR
END FOR

Figure 6.6: An Imperative Program
Wout : =ol d Wout[i:Wi]]

However, this construct has not been used as it is not symmetric with respect to different dimensions of an array
i.e. itisrow biased. The cost of updating the WOut array is not considered, as no floating point operations
are performed and, by using a sensible updating implementation based upon Cann’s work [CANNB89A], this
assignment would not be evaluated.

Applying the heuristic:

The biggest polytope of computation is the first branch of the first conditional.

Within this polytope the only parallel iterator to partition the iteration and data space isj.

Asj istheonly iterator to be considered, it should be interleaved as it is not perfectly load balanced.

Iterator j occurs in the creation matrix thus partitioning should be for creation parallelism.

Arrays oldW, WOut, Win are trivially aligned with W as they are al one dimensiond. The first dimension of Bis
aligned with that of W.

After interleaved partitioning of iterator j, prefetching reduces the number of non-local accesses to oldW[oldi].
Applying the necessary transformations, gives the program in figure 6.8.

The maximum load imbalance occurs in the last processor and is 3. This gives the maximum amount of com-

. . 2 . .
putation performed in any one processor to be g—p - 2£p + 3. The maximum non-local access is small, n— g and,
again, occurs in the last processor.

There are no well known hand writtenimplementations of this program for DMAsas it isintended as a benchmark
for computer systems. However thisimplementation will be competitive with most implementations. A possible
improvement isto find abetter |oad bal ancing mapping than interleaving, such as the reflection mapping described
in [GERAB89A]. Thiswould reduce the load imbalance dightly. It is unlikely that the amount of non-local access
can be significantly reduced due to the dependency W(j] := oldW/[oldi]. Each W[j] will have to make reference to
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function main(n:integer; B:TwoDimWn:OneDim returns OneDim
for initial
i =1
W:= Wn;
Wout: = Wn;
while i < n repeat
i c=oldi +1;
W:=for j in1nreturns array of
if (j>oldi) then
old Wj] +B[j, j -oldi] * old Wold i]
else old Wj]
end if
end for;
Wut:=for j inl,n
returns array of
if (j=oldi)
then Wj]
el se ol d Wout[j]
end if
end for;
returns value of Wout
end for
end function

Figure6.7: Livermore Loop 6

FORITERi =1 TOn
tempw : = Get (ol dW##i])
FORj =jlo TOjhi
IF (i <=#j)
THEN
Wil :=Wj] + Get(B[j,#-i])*tenpw
ELSE
Wil = Get(oldWj])
END | F
END FOR
FORj =jlo TOjhi
IF (#=i)
THEN
Wout[j] :
ELSE
Wt [j] :
END | F
END FOR
END FOR

Get (WjT)

Get (ol dWOut[j])

Figure 6.8: An Imperative Program
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function main(n:integer; xIn:OneDim bln:OneDim aln: TwoDim
returns array[integer])

for initial

i =1

X = xln;

b :=bin;
a.=aln;

r epeat

i :=oldi +1,
x:=forjinln

returns array of

if j=i

then (b[i]- for kinl,i-1
returns val ue of sum
(a[i,k]* old x[k])
end for) /a[i,i]

el se
old x[j]
end if
end for;
until (i >n)
returns val ue of x
end for

end function
Figure 6.9: Triangular Back Substitution

the same element, oldW/[oldi], and as W must be distributed across the processors, it is not possibl e to have W[j]
and oldW/[oldi] in the same processor for al values of j.

6.6 Triangular Back Substitution

Thisisawel known linear algebra program. It has, in the past, been a bottle-neck to paralld implementations
of linear system solvers [HEAT88]. This is due to the relatively high communication overhead.

This program, figure 6.9, again has an outer iterative loop with the only parallelism avail able being with respect
to the k iterator. Although j belongsto afor loop, computation only takes place when i = j. Asi is a sequential
iterator, thisimplies that any work associated with j will also be sequential. Thisis discovered when examining
the polytopein theload balancing analysis phase. Unfortunately iterator k formsatriangular iteration spaceand is
areduction iterator so thisisadifficult problem to implement efficiently, and should be a good test of a compiler.

Applying the heuristic:

The polytope of interest is the first branch of theif condition.

Only the k iterator is parallel, partitioning with respect to j as described above,implies purely sequential compu-
tation.

Ask isthe only candidate iterator for partitioning, it should be interleaved as it is not perfectly |oad balanced.
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FORITERi =1 TOn

tenpa := Get(a[i,##i])
tempb := Get(b[i])
FORj =1 TOn
IF (#=i)
THEN
FOR k = klo TO khi
IF (#k <=i-1)
THEN
psunfz] := psuniz] +a[i,k]*ol dx[K]
ELSE
psunfz]:=0
END | F
END FOR
IF (# >=xlo) AND (# <= xhi)
THEN
FORy =1 TOp
sum: = sum+ Get (psuniy])
END FOR
X[j] := (tempb -sun)/tenpa
END | F
Sync
ELSE
X[j] 1= Get(oldx[j])
END | F
Sync
END FOR
END FOR

Figure 6.10: An Imperative Program

The iterator k is not in the creation matrix so partitioning should be for reduction parallelism.

Array aisarbitrarily selected to aign with for reduction parallelism. Arrays x, oldx and b are aligned with a on
the second dimension.

The datais partitioned in an interleaved manner on a one dimensional processor grid.

The maximum time taken by one processor executing the trandated program, figure 6.10, occurs in the last
processor and is L (np + 5—2” - 21 The parenthetica terms are the deviations from linear speedup. The third
and fourth terms are due to load imbal ance, whilst the dominant overhead term, np, is due to the implementation
of summing the partia sums involved in the reduction paralelism. As the number of processors grows large,
relative to the size of the problem, this term will eventually dominate. This reduction term may be reduced to
nlogp if abinary spanning tree was embedded in a higher dimensional processor grid, with each node processor
adding its result to the previous accumul ations before passing it on. Such implementation details are beyond the
scope of thisthesis.

The maximum amount of non-local access occursin thefirst processor and isnp+n. Againthenp termisdueto
the implementation of the accumulation of partial sums.

The program derived is similar to the fan-in algorithm given in [HEAT88]. In this paper improvements to this
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define main
global Sgrt(x: double_real returns double real)

function main(n :integer; A TwoDimL: TwoDim returns TwoDi m
for initial
col :=1,
diag := double real (1.0);
while (col <=n)
r epeat
col :=old col +1;
diag :=Sqrt (Al old col,old col]- for kin1,0ld col-1
returns val ue of sum
(old L[old col,k]*old L[old col,k])
end for);
L:=foriinlncrossjiniln
returns array of
if (j =oldcol) &(i>)
t hen
(Ali,j]- for kin1,j-1
returns val ue of sum
(old L[i,k]* old L[j,k])
end for) / diag
elseif (j =oldcol) & (iF)
then di ag
else old L[i,j]]
end if
end if
end for;
returns value of L
end for
end function

Figure 6.11: Cholesky Factorisation
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scheme are based upon improving performance by carefully overlapping communication and computation and
vectorisation of messages. Astheamount of non-local access isof the same order of magnitude asthe computation
such modifications become increasingly important. However, athough these techniques are beyond the scope of

thisthesis, the form presented here can be transformed into their efficient cyclic form.

6.7 Cholesky Factorisation

Cholesky factorisation is a well known linear algebra program which factorises a symmetric positive definite
matrix into two triangular matrices i.e. A — LLT. The program, figure 6.11, is interesting in that it has four
iterators, the outermost of which is a sequential loop. There are two major computations, one of which involves

the calculation of a scalar. Both reduction and creation parallelism are present.

Applying the heuristic:
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The biggest polytopeis the first branch of the if condition when defining L.

Only partitioning with respect to i or k will give parallel execution.

Although iterator Kk is better load baanced than i, it is a reduction iterator and therefore i is chosen. Asi is not
perfectly load balanced, it should be interleaved.

Iterator i belongsto the creation occurrence matrix and therefore partitioning is for creation parallelism.
Aligningwith respect to L does not change therelative alignment of the arrays. Although the allocation of scalars
has been previously addressed, the method employed by the AL compiler [TSEN89] amongst others, isused. As
the scalar diag is afunction of the outer foriter loop, its dlocation is a function of thisiterator.

As there is only one iterator with which to partition, no useful analysis is available from looking at the volume
of access.

Asi is not perfectly load balanced, partitioningis by interleaved rows.

There is much opportunity to prefetch the data.

The maximum amount of work X0®2029) takes place in the final processor when executing the translated
program shown in figure 6.12. The average work is 2209 giving an overhead figure of %’;p"m. The
maximum non-local access is again in the last processor % + 2 - nee),

The maximum amount of work for an alternative columninterleaved implementati on as suggested by [ GERA89A]
is 112p(12 +9n+ 2n? + 9p + 3np — p?) and therefore has a reduced overhead of %9 with the same maximum non-

local access. Although both methods share the same highest order term 2—;, as the number of processors, p, tends
towards n, then the %9 term will begin to dominate. Thus while the implementation given by the transformation
scheme is reasonable, there is a better implementation available as far as load imbalance is concerned. If the
avoidance of reduction parallelism in the heuristic were dropped, then an interleaved column implementation
would have resulted. However, the amount of non-local access is an order of magnitude greater in the column
scheme. This would be difficult to mask in a latency tolerant implementation as the amount of communication
is of the same order of magnitude O(”—:) as computation. Therefore, overal, the implementation given by the
transformation scheme is acceptable.

6.8 LivermorelLoop 14

Thisis another program, figure 6.13, used extensively in benchmarking computer systems. The most interesting
characteristic isthat it containsindirection whereby the data dependencies are run-time dependent. There are dso
two distinct phases, one highly pardle the second almost completely sequential, and is therefore an interesting
task for a compiler.

Applying the heuristic:

The largest polytopeisthefirst for loop.

There isonly oneiterator, i, to partition the iteration and data space.

The only candidate iterator, i, is perfectly load balanced.

All the array computations in this polytope are of equal importance but only the occurrence of array j can be
expressed in matrix form and is therefore chosen to align with respect to. The iterator i occurs in the array oc-
currence of j and thus alignment is for creation parallelism. It isimpossible to determine the relative aignment
of the remaining arrays as they have indirection occurrences. By default they are aligned on the first dimension
of j without any aignment transformations.

Iterator i can only be partitioned in one dimension and does not require interleaving as it is perfectly load bal-
anced.
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FORITER col =1 TOn
I F (col>=ilo) AND (col <=ihi)
THEN
FORk =1 TOcol- 1
tenmpsl : = tenpsl +
Get (ol dL[ ##col , k] ) *Get (ol dL[ ##col , k])
END FOR
diag := sqrt(Get(Al##col,col])-tenpsl)
END | F
FOR | =col TO col
FORk =1T0j-1
templ 1[j, k] := Get (L[ #4),K])
END FOR
END FOR
FORi =ilo TOihi
FORk =1 TOcol -1
templ 12[i,Kk] := Get (L[ ##i,Kk])
END FOR
END FOR
FORi =ilo TOihi
FORj =1 TOn
I'F (j=col) AND (#i>)
THEN
FOR k=1T0j-1
tenps2 :=tenpl 1[j, k] *tenpl 2[i, k] +tenps2
END FOR
L[i,j] := (CGet(Ali,]j]-tenps2)/Cet(diag)
ELSE IF (j=col) AND (#i =]j)
THEN L[i,j] := Get(diag)
ELSE L[i,j] := Get(oldL[i,j])
END | F
END | F
END FOR
END FOR
END FOR

Figure 6.12: An Imperative Program
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function main(n:integer; FLX double; DEXIn, EXlIn,
GRD,RHIn : OneDim
returns OneDim OneDi m I nt OneDi m | nt OneDi m
OneDi m OneDi m OneDi m OneDi m OneDi m)
et DEXL, EX1, IRL, I X1, RX1, VX1, XI 1, XX1 : =
for i inln
j :=Trunc(GRO]);
EX:= EXIn[j];
DEX := DEXIn[j];
Xl : = Doubl e_Real (j);
VX := EX- DEX * Xl;
k := Trunc(VX + FLX);
IR := MOD2N(k, 512) + 1;
RX := VX + FLX - Doubl e_Real (k);
XX 1= VX + FLX - Doubl e_Real (k)
+ Doubl e_Real (IR
returns array of DEX array of EX
array of IR array of j
array of RX array of VX
array of XI array of XX
end for
in DEXL, EX1, IRL, I X1, RX1, VX1, XI 1, XX1,
for initial
i :=0; RH:=RHn
while i < n repeat
i c=oldi +1;
RH:=for j in1n
returns array of
if (i5)) then
old RHIRL[i]] - RX1[i] + 1.0dO
elseif (i+l5)
then old RHIRL[i] + 1] + RX1[i]
else old RHj]
end if
end for
returns val ue of RH
end for
end | et
end function %oopld

Figure 6.13: Livermore Loop 14
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Prefetching of dataisimpossible due to the presence of indirection.

Asthereisindirectioninthearray occurrences, it isimpossibleto determine theamount of non-local access of any
processor since it will be data dependent. Thefirst part of the program, figure 6.14, is perfectly load balanced but
thefor initial loop hasto be evaluated serially. Thisgivesan overall paralle time figure of % +4(n-1)-2(p-1)

The serial term, 4n — 4, could be reduced if neighbouring elements were placed on separate processors such that
the two assignmentsi = j and i + 1 = j may be evaluated in parald. Interleaving the j iterator would give this
property and would reduce the parallel time to Qp” +2(n-1). The effect this would have upon non-local access
will be unknown but, in generdl, interleaving increases its value. As p tends to n the folded value of non-local
access tends towards the interleaved value. Unfortunately, there are no well known hand implementations of this
program with which it may be compared.

6.9 Jacobi Iteration

Solving partid differential equations using a 5-point grid is a well-known application. Various agorithms are
known including SOR, red-black and Jacobi iteration, the last of which is presented here. The most interesting
characteristic of thisprogram, figure 6.15, isthe outer whileloop where the exact number of iterationsisrun-time
dependent.

Applying the heuristic:

The polytopes creating array A and eps are equd. The polytope creating A is chosen arbitrarily.

There are two pardld iterators, i and j, with which to partition the data and iteration space.

Both iterators are perfectly load balanced.

Both iterators occur in the creation matrix of A and, thus, partitioning is for creation parallelism.

All arrays remain digned as they are. The scalar may be arbitrarily alocated as there is no iteration space en-
closingit.

Partitioning to minimise the volume of access suggests that the program should be partitioned by both iterators.
Hence array A is partitioned by rows and columns.

There is no opportunity for prefetching

The program shown in figure 6.15 is perfectly load balanced and has a paralld time of E x (77”2 +p) where Eisthe
number of times the program must iterate before it converges. Thisis unknown at compiletime. The only non-
scalable component of thisimplementation is the p term due, once again, to the implementation of accumulation

of partiad sums. The maximum non-local access of any one processor is E x % +p+1

The only hand-written implementations with which to improve on this, use an approach where the data space is
“tiled” with hexagonals rather than squares i.e. non-orthogonal data partitioning. In [REED87] it is shown that
the non-local access may be reduced to E x % +p + 3. However due to the boundary conditions there will be
adlight increase in load imbalance and thus it may be argued that the tiling by rectangles implemented here, is
preferable.
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FORi = ilo TG hi
i[i] := Trunc(GRO{i])
IXL[i]: =[]
EX[i] = BXIn[j[i]]
EX1[i] := EXi]
DEX[i] :=DEXIn[j[i]]
DEX1[i] := DEX[i]
XI[i] := Double Real (j[i])
X1[0]:= X[i]
VXIi] r=BXi] - DEXi] * XI[i]
VXL[i]: =V ]

K[i] := Trunc(VX[i] + FLX[i])
IR(i] := MOD2N(K[i],512) +1

IRI] := IR]
R{i] := VX[i]+FLX[i]- Doubl e_Real (K[i])
RX1[i]:= RXi]

XXi] := VX[i]+FLX[i]-Doubl e_Real (k[i])
+Doubl e_Real (IR[i])
XXL[P] = XA[i]
END FOR
FORITERi =0 TO n-1
RHi] := Get(RHIN[i])
tenpRHL: = Get (ol dRH IRL[i]])
tempRH2: = Get (ol dRH I R1[i] +1])
tenpRX11: = Get (RX1[i])
tenpRX12: = Get (RX1[i])
FORj = jlo TOjhi
IF(i=])
THEN
RHj]:=tempRHL - tenpRX11l + 1.0
ELSE IF (i+15))
THEN RHj] := tenpRH2 + tenpRX11
ELSE RHj]:=Cet(old RHj])
END | F
END | F
END FOR
END FOR

Figure 6.14: An Imperative Program
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%Jacobi iteration
%
function main(n:integer;tol: double real;init_eps;
Aln: TwoDim returns TwoDi )
for initial
A:=An;
eps :=init_eps
while eps > tol repeat
A:=for i inlncross jinln
returns array of
if (i>=2)&(]>=2)&(i<=n-1)&(j<=n-1)
then old Ali-1,j] +old Ali+l,j]
+oldA[i,j-1] +old Ali,]+1]
+old Ali,j]
else old Ali,j]
end if
end for;
eps:=for i inl,ncrossj iniln
returns val ue of sum
abs(Ali,j]- old Ali,j])
end for;
returns value of A
end for
end function

Figure 6.15: Jacobi Iteration
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IF(z =1)
THEN

eps : = 10000. 0d0
END | F
VWH LE ( CGet(eps) > tol)

FORi =ilo TOi hi

FORj =jlo TOjhi

IF (i>2) AND(j>=2) AND (i<=n-1) AND (j<=n-1)

THEN
Ali,j] :=Get(oldA[i-1,j]) + Get(oldA[i+1,j])
+ Get (ol dA[i,j-1])
+ Cet (ol dA[i,j+1]) + CGet(oldAi,j])
ELSE
AT, j] =Cet (ol dA[T,]])
END | F
END FOR
END FOR
FORi =ilo TOihi
FORj =jlo TOjhi
psunfz] := psuniz] +abs(Ali,j]- ol dAi,j])
END FOR
END FOR
I F (z=1)
THEN
FORy =1 TOp
sum: = sum+ Get (psuniy])
END FOR
eps :=sum
END | F
Sync
END WH LE

Figure 6.16: An Imperative Program
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6.10 Summary

The eight examples have demonstrated that the transformation scheme based upon the heuristic developed in
the first section produces an efficient implementation for DMAs. Overal the test programs implemented in this
chapter have justified the use of compiler directed, program transformations to implement array computation on
distributed memory architectures.



Chapter 7

Conclusion

This thesis has presented a methodical approach to compiling array computation to distributed memory architec-
ture using program transformations. A summary of the thesis and its contributionsis made in the first part of this
chapter. Following this summary, a critical review of the overall approach is given in section 2. Findly, in the
last section, some recommendations for further work are described.

7.1 Summary

The introductory chapter described the need for research into compiling for DMAs. Such architectures have the
promiseof ddlivering great performance but are restricted by the primitive state of compiler technology. Until very
recently message passing di stri buted memory machines and shared memory oneswere seen as being very different
architectures requiring different compilation strategies. This has certainly been reinforced by the languages used
to program them. By considering distributed memory as forming one address space, many of the compilation
techniques devel oped for shared memory machines are available. Most present day compilers for DMAS require
significant help from the programmer if they are to produce efficient implementations. The two major overheads
in compiling for DMAs were identified as being load imbalance and communication or non-local access.

Chapter 2 described the overall compilation process from Sisal to an imperative language via an intermediate
computation set representation. Essentially the process can be described as a sequence of transformations. De-
scribing Sisal in a computation set representation allows the investigation of program transformations to reduce
load imbalance and non-local access.

Chapter 3 makes the first mgjor contribution of this thesis, in that it describes load balance as an invariancy
condition of theiteration space. Further transformations are described which can convert a sub-class of programs
into aload balanced form. As a consequence of these transformations, general loop interchange for nested loop
within a polytope representation is devel oped.

By the careful dignment of arraysit is possible to reduce the amount of non-local access after data partitioning.
The main contribution of Chapter 4 is that it describes alignment in terms of hyperplanes. With this insight,
generaised alignment transformations are derived which extend previousresultsin thisarea.

Both the load balancing and alignment transformations of chapters 3 and 4 take place before the data and compu-
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tation is mapped to the processor space. The first contributi on of chapter 5isthat it provides a systematic method
of mapping data and computation to processors even in the presence of interleaving. The second contribution
is the presentation of program transformations that allow general pre-fetching of non-local data on a distributed
memory machine. This relies on the ability to perform loop interchange and strip-mining in the presence of
genera loops and interleaving.

Chapters 3,4, and 5 al describe methods to partition the computation and data space depending on whether load
imbalance or non-loca access is to be minimised. In chapter 6, a smple heuristic was used to determine the
relative importance of each of these transformations, where it was shown that the implementations derived by
program transformations were comparable to hand coded techniques.

The overall contribution of this thesis is that a compilation strategy has been devised such that program trans-
formations can be used in an ordered manner for specific reasons. In [SARK89] Sarkar states that placing the
partitioning stage within the context of a general optimising compiler is a “difficult task”. In thisthesis, it has
been shown that it is possible for a restricted class of Sisal on DMAs.

7.2 Critique

One of the mgjor criticisms of thiswork is that it does not address the trade-off in overhead cost between |oad-
imbalance and non-local access. Instead, each problem is solved in isolation, leaving the reconciliation to a
heurigtic. This can be justified, somewhat, in that the relative cost will depend on the target machine. However
given the relative cost of communication and computation, the compiler should be able to detect the relative
importance of each. Recent work by the author suggests that it will be possible to determine whether load
balancing or non-loca access is the dominant cost for a particular part of a program.

DMAs have been considered to be atwo-level memory hierarchy, local and non-local. Thisobservationislargely
based onthefact that non-local access hasalarge start-up time. One consequence of thisoverhead isthat multiple
non-local accesses should be grouped so that only one start-up cost is incurred. The reason this issue was not
addressed is that it forms a large proportion of Rogers' thesis [ROGE91], where the grouping of accesses was
called message vectorisation. It is relatively simple to incorporate message vectorisation into the pre-fetching
transformations described in chapter 5.

Whileload imbalance and communi cation overhead have been considered, the cost of synchronisationand hiding
memory latency have been ignored. Again [ROGE91] has addressed thisarea. It would be useful to incorporate
latency hiding transformationsinto the pre-fetching scheme.

Most of the analysis has been for the mapping of paralel array computation associated with Sisal’s for loop
construct. This conservative approach isinappropriate if there are no for loopsavailable. Do-across paralldism
[L190], which allows part of a loop iteration to be executed in parallel, may be extracted from foriter loops.
This approach would require an efficient synchronisation implementation , so the present barrier synchronisation
would have to be replaced.

On a more technica level, the dignment propagation algorithm in chapter 4 is too restrictive. Only certain
alignment transformations can be propagated through the program. Recent work by the author suggests that this
restriction can soon be removed.

One criticism of any program transformation approach to effi cient implementation, is that it may work on small
examples but will fail when applied to large, “real” programs. The major impediment, at present, is determining
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the relative importance of each section of a program. In chapter 6, the biggest polytope was considered the
portion of the program to focus attention upon. However in larger programs, there may be many sections of equal
importance, where data alignment may be a trade-off between the various sections. In genera the approach of
this thesis has been to focus upon local analysis. Although thisis less than ideal, the amount of work needed
to understand the behaviour of small problems, justifies this restricted approach before program analysis “in the
large’ is considered..

7.3 Further Work

The obviousnext step isto implement the transformation scheme on aDMA so asto empiricaly testit. Inevitably
other machine characteristics not considered in thisthesi swill become significant, for instance, in those machines
that have a page-based cache system, the ‘interference’ by the hardware will have to be considered.

Some distributed memory architectures such as the EDSJHAYW90] and K SR have aglobal address space. Those
machines lacking such an addressing scheme, will have to have it simulated in the code produced. Either arun-
time software layer will have to be introduced or message passing primitives will have to be inserted at compile
time. The latter method has been successfully implemented by [CALL88], [TSEN89] and [ROGE9]].

Once an implementation is available, then a greater sub-set of Sisal can be considered. Adding the dynamic fea-
tures of Sisal such as recursion and variable sized arrays, will have asignificant impact upon the implementation.
Dynamic array allocation will have to be performed such that datais evenly distributed across the machine. An
interleaved data allocation method would ensure even distribution, but will have an adverse affect upon locality
and thus increase the communication overhead. Recursion could be handled in a strictly von Neumann manner
such asisemployed by the OSc [CANNB89A] Sisal compiler for the Sequent Balance. However thereispotentialy
alarge amount of parallelism available in the independent evaluation of recursive functions. Thisleads on to a
more general point of going beyond data parallelism. Certainly only a small proportion of the available program
paralelism is exploited at present. As mentioned earlier in this section, do-across parallelism may be explored
but it is not obvious how pardlelism available in an expression or function evaluation may be integrated into
the SPMD framework. One approach might be to relax the static, one process to one processor, implementation
and allow the spawning of parallel processes that may migrate around the system. The problem then becomes
how to keep data and process together as the compiler no longer has control over data and process alocation.
The Flagship project [WATS88] hasinvestigated such a dynamic, medium-grain, graph-reduction approach to the
execution of functional programs on a distributed memory machine. It would be interesting to see if any benefit
could be gained by the integration of these two approaches.

Although Sisal has provided auseful framework to investigate array computation, itisnot awidely used language.
If the ideas in this thesis are to have wider significance then they have to be applied to traditiona imperative
languages, in particular FORTRAN. One method would be to pre-process the imperative language so that itisin
afunctional form. A more fruitful approach might be to integrate data dependency andysis into the compilation
process so as to perform parallelisation transformations before applying the transformation scheme described in
thisthesis. It isinteresting to note that there has been a movement towards single-assignment semantics in the
vector notation employed in FORTRAN 90. If this trend continues, then the results of this thesis will become
more immediately applicable.

On amore fundamental level, a greater investigation of integer linear algebrawould be very useful. Inthisthesis
the use of polytopes has been central. A greater understanding of their properties will bear fruit in compiler
analysis and program transformation. In particular an efficient method to determine the number of lattice points
within a polytope would be very useful.
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Inthisthesisthearray size and the number of processors are assumed to be known at compiletime. Thisrestriction
can be relaxed, but may require some symbolic analysis as described by [HAGH9Q].

Although many programs have an affine structure, more work is required for those that do not possess this
characteristic. Properties such as invariancy still have meaning in non-affine space, in [KOEL90], for example,
data dependencies that are run-time dependent but loop invariant are exploited by storing the dependencies after
the first loop iteration. Work within this area will be useful for compiling sparse matrix problems.

Finally, one very interesting area of research isthe impact of locality of reference on architectures with different
computational models such as dataflow. If increasingly large machines are to be created, then the memory will,
at some point, have to become distributed. It would be interesting to investigate how a compiler could influence
data distribution and program execution in such an architecture.



Appendix A

L anguage Definitions

A.1l Restricted Sisal

Program = ‘‘define’” idr {"*,""idr}[type-def-part]
{*“global’" function-header} function-def
{function-def}

function- def = ‘‘function’’ function-header
[type-def-part]
expression ‘‘end function’

type-def-part = type-def “*;'" {type-def ‘';""}

type- def = ‘‘type’’ idr = type-spec

function-header = idr ““('" {decl “*;""} “‘returns’
type-list “*)"’

type-1list = type-spec {‘‘,’’ type-spec}

t ype- spec = ‘‘boolean’’| ‘‘character’’ | ‘‘double real’
| “‘real’’|
““integer’’ | ‘‘array’’ ‘‘[" idr "]V

expression = s-expression {‘‘,’" s-expression}

S- expressi on = primary { bin-op prinmary}

un- op =T e e

bi n- op =Rt T | e |

R R R
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| LL&!!
primary = constant | idr | ““('"'expression ‘)’ |
| et-in-exp
iteration-exp | ‘‘old ' idr | un-op prinary
array-ref = primary ‘‘[’"expression ‘]"’
| et-in-exp =‘'"let’ def ‘*;""{def ‘*;'"} *‘in"’ expression
“‘end let"’
def =idr {"","" idr} “':="" expression
conditional-exp = “‘if’" expression ‘‘then’’ expression

iteration-exp

iter-term
iterator

termtest
i ter-body

i n-exp-1list

i n-exp
forall-exp

return-exp

forinit-exp

reducti on-op

const ant

[

{*“elseif'’ expression ‘‘then’’ expression}

‘‘else’’ expression ‘‘end ' ‘‘if'’

=‘‘for’’ *‘initial’’ def iter-term‘‘returns’’
forinit-exp “‘end’ ‘‘for’

“‘for’’ in-exp-list def ‘‘returns’

forall-exp ‘‘end’ ‘‘for’

= iterator termtest | termtest iterator

= '‘repeat’’ iter-body

=‘‘while'’ expression | ‘‘until’’ expression
= def “*;" " {def “*;""}
=in-exp {(‘‘dot’" | ‘‘cross’’) in-exp}

=idr “'in’ expression

= return-exp {return-exp}

=‘‘value’’ ‘‘of"’" [reduction-op] expression
“tarray’’ ‘‘of’’ expression

=‘‘value’’ ‘‘of"’" expression { ‘‘value

“tof’" expression}

=‘‘sum’ | “‘product’’ | ‘‘least’’ | ‘‘greatest’
=‘'‘false’” | ““true’’ | integer-num| real-num

| char-const | char-string-const
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A.2 |Imperative

Program = {const-def} {var-def} stm {stnt}

const-def =idr [*':"" type] ‘=" expr

var-def =idr [*C["" (T idr LT dde{tt,idrt L idr}
LL)!!LL]!!
ey e ide o de 0, idet L i dr}
IEDARRRN RS AR R
FtiTTotype

st = assign-st| for-st | while-st | foriter |if-st
“*Sync’

assign-st =var ‘‘:="" expr

for-st =""FOR idr “*="" expr ‘'‘TO’ expr stmt {,stnt}
“"END FOR’

foriter =''FORITER’ idr “*="" expr ‘‘TO’ expr stnt
{,stn} ““END FOR’

while-st = ""WHLE' expr stnt {,stnt} ‘‘END WH LE "’

if-st =""IF’ expr “‘THEN ' stnt{stnt} ['*ELSE"’

stnt{stnt}] "'ENDIF"

expr = constant | var | unop expr | [‘‘Get’’]
(" exprtt)’’| expr op expr

unop :LL_!!|11+11|LL#11|LL##11|LL’\D'r!!

var =idr ["["expr {*', "expr} *']7]

Op :11_11|LL+11|LL/11|LL*!!|11>11|LL>:11
|LL<:11|LL<11|LL:11|LL<>11
|LLAND!1 | Lxmvv

type = integer | real | double |char |bool
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Trandation Algorithms

B.1 Trandation of Polytopesinto L oops

1.
2
3
4.
5
6
7
8

© O N o O A W N B

BB
[ S

Loop(i) =

. If (i <=m) then

. If (Jdesc]i] <> while AND A[i] <> 00)

then Print (Jdescfi] Ji] = -A[i] J- b[i] TO A[2i]3+b[2i])

. ese Print(WHILE, Getcond (i,F)) endif
. doif(i,1)
. Print(END FOR)

. end if

. doif(i,j) =

. conditional := FALSE

Cif (j+2m<=1)

. then if (A[j+2m, i+1..m] =0) AND (A[j+2m, i] <> 0)
. Print (IF A[j+2m]J <= b[j+2m] THEN)

. conditional := TRUE

end if

. doif (i,j+1)

end if

. if (i <m) then Loop (i+1) end if
. if (i= m) then Printbody(S) end if
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12.
13.

if (conditional = TRUE) then Print (END IF)

end

Loop(1)

B.2 Loop Merging

1. Merge(down,across return next) =
2. i:=down, | := across, k := down
3. PrintLoop (Q[i].Jj1)
4. If (NumLoop[i]=j) then Print(Q[i].S) return k
5. dsei ;= Merge(i,j+1)
6. while (NumLoop[i+1] >=j) AND Same(L[i+1,j],L[i,j]) do
7. i:=i+1, k:=k+1, i := Merge(i,j+1), end while
8. end If
9. PrintEndLoop
10. returnk
Merge(1,1)

B.3 Trandatingfor Reduction Parallelism

© ©® N o g M~ w NP

Print (IF(J>= Ay ) AND ( vy >=J))

Print ( THEN)

Print ( r := identity(reduction-op))

Print (FOR x:=1,p)

Print (r := reduction-op( r,:= Get (pr [X])))
Print ( END FOR)

Print(v[ G ]:=71)

Print (END IF)

Print (Sync)
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wherer isaloca scaar, pisadistributed array, x isan iterator and p is the number of processors. The reduction
operator, reduction-op, and its corresponding identity value is given by the following table:

| Reduction Operator | Identity |

sum 0
product 1
|east Maxint
greatest Minint
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Algorithms

C.1 Loop Interchange

1. Let the two iterators to be interchanged be j, and j;—;

Eyi 0
2. LetB=| U A
[ 0 Eiy ]

3. Letd =E,y,J

Ei_1; 0
4, Letc=| U b
[ 0 B ]

5. If Bi—;, = 0 Goto 12

6. d= Br—l + Br—l,rBr Br—l,r >0
' Br—l - Br—l,rBrmr Br—l,r <0

7 f — Gt Br—l,rCr Br—l,r >0
' Cr-1— Br—l,rcrmr Br—l,r <0

By xzr-1
8. Cy= d x=r-1 0Ox0O1,..,£+1y01,...,m

Br—l,y x={0+1

c, yzr-1
9. gy= f y=r-1

C1 Yy={(+1
10. ¢:=¢+1

Brmr—l - Brmr—l,rBr Brmr—l,r <0
12. If Bi-1y = 0 OBpyr—1mer = O Terminate.

f= Cmer-1 + Bmwr-1rCmer - Brwr-10 > 0
Crmr-1 ~ Brwr-1,Gr Bmr-1r <0

11. d = { Brmr—l + Brmr—l,rBrmr Brmr—l,r >0

13.

By Xzm+r-1
14. Cyy=4 d, x=m+r-1 Ox01,..,£+Ly01,..,m
Br—l,y x=(+1

¢, yzm+r-1
Oy =

15. f y=m+r-1 Oy0O1,...,m

C1  y={+1
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16. ForxOd1,...,¢6y01,..,x2z01,...,¢
17. Solvery,rp[ 11 15 | [ & ] =[c |
and
CESIEIEIAL
18. If asolution O(Nz(Cy) = Nz(C,) ORight(Cy) = Right(C,)) Ox > 2mO(Nz(C,) = Nz(C,) ORight(C,) = Right(C,) Oy > 2m
then =, = zElse =, = O end for
19. FormVy =95,W=V -9
20. ForyO1,...,¢,x01,...,r
2L IfW,y=-1ThenForzO1...r
22. 1f W,y = 1 Then W, = W, + Wz,y, Remove W,,Cy, f, end end if end if end for
23. Forx(O1,...,£
24. Find only —1 element in W at W, 5
25. Find first 1 in W at W
26. ReplaceC, by C,
27. end for end for

Complexity: O(£3)

C.2 Alignment

C.2.1 Creation Alignment

1. Reduce

(C1
to row echelon form F

solution[1..M] =0

UcOM+1,... M+N¢

if (Flrank@T)..M,c] #0)

then solution[c-M]=c

else solution[c-M]=-1

next := M+N¢+1

or0y,...,M

© © N oo 00 k~ W DN

if (solution[r] = -1) then solution[r] = next, next++

=
©

OcO1,...,M

=
[N

. if Fc,c] # 1then

[EnY
N

. OrO1,...,Mif Frc] = 1then swap (F[r],F[c])
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13. OrO01,...,M A[r,1.M] = F[1..M,solution[r]]

Complexity: O(M?3)

C.2.2 Reduction Alignment

1. Reduce T T
[ U |[R_| ] (C2)

to row echelon form F

solution[1..M] =0

OcOM+1,... M+N¢

if (F[rank(@/T)..M,c] # 0Oindependent(F[1..M,c],.A4)
then solution[c-M]=c

else solution[c-M]=-1

next := M+N¢+1

or0y,...,M

© ©®© N o g k~ W D

if (solution[r] = -1) Oindependent(F[1..M,next],.4) then solution[r] = next, next++

=
©

OcO1,....M

=
[N

. if Fc,c] # 1then

[EnY
N

. OrO1,...,Mif Frc] = 1then swap (F[r],F[c])

=
w

Ord1,...,M A[rl.M] = F[1.M,solution[r]]

independent( newrow, .A)
rdl,...,M

if solution(r) >0 then i:i+1, BJ[i] := .A[r]
Ng =i

Reduce B to row echelon

rankB :=0

OkO4,...,Ns

if B[1..M] # 0thenrankB :=rankB +1

© ©® N o o ~ W N BB

B[Ng] := newrow

=
©

Reduce B to row echelon

[
=

. ranknewB :=0
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12. Ok0O1,...,Ng
13. if B[1..M] # O then ranknewB := ranknewB +1

14. if ranknewB = rankB then independent := false el se independent := true

Complexity: O(M%)

C.3 PreFetching

2
3. then apply interchange transforms(chapter 3) such that J — [J, J]
4. Setd=]
5 SetM=J
end if

6. Unexpanded =\"52 2/,

7. Unexiterators= 2, J;

8. BExJ=0

9. RemJ=J
10. WHILE |Latt(AEXJ < b)| < [Z¢|, Or O 4,...,0 A 0 O J|Latt(AEXI Oj) < b)|< [Zc|, Or O 1,...,6
11. REPEAT
12. Setj = the most common smallest iterator appearing in al the Z/s occurring in RemJ
13. If |Latt(A(ExI O ) < b)| < ZeOrfj O J;
14. then M := M +]
15, J:=J -]
16. ExJ :=ExJ O ]
17. RemJ := RemJ - ), Jk wherej 0 J
18. else RemJ := RemJ — |
19. UNTIL RemJ=[
20. RemJ =]
21. END DO
22. Reml=]
23. SJ=RemJ
24. WHILESI z O
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25. REPEAT

26. Setj =the most common smallest iterator appearing in all the ¢/s occurring in RemJ
27. Stripminej =j1xj2

28. If JLatt(A(EXJ 0 j2) < b)|< ZeOrj O &
29. thenM =M +j2

30. J:i=J-j20j1

31 EXJ:=ExJ0j2

32. RemJ := RemJ —(), Jx wherej O J
33. dse RemJ ;= RemJ —jend if

34 =]

35. UNTIL RemJ=0

36. RemJ :=J

37. END DO

Complexity: O(m x |6,])

C.4 Volume of Access

. highest :=0

. FORv=1tov|

. FORr=1to 6,

. if rank(Z1y ) > highest then comparelist = Uy,
. dseif rank(l/1y ) = highest

then comparelist = compardlist O U1

end if

. END FOR

© O N o O~ W N R

. END FOR

(=Y
o

. OU Ocomparelist

=
=

. FORi=1toN¢

[EnY
N

. FORj =110 Ny
L if Cli] = U[j)

I
A W

. then part-iterators ;= part-iterators + Ji]

=
(63}

. end if
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16. END FOR
17. END FOR

Complexity: O(Ne x Nys % |6,])
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