
Department of Computer Science
University of Manchester
Manchester M13 9PL, England

Technical Report Series
UMCS–93–1–6

Michael F.P. O’Boyle

Program and Data Transformations for
Efficient Execution on Distributed Memory
Architectures

Program and Data Transformations for Efficient Execution on
Distributed Memory Architectures1

Michael F.P. O’Boyle

Department of Computer Science
University of Manchester

Oxford Rd., Manchester, U.K.
mob@cs.man.ac.uk

January 1992

1Copyright 1993. All rights reserved. Reproduction of all or part of this work is permitted for educational or research
purposes on condition that (1) this copyright notice is included, (2) proper attribution to the author or authors is made and (3)
no commercial gain is involved.

Technical Reports issued by the Department of Computer Science, Manchester University, are available by anonymous
ftp from m1.cs.man.ac.uk (130.88.13.4) in the directory /pub/TR. The files are stored as PostScript, in compressed form,
with the report number as filename. Alternatively, reports are available by post from The Computer Library, Department of
Computer Science, The University, Oxford Road, Manchester M13 9PL, U.K.

Abstract

This report is concerned with the efficient execution of array computation on Distributed Memory Architectures
by applying compiler-directed program and data transformations. By translating a sub-set of a single-assignment
language, Sisal, into a linear algebraic framework it is possible to transform a program so as to reduce load
imbalance and non-local memory access. A new test is presented which allows the construction of transformations
to reduce load imbalance. By a new expression of data alignment, transformations to reduce non-local access are
derived. A new pre-fetching procedure, which prevents redundant non-local accesses, is presented and forms the
basis of a new data partitioning methodology. By applying these transformations in a straightforward manner to
some well known scientific programs, it is shown that this approach is competitive with hand-crafted methods.

1

Preface

The author graduated from Aston University in 1987 with an upper second B.Sc.(Hons.) in Computational Math-
ematics and Computer Science with Artificial Intelligence. After working in Industry for a year, he joined the
Mapping Project at the University of Manchester in 1988 to pursue his postgraduate studies. In May 1990 he was
awarded an M.Sc. by research in Computer Science. He continued to work towards his Ph.D which was awarded
in July 1992. This technical report is an amended version of the thesis. He is currently employed as a SERC
Postdoctoral Research Fellow at the University of Manchester.

2

Acknowledgements

I would like to thank my supervisor John Gurd for his guidance and patience over the last two years.

Thanks a lot to Gholam Hedayat for his ideas and enthusiasm. Much of this work came out of our

joint discussion, over the past two years. Thanks also for reading endless drafts of this thesis and helping with

the proofs.

Thanks a lot to Matt for reading too many drafts, enduring the maths and taming the commas.

Thanks a lot to Stewart for also reading drafts of this thesis.

Thanks also to my Room 2.126 companions Allison and Alfred.

Lots and lots of thanks to Lizzy.

Special thanks to my Mum, Dad and sister Kim.

Thanks a lot to my friends and climbing companions who have kept me sane: Annie, Adam, Andrew,

Cath, Deidre, Ian, John, Kevin, Judy, Louise, Jane, Mark, Richard, Simon, Stewart, Mark and Vince.

3

Glossary

a alignment vector
b integer constraint vector
ek kth row of Identity
←
j outer strip-mined iterator

→
j inner strip-mined iterator
l nested loop lower bound vector

naz non-local access in processor z
p number of processors
u nested loop upper bound vector
z processor number
A integer constraint matrix

Ek,j identity matrix with rows k and j interchanged
H hit function
I identity matrix
J iterator vector
Ĵ outermost iteration vector
J̌ invariant iteration vector
J̃ scalar expanded iteration vector
L nested loop lower bound matrix
Nx number of rows of matrix x
O zero matrix
P processor space
Q computation set

SX ,Y hyperplane where X = Y
T linear transformation matrix
U nested loop upper bound matrixA alignment matrixCv subscript matrix for c-occurrence of variable vE nested loop extra constraint matrix

4

J iterator type vectorM innermost iteration vectorN (X) null space of XP projection matrixR(X) range space of XS serialising matrixT interchange matrixUr.v subscript matrix for u-occurrence of variable vUv set of all (Ur.v,νr.v) matrix-vector pairs of variable vU union of all Uv setsV occurrence matrixX occurrence matrixX partitioned occurrence matrixX serialised occurrence matrixY occurrence matrix
|x| cardinality of variable xk[x1, … , xm]T]k = size of vector xQm

i=1(max xi − min xi + 1)
λ lower bound index vector
ε nested loop extra constraint vector

νr.v subscript vector for u-occurrence of variable v
π transformation

σcoz load imbalance in processor z
θv number of u-occurrences of variable v
υ upper bound index vector
ζ one to many transformation
Γ multiple hit function

Latt(A.b) lattice of points denoting iteration space
interleave function
inverse of interleave function

Superscripts on matrices or vectors indicate dimension rather than exponentiation, unless otherwise stated.

5

Chapter 1

Introduction

The exploitation of parallelism to achieve faster computation has been a subject of research for many years
[HOCK88]. As the physical limit of sequential processor performance is approached, more attention is focused
on designing parallel hardware, where more than one task may be performed simultaneously.

Using parallelism to achieve increased performance has two major difficulties. Firstly, the discovery of appropriate
parallelism, if it exists, in the input language will require a certain amount of program analysis [WOLF89].
Secondly once the parallel activities have been identified, they must be organised so as to efficiently utilise any
parallel hardware.

Initial attempts at exploiting parallelism were relatively modest. In the CDC6600 [THOR70], up to 10 operations
could be performed in parallel, using multiple function units. Multiple function units are still used today to provide
parallelism, a good example being the superscalar Intel i860 [MARG90]. A more ambitious approach has been
the the construction of computers with multiple processors, such that the parallel work is spread throughout the
machine [HOCK88].

The first section of this chapter gives a brief description of existing parallel machines and provides motivation
for research into compiling for distributed memory architectures (DMAs). The second section briefly describes
background material specific to compiling for DMAs. It first describes the form of parallelism, data parallelism,
investigated in this thesis and then gives an outline of some of the languages used for programming DMAs and
a method for the implementation of such languages. The third section covers the main implementation issues in
compiling for DMAs in more detail, which include parallelism detection, load balancing, communication over-
head, scalability and memory coherence. The fourth section gives a brief summary of existing related work which
consists of shared memory program transformations, existing DMA implementations and automated translation
schemes. This chapter is concluded with an outline of the remainder of the thesis.

6

CHAPTER 1. INTRODUCTION 7

1.1 Overview

1.1.1 Parallel Machines

There have been many attempts to classify computer architectures [SHOR73] and [KUCK77], so only a brief
overview, based on Flynn’s taxonomy [FLYN72], will be given. Flynn classifies architectures by the number of
instruction and data streams they possess. The two parallel classifications, which describe present day computers,
are SIMD (single instruction multiple data) and MIMD(multiple instruction multiple data).

In SIMD architectures, one instruction is applied to multiple data elements. This group includes vector processors[HOCK88]
such as the CRAY-1 [RUSS78], which has special instructions for handling vectors, and array processors such as
the DAP [REDD73] and CM-1 [HILL85]. Array processors have one control unit and multiple processors which
apply the same instruction to their own local data which operates in a lock-step manner.

The MIMD classification includes a diverse range of computers including reduction machines, dataflow machines
and shared memory and distributed memory multiprocessors. Reduction machines such as GRIP [CLAC86] and
Flagship [WATS88], employ graph reduction, where computation operates in a demand driven manner upon a
set of program functions while dataflow machines, by contrast, execute in a data-driven manner. A discussion of
the relative merits of these architectures is beyond the scope of this thesis; for a discussion of dataflow refer to
[GURD85] and for graph reduction refer to [WATS88]

At present there are many commercially available shared memory multiprocessors e.g. Sequent Balance [SEQU87]
and the Alliant [ALLI90]. These machines consist of von Neumann processors which may have a small amount
of local memory, or cache, but all share the same physical main memory to which they are all connected by an
interconnection network or bus. While these machines have been very successful there is an architectural limit
on the performance available. As the number of processors is increased, the processor to memory bandwidth
becomes saturated and therefore these architectures are not scalable.

Several commercially available distributed memory architectures are in existence. All have the advantage of
scalability but are generally more difficult to program than shared memory architectures. Typical machines of
this class are the Intel hypercube [INTE90], the Meiko Computing Surface [MEIK87] and the WARP [ANNA86].
Such machines consist of several processor-memory pairs that are interconnected by a network. Each processor
is von Neumann in design having its own program, data and program counter. As the number of processors
increases so does the processor to memory bandwidth, or interconnect, which avoids the architectural bottleneck
of shared memory machines. As there is no physically shared memory, memory access time is non-uniform so
data that resides in a processor’s own memory will take less time to access than data that is remote. However it
is precisely this lack of shared memory and non-uniform access time that has made programming and compiling
for distributed memory architectures so difficult.

1.1.2 Motivation

While there has been a steady increase in the power of parallel machines, the software to exploit them has lagged
behind. When the CRAY-1 was first launched in the mid 1970s, the compiler’s vectorising ability was poor and
today if a programmer wishes to exploit the parallelism of, say, the Intel Hypercube [INTE90], much of the work
must be done by hand. This thesis is concerned with the compilation of a high level language to produce efficient
implementations on DMAs.

The languages used to program DMAs have been, traditionally, imperative with message passing constructs added.

CHAPTER 1. INTRODUCTION 8

In such languages, it is the programmer’s responsibility to decompose the program and data into processes and data
partitions. This error-prone and time-consuming procedure must then be repeated for each new target machine.

The major barrier to wide acceptance of distributed memory computing is the primitive state of compiler technol-
ogy. If DMAs are to be successful then the programming effort must be reduced. This thesis describes compilation
transformations which allow a programmer to write a program, in a high level language, without regard to the
target architecture such that, after compilation, the program may be executed efficiently on DMAs.

This thesis shows that it is possible, for a large class of problems, to achieve the automatic mapping of programs
written in an array orientated language to a parallel distributed memory architecture which is competitive with
hand-crafted methods. This mapping is based upon analysis and transformations so as to minimise execution time.
By using a simple architectural model, it is possible to compare the results acquired by using the transformations
developed in this thesis with existing hand-coded methods.

1.2 Compiling for DMAs

1.2.1 Data Parallelism

A large amount of research into compilers for distributed memory architectures has been concerned with the
exploitation of data parallelism where the elements of an array may be evaluated in parallel. This approach has
been widely used in hand-written implementations [FOX86] and has been shown to be very effective . There is
a strong relationship between data parallelism and loop parallelisation which is often used when compiling for
shared memory machines [PADU86]. Arrays are manipulated by loops and, conversely loops create arrays and
so the parallel evaluation of one implies the parallel evaluation of the other. This duality allows transformations,
which have been originallydeveloped for shared memory machines, to be used, in a modified manner, in compiling
for DMAs.

Although this approach is by definition limited and exploits program parallelism to a much lesser degree than,
say, dataflow [GURD85], there exist a very large number of scientific programs where program parallelism of
this nature is much greater than machine parallelism and therefore this approach is more than adequate.

1.2.2 Languages

This section presents a brief summary of languages that have been used for programming DMAs. The summary
is restricted to languages which contain the array data structure, allowing the expression of data parallelism These
programming languages can be split in to four main groups.

1. explicit process / explicit distributed memory e.g. occam, csp, cstools

2. explicit process / implicit distributed memory e.g. MultiLisp

3. implicit process / explicit distributed memory e.g. FORTRAN D, Kali

4. implicit process / implicit distributed memory e.g. FORTRAN 90, Crystal

CHAPTER 1. INTRODUCTION 9

This classification is based on just two criteria which are thought to be relevant in compiling for DMAs. For a
more comprehensive survey of languages see [SARK89].

The first group illustrates one extreme of the programmer/compiler trade-off. Implementations using these lan-
guages have produced good performance as the compiler has little analysis or work to perform. However this
is at the expense of large programmer effort. Programming in occam requires the programmer to express any
parallelism within the problem as a group of communicating sequential processes, each with its own local data.
After determining the message passing between processes, the processes have to be scheduled to processors. New
problems now arise, such as non-determinacy and deadlock, which have to be considered along-side performance
issues.

The second group include languages such as MultiLisp [HALS86]. Although several implementations of this
class of languages exist on shared memory machines, no well known implementations are available on DMAs.
This is probably due to their explicit shared memory model, which is difficult to map to a distributed memory
space.

The majority of recent research has been focused on the third group of languages. The user is required to determine
the distribution of array data in a particular program by the embedding of pragmas. Although explicit process
decomposition is not always necessary, usually the marking of loops that may be executed in parallel is required.
In section 1.4.2 there is a review of such languages and their implementations.

With languages in the final category, the programmer simply writes a program without regard to machine archi-
tecture, let alone how the data and computation are to be sub-divided and scheduled for DMAs. The primary
concern is writing a program with enough inherent parallelism. Informally this is governed by the algorithm used
and the data dependencies within the program.

This thesis is concerned with the compilation of SISAL [MCGR85], a language which belongs to the fourth
group. In chapter 2, the important features of SISAL are detailed however the advantages of writing in a high-
level architecture-independent language as opposed to a machine specific one are obvious. The cost, however,
is that the compiler must now perform the necessary analysis to map the program to the particular architecture
in such a manner as to be competitive with hand-crafted methods. Until recently this seemed to be very difficult
for DMAs. This thesis proposes a methodology for efficient mapping of SISAL, an architecture independent
language, to DMAs.

SISAL is a first-order functional language supporting array structures, where computation is performed by expres-
sion evaluation. As SISAL has no notion of process, it is the responsibility of the compiler to map the program
to a particular parallel architecture and not the programmer.

SISAL has been chosen not only from the point of view of ease of programming but also because problems
encountered whilst compiling imperative languages for parallel machines, such as aliasing, are absent due to the
single assignment semantics. In fact in [WOLF89], it is stated that having a very high level language makes
things easier for an optimising compiler, as it has more freedom in implementation.

1.2.3 SPMD Computation

Once any data parallelism has been detected by the compiler, a method to exploit this parallelism on a DMA must
be used. The method of evaluation has invariably been single process multiple data, SPMD [DARE88], where
the array data is distributed across the processors so that each processor works upon a separate section of the array
in parallel. Essentially each process runs the same program but operates on different data which are independent

CHAPTER 1. INTRODUCTION 10

portions of an array. Each processor has one process and its own, statically assigned, local data. In this thesis,
two useful methods of exploiting parallelism are considered.

• Creation Parallelism Each process accesses any data required for the calculation of its local portion of a
distributed array. After accessing the necessary data, each local array is calculated in parallel.

• Reduction Parallelism Each process first performs computation upon its own local data in parallel which
is then accessed by another processor.

Creation parallelism can be viewed as accessing data before computation is performed at the site where the
write will take place. In contrast, reduction parallelism implies that every processor performs part of the total
computation on its own local data in parallel before its results are accessed by the processor which will perform
the write. Some systems such as [GERN89] only consider creation parallelism, while others rely on reduction
parallelism, e.g. [TSEN89].

1.3 Implementation Issues

1.3.1 Parallelism and Overheads

There has been a large amount of research into the detection of program parallelism and in the review section
1.4.1 an overview of such work is given. The identification of data parallelism requires the detection of arrays
whose elements may be evaluated in parallel. The easiest way to achieve this is to ensure that there is no data
dependency between two elements of the same array which may be manifested as a loop carried data dependency.
In Sisal, the for loop guarantees that there are no such dependencies and for this reason it forms the basis of
exploitation of parallelism in this thesis. All arrays that are generated by a for loop may be distributed across
the DMA’s processors and evaluated in parallel. A pre-processor using parallelising transforms as described in
[LU90] and [PUGH91], would be required to make the results of this thesis applicable to existing imperative
languages.

In shared memory machines, it is usual to partition the program graph into processes. This may be viewed as a
procedure, usually performed at compile time, where the graph is chopped into a number of sub graphs which
are called processes. These processes are then scheduled to physical processors either at compile or run-time.
However, for DMAs it has been more usual to partition and schedule the data (array) to physical processors at
compile time.

A completely static, compile time, approach to the mapping of data and computation to processors is used in this
thesis. This is not only to reduce the complexity of the problem but also to demonstrate that such an approach
can be successful. Run-time methods have been particularly popular for balancing the work load [SARG86] but,
in chapter 3, it is shown that it is possible to determine at compile time what the work load would be given
a particular partitioning. While such analysis, in general, cannot work in the case of compile time unknowns,
there are many programs [SHEN90], where this is not the case. At the heart of this static approach is the fact
that a compiler knows more about the program, than a run-time system can. Armed with this knowledge, it can
transform the program into a form which will run efficiently without incurring any run-time overheads. To aid
this static approach, dynamic arrays and recursion are not addressed in this thesis and it is assumed that array sizes
are known at compile time. Finally on this point, Sarkar [SARK89], in his concluding chapter, compares static
and dynamic approaches to compiling Sisal for a shared memory multi-processor. In all but one of his examples,
the compile time method gave better results.

CHAPTER 1. INTRODUCTION 11

Using a static SPMD model of computation implies a coarse-grain approach, as there is only one process per
processor. The advantage of this scheme is that no context-switching overhead is incurred. This, however,
prevents the hiding of memory latency by switching out a process that has made a non-local access and executing
one which is ready to run. By making a memory access ahead of time it is possible, by pre-fetching, to provide
latency tolerance even with a coarse granularity. Latency was considered a critical issue in [ARVI87] but it is
not considered in this thesis as it has been extensively covered in Rogers’ thesis [ROGE91] in the context of
compiling for DMAs.

Once the program parallelism has been identified, it is the task of the compiler to transform the program so as to
fully utilise the available machine parallelism and to reduce any overheads. In this thesis it is assumed that the
problem sizes are much larger than the number of processors and that the amount of program data parallelism is
greater than the available machine parallelism. Therefore, as it is relatively easy to utilise the available machine
parallelism, then the compiler must focus its attention on finding a mapping that minimises overhead. The major
overheads are load imbalance and non-local access. Load imbalance occurs when work is unevenly distributed
across the processors so that some processes take longer to execute than others. A compiler should employ
a scheme whereby the work load is as evenly distributed as is possible. The other major overhead, non-local
access, occurs when there exists a data dependence between two items of data on separate processors. Non-local
access, often referred to as communication overhead, should be minimised by a compiler for DMAs. However
these objectives conflict and generally there exists a trade-off between them.

1.3.2 Parallelism v Non-Local Access v Load Balance

By distributing the computation and data over several processors, the execution time may be reduced. As the
number of processors utilised increases, each processor will perform less work and hence the execution time
should decrease. However as the number of processors increases, the amount of data local to a processor will
decrease and hence the number of non-local accesses will increase. This will manifest itself as communication
overhead and tends to increase the execution time. This is the well known trade-off between locality and paral-
lelism [PEYT86]. It is reasonable to adopt the strategy where, firstly, a compiler must use all the processors and,
secondly, determine mappings to reduce non-local access. It is possible that for some programs, a more efficient
implementation will take place if not all the processors are used. This is not considered in this thesis.

Less immediately apparent is the trade-off between load balancing and non-local access. One method of balancing
the work load is to randomly distribute the data and, hence, computation across the processors. This can have
the effect of decreasing the overhead due to load imbalance but it also destroys any spatial and temporal locality
within the program. This will have the effect of increasing the number of non-local accesses. It is not clear how to
reconcile this conflict as it will depend on the particular program concerned and the relative cost of communication
and computation for a particular machine.

1.3.3 Distributed Memory

One of the major reasons for investigating DMAs is their potential scalable performance and if this potential
is to be realised, all implementations should also be scalable. The major impact on compilation is that array
data should not be replicated across the processor. If replication is used then as the problem size and number of
processors grow linearly, the amount of memory needed grows quadratically.

Within this thesis a global address space is assumed. Machines such as EDS [HAYW90] and KSR support this at
the hardware level. In other machines, such as the Meiko and Intel Hypercube where each processor has its own
local address space, each memory reference must be translated. Successful schemes for message based machines

CHAPTER 1. INTRODUCTION 12

have been described by [RUHL90] and [ROGE91]. Implementing a global address space on message passing
machines was one of the first issues tackled by researchers in this area [CALL88].

One of the benefits of considering a single-assignment language is that a data item may only be written to once.
In imperative languages such as FORTRAN or Pascal, a variable may be overwritten many times. This is a real
problem in parallel machines as the most recent value of a variable has to be maintained. This problem of memory
coherence has normally been solved by the use of expensive hardware mechanisms. The Sequent Symmetry,
for instance, has a snoopy-bus which monitors the memory addresses to see if a local copy of a variable has
been updated. In [LI89], several methods for ensuring memory coherence in a distributed memory machine are
discussed. SISAL does not require any memory coherence mechanisms to ensure a correct implementation.

1.4 Review of Related Work

The first part of this review section surveys the transformations currently in use. Most were originally devel-
oped for vector and shared memory multiprocessors but are beginning to be used in the context of DMAs. The
second part addresses compiling for DMAs and describes systems where the user has added some pragmas di-
recting the compiler how to map the data and computation to the processors. The compiler then applies simple
transformations or mappings to produce a local program for each processor.

The third part describes those few systems where an attempt to automate the whole process with no user in-
tervention is attempted. In these systems much analysis is required before appropriate transformations may be
applied.

1.4.1 Analysis and Transformations

There has been much work published on program restructuring to discover parallelism. The major constraint is
data dependence. Determining whether two occurrences of a particular array reference the same data element and
hence form a data dependence is non-trivial. Over the years, successively more accurate tests have been derived
which is important as all program transformations based upon loop restructuring rely upon dependency analysis.
A transform is legal only if data dependency is preserved. In [WOLF89] a good survey of classical techniques is
given. In [GOFF91] the application of such analysis in a mature compiler is described and recently, increasingly
more sophisticated analysis has become available [LI90b], [MAYD91] and [LU90]. The relationship between
data dependency and restructuring is described in [WOLF90b]. A particularly interesting technique for analysing
data dependence, by describing access regions, is given in [BALA89]. This data access summary, rather than
giving a yes/no decision of existence, can be used for purposes other than determining data dependency such as
determining a caching strategy.

Traditionally, program transformation research has largely focused upon two areas, parallelism detection and
memory management. Some of the earliest work to uncover parallelism can be found in [LAMP74]. A good
survey of such transforms is given in [ALLE86], [PADU86] and [WOLF91] which describe loop interchange,
reversal, etc. Recently tools have been designed to allow the user to apply program transformations in an interac-
tive manner to determine the parallel forms [WOLF90d]. These transformations are described using a functional
notation. However, recently, some researchers have looked to unimodular matrix transformations as a more ele-
gant approach [DOWL90], [BANJ90], but there exist legal loop transformations which are not unimodular and
thus this approach is limited.

A major difficulty in applying transformations is determining in which order to apply them. In [WHIT90] and

CHAPTER 1. INTRODUCTION 13

[WOLF90c], this issue is discussed, but in general the relative merit of each transformation depends on the target
architecture involved and in which phase of the compiler the transformations can take place.

Because of the problems of ordering in ad hoc approaches, there have been recent moves towards a unification
of transformations. In both [LU90] and [PUGH91] a methodology to determine the maximum parallelism within
a particular loop structure is given. Rather than applying transformations in a piece-wise fashion, a schedule is
determined which maximises parallelism. The major drawback of this scheme is its computational complexity but
by restricting the number of schedules considered, it is possible to determine the best form for many reasonable
programs.

Although many transformations have been aimed at detecting parallelism, there has been a large amount of
research in finding transforms to use local memory or cache more effectively. In [CARR89], the use of strip-
mining and loop interchange is discussed so as to maximise accesses to local cache rather than main memory in
a hierarchical memory. In this paper, blocking methods, as studied by numerical analysts, are used to minimise
communication to main memory. Although a uni-processor is assumed, it is apparent that the same arguments
apply to multi-processor systems.

In [GANN88] the concept of a reference window is introduced. By transforming the program such that local
data is used by all that need it, efficiency may be improved. In [WOLF91a], further work in this area is detailed
and an algorithm to transform a restricted set of programs to increase locality is given. In [LAM91] there are
presented experiments which verify the usefulness of such an approach. As well as increasing access to local
memory, transformations to hide memory latency for non-local memory have been addressed. In [GORN90] and
[CALL91], prefetching of data before it is required helps to hide latency.

1.4.2 Pragma based DMA Implementations

The state of research in compiling for DMAs is much less advanced than for shared memory machines. Firstly
those loops that may be performed in parallel are denoted as such by the programmer using special constructs
such as DOALL. Once the compiler knows which regions may be executed in parallel, it has to decide how
to decompose the data over the processor. The decomposition of data is often crucial to the performance of
a program on DMAs. It eventually determines the amount of communication required, the work distribution
and hence load balancing. This is directed by the programmer and can be broken into two parts, alignment
and distribution. Alignment is concerned with the relative orientation of arrays stored in distributed memory
and is largely independent of machine considerations. If two arrays should be stored transposed relative to one
another, this is independent of the number of processors available or the underlying interconnection network. The
distribution of arrays is concerned with the partitioning of arrays into rows, columns, blocks etc. and the mapping
to processors, whether it be in a folded or interleaved manner.

Once the data distribution has been given, the compiler has to determine what computation is to be performed on
each processor. Either this is given by the programmer or it may be derived by some form of loop elimination.
Once the data and computation for each processor is known, then the compiler inserts the necessary sends and
receives. This insertion of message passing code has been the main focus of attention in the schemes outlined
below.

The first significant description of this approach is given in [CALL88]. In this paper the authors derive an efficient
message passing program from a sequential shared memory program annotated with directions on how elements of
shared arrays are decomposed and distributed to processors. In particular all communications are managed by the
compiler. The user defines how the data is to be broken up or decomposed. Such decompositions are restricted to
rows or blocks etc. which are mapped to a virtual array. The user then defines how the virtual array is be distributed
or mapped to an array of virtual processors. They allow folded or wrapped mappings. Optimisations for compiling

CHAPTER 1. INTRODUCTION 14

such programs are given which include strip-mining, loop interchange and loop elimination. They concentrate on
the issue of inserting message passing code and describe a technique where redundant messages can be removed.
The major difficulty with this paper is its applicability to problems other than the matrix multiplication example
given. There is no systematic description of why, how or when a transformation should take place. Nevertheless
this approach spawned several projects, wherein the mapping of data and computation is directed by pragmas.

The programmer usually defines the partitioning of an array and its allocation, usually with respect to virtual pro-
cessors. Some systems allow alignment constructs, while for others each distribution has to be given. Such sys-
tems include Pandore [ANDR90a] [ANDR90b], Oxygen [RUHL90], Kali [KOEL90],[KOEL91], AL [TSEN89]
and Superb [GERN89], [GERN91]. In the following brief descriptions an indication of the form of pragmas
required will be given. Some are at a more developed stage than others.

No description of the Pandore implementation is given in [ANDR90a] and an excessive amount of user pragmas
are needed, some of which seem redundant. Here the user must define parallel loops and indicate that an array is
to be distributed. The user also has to define how an array is to be partitioned, and how it is to be mapped on to
a virtual processor domain. The Oxygen project is more comprehensive. Here pragmas are added to FORTRAN
and a working system is available. But once again the programmer must insert a wide range of pragmas as
in Pandore. Its main drawback is the run-time determination of communication, therefore the programmer is
required to insert some communication primitives in order to give an efficient implementation. Much of this can
be discovered at compile time, reducing overhead, and they are presently looking at such a scheme.

Kali is a functional language annotated with partitioning and virtual processor directives. They have recently
concentrated on generating efficient code in the prescence of compile time unknown dependencies. They store
such patterns at compile time if they will be repeated rather than recomputing them. Saltz et. al. take a similar
approach [SALT90]. In the DINO [ROSI90] project, a similar approach to Pandore is taken. A particular feature
of DINO is that by annotating assignments with a “#”, the programmer indicates that non-local data will be
required.

The AL compiler for the WARP is more sophisticated in that it requires less user pragmas to perform an effective
mapping. The user does not have to define the data over a virtual processor space or define the exact data mapping.
Instead those arrays to be distributed are marked by a key word and the compiler determines whether they should
be folded or interleaved. However the class of loops and array references are restrictive and the programmer must
add some information on reference patterns in the form of data relation pragmas.

Other implementations include [BABE90] and the Booster language [PAAL90] . In the latter the data partitioning
is specified by a functional description which is separate from the imperative program. In Booster, it is intended
that the user experiment with different data mappings. This idea has been extended in [BALA91] where the
environment tries to determine the suitability of such a mapping.

One of the most comprehensive and advanced approaches is given in [ROGE91], and [PING90] where the whole
compilation process is described. Once the data partition has been described by the user, an optimising compiler
maps the program to the Intel Hypercube to give a performance comparable with hand written methods. What is
interesting in this approach is that compile time transformations are used wherever possible. In the case where
this is not possible, an efficient run-time mechanism is used.

Recently an attempt to provide a consistent set of pragmas for FORTRAN on DMAs has been made [FOX91].
The pragmas include alignment, data partitioning and parallel loops.

CHAPTER 1. INTRODUCTION 15

1.4.3 Automated Translation

Not all research has been based upon pragmas. For a restricted set of programs with nearest neighbour data
dependencies, known as stencil problems, a mapping known as tiling has been used. Papers using this method
include [RAMA90] and [HUDA90]. Here the optimal size of the tiles for data distribution is considered using
a surface area to volume argument. The tiling transformation is placed in a more general context in [ANCO91]
where arbitrary data dependence are allowed.

The unimodular transformations described by [BANJ90] are proposed as a method for compiling for DMAs in
[KULK91]. They describe the effect of transformations on certain important machine characteristics such as load
balancing and communication. However they only consider double loops and no strategy is given as how to apply
them for compilation.

An interesting approach is given in [RIBA90]. Here a restricted set of programs is mapped to the systolic WARP
machine. By using a matrix representation, he is able to detect a parallelism enhancing ordering and hence com-
putation and data distribution. The compiler performs very well for the examples given. No user intervention was
required. The main limitation is that general while loops and non-constant data dependencies cannot be imple-
mented in this approach. Automatic data distribution so as to minimise non-local access for SIMD architectures is
described in [WEIS91] and [KNOB90]. Many of the techniques are applicable to an SPMD model. Unfortunately
the issue of load balancing is not addressed and the class of programs is once again quite restrictive. Only array
references which have one iterator accessing any one index are considered. Additionally each occurrence of a
particular iterator in an array reference has to have the same coefficient.

The methods described in [DENN89] and [IKUD90] do not require user pragmas. However they are only exploit-
ing certain very restricted program structures. For instance in [IKUD90] only 4 very specific program patterns
are considered for parallelisation. Thus while a wider class of programs can be accepted than in [RIBA90], only
a relatively small number of programs can be compiled, for any advantage. In addition they lack any analysis on
which decisions are made.

By far the most advanced project is the Crystal project at Yale [CHEN88], [LI90]and [YANG91]. They consider
all issues involved in mapping Crystal to DMAs. Throughout this thesis relevant comparisons will be made where
appropriate. [GUPT90] based their alignment strategy upon the work at Yale. The Crystal project is the most
ambitious in that it encompasses all the issues involved in compiling for DMAs. They intend to fully automate
all aspects of the compilation process.

One of the major focuses in the Crystal project is reducing communication overhead. In [LI90], a polynomial algo-
rithm is given to determine the relative alignment of all the arrays in a program. Although this is an NP-complete
problem, the approximating algorithm gives good performance. Once a data partition has been determined, the
necessary sends and receives can be planted [LI90a]. In trying to determine the best data layout, the compiler
searches through a variety of schemes suggested by the array reference patterns. For each layout, a communication
cost is calculated. Less emphasis is placed upon load balancing.

1.5 Outline of Thesis

In chapter 2 the computation set notation used throughout this thesis, based upon linear algebra, is introduced.
The basic translation from Sisal to computation sets to an imperative language is outlined. A basic architectural
model, with associated metrics, is defined so as to allow later evaluation of the compilation scheme.

CHAPTER 1. INTRODUCTION 16

Chapter 3 investigates load balancing. By describing the amount of work per processor for a particular partition,
it is possible to determine whether there exists a transformation to achieve even distribution of work and what
that transformation is.

Before the data and computation are mapped to the processors it is necessary to determine the relative alignment
of the arrays. This will crucially determine the amount of non-local access and is the subject of chapter 4.
Transformations to improve locality are described.

In chapter 5, the folded and interleaved mapping of data and computation to the processors is first described.
Pre-fetching transformations to reduce redundant non-local access are then given. Finally a method to determine
the data partition that reduces non-local access is presented.

In chapter 6 all these techniques are ordered and applied to eight well known problems. The implementations are
evaluated using the metrics developed in chapter 2 and compared with hand written implementations.

Finally in chapter 7, the work is critically evaluated and suggestions for further work are outlined.

Chapter 2

Notation

This chapter describes the language Sisal and a restricted form which is used throughout this thesis. Each Sisal
program is expressed in a computation set notation, which is amenable to analysis and transformation. The
target language, a description of the translation scheme used and the constraints upon program transformation are
outlined. Finally a simple machine model is presented, allowing later evaluation of the compilation scheme.

The translation scheme for Sisal can be summarised as follows:

P0
τ07! P1

π17! P2
ζ7! 26664 P3

P3
...

P3

37775 π27! 26664 P4

P4
...

P4

37775 τ17! 26664 P5

P5
...

P5

37775 (2.1)

P0 is the original Sisal program and P5 the local imperative program for a particular processor. τ0 represents
the translation of Sisal into a computation set representation P1, as described in section 2.2. π1 represents any
pre-partitioning transformation which transforms P1 into a new computation set P2. The ζ transformation maps
P2 into p separate computation sets [P3, … , P3]T , one per processor. The underline symbol implies that the
particular representation is local to a particular processor. π2 represents any post-partitioning transformation
which is applied to each local computation set to give the new local computation sets [P4, … , P4]T. Finally τ1

represents the translation of the computation sets into the local imperative programs [P5, … , P5]T written in the
imperative language described in section 2.3 The π and ζ transformations form the body of this thesis. In this
chapter, however, we are concerned with τ0 and τ1 which translate Sisal, first, into a sequence of computation
sets and then into the imperative language. The proof of correctness of such translation schemes is important but
beyond the scope of this thesis. Instead an intuitive description is given.

2.1 Sisal

Sisal is a strongly-typed single-assignment language where a name has only one value associated with it. It
can be considered to be a first-order functional language, where each function is evaluated without side-effect.
Its functional nature provides referential transparency and computation should be thought of as proceeding by

17

CHAPTER 2. NOTATION 18

expression evaluation rather than state-transition. As values are bound to names, rather than memory locations,
there is no aliasing.

Sisal has the usual primitive data types: integer, real, double, boolean and character. The aggregate data-types
are array,record, union and stream. The array data structure is one-dimensional; multi-dimensional arrays are
represented as arrays of arrays. Each component of an array may itself be an array and, since they may be of
different lengths, jagged arrays are allowed. A stream is similar to an array in that it, too, is one-dimensional; the
major difference is that access is restricted, so that only the head of a stream may be accessed at a time. Arrays
are defined as strict data-structures, while streams are intended to be implemented non-strictly. Each element of a
stream is available as soon as it is produced, and streams are often used in producer-consumer type applications.

2.1.1 Definition before use

As in many languages, such as Pascal, an object must be declared before it is used. If a function is to be used
in a mutually recursive manner, then it is necessary to declare it using a forward function definition. Sisal,
however, does not allow recursive or implicit definitions of value names. One consequence of this is that array
data structures may not be defined in terms of themselves and are, therefore, strict data structures. In other words,
an array element cannot be accessed until all of the array has been created. This simplifies the implementation
of array structures [FEO90B]. In addition, every element of an array is defined once only. Thus, if an array is
distributed, each element is written just once and, hence, there will be no memory coherence problems.

2.1.2 Constructs

Sisal has the usual language constructs including functions, conditionals, and iteration. Computation proceeds by
evaluation, so just as a function returns a value, so do the if and for constructs. Sisal programs can use recursion
to express repetitive computation but, unlike most functional languages, Sisal also supports iteration.

Sisal has two iterative constructs, the for initial and for loops. The former allows cross-iteration data depen-
dencies while the latter does not. The for initial construct consists of an initialisation section, a loop body, a
termination test and a return clause. Cross-iteration data-dependency is restricted to values of the previous iter-
ation only, which may be accessed using the old prefix. For example consider the for initial loop in figure 2.1.
The loop body could be written in FORTRAN as A(I) = I ∗ A(I − 1) + b. Dependencies such as A(I) = ..A(I + 1)..,
A(I) = ..A(I − J).. are not permissible in Sisal.

The for construct consists of a range generator, a loop body and a return clause. The range generator defines
the values a loop or iterator ranges over. These may be combined by the dot or cross product operator which
correspond to the dot and cross product in linear algebra.

The for construct is less general than the for initial loop, in that the number of iterations must be known on
entering the loop and no reference to the previous value of a variable may be made. Finally, Sisal supports seven
return operators:value of, array of, stream of, catenate, sum, product, least and greatest. More details on the
structure of both for loops may be found in [MCGR85].

CHAPTER 2. NOTATION 19

d := for initial
i:= 1; -- Initialisation
a:= 0; -- Section

while (i <=n) -- Termination Test
repeat
i := old i + 1; -- Loop
a := (i * old a) + b -- Body

returns value of -- Returns
product a -- Clause
end for

Figure 2.1: A for initial Loop

e := for i in 1,n cross j in 1,i -- Range Generator
a:= c[i,j] -- Loop Body

returns value of sum a -- Returns Clause
end for

Figure 2.2: A for Loop

2.1.3 Restricted Sisal

The aim of this thesis is to automatically detect and exploit parallelism within a Sisal program suitable for a
DMA using an SPMD model of computation. To this end, we are primarily concerned with programs involving
the array data structure. Thus, no consideration is given to the implementation of the record, union and stream
data types. All functions are assumed to be inlined to simplify analysis. This is clearly impossible for programs
with recursive forms and, therefore, attention is limited to non-recursive programs.

With respect to arrays, the following restrictions are imposed: firstly, all arrays must be rectangular and, secondly,
all array name instances, including those pre-fixed by the old keyword, within a particular lexical scope must have
a fixed size associated with them which can be determined at compile-time. This greatly aids data partitioning
and allows a simple policy of memory allocation so as to maintain scalability.

Sisal has a rich set of array creation operators. In this thesis the only array create operation considered is the
array gather. In figure 2.3 a generic array gather is shown, where J is a set of iterators and x any set of variables.
All the remaining array creators can be expressed in terms of the array gather operator. For example consider
the array creations in figures 2.4 to 2.6. Figure 2.4 shows an array, a, being created whose elements are the same
as array b except that the 7th element is replaced by the value n. This can be re-written using an array gather as
shown in figure 2.7.

for J
returns array of x
end for

Figure 2.3: Generic Array Gather

CHAPTER 2. NOTATION 20

a := b[7:n]

Figure 2.4: Replace Operator

a := array_fill(1,n,0.0)

Figure 2.5: Array Fill

Figure 2.5 shows the creation of an n element array where every element is set to 0.0. This can be re-written
using an array gather as shown in figure 2.8.

Figure 2.6 shows the creation of a new array a by the concatenation of two n-element arrays, b and c. This can
be re-written using an array gather as shown in figure 2.9. Finally a restriction is imposed upon the format of the
for initial loop, it may only have value of as its return argument.

At first these conditions may seem overly restrictive, but they are introduced only in order to focus attention upon
the main issues. In Sisal it is possible to express the same problem in many different ways, the consideration of
which would be distracting.

2.2 Computation Sets

In this section the form of a computation set, array occurrence, iteration space and index domain are defined. This
notation is based upon the formalism developed in [RIBA90]. A program consists of a sequence of computation
sets where each computation set describes the creation of an array variable. An array occurrence describes how
an array is accessed, while the iteration space determines the work to be performed. The index domain describes
the size and form of an array, and is required when partitioning data across the processors. In this thesis those
programs with affine loop and occurrence structures are of primary interest. An affine function is one that can
be represented as a matrix/vector pair. The focus of attention upon affine forms is justified by an empirical
study [SHEN90], where 80% of the program structures were found to be affine. However, whenever non-affine
constructs are found it is important that they can be represented otherwise translation is impossible. Where
appropriate, procedures for handling non-affine structures will be explained.

Definition 1 A program consists of a sequence of computation sets (Q1, … , Qη) where η is the number of
computation sets and Q = (A, J,J , b,S) is a computation set.

Each of the terms contained within this definition will be described in the subsequent sections.

a := b||c

Figure 2.6: Array Concatenate

CHAPTER 2. NOTATION 21

a:=for i in 1,n
returns array of
if (i = 7)
then n
else b[i]
end if

end for

Figure 2.7: Array Gather

a:=for i in 1,n
returns array of
0.0

end for

Figure 2.8: Array Gather

a:=for i in 1,2*n
returns array of
if (i<=n)
then b[i]
else c[i-n]
end if

end for

Figure 2.9: Array Gather

CHAPTER 2. NOTATION 22

a:= for i in 1,n cross j in 1,n
returns array of

b[i,j] * b[j,i+3]
end for

Figure 2.10: A Sisal Program

2.2.1 Array Occurrence

In this section the subscripts of each of the array occurrences are of interest. Consider the Sisal fragment in figure
2.10 where the sub-scripts are of the form:

a[i, j], b[i, j], b[j, i + 3] (2.2)

The subscripts of the two occurrences of b are obvious but the subscripts of a are inferred from the iterators in
the array gather, i and j. These subscripts can be written in matrix form:

a[i, j] =

�
1 0
0 1

� �
i
j

�
b[i, j] =

�
1 0
0 1

��
i
j

�
b[j, i + 3] =

�
0 1
1 0

� �
i
j

�
+
�

0
3

�
This representation of an array’s sub-scripts is called an occurrence matrix/vector pair. There are two distinct
types of occurrences matrix.

Definition 2 A c-occurrence is the occurrence matrix of the array being created where each element of this array
is given a value. Due to the strictness of array structures in Sisal it is not possible to create or write to part of an
array structure.

Definition 3 A u-occurrence is the occurrence matrix of an array referenced or used in an array creation. It is
possible to use or read part of an array structure. There is no restriction on the number of u-occurrences of an
array.

Definition 4 A segment is a fragment of a program which contains no iterators and has only one c-occurrence.

Let θv be the number of distinct u-occurrences of a variable v in a segment.

Let (Ur.v, νr.v), r ∈ 1, … , θv be the matrix/vector pair corresponding to the rth distinct u-occurrence of a variable
v.

Let Uv = f(Ur.v, νr.v), ∀r ∈ 1, … , θvg be the set of all u-occurrences of variable v in a particular segment.

CHAPTER 2. NOTATION 23

Let Y be the set of array variables in a segment.

Let U = ∪v∈YUv be the set of all u-occurrences in a segment

Let Cv be the c-occurrence matrix in a segment.

For a segment within m nested loops, each occurrence of a variable v is represented by a Nv × m matrix and Nv × 1
vector pair where Nv is the number of array dimensions of variable v.

Definition 5 A segment, S, is defined as the tuple (F,C,U) where F is a parse tree of the segment.

In Sisal the c-occurrence can always be represented in matrix form. However it is possible for u-occurrences to
have non-affine form, i.e. they cannot be represented by a matrix-vector pair. For example, the indirection in the
array occurrence, d[a[i]], cannot be represented. In such cases a special entry, [⊥], will be made in Ud , signifying
that the particular array occurrence cannot be represented in matrix form. No information will be lost, as the
occurrence will remain in the parse tree F.

2.2.2 Iteration Space

The loops in a Sisal program surrounding a segment can be represented as an m × 1 vector where m is the number
of loops or iterators.

Let
J = [j1, j2, … , jm]T (2.3)

be the iterators surrounding a segment. In the example 2.10, J is as follows:

J =
�

i
j

�
(2.4)

In this thesis three types of loops are identified.

Definition 6 The forall form corresponds to the Sisal for construct, where each iteration may be evaluated in
parallel.

Definition 7 The foriter form corresponds to the Sisal for initial construct, where the number of iterations to be
performed can be calculated on entry of the loop. In particular there exists one loop induction variable which is
incremented by one on each iteration and the termination test is an affine function of the enclosing iterators.

Definition 8 The while form corresponds to all other Sisal for initial constructs. In particular it corresponds to
loops where the number of iterations depends on the loop body.

To ensure legal program transformations, it is necessary to record the type of each loop. It is also important to
record information about the return clause. In the restricted form of Sisal, for initial loops may only have a

CHAPTER 2. NOTATION 24

a:= for i in 1,n cross j in n-i,2*n+i
returns array of
for k in 3*j+i+6,4*i-7
returns value of sum
b[i,k]

end for
end for

Figure 2.11: A Sisal Program

returns value of clause. for loops may have returns array of, or a reduction operator such as returns value of
sum. For the purposes of compiling for parallelism, the three terms value, array and reduction will be recorded.

Let J be the m × 1 vector describing the form of each of the iterators and its return clause. Each entry in J will
be a tuple of the form (itype,rtype) where itype = (forall | foriter | while) and rtype = (value | array | reduction)

Affine bounds of the iterators are described by the following set of inequalities which can be determined from
the Sisal program :

LJ ≥ l (2.5)

UJ ≤ u (2.6)

where L and U are (m × m) lower unit triangular matrices l and u are (m × 1) vectors. The range of values taken
on by J define the iteration space of a segment. This set of inequalities can be re-written as:�

−L
U

�
J ≤
�

−l
u

�
(2.7)

or as
AJ ≤ b (2.8)

where A = [−L, U]T, b = [−l, u]T.

Definition 9 Given A, an integer (l × m) matrix and b an integer (l × 1) vector, where m is the number of iterators
then Latt(A.b) is the set of points p ∈ Zm such that p ∈ poly(A.b) where poly(A.b) is the m-dimensional polytope
given by the set of inequalities AJ ≤ b. Thus the lattice is a subset of a polytope [SCHR86] that have integer
coordinates.

The convex lattice of integer points corresponds directly to the iteration space. More general, i.e non-affine,
iteration spaces cannot be represented in this way. Once again, in such cases a special entry, [⊥], will be made in
A, signifying that the particular iteration space cannot be represented in matrix form. For example consider the
Sisal program in figure 2.11 It is possible to represent the loop bounds as follows:26666664 −1 0 0

−1 −1 0
1 3 −1
1 0 0

−1 1 0
−4 0 1

3777777524 i
j
k

35 ≤

26666664 −1
−n
−6

n
2 ∗ n

−7

37777775 (2.9)

In general all affine bounds can be represented in this form.

CHAPTER 2. NOTATION 25

a:= for i in 1,n
returns array of
for k in 1,n returns value of sum
if i>k
then b[i,k] * c[k]
else 0
end if

end for
end for

Figure 2.12: A Sisal Program

2.2.3 Incorporating Conditionals in Polytopes

In the program in figure 2.12, both branches of the if expression can be expressed as a condition that may be
added to a polytope.

i > k ⇔ −i + k ≤ −1 (2.10)

i ≤ k ⇔ i − k ≤ 0 (2.11)

In this example there are two polytopes describing the calculation of two different regions of the same array, a.
Each polytope will have a different segment associated with it corresponding to the two expressions in the two
if branches. This process of splitting the calculation of array, a, is similar to loop distribution [WOLF89]. The
polytope corresponding to the first branch is:266664 −1 0

0 −1
1 0
0 1

−1 1

377775� i
k

�
≤

266664 −1
−1

n
n

−1

377775 (2.12)

while the second is given by: 266664 −1 0
0 −1
1 0
0 1
1 −1

377775� i
k

�
≤

266664 −1
−1

n
n
0

377775 (2.13)

The polytopes will only describe unique regions if the branches of the if expression are mutually exclusive. For
a discussion of loop distribution in the presence of conditionals, see [KENN90A]. For those cases where the
conditionals cannot be expressed as a constraint matrix/ vector pair, the special entry [⊥] is used.

Definition 10 The canonical form of a polytope of a segment is24 −L
UE 35 J ≤

24 −l
u
ε

35 (2.14)

where E , ε are a matrix/vector pair consisting of extra constraints due to loop body conditionals.

CHAPTER 2. NOTATION 26

a:= for i in 1,17 cross j in 1,53
returns array of
for k in 1, i cross l in 1,32-j
returns value of sum
b[i+l,j+k] * b[j+k,i+3]

end for
end for

Figure 2.13: A Sisal Program

2.2.4 Index Domain

To allow data partitioning it is necessary to record the size and dimensionality of each array. Each array, v, has
the following form:

[i1, i2, … , iNv]T = Iv (2.15)

where Nv is the number of array dimensions, ix is the xth index of the array v, and Iv is the vector containing all
the indices of that array. The indices have a certain range which describe the size of the array as follows:

λ ≤ I ≤ υ (2.16)

where λ = [λ1, … , λNv]T and υ = [υ1, … , υNv]T are Nv × 1 vectors. As I is restricted to rectangular forms, only
constant vectors are required to describe its bounds. Each array, in general, has a different range of indices and
thus has a different Iv.

The upper and lower bounds of each array are defined by the range of array iterators enclosing its creation
occurrence. That is, the range of the iterators which are used to create the c-occurrence of an array determine its
size.

The range of the array, a, in figure 2.13 is given by:�
1
1

�
≤
�

i1

i2

�
≤
�

17
53

�
(2.17)

Within an array computation only one array is created, so only one index vector, I, is defined corresponding to
the c-occurrence. The sizes of the u-occurrence arrays involved are determined by their own c-occurrences. In
the case of arrays that are input parameters to the program it is assumed that their sizes are given at compile time.

2.2.5 Local Notation

When the many computation sets are mapped to several processors, each processor will have its own local iteration
and data spaces. In this thesis, the convention is to represent local objects by underlining them. For example the
polytope enclosing the local iteration space is A J ≤ b, and the local index domain of an array, v, is Iv.

CHAPTER 2. NOTATION 27

for initial
i := 1;
a := init-a;
b := init-b;
while (i<=n)
repeat
i := old i +1;
a := for j in 1,n

returns array of
for k in 1,old i
returns value of sum old a [k]*c[k,j]
end for

end for;
b := for l in 1,2*n

returns array of old b[i] * d[l]
end for;

returns value of a
value of b

end for

Figure 2.14: A Sisal Program

2.2.6 Sisal 7! Computation Sets

The basic translation scheme, τ0, creates a sequence of computation sets and index vectors from a Sisal program
as described in section 2.2 defining the computation set notation. For example consider the Sisal program in
figure 2.14.

This program is represented by (Q1, Q2) where Q1 = (A1, J1,J1, b1,S1) and Q2 = (A2, J2,J2, b2,S2). The polytope
A1J1 ≤ b1 is 26666664 −1 0 0

0 −1 0
0 0 −1
1 0 0
0 1 0

−1 0 1

3777777524 i
j
k

35 ≤

26666664 −1
−1
−1

n
n
0

37777775 (2.18)

and J1=[(forinit, value), (forall, array), (forall, reduction)]. S1 = (F,C,U) where F is the segment parse tree

and Ca = [0,1,0] and Uolda= [0,0,1], Uc=
�

0 0 1
0 1 0

�
Similarly for Q2:

The polytope A2J2 ≤ b2 is 2664 −1 0
0 −1
1 0
0 1

3775� i
l

�
≤

2664 −1
−1

n
2 ∗ n

3775 (2.19)

CHAPTER 2. NOTATION 28

alo = 7
ahi = 15
A[(alo..ahi)]:real

Figure 2.15: Array Declaration

and J2=[(forinit, value), (forall, array)]. S2 = (F,C,U) where F is the segment parse tree and Cb = [0, 1],Uoldb = [1, 0], Ud = [0, 1]

The index domains for the two c-occurrences are:�
1
�

≤ Ia ≤
�

n
�

(2.20)

and �
1
�

≤ Ib ≤
�

2 ∗ n
�

(2.21)

2.3 Imperative Language

The target architecture consists of multiple von Neumann memory processor pairs and it is appropriate for the
target language of the Sisal compiler to be imperative. Each processor will have its own imperative program
which can be compiled by the machine’s native compiler.

The language described here closely mimics the restricted Sisal form. The major difference is that Sisal is
functional while the semantics of this form are imperative. A complete WBNF syntax description of the imperative
language used in this thesis is given in appendix A. The important features of the imperative language are described
in the following sub-sections.

2.3.1 Data types

The same scalar types as found in Sisal are present in this intermediate form. The only aggregate data type
allowed is the multiple dimensional array whose elements are scalars. All variables are declared locally but may
be accessed globally. The arrays are static and declared at the beginning of the program and can have any constant
lower bound. The declaration in figure 2.15 is typical.

2.3.2 Constructs

As the intermediate language is imperative, the most basic construct is assignment, denoted, as usual, by :=. The
usual constructs of repetitive and conditional evaluation are provided by the IF, FOR, FORITER and WHILE
constructs. The FOR construct corresponds to the for loop in Sisal where there are no cross-iteration data
dependencies and the number of iterations is known on entering the loop. The FORITER construct corresponds
to the Sisal for initial loop where the number of iterations is known on entering the loop body. As a sequential
implementation of the for initial is assumed, a barrier synchronisation occurs at the end of each iteration so as
to ensure that the processors do not become out of step. The WHILE construct corresponds to all the remaining

CHAPTER 2. NOTATION 29

a[(1..n),(1..n)]:real
b[(1..n),(1..n)]:real
c[(1..n),(1..n)]:real
FOR i = 1 TO n
FOR j = 1 TO n
c[i,j] := 0
FOR k = 1 TO n
c[i,j] := c[i,j] + Get(a[i,k]) * Get(b[k,j])

END FOR
END FOR

END FOR

Figure 2.16: An Imperative Program

forms of the Sisal for initial loop. Again, as it is implemented sequentially, a barrier synchronisation takes place
after each iteration.

Access to potentially non-local array elements is made via the Get function which takes a u-occurrence as its
argument. If the data to be accessed is local then a simple memory transfer takes place. If however the data is
non-local, then communication with another processor will take place.

An example of this imperative language is the matrix multiplication program in figure 2.16.

2.3.3 Matrix Notation 7! Imperative Language

The translation of matrix notation into the imperative form is described in two parts: firstly, the translation of a
particular computation set into the imperative language and, secondly, the translation of a sequence of computation
sets into the imperative language.

Given Q = (A, J,J , b,S) and S = (F, C, U). the basic translation scheme is to produce a nest of appropriate loops
given by the J and J vectors with an assignment as the loop body whose form is governed by S.

Essentially each iterator is printed out, depending on its type, with its loop bounds determined by A, b. The E , ε
entries in the polytope AJ ≤ b are represented as IF statements. These are placed immediately after the iterators
they reference. An algorithm to perform this translation is given in appendix B. In the simple case of addition,
the loop body will be as in 2.22. However, in general, the exact form will depend upon the operands in F.

v[CJ]:=Get(v1[U1J + ν1])+ ⋅ ⋅ ⋅ +Get(vθv [Uθv J + νθv]) (2.22)

All u-occurrences are preceded by the Get operator as they are potentially distributed. Sisal requires a c-
occurrence of an array to occur only once. In addition every element is defined once only. Because of this,
the translation scheme must guarantee that all c-occurrence writes are local.

All array references to the old value of array v will be referenced as oldv. Thus those arrays which are defined
within a for initial loop have two copies in the imperative form. At the end of each for initial loop the contents
are swapped. This is a very conservative implementation. In [CANN89A] a sophisticated copy avoidance method
is given.

CHAPTER 2. NOTATION 30

FOR i = j TO j+n
FOR j = 1 TO n
.....

END FOR
END FOR

Figure 2.17: An Illegal Imperative Program

a:= for i in 1,15
returns array of b[i]
end for

Figure 2.18: A Sisal Program

It is now possible to determine restrictions upon transformations for each computation set.

• The form of the AJ ≤ b polytope must represent a legal program in the imperative language.

Essentially this means that one iterator’s loop bounds cannot make reference to an iterator deeper in the
nest. This implies that AJ ≤ b must be in canonical form. For example the following polytope is prohibited2664 −1 1

0 −1
1 −1
0 1

3775� i
j

�
≤

2664 0
−1

n
n

3775 (2.23)

as the corresponding program in figure 2.17 is illegal.

• The size of an array must, obviously, remain the same. Consider the program in figure 2.18

with �
1
�

≤
�

i1
�

≤
�

15
�

(2.24)

clearly shrinking the array to give the following is illegal�
1
�

≤
�

i1
�

≤
�

10
�

(2.25)

because it will give the imperative program in figure 2.19

• In order to preserve data dependence, no transformation is allowed on any sequential iterator. This restric-
tion will result in the preservation of the sequential ordering. This is a conservative approach since data
dependence may only require that part of an iteration is performed before the next one commences.

FOR i = 1 TO 10
a[i] := Get(b[i])

END FOR

Figure 2.19: An Imperative Program

CHAPTER 2. NOTATION 31

a:= for i in 2,7 cross j in 2, 7
returns array of b[i,j]
end for

Figure 2.20: A Sisal Program

FOR i = 2 TO 7
FOR j = 2 TO 7
a[i,i] := Get(b[i,i])

END FOR
END FOR

Figure 2.21: An Imperative Program

• The occurrence matrices must still reference the same number of points. For example consider the Sisal
program in 2.20 with has the occurrence matrices:C =

�
1 0
0 1

�
,U =

�
1 0
0 1

�
(2.26)

If the occurrence matrices are transformed intoC =

�
1 0
1 0

�
,U =

�
1 0
1 0

�
(2.27)

then the imperative program in figure 2.21 results, which defines only the diagonal elements of a, rather
than the whole array.

When translating multiple computation sets into imperative form it is essential that data dependence is preserved.
The simplest method is to ensure that each foriter and while loop is neither distributed nor transformed in any
manner. An algorithm to translate multiple computation sets with this restriction is given in appendix B.

The major consequence of this requirement is that any two computation sets sharing a common sequential iterator
at, say, loop nest depth k, 1 ≤ k ≤ m must have all the previous iterators in the same order with the same loop
bounds so that the two computation sets may be merged.

To illustrate this point consider the program in figure 2.22, where arrays a and b have the same iteration space.26666664 −1 0 0
0 −1 0
0 0 −1
1 0 0
0 1 0
0 0 1

3777777524 i
j
k

35 ≤

26666664 −1
−1
−1

n
n
n

37777775 (2.28)

If it was decided to interchange the iterators i and j in the polytope of b to give the new polytope:

CHAPTER 2. NOTATION 32

c,d := for i in 1,n cross j in 1,n
returns array of
for initial
k := 1;
a := init-a;
b := init-b;

while (k<=n)
repeat
k := old k + 1;
a := old a + (3 * old b);
b := a + (2 * old a) + (3 * old b);

returns value of a
value of b

end for
end for

Figure 2.22: A Sisal Program26666664 −1 0 0
0 −1 0
0 0 −1
1 0 0
0 1 0
0 0 1

3777777524 j
i
k

35 ≤

26666664 −1
−1
−1

n
n
n

37777775 (2.29)

then, on translating to the imperative language, it would be impossible to fuse the loops and thus the program in
figure 2.23 would result, which clearly does not preserve data dependence.

If the interchange had not taken place then the legal program in figure 2.24 would be given.

Thus when more than one computation set shares a nested sequential iterator, the analysis and transformations
must be performed simultaneously with respect to the computation sets involved.

With the aforementioned conditions, transformations upon each computation set can proceed largely indepen-
dently. Only the condition regarding a shared sequential loop restricts this.

2.3.4 Creation and Reduction Parallelism

As mentioned in the introductory chapter, two forms of parallelism are exploited, namely creation and reduction
parallelism. Translating for creation parallelism is essentially the method described in the previous sub-section.
Translating for reduction parallelism requires a small modification.

Consider the Sisal program in figure 2.25 which has the following polytope, occurrence matrices and index
domains:

CHAPTER 2. NOTATION 33

FOR i = 1 TO n
FOR j = 1 TO n
FORITER k = 1 TO n
a := olda+(3* oldb)

END FOR
c[i,j] := a

END FOR
END FOR
FOR j = 1 TO n
FOR i = 1 TO n
FORITER k = 1 TO n
b := a+ (2* olda) + (3* oldb)

END FOR
d[i,j] := b

END FOR
END FOR

Figure 2.23: An Imperative Program

FOR i = 1 TO n
FOR j = 1 TO n
FORITER k = 1 TO n
a := olda+ (3* oldb)
b := a+ (2* old a) + 3* old b

END FOR
c[i,j] := a
d[i,j] := b

END FOR
END FOR

Figure 2.24: An Imperative Program

a:= for i in 1,64
returns array of
for k in 1, 64
returns value of sum
b[i,k]

end for
end for

Figure 2.25: A Sisal Program

CHAPTER 2. NOTATION 34

sum : real
a[(17..32)] : real
b[(17..32),(1..64)] :real
FOR i = 17 TO 32
sum := 0
FOR k = 1 TO 64
sum := sum + Get(b[i,k])

END FOR
a[i] := sum

END FOR

Figure 2.26: An Imperative Program2664 −1 0
0 −1
1 0
0 1

3775� i
k

�
≤

2664 −1
−1
64
64

3775 (2.30)Ca =
�

1 0
�U1.b =

�
1 0
0 1

�
(2.31)�

1
�

≤
�

ia
1

�
≤
�

64
�

(2.32)�
1
1

�
≤
�

ib
1

ib
2

�
≤
�

64
64

�
(2.33)

Consider the case when there are 4 processors and we are interested in the the local iteration space and index
domain of processor 2. In compiling for creation parallelism, the i loop will be parallelised which implies that b
is to be partitioned along the first index. This gives the following local values:2664 −1 0

0 −1
1 0
0 1

3775� i
k

�
≤

2664 −17
−1
32
64

3775 (2.34)�
17
�

≤
�

ia
1

�
≤
�

32
�

(2.35)�
17
1

�
≤
�

ib
1

ib
2

�
≤
�

32
64

�
(2.36)

this results in the local program given in figure 2.26

The method by which the particular local polytope and index domain are formed is not the concern here. The
important feature is that the processor accesses potentially non-local data which is used to assign values to the
local portion of the distributed array.

CHAPTER 2. NOTATION 35

sum : real
psum[(2..2)]:real
a[(17..32)] : real
b[(1..64),(17..32)] :real
FOR i = 1 TO 64
psum[2] := 0
FOR k = 17 TO 32
psum[2] := psum[2] + b[i,k]

END FOR
IF (i>=17) AND (i<=32)
THEN sum:= 0

FOR x = 1 TO 4
sum := sum + Get(psum[x])

END FOR
a[i] := sum

END IF
Sync

END FOR

Figure 2.27: An Imperative Program

Exploiting reduction parallelism implies parallelising the k loop and partitioning the b array on the second index.
This gives the following local iteration space and index domain:2664 −1 0

0 −1
1 0
0 1

3775� i
k

�
≤

2664 −1
−17

64
32

3775 (2.37)�
17
�

≤
�

ia
1

�
≤
�

32
�

(2.38)�
1

17

�
≤
�

ib
1

ib
2

�
≤
�

64
32

�
(2.39)

In translating into the imperative language the program, shown in figure 2.27, is derived.

Several points are worth noting. Firstly no Get operator prefixes the u-occurrence of b[i, k]. This is because, in
reduction parallelism, all work is performed upon local data. The IF statement is required as only part of the time
will the accumulated value, calculated locally, be assigned to local data. When a local element is to be created,
the partial sums calculated by each of the other 3 processors are accessed and hence the need for the Get operator
around the u-occurrence of psum[x]. Finally the barrier synchronisation Sync is required so that the correct value
of psum is accessed. This construct is only used in compiling for reduction parallelism.

Compiling for reduction parallelism is slightly more involved in the translation to imperative form stage. An
algorithm to perform this additional work is given in appendix B.

CHAPTER 2. NOTATION 36

2.4 Architectural model

A simple model of a DMA is used in this thesis. Firstly they are defined as being homogeneous i.e. each processor
is identical and has an equal amount of memory. Non-local access on DMAs, such as the Intel hypercube, for
example, is two orders of magnitude more expensive than local access. The time per hop across the processors
is a small fraction of the total time to transfer the data and thus it is reasonable to model such DMAs as two-
tier memory hierarchies [ROGE90]. Therefore memory access is either local or non-local where there is no
consideration of the distance to non-local memory. No interconnection topology is assumed, except that there
exists a path from any one processor to all others and that multi- dimensional rectangular grids may be embedded.

It is important to develop a cost model based on this architectural model to later determine the efficiency of a
transformation. The measures introduced in this section broadly describe the cost of computation and communi-
cation for a DMA. These measures assume a static, one process per processor implementation and, thus, the costs
of process creation or spawning, process migration and context switching are not present.

The execution time will, in general, be a function of the problem size and the number of processors available.
Let Problem size = n, Number of processors =p
The following metrics are largely based on [TSEN89].

2.4.1 Computation

The first metric is concerned with the amount of “useful work” and is simply the amount of computation per-
formed. This is defined as the number of operations performed including all integer and real arithmetic. The time
to execute a program in parallel is assumed to be the number of operations performed on the critical path.

Let the total number of operations, if the program were executed upon one processor, be Op, then Op can be split
Op = S + Co where Co is the time spent in potentially parallel activity e.g. for loops, and S is the remainder. The
best execution time would be S + Co

p but this may not be achievable due to load imbalance.

2.4.2 Load Balance

Let the average number of parallel operations per processor: c̄o = 1
pCo. The load balance of a processor is

defined as the difference between the number of computations performed by that processor and the average. If
the modulus of this value is used, then the load imbalance for processor z is σcoz = |coz − c̄o|, z ∈ 1, … , p

2.4.3 Communication

For most non-trivial applications, communication is inevitable when a program is implemented on a DMA, so
references to memory are distinguished by whether or not the accessed memory is local to the processor. Com-
munication takes place due to non-local access to memory. Let the number of non-local accesses in processor z
be: naz, z ∈ 1, … , p

It is assumed that the maximum values of σcoz and naz will dominate the overhead in execution time. Therefore
techniques are developed in chapters 3 to 5 to reduce these values. In chapter 6 the maximum load imbalance

CHAPTER 2. NOTATION 37

and non-local access will be calculated for several transformed programs. These values will help evaluate the
compilation strategy used.

2.5 Summary

In this chapter, the source and target languages for compilation have been presented. A computation set notation
has been developed which is suitable for analysis and transformation. An outline of a scheme for translating
one program form into another has been given, which included a description of some transformation restrictions.
Finally a simple machine model has been presented so as to allow later evaluation of the compilation scheme
presented in this thesis.

Chapter 3

Load Balancing

This chapter is concerned with the efficient mapping of array computation to processors. The major overhead
associated with the mapping of computation is load imbalance. An optimising compiler must find a mapping such
that this overhead is minimised.

The first section describes load balancing in general and describes an algorithm to determine how to partition the
computation. In general the algorithm is very expensive and may not find the best load balancing partition. In
the second section, perfect load balancing is defined as an invariancy condition. A transformation to reveal such
invariancy for conditional-free polytopes is given. Section two is based upon the paper [OBOY92].

In the subsequent section, the analysis is extended to include if expressions, where, by reordering the iterators, it
is possible that they may be removed so as to allow invariant analysis. For those computations where no invariant
partitions can be found, interleaving is discussed. Finally a summary of the major points is given.

3.1 General Load Balancing

3.1.1 Identification of Parallelism

Compilation should minimise parallel time by utilising machine parallelism and reducing overhead. The first
stage of compilation is therefore to identify and match program parallelism to machine parallelism. Machine
parallelism is defined simply as the number of processors p. As the underlying model of computation used in
this thesis has one process per processor, it is necessary to identify and divide an array computation into p sub-
computations.

Each iteration of a Sisal for loop may be executed independently and is thus ideal for parallel execution. In this
thesis only for loops are considered for exploitation of parallelism. for initial loops are considered to require
sequential execution. Of course this is a very conservative view of program parallelism, in particular, it is possible
(though possibly bad programming style) to write a for initial loop describing completely parallel computation.
Compiling for parallelism is the task of selecting one or more iterators which are partitioned into groups and
scheduled across the processors. In effect each processor performs a sub-set of the loop iterations. This has, in
the past, been called loop elimination [CALL88].

38

CHAPTER 3. LOAD BALANCING 39

a := for i in 1,100 cross j in 1,100
returns array of
for k in 1,i
returns value of sum b[i,k]+c [k,j]
end for

end for

Figure 3.1: Nested Computation

To motivate the rest of this chapter consider the example in figure 3.1. If the i loop is partitioned and statically
scheduled across 10 processors, such that the first processor receives the first 10 iterations, the second processor
the next 10 etc., then the first processor will perform 5,500 iterations, the last processor will perform 95,500, with
the average being 50,500. If, however, the j loop were chosen all processors would perform 50,500 iterations. If it
is assumed that the time to execute such a program is dominated by the processor performing the most iterations,
then clearly partitioning with respect to j is preferable.

3.1.2 Optimisation

Associated with each computation set, Q, there is a polytope, AJ ≤ b, describing the iteration space. In general
this polytope is of the form: 24 −L

UE 35 Jm ≤

24 −l
u
ε

35 (3.1)

where L, U, l, u are derived from the loop bounds and E , ε are conditionals.

The polytope, AJ ≤ b, encloses a lattice of points, Latt(A.b), known as the iteration space. It is assumed that the
amount of work associated with each lattice point is constant. If there are conditionals which are a function of the
iterators present, these will be incorporated in the polytope which will restrict the number of lattice points, but
the amount of work per point remains the same. However if the conditionals are not a function of the iterators,
i.e. data dependent, then it is not possible to determine at compile time their effect. Thus it is a reasonable
assumption to ignore their effect by considering the amount of computation associated with each point to be
constant throughout the lattice. A load balanced mapping is one where the number of lattice points is the same
in each processors. This is subject to the scheduling constraint that partitioning may take place only with respect
to for loops.

Given that m is the number of iterators or the dimension of the iteration space, let r be the number of parallel
iterators. It is necessary to partition the sub-lattice enclosed within ArJr ≤ br, which is a projection along the
serial iterators [SCHR86], into p sub-spaces. In general r ⁄= m as Jm contains serial for initial loops, which are
not candidates for partitioning.

The points in the sub-lattice Latt(Ar.br) are those that may be evaluated in parallel. Let q be such a point,
q ∈ Latt(Ar.br). Each point q has a lattice Latt(Am−r.bm−r) associated with it. In other words each point that may
be evaluated in parallel has computation points associated with it, which must be evaluated sequentially. Let |q|x
be the number of points assigned to a processor x. We can state load balancing in this case to be find a mapping,

CHAPTER 3. LOAD BALANCING 40

π , which maps each parallel lattice point to a processor x :

π : q 7! x ∀q ∈ Latt(Am.bm), x ∈ 1, … , p (3.2)

such that
|q|x = |q|y, ∀x, y ∈ 1, … , p (3.3)

In general this is not achievable and must be expressed as an optimisation problem where 3.3 is replaced by

Minimise(max
x

(|q|x) −
Pp

x=1 |q|x
p

) (3.4)

3.1.3 Volume of Polytope

For each iterator j ∈ J, if the number of computation points can be determined, then the best choice of iterator
for partitioning is the one where the number of computation points varies the least with respect to the iterator.

One expensive method based on this observation is to partition the iteration space into a number of sub-spaces
say s. The lattice Latt(A.b) will also be partitioned into a similar number of sub-lattices. This is made possible
by forming s instances of the polytope, where the iterator(s) to be partitioned have the added constraint that they
must range over a sub-range(s). Partitioning a lattice into s sub-lattices is realised by intersecting the iteration
space with s − 1 parallel hyperplanes. The choice of hyperplane is, in general, arbitrary and can be any linear
combination of the iterators. In practice some constraint must be placed on the number of partitions investigated
to make the scheme computationally feasible. If the hyperplanes are restricted to being orthogonal with respect
to the iterators, then the number of choices reduces to r or 2r − 1 if the lattice is to be partitioned by more than
one iterator.

It is then necessary to determine the number of integer points in each of the sub-polytopes where the maximum
value is recorded as this will dominate the load imbalance. This is repeated for the other partitions where the
partition having the smallest maximum is the best candidate for load balancing.

It is important that finding the number of points in a sub-polytope is relatively easy. There exists an O(m19)
algorithm [DYER91] based on random walking for general convex bodies. It determines the volume of euclidian
space rather than the number of integer points. This approximation is acceptable for our purposes, however the
probabilistic nature of the algorithm and its high polynomial term are prohibitive. Other methods to calculate
the volume of polytopes have been found [LAWR91]. However in the general case they are #P hard, though the
average complexity for polytopes with integral points may be polynomial [STAN86]. At present the complexity
of determining the best partitioning is O((2r − 1) × s × m19), where s is the number of partitions.

Ideally the value of s should be exactly p, the number of processors. If however this is too expensive then a
smaller value of s may be used i.e. when s >> 2r − 1 and s >> m19.

Although this procedure can be used, it is computationally expensive. Additionally, it may be that there exists a
non-orthogonal partition which gives a better load balanced implementation. Throughout the remainder of this
chapter, a method is developed which determines the existence and form of a transformation which will convert a
computation set into a load balanced form. Initially the analysis is developed for polytopes with no conditionals,
i.e. E = 0, ε = 0 in 3.1. Once this has been established, additional criteria for the general case are developed.

CHAPTER 3. LOAD BALANCING 41

3.2 Conditional- Free Polytopes

Transforming for load balancing is based upon the following observation: The iterator that neither makes
reference to any other iterator in its loop bounds, nor is referenced by any other, may be partitioned to give
perfect load balance. A computation set is defined as being in perfect load balanced form when each iteration
of a particular iterator involves exactly the same amount of computation. The following section formalises this
idea and provides a mechanism to transform loops accordingly.

Consider the lattice Latt(A.b). We seek a method of partitioning this polytope into p subsections such that the
number of points scheduled to each is equal. Such a scheme provides perfect load balance. If we consider just
orthogonal partitions of the polytope (partitions that are perpendicular to an iterator axis), then we seek the parallel
iterator that may possess this property. In general we seek an iterator where the number of points associated with
that iterator is not a function of that iterator, i.e. it is invariant.

Each iterator j ∈ Jm has a lattice Latt(Am−1.bm−1) of computation points associated with it. We need to find
a parallel iterator, jb ∈ Jr , where r is the number of parallel iterators, such that the number of points in its
associated lattice is invariant of such an iterator.

For the sub-set of programs that possess affine loops, it is possible to determine whether a lattice may be partitioned
in a load balanced manner. Firstly a representation is introduced which describes nested affine loops for which
the criteria for perfect load balancing can be formally stated. Secondly a method is introduced which discovers if
a particular iterator can be transformed into a perfect load balanced iterator. This transformation is equivalent to a
change in basis for the iteration space. An extension to this method follows whereby partitioning with respect to
several iterators can be determined. Finally the need for reordering the iterators for code generation is explained
and a method to achieve this for load balanced iterators is described.

We first formally present the invariance condition necessary for load balancing in terms of the loop structure and
provide an example to illustrate this.

Given the system of inequalities described by the loop bounds:

LJ ≥ l (3.5)

UJ ≤ u (3.6)

Definition 11 Let eT
b be the bth row of the identity matrix, then the invariance condition is defined as:

eT
b L = eT

b U = eT
b (3.7)

Leb = Ueb = eb (3.8)

The significance of the invariance condition is that the iterator jb satisfying 3.7 and 3.8 is invariant if it does not
make reference to other iterators nor is it referenced by any other iterator. In general both L and U will be of the
form: 24 Lƒ 0 0

yL 1 0
AL xL Lg

35 ,

24 Uƒ 0 0
yU 1 0
AU xU Ug

35 (3.9)

CHAPTER 3. LOAD BALANCING 42

a:= for i in 1,n cross j in 1,n
returns array of
for k in 2*i, 3*i
returns value of sum b[i,i]-c[k-j]
end for

end for

Figure 3.2: A Sisal Program

where Lƒ and Uƒ are (b − 1) × (b − 1) lower unit diagonal triangular matrices, Lg and Ug are (m − b) × (m − b) lower
unit diagonal triangular matrices, yL and yU are 1 × (b − 1) vectors, xL and xU are (m − b) × 1 vectors and AL and
AU are arbitrary integer (m − b) × (b − 1) matrices.

As stated previously a candidate iterator for partitioning is one which does not refer to the bounds of any other
loop. Therefore for an iterator jb ∈ Jm to satisfy 3.7 and 3.8 we require the following:

yL = yU = 0 (3.10)

and
xL = xU = 0 (3.11)

Therefore it is necessary to inspect each row in L, U to see if these conditions are satisfied. In general for a given
set of loops this will not be true.

To illustrate these points, consider the computation in figure 3.2. The range of each of the iterators is represented
by two matrix inequalities where each row corresponds to a unique iterator, and each matrix corresponds to the
lower and upper bounds of the loop respectively :24 1 0 0

0 1 0
−2 0 1

3524 i
j
k

35 ≥

24 1
1
0

35 (3.12)24 1 0 0
0 1 0

−3 0 1

3524 i
j
k

35 ≤

24 n
n
0

35 (3.13)

Here conditions 3.10 and 3.11 hold only for the second loop j.

However it is possible that none of the iterators have this form but may be transformed (with corresponding
adjustments to the array occurrences) to a load balanced form. This is the subject of the next section.

3.2.1 Transformations

Legal transformations include any reordering of the computation that maintains the data dependency of the original
program. By restricting this reordering to forall loops which contain no cross-iteration dependencies, all data
dependencies are preserved. Additionally after transformation the polytope representation of the iteration space
should be in the canonical form so as to allow translation to the imperative language described in chapter 2. Finally
it is assumed that if the following transformations are performed on a computation set which has a common nested
serial iterator, then the analysis and transformations are performed simultaneously.

CHAPTER 3. LOAD BALANCING 43

3.2.2 Change of Basis

Given an L, U and a form Lb, Ub, where the iterator jb is in a load balanced form satisfying 3.10 and 3.11, find a
transformation, π , such that:

π : L 7! Lb (3.14)

π : U 7! Ub (3.15)

We look at a restricted set of unimodular transformations [BANJ90] which satisfy 3.14 and 3.15 by post multi-
plication by a unit lower triangular matrix T, which changes the basis of J 7! TJb. The system of inequalities
described by the loop bounds remains unchanged by this transformation.

LJ ≥ l (3.16)

UJ ≤ u (3.17)

L(TT−1)J ≥ l (3.18)

U(TT−1)J ≤ u (3.19)

(LT)(T−1J) ≥ l (3.20)

(UT)(T−1J) ≤ u (3.21)

If in addition an integer matrix T exists such that LT = Lb, UT = Ub, with Jb as the new iterators, then 3.20 and
3.21 may be written:

LbJb ≥ l (3.22)

UbJb ≤ u (3.23)

3.2.3 Existence Condition

In this section the necessary and sufficient conditions for the existence of a unimodular unit lower triangular
matrix T is addressed.

Necessity: Assume there is a T such that LT = Lb, UT = Ub. The forms of L, U, T are as follows:24 Lƒ 0 0
yL 1 0
AL xL Lg

35 ,

24 Uƒ 0 0
yU 1 0
AU xU Ug

35 ,

24 Tƒ 0 0
yT 1 0
AT xT Tg

35 (3.24)

To satisfy the invariance condition, we require Lb and Ub to be of the following form:24 Lb
ƒ 0 0

0 1 0
Ab

L 0 Lb
g

3524 Ub
ƒ 0 0

0 1 0
Ab

U 0 Ub
g

35 (3.25)

Condition 3.10 implies that:
yLTƒ + yT = 0 (3.26)

yUTƒ + yT = 0 (3.27)

Therefore
(yU − yL)Tƒ = 0 (3.28)

CHAPTER 3. LOAD BALANCING 44

As Tƒ ⁄= 0 then
yU = yL (3.29)

This is the first condition for existence of T. Condition 3.11 implies that:

LgxT = −xL (3.30)

UgxT = −xU (3.31)

Thus the solutions for xT given by 3.30 and 3.31 must be consistent. Equations 3.30 and 3.31 may be written:��
1 0
xL Lg

�
−
�

1 0
xU Ug

���
1
xT

�
= 0 (3.32)�

1 0
xL Lg

� �
1
xT

�
=
�

1
0

�
(3.33)

Together these form the second and third condition for existence of T. Clearly 3.29, 3.32 and 3.33 must hold if a
transformation is to be determined. This establishes the necessity.

Sufficiency: Assume 3.29 holds, and there is xT satisfying 3.32 and 3.33 then:

T =

24 Ib−1 0 0
−yL 1 0
0 xT Im−b

35 (3.34)

is the desired unimodular transformation corresponding to iterator jb.2
3.2.4 Algorithm 1

The following algorithm determines whether a transformation T exists and, if it does, finds it. In addition, the
relationship between the new iteration space and the old one is determined, so that the relevant array occurrences
may be altered accordingly.

for each jb ∈ Jm

1. Check yL = yU . If not terminate.

2. Choose an arbitrary lower unit diagonal Tƒ e.g. unity.

3. Calculate yT = −yLTƒ

4. Solve
��

1 0
xL Lg

�
−
�

1 0
xU Ug

���
1
xT

�
= 0

5. Check if consistent. If not terminate

6. Solve

�
1 0
xL Lg

��
1
xT

�
=

�
1
0

�
7. Check steps 4 and 6 are consistent. If not terminate

CHAPTER 3. LOAD BALANCING 45

a := for i in 1,n
returns array of
for j in n+i-1,2*n+i+1 cross k in 1+2*i+2*j,n+3*i+2*j
returns value of sum c[i,k]*d[i-j,k]
end for

end for

Figure 3.3: A Sisal Program

8. Choose an arbitrary lower unit diagonal Tg e.g. unity.

9. Choose an arbitrary matrix AT e.g. the null matrix.

10. Construct T

11. Calculate Lb = LT, Ub = UT

12. For each j ∈ J in each array occurrence substitute J = TJb

The complexity of this algorithm is dominated by steps 4 and 6. Thus the upper bound complexity is O(m2). If
this process is repeated for all the iterators then the upper bound complexity is O(m3). To illustrate this algorithm,
consider the program in figure 3.3. In its present form it does not satisfy the invariance condition. The upper and
lower bounds for each of the iterators are as follows:24 1 0 0

−1 1 0
−2 −2 1

3524 i
j
k

35 ≥

24 1
n − 1

1

35 (3.35)24 1 0 0
−1 1 0
−3 −2 1

3524 i
j
k

35 ≤

24 n
2n + 1

n

35 (3.36)

By applying algorithm 1, it is possible to determine if this program may be transformed into an invariant form.
Test the first iterator i:

1. Not Applicable.

2. Not Applicable.

3. Not Applicable.

4. Find xT where "
1 0 0

−1 1 0
−2 −2 1

#
−

"
1 0 0

−1 1 0
−3 −2 1

#!"
1
x2

x3

#
=

"
0
0
0

#
.

This implies 1 = 0. A contradiction and thus loop i is rejected.

Now try the second iterator j i.e. b = 2.

1. yU = −1 and yL = −1 therefore yU = yL is satisfied.

2. Tƒ = 1

3. yT = −(−1)1 = 1

CHAPTER 3. LOAD BALANCING 46

FOR i = 1 TO n
a[i] := 0
FOR j = n-1 TO 2*n+1
FOR k = 1+4*i TO n+5*i
a[i] := a[i]+ (Get(c[i,k+2*j])*Get(d[-j,k+2*j]))

END FOR
END FOR

END FOR

Figure 3.4: An Imperative Program

4. Find xT where��
1 0

−2 1

�
−
�

1 0
−2 1

���
1
x

�
=

�
0
0

�
.

This is true for all x.

5. No contradiction

6. Find xT where�
1 0

−2 1

��
1
x

�
=

�
1
0

�
.

This implies x=2. No inconsistency

7. 5 and 6 give consistent results for x

8. Tg = 1

9. AT = 0

10. T =

"
1 0 0
1 1 0
0 2 1

#
11. Lb ="

1 0 0
−1 1 0
−2 −2 1

#"
1 0 0
1 1 0
0 2 1

#
=

"
1 0 0
0 1 0

−4 0 1

#
Ub ="

1 0 0
−1 1 0
−3 −2 1

#"
1 0 0
1 1 0
0 2 1

#
=

"
1 0 0
0 1 0

−5 0 1

#
12.

"
i
j
k

#
=

"
1 0 0
1 1 0
0 2 1

#"
i′

j′

k′

#
=

"
i′

j′ + i′

k′ + 2j′

#
If the same procedure is applied to iterator k, b = 3, it is seen that it fails on the first step. yL = [−2, −2], yU =
[−3, −2], yU ⁄= yL. So loop k is not a candidate for partitioning for load balancing.

As only loop j is in invariant form we derive the program given in figure 3.4. For the sake of clarity, the
initialisation of variables is not shown in the examples in the remainder of this thesis.

Note that the constant terms in the loop are unaffected by the transformation. The array references are adjusted in
accordance with step 12. No other loop depends on the new j loop, therefore parallelising and partitioning with
respect to this loop will give a load balanced implementation.

CHAPTER 3. LOAD BALANCING 47

3.2.5 Multiple Iterators

If each of the r parallel loops are successful candidates for load balancing, then there are potentially 2r − 1
permutations which may be used to partition the iteration space. To determine whether a combination of iterators
can partition the iteration space in a load balanced manner, a modification of algorithm 1 is required. In this section
we propose a new algorithm to construct a new transformation T′

s which has the combined effect of transforming
each load balanced loop j = i1, … , is where s ≤ r is the number of invariant loops and i1 < ⋅ ⋅ ⋅ < is are the values
of loops to be load balanced.

Let Tik be the individual transformation on a particular iterator k as given by algorithm 1. The first theorem below
shows that given the transformation T′`−1 that makes invariant all loops i1 < i2 < .. < i`−1 and the transformations
Ti` determined by Algorithm 1 for iterator i` alone, T′` can be constructed to include the new iterator i` . Two
lemmas are required to prove this theorem. The first is a technical condition to aid the proof, the second ensures
that the form of the transformation is legal.

T′
s is defined by a corollary to the main theorem and provides the basis for a simple algorithm to simultaneously

make invariant all load balanced loops.

Lemma 1 Given T′`−1 such that LT′`−1, UT′`−1 is jointly invariant for j ∈ i1, … , i`−1 i.e.

LT′`−1eik = UT′`−1eik = eik ∀k ∈ 1, … , ` − 1 (3.37)

eT
ik LT′`−1 = eT

ik UT′`−1 = eT
ik ∀k ∈ 1, … , ` − 1 (3.38)

then T′`−1 can be chosen so that:
T′`−1eik = eik ∀k ≥ ` (3.39)

Proof of Lemma 1 This follows immediately by observing that the invariance conditions 3.37,3.38 impose con-
straints only on elements in the m × (` − 1) sub-matrix of T′`−1 and hence the (m − ` + 1) × (m − ` + 1) right hand
corner sub-matrix of T′`−1 can be set to identity without violating 3.37 and 3.38. 2
Theorem 1 If T′` is defined as:

T′` = T′`−1 − ei`eT
i`LT′`−1 + Ti`ei` eT

i` (3.40)

the T′` is the transformation that satisfies the invariance condition for all load balanced loops j ∈ i1, … , i` i.e.

LT′`eik = UT′`eik = eik ∀k ∈ 1, … , ` (3.41)

eT
ik LT′` = eT

ik UT′` = eT
ik ∀k ∈ 1, … , ` (3.42)

The proof requires the following preliminary lemma.

Lemma 2 T′` given in 3.40 is unit lower triangular.

Only an outline of the proof is presented

CHAPTER 3. LOAD BALANCING 48

Proof of Lemma 2 Substitute for T′` from 3.40 and use 3.37 and 3.38 to show

eT
i T′`ej = 0 ∀i < j (3.43)

and
eT

i T′`ei = 1 (3.44)

Proof of Theorem 1 It is sufficient to show 3.41 and 3.42 for LT′`.
step1. Show 3.41 and 3.42 is true ∀k ∈ 1, … , ` − 1 [Proof Omitted]

step2. Show 3.41 and 3.42 is true for k = `
LT′`ei` = L(T′`−1 − ei`eT

i`LT′`−1 + Ti`ei`eT
i`)ei` (3.45)

By Lemma 1 T′`−1ei` = ei`
LT′`ei` = Lei` − Lei`eT

i`Lei` + LTi`ei` (3.46)

As eT
i`Lei` = 1 and LTi`ei` = ei` by invariance of i` for LTi` then:

LT′`ei` = Lei` − Lei` + ei` = ei` (3.47)

Similarly:
eT

i`LT′` = eT
i`LT′`−1 − eT

i`Lei`eT
i`LT′`−1 + eT

i`LT′
i`ei`eT

i` (3.48)

As eT
i`LTi` = eT

i` and simplifying gives
eT

i`LT′` = eT
i`ei`eT

i` = eT
i` (3.49)

which is the invariance condition and thus T′` is the required transformation. 2
It has been shown that T′` is the transformation that load balances ` iterators provided T′`−1 is given. The following
corollary constructs the transformation T′

s that load balances all s iterators.

Corollary 1 T′
s = T′

s−1 − eis e
T
is LT′

s−1 + Tis eise
T
is is the transformation for joint invariance of j ∈ i1, … , is

Proof of Corollary 1 set T′
1 = Ti1 and recursively apply theorem 1 for k = 2, … , s2

3.2.6 Algorithm 2

It is now possible to give a simple algorithm that uses the result of theorem 1 to construct a transformation that
transforms all load balanceable loops into invariant form.

1. Apply Algorithm 1 to give the invariant iterators j ∈ i1, … , is and the canonical transformations Ti1 , … , Tis .
If s ≤ 1 Stop.

2. Set T′
1 = Ti1

CHAPTER 3. LOAD BALANCING 49

a := for i in 1,n
returns array of
for j in -i+1,n-i
cross k in -1-i-j ,-j+3
cross l in 1-i-2*j-k , 2*n-2*j-k-i
cross m in 2*j+6*i+k-l-1, i-k-l+n
returns value of sum
2*(b[i,k] * c[k,l] + d[m,m-1])/b[j,j]

end for
end for

Figure 3.5: A Sisal Program

3. For k ∈ 2, … , s

T′
k = T′

k−1 − eik eT
ik LT′

k−1 + Tik eik e
T
ik (3.50)

Complexity: The extra cost of computing the transformation T′
s, step 3 of Algorithm 2 has an upper bound less

than O(s.is
2) ≤ O(m3). As Algorithm 1 has an upper bound complexity of O(m3) this new algorithm does not

alter the overall complexity of the scheme. To illustrate this algorithm, consider the following slightly contrived
example in figure 3.5. This example has been chosen to show that load balancing of parallel affine loops is
non-trivial in more complex cases, such as when more than one iterator is a candidate for load balancing.

This loop nest has the following upper and lower bound matrices on J5:

L =

266664 1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 2 1 1 0

−6 −2 −1 1 1

377775 l =

266664 1
1

−1
1

−1

377775 (3.51)

U =

266664 1 0 0 0 0
1 1 0 0 0
0 1 1 0 0
1 2 1 1 0

−1 0 1 1 1

377775u =

266664 n
n
3

2n
n

377775 (3.52)

On applying algorithm 1, j2 and j4 are the only candidates for load balancing, s=2. The corresponding transfor-
mation matrices for both iterators are as follows:

Tj2 =

266664 1 0 0 0 0
−1 1 0 0 0

0 −1 1 0 0
0 −1 0 1 0
0 2 0 0 1

377775 (3.53)

Tj4 =

266664 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

−1 −2 −1 1 0
0 0 0 0 1

377775 (3.54)

CHAPTER 3. LOAD BALANCING 50

To find the transformation T′
s, s = 2 for joint invariance of j2, j4, apply step 2 of Algorithm 2.

T′
1 = Tj2 (3.55)

T′
2 = T′

1 − ej4 eT
j4 LT′

1 + Tj4 ej4 eT
j4 (3.56)

This gives

T′
2 =

266664 1 0 0 0 0
−1 1 0 0 0

0 −1 1 0 0
1 −1 −1 1 0
0 2 0 −1 1

377775 (3.57)

Applying T′
2 to L and U gives:

L =

266664 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

−3 0 −2 0 1

377775 l =

266664 1
1

−1
1

−1

377775 (3.58)

U =

266664 1 0 0 0 0
0 1 0 0 0

−1 0 1 0 0
0 0 0 1 0
0 0 0 0 1

377775 u =

266664 n
n
3

2n
n

377775 (3.59)

Note that rows and columns 2 and 4 are in invariant form for both upper and lower bounds. The array occurrences
must be expressed with respect to the new iteration basis:266664 i

j
k
l
m

377775 =

266664 1 0 0 0 0
−1 1 0 0 0

0 −1 1 0 0
1 −1 −1 1 0
0 2 0 −1 1

377775266664 i′

j′

k′

l′

m′

377775 (3.60)266664 i
j
k
l
m

377775 =

266664 i′

j′ − i′

k′ − j′

l′ − k′ − j′ + i′

m′ − l′ + 2j′

377775 (3.61)

This give the transformed program of figure 3.6.

Although loops j and l are in load balanced form, they are not outermost. The next section describes a method
whereby the loops may be always re-ordered so that they are outermost.

3.2.7 Reordering Iterators

Having determined which iterator(s) are to be used to partition the computation lattice, it may be desirable to have
these iterators as far out as possible in the loop structure. In this section it is shown that load balanced iterators

CHAPTER 3. LOAD BALANCING 51

FOR i = 1 TO n
FOR j = 1 TO n
FOR k = -1 TO i+3
FOR l = 1 TO 2*n
FOR m = 3*i+2*k -1 TO n
a[i] := a[i] +2*(Get(b[i,k-j])*Get(c[k-j,l-k-j+i])

+ Get(d[m-l+2*j,m-l+2*j-1]))/ Get(b[j-i,j-i])
END FOR

END FOR
END FOR

END FOR
END FOR

Figure 3.6: An Imperative Program

can be moved to the outermost nest by a sequence of unimodular transformations, whilst preserving the affine
structure of the loop.

Theorem 2 shows that one invariant iterator can be moved one nest level up by a unimodular transformation.
By extending this result it is possible to move multiple iterators to the outermost nest by a succession of these
unimodular transformations. To prove this theorem some preliminary definitions and lemmas are first required.

Let Ei,k be the permutation of identity with row i and k interchanged. Ei,k is unimodular, and Ei,k
−1 = Ei,k .

Interchange of iterator ji with jk can be represented as:

J′ = Ei,kJ ji, jk ∈ J (3.62)

Let L, U be in load balanced form with iterator ji ∈ J invariant. The following are defined:

L′ = Ei−1,iLEi−1,i (3.63)

U′ = Ei−1,iUEi−1,i (3.64)

J′ = Ei−1,iJ (3.65)

l′ = Ei−1,il (3.66)

u′ = Ei−1,iu (3.67)

Lemma 3 L′, U′ are unit lower triangular.

The importance of Lemma 3 is in establishing that the unimodular transformation described in 3.63 and 3.64
preserve the affine structure of the loop.

Proof of Lemma 3 L, U are in load balanced form and ji is the invariant iterator. Therefore

eT
i Lei−1 = eT

i Uei−1 = 0 (3.68)

As loop interchange is restricted to neighbouring iterators of ji, in this case ji−1, the only possible non-zeros in
the upper triangular part of L′ and U′ are the (i − 1, i) elements. From 3.63 and 3.64 it can be seen that

eT
i−1L′ei = eT

i Lei−1 = 0 (3.69)

CHAPTER 3. LOAD BALANCING 52

eT
i−1U′ei = eT

i Uei−1 = 0 (3.70)

The effect of the transformations in 3.63 and 3.64 on the diagonal elements of L and U is to interchange the (i, i)
and (i − 1, i − 1) elements, which are both equal to one. This establishes that L′ and U′ are unit lower triangular.

Lemma 4 The iteration spaces represented by
LJ ≥ l (3.71)

UJ ≤ u (3.72)

and
L′J′ ≥ l′ (3.73)

U′J′ ≤ u′ (3.74)

are equivalent.

Proof of Lemma 4 By Lemma 3, 3.73 and 3.74 represent a legal affine loop. It remains to show the equivalence
of system of inequalities 3.71, 3.72 and 3.73, 3.74. Ei−1,iEi−1,i = I in 3.75 and 3.76 which preserves the system of
inequalities.

LEi−1,iEi−1,iJ ≥ l (3.75)

UEi−1,iEi−1,iJ ≤ u (3.76)

Now we substitute from 3.65:
LEi−1,iJ

′ ≥ l (3.77)

UEi−1,iJ
′ ≤ u (3.78)

Now multiply both sides of inequalities in 3.77 and 3.78 by Ei−1,i. This amounts to reordering the inequalities,
thus preserves the iteration space. Substitute from 3.63 to 3.67 to give:

L′J′ ≥ l′ (3.79)

U′J′ ≤ u′2 (3.80)

Theorem 2 Let L′ ,U′ be defined as in 3.63 and 3.64, then ji−1 ∈ J′ is an invariant iterator for L′, U′.i.e.

L′ei−1 = U′ei−1 = ei−1 (3.81)

and
eT

i−1L′ = eT
i−1U′ = eT

i−1 (3.82)

Proof of Theorem 2 It suffices to show 3.81 and 3.82 for L′. By assumption, ji is an invariant iterator for L, U.
Thus

Lei = ei (3.83)

eT
i L = ei (3.84)

By definition
Ei−1,iei−1 = ei (3.85)

eT
i−1Ei−1,i = eT

i (3.86)

CHAPTER 3. LOAD BALANCING 53

Substitute 3.85 in 3.83:
LEi−1,iei−1 = Ei−1,iei−1 (3.87)

Multiply both sides of 3.87 by Ei−1,i and substitute from 3.63:

L′ei−1 = ei−1 (3.88)

Similarly, substitute 3.86 in 3.84:
eT

i−1Ei−1,iL = eT
i−1Ei−1,i (3.89)

Multiply both sides of 3.89 by Ei−1,i and substitute from 3.63:

eT
i−1L′ = eT

i−1 (3.90)

which is the invariant condition and thus ji−1 is an invariant iterator. 2
Theorem 2 shows that the new transformed iterators have any one load balanced loop one loop nest further out
than before.

Observation 1 Similarly,it can be shown that any load balanced iterator ji can be moved one loop nest further
in by applying the permutation transformation J′ = Ei,i+1J. Thus two neighbouring iterators that are both load
balanced will remain so upon interchange

Given the set of iterators JB where iterators j = i1, i2, … , is are the values of the iterators in load balanced form
for

LBJB ≥ l (3.91)

UBJB ≤ u (3.92)

It is necessary to find a unimodular transformation E such that:

Jo = EJB (3.93)

and Jo is the iteration vector with the first s iterators load balanced. Let Ei be the transformation that moves a
particular iterator ji to the outermost scope. It is defined thus:

Ei = E1,2 × E2,3 × ⋅ ⋅ ⋅ × Ei−1,i (3.94)

It should be noted that in general
Ei ⁄= E1,i (3.95)

E is now defined as:
E = Eis × Eis−1 × ⋅ ⋅ ⋅ × Ei1 (3.96)

E is unimodular as it is the product of unimodular transformations. Let

Lo = ELBE−1 (3.97)

Uo = EUBE−1 (3.98)

lo = El (3.99)

uo = Eu (3.100)

Lo, Uo, lo, uo are in the canonical form. This is shown by repeated application of lemma 3. The set of inequalities
given by:

LoJo ≥ lo (3.101)

CHAPTER 3. LOAD BALANCING 54

UoJo ≤ uo (3.102)

are equivalent to 3.91 and 3.92. This can be shown by observing that:

ELB(E−1E)JB ≥ El (3.103)

EUB(E−1E)JB ≤ Eu (3.104)

(ELBE−1)(EJB) ≥ El (3.105)

(EUBE−1)(EJB) ≤ Eu (3.106)

Substituting from 3.97 to 3.100 gives the required form of 3.101 and 3.102.

Finally, by the repeated application of theorem 2 and using observation 1, it can be shown that the first s iterators
of Jo are load balanced for 3.101 and 3.102.

This analysis gives the following algorithm to reorder the iterators.

3.2.8 Algorithm 3

1. For ` ∈ 1, … , s

2. For k ∈ i` to 2 step -1

3. Interchange rows k and k − 1 of U, L, l, u

4. Interchange columns k and k − 1 of U, L, rows k and k − 1 of J

5. End For

6. End For

To illustrate this algorithm consider the matrix form of the program given in figure 3.4 after transforming to
invariant form. 24 1 0 0

0 1 0
−4 0 1

3524 i
j
k

35 ≥

24 1
n − 1

1

35 (3.107)24 1 0 0
0 1 0

−5 0 1

3524 i
j
k

35 ≤

24 n
2n + 1

n

35 (3.108)

There is only one loop j to move out, i.e. s = 1, i = 2, ji = j2 On interchanging rows we have24 0 1 0
1 0 0

−4 0 1

3524 i
j
k

35 ≥

24 n − 1
1
1

35 (3.109)24 0 1 0
1 0 0

−5 0 1

3524 i
j
k

35 ≤

24 2n + 1
n
n

35 (3.110)

CHAPTER 3. LOAD BALANCING 55

FOR j = n-1 TO 2*n+1
FOR i = 1 TO n
FOR k = 1+4*i TO n+5*i
a[i] := a[i] + (Get(c[i,k+2*j])*Get(d[-j,k+2*j]))

END FOR
END FOR

END FOR

Figure 3.7: An Imperative Program

Interchanging columns of U, L and rows of J gives24 1 0 0
0 1 0
0 −4 1

3524 j
i
k

35 ≥

24 n − 1
1
1

35 (3.111)24 1 0 0
0 1 0
0 −5 1

3524 j
i
k

35 ≤

24 2n + 1
n
n

35 (3.112)

which finally gives the program in figure 3.7.

This program has a load balanced loop which is outermost. Each iteration of j will have exactly the same amount
of work to perform and all that is now required is for the n + 3 iterations to be divided amongst the processors.

3.3 General Polytopes

The previous section has described a method for determining a load balanced form (if it exists) of nested affine
loops with no IF expressions. This section addresses a wider class of computation set which includes conditional
evaluation. It is shown that a sub-set of the polytopes can be transformed into a condition free form which is then
amenable to the analysis developed in the previous section. In order to remove conditionals, iterator reordering
is employed which necessitates the addition and removal of constraints. The condition for successful translation
to a condition free polytope is presented. An interesting product of this approach is that it includes all the loop
interchange results described by Wolfe [WOLF91] who uses a functional approach. Finally, the translation of a
polytope into upper and lower bound constraint matrices is defined, whereupon it may be tested for load balancing
purposes.

3.3.1 Polytope Form

The canonical form of a bounded affine polytope

AJ ≤ b (3.113)

is defined as:

CHAPTER 3. LOAD BALANCING 56

a := for i in 1,n cross j in 1,n
returns array of
if (i <= j)
then b[i]*b[j]
else 0
end if

end for

Figure 3.8: A Sisal Program24 −L
UE 35 J ≤

24 −l
u
ε

35 (3.114)

where A is a ` × m integer matrix, b a ` × 1 vector and E , ε are a matrix/vector pair consisting of extra constraints
due to loop body conditionals.

To transform this polytope so as to describe an affine form, it is required that the additional constraints be removed.
The method applied in this section is to reorder the iterators and in the process of removing redundant constraints,
examine if E = 0, ε = 0, i.e. there are no conditionals. It is possible to determine the conditions under which such
a constraint may be removed.

The ability to reorder the iterators of a general polytope is of greater applicability than searching for a load
balanced form. In chapter 5, it is used in a pre-fetching transformation.

3.3.2 Reordering Iterators

In this section, the reordering of iterators is used to form a new polytope. However in general such reordering
introduces additional constraints. Rules are derived whereby spurious conditions may be safely removed. By a
combination of these techniques, it is possible to transform some affine loops into a representation without any
conditionals, which is then amenable to perfect load balance analysis. Consider the program in figure 3.8, this
has the following polytope form describing the computation b[i] ∗ b[j]:266664 −1 0

0 −1
1 0
0 1
1 −1

377775� i
j

�
≤

266664 −1
−1
n
n
0

377775 (3.115)

which is in the canonical form described in 3.114. Before iterators i and j may be interchanged, it is necessary
to re-formulate equations 3.63 to 3.67 for polytopes. To interchange an iterator at position r with the preceding
iterator to give a new polytope we have:24 −L′

U′E ′

35 =

24 Er−1,r 0 0
0 Er−1,r 0
0 0 I

3524 −L
UE 35Er−1,r (3.116)

CHAPTER 3. LOAD BALANCING 57

FOR j = 1 TO n
FOR i = 1 TO n
IF (i <= j)
THEN a[i,j] := Get(b[i]) * Get(b[j])
ELSE a[i,j] := 0
END IF

END FOR
END FOR

Figure 3.9: An Imperative Program

a := for i in 1,n
returns array of
for j in i,n
returns value of sum
b[i]*b[j]

end for
end for

Figure 3.10: A Sisal Program

J′ = Er−1,rJ (3.117)24 −l′

u′

ε ′

35 =

24 Er−1,r 0 0
0 Er−1,r 0
0 0 I

3524 −l
u
ε

35 (3.118)

Where I is the (` − 2m) × (` − 2m) Identity matrix. On applying this to 3.115 we have266664 −1 0
0 −1
1 0
0 1

−1 1

377775� j
i

�
≤

266664 −1
−1
n
n
0

377775 (3.119)

which gives the imperative program in figure 3.9.

However unlike load balanced iterators in the previous section, it is not always possible to simply interchange
iterators in this way. For instance consider the Sisal program in figure 3.10 and its associated polytope.2664 −1 0

1 −1
1 0
0 1

3775� i
j

�
≤

2664 −1
0
n
n

3775 (3.120)

After column and row interchanging we have the following form:

CHAPTER 3. LOAD BALANCING 582664 −1 1
0 −1
1 0
0 1

3775� j
i

�
≤

2664 0
−1
n
n

3775 (3.121)

Unfortunately this is not in the canonical form as the first row does not have a 0 as its second element to restore
the lower triangularity. This is the subject of the next section.

3.3.3 Constraint Addition

Constraints are added to maintain the canonical form of the polytope. The canonical form, in general, is destroyed
after iterator interchange which introduces non-zeros above the two diagonals. By replacing a constraint which
violates the canonical form with an appropriate one and moving the non-canonical constraint to the E , ε portion
of the polytope, it is possible to maintain the correct form.

This substitution involves the creation of a new constraint. A new constraint that can always be legally added is
one which is redundant, i.e. a positive linear combination of 2 or more existing constraints.

Let

B =

24 Er−1,r 0 0
0 Er−1,r 0
0 0 I

35AEr−1,r (3.122)

c =

24 Er−1,r 0 0
0 Er−1,r 0
0 0 I

35 b (3.123)

After row and column interchange, it is possible that non-zero terms will appear in the elements Br−1,r, Bm+r−1,m+r .
In the following discussion the case that a non-zero may have appeared in Br−1,r is examined. The argument is
trivially extended for the Bm+r−1,m+r case.

Let α = Br−1,r be the potential above diagonal non-zero.

Let d be a 1 × m row vector to be known as the desired row constraint such that

dy =

8<: xy y < r − 1
1 y = r − 1
0 y > r − 1

(3.124)

where xy is any integer. In other words d is of the same general form as row r − 1 except that α is set to zero.
Substituting this row d in B is only legal if a positive linear combination of two or more other constraint rows
can form such a row, i.e. it is redundant and describes precisely the same polytope. In fact it can be shown that
d is the positive combination of two rows of B such that:

d =

�
Br−1 + αBr α > 0

Br−1 − αBm+r α < 0
(3.125)

CHAPTER 3. LOAD BALANCING 59

In the case α = 0 no constraint need be added. The corresponding right hand constraint value f is easily derived,

ƒ =

�
cr−1 + αcr α > 0

cr−1 − αcm+r α < 0
(3.126)

The new constraint matrix ` + 1 × m matrix C, in canonical form, is defined as

Cx,y =

8<: Bx,y x ⁄= r − 1 ∧ x ⁄= ` + 1
dy x = r − 1

Br−1,y x = ` + 1
(3.127)

In other words C is the same as B except that the row containing the extra non-zero element is moved to the E
region of the polytope and a legal constraint row replaces it. The new constraint vector g is similarly constructed.

gy =

8<: cy y ⁄= r − 1 ∧ y ⁄= ` + 1
ƒ y = r − 1

cr−1 y = ` + 1
(3.128)

As an example consider the polytope 3.121. The first row is [−1, 1] when [−1, 0] is needed. The combination of
row 1 + row 2 is the necessary combination. This gives ƒ = −1. On replacing row 1 by [−1, 0], the first element of
the constraint vector by −1 and moving the the old row constraint to the E region, we have the following polytope
which is in the canonical form. 266664 −1 0

0 −1
1 0
0 1

−1 1

377775� j
i

�
≤

266664 −1
−1
n
n
0

377775 (3.129)

3.3.4 Removing Redundant Conditions

In this section it is assumed that the polytope is in canonical form at all times, i.e. the procedure described in
the previous section is applied after iterator interchange. The section describes a procedure to find redundant
conditions which can be formed or duplicated by a linear combination of the others.

Firstly Ξ, an (` × `) elimination matrix, is created where each Ξx,y entry represents whether a positive linear
combination of the row constraints x and y of the polytope would legally replace an existing one. The elements of
this matrix contain the value null (⊥) if no such combination exists and the value z if it does exist, where z is the
redundant row condition in the polytope. As it is symmetric, only the lower triangular portion need be calculated
.

This matrix is calculated by starting with the first condition adding a linear combination of each of the remaining
constraints one at a time to see if it duplicates another constraint. If this is so then it is recorded in the elimination
matrix. This is repeated for all the constraints. In other words, does there exist an z such that:�

r1 r2
� � cx

cy

�
=
�

cz
�

∀x ∈ 1, … , `, y ∈ x + 1, … , ` (3.130)

where r1 and r2 are positive integers, cx, cy and cz are rows of the canonically formed C constraint matrix. and�
r1 r2

� � gx

gy

�
=
�

gz
�

∀x ∈ 1, … , `, y ∈ x + 1, … , ` (3.131)

CHAPTER 3. LOAD BALANCING 60

where gx, gy and gz are rows of the canonically formed c constraint vector. This is equivalent to solving for r1, r2 in
an overdetermined system of equations. An additional requirement is that one of the two constraints must replace
the redundant constraint whilst still preserving the canonical form of the polytope. If it cannot, then the redundant
condition must be maintained. Let Nz() be a function that returns the number of right-hand zero elements in a
row vector of a constraint matrix and Right() the value of the right most non-zero term. Thus assuming 3.130 and
3.131 are satisfied then:

Ξx,y = z, iƒ(Nz(cx) = Nz(cz)) ∧ (Right(cx) = Right(cz)) ∧ (x > 2m) (3.132)

Ξx,y = z, iƒ(Nz(cy) = Nz(cz)) ∧ (Right(cy) = Right(cz)) ∧ (y > 2m) (3.133)

Ξx,y = ⊥, otherwise (3.134)

In other words it is only a valid entry if it not only satisfies equations 3.130 and 3.131 but there is also a row that
may replace it with the same number of right hand zeros and the same sign of the diagonal term as the one that is
redundant. This is to preserve lower triangularity in accordance with the canonical form. If these conditions do
not hold then the constraint must be retained.

When all combinations of rows have been examined the following system of equations will be formed

Vγ = δ (3.135)

where γ is a (m × 1) vector variable corresponding to each row of the constraint matrix C and δ a (s × 1) vector
variable whose s elements represent the s redundant constraints in C. V is an (s × m) integer matrix defining the
linear combination of redundant rows. This can be re-expressed as:

Wγ = 0 (3.136)

A negative entry in a row of W implies that the corresponding condition in C is redundant. Furthermore the posi-
tive entries in that same row of W, if combined, make the negative entry redundant. Before a redundant condition
can be removed, all references to it must be adjusted. For example if row 3 of C is a redundant condition
row 3 = row 4 + row 5
and so is row 6
row 6 = row 3 + row 9
Then, if row 3 is removed then its left hand side is substituted in row 6 to give:
row 6 = row 4 + row 5 + row 9

Once all possible conditions of C have been eliminated, each condition corresponding to a remaining negative
entry in W may be replaced by any other condition corresponding to a positive entry as long as the new condition
preserves lower triangularity. Thus if the following condition is left.
row 4 = row 2 + row 7
row 4 can only be removed if either row 2 or row 7 can be placed in the fourth row of C without ruining the
canonical form of the polytope If two rows to be eliminated both require the same condition, then either one is
chosen arbitrarily. So if
row 3 = row 2 + row 8
row 7 = row 4 + row 8
and only row 8 can replace row 3 or row 7 but not both, then a decision is made arbitrarily. Returning to 3.129,
this has the following elimination matrix: 266664 ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ 4 ⊥ ⊥

377775 (3.137)

CHAPTER 3. LOAD BALANCING 61

FOR j = 1 TO n
FOR i = 1 TO j
a[j] := a[j] + Get(b[i])* Get(b[j])

END FOR
END FOR

Figure 3.11: An Imperative Program

a := for i in 1,n
returns array of
for j in 1,n cross k in 1,n
returns value of sum
if (i>=j) & (i>=k) & (j >=k)
then b[i,k]*c[k,j]
else 0
end if

end for
end for

Figure 3.12: A Sisal Program

There is just one duplicated constraint:
row 3 + row 5 = row 4
Row 4 can be replaced by row 5 maintaining the canonical form. Although row 1 is a combination of row 4 and
row 2 and strictly redundant, it cannot be removed as it would destroy the canonical form. As there is only one
row to be removed it is not necessary to create the system of equations Wγ = 0. In the two examples following
the definition of algorithm, its use will be demonstrated. After removing the spurious condition we have the
following polytope form and the corresponding imperative program in figure 3.11 which has maintained its affine
form after reordering, with loops i and j interchanged.2664 −1 0

0 −1
1 0

−1 1

3775� j
i

�
≤

2664 −1
−1
n
0

3775 (3.138)

3.3.5 Example

This fourth algorithm is given appendix c, to illustrate the use of this algorithm consider the Sisal program in
figure 3.12. To illustrate the elimination phase we will first remove any spurious constraints (if conditions) from
the program as it stands i.e. from step 9 onwards. This is followed by an loop interchange of i and j obeying all
steps of the algorithm.

Program 3.12 has the following polytope form

CHAPTER 3. LOAD BALANCING 6226666666666664 −1 0 0
0 −1 0
0 0 −1
1 0 0
0 1 0
0 0 1

−1 1 0
−1 0 1

0 −1 1

3777777777777524 i
j
k

35 ≤

26666666666664 −1
−1
−1
n
n
n
0
0
0

37777777777775 (3.139)

which is of the form CJ ≤ g. Following the steps up to 12 gives:
12.
row 5 = row 4 + row 7
row 6 = row 4 + row 8
row 6 = row 5 + row 9
row 8 = row 7 + row 9
giving Wγ = 0i.e.
13. 2664 0 0 0 1 −1 0 1 0 0

0 0 0 1 0 −1 0 1 0
0 0 0 0 1 −1 0 0 1
0 0 0 0 0 0 1 −1 1

3775264 γ1
...

γ9

375 = 0 (3.140)

14. W1,5 = −1
15. W3,5 = 1
16. Add W1 to W3, remove W1 remove C5, giving a W:24 0 0 0 1 0 −1 0 1 0

0 0 0 1 0 −1 1 0 1
0 0 0 1 0 0 1 −1 1

35 (3.141)

Repeating the above gives: Remove C8 and�
0 0 0 1 0 −1 1 0 1
0 0 0 1 0 −1 1 0 1

�
(3.142)

20. Replace C6 by C9 and ƒ6 by ƒ9

This then leaves the following polytope26666664 −1 0 0
0 −1 0
0 0 −1
1 0 0

−1 1 0
0 −1 1

3777777524 i
j
k

35 ≤

26666664 −1
−1
−1
n
0
0

37777775 (3.143)

CHAPTER 3. LOAD BALANCING 63

FOR j = 1 TO n
FOR i = j TO n
FOR k = 1 TO j
a[i] := a[i] + Get(b[i,k]) * Get(c[k,j])

END FOR
END FOR

END FOR

Figure 3.13: An Imperative Program

a := for i in 1,2*n-1
returns array of
for j in i-n+1 ,i
returns array of
if (j >=1) & (j<= n)
then

b[i]*c[j]
else 0 end if

end for
end for

Figure 3.14: A Sisal Program

If algorithm 3 is now repeated from the beginning such that iterators i and j are interchanged then the imperative
program 3.13 can be derived.

Notice that the if expression has been removed at the expense of variable loop bounds on j and i. To show the
usefulness of such a procedure for load balancing consider the program in figure 3.14 where the existence of a
load balanced partition is not obvious. The polytope, corresponding to the first branch of the if expression, is as
follows: 26666664 −1 0

1 −1
1 0

−1 1
0 −1
0 1

37777775� i
j

�
≤

26666664 −1
n − 1

2 ∗ n − 1
0

−1
n

37777775 (3.144)

At present the computation is not in a load balanced form. However on loop interchange the polytope is of the
following form: 2664 −1 0

1 −1
1 0

−1 1

3775� j
i

�
≤

2664 −1
−1
n
n

3775 (3.145)

Since E = 0, ε = 0, load balancing analysis can be performed which gives after transformation the program in
figure 3.15.

CHAPTER 3. LOAD BALANCING 64

FOR j = 1 TO n
FOR i = 1 TO n
a[i+j,j] := Get(b[i+j])* Get(c[j])

END FOR
END FOR

Figure 3.15: An Imperative Program

This program may be partitioned along iterator i or j to give a load balanced implementation. This example
illustrates the use of iterator interchange. In the original Sisal program it is far from obvious that a perfectly load
balanced partitioning can be found. After re-ordering, whenever E = 0, ε = 0, the polytope is in a form to apply
invariancy analysis.

3.4 Interleaving

Interleaving is unlike the previous transformations described in this chapter in that it does not alter the order of
the indices or their ranges. It reorders the values that the iterator “passes” through. For example if an iterator
j passes through the values 1, 2, 3, 4, 5, 6, 7, 8, then a particular interleave function gives the following order
1, 5, 2, 6, 3, 7, 4, 8. The form of the interleave function is given in chapter 5, section 5.1.3.

A very good analysis of the properties of the interleave or scatter decomposition is given in [NICO90] where
they show that in general it improves the distribution of work. When no other transformation can be found, it is
a useful method to improve load balancing.

Interleaving performs badly in the presence of periodic computation sets if the period coincides with the number of
processors. As all polytopes are convex, this is not a problem. A useful heuristic is that, once the best combination
of iterators has been determined, assuming no perfectly balanced form, then the interleave transformation may be
applied to each iterator when mapping the iterators to the processors. This is dealt with more fully in chapter 5.

3.5 Summary

In this chapter the issue of load balancing has been addressed. After describing it as an optimisation problem, a
method was presented to determine whether there exists a partitioning of the iterators which gives perfect load
balancing. This was initially developed for conditional free polytopes and later extended to include if statements.
In order to reveal invariancy in general polytopes, a method whereby iterators may be reordered was given In the
case where no load balanced form exists, interleaving may be used.

Chapter 4

Alignment

This chapter is concerned with the relative alignment of arrays. The alignment and subsequent data partitioning
will determine the amount of non-local access exhibited by a program.

The first section describes the alignment problem and derives two measures of alignment. The second section
develops a procedure whereby alignment can be enhanced when compiling for creation parallelism. The third
section extends the alignment transformation to compiling for reduction parallelism and in the fourth section, the
effect of a local alignment transformation on the whole program is defined. In the fifth section, the interaction
between alignment and partitioning is described and, finally, a summary concludes this chapter.

4.1 Alignment

4.1.1 Identification of Partitions

Compilation should minimise parallel time by firstly utilising machine parallelism and secondly reducing over-
head. When mapping array computation to the processors, it is necessary to evenly distribute the array data.
Ideally, this should be done in a manner which reduces non-local access. As there are many ways to map any one
array on to an array of processors, this is, in general, a complex problem.

To simplify this process it is convenient to break it into two sub-problems [LI90] and [FOX91]. All arrays are first
mapped to one common array which is then partitioned across the processors. This chapter covers the first stage,
mapping the array data to a common array, known as alignment, which is concerned with the relative orientation
of arrays appearing in a computation set .

Alignment determines which portions of two arrays will be in the same processor for a particular data partition.
Obviously if they are aligned in such a manner that both portions are involved in the same computation, then this
will reduce the number of non-local accesses that would have been incurred if they were in separate processors.
Alignment is concerned with the relative allocation of arrays so as to maximise local accesses.

In this chapter, the question of aligning the arrays is focused upon those occurring in a particular computation
set. Because there are many computation sets in a program, and as a computation set has just one array creation

65

CHAPTER 4. ALIGNMENT 66

a := for i in 1,n
returns array of
b[i+1]

end for

Figure 4.1: A Sisal Program

associated with it, the analysis is correspondingly local in nature. In [LI90], the global determination of alignment
is shown to be NP-complete so a heuristic method which gives good performance was used. This heuristic could
also be used with the local alignment transformations developed in this chapter. In [LI90] however only simple
aligning functions are considered. This chapter describes alignment as the intersection of a hyperplane with the
iteration space and considers a greater class of alignment transformations within a linear algebraic framework.
Thus the contributions of this chapter are the formal description of alignment and the introduction of new frame-
work which includes previous results from the Crystal project [LI90]and the Compass compiler [KNOB90] and
introduces new alignment transformations.

Only static allocation schemes are addressed, so the issue of redistribution of data is not addressed. By disregard-
ing the issue of data redistribution, it is not necessary to investigate the effect of reordering the computation sets
(whilst preserving data dependence) to exploit the new data allocation. In any allocation scheme, however, once
a particular alignment of arrays has been decided, the effect of such an alignment must be propagated throughout
the program to preserve meaning. This is dealt with in the section 4 of this chapter.

4.1.2 Example

To illustrate the effect of alignment consider the array occurrences of the program in figure 4.1. The ith element
of a makes reference to i + 1th element of array b:

a[i] = b[i + 1] (4.1)

If each a[i], b[i + 1] were stored in the same processor, then no non-local access would be required. In this case if
b were to be allocated such that it were shifted one place to the left, relative to a, then no matter how the iterator
i was partitioned, and hence how a and b were partitioned, they would both reside in the same processor. The
occurrence of iterators in each array reference exactly determines the alignment required. To align b with a, a
function π which shifts b is needed

π : b[i + 1] 7! b′[i] (4.2)

or, more usually,
π : b[i] 7! b′[i − 1] (4.3)

This idea can easily be extended to higher dimension data spaces. Consider the Sisal fragment in figure 4.2 where:

a[i, j] = b[j, i] (4.4)

Here for 0 non-local access, it is necessary, to store a and b transposed relative to each other which gives the
following alignment function:

π : b[i, j] 7! b′[j, i] (4.5)

CHAPTER 4. ALIGNMENT 67

a := for i in 1,n cross j in 1,n
returns array of
b[j,i]

end for

Figure 4.2: A Sisal Program

a := for i in 1,n cross j in 1,n
returns array of
for k in 1,n
returns value of sum

b[i,k]
end for

end for

Figure 4.3: A Sisal Program

4.1.3 Hyperplanes of Alignment

In this section a formal description of alignment is presented. A computation set, Q, consists of, amongst other
things, a computation lattice, Latt(A.b), and a set of occurrence matrices, (C,U).

Let v be any array variable with a (Nv × m) occurrence matrix, X , and (Nv × 1) vector x pair and w be another
array variable with a (Nw × m) occurrence matrix Y and (Nw × 1) vector y pair where v and w are referenced in
the same computation set Q . The occurrences (X , x), (Y, y) define how v, w are referenced.

If we assume a common embedding of each array within the lattice Latt(A.b), then an element of array w is aligned
with an element of array v if they are referenced and embedded at the same computation point in the lattice.

Definition 12 An alignment between an element of array w and v with occurrences (X , x) and (Y, y), occurs at
J1 iff X J1 + x = YJ1 + y where J1 is a value of J and J1 ∈ Latt(A.b).

In general there is more than one point of alignment between two arrays. The system of equationsX J1 + x = YJ1 + y, J1 ∈ Zm (4.6)

form a hyperplane denoted by SX ,Y . The intersection, SX ,Y ∩ Latt(A.b), defines all the points in the iteration
space where v and w are aligned.

For example, consider the Sisal program in figure 4.3. Alignment occurs between arrays a and b when i = i and
j = k. The first condition always holds, whilst there is just one solution to the second condition for each value of
j. These conditions define a 2 dimensional plane in the three dimensional iteration space spanned by [i, j, k]T.

The object of compiling for alignment can now be stated as finding a transformation (Ti, ti) where SX ,TiY is defined
as

SX ,TiY = fJ ∈ Zm,X J + x = TiYJ + ti + yg (4.7)

such that |SX ,TiY ∩ Latt(A.b)| is maximised.

CHAPTER 4. ALIGNMENT 68

a := for i in 1,n cross j in 1,n
returns array of
b[j]

end for

Figure 4.4: A Sisal Program

Even for pairwise alignment the above optimization problem, in general, involves enumerating the polytope,
SX ,TiY ∩ Latt(A.b), for each candidate, (Ti, ti), which can be an expensive task. To maximise alignment would
require the determination of the volume of the polytope in equation 4.824 AX − TiY

TiY − X 35 Jm ≤

24 b
ti + y − x
x − ti − y

35 (4.8)

for each transformation (Ti, ti). Determining the volume of a polytope has been described in section 3.1.3 and at
present the best algorithm has a complexity of O(|T|m19) where |T| is number of transformations considered. Even
if the m19 term is decreased, there are potentially an infinite number of transformations to consider. The approach
used in this thesis is to use an approximate metric of alignment, the hit function, which leads to the derivation of
transformations to improve alignment

4.1.4 Hit Function

Before the new metric is introduced, it is necessary to look at the problem of aligning arrays with a differing
number of dimensions. In general there are difficulties if Nv > Nw or Nw < Nv, i.e. the number of occurrences
in one matrix is greater than the other. For example, consider the program in figure 4.4 which has the following
occurrence matrices: X =

�
1 0
0 1

�
,Y =

�
0 1

�
(4.9)

Whilst it is desirable that b is aligned with the second dimension of a, there is no way to represent this in a 1 × 2
matrix; one solution is to use a 2 × 2 matrix. �

1 0
0 1

�
,

�
0 0
0 1

�
(4.10)

where a zero row corresponds to a null-occurrence. By adding an extra row of zeros, it is possible to convey
in this example, that b is to be aligned with a on the second dimension. To allow alignment between arrays of
different dimensionality, for the remainder of this chapter all array occurrences X are defined as being of size
M × m where M = max(m, Nv, Nw) and: X̂ T = [X T, O]

M × m Nv × m M − Nv × m
(4.11)X̂ will be used throughout the remainder of the chapter and will be referred to as X .

The function used to determine the alignment of arrays is called the hit function. Essentially it compares each
sub-script of the aligning array for equality. The value of the hit function is the number of equal rows.

CHAPTER 4. ALIGNMENT 69

a := for i in 1,n
returns array of
for k in 1,i
returns value of sum
b[k]

end for
end for

Figure 4.5: A Sisal Program

a := for i in 1, n
returns array of
for k in 1,i-1
returns value of sum
b[k]

end for
end for

Figure 4.6: A Sisal Program

Definition 13 The hit function H is defined as:

HX ,Y =
MX

k=1

δXk,Yk × δ ′
xk,yk

(4.12)

δe,ƒ =
�

1 e = ƒ ∧ e ⁄= 0
0 otherwise

δ ′
e,ƒ =

�
1 e = ƒ
0 otherwise

(4.13)

For example consider the following array occurrences.24 1 0 0
0 1 0
0 0 0

35
v

+

24 2
4
0

35
v

,

24 1 0 0
0 1 0
0 0 0

35
w

+

24 1
4
0

35
w

(4.14)

Here H = 1, which is the number of perfectly aligned sub-scripts of v and w, and is equal to the dimension of
the hyperplane of alignment, dim(SX ,Y). This approximation does not take into consideration the intersection of
the hyperplane with the iteration space and it is possible that two arrays may be aligned in a region beyond the
iteration space. For example, consider the two Sisal programs in figures 4.5 and 4.6. Both of these programs
have a value of H = 1. In the first program the alignment line, i = k, falls within the triangular iteration space
along the diagonal. However in the second program k ranges from 1 to i − 1 and thus k can never be equal to i.
In general, perfect alignment occurs when X = Y, x = y (4.15)

For perfect alignment we seek a transformation (A, a) such that:AY = X (4.16)

a + y = x (4.17)

Equation 4.17 can be trivially solved by rearrangement, while 4.16 may only be solved by findingXY−1, or solving
by Gaussian elimination, as long as Y is non-singular. As the equation 4.17 always has a solution the remaining

CHAPTER 4. ALIGNMENT 70

a := for i in 1,n cross j in 1,n
returns array of
b[i+j,i-j+1]

end for

Figure 4.7: A Sisal Program

a := for i in 1,n cross j in 1,n cross k in 1,n
returns array of
b[i+j+k,i+k,i+k]

end for

Figure 4.8: A Sisal Program

discussion of alignment transformations will largely focus on A. To illustrate transforming for perfect alignment,
consider the program in figure 4.7. In this program the arrays a and b have the following array occurrences:�

1 0
0 1

�
a

�
i
j

�
=

�
1 1
1 −1

�
b

�
i
j

�
+
�

0
1

�
b

(4.18)

Here U1.b, the occurrence matrix of array b, is non-singular and thus there exists a transformation such that the
arrays may be perfectly aligned.A ×

�
1 1
1 −1

�
=
�

1 0
0 1

�
, a +

�
0
1

�
=
�

0
0

�
(4.19)

i.e. A =
1
2

�
1 1
1 −1

�
, a =

�
0

−1

�
(4.20)

However, this is not always the case. Consider the program in figure 4.8 which has the following occurrence
matrices: C =

24 1 0 0
0 1 0
0 0 1

35 ,U =

24 1 1 1
1 0 1
1 0 1

35 (4.21)

There is no solution to AU = C, due to the singularity of U .

A method to align u-occurrences with a c-occurrence matrix is presented in the next section which determines an
alignment function even in the case of singular matrices.

4.2 Creation Alignment

This section investigates the alignment of each u-occurrence of a computation set with the set’s c-occurrence
which is appropriate when compiling for creation parallelism. An important property of the c-occurrence matrix

CHAPTER 4. ALIGNMENT 71

is that each of its rows are independent. This is due to the language definition of Sisal which does not allow part
of an array to be created.

Although it is not possible, in general, to calculate a perfect alignment even for 2 arrays of the same dimension
referencing the same iterators, it is possible in some cases to determine the best possible alignment. This requires
the finding of an A where: AU = V (4.22)

such that HC,V is maximised. As the upper bound on H is given in theorem 6, it is possible to determine optimal
alignment in some cases.

4.2.1 Legal Alignment Functions

At this point it is important to define the restrictions on the form of V which will define the class of legal
transformations, A. The matrix, U , references a number of points, determined by the iteration space, which
correspond to array elements. Any matrix V must reference the same points, the same number of times as U .
This implies, amongst other things, that rank(U) = rank(V). Intuitively this means that references can not be
made to new iterators, nor old references dropped. In addition the constraint that V be of size M × m is imposed.
In other words V should have the same rank as U , same size as U and, in addition, have the same number of zero
rows as U .

A legal transformation, A, is one which preserves the rank of U . In general if U is rank deficient so may be A.
However in a more general context if there exists another occurrence of the same array variable in the program
then it must also be premultiplied by the alignment transformation A. If this occurrence is not rank deficient
then multiplying by a rank deficient A will reduce the rank of that occurrence, which is illegal. Therefore A is
restricted to forms which always preserve the rank of any matrix, U . Such a matrix is one which has full rank. AsA is square, M × M, then it follows that A is always invertible We require a V where as many rows are equal toC as possible. Each row, i, of C is the ith row of the identity matrix, where the ith element is one. For alignment
we require that:

δVi,ci = 1, ∀i ∈ 1, … , M (4.23)

or Vi = ci∀i ∈ 1, … , M (4.24)

thus AiU = ci∀i ∈ 1, … , M (4.25)

However, this may be true for few or no values of i. As A is M × M and the number of values of i for which there
is a solution to 4.25 is, say, k then there remains M − k rows of A which must be independent of each of the k
solutions so as to maintain the full rank of A. To maximise alignment in the sense of H, it is necessary to find as
many solutions, yi, to

yiU = ci (4.26)

where yi is the ith row of the matrix A. In the following sections we consider the issues of existence, uniqueness
and independence which are based on well known results from linear algebra.

4.2.2 Existence, Independence and Uniqueness

yiU = ci (4.27)

CHAPTER 4. ALIGNMENT 72

can be written in the more familiar form UTyT
i = cT

i (4.28)

where yT , cT
i are column vectors.

Theorem 3 It is possible to align a row of a u-occurrence matrix U with a c-occurrence iff cT
i is perpendicular

to the null space of U i.e. cT
i ⊥ N (U) where N (U) are the iterators not referenced by U .

Proof of Theorem 3 The equation UTxT = cT
i (4.29)

is of the form
Ax = b (4.30)

where A is an (m × M) integer matrix, b is an (M × 1) integer column vector and x is the (M × 1) unknown vector.
This equation has a solution iff b is in the range space of A [NOBL88]i.e.

b ∈ R(A) (4.31)

From linear algebra [SCHR86]
ℜm = R(A) ⊕N (AT) (4.32)

In other words, the m dimensional real space is a direct sum of the range space of A and the null space of AT .
Thus

∀z ∈ ℜm∃u ∈ R(A), v ∈ N (AT), u ⊥ v s.t. z = u + v (4.33)

Thus
b ∈ R(A) ⇔ b ⊥ N (AT) (4.34)

but N (AT) = N ((UT)T) = N (U) (4.35)

and b = cT
i hence

cT
i ⊥ N (U)2 (4.36)

It is important that each solution to 4.25 is independent, this is easily shown.

Theorem 4 Each solution row of A in AU = C is independent.

Proof of Theorem 4 Assume two solutions of 4.25 are ax and ay and they are dependent thus:

∃α , β | α ⁄= 0, β ⁄= 0, αax + βay = 0 (4.37)

and
αaxU = αcT

x (4.38)

βayU = βcT
y (4.39)

then
(αax + βay)U = 0 = αcT

x + βcT
y (4.40)

But
cx = ex, cy = ey (4.41)

and
αeT

x + βeT
y ⁄= 0 (4.42)

as these are independent rows of Identity, thus the assumption that ax, ay are dependent is false. 2

CHAPTER 4. ALIGNMENT 73

It follows that equation 4.25 may be solved independently for each value of i. The remaining rows of A that are
not solutions have to be constructed in a way such that they are independent and maintain the full rank of A.

Theorem 5 The solution to UTyT
i = cT

i is unique iff dimN (UT) = 0

Proof of Theorem 5 Let aT
x ⁄= aT

y be two solutions to UTyT
i = cT

i . ThenUTaT
x = cT

i (4.43)UTaT
y = cT

i (4.44)

Hence UTaT
x − UTaT

y = 0 (4.45)UT(aT
x − aT

y) = 0 (4.46)

By assumption
(ax − ay)T ⁄= 0 (4.47)

Therefore
dim(N (UT)) ⁄= 0 (4.48)

A contradiction. Conversely let bT ⁄= 0 ∈ N (UT) and aT
x be a solution, then aT

x +bT is also a solution and therefore
non-unique2
Theorem 6 The maximum value of HAU ,C is min(r, d) where r = rank(U) and d = rank(C)

Proof of Theorem 6 By definition, the maximum value of H is the number of solutions to 4.25 There at most
d = rank C columns of C to provide solutions.

From theorem 3 yi is a solution if cT
i ∈ R(UT). Now dim(R(UT)) = r,so there are at most r linearly independent

solutions.

Hence there are at most min(r, d) solutions to 4.25 2
4.2.3 Row Echelon Form

In order to determine the form of A, such that HAU ,C is maximised, then it is important, as has been stated
previously, to find a solution for as many rows of C to the following equation:

yiU = ci (4.49)

Transposing gives UTyT
i = cT

i (4.50)

To solve for y, concatenate UT and cT
i and reduce by a row operation UT to row echelon form, whilst simultaneously

performing the same operations on cT
i . After reducing to row echelon form, the rows are re-ordered such that the

leading element on non-zero rows is the diagonal. Equation 4.50 is re-written as:

CHAPTER 4. ALIGNMENT 74

a := for i in 1,n cross j in 1,n cross k in 1,n
returns array of
for l in i,k
returns value of sum
b[l+k,k-2*l+3,2*j-6,l+i] * c[l+k,k+l,2*j-6,l+k+i]

end for
end for

Figure 4.9: A Sisal Program

m
M − m

� UT cT
i

O O

�
M 1

(4.51)

Reducing by any legal row operation, gives the unique row-echelon form:

r
m − r
M − m

24 Re ∗ c1
i

O O c2
i

O O O

35
r M − r 1

(4.52)

Here Re and ∗ are non-zero sub-matrices. By theorem 3 there is a solution iff cT
i ⊥ N (U). This is equivalent to

c2
i = 0 which provides a simple existence test. If a solution exists then it forms a row of A.

By theorem 6 there are, at most, min(r, d) solutions and the remaining rows of A must be filled. It is important
that these additional rows be independent so that A is full rank. One method of achieving this, is to concatenate
the whole C matrix to UT . After reducing to row echelon form there will be r solutions and NC − r independent
columns which are not solutions, but can form independent rows of A. There is a problem if M > NC as the
remaining rows of A have to be filled. By further augmenting the IM matrix and reducing to row echelon form,
the following augmented matrix is formed.

r
m − r
M − m

"
Re ∗ X1 Y1 W1 O
O O O Y2 W2 O
O O O O O I

#
r M − r r NC − r NC M − NC (4.53)

NC rows of A are available from the row-echelon form of C. The remainder come from the last section of the
augmented matrix. As the W region never gives independent rows of A it can be omitted. It is now possible to
define an algorithm to find a legal A which is detailed in appendix c.

4.2.4 Example

To illustrate this procedure, consider the program in figure 4.9 which has the followingoccurrence matrices/vectors.

CHAPTER 4. ALIGNMENT 752664 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

3775
a

,

2664 0 0 1 1
0 0 1 −2
0 2 0 0
1 0 0 1

3775
b

2664 0
3

−6
0

3775 ,

2664 0 0 1 1
0 0 1 1
0 2 0 0
1 0 1 1

3775
c

2664 0
0

−6
0

3775 (4.54)

where M = 4.

As long as the u-occurrence matrices refer to different arrays, they may be compared pair-wise with the c-
occurrence matrix. Thus on aligning b with a we have:2664 0 0 0 1 1 0 0 0 0

0 0 2 0 0 1 0 0 0
1 1 0 0 0 0 1 0 0
1 −2 0 1 0 0 0 0 1

3775 (4.55)

On reducing to row-echelon form we have:2664 1 0 0 0 − 1
3 0 2

3 0 1
3

0 1 0 0 1
3 0 1

3 0 − 1
3

0 0 1 0 0 1
2 0 0 0

0 0 0 1 1 0 0 0 0

3775 (4.56)

Columns 5,6,7 are solutions and the ninth column is independent and forms the fourth row of A. As long as the
last row chosen is independent, it is arbitrary as the maximum number of alignment solutions is limited here by
the rank of the c-occurrence matrix i.e. 3. 2664 − 1

3
1
3 0 1

0 0 1
2 0

2
3

1
3 0 0

1
3 − 1

3 0 0

3775 (4.57)

Which gives the following occurrence matrix V:A × U =

2664 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3775 (4.58)

the new vector a + u is trivially calculated and is [0, 0, 0, 0]T.

Repeating this procedure for array c we have:2664 0 0 0 1 1 0 0 0 0
0 0 2 0 0 1 0 0 0
1 1 0 1 0 0 1 0 0
1 1 0 1 0 0 0 0 1

3775 (4.59)

On reducing to row-echelon form and reordering so that leading elements are on the diagonal:

CHAPTER 4. ALIGNMENT 76

a := for i in 1,n cross j in 1,n cross k in 1,n
returns array of
for l in i,k
returns value of sum
b[i,j,k,l] * c[i,j,k+l,k+l]

end for
end for

Figure 4.10: A Sisal Program2664 1 1 0 0 −1 0 0 0 2
0 0 0 0 0 0 1 0 −1
0 0 1 0 0 1

2 0 0 0
0 0 0 1 1 0 0 0 0

3775 (4.60)

Both columns 5 and 7 of the augmented matrix are legal solutions for rows of A. Column 6 although a legal
candidate for a row of A is not a solution as it is not perpendicular to the null space of UT. This can be seen as
the second row of the row echelon form of UT is zero, but there is a non-zero element in this position in column
6. Again row four of A is arbitrary and the final column is a suitable choice.A =

2664 −1 0 0 1
0 0 1

2 0
0 1 0 0
2 −1 0 0

3775 (4.61)

Which gives the following occurrence matrix, V:A × U =

2664 1 0 0 0
0 1 0 0
0 0 1 1
0 0 1 1

3775 (4.62)

Therefore the program in figure 4.9 may be rewritten as the program in figure 4.10. Before the alignment trans-
formations, Ha,b = 0, Ha,c = 0 and after aligning Ha,b = 3, Ha,c = 2 showing that A has improved alignment.

4.2.5 Multiple u-occurrences

If an array, v, has more than one u-occurrence, θv > 1, then there may be a conflict in alignment between each
occurrence. If H is evaluated for each alignment function, then the best function is the one for which H has the
greatest value. Consider the program fragment in figure 4.11: Here if bi+10 is aligned with ai then ΣHCAU = 3,
as opposed to 1 if bi is aligned with ai. This may be generalised as follows: The number of occurrences of a
particular array x is θx. Let r ∈ 1, … , θx. The following strategy is employed to determine the alignment function.
Construct Ar∀r ∈ 1, … , θx (4.63)

CHAPTER 4. ALIGNMENT 77

a := for i in 1,n cross j in 1,n
returns array of

b[i,j] + b[i+10,j] +b[i+10,j-1] +b[i+10,j+1]
end for

Figure 4.11: A Sisal Program

a := for i in 1,n cross j in 1,n
returns array of

for k in 1,n
returns value of sum
b[i,k] * c[k,j]

end for
end for

Figure 4.12: A Sisal Program

Let

Γ(r) =
θxX
i=1

HArUx,C∀r (4.64)

The alignment matrix chosen will be Ar where Γ is greatest.

4.3 Reduction Alignment

The forgoing analysis has been based on alignment of arrays when compiling for creation parallelism, A different
approach is required when compiling for parallelism associated with reduction iterators. Different iterations of the
reduction iterator are scheduled on different processors. One of the arrays involved in the reduction makes access
to the other u-occurrence arrays involved in the computation. The reduction operations take place, whereupon the
resulting value is accessed by the process calculating the relevant portion of the c-occurrence array. Partitioningof
data for reduction parallelism always involves non-local access. Intuitively it is because work is being performed
in parallel on several different processors, the result of which is accumulated by the creating process. It can also
be demonstrated by looking at the occurrence matrices. A reduction iterator reference only occurs on the right
hand side of a definition and thus can never be aligned with respect to the left hand, c-occurrence, side.

To illustrate these points consider the program in figure 4.12. Here the reduction iterator is k, which is recognised
syntactically by the “returns value of sum” operator. On inspection it can be seen that k only appears on the right
hand side of the definition.

a[i, j] = b[i, k]c[k, j] (4.65)

Aligning for reduction necessitates the choice of a u-occurrence with which to align to. In this case, the array b
is arbitrarily chosen rather than c which would give a different set of alignments. In general, both b and c should
be considered as one may be preferable in a more global context.

On aligning with array b, a retains its present orientation, while c is stored in a transposed manner. It is worth
noting that aligning for creation parallelism would give a different alignment.

CHAPTER 4. ALIGNMENT 78

a := for i in 1,n cross j in 1,n
returns array of
for k in 1,n
returns value of sum
b[k+j,i]*c[i+j,i-j]

end for
end for

Figure 4.13: A Sisal Program

4.3.1 Row Echelon

Once again the method for determining alignment transformations is based upon the row echelon form of the
augmented matrix. The major difference is that, in general, the array to be aligned with will be rank deficient.
This implies that some rows of its occurrence matrix may not be independent and thus theorem 4 no longer
applies. Thus each row of A must be checked for independence. There are a variety of ways of achieving this
but the method used in the algorithm in appendix c is to reduce a copy of the partially filled A to row echelon
form. If the copy has full rank then the row just added is independent.

4.3.2 Example

To illustrate aligning for reduction parallelism consider the Sisal program in figure 4.13. In this example it is
assumed that both arrays a and c are to be aligned with array b as reduction parallelism is to be exploited. They
have the following occurrence matrices:Ca :

24 1 0 0
0 1 0
0 0 0

35Ub :

24 0 1 1
1 0 0
0 0 0

35Uc :

24 1 1 0
1 −1 0
0 0 0

35 (4.66)

Augmenting the transpose of the creation matrix and Identity to that of the reduction matrix gives:24 1 0 0 0 1 0 1 0 0
0 1 0 1 0 0 0 1 0
0 0 0 1 0 0 0 0 1

35 (4.67)

Only the fifth column is a solution and forms the second row of A. The remaining rows are picked from the
Identity region to give: 24 0 1 0

1 0 0
0 0 0

35 ×

24 1 0 0
0 1 0
0 0 0

35 =

24 0 1 0
1 0 0
0 0 0

35 (4.68)

Repeating the same process with c and b and by augmenting the transpose of the u- occurrence matrix and identity
matrix gives:

CHAPTER 4. ALIGNMENT 79

a := for j in 1,n cross i in 1,n
returns array of
for k in 1,n
returns value of sum

b[k+j,i]*c[j,i]
end for

end for

Figure 4.14: A Sisal Program24 1 1 0 0 1 0 1 0 0
1 −1 0 1 0 0 0 1 0
0 0 0 1 0 0 0 0 1

35 (4.69)

Reducing to row echelon form: 24 1 0 0 1
2 − 1

2 0 − 1
2

1
2 0

0 1 0 1
2

1
2 0 1

2
1
2 0

0 0 0 0 0 0 0 0 1

35 (4.70)

The fourth and fifth columns are independent solutions. The remaining independent row of A comes from the
final column of the reduced matrix.24 1

2 − 1
2 0

1
2

1
2 0

0 0 1

35 ×

24 1 1 0
1 −1 0
0 0 0

35 =

24 0 1 0
1 0 0
0 0 0

35 (4.71)

Before the alignment transformations, Hb,a = 0, Hb,c = 0, after aligning Hb,a = 1, Hb,c = 1, thus improving
alignment and giving the program in figure 4.14.

4.4 Alignment Propagation

Once a new alignment has been chosen for an array, v, the effect must be propagated throughout the program
to maintain meaning. To illustrate this point, consider the program in figure 4.15. When aligning b to a for the
creation of a, b will be shifted by one. This effect will have to be propagated to the creation of b as is illustrated
in the imperative translation in figure 4.16.

However the c-occurrence of b is no longer a simple sub-matrix of identity. This makes the partitioning of data
in general more difficult. In [LI91], c-occurrences are assumed to be sub-matrices of identity to aid partitioning.
Restoring b to its previous form will affect the loop body 2(j + 1) to give the program in figure 4.17. This idea
can now be formalised.

Given an occurrence say, U1.v and the new occurrence of alignment U ′
1.v = AU1.v then, if there is an occurrence

CHAPTER 4. ALIGNMENT 80

for initial
k := 1;
a := x;
b := y;

while (k <= n)
repeat

k := old k +1
b:= for j in 1,n

returns array of 2*(j+1)
end for;

a:= for i in 1,n
returns array of
if (i=1)
then 0
else old b[i+1]
end if

end for
returns value of a

end for

Figure 4.15: A Sisal Program

FORITER k = 1 TO n
FOR j = 1 TO n
b[j-1] := 2*(j+1)

END FOR
a[1] := 0
FOR i = 2 TO n
a[i]:= oldb[i]

END FOR
END FORITER

Figure 4.16: An Imperative Program

FORITER k = 1 TO n
FOR j = 1 TO n
b[j] := 2*((j+1) mod n +1)

END FOR
a[1] := 0
FOR i = 2 TO n
a[i]:= oldb[i]

END FOR
END FORITER

Figure 4.17: An Imperative Program

CHAPTER 4. ALIGNMENT 81

a:= for i in 1,2*n
returns array of d[i]
end for;

b:= for i in 1 ,n
returns array of a[2*i]
end for;

c:= for i in 1 ,n
returns array of a[2*i-1]
end for;

Figure 4.18: A Sisal Fragment

FOR i = 1 TO 2*n
a[i] := d[i]

END FOR
FOR i = 1 TO n
b[i] := a[i]

END FOR
FOR i = 1 TO n
c[i] := a[i-1]

END FOR

Figure 4.19: An Imperative Program

of that array in any computation set, transform it to the new alignment i.e

∀Q∀x ∈ 1, … , θv,U ′
x.v = AUx.v,C′

v = ACv (4.72)

To restore the identity matrix of each c-occurrence, left multiply by A−1:

∀QC′
v ⁄= I → C′′

v = A−1C′
v (4.73)

where C′′
v = Cv and is thus returned to its original form. All references to iterators which are not array occurrences

must also be adjusted. Let ƒ(J) be a usage of the iterators J in F, the parse tree of a computation set, then the new
usage is ƒ′(J) where

ƒ′(J) = ƒ(A−1J) (4.74)

and the value of the iterators A−1J are restricted to the values of J in the lattice Latt(A.b). This procedure can
be used for an arbitrary number of re-alignments. However, at present, a problem occurs if the matrix, A−1, is
non-unimodular and there is more than one reference to v with a different occurrence matrix.

Consider the Sisal fragment in figure 4.18. If a is to be aligned with b and the effect propagated, as described
above, then this will result in the imperative program shown in figure 4.19. Before alignment propagation, arrays
b and c referred to alternate elements of a but alignment propagation has compressed the reference to a with
the consequence that, now, b and c refer to overlapping regions which no longer preserves meaning. At present
alignment is, therefore, restricted to unimodular alignment transforms, if there is more than one different u-
occurrence of a particular array. Although this is restrict ive, in [SHEN90] it is shown that a large proportion of
scientific programs comply with this, and it seems likely that in the near future this restriction may be relaxed.

CHAPTER 4. ALIGNMENT 82

a:= for i in 1,n cross j in 1,n
returns array of

b[i,i]
end for

end for

Figure 4.20: A Sisal Program

4.5 Data Partition

Once the relative alignment between arrays is determined, by the previous phase, the arrays must be mapped to
processor space. At this stage only orthogonal partitions of the arrays are considered. Thus if an array has N
dimensions, it may be partitioned in 2N−1 different ways. If possible, the partitioning of data should be along those
dimensions of the array that may be evaluated in parallel. In the next chapter, the mapping of data to processors,
so as to determine the local data and computation space is defined and a method based upon the volume of access
is developed. In this section, however, the influence of alignment on the partitioning process is described. In
particular, the transformations required to partition an array along one dimension and serialise the remainder are
presented.

4.5.1 Aligned Form

If two arrays are aligned with respect to a particular index, then no matter how those individual array elements
are partitioned, any reference between the two arrays with respect to this index will always be local. Non-aligned
indices do not have this property and thus partitioning with respect to these indices should be avoided. If an array
has N dimensions and say k of them are aligned, then there are k dimensions the array may be partitioned along,
and N − k that should be serialised. As the size of any one dimension of an array is assumed to be greater than the
number of processors i.e. n >> p, it is reasonable to consider only one dimension to partition along at this stage.
In chapter 5, the volume of access analysis considers a greater variety of data partitions. Therefore, within this
section, of the k parallel dimensions, only one will be selected to partition the array across the processors and the
remaining N − 1 will be serialised.

Consider the Sisal program in figure 4.20. This program has the following array occurrences:�
1 0
0 1

�
,

�
1 0
1 0

�
(4.75)

The first index of b is aligned with a as δi,i = 1, but the second index is not δj,i = 0.

Partitioning an array into k dimensions is the act of projecting an M × m occurrence matrix so that there are k
non-zero rows in the new occurrence matrix, where each of the k rows corresponds to that dimension of the array
being distributed over the p processors. Thus the data partitioning/scheduling function ζ is defined as follows:

ζ : X 7! X (4.76)

where X = C or U and X = C or U and X is the partitioned matrix and X and X are both M × m matrices.

CHAPTER 4. ALIGNMENT 83

Conversely a serialising function ρ can be defined which describes those indices that are not to be partitioned.
i.e.

ρ : X 7! X (4.77)

where X is a M × m serialised occurrence matrix with at least k zero rows.

Hence
ζ (X) + ρ(X) = X (4.78)

So the definition of either ζ or ρ automatically defines the other function. The particular form of these transfor-
mations is chosen to be M × M integer matrices P and S respectively, i.e.P × X = X (4.79)S × X = X (4.80)

where P + S = I (4.81)

Unlike the alignment matrix A these transformation matrices are formed to reduce the rank of the occurrence
matrices and thus are singular.

The rows of P are either rows of identity or rows of the null matrix. After pre-multiplying the occurrence
matrix, the new partitioned occurrence matrix has non-zero and zero rows. Non-zero rows are those that are to
be partitioned.

In the previous program, figure 4.20, P is chosen to be of the following form:P =

�
1 0
0 0

�
(4.82)

which gives the following reduced occurrence matrices:�
1 0
0 0

�
,

�
1 0
0 0

�
(4.83)

If HC,U is determined for non-zero rows it is found to be 1. If P was chosen to beP =

�
0 0
1 0

�
(4.84)

this would give the following reduced occurrence matrices:�
0 0
0 1

�
,

�
0 0
1 0

�
(4.85)

Here HC,U is 0. This observation gives a simple method of deciding which index to partition along and hence a
method for constructing P. If two rows of the arrays to be aligned are equal, then let the corresponding row ofP be the relevant row of Identity, otherwise set it equal to zero.Pi =

�
eT

i Ci = Ui

0 Ci ⁄= Ui
∀i ∈ 1, … , M (4.86)

Perfect data partitioning occurs when all non-zero rows of the reduced occurrence matrices are equal, whereupon
HPC,PU = k. At present only the case k = 1 is considered, i.e. only one dimension to partition along is sought,
and thus a suitable method of determining P is as follows :Pi =

8<: eT
i Ci = Ui ∧ Pk ⁄= eT

k ∀k ∈ 1, … , i − 1
eT

i Pk = 0∀k ∈ 1, … , N − 1
0 otherwise

∀i ∈ 1, … , M (4.87)

CHAPTER 4. ALIGNMENT 84

a:= for i in 1,n
returns array of
for k in 1,n
returns value of sum
b[i] * c[i,k]

end for
end for

Figure 4.21: A Sisal Program

a:= for i in 1,n cross j in 1,n
returns array of

b[i] * c[j]
end for

Figure 4.22: A Sisal Program

4.5.2 Arrays of Differing Dimensions

Problems occur when the arrays to be partitioned have a different number of dimensions. If two arrays which
reference each other in a computation have a different number of dimensions, then the approach taken here is that
they may not be partitioned by more than the lowest dimensioned array’s number of dimensions. Consider the
example in figure 4.21. As a and b are both one-dimensional, c can only be partitioned by rows or columns, not
both. The motivation for this constraint is that it ensures that data is evenly distributed across the processors.

To illustrate this point, consider the program in figure 4.22 with the associated occurrence matrices:

a =

�
1 0
0 1

�
, b =

�
1 0
0 0

�
, c =

�
0 0
0 1

�
(4.88)

Two equally optimal forms of P can be found using 4.81 and they are:P =

�
1 0
0 0

�P =

�
0 0
0 1

�
(4.89)

After applying both partitioning matrices the two possible forms of the reduced occurrence matrices are found:�
1 0
0 0

�
,

�
1 0
0 0

�
,

�
0 0
0 0

�
(4.90)�

0 0
0 1

�
,

�
0 0
0 0

�
,

�
0 0
0 1

�
(4.91)

In both cases there is a problem as in each case there is a matrix with no non-zero entries after partitioning. This
implies that the array is not partitioned across the processors and hence resides solely in one processor. Due to
the scalability constraint, this is illegal. Because of this there must always be an entry in the partitioned row of
the reduced occurrence matrix , which may be any other non-zero row of the occurrence matrix. By applying this
principle to the present example we have:�

1 0
0 0

�
,

�
1 0
0 0

�
,

�
0 1
0 0

�
(4.92)

CHAPTER 4. ALIGNMENT 85

a := for i in 1,n cross j in 1,n
returns array of
for k in 1, n
returns value of sum b[k,j]
end for

end for

Figure 4.23: A Sisal Program�
0 0
0 1

�
,

�
0 0
1 0

�
,

�
0 0
0 1

�
(4.93)

If the total value of H is calculated for both partitions, they are shown to be equal, and in this case either partitioning
is equivalent but more importantly the data is evenly distributed.

In the case of different sized arrays, P is determined as before. For those arrays that are of a smaller dimension
than the creation array, a re-ordering of their occurrence matrix is required. Let the re-ordered matrix be T which
is defined Ti =

8<: eT
i Ui ⁄= 0 ∧ i ⁄= t

eT
k Ui = 0 ∧ i = t ∧ i ⁄= k

eT
t i = k

∀i ∈ 1, … , M (4.94)

where t is the dimension which P has been selected to partition on i.e Pt = eT
t and k is the row swapped with row

t if row t is zero. Data partitioning can now be defined as finding a P, S and T such that:P × T × X = X (4.95)S × T × X = X (4.96)

where P + S = I (4.97)

The matrix T is also useful in ensuring that there are no later problems in data partitioning due to padding. To
illustrate this, consider the program in figure 4.23. The occurrence matrices of a and b are respectively:�

1 0 0
0 1 0

�
,

�
0 0 1
0 1 0

�
(4.98)

and in padded form 24 1 0 0
0 1 0
0 0 0

35 ,

24 0 0 1
0 1 0
0 0 0

35 (4.99)

After aligning the arrays will be of the following form24 1 0 0
0 1 0
0 0 0

35 ,

24 0 0 0
0 1 0
0 0 1

35 (4.100)

CHAPTER 4. ALIGNMENT 86

If it is decided to partition along the first index then b is completely serialised. Having an n2 sized array resident
on a processor is not desirable. Applying the T transform gives the following occurrence matrices which ensures
even data distribution when partitioned along the first index.24 1 0 0

0 1 0
0 0 0

35 ,

24 0 0 1
0 1 0
0 0 0

35 (4.101)

The necessity of this final transform is because a 2-dimensional object has been embedded in a three dimensional
iteration space. A projection along an iterator forming this space does not necessarily partition the two dimensional
sub-space of the array. This was the case for the array b, where the transformation T ensured that the array was
orthogonal to the partitioning direction.

4.6 Summary

In this chapter, a formal description of alignment has been given. By considering the arrays as embedded in
the iteration space, it has been possible to describe alignment as a hyperplane whose size can be measured. By
taking an approximate metric H, alignment transformations based on the row echelon transformation have been
developed for creation and reduction alignment. How local alignment affects the remainder of the program has
been addressed. Finally a method to allow later data partitioning has been described.

Chapter 5

Partitioning and Pre-Fetching

This chapter describes the mapping of data and computation to processors and the pre-fetching of data to reduce
non-local access. The first section describes how data is scheduled across the processors and, once this has been
performed, how the local iteration space may be determined.

Once the data has been mapped to the processors, it is desirable to minimise any non-local access by adopting
a compiler directed caching policy. An invariancy analysis is presented in the second section to determine any
opportunity for data re-use. Pre-fetching transformations are described which take advantage of any re-use and
can be used in the presence of general affine loop and array occurrences.

In chapters 3 and 4, the criteria for partitioning of data was either based upon load balancing, or alignment. In
the third section a new method is introduced which attempts to determine the best data partition given that pre-
fetching transformations are available. As this method depends on such transformations, it is presented after the
pre-fetching section. Finally a summary concludes this chapter

5.1 Indices, Iterators and Processors

In this section the mapping of data and computation to processors is examined. Initially the mapping of just one
array dimension to several processors is derived. This is extended to multiple dimensions which may be wrapped.
Once the local data space for each processor has been determined, a method to calculate the local iteration space
is shown.

5.1.1 Mapping Indices

Each array, v, in a computation set has the following index domain:

[i1, i2, … , iNv]T = I (5.1)

where each ix is the xth index of the array, and I is the vector containing all the indices of that array. Each index
corresponds to a non-zero row of the C occurrence matrix of array v. Each non-zero row will have one reference

87

CHAPTER 5. PARTITIONING AND PRE-FETCHING 88

to an iterator whose bounds will determine the range of that index. The index range is defined by the inequalities:

λ ≤ I ≤ υ (5.2)

This set of inequalities can be reordered to give:�
−I

I

� I ≤
�

−λ
υ

�
(5.3)

where λ, υ are Nv × 1 vectors. Only constant vectors are required to describe the bounds of I because only
rectangular arrays are considered in this thesis. Each array, in general, has a different range of indices and thus
has a different I.

If the array is to be partitioned along just one index then that index, say ix, must be divided into p sub-ranges.
Once a particular partition, has been chosen, as defined in section 4.5, then the indices corresponding to PC will
be defined over a sub-range. The remaining serialised ones, corresponding to SC, will be unaffected.

This section is concerned with the function, ζ , which maps the array indices to the various processors. In the
case of partitioning just one index, it has the following form:

ζ : I 7! I1 × I2 × ⋅ ⋅ ⋅ × Ip (5.4)

For some processor, z ∈ 1, … , p, the bounds on the indices Iz describe the elements of an array, a, local to
processor z. The indices local to a processor z consist of d separate sequences of index values. Iz = I1

z ×I2
z ×⋅ ⋅ ⋅×Id

z ,
where d is the number of times an array is wrapped around the processors. In the majority of cases d is equal to
one. The kth sequence Ik

z , 1 ≤ k ≤ d is of the following form:2664 −IN

IN

−ex

ex

377526666664 ik
1
...

ik
x
...

ik
N

37777775 ≤

2664 −λ
υ

−[(z − 1) × b + k × r + 1]
z × b + k × r

3775 (5.5)

where ex is the xth row of the identity matrix, b is the amount of continuous data per processor in index x, r = b×p
and d = dυx−λx+1

r e is the number of sequences or wrap arounds.

For example, let an array, a[(1..64)], be partitioned across p = 4 processors in a wrapped manner, such that the
number of continuous data elements in any processor is b = 8. Now, as r = p × b, 32 = 4 × 8, this implies that the
data has to be wrapped around twice, d = d 64

32e. Therefore processor z = 1 will have the elements a[(1..8), (33..40)]
local whilst, processor z = 3 will have the elements a[(17..24), (49..56)] local etc.

It is often necessary to partition an array by more than one dimension. If the array is to be partitioned by q indices
where

1 ≤ q ≤ Nv (5.6)

then the processor space, P, has to be rearranged as follows:

P 7! P1 × P2 × ⋅ ⋅ ⋅ × Pq (5.7)

As there are p processors we have
(p1 × p2 × ⋅ ⋅ ⋅ × pq) = p (5.8)

CHAPTER 5. PARTITIONING AND PRE-FETCHING 89

c := for i in 1, 200 cross j in 1,300
returns array of i +j
end for;

a := for i in 1, 100 cross j in 1,100
returns array of c[i,j]
end for;

Figure 5.1: A Sisal Fragment

where pi is the number of processors in the ith dimension , 1 ≤ i ≤ q. Each dimension of the processor space
corresponds to a particular dimension of the array. Let the array dimension associated with processor dimension
s be χs. Thus the array dimensions to be partitioned are given by:

χ1, χ2, … , χq (5.9)

Thus 5.3 can be reformed to define the value of the local indices in some processor z. The range of the local
indices in equation 5.3 is of the form given in 5.10.�

−I
I

� Ik
z ≤
�

−λz

υz

�
(5.10)26666666666664 −IN

IN

−eχ1

...
−eχq

eχ1

...
eχq

3777777777777526666666666666664 ik
1

ik
2
...

ik
χ1

...
ik
χq

...
ik
N

37777777777777775 ≤

26666666666664 −λ
υ

−[(z − 1) × bχ1 + k × rχ1 + 1]
...

−[(z − 1) × bχq + k × rχ1 + 1]
z × bχ1 + k × rχ1

...
z × bχq + k × rχq

37777777777775 (5.11)

The form of z, d and k have to be altered to accommodate the partitioning by more than one index.

z = (z1, z2, … , zq) (5.12)

d = (d1, d2, … , dq) (5.13)

k = (k1, k2, … , kq) (5.14)

To illustrate the partitioning of data consider the Sisal fragment described in figure 5.1, where the index ranges
for both arrays, a and c, are to be be determined. Array a has the following bounds.2664 −1 0

0 −1
1 0
0 1

3775� i1

i2

�
a

≤

2664 −1
−1

100
100

3775 (5.15)

CHAPTER 5. PARTITIONING AND PRE-FETCHING 90

Which translates to the imperative array declaration in 5.16:

a[(1..100), (1..100)] (5.16)

Similarly the array bounds for c are : 2664 −1 0
0 −1
1 0
0 1

3775� i1

i2

�
c

≤

2664 −1
−1

200
300

3775 (5.17)

In other words the array c has the following size:

c[(1..200), (1..300)] (5.18)

Let the number of processors be p = 16 and let the array be partitioned along two dimensions. In other words the
array is to be partitioned into blocks giving q = 2, χ1 = 1 and χ2 = 2. For convenience let p1 = p2 =

p
p = 4. In

this example a is to be partitioned in a folded manner with no wrap around of data, so the amount of data in each
processor is 100

4 = 25 per row, and 100
4 = 25 per column. This can be represented in the general case by:

bχi =
(υχi − λχi + 1)

pi
∀i ∈ 1, … , q (5.19)

After the removal of redundant constraints, consider the the index values of array a on, say, processor z = (3, 2):2664 −1 0
0 −1
1 0
0 1

3775" iχ1

iχ2

#
a

≤

2664 −51
−26

75
50

3775 (5.20)

In other words the array a has the following size on this processor:

a[(51..75), (26..50)] (5.21)

The amount of continuous data per processor in each dimension p1 = 1, … , 4 and p2 = 1, … , 4 is 25. Thus
bχ1 = 25, bχ2 = 25 rχ1 = 4 × 25 = 100 and rχ2 = 4 × 25 = 100. At the stage of mapping data to processors, it is
assumed that the arrays have been aligned so each element c[i, j] should be in the same processor as a[i, j]. As c
is of a greater size than a, c will be mapped in a wrapped manner.

dχ1 = d200
100

e = 2 (5.22)

dχ2 = d300
100

e = 3 (5.23)

Therefore k1 = 1, … , 2, k2 = 1, … , 3 and array c will be wrapped around twice in one direction and three times
in the other. After removing the redundant constraints of the polytope, the index values of array c are:2664 −1 0

0 −1
1 0
0 1

3775" iχ1

iχ2

#
c

≤

2664 −51
−26

75
50

3775 , (5.24)

CHAPTER 5. PARTITIONING AND PRE-FETCHING 912664 −1 0
0 −1
1 0
0 1

3775" iχ1

iχ2

#
c

≤

2664 −51
−126

75
150

3775 , … (5.25)

…

2664 −1 0
0 −1
1 0
0 1

3775" iχ1

iχ2

#
c

≤

2664 −151
−226

175
250

3775 (5.26)

i.e.

c[(51..75 , 26..50) , (51..75 , 126..150) , (51..75 , 226..250) , (151..175 , 26..50) , (151..175 , 126..150), (151..175
, 226..250)]

The mapping results in the elements a[(51..75),(26..50)] and c[(51 .. 75) , (26 .. 50)] being present in the
same processor which preserves alignment. The mapping of data to processors is always done with respect to the
smallest range as distributing the data with respect to a largest array implies either non-even distribution of data,
or non-alignment of the smaller array. Hence mapping with respect to the smallest array is employed, despite the
inconvenience of wrapped mappings and discontinuous index values

5.1.2 Mapping Iterators

Once the indices of a particular processor have been determined, it is necessary to determine the local iteration
space for each processor where all writes are local1 The iteration space is partitioned in a similar manner to that
of the index space, namely:

ζ : J 7! J1 × J2 × ⋅ ⋅ ⋅ × Jp (5.27)

The local iterators of a processor z are denoted by Jz which are defined over as the lattice points of the local
iteration space:

AJz ≤ b (5.28)

This polytope is derived from: 266664 −L
UE

−CC 37777526664 j1

j2
...

jm

37775 ≤

266664 −l
u
ε

−λz

υz

377775 (5.29)

Adding the index bounds of the local array to the polytope guarantees local writes. As many of the entries in the
polytope will prove to be redundant, they should be removed, using the techniques described in chapter 3. As an
example, consider the program in figure 5.2.

We will assume the data space is to be partitioned by blocks, and the total number of processors is 16, 4 in each di-
mension. Consider the iteration space of processor z = (3, 3) where the index range of array a is a[(9..12),(9..12)].
The local iteration space is given by:

1This is true for creation parallelism, however, when translating for reduction parallelism, code is inserted to ensure that writes are local
(see appendix B). The only modification required is that C be replaced by the reduction array U1.v in 5.29.

CHAPTER 5. PARTITIONING AND PRE-FETCHING 92

a: = for i in 1,16 cross j in 1,16
returns array of
for k in 1,i
returns value of sum
if (j>=k)
then b[i,k] * b[j,k]
else 0
end if

end for
end for

Figure 5.2: A Sisal Program266666666666666664 −1 0 0
0 −1 0
0 0 −1
1 0 0
0 1 0

−1 0 1
0 −1 1

−1 0 0
0 −1 0
1 0 0
0 1 0

377777777777777775264 j1
...

j3

375 ≤

266666666666666664 −1
−1
−1
16
16

0
0

−9
−9
12
12

377777777777777775 (5.30)

By removing redundant conditions of the polytope, as described in chapter 3, the following polytope is found:2666666664 −1 0 0
0 −1 0
0 0 −1
1 0 0
0 1 0

−1 0 1
0 −1 1

3777777775264 j1
...

j3

375 ≤

2666666664 −9
−9
−1
12
12

0
0

3777777775 (5.31)

which corresponds to the program in figure 5.3. This can be extended to determine the iteration space of wrapped
data, by calculating the separate iteration spaces of the d wrapped sections of an array.

5.1.3 Interleaving

One method to improve the load balancing of a system is to interleave the work load. In chapter 3 the interleaving
of iterators was presented for this purpose. This section describes how interleaving affects data distribution and
the iteration space.

Interleaving an iterator, using the interleave function #, implies that every reference to that iterator is interleaved.

CHAPTER 5. PARTITIONING AND PRE-FETCHING 93

FOR i = 9 TO 12
FOR j = 9 TO 12
FOR k = 1 TO i
IF (k<=j)
THEN a[i,j] := a[i,j] + Get (b[i,k])

* Get (b[j,k])
END IF

END FOR
END FOR

END FOR

Figure 5.3: An Imperative Program

a: = for i in 1,16
returns array of
for j in 1,16
returns value of sum
if (j<=i)
then b[i] * b[j] +i
else 0
end if

end for
end for

Figure 5.4: A Sisal Program

This includes array occurrences, conditionals and general usage in expressions. For example consider the program
in figure 5.4, on interleaving the i iterator, the program in figure 5.5 is formed.

This example illustrates two potential problems

1. The iteration space is no longer convex and hence cannot be represented as a lattice of points contained
within a polytope

2. The c-occurrence is interleaved and it is not obvious whether the data to be written to is local.

FOR i = 1 TO 16
FOR j = 1 TO 16
IF (j <=#i)
THEN a[#i] := a[#i] + Get (b[#i])

* Get (b[j]) + #i
END IF
END FOR

END FOR

Figure 5.5: An Imperative Program

CHAPTER 5. PARTITIONING AND PRE-FETCHING 94

a: = for i in 1,16
returns array of
for j in 1,i
returns value of sum
b[i] * b[j] + i

end for
end for

Figure 5.6: A Sisal Program

Fortunately both these potential problems can be solved.

1. In general the iteration space is not convex, but each local iteration space after partitioning is in fact convex,
and can be represented as a polytope. The interleave function is defined as

#j = z + p(j − jlo) (5.32)

where j is the local interleaved iterator, z is the processor number, p is the total number of processors and
jlo is the lower bound of the iterator .

2. The c-occurrence matrix can be restored to its original form by applying the inverse of #, defined as ##, to
the interleaved indices of the c-occurrence and all aligned arrays, In [ROGE91] the existence and a method
for calculating the inverse interleave function ## is shown.

Rectangular loop bounds are relatively easy to interleave, but not all iteration spaces are rectangular. However it
is possible to express all iterations spaces as rectangular ones which are cut by hyperplanes, where the hyperplanes
correspond to if conditions.

For example consider the program in 5.6 where the i iterator is to be interleaved. In its present form, it is not
obvious how to perform interleaving.

This program has the following polytope:2664 −1 0
0 −1
1 0

−1 1

3775� i
j

�
≤

2664 −1
−1
16

0

3775 (5.33)

This can be rewritten as 266664 −1 0
0 −1
1 0
0 1

−1 1

377775� i
j

�
≤

266664 −1
−1
16
16

0

377775 (5.34)

Moving from the polytope in 5.34 to 5.33 has been the concern of constraint removal in chapter 3, section 3.3.4,
however, in this example the opposite is required. The necessary techniques required to add constraints have
also been described in chapter 3, section 3.3.3, where it was used for loop interchange. If we consider the local
program on the second of four processors, then figure 5.7 describes the program after interleaving one of the
iterators and one of the indices.

CHAPTER 5. PARTITIONING AND PRE-FETCHING 95

FOR i = 5 TO 8
FOR j = 1 TO 16
IF (j <= #i)
THEN

a[i] := a[i] + Get (b[i])
* Get (b[##j]) + #i

END IF
END FOR

END FOR

Figure 5.7: An Imperative Program

Interleaving an array’s indices has similar consequences to those of the alignment transformations, in that the
effect has to be propagated throughout the remainder of the program. Such a procedure is described in chapter 4,
section 4.4.

5.2 Pre-Fetching

This section is concerned with the minimising the amount of non-local access, once alignment and data partitioning
have taken place. Essentially if a non-local data element is to be accessed more than once, then it is preferable
to store it locally after the first access. This is achieved by pre-fetching, where the data item is accessed before it
is needed and stored in a local temporary variable. The criteria for data re-use and the transformations required
to achieve it, are described within the following sub-sections. Other researchers have been working in this area,
most notably M.E. Wolf and M. Lam [WOLF91]. One of the contributions of this thesis is that a methodology
for re-use is developed which allows the application of re-use transformations to a wide range of programs.
Specifically, the transformations can be applied to general affine loops in the presence of affine conditionals and
array occurrences.

If reduction parallelism is exploited, there is no need for pre-fetching transformations as all the data required for
the local computation will be local. Pre-fetching is, therefore, only relevant in compiling for creation parallelism.

Initially, an invariancy condition is derived which determines if pre-fetching is worth while, whereupon a trans-
formation based upon loop interchange is used. In the case of multiple array accesses, it is generally necessary
to scalar expand one or more array references, but this is limited by the availability of memory and the need to
provide a scalable implementation. These points are covered in the next two sub-sections. In the final sub-section,
strip-mining is introduced as a means of maximising the amount of pre-fetching but maintaining the scalability
constraint.

5.2.1 Invariance

To motivate the analysis and the remainder of this section, consider the program in figure 5.8. If the array to be
created is partitioned by j, ‘column-wise’, this will result in the program described in figure 5.9, where jlo and jhi
are the local lower and upper bounds of j which have been determined by the mapping transformation.

The amount of array b that is accessed by the reference b[j, k] is |j| × |k| where |j| and |k| are the number of iteration

CHAPTER 5. PARTITIONING AND PRE-FETCHING 96

a := for i in 1,n cross j in 1,n
returns array of
for k in 1,n
returns value of sum
b[j,k]

end for
end for

Figure 5.8: A Sisal Program

FOR i = 1 TO n
FOR j = jlo TO jhi
FOR k = 1 TO n

a[i,j] := a[i,j] + Get(b[j,k])
END FOR

END FOR
END FOR

Figure 5.9: An Imperative Program

points of j and k respectively. The volume of access is

|jlo, … , jhi| × n =
n2

p
(5.35)

However, the number of times b is, at present, accessed is defined by the number of loop iterations performed:

n × |jlo, … , jhi| × n =
n3

p
(5.36)

There are an O(n) more non-local accesses than is necessary. To achieve the value determined by the volume of
access calculation, the program has to be re-ordered to give the program in figure 5.10, where tempb is a local
variable. In this example the (potentially non local) array, b, is referenced the minimum number of times with
the remaining references being made to a local variable. This reordering is based upon the analysis of data re-use
and general pre-fetching transformations. Given an (Nv × m) u-occurrence U1.v and the iteration vector Jm, then if
the rank of U is d, d < m, there are |Jm−d | points of reuse. The program in figure 5.8 has the occurrence matrix:

FOR k = 1 TO n
FOR j := jlo TO jhi
tempb:= Get(b[j,k])
FOR i = 1 TO n

a[i,j] := a[i,j] + tempb
END FOR

END FOR
END FOR

Figure 5.10: An Imperative Program

CHAPTER 5. PARTITIONING AND PRE-FETCHING 97�
0 1 0
0 0 1

�24 i
j
k

35 (5.37)

There is no reference to iterator i in the u-occurrence matrix of b, which implies that the value of U1.bJm remains
constant for all values of i. In other words U1.b is invariant of the i iterator.

Definition 14 The null space of U1.v, N (U1.v), are the iterators which U1.v is invariant of.

In chapter 4, section 4.2.2 it was shown that a u-occurrence matrix, U1.v could only be aligned with a row of the
c-occurrence matrix, cj, if cj ⊥ N (U1.v). Therefore, either an array occurrence may be aligned or it is a candidate
for re-use.

Before pre-fetching transformations are applied there is one overall restriction, that is, no reference may occur
before its definition. One important example of this is that if an array is defined within a foriter loop the reference
to it may not be moved outside the loop.

The number of points referenced by a u-occurrence of an array v is |U1.vJm |, where Jm is the local iterator vector.
If the rank of U1.v is d and m > d, then it is desirable to reduce the iterators enclosing an array reference from Jm

to Jd where Jd are the iterators accessed, as this will reduce the total potential non-local accesses.

It is necessary to consider the form of a computation set before the pre-fetching transformation can be formally
stated. Q is defined in chapter 2, section 2.2, as a computation set whose elements are the iteration space, array
occurrences and a parse tree containing the operations to be performed. Q is now defined as the local computation
set which is identical to Q , except for its iteration space.

In the equation 5.38 the transformation has the form Q 7! (.., (Q1, Q′)), which is equivalent to creating a new
computation set whose body contains two further computation sets. Transformations of this complexity have not
been previously introduced, but are necessary here. In effect an array creation is split into two parts, the first ac-
cesses non-local data and stores it in a local temporary, while the second accesses that temporary. These two parts
correspond to the ordered pair (Q1, Q′). There is a, transformation introduced, data-dependency between the two
computation sets, which is preserved by nesting them within another computation set. The overall transformation
is:

π : Q 7! (A, Ĵ, b, (Q1, Q′)) (5.38)

where
Q1 = Q(Jm 7! ∅, tempv := v[U1.vJm]) (5.39)

Q′ = Q(Jm 7! J̌, v[U1.vJm] 7! tempv) (5.40)

and
Ĵ = J −N (U) (5.41)

J̌ = N (U) (5.42)

tempv is a temporary variable introduced to store the prefetched value. The mapping v[U1.vJm] 7! tempv describe
the substitution of an array reference by a local temporary. Ĵ is the d dimensional vector of the d iterators thatU1.v makes reference to, and conversely J̌ are the m − d iterators that U1.v does not make reference to. Intuitively
Ĵ should be the outer most loops and J̌ the inner most ones in the transformed program where ∅ represents the
empty iterator vector.

CHAPTER 5. PARTITIONING AND PRE-FETCHING 98

a := for i in 1,n cross j in 1,n
returns array of
for k in 2*i+j, 3*i-j
returns value of sum
if k >= n then b[k,2*k]
else 0 end if

end for
end for

Figure 5.11: A Sisal Program

The determination of this transformation 5.38 is relatively easy if N (U1.v) is aligned with respect to the iteration
space. Therefore in this section we concentrate on u-occurrences that contain only one iterator variable per
reference such as a[i, k, j + 3], a[2 ∗ i, j, j] as opposed to more complex occurrences such as a[i, j + k]. General
affine occurrences will be discussed in section 5.2.5. To determine 5.38, the main task is to perform the reordering
transformation:

J 7! �
Ĵ
J̌

�
(5.43)

This transformation requires O(m) interchanges of iterators which has been covered in chapter 3, section 3.2.7. To
illustrate the usefulness of this technique, consider the program in figure 5.11. If we concentrate on the polytope
involved in the access of array b, then it has the following iteration space:2666666664 −1 0 0

0 −1 0
2 1 −1
1 0 0
0 1 0

−3 1 1
0 0 −1

377777777524 i
j
k

35 ≤

2666666664 −1
−1

0
n
n
0

−n

3777777775 (5.44)

Now
J̌ = N (U1.b) = [i, j]T (5.45)

and
Ĵ = J −N (U1.b) = [k]T (5.46)

Section 5.1.3, dealing with interleaving, described a method whereby general iteration spaces can be re-expressed
as rectangular ones restricted by conditionals. On interchanging the iterators by methods described in chapter 3,
we have: 266666666664 −1 0 0

0 −1 0
0 0 −1
1 0 0
0 1 0
0 0 1
1 2 1
1 −3 1

37777777777524 k
i
j

35 ≤

266666666664 −n
−1
−1

3n − 1
n
n
0
0

377777777775 (5.47)

which on applying 5.38 gives the program in figure 5.12. This program illustrates the power of pre-fetching

CHAPTER 5. PARTITIONING AND PRE-FETCHING 99

FOR k = n TO 3*n-1
tempb := Get(b[k,2*k])
FOR i = 1 TO n
FOR j = 1 TO n
IF ((k+j)<= -2*i) AND ((k+j)<=3*i)
THEN a[i,j] := a[i,j] + tempb
END IF

END FOR
END FOR

END FOR

Figure 5.12: An Imperative Program

transformations. By combining the re-use analysis and general loop interchange, the number of potentially non-
local accesses has been significantly reduced and works in the presence of general affine loop limits and conditional
evaluation.

A computation set usually has more than one u-occurrence each with a different J̌. Let ˇJr.v be the local invariant
iterators of the rth u-occurrence r ∈ 1, … , θv of array v. The iterators common to each ˇJr.v will be the iterators
that all the u-occurrences will be invariant of. It is convenient to describe each of the vectors ˇJr.v in set notation as
the common iterators naturally corresponds to set intersection. Two functions, vtos, stov are required to translate
a vector into a set and a set into a vector:

vtos : [j1, … , jm]T 7! fj1, … , jmg (5.48)

stov : fj1, … , jmg 7! [j1, … , jm]T (5.49)

For the sake of convenience, curly brackets, fg surrounding a vector, denote a set representation of that vector,
i.e. the function vtos has been applied. For example, fJmg = fj1, … , jmg where Jm = [j1, … , jm]T . Given fJmg it
is possible to determine Jm by applying the natural ordering function stov.

The intersection of each of the fJ̌r.vg will be the iterators that all of the u-occurrences are invariant of. The size
of this intersection may be much smaller than the fJ̌r.vg of each u-occurrences and an opportunity to exploit
invariance may be lost.

The common invariant iterators are defined by the intersection of each f ˇJr.vg which is fJ̌g =
Tθv

r=1f ˇJr.vg, ∀v.

The difference f ˇJr.vg−fJ̌g is the shortfall in exploitation of invariance of Ur.v and will lead to excessive non-local
access. To illustrate this point, consider the well known matrix multiplication program shown in figure 5.13.
After a straightforward translation the form described in figure 5.14 is derived. Array b is invariant of iterator j,
but array c is invariant of iterator i, so there are no common invariant iterators.

J̌b = j, J̌c = k, fJ̌g = fjg∩ fkg = f∅g (5.50)

so there is a shortfall in the exploitation of invariancy:fJ̌bg − fJ̌g = fjg (5.51)fJ̌cg − fJ̌g = fkg (5.52)

By reordering the iterators, the invariancy of either b or c may be realised but not both. This is not really
satisfactory, as the remaining u-occurrence will dominate the non-local access cost.

CHAPTER 5. PARTITIONING AND PRE-FETCHING 100

a:= for i in 1,n cross j in 1,n
returns array of
for k in 1,n
returns value of sum
b[i,k]*c[k,j]

end for
end for

Figure 5.13: A Sisal Program

FOR i= 1 TO n
FOR j = 1 TO n
FOR k = 1 TO n
a[i,j] := a[i,j] + Get(b[i,k]) * Get(c[k,j])

END FOR
END FOR

END FOR

Figure 5.14: An Imperative Program

5.2.2 Scalar Expansion

One approach to improve exploitation of invariant access, is to pre-fetch data which is not invariant of the relevant
iterator. The temporary introduced will be scalar expanded [PADU86] by this action and will be the same size as
the range of the iterator. This scalar expansion is appropriate if it allows the realisation of the invariancy of other
u-occurrences.

Let M be the iterators that are going to be innermost. Each u-occurrence will be prefetched with respect to M
and may require some scalar expansion. If ˇJr.v is the invariant iterators of the rth occurrence of v then prefetching,
which may include scalar expansion, is only appropriate if it exploits, or reveals, some invariancy of access.
Pre-fetching of Ur.v is worth while if: fMg∩ f ˇJr.vg ⁄= f∅g (5.53)

Given M let f ˜Jr.vg be defined as f ˜Jr.vg = fMg − fJ̌g∀r ∈ 1, … , θv∀v (5.54)

In other words ˜Jr.v are the iterators which any introduced temporary for the rth u-occurrence of v will be scalar
expanded by. The size of any temporary introduced by scalar expansion will be:kUr.v ˜Jr.v)k, (5.55)

Pre-fetching with scalar expansion can be described as the following transformation :

π : Q 7! (A, Ĵ, b, (Q1.v, … , Qθv.v)∀v, Q′) (5.56)

Qr.v = Q(Jm 7! ˜Jr.v, temprv[Ur.vJm] := v[Ur.vJm)∀r ∈ 1, … , θv∀v (5.57)

Q′ = Q(Jm 7! M, v[CJm] 7! temprv ∀r ∈ 1, … , θv∀v) (5.58)

where fĴg = fJmg − fMg (5.59)

CHAPTER 5. PARTITIONING AND PRE-FETCHING 101

FOR k = 1 TO n
FOR i = ilo TO ihi
tempb[i] := Get(b[i,k])

END FOR
FOR j = jlo TO jhi
tempc[j] := Get(c[k,j])

END FOR
FOR i = ilo TO ihi
FOR j = jlo TO jhi
a[i,j] := a[i,j] + tempb[i] * tempc[j]

END FOR
END FOR

END FOR

Figure 5.15: An Imperative Program

Maximum invariancy occurs when: fMg =
θv[

r=1

f ˇJr.vg∀v (5.60)

In other words, the maximum amount of re-use of data occurs when all invariant iterator are placed innermost.

This is equivalent to saying if a u-occurrence is sufficiently rank deficient, so as to imply re-use, then the trans-
formation will exploit this invariancy. As stated previously, fMg ∩ f ˇJr.vg will be the iterators that Ur.v will be
invariant of for a particular M. To illustrate this point consider the matrix multiplication program in figure 5.13.
The invariant iterators of arrays b and c are

J̌b = j, J̌c = i, (5.61)

Using equation 5.60, M is fMg = fjg∪ fig = fi, jg (5.62)

In other words, the maximum re-use of data is achieved by pre-fetching with respect to i and j. The temporaries
associated with a and b will be scalar expanded when passing through non-invariant loops.fJg − fMg = fkg, fMg − fJ̌bg = fig, fMg − fJ̌cg = fjg (5.63)

So the outer most iterator is k, the reference to array b is scalar expanded by i and the reference to c is scalar
expanded by j. Applying the new transformation and subsequent translation to imperative form, gives the program
in figure 5.15. In this program the potential non-local accesses have been reduced by O(np

p). However it has
incurred the cost of two scalar expanded temporaries, both of which are of size (np

p), as the size of the temporaries
depends on the size of the loops involved in the scalar expansion.

At this point it may be asked why all array u-occurrences are not scalar expanded to the outermost lexical level.
Aside from the constraint that a u-occurrence may not be moved past its definition, the amount by which an
occurrence may be expanded is limited by the scalability constraint. The determination of the scalability constraint
is the subject of the next sub-section.

5.2.3 Scalability Constraint

In order to maintain scalability, a limit must be placed upon the size of the temporaries introduced by scalar
expansion. The size of temporaries has to be the same order of magnitude in size, or less, as the data being

CHAPTER 5. PARTITIONING AND PRE-FETCHING 102

FOR i = ilo TO ihi
FOR j = jlo TO jhi
FOR k = 1 TO n
FOR l = 1 TO n
a[i,j] := a[i,j] + Get(b[i,k])

* Get(c[l,j])
END FOR

END FOR
END FOR

END FOR

Figure 5.16: An Imperative Program

locally created. For the sake of simplicity, the amount of data allowed to be pre-fetched is restricted to the size
of the the local data being created. Any constant multiple is satisfactory and will depend on the actual amount of
memory available in a particular implementation.

If kICk is the amount of local data per processor being created then the constraint on the amount of scalar
expansion by ˜Jr.v is given by: kUr.v ˜Jr.vk ≤ kICk, ∀r ∈ 1, … , θv, ∀v (5.64)

To illustrate the effect of this constraint on the exploitation of invariance, consider the program in figure 5.16.
Array a has been partitioned by rows and columns and therefore both the iterators i and j are partitioned. Assuming
a square grid of p processors, both the ranges of i and j are np

p . The invariant iterators are simply calculated:

J̌b = [j, l]T J̌c = [i, k]T fJ̌bg∩ fJ̌cg = f∅g (5.65)

If M is defined so as to maximise invariancy thenfMg = fJ̌bg∪ fJ̌cg = fi, j, k, lg (5.66)

and
J̃b = [i, k]T J̃c = [j, l]T (5.67)

where the temporaries will be of the following size:kUbJ̃bk =
n2p

p
kUcJ̃bk =

n2p
p

(5.68)

But kUbJ̃bk >
n2

p
, kUcJ̃ck >

n2

p
(5.69)

Here scalar expansion with respect to J̌b and J̌c invalidates the scalability constraint. IdeallyM should be chosen
so that 5.64 holds at equality. If fMg is chosen to be a sub-set of fJ̌bg ∪ fJ̌cg then the constraint 5.64 will
be satisfied, but will not hold at equality, and an opportunity to exploit invariance may be lost. The solution is
presented in the following section.

5.2.4 Strip-Mining

By breaking an iterator into two sub-iterators, which cover the same number of lattice points, it is possible to
exploit invariancy which would otherwise be lost. The range of one of the iterators is chosen so that it is possible

CHAPTER 5. PARTITIONING AND PRE-FETCHING 103

a:= for i in 1,16 cross j in 1,16
returns array of

b[i,j]
end for

Figure 5.17: A Sisal Program

to scalar expand a temporary, with respect to the iterator, without breaking the scalability constraint. The act of
splitting an iterator into two or sub-iterators is known as strip-mining.

On strip-mining an iterator, the new loop bounds must be found and all references to the old iterator updated.
Initially, strip-mining in a rectangular iteration space is described which is easily extended to the general affine
case. To motivate the formal analysis of strip-mining, consider the program in figure 5.17. This has the following
iteration space: 2664 −1 0

0 −1
1 0
0 1

3775� i
j

�
≤

2664 −1
−1
16
16

3775 (5.70)

If the j loop is strip-mined to give two new iterators
←
j ,

→
j , then the new polytope is given by:26666664 −1 0 0

0 −1 0
0 0 −1
1 0 0
0 1 0
0 0 1

37777775264 i
←
j

→
j

375 ≤

26666664 −1
−1
−1
16

4
4

37777775 (5.71)

Instead of the j loop ranging from 1 to 16, the two new iterators iterate over a smaller range but cover the same
number of points 4 × 4 = 16 In general if an iterator is of the following form:

l ≤ j ≤ u (5.72)

then the corresponding strip-mined iterators will be:

1 ≤
←
j ≤ x (5.73)

l ≤
→
j ≤

(u − l + 1)
x

+ (l − 1) (5.74)

where x is the strip-mining ‘width’ which divides the range of j, in this example x = 4. After the strip-mining of
the j loop the u-occurrences must be updated. Before strip-mining the array reference to b was b[i, j], and after

strip-mining it will be b[i, 4(
←
j −1)+

→
j] or b[i, 4

←
j −4+

→
j] on expansion. In general each reference to j must be

replaced by (u−l+1)
x (

←
j −1)+

→
j .

After strip-mining the j loop and updating the references to j, the program in figure 5.18 is given. Strip-mining
can now be expressed more formally. The local iteration space is of the general form:

CHAPTER 5. PARTITIONING AND PRE-FETCHING 104

FOR i = 1 TO 16
FOR j1 = 1 TO 4
FOR j2 = 1 TO 4
a[i,4*j1-4+j2] := Get (b [i,4*j1- 4+j2])

END FOR
END FOR

END FOR

Figure 5.18: An Imperative Program24 −L
UE 35 Jm ≤

24 −l
u
ε

35 (5.75)

If the iteration space is rectangular then L = U = Im,E = 0 and the strip-mining transformation, π , on an iterator,
j, has the following effect on the iteration space:

π : AJm ≤ b 7! A′Jm+1 ≤ b′ (5.76)

where A′ is a (2(m + 1) × m) integer matrix, b′ a (2(m + 1) × 1) integer vector and J′ is the new iterator vector. This
transformation can be expressed as�

−L
U

�
Jm ≤

�
−l
u

� 7! �
−L′

U′

�
Jm+1 ≤

�
−l′

u′

�
(5.77)

where L′, U′, l′, u′ represent the new loop bounds and

L′
r =

8<: �
Lr,1..j 0 Lr,j+1..m

�
r ≤ j�

Or,1..j 1 Or,j+1..m
�

r = j + 1�
Lr−1,1..j 0 Lr−1,j+1..m

�
r > j + 1

∀r ∈ 1, … , m + 1 (5.78)

U′
r =

8<: �
Ur,1..j 0 Ur,j+1..m

�
r ≤ j�

Or,1..j 1 Or,j+1..m
�

r = j + 1�
Ur−1,1..j 0 Ur−1,j+1..m

�
r > j + 1

∀r ∈ 1, … , m + 1 (5.79)

l′
r =

8<: lr r < j
1 r = j

lr−1 r > j
∀r ∈ 1, … , m + 1 (5.80)

u′
r =

8>><>>: ur r < j
x r = j

uj−lj+1
x + lj − 1 r = j + 1

ur−1 r > j + 1

∀r ∈ 1, … , m + 1 (5.81)

and

J′
r =

8>>><>>>: Jr r < j
←
j r = j

→
j r = j + 1

Jr−1 r > j + 1

∀r ∈ 1, … , m + 1 (5.82)

where the iterator j has been strip-mined to form two sub-iterators:

j 7!←
j ×

→
j (5.83)

CHAPTER 5. PARTITIONING AND PRE-FETCHING 105

a:= for i in 1,16 cross j in 2*i+1, i+8
returns array of
b[i,j]

end for

Figure 5.19: A Sisal Program

and x is the upper bound of the
←
j iterator. To extend strip-mining for non-rectangular regions, and to adjust array

occurrences, all usages of j must be updated using the following relationship

j =
(u − l + 1)

x
(
←
j −1)+

→
j (5.84)

To illustrate the effect of strip-mining in non-rectangular regions consider the program in figure 5.19.

The iteration space is: 2664 −1 0
2 −1
1 0

−1 1

3775� i
j

�
≤

2664 −1
−1
16

8

3775 (5.85)

which can be re-ordered to give: 26666664 −1 0
0 −1
1 0
0 1
2 −1

−1 1

37777775� i
j

�
≤

26666664 −1
−1
16
24

1
8

37777775 (5.86)

If the strip-mining width is chosen to be 4 i.e. x = 4 then we have:266666666664 −1 0 0
0 −1 0
0 0 −1
1 0 0
0 1 0
0 0 1
2 −4 −1

−1 4 1

377777777775264 i
←
j

→
j

375 ≤

266666666664 −1
−1
−1
16

4
2
5

12

377777777775 (5.87)

After adjusting the array occurrences the program and replacing
←
j by j1 and

→
j by j2, the program in figure 5.20

is derived.

This example illustrates that strip-mining can be performed in general iteration spaces. Strip-mining was intro-
duced to allow pre-fetching without violating the scalability constraint. An algorithm to perform pre-fetching
transformations so as to exploit invariancy using scalar expansion and strip-mining is given in appendix c. It is
based upon the following observations.

CHAPTER 5. PARTITIONING AND PRE-FETCHING 106

FOR i = 1 TO 16
FOR j1 = 1 TO 4
FOR j2 = 1 TO 2
IF ((2*i-4*j1-j2) <= 5)
AND ((4*j1 +j2-i) <= 12)
THEN
a[i,4*j1- 4+j2] := Get(b [i,4*j1-4+j2])
END IF

END FOR
END FOR

END FOR

Figure 5.20: An Imperative Program

1. the scalability constraint must be observed

2. an iterator which is expanded upon should realise invariancy in as many other u-occurrences as possible

3. the choice of iterators should be fair so that each u-occurrence is expanded uniformly so as to avoid one
u-occurrence dominating the non-local access.

4. scalar expansion should be with respect to the smallest iterator

5. strip-mine when further expansion by steps 1,2,3,4 is not possible. The choice of iterator should be based
on 1,2,3,4

These points can now be applied to the program of figure 5.16 which motivated this sub-section. After expanding
by iterators i and j, the iterators k and l are chosen to be strip-mined, where x is chosen such that it satisfies the
scalability constraint which finally gives the program in figure 5.21.

This program minimises the non-local access for a given data partition but it is unlikely that such a program would
be generated by hand and thus demonstrates the usefulness of the pre-fetching technique.

5.2.5 Affine Occurrences

Previously the case where one of the array sub-scripts makes reference to more than one iterator was ignored
i.e. a[i − j] The conditions whereby an occurrence of this form may be prefetched remain the same. However an
additional result is required in order to exploit invariancy. To motivate the remainder of this section consider the
two programs in figures: 5.22 and 5.23.

In the first program rank(U1.b) = 2 = dim(J2) and thus there is no opportunity to exploit invariance by prefetching.
The second program has rank(Ub) = 2 < 3 =dim(J3) and thus there is an opportunity to exploit invariance by
prefetching. However the null space of U1.b in the second program, N (U1.b), is j − i, which is not an iterator
but a linear combination of two iterators. Thus it is not possible to prefetch an occurrence of this nature without
incurring some scalar expansion. To demonstrate this point consider the program in figure 5.23 which is trans-
formed to give the local program for the first of sixteen processors, as shown in figure 5.24, after partitioning
and pre-fetching. Though legal this translation has had no useful effect. However it can be seen that the accesses
made by tempb are “almost invariant” of the i iterator, with only one element changing per iteration. If the basis
of J̃ is changed so that it is orthogonal to U1.b then the new program in figure 5.25 is formed. The change of

CHAPTER 5. PARTITIONING AND PRE-FETCHING 107

FOR k1 = 1 TO p1
FOR l1 = 1 TO p2
FOR k2 = 1 TO n/p1
FOR i= ilo TO ihi
tempb[i, k2] := Get(b[i,(k1-1)*(n/p1) + k2])

END FOR
END FOR
FOR l2 = 1 TO n/p2
FOR j = jlo TO jhi
tempc[l2,j] := Get(c[(l1-1)*(n/p2)+l2,j])

END FOR
END FOR
FOR k2 = 1 TO n/p1
FOR l2 = 1 TO n/p2
FOR i = ilo TO ihi
FOR j = jlo TO jhi
a[i,j] := a[i,j]+ tempb[i, k2]

*tempc[l2, j]
END FOR

END FOR
END FOR

END FOR
END FOR

END FOR

Figure 5.21: An Imperative Program

a := for i in 1,16 cross j in 1,16
returns array of b[i,i+j]
end for

Figure 5.22: A Sisal Program

a := for i in 1,16 cross j in 1,16
returns array of
for k in 1,16
returns value of sum

b[k,i+j]
end for

end for

Figure 5.23: A Sisal Program

CHAPTER 5. PARTITIONING AND PRE-FETCHING 108

FOR k = 1 TO 16
FOR i = 1 TO 4
FOR j = 1 TO 4
tempb[i+j] := Get(b[k,i+j])

END FOR
END FOR
FOR i = 1 TO 4
FOR j = 1 TO 4
a[i,j] := tempb[i+j]

END FOR
END FOR

END FOR

Figure 5.24: An Imperative Program

FOR k = 1 TO 16
FOR i = 1 TO 4
FOR j = i+1 TO i+4
tempb[j] := Get(b[k,j])

END FOR
END FOR
FOR i = 1 TO 4
FOR j = 1 TO 4
a[i,j] := tempb[i+j]

END FOR
END FOR

END FOR

Figure 5.25: An Imperative Program

basis transformation has been described in section 3.2.2 where it was used to reveal invariancy of work in the
iteration space. It is used here to reveal invariancy of access. Re-ordering the polytope associated with the local
imperative program will give the program in 5.26 which now can be finally be written as in figure 5.27. The size
of the temporary remains the same but there are less accesses to b. The strategy for pre-fetching general affine
occurrences is easily summarised:

1. Only consider pre-fetching if the u-occurrence matrix is rank deficient

2. Perform pre-fetching transformations so as to derive J̃

3. Change the basis of J̃

4. Perform pre-fetching transformations on the new J̃′

Although this is a more complex procedure than was required for orthogonal occurrences, it allows the exploitation
of invariancy of access, by pre-fetching, in the presence of general affine occurrences.

CHAPTER 5. PARTITIONING AND PRE-FETCHING 109

FOR k = 1 TO 16
FOR i = 1 TO 4
FOR j = 2 TO 8
IF (j>= i+1) AND (j <= i+4)
THEN
tempb[j] := Get(b[k,j])

END IF
END FOR

END FOR
FOR i = 1 TO 4
FOR j = 1 TO 4
a[i,j] := tempb[i+j]

END FOR
END FOR

END FOR

Figure 5.26: An Imperative Program

FOR k = 1 TO 16
FOR j = 2 TO 8
tempb[j] := Get(b[k,j])

END FOR
FOR i = 1 TO 4
FOR j = 1 TO 4
a[i,j] := tempb[i+j]

END FOR
END FOR

END FOR

Figure 5.27: An Imperative Program

CHAPTER 5. PARTITIONING AND PRE-FETCHING 110

a := for i in 1,16 cross j in 1,16
returns array of
for k in 1,16
returns value of sum
b[j,k]

end for
end for

Figure 5.28: A Sisal Program

5.3 Partitioning

The first section described how to map the elements of an array to the processors and how to determine the local
iteration space. A method of choosing the data partition based on alignment, was described in chapter 4. In this
section, a method based on volume of access is explored. The volume of access corresponds to the size of the
region of the data accessed rather than the number of times the data is accessed. It assumes that a particular
alignment has been determined and it is the role of this strategy to determine which dimension the arrays are to
be partitioned across so as to minimise non-local access. Alignment can be considered as the action of orienting
arrays so as to maximise local access, whilst data partitioning, based on the volume of access, is the process of
partitioning so as to minimise non-local access.

This partitioning scheme is placed after the mapping and pre-fetching sections as it crucially depends on pre-
fetching to remove redundant non-local accesses. Essentially it searches through several possible data partitions
and determines what amount of non-local data will be accessed for that partition, based on the assumption that
once a data item has been accessed it remains local as long as it is required.

It is possible to precisely define the amount of data required for a particular computation by examining the array
occurrences and determining how the shape of the local iteration space affects that access pattern.

The amount of data accessed by a program on processor z of an array v, when compiling for creation parallelism,
is the number of points described by U1.vJz with respect to the local iteration space AzJz ≤ bz. The amount of
non-local access is the total access minus that which is local and it is the purpose of data partitioning to minimise
this amount.

For example consider the Sisal program in figure 5.28. If it is decided to partition by the first dimension of the
aligned arrays a and b, then the volume of access to array b will be:kUbJ2k = (16 − 1 + 1) × (16 − 1 + 1) = 256 (5.88)

for the second processor, z = 2, of two processors, p = 2.

If, instead, it is decided to partition by the second dimension of the aligned arrays, the volume of access will be:kUbJ2k = (16 − 9 + 1) × (16 − 1 + 1) = 128 (5.89)

Thus a makes reference to 256 elements of b in the first case and 128 elements in the second case. The same
is true for the local program on the first processor, z = 1. Clearly for this program, partitioning by the second
index is preferable. Choosing the second index to partition along, has the effect of reducing the local range of
the j iterator. As j appears in the u-occurrence matrix, the reduction in the range of j implies that there will be a
smaller volume of access to b. The i iterator will have a smaller range if a is partitioned by the first index, but as
i does not occur in the u-occurrence matrix, it will not reduce the volume of access to b.

CHAPTER 5. PARTITIONING AND PRE-FETCHING 111

a := for i in 1,n cross j in 1,n
returns array of
for k in 1,n
returns value of sum
b[k,i] * c[j,j]

end for
end for

Figure 5.29: A Sisal Program

Now Iz are the local elements of an array v in processor z, so partitioning should minimise:kU1.vJz − Izk (5.90)

The amount of access is in general a function of the processor z, so the maximum value over the processors should
be minimised. This should be carried out for all the u-occurrences in that particular computation set. Therefore
partitioning should minimise:

|v|X
v=1

θvX
r=1

max
z∈P

(kUr.vJz − Iz
vk) (5.91)

where |v| is the number of arrays in a computation set.

If there are N indices along which the data may be partitioned, then there are 2N − 1 possible data partitions
available. In general the calculation of kUr.vJzk is non-trivial. It is usually a function of the processor z, and
depends on the shape of the iteration lattice. To determine the best partition would take O(2N − 1 × p × |θv| × m19)
operations using Dyer’s algorithm [DYER91]. This may be acceptable, if the m19 term can be reduced, as the
calculation only has to be performed once for the array to which the others are aligned. However if the number of
processors is large, then even performing this once may be too expensive. If this is the case then an approximating
algorithm (given in appendix c) is used. This algorithm is a heuristic approximation to 5.91 and is based upon
the following observations

1. If an iterator is referenced by a u-occurrence, then partitioning with respect to that iterator will reduce the
volume of access to that u-occurrence. Therefore partitioning the c-occurrence by all those iterators that
are common to the c-occurrence and any u-occurrence will be beneficial.

2. The volume of access is related to the rank of the u-occurrence matrices. The higher the rank, the greater the
number of different data points accessed. For example in the program in figure 5.29, there are n2 accesses
to b but only n accesses to c. Therefore partitioning is only with respect to the highest rank occurrence
matrices as they will dominate the non-local access cost.

This heuristic works surprisingly well and may be used when the volume of access calculation is considered too
expensive.

To demonstrate the volume of access partitioning strategy, consider the program in figure 5.30 which has the
following array occurrences: 24 1 0 0

0 1 0
0 0 0

35
a

24 1 0 0
0 0 0
0 0 1

35
b

24 0 0 0
0 1 0
0 0 1

35
c

(5.92)

CHAPTER 5. PARTITIONING AND PRE-FETCHING 112

a := for i in 1,n cross j in 1,n
returns array of
for k in 1,n
returns array of
b[i,k] *c[k,j]
end for

end for

Figure 5.30: A Sisal Program

There are three (22 − 1 = 3) possible partitions which are described using the notation developed in chapter 4.

1. P =

24 1 0 0
0 0 0
0 0 0

35 ,Tc =

24 0 1 0
0 0 1
1 0 0

35, “rows”

2. P =

24 0 1 0
0 0 0
0 0 0

35 ,Tb =

24 1 0 0
0 0 1
0 1 0

35 “columns”

3. P =

24 1 0 0
0 1 0
0 0 0

35 ,Tb =

24 1 0 0
0 0 1
0 1 0

35 Tc =

24 0 1 0
0 0 1
1 0 0

35 “blocks”

If the volume of access is calculated in each of these cases, assuming that p1 = p2 =
p

p

1. kUb(Jz)k = n
p × n kUc(Jz)k = n × n

2. kUb(Jz)k = n × n kUc(Jz)k = n
p × n

3. kUb(Jz)k = np
p × n kUc(Jz)k = np

p × n

the local access is

1. kIb
z k = n

p × n kIc
zk = n × n

p

2. kIb
z k = n × n

p kIc
zk = n

p × n

3. kIb
z k = np

p × np
p kIc

z k = np
p × np

p

Thus the total non-local access for each partition is:

1. n(n − n
p) = O(n2)

2. n(n − n
p) = O(n2)

CHAPTER 5. PARTITIONING AND PRE-FETCHING 113

3. 2 n2p
p (1 − 1p

p) = O(n2p
p)

Clearly in this example partitioning by “blocks” is preferable. The same result would have been given by the
heuristic.

1. Partition by all the indices common to the c-occurrence and aligned u-occurrences. Iterator i is common to
arrays a and b, iterator j is common to arrays a and c, so partition by i and j.

2. Both u-occurrences are full rank and equally important

5.4 Summary

This chapter has developed a method to evenly distribute data across processors whilst maintaining alignment
for arrays of differing sizes. Having determined the local data, it is possible to calculate the local iteration space
even in the presence of interleaved data and computation. Once data partitioning has taken place, prefetching
transformations to reduce non-local accesses have been presented which can be used in the presence of general
iteration spaces, affine occurrences and interleaving. Finally a data partitioning method to reduce non-local access
has been developed. If it is assumed that pre-fetching transformations are used then a simple approximation
algorithm can be used to give efficient partitioning.

Chapter 6

Evaluation

This chapter applies the transformation techniques developed in chapters 3,4 and 5 to several well known prob-
lems. In general the goals of load balancing, alignment and data partitioning may conflict so a heuristic is
developed, in the first section, where these goals are prioritised based upon some simple assumptions.

The programs have been selected so as to illustrate a range of program characteristics that are either common or
are perceived to be difficult for compilers. These include non-rectangular iteration spaces, non-orthogonal array
occurrences, array indirection, sequential computation and general while loops.

The remaining eight sections describe the application of the heuristic to the selected Sisal programs. With the
aid of Mathematica [WOLF88], it is possible to determine the load imbalance and non-local access using the
machine model and metrics given in chapter 2. A comparison with well known hand tuned methods is given
where appropriate.

In the conclusion it is noted that the automatically generated solutions are competitive with hand written imple-
mentations.

6.1 Heuristic

Throughout this thesis the various issues involved in mapping array computation to distributed memory archi-
tectures have been treated separately but, when compiling a particular program, a strategy based on the relative
importance of each issue is required. Finding program parallelism so as to fully exploit machine parallelism
is the most important task. Creation parallelism is preferred over reduction parallelism as it does not require
synchronisation after completion of each local reduction and generally requires less non-local access.

Load balancing, in this heuristic, is considered to be more important than reducing non-local access as non-local
access may be masked by an implementation which hides latency in memory access [ROGE91].

Alignment is required before data partitioning takes place and is a complementary process. Data partitioning will
be restricted in order to allow as even a distribution of data as is possible. Prefetching will take place subject to
the restriction that it does not violate the scalability constraint.

114

CHAPTER 6. EVALUATION 115

Thus, the crucial decisions on how to partition the data and computation are based on the following relative
ordering:

Parallelism > Load Imbalance > Non-Local Access

A different ordering based on different architectural and implementation assumptions will necessarily lead to a
different heuristic from the one presented below:

1. Determine the array computation of the program which dominates the computation cost. This implies
finding the largest polytope of computation within the program.

2. Within the specific polytope determine the iterators where computation may be performed in parallel

3. If any of the selected iterators are referenced by the creation occurrence matrix of that polytope, then restrict
the iterators of interest to them.

4. Determine the set of perfectly load balanced iterators and transform the program. If none are perfectly
balanced, then determine the most load balanced one(s) and restrict later partitioning to just one of them.

5. Align with the C occurrence matrix if compiling for creation parallelism, otherwise arbitrarily choose a U
occurrence containing a reference to the reduction iterator.

6. Perform volume of access analysis to determine which of the remaining iterators to partition upon.

7. Given the iterators upon which the data and computation is to be partitioned, determine the form of paral-
lelism and data partitioning for all the other aligned arrays.

8. Partition and map the data space and calculate the local iteration space for each polytope and processor.

9. Perform prefetching on each local program as appropriate.

These transformations within this scheme can be summarised as follows

P0
τ07! P1

π17! P2
π27! P3

ζ7! 26664 P4

P4
...

P4

37775 π37! 26664 P5

P5
...

P5

37775 τ17! 26664 P6

P6
...

P6

37775 (6.1)

P0 represents any Sisal program and [P6, … , P6] is an array of imperative programs, one for each processor. τ0 and
τ1 represent the translation of Sisal to a computation set representation, and the translation of the computation
sets into the imperative language respectively. π1 is any load balancing transformation, π2 is the alignment
transformation and is program wide, ζ is the mapping of data and computation to give p local programs and it
may include the interleaving transformation. Finally π3 is the prefetching transformation performed on each local
program.

While one particular array computation is chosen as the basis for data partitioning decisions, its effect, via align-
ment, is program wide. Within this thesis the global effect of such transformations has not been studied. It is
precisely for this reason that the above heuristic has been devised. An improved heuristic would consider the
global impact of each transformation.

CHAPTER 6. EVALUATION 116

c:= for i in 1,n cross j in 1,n
returns array of
for k in 1,n
returns value of sum
a[i,k]*b[k,j]

end for
end for

Figure 6.1: Matrix Multiplication

6.2 Matrix Multiplication

Matrix multiplication is a very well known program and a compiler must perform at least reasonably well upon
this problem to be credible. The program, figure 6.1, has just one array computation, the calculation of array c.
There are three parallel iterators defining a rectangular iteration space where each of the three two-dimensional
arrays makes reference to two iterators.

Applying the heuristic:

All three iterators in the program are parallel and are suitable candidates for partitioning of data and iteration
space.
Any combination of the three iterators can partition the iteration space to give perfect load balance.
Creation parallelism is preferred, so the parallel iterators to consider are restricted to i and j.
Aligning for creation parallelism leaves the arrays in their present alignment.
To minimise the volume of access, partitioning should be with respect to both i and j.
Arrays c, b and a are partitioned by i and j in a folded manner. As i and j are perfectly load balanced no inter-
leaving transformations are required. The local iteration spaces are determined.
Access to arrays a and b may be prefetched to exploit invariancy such that there are no multiple accesses to the
same item of non-local data.

By applying the necessary program transformations, the generic program for a processor z = (z1, z2) is derived as
shown in figure 6.2 where ilo = (z1 − 1) × n

p1
+ 1, ihi = z1 × n

p1
, jlo = (z2 − 1) × n

p2
+ 1, jhi = z2 × n

p2
.

If it is assumed that the processors are arranged in the form of a square mesh, i.e p1 = p2 =
p

p, then as the

non-local access is the same across all the processors, the maximum value is 2 n2p
p (1 − 1p

p). Load imbalance = 0

and thus the maximum amount of computation in any one processor is 2 n3

p . In this example the local bounds on
the first and second indices of arrays A, B, C are equal to the ranges of the iterators i and j respectively.

This program gives the best known performance for distributed memory machines. It is equivalent to the blocking
technique used by numerical analysts [GOLU89]. In future examples, in order to aid readability, the declaration
and initialisation of variables will not be shown, nor will the calculation of the bounds of the local iterators.

CHAPTER 6. EVALUATION 117

c[(c1lo..c1hi),(c2lo..c2hi)]:real
a[(a1lo..a1hi),(a2lo..a2hi)]:real
b[(b1lo..b1hi),(b2lo..b2hi)]:real
tempa[(tempalo..tempahi)]:real
tempb[(tempblo..tempbhi)]:real
FOR k = 1 TO n
FOR i = ilo TO ihi
tempa[i] := Get (a[i,k])

END FOR
FOR j = jlo TO jhi
tempb[j] := Get (b[k,j])

END FOR
FOR i = ilo TO ihi
FOR j = jlo TO jhi
c[i,j] := c[i,j] + tempa[i]*tempb[j]

END FOR
END FOR

END FOR

Figure 6.2: An Imperative Program

c:= for i in 1,n cross j in 1,n
returns array of
for k in j,n
returns value of sum
a[i,k]*b[k,j]

end for
end for

Figure 6.3: Square × Triangle

6.3 Square × Triangle

This problem is very similar to matrix multiplicationdescribed in the previous section 6.2, except that the reduction
iterator, k, has a variable lower bound so the iteration space resembles a “wedge”. This program, figure 6.3,
performs roughly half the amount of work of full matrix multiplication and the compiler’s decisions should
reflect this.

Applying the heuristic:

All three iterators in the program are parallel and are suitable candidates for partitioning of data and iteration
space.
Only iterator i can partition the iteration space to give perfect load balance.
Iterator i occurs in the creation matrix and therefore partitioning is for creation parallelism.
Aligning for creation parallelism leaves the arrays in their present alignment.
As only iterator i is to be considered, there is no choice as to how the data space should be partitioned.
Arrays c, b and a are partitioned by i in a folded manner. As i is perfectly load balanced no interleaving transfor-
mations are required. The local iteration spaces are determined.

CHAPTER 6. EVALUATION 118

FOR k = 1 TO n
FOR i = ilo TO ihi
tempa[i] := Get (a[i,k])

END FOR
FOR j = 1 TO k
tempb[j] := Get (b[k,j])

END FOR
FOR i = ilo TO ihi
FOR j = 1 TO k
c[i,j] := c[i,j] + tempa[i]*tempb[j]

END FOR
END FOR

END FOR

Figure 6.4: An Imperative Program

Both arrays a and b may be prefetched to exploit invariancy such that there are no redundant non-local accesses.

This gives the generic program in figure 6.4 for a processor z.

The maximum non-local access occurs in the first processor z = 1. Here the non-local access is n2

2p2 (p2−1)+ n
2p (p−1),

load imbalance = 0 and therefore the maximum amount of computation in any one processor is n2(n+1)
2 .

While load balance is ideal, there is more non-local access than if a “blocking” method were employed. However
in that case load balancing would suffer and thus a tradeoff between load balancing and minimising non-local
access may be seen. The method suggested by [GOLU89], that of interleaved columns, has a slightly reduced
maximum non-local access of n2

2p2 (p − 1)2 + n
2p (p − 1) but has much worse load imbalance, n2 (p−1)

p , and thus the

maximum computation to be performed by any one processor would be n2(n+1)
2 + n2 (p−1)

p .

6.4 Symmetric Matrix Multiplication

This problem, as shown in figure 6.5, like the previous example, has a “wedge” like iteration space but this is
due to the ranges of i and j. The amount of work performed is the same as the previous program, shown in figure
6.3. In Sisal all elements of an array must be defined and as the restricted form used in this thesis restricts arrays
to being rectangular, the upper triangular portion of the array must be set to zero.

Applying the heuristic :

There are two polytopes of computation in this program corresponding to the two branches of the if condition.
The first branch has a larger polytope than the second and therefore transformation criteria should be based on
this polytope.
All three iterators of this polytope are parallel and are suitable candidates for partitioning of data and iteration
space.
Only iterator k can partition the iteration space to give perfect load balance but it is a reduction iterator. Either
of the remaining iterators i or j can be selected. As neither of them is perfectly load balanced, only one will be

CHAPTER 6. EVALUATION 119

c:= for i in 1,n cross j in 1,n
returns array of
if i >= j
then
for k in 1,n
returns value of sum
a[i,k]*a[j,k]

end for
else
0.0d0

end if
end for

Figure 6.5: Symmetric Matrix Multiplication

selected for partitioning. This is based on the assumption that it is better to partition on one unbalanced iterator
than to partition by two or more unbalanced iterators.
Both iterators i and j occur in the creation matrix and thus partitioning is for creation parallelism.
Aligning for creation parallelism leaves the arrays in their present orientation.
As only one of the iterators i and j is to be considered the data space should be partitioned with respect to the
iterator i in order to minimise the volume of access.
Arrays a and c are partitioned by i in an interleaved manner as i is not perfectly load balanced.
Both occurrences of array a may be prefetched to exploit invariancy such that there are no redundant non-local
accesses.

This gives the generic program shown in figure 6.6 for a processor z.

The maximum amount of computation takes place in the last processor and is n3

p + n2 whilst the average is n3

p + n2

p

thus the imbalance is n2(1 − 1
p). The maximum non-local access is n2(1 − 1

p). Although this program is related
to the rank-k update implemented in the BLAS3 kernels [DONG90], there are no well-known implementations
of this program. If a blocking method were used the maximum non-local access would be reduced to that of
matrix multiplication 6.2 but the maximum load imbalance would be O(n3

p). If interleaved columns as suggested
by [GOLU89] for the previous example, 6.3, is employed, the load imbalance would remain the same but the
non-local access would increase. Therefore the implementation chosen is a reasonable one.

6.5 Livermore Loop 6

Unlike the previous three programs which are basic linear algebra “kernels”, the following is a well known
benchmark based upon segments of programs commonly used at Lawrence Livermore National Laboratories.

This program, figure 6.7, has several interesting features. It has an outer sequential iterative loop, two array
creations, a non-orthogonal array access B[j, j − oldi] and different sized arrays.

The update of WOut could be rewritten as

CHAPTER 6. EVALUATION 120

FOR k = 1 TO n
FOR i = ilo TO ihi
tempa1[i] := Get (a[i,k])

END FOR
FOR j = 1 TO n
tempa2[j] := Get (a[##j,k])

END FOR
FOR i = ilo TO ihi
FOR j = 1,n
IF (j<=#i)
THEN
c[i,j] := c[i,j] +

tempa1[i]*tempa2[j]
ELSE
c[i,j] := 0

END IF
END FOR

END FOR
END FOR

Figure 6.6: An Imperative Program

WOut:=old WOut[i:W[i]]

However, this construct has not been used as it is not symmetric with respect to different dimensions of an array
i.e. it is row biased. The cost of updating the WOut array is not considered, as no floating point operations
are performed and, by using a sensible updating implementation based upon Cann’s work [CANN89A], this
assignment would not be evaluated.

Applying the heuristic:

The biggest polytope of computation is the first branch of the first conditional.
Within this polytope the only parallel iterator to partition the iteration and data space is j.
As j is the only iterator to be considered, it should be interleaved as it is not perfectly load balanced.
Iterator j occurs in the creation matrix thus partitioning should be for creation parallelism.
Arrays oldW, WOut, WIn are trivially aligned with W as they are all one dimensional. The first dimension of B is
aligned with that of W.
After interleaved partitioning of iterator j, prefetching reduces the number of non-local accesses to oldW[oldi].
Applying the necessary transformations, gives the program in figure 6.8.

The maximum load imbalance occurs in the last processor and is n
2 . This gives the maximum amount of com-

putation performed in any one processor to be n2

2p − n
2p + n

2 . The maximum non-local access is small, n − n
p , and,

again, occurs in the last processor.

There are no well known hand written implementations of this program for DMAs as it is intended as a benchmark
for computer systems. However this implementation will be competitive with most implementations. A possible
improvement is to find a better load balancing mapping than interleaving, such as the reflection mapping described
in [GERA89A]. This would reduce the load imbalance slightly. It is unlikely that the amount of non-local access
can be significantly reduced due to the dependency W[j] := oldW[oldi]. Each W[j] will have to make reference to

CHAPTER 6. EVALUATION 121

function main(n:integer; B:TwoDim;WIn:OneDim; returns OneDim)
for initial

i := 1;
W := WIn;
WOut:= Win;

while i < n repeat
i := old i + 1;
W := for j in 1,n returns array of

if (j> old i) then
old W[j] + B[j, j - old i] * old W[old i]
else old W[j]
end if

end for;
WOut:= for j in 1,n

returns array of
if (j= old i)
then W[j]
else old WOut[j]
end if

end for;
returns value of WOut
end for

end function

Figure 6.7: Livermore Loop 6

FORITER i = 1 TO n
tempw := Get(oldW[##i])
FOR j = jlo TO jhi
IF (i <=#j)
THEN
W[j] := W[j] + Get(B[j,#j-i])*tempw

ELSE
W[j] := Get(oldW[j])

END IF
END FOR
FOR j = jlo TO jhi
IF (#j=i)
THEN
WOut[j] := Get(W[j])

ELSE
WOut[j] := Get(oldWOut[j])

END IF
END FOR

END FOR

Figure 6.8: An Imperative Program

CHAPTER 6. EVALUATION 122

function main(n:integer; xIn :OneDim; bIn :OneDim; aIn:TwoDim;
returns array[integer])

for initial
i := 1;
x := xIn;
b := bIn;
a := aIn;

repeat
i := old i + 1;
x := for j in 1,n

returns array of
if j=i
then (b[i]- for k in 1 ,i-1

returns value of sum
(a[i,k]* old x[k])

end for) /a[i,i]
else

old x[j]
end if

end for;
until (i >n)
returns value of x
end for
end function

Figure 6.9: Triangular Back Substitution

the same element, oldW[oldi], and as W must be distributed across the processors, it is not possible to have W[j]
and oldW[oldi] in the same processor for all values of j.

6.6 Triangular Back Substitution

This is a well known linear algebra program. It has, in the past, been a bottle-neck to parallel implementations
of linear system solvers [HEAT88]. This is due to the relatively high communication overhead.

This program, figure 6.9, again has an outer iterative loop with the only parallelism available being with respect
to the k iterator. Although j belongs to a for loop, computation only takes place when i = j. As i is a sequential
iterator, this implies that any work associated with j will also be sequential. This is discovered when examining
the polytope in the load balancing analysis phase. Unfortunately iterator k forms a triangular iteration space and is
a reduction iterator so this is a difficult problem to implement efficiently, and should be a good test of a compiler.

Applying the heuristic:

The polytope of interest is the first branch of the if condition.
Only the k iterator is parallel, partitioning with respect to j as described above,implies purely sequential compu-
tation.
As k is the only candidate iterator for partitioning, it should be interleaved as it is not perfectly load balanced.

CHAPTER 6. EVALUATION 123

FORITER i = 1 TO n
tempa := Get(a[i,##i])
tempb := Get(b[i])
FOR j = 1 TO n
IF (#j=i)
THEN
FOR k = klo TO khi
IF (#k <= i-1)
THEN
psum[z] := psum[z] +a[i,k]*oldx[k]

ELSE
psum[z]:= 0

END IF
END FOR
IF (#j >= xlo) AND (#j <= xhi)
THEN
FOR y = 1 TO p
sum := sum + Get(psum[y])

END FOR
x[j] := (tempb -sum)/tempa

END IF
Sync

ELSE
x[j] := Get(oldx[j])

END IF
Sync

END FOR
END FOR

Figure 6.10: An Imperative Program

The iterator k is not in the creation matrix so partitioning should be for reduction parallelism.
Array a is arbitrarily selected to align with for reduction parallelism. Arrays x, oldx and b are aligned with a on
the second dimension.
The data is partitioned in an interleaved manner on a one dimensional processor grid.

The maximum time taken by one processor executing the translated program, figure 6.10, occurs in the last
processor and is n2

p + (np + 5n
2 − 2n

p). The parenthetical terms are the deviations from linear speedup. The third
and fourth terms are due to load imbalance, whilst the dominant overhead term, np, is due to the implementation
of summing the partial sums involved in the reduction parallelism. As the number of processors grows large,
relative to the size of the problem, this term will eventually dominate. This reduction term may be reduced to
n log p if a binary spanning tree was embedded in a higher dimensional processor grid, with each node processor
adding its result to the previous accumulations before passing it on. Such implementation details are beyond the
scope of this thesis.

The maximum amount of non-local access occurs in the first processor and is np + n. Again the np term is due to
the implementation of the accumulation of partial sums.

The program derived is similar to the fan-in algorithm given in [HEAT88]. In this paper improvements to this

CHAPTER 6. EVALUATION 124

define main
global Sqrt(x: double_real returns double_real)

function main(n :integer;A:TwoDim;L:TwoDim returns TwoDim)
for initial
col := 1;
diag := double_real(1.0);

while (col <= n)
repeat
col := old col + 1;
diag := Sqrt(A[old col,old col]- for k in 1,old col-1

returns value of sum
(old L[old col,k]*old L[old col,k])

end for);
L := for i in 1,n cross j in 1,n

returns array of
if (j = old col) & (i>j)
then

(A[i,j]- for k in 1 ,j-1
returns value of sum
(old L[i,k]* old L[j,k])

end for) / diag
else if (j = old col) & (i=j)

then diag
else old L[i,j]
end if

end if
end for;

returns value of L
end for
end function

Figure 6.11: Cholesky Factorisation

scheme are based upon improving performance by carefully overlapping communication and computation and
vectorisation of messages. As the amount of non-local access is of the same order of magnitude as the computation
such modifications become increasingly important. However, although these techniques are beyond the scope of
this thesis, the form presented here can be transformed into their efficient cyclic form.

6.7 Cholesky Factorisation

Cholesky factorisation is a well known linear algebra program which factorises a symmetric positive definite
matrix into two triangular matrices i.e. A 7! LLT . The program, figure 6.11, is interesting in that it has four
iterators, the outermost of which is a sequential loop. There are two major computations, one of which involves
the calculation of a scalar. Both reduction and creation parallelism are present.

Applying the heuristic:

CHAPTER 6. EVALUATION 125

The biggest polytope is the first branch of the if condition when defining L.
Only partitioning with respect to i or k will give parallel execution.
Although iterator k is better load balanced than i, it is a reduction iterator and therefore i is chosen. As i is not
perfectly load balanced, it should be interleaved.
Iterator i belongs to the creation occurrence matrix and therefore partitioning is for creation parallelism.
Aligning with respect to L does not change the relative alignment of the arrays. Although the allocation of scalars
has been previously addressed, the method employed by the AL compiler [TSEN89] amongst others, is used. As
the scalar diag is a function of the outer foriter loop, its allocation is a function of this iterator.
As there is only one iterator with which to partition, no useful analysis is available from looking at the volume
of access.
As i is not perfectly load balanced, partitioning is by interleaved rows.
There is much opportunity to prefetch the data.

The maximum amount of work n(n+p)(2n+p+9)
12p takes place in the final processor when executing the translated

program shown in figure 6.12. The average work is n(n+1)(n+5)
6p giving an overhead figure of n(p−1)(3n+p+10)

12p . The

maximum non-local access is again in the last processor n2

2 + n
2 − n(n+p)

2p .

The maximum amount of work for an alternative column interleaved implementation as suggested by [GERA89A]
is n

12p (12 + 9n + 2n2 + 9p + 3np − p2) and therefore has a reduced overhead of np
6 with the same maximum non-

local access. Although both methods share the same highest order term n2

4p , as the number of processors, p, tends
towards n, then the np

6 term will begin to dominate. Thus while the implementation given by the transformation
scheme is reasonable, there is a better implementation available as far as load imbalance is concerned. If the
avoidance of reduction parallelism in the heuristic were dropped, then an interleaved column implementation
would have resulted. However, the amount of non-local access is an order of magnitude greater in the column
scheme. This would be difficult to mask in a latency tolerant implementation as the amount of communication
is of the same order of magnitude O(n3

p) as computation. Therefore, overall, the implementation given by the
transformation scheme is acceptable.

6.8 Livermore Loop 14

This is another program, figure 6.13, used extensively in benchmarking computer systems. The most interesting
characteristic is that it contains indirection whereby the data dependencies are run-time dependent. There are also
two distinct phases, one highly parallel the second almost completely sequential, and is therefore an interesting
task for a compiler.

Applying the heuristic:

The largest polytope is the first for loop.
There is only one iterator, i, to partition the iteration and data space.
The only candidate iterator, i, is perfectly load balanced.
All the array computations in this polytope are of equal importance but only the occurrence of array j can be
expressed in matrix form and is therefore chosen to align with respect to. The iterator i occurs in the array oc-
currence of j and thus alignment is for creation parallelism. It is impossible to determine the relative alignment
of the remaining arrays as they have indirection occurrences. By default they are aligned on the first dimension
of j without any alignment transformations.
Iterator i can only be partitioned in one dimension and does not require interleaving as it is perfectly load bal-
anced.

CHAPTER 6. EVALUATION 126

FORITER col = 1 TO n
IF (col>=ilo) AND (col<=ihi)
THEN
FOR k = 1 TO col- 1
temps1 := temps1 +

Get(oldL[##col,k])*Get(oldL[##col,k])
END FOR
diag := sqrt(Get(A[##col,col])-temps1)

END IF
FOR j =col TO col
FOR k = 1 TO j-1
templ1[j,k] := Get(L[##j,k])

END FOR
END FOR
FOR i = ilo TO ihi
FOR k = 1 TO col-1
templ12[i,k] := Get(L[##i,k])

END FOR
END FOR
FOR i = ilo TO ihi
FOR j = 1 TO n
IF (j=col) AND (#i>j)
THEN
FOR k = 1 TO j-1
temps2 := templ1[j,k] *templ2[i,k] +temps2

END FOR
L[i,j] := (Get(A[i,j]-temps2)/Get(diag)

ELSE IF (j=col) AND (#i = j)
THEN L[i,j] := Get(diag)
ELSE L[i,j] := Get(oldL[i,j])
END IF

END IF
END FOR

END FOR
END FOR

Figure 6.12: An Imperative Program

CHAPTER 6. EVALUATION 127

function main(n:integer; FLX:double; DEXIn,EXIn,
GRD,RHIn : OneDim;
returns OneDim,OneDim,IntOneDim,IntOneDim,

OneDim,OneDim,OneDim,OneDim,OneDim)
let DEX1,EX1,IR1,IX1,RX1,VX1,XI1,XX1 :=

for i in 1,n
j := Trunc(GRD[i]);
EX := EXIn[j];
DEX := DEXIn[j];
XI := Double_Real(j);
VX := EX - DEX * XI;
k := Trunc(VX + FLX);
IR := MOD2N(k,512) + 1;
RX := VX + FLX - Double_Real(k);
XX := VX + FLX - Double_Real(k)

+ Double_Real(IR)
returns array of DEX array of EX

array of IR array of j
array of RX array of VX
array of XI array of XX

end for
in DEX1,EX1,IR1,IX1,RX1,VX1,XI1,XX1,

for initial
i := 0; RH := RHIn

while i < n repeat
i := old i + 1;
RH := for j in 1,n

returns array of
if (i=j) then
old RH[IR1[i]] - RX1[i] + 1.0d0
elseif (i+1=j)
then old RH[IR1[i] + 1] + RX1[i]
else old RH[j]
end if

end for
returns value of RH
end for

end let
end function %Loop14

Figure 6.13: Livermore Loop 14

CHAPTER 6. EVALUATION 128

Prefetching of data is impossible due to the presence of indirection.

As there is indirection in the array occurrences, it is impossible to determine the amount of non-local access of any
processor since it will be data dependent. The first part of the program, figure 6.14, is perfectly load balanced but
the for initial loop has to be evaluated serially. This gives an overall parallel time figure of 15n

p +4(n−1)−2(p−1)

The serial term, 4n − 4, could be reduced if neighbouring elements were placed on separate processors such that
the two assignments i = j and i + 1 = j may be evaluated in parallel. Interleaving the j iterator would give this
property and would reduce the parallel time to 15n

p + 2(n − 1). The effect this would have upon non-local access
will be unknown but, in general, interleaving increases its value. As p tends to n the folded value of non-local
access tends towards the interleaved value. Unfortunately, there are no well known hand implementations of this
program with which it may be compared.

6.9 Jacobi Iteration

Solving partial differential equations using a 5-point grid is a well-known application. Various algorithms are
known including SOR, red-black and Jacobi iteration, the last of which is presented here. The most interesting
characteristic of this program, figure 6.15, is the outer while loop where the exact number of iterations is run-time
dependent.

Applying the heuristic:

The polytopes creating array A and eps are equal. The polytope creating A is chosen arbitrarily.
There are two parallel iterators, i and j, with which to partition the data and iteration space.
Both iterators are perfectly load balanced.
Both iterators occur in the creation matrix of A and, thus, partitioning is for creation parallelism.
All arrays remain aligned as they are. The scalar may be arbitrarily allocated as there is no iteration space en-
closing it.
Partitioning to minimise the volume of access suggests that the program should be partitioned by both iterators.
Hence array A is partitioned by rows and columns.
There is no opportunity for prefetching

The program shown in figure 6.15 is perfectly load balanced and has a parallel time of E × (7n2

p + p) where E is the
number of times the program must iterate before it converges. This is unknown at compile time. The only non-
scalable component of this implementation is the p term due, once again, to the implementation of accumulation
of partial sums. The maximum non-local access of any one processor is E × 4np

p + p + 1

The only hand-written implementations with which to improve on this, use an approach where the data space is
“tiled” with hexagonals rather than squares i.e. non-orthogonal data partitioning. In [REED87] it is shown that
the non-local access may be reduced to E × 3np

p + p + 3. However due to the boundary conditions there will be
a slight increase in load imbalance and thus it may be argued that the tiling by rectangles implemented here, is
preferable.

CHAPTER 6. EVALUATION 129

FOR i = ilo TOihi
j[i] := Trunc(GRD[i])
IX1[i]:=j[i]
EX[i] := EXIn[j[i]]
EX1[i] := EX[i]
DEX[i] := DEXIn[j[i]]
DEX1[i] := DEX[i]
XI[i] := Double_Real(j[i])
XI1[i]:= XI[i]
VX[i] := EX[i] - DEX[i] * XI[i]
VX1[i]:=VX[i]
k[i] := Trunc(VX[i] + FLX[i])
IR[i] := MOD2N(k[i],512) + 1
IR1[i] := IR[i]
RX[i] := VX[i]+FLX[i]-Double_Real(k[i])
RX1[i]:= RX[i]
XX[i] := VX[i]+FLX[i]-Double_Real(k[i])

+Double_Real(IR[i])
XX1[i] := XX[i]

END FOR
FORITER i = 0 TO n-1
RH[i] := Get(RHIn[i])
tempRH1:= Get(oldRH[IR1[i]])
tempRH2:= Get(oldRH[IR1[i]+1])
tempRX11:= Get(RX1[i])
tempRX12:= Get(RX1[i])
FOR j = jlo TO jhi
IF (i=j)
THEN
RH[j]:= tempRH1 - tempRX11 + 1.0

ELSE IF (i+1=j)
THEN RH[j] := tempRH2 + tempRX11
ELSE RH[j]:=Get(old RH[j])
END IF

END IF
END FOR

END FOR

Figure 6.14: An Imperative Program

CHAPTER 6. EVALUATION 130

% Jacobi iteration
%
function main(n:integer;tol: double_real;init_eps;

AIn:TwoDim; returns TwoDim)
for initial

A := AIn;
eps := init_eps

while eps > tol repeat
A := for i in 1,n cross j in 1,n

returns array of
if (i>= 2)&(j>=2)&(i<=n-1)&(j<=n-1)
then old A[i-1,j] + old A[i+1,j]
+ old A [i,j-1] + old A[i,j+1]
+ old A[i,j]
else old A[i,j]
end if

end for;
eps:= for i in 1,n cross j in 1,n

returns value of sum
abs(A[i,j]- old A[i,j])
end for;

returns value of A
end for

end function

Figure 6.15: Jacobi Iteration

CHAPTER 6. EVALUATION 131

IF (z = 1)
THEN

eps := 10000.0d0
END IF
WHILE (Get(eps) > tol)
FOR i = ilo TO ihi
FOR j = jlo TO jhi
IF (i>= 2) AND (j>=2) AND (i<=n-1) AND (j<=n-1)
THEN
A[i,j] := Get(oldA[i-1,j]) + Get(oldA[i+1,j])

+ Get(oldA[i,j-1])
+ Get(oldA[i,j+1]) + Get(oldA[i,j])

ELSE
A[i,j] :=Get(oldA[i,j])

END IF
END FOR

END FOR
FOR i = ilo TO ihi
FOR j = jlo TO jhi
psum[z] := psum[z] +abs(A[i,j]- oldA[i,j])

END FOR
END FOR
IF (z=1)
THEN
FOR y = 1 TO p
sum := sum + Get(psum[y])

END FOR
eps :=sum

END IF
Sync

END WHILE

Figure 6.16: An Imperative Program

CHAPTER 6. EVALUATION 132

6.10 Summary

The eight examples have demonstrated that the transformation scheme based upon the heuristic developed in
the first section produces an efficient implementation for DMAs. Overall the test programs implemented in this
chapter have justified the use of compiler directed, program transformations to implement array computation on
distributed memory architectures.

Chapter 7

Conclusion

This thesis has presented a methodical approach to compiling array computation to distributed memory architec-
ture using program transformations. A summary of the thesis and its contributions is made in the first part of this
chapter. Following this summary, a critical review of the overall approach is given in section 2. Finally, in the
last section, some recommendations for further work are described.

7.1 Summary

The introductory chapter described the need for research into compiling for DMAs. Such architectures have the
promise of delivering great performance but are restricted by the primitive state of compiler technology. Until very
recently message passing distributed memory machines and shared memory ones were seen as being very different
architectures requiring different compilation strategies. This has certainly been reinforced by the languages used
to program them. By considering distributed memory as forming one address space, many of the compilation
techniques developed for shared memory machines are available. Most present day compilers for DMAs require
significant help from the programmer if they are to produce efficient implementations. The two major overheads
in compiling for DMAs were identified as being load imbalance and communication or non-local access.

Chapter 2 described the overall compilation process from Sisal to an imperative language via an intermediate
computation set representation. Essentially the process can be described as a sequence of transformations. De-
scribing Sisal in a computation set representation allows the investigation of program transformations to reduce
load imbalance and non-local access.

Chapter 3 makes the first major contribution of this thesis, in that it describes load balance as an invariancy
condition of the iteration space. Further transformations are described which can convert a sub-class of programs
into a load balanced form. As a consequence of these transformations, general loop interchange for nested loop
within a polytope representation is developed.

By the careful alignment of arrays it is possible to reduce the amount of non-local access after data partitioning.
The main contribution of Chapter 4 is that it describes alignment in terms of hyperplanes. With this insight,
generalised alignment transformations are derived which extend previous results in this area.

Both the load balancing and alignment transformations of chapters 3 and 4 take place before the data and compu-

133

CHAPTER 7. CONCLUSION 134

tation is mapped to the processor space. The first contribution of chapter 5 is that it provides a systematic method
of mapping data and computation to processors even in the presence of interleaving. The second contribution
is the presentation of program transformations that allow general pre-fetching of non-local data on a distributed
memory machine. This relies on the ability to perform loop interchange and strip-mining in the presence of
general loops and interleaving.

Chapters 3,4, and 5 all describe methods to partition the computation and data space depending on whether load
imbalance or non-local access is to be minimised. In chapter 6, a simple heuristic was used to determine the
relative importance of each of these transformations, where it was shown that the implementations derived by
program transformations were comparable to hand coded techniques.

The overall contribution of this thesis is that a compilation strategy has been devised such that program trans-
formations can be used in an ordered manner for specific reasons. In [SARK89] Sarkar states that placing the
partitioning stage within the context of a general optimising compiler is a “difficult task”. In this thesis, it has
been shown that it is possible for a restricted class of Sisal on DMAs.

7.2 Critique

One of the major criticisms of this work is that it does not address the trade-off in overhead cost between load-
imbalance and non-local access. Instead, each problem is solved in isolation, leaving the reconciliation to a
heuristic. This can be justified, somewhat, in that the relative cost will depend on the target machine. However
given the relative cost of communication and computation, the compiler should be able to detect the relative
importance of each. Recent work by the author suggests that it will be possible to determine whether load
balancing or non-local access is the dominant cost for a particular part of a program.

DMAs have been considered to be a two-level memory hierarchy, local and non-local. This observation is largely
based on the fact that non-local access has a large start-up time. One consequence of this overhead is that multiple
non-local accesses should be grouped so that only one start-up cost is incurred. The reason this issue was not
addressed is that it forms a large proportion of Rogers’ thesis [ROGE91], where the grouping of accesses was
called message vectorisation. It is relatively simple to incorporate message vectorisation into the pre-fetching
transformations described in chapter 5.

While load imbalance and communication overhead have been considered, the cost of synchronisation and hiding
memory latency have been ignored. Again [ROGE91] has addressed this area. It would be useful to incorporate
latency hiding transformations into the pre-fetching scheme.

Most of the analysis has been for the mapping of parallel array computation associated with Sisal’s for loop
construct. This conservative approach is inappropriate if there are no for loops available. Do-across parallelism
[LI90], which allows part of a loop iteration to be executed in parallel, may be extracted from foriter loops.
This approach would require an efficient synchronisation implementation , so the present barrier synchronisation
would have to be replaced.

On a more technical level, the alignment propagation algorithm in chapter 4 is too restrictive. Only certain
alignment transformations can be propagated through the program. Recent work by the author suggests that this
restriction can soon be removed.

One criticism of any program transformation approach to efficient implementation, is that it may work on small
examples but will fail when applied to large, “real” programs. The major impediment, at present, is determining

CHAPTER 7. CONCLUSION 135

the relative importance of each section of a program. In chapter 6, the biggest polytope was considered the
portion of the program to focus attention upon. However in larger programs, there may be many sections of equal
importance, where data alignment may be a trade-off between the various sections. In general the approach of
this thesis has been to focus upon local analysis. Although this is less than ideal, the amount of work needed
to understand the behaviour of small problems, justifies this restricted approach before program analysis “in the
large” is considered..

7.3 Further Work

The obvious next step is to implement the transformation scheme on a DMA so as to empirically test it. Inevitably
other machine characteristics not considered in this thesis will become significant, for instance, in those machines
that have a page-based cache system, the ‘interference’ by the hardware will have to be considered.

Some distributed memory architectures such as the EDS[HAYW90] and KSR have a global address space. Those
machines lacking such an addressing scheme, will have to have it simulated in the code produced. Either a run-
time software layer will have to be introduced or message passing primitives will have to be inserted at compile
time. The latter method has been successfully implemented by [CALL88], [TSEN89] and [ROGE91].

Once an implementation is available, then a greater sub-set of Sisal can be considered. Adding the dynamic fea-
tures of Sisal such as recursion and variable sized arrays, will have a significant impact upon the implementation.
Dynamic array allocation will have to be performed such that data is evenly distributed across the machine. An
interleaved data allocation method would ensure even distribution, but will have an adverse affect upon locality
and thus increase the communication overhead. Recursion could be handled in a strictly von Neumann manner
such as is employed by the OSc [CANN89A] Sisal compiler for the Sequent Balance. However there is potentially
a large amount of parallelism available in the independent evaluation of recursive functions. This leads on to a
more general point of going beyond data parallelism . Certainly only a small proportion of the available program
parallelism is exploited at present. As mentioned earlier in this section, do-across parallelism may be explored
but it is not obvious how parallelism available in an expression or function evaluation may be integrated into
the SPMD framework. One approach might be to relax the static, one process to one processor, implementation
and allow the spawning of parallel processes that may migrate around the system. The problem then becomes
how to keep data and process together as the compiler no longer has control over data and process allocation.
The Flagship project [WATS88] has investigated such a dynamic, medium-grain, graph-reduction approach to the
execution of functional programs on a distributed memory machine. It would be interesting to see if any benefit
could be gained by the integration of these two approaches.

Although Sisal has provided a useful framework to investigate array computation, it is not a widely used language.
If the ideas in this thesis are to have wider significance then they have to be applied to traditional imperative
languages, in particular FORTRAN. One method would be to pre-process the imperative language so that it is in
a functional form. A more fruitful approach might be to integrate data dependency analysis into the compilation
process so as to perform parallelisation transformations before applying the transformation scheme described in
this thesis. It is interesting to note that there has been a movement towards single-assignment semantics in the
vector notation employed in FORTRAN 90. If this trend continues, then the results of this thesis will become
more immediately applicable.

On a more fundamental level, a greater investigation of integer linear algebra would be very useful. In this thesis
the use of polytopes has been central. A greater understanding of their properties will bear fruit in compiler
analysis and program transformation. In particular an efficient method to determine the number of lattice points
within a polytope would be very useful.

CHAPTER 7. CONCLUSION 136

In this thesis the array size and the number of processors are assumed to be known at compile time. This restriction
can be relaxed, but may require some symbolic analysis as described by [HAGH90].

Although many programs have an affine structure, more work is required for those that do not possess this
characteristic. Properties such as invariancy still have meaning in non-affine space, in [KOEL90], for example,
data dependencies that are run-time dependent but loop invariant are exploited by storing the dependencies after
the first loop iteration. Work within this area will be useful for compiling sparse matrix problems.

Finally, one very interesting area of research is the impact of locality of reference on architectures with different
computational models such as dataflow. If increasingly large machines are to be created, then the memory will,
at some point, have to become distributed. It would be interesting to investigate how a compiler could influence
data distribution and program execution in such an architecture.

Appendix A

Language Definitions

A.1 Restricted Sisal

Program = ‘‘define’’ idr {‘‘,’’idr}[type-def-part]
{‘‘global’’ function-header} function-def
{function-def}

function-def = ‘‘function’’ function-header
[type-def-part]
expression ‘‘end function’’

type-def-part = type-def ‘‘;’’ {type-def ‘‘;’’}

type-def = ‘‘type’’ idr = type-spec

function-header = idr ‘‘(’’ {decl ‘‘;’’} ‘‘returns’’
type-list ‘‘)’’

type-list = type-spec {‘‘,’’ type-spec}

type-spec = ‘‘boolean’’| ‘‘character’’ | ‘‘double_real’’
| ‘‘real’’|
‘‘integer’’ | ‘‘array’’ ‘‘[’’ idr ‘‘]’’

expression = s-expression {‘‘,’’ s-expression}

s-expression = primary { bin-op primary}

un-op = ‘‘+’’| ‘‘-’’ | ‘‘~’’

bin-op = ‘‘<’’ | ‘‘<=’’ | ‘‘>’’ | ‘‘>=’’ | ‘‘=’’
| ‘‘~=’’|
‘‘+’’ | ‘‘-’’ | ‘‘|’’ | ‘‘*’’ | ‘‘/’’

137

APPENDIX A. LANGUAGE DEFINITIONS 138

| ‘‘&’’

primary = constant | idr | ‘‘(’’expression‘‘)’’ |
let-in-exp|
iteration-exp | ‘‘old’’ idr | un-op primary

array-ref = primary ‘‘[’’expression‘‘]’’

let-in-exp = ‘‘let’’ def ‘‘;’’{def ‘‘;’’} ‘‘in’’ expression
‘‘end let’’

def = idr {‘‘,’’ idr} ‘‘:=’’ expression

conditional-exp = ‘‘if’’ expression ‘‘then’’ expression
{‘‘elseif’’ expression ‘‘then’’ expression}
‘‘else’’ expression ‘‘end’’ ‘‘if’’

iteration-exp = ‘‘for’’ ‘‘initial’’ def iter-term ‘‘returns’’
forinit-exp ‘‘end’’ ‘‘for’’
|
‘‘for’’ in-exp-list def ‘‘returns’’
forall-exp ‘‘end’’ ‘‘for’’

iter-term = iterator term-test | term-test iterator

iterator = ‘‘repeat’’ iter-body

term-test = ‘‘while’’ expression | ‘‘until’’ expression

iter-body = def ‘‘;’’{def ‘‘;’’}

in-exp-list = in-exp {(‘‘dot’’ | ‘‘cross’’) in-exp}

in-exp = idr ‘‘in’’ expression

forall-exp = return-exp {return-exp}

return-exp = ‘‘value’’ ‘‘of’’ [reduction-op] expression |
‘‘array’’ ‘‘of’’ expression

forinit-exp = ‘‘value’’ ‘‘of’’ expression { ‘‘value’’
‘‘of’’ expression}

reduction-op = ‘‘sum’’ | ‘‘product’’ | ‘‘least’’ | ‘‘greatest’’

constant = ‘‘false’’ | ‘‘true’’ | integer-num | real-num
| char-const | char-string-const

APPENDIX A. LANGUAGE DEFINITIONS 139

A.2 Imperative

Program = {const-def} {var-def} stmt {stmt}

const-def = idr [‘‘:’’ type] ‘‘=’’ expr

var-def = idr [‘‘[’’ ‘‘(’’idr ‘‘..’’ idr{‘‘,’’idr‘‘..’’idr}
‘‘)’’‘‘]’’
{‘‘,’’‘‘[’’ ‘‘(’’idr ‘‘..’’ idr{‘‘,’’idr‘‘..’’idr}
‘‘)’’‘‘]’’}‘‘]’’]
‘‘:’’ type

stmt = assign-st| for-st | while-st | foriter |if-st |
‘‘Sync’’

assign-st = var ‘‘:=’’ expr

for-st = ‘‘FOR’’ idr ‘‘=’’ expr ‘‘TO’’ expr stmt {,stmt}
‘‘END FOR’’

foriter = ‘‘FORITER’’ idr ‘‘=’’ expr ‘‘TO’’ expr stmt
{,stmt} ‘‘END FOR’’

while-st = ‘‘WHILE’’ expr stmt {,stmt} ‘‘END WHILE ’’

if-st = ‘‘IF’’ expr ‘‘THEN’’ stmt{stmt} [‘‘ELSE’’
stmt{stmt}] ‘‘END IF’’

expr = constant | var | unop expr | [‘‘Get’’]
‘‘(’’expr‘‘)’’| expr op expr

unop = ‘‘-’’|’’+’’|‘‘#’’|‘‘##’’|‘‘NOT’’

var = idr [‘‘[’’expr {‘‘,’’expr} ‘‘]’’]

op = ‘‘-’’|‘‘+’’|‘‘/’’| ‘‘*’’ | ‘‘>’’ | ‘‘>=’’
| ‘‘<=’’ | ‘‘<’’ | ‘‘=’’ | ‘‘<>’’
| ‘‘AND’’ | ‘‘OR’’

type = integer | real | double |char |bool

Appendix B

Translation Algorithms

B.1 Translation of Polytopes into Loops

1. Loop(i) =

2. If (i <=m) then

3. If (J.desc[i] <> while AND A[i] <> ⊥)

4. then Print (J.desc[i] J[i] = -A[i] J - b[i] TO A[2i]J+b[2i])

5. else Print(WHILE, Getcond (i,F)) endif

6. doif(i,1)

7. Print(END FOR)

8. end if

1. doif(i,j) =

2. conditional := FALSE

3. if (j +2m <= `)
4. then if (A[j+2m, i+1..m] =0) AND (A[j+2m, i] <> 0)

5. Print (IF A[j+2m]J <= b[j+2m] THEN)

6. conditional := TRUE

7. end if

8. doif (i,j+1)

9. end if

10. if (i < m) then Loop (i+1) end if

11. if (i= m) then Printbody(S) end if

140

APPENDIX B. TRANSLATION ALGORITHMS 141

12. if (conditional = TRUE) then Print (END IF)

13. end

Loop(1)

B.2 Loop Merging

1. Merge(down,across return next) =

2. i := down, j := across, k := down

3. PrintLoop (Q[i].J[j])

4. If (NumLoop[i]=j) then Print(Q[i].S) return k

5. else i := Merge(i,j+1)

6. while (NumLoop[i+1] >= j) AND Same(L[i+1,j],L[i,j]) do

7. i := i+1, k := k+1, i := Merge(i,j+1), end while

8. end If

9. PrintEndLoop

10. return k

Merge(1,1)

B.3 Translating for Reduction Parallelism

1. Print (IF(J >= λv) AND (υv >= J))

2. Print (THEN)

3. Print (r := identity(reduction-op))

4. Print (FOR x := 1 , p)

5. Print (r := reduction-op(r,:= Get (pr [x])))

6. Print (END FOR)

7. Print (v [CvJv] := r)

8. Print (END IF)

9. Print (Sync)

APPENDIX B. TRANSLATION ALGORITHMS 142

where r is a local scalar, p is a distributed array, x is an iterator and p is the number of processors. The reduction
operator, reduction-op, and its corresponding identity value is given by the following table:

Reduction Operator Identity

sum 0
product 1
least Maxint
greatest Minint

Appendix C

Algorithms

C.1 Loop Interchange

1. Let the two iterators to be interchanged be jr and jr−1

2. Let B =

�
Ei−1,i 0

0 Ei−1,i

�
A

3. Let J′ = Er−1,rJ

4. Let c =

�
Ei−1,i 0

0 Ei−1,i

�
b

5. If Br−1,r = 0 Goto 12

6. d =

�
Br−1 + Br−1,rBr Br−1,r > 0

Br−1 − Br−1,rBm+r Br−1,r < 0

7. ƒ =

�
cr−1 + Br−1,rcr Br−1,r > 0

cr−1 − Br−1,rcm+r Br−1,r < 0

8. Cx,y =

(
Bx,y x ⁄= r − 1
dy x = r − 1

Br−1,y x = ` + 1
∀x ∈ 1, … , ` + 1, y ∈ 1, … , m

9. gy =

(
cy y ⁄= r − 1
ƒ y = r − 1

cr−1 y = ` + 1

10. ` := ` + 1

11. d =

�
Bm+r−1 + Bm+r−1,rBm+r Bm+r−1,r > 0
Bm+r−1 − Bm+r−1,rBr Bm+r−1,r < 0

12. If Br−1,r = 0 ∧ Bm+r−1,m+r = 0 Terminate.

13. ƒ =

�
cm+r−1 + Bm+r−1,rcm+r Bm+r−1,r > 0
cm+r−1 − Bm+r−1,rcr Bm+r−1,r < 0

14. Cx,y =

(
Bx,y x ⁄= m + r − 1
dy x = m + r − 1

Br−1,y x = ` + 1
∀x ∈ 1, … , ` + 1, y ∈ 1, … , m

15. gy =

(
cy y ⁄= m + r − 1
ƒ y = m + r − 1

cr−1 y = ` + 1
∀y ∈ 1, … , m

143

APPENDIX C. ALGORITHMS 144

16. For x ∈ 1, … , `, y ∈ 1, … , x, z ∈ 1, … , `
17. Solve r1, r2

�
r1 r2

� � Cx

Cy

�
=
�

Cz

�
.

and�
r1 r2

� � ƒx

ƒy

�
=
�

ƒz

�
.

18. If a solution ∧(Nz(Cx) = Nz(Cz) ∧ Right(Cx) = Right(Cz)) ∧ x > 2m ∨ (Nz(Cy) = Nz(Cz) ∧ Right(Cy) = Right(Cz) ∧ y > 2m

then Ξx,y = z Else Ξx,y = ⊥ end for

19. Form Vγ = δ , W = V − δ
20. For y ∈ 1, … , `, x ∈ 1, … , r

21. If Wx,y = −1 Then For z ∈ 1 … r

22. If Wz,y = 1 Then W′
z,y = Wx,y + Wz,y, Remove Wx ,Cy, ƒy end end if end if end for

23. For x ∈ 1, … , `
24. Find only −1 element in Wx at Wx,a

25. Find first 1 in Wx at Wx,b

26. Replace Ca by Cb

27. end for end for

Complexity: O(`3)

C.2 Alignment

C.2.1 Creation Alignment

1. Reduce � UT CT O
O O I

�
(C.1)

to row echelon form F

2. solution[1..M] = 0

3. ∀c ∈ M + 1, … , M + NC
4. if (F[rank(UT)..M,c] ⁄= 0)

5. then solution[c − M]= c

6. else solution[c − M]= -1

7. next := M+NC+1

8. ∀r ∈ 1, … , M

9. if (solution[r] = -1) then solution[r] = next, next++

10. ∀c ∈ 1, … , M

11. if F[c,c] ⁄= 1 then

12. ∀r ∈ 1, … , M if F[r,c] = 1 then swap (F[r],F[c])

APPENDIX C. ALGORITHMS 145

13. ∀r ∈ 1, … , M A[r,1..M] = F[1..M,solution[r]]

Complexity: O(M3)

C.2.2 Reduction Alignment

1. Reduce � UT RT

O O
I

�
(C.2)

to row echelon form F

2. solution[1..M] = 0

3. ∀c ∈ M + 1, … , M + NC
4. if (F[rank(UT)..M,c] ⁄= 0∧ independent(F[1..M,c],A)

5. then solution[c − M]= c

6. else solution[c − M]= -1

7. next := M+NC+1

8. ∀r ∈ 1, … , M

9. if (solution[r] = -1) ∧ independent(F[1..M,next],A) then solution[r] = next, next++

10. ∀c ∈ 1, … , M

11. if F[c,c] ⁄= 1 then

12. ∀r ∈ 1, … , M if F[r,c] = 1 then swap (F[r],F[c])

13. ∀r ∈ 1, … , M A[r,1..M] = F[1..M,solution[r]]

1. independent(newrow, A)

2. ∀r ∈ 1, … , M

3. if solution(r) >0 then i:i+1, B[i] := A[r]

4. NB = i

5. Reduce B to row echelon

6. rankB := 0

7. ∀k ∈ 1, … , NB

8. if B[1..M] ⁄= 0 then rankB := rankB +1

9. B[NB] := newrow

10. Reduce B to row echelon

11. ranknewB := 0

APPENDIX C. ALGORITHMS 146

12. ∀k ∈ 1, … , NB

13. if B[1..M] ⁄= 0 then ranknewB := ranknewB +1

14. if ranknewB = rankB then independent := false else independent := true

Complexity: O(M4)

C.3 Pre-Fetching

1. J̌ =
Tθ

r=1 J̌r

2. if J̌ ⁄= ∅

3. then apply interchange transforms(chapter 3) such that J 7! [Ĵ, J̌]

4. Set J = Ĵ

5. Set M = J̌

end if

6. Unexpanded =
Ttheta

r=1 Ur

7. UnexIterators =
Tθ

r=1 J̌r

8. ExJ = ∅

9. RemJ = J

10. WHILE |Latt(AExJ ≤ b)| ≤ |IC|, ∀r ∈ 1, … , θ
V

∃j ∈ J̌||Latt(A(ExJ ∪ j) ≤ b)| ≤ |IC |, ∀r ∈ 1, … , θ

11. REPEAT

12. Set j = the most common smallest iterator appearing in all the Us occurring in RemJ

13. If |Latt(A(ExJ ∪ j) ≤ b)| ≤ IC∀r|j ∈ Jr

14. then M := M + j

15. J := J − j

16. ExJ := ExJ ∪ j

17. RemJ := RemJ −
T

k J̌k where j ∈ Jr

18. else RemJ := RemJ − j

19. UNTIL RemJ = ∅

20. RemJ := J

21. END DO

22. RemJ = J

23. StJ = RemJ

24. WHILE StJ ⁄= ∅

APPENDIX C. ALGORITHMS 147

25. REPEAT

26. Set j = the most common smallest iterator appearing in all the Us occurring in RemJ

27. Strip mine j = j1 × j2

28. If |Latt(A(ExJ ∪ j2) ≤ b)| ≤ IC∀r|j ∈ Jr

29. then M := M + j2

30. J := J − j2 ∪ j1

31. ExJ := ExJ ∪ j2

32. RemJ := RemJ −
T

k J̌k where j ∈ Jr

33. else RemJ := RemJ − jend if

34. StJ := StJ − j

35. UNTIL RemJ = ∅

36. RemJ := J

37. END DO

Complexity: O(m4 × |θv|)

C.4 Volume of Access

1. highest :=0

2. FOR v = 1 to |v|

3. FOR r = 1 to θv

4. if rank(U1.v) > highest then comparelist = U1.v

5. else if rank(U1.v) = highest

6. then comparelist = comparelist ∪ U1.v

7. end if

8. END FOR

9. END FOR

10. ∀U ∈comparelist

11. FOR i = 1 to NC
12. FOR j = 1 to NU
13. if C[i] = U[j]

14. then part-iterators := part-iterators + J[i]

15. end if

APPENDIX C. ALGORITHMS 148

16. END FOR

17. END FOR

Complexity: O(NC × NU × |θv|)

Bibliography

[ALLE86] Allen F. and et al., “Compiling for Parallelism”, Technical Report IBM York Heights, March 1986.

[ALLI90] Alliant Computer Systems Corporation,“FX-C-2800 Programmer’s Handbook”, Alliant March
1990.

[ANDR90a] André F., Pazat J-L. and Thomas H., “Pandore: A System to Manage Data Distribution”, Interna-
tional Conference of SuperComputing, pp 380-389 Amsterdam 1990.

[ANDR90b] André F., Pazat J-L. and Thomas H., “Data Distribution in Pandore”, The 5th Distributed Memory
Computing Conference 5, pp 1115-1121, Charleston, April 1990.

[ANCO91] Ancourt C. and Irigion F. “Scanning Polyhedra with DO Loops”, 3rd ACM SIGPLAN Symposium
on Principles and Practise of Parallel Programming , April 1991.

[ANNA86] Annaratone M., Armould E., Gross T., Kung H.T., Lam M.M., Menzilcioglu O., Sarocky K. and
Webb J.A., “Warp Architecture and Implementation”, Proccedings of the 13th Annual International
Symposium on Computer Architecture , IEEE/ACM, pp 346 - 356, June 1986.

[ARVI87] Arvind and Iannucci R.A.,“Two Fundamental Issues in Multiprocessing”, Proccedings of the 4th
International DFVLR Seminar on Foundations of Engineering Sciences, Bonn, Federal Republic
of Germany, June 1987.

[BABE90] Babe .,“Hypertasking: Automatic Data Parallel Domain Decomposition on the Intel Parallel Su-
percomputer”, Technical Report CS/E90-006 Department of Computer Science and Engineering
Oregon Graduate Institute, May 1990.

[BALA89] Balasundaram V. and Kennedy K., “A Technique for Summarizing Data Access and Its Use in
Parallelism Enhancing Transformations”, Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation,pp 41-53, 1989.

[BALA91] Balasundaram V., Fox G., Kennedy K. and Kremer U. “A Static Estimator to Guide Data Partition-
ing Decisions”, Proceedings of the Third ACM SIGPLAN Conference on Principles and Practice
of Parallel Programming, April 1991.

[BANJ90] Banerjee U. “Unimodular Transformations of Double Loops”, CSRD Rpt. No. 1036, CSRD, Uni-
versity of Illinois, Urbana-Champaign, August 1990.

[BOHM90] Böhm A.P.W. Grit, D.H. Oldehoeft R.R., Cann D.C., and Feo J.T. “SISAL Reference Manual
Language Version 2.0”, Technical Report Computer Science Dept. Colorado State University 1990.

[CALL88] Callahan D. and Kennedy K., “Compiling Programs for Memory Multiprocessors”, The Journal
of Supercomputing 2,pp151-169 1988.

149

References 150

[CALL90] Callahan D., Carr S. and Kennedy K.,“Improving Register Allocation for Subscripted Variables”,
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation White Plains New York, 1990.

[CALL91] Callahan D., Kennedy K. Porterfield A. “Software Prefetching”, Proceedings of the ACM Confer-
ence on Architectural Support Programming Languages and Operating Systems, 1991.

[CANN87] Cann D.C.,“Sisal Multiprocessing Support”, Technical Report UCID-21115, Lawrence Livermore
National Laboratory, July 1987.

[CANN89A] Cann D., “Compilation Techniques for High Performance Application Computation”, Technical
Report CS-89-108, Department of Computer Science, Colorado State University, 1989.

[CANN89B] Cann D. and Oldehoeft R.R., “High Performance Applicative Computing”, Technical Report CS-
89-104, Department of Computer Science, Colorado State University, 1989.

[CARR89] Carr S. and Kennedy K., “Blocking Linear Algebra Codes for Memory Hierarchies”, Proceedings
of the Fourth Siam Conference on Parallel Processing for Scientific Computing , Chicago, Illinois
December 1989.

[CHA88] Cha H., “Performance Maximisation Strategies for a class of Parallel Distributed Programs”,
MSc. Thesis, Department of Computer Science, University of Manchester, 1988.

[CHEN88] Chen M., “Compiling Parallel Programs by OptimizingPerformance”, Journal of Supercomputing
Vol. 2, pp 171-207, 1988.

[CLAC86] Clack C.D. and Peyton Jones S.L., “The Four-Stroke Reduction Engine”, ACM Conference on
Lisp and Functional Languages, Boston, August 1986.

[DARE88] Darema D., George D.A., Norton V.A. and Pfister G.F., “ A Single Program Multiple Data Com-
putation Model for Epex/Fortran”, Parallel Computing No. 7 pp 11 -24, 1988.

[DENN89] Dennis J.B.,, “Mapping Programs for Data Parallel Execution on the Connection Machine”, Tech-
nical Report Research Institute for Advanced Computer Science, November 1989.

[DONG90] Dongarra J.J., Du Croz J., Hammarling S., and Duff I.,“A Set of Level 3 Basic Linear Algebra
Subprograms”, ACM Transactions on Mathematical Software, Vol. 16, No. 1, pp 1-17, March
1990.

[DOWL90] Dowling M.L..,“Optimal Code Parallelizationusing Unimodular Transformations”, Parallel Com-
puting Vol. 16, pp 157-171, 1990

[DYER91] Dyer M., Frieze A. and Kannan R., “A Random Polynomial-Time Algorithm for Approximating
the Volume of Convex Bodies”, Journal of the ACM Vol. 38,No. 1 pp 1-17, January 1991.

[FEO90A] Feo J.T., Cann D.C. and Oldehoeft R.R., “Partitioning of Regular Computation Multiprocessor
Systems”, Journal of Parallel and Distributed Computing, Vol. 9, pp 312-317, 1990.

[FEO90B] Feo J.T., Cann D.C. and Oldehoeft R.R., “A Report on the Sisal Language Project”, Journal of
Parallel and Distributed Computing, Vol. 10, pp 349-366, 1990.

[FOX86] Fox G., Johnson M. and Lyzenga, Otto S.,Salmon J and Walker D., “Solving Problems on Con-
current Processors Volume 1”, Prentice-Hall, Englewood Cliffs NJ,1986.

[FOX91] Fox G., Hiranandani S., Kennedy K., Koelbel C., Kremer U., Tseng C-W. and Wu M-Y., “FOR-
TRAN D Language Specification”, Rice COMP TR90-141, Department of Computer Science, Rice
University, February 1991.

[FLYN72] Flynn M.J., “Some Computer Organisations and their Effectiveness”, IEEE Transactions on Com-
puters Vol. 21 pp 948-960, 1972.

References 151

[GAO90] Gao G.R.,“Exploiting Fine-Grain Parallelism on Dataflow Architectures”, Parallel Computing
Vol. 13, pp 309-320, 1990

[GANN88] Gannon D. and Jalby W., “Strategies for Cache and Local Memory Management by Global Pro-
gram Transformation”, Journal of Parallel and Distributed Computing , pp87 -616 1988.

[GERA89A] Gerasoulis A. and Nelken I., “Scheduling Linear Algebra Parallel Algorithms on MIMD Architec-
tures”, Proceedings of the Fourth SIAM conference on Parallel Processing for Scientific Computing
, pp68-95 1989.

[GERA89B] Gerasoulis A., Venugopal S. and Yang T., “Clustering Task Graphs for Message Passing Archi-
tectures”, Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation White Plains New York, 1990.

[GERN89] Gerndt M., “Array Distribution in SUPERB”, Proceedings of the ACM International Conference
of SuperComputing, pp164-174 1989.

[GERN91] Gerndt M., “Work Distribution in Parallel Programs for Distributed Memory Multiprocessors”,
Proceedings of the International Conference of SuperComputing, June 1991.

[GOFF91] Goff G., Kennedy K. and Tseng S-W., “Practical Dependence Testing”, Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation, Toronto, June
1991.

[GOLU89] Golub G.B. and Van Loan C.F “Matrix Computations”, 2nd Edition, The John Hopkins University
Press, Maryland, 1989.

[GORN90] Gornish G., Granston E.D. and Viedenbaum A.V., “Compiler-directed Prefetching in Multiproces-
sors with Memory Hierarchies”, Proceedings of the International Conference of Supercomputing,
pp354-368 Amsterdam 1990.

[GUPT90] Gupta M. and Banerjee P.,“Automatic Data Partitioning on Distributed Memory Multiprocessors”,
UILU-ENG-90-2248,CRHC-90-14, Center for Reliable and High-Performance Computing, Uni-
versity of Illinois, October 1990.

[GURD85] Gurd J.R., Kirkham C.C. and Watson I., “The Manchester Prototype Dataflow Computer”, Com-
munications of the ACM, Vol. 28, no.1, pp 34-523, January 1985.

[GROS89] Gross T.. and Sussman A., “Mapping a Single-Assignment Language onto the Warp Systolic Ar-
ray”, Technical Report Department of Computer Science Carnegie Mellon Univerity 1989.

[HAGH90] Haghighat M.R. ,“Symbolic Dependence Analysis for High Performance Parallelizing Compilers”,
MS Thesis,CSRD Rpt No 995, Center for Supercomputing Research and Development, University
of Illinois, May 1990.

[HAYW90] Hayworth G., Leunig S., Hammer C. and Reeve M.,“ The European Declarative System, Database,
and Languages” IEEE Micro, December 1990.

[HALS86] Halstead R.H., “ Parallel Symbolic Computing”, IEEE Computer Vol. 19, No. 8 pp35-43, August
1986.

[HEAT88] Heath M. T. and Romine C.H., “Parallel Solution of Triangular Systems of Distributed-Memory
Multiprocessors”, Scientific and Statistical Computing, May 1988.

[HILL85] Hillis W.D., “The Connection Machine”, Cambridge, MIT 1985.

[HOCK88] Hockney R.W. and Jesshope C.R., “Parallel Computers 2, IOP Publishing Ltd., Bristol, 1988.

[HUDA91] Hudak D. and Abraham S., “Beyond Loop Partitioning: Data Assignment and Overlap to Reduce
Communication Overhead” , International Conference on Supercomputing, June 1991.

References 152

[HUDA90] Hudak D. and Abraham S., “Compiler Techniques for Data Partitioning of Sequentially Iterated
Loops” , Proceedings of ACM International Conference on Supercomputing, June 1990.

[IKUD90] K Ikudome,Fox G.C., Kolawa A. and Flower J.W., “An Automatic and Symbolic Parallelization
System for Distributed Memory Parallel Computers ”,The 5th Distributed Memory Computing
Conference 5, pp 1105-1114, Charleston, April 1990.

[INTE90] Intel Corporation, “iPSC/2 and iPSC/860 User’s Guide”, Intel, Jan 1990.

[KENN90A] Kennedy K and McKinley K.S., “Loop Distribution with Arbitrary Control Flow”, IEEE/ACM
Supercomputing ’90, New York, November 1990.

[KENN90] Kennedy K and Zima H.P., “Virtual Shared Memory for Distributed Memory Machines”, Parallel
Software Support Tools, IBM Europe Institute, Austria, 1990.

[KNOB90] Knobe K., Lukas J.D., and Steele G.L., “Data Optimization: Allocation of Arrays to Reduce
Communication on SIMD Machines”, Journal of Parallel and Distributed Computing 8, pp102-
118 1990.

[KOEL90] Koelbel C. and Mehrotra P. and Rosendale J.V., “Supporting Shared Data Structures on Distributed
Memory Architectures”, 2nd ACM SIGPLAN Symposium on Principles and Practise of Parallel
Programming, pp177-186, Seattle 1990.

[KOEL91] Koelbel C. and Mehrotra P., “ Programming Data Parallel Algorithms on Distributed Memory
Machines Using Kali”, 5th International Conference on Supercomputing, pp414-423, June 1991.

[KUCK77] Kuck D.J., “A Survey of Parallel Machine Organisation and Programming ”, ACM Computing
Surveys, Vol. 9. No. 1, pp29-59, 1977.

[KULK91] Kulkarni D., Kumar K.G., Basu A. and Paulraj A., “Loop Partitioning for Distributed Memory
Multiprocessors as Unimodular Transformations”, International Conference on Supercomputing,
June 1991.

[LAM91] Lam M.S., Rothberg E.E. and Wolf M.E. “The Cache Performance and Optimizations of Blocked
Algorithms”, Proceedings of the 4th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, April 1991.

[LAMP74] Lamport L., “The Parallel Execution of DO loops”, Communications of the ACM, Vol. 17, No. 2,
February 1974.

[LAWR91] Lawrence J., “Polytope Volume Computation”, Mathematics of Computation, Vol. 57, No. 195, pp
259-271, July 1991.

[LEE88] Lee C., “Experience of Implementing Applicative Parallelism on CRAY-XMP”, Proceedings Con-
par88, Stream B, pp 19-25, 1988

[LI90] Li J. and Chen M., “Index Domain Alignment: Minimising Cost of Cross-Referencing between
Distributed Arrays”, IEEE Proceedings of the Third Symposium on the Frontiers of Massively
Parallel Computation, October 1990.

[LI91] Li J. and Chen M., “Compiling Communication Efficient Programs for Massively Parallel Ma-
chines”, IEEE Transactions on Parallel and Distributed Systems Vol. 2, No. 3, July 1991.

[LI89] Li K. and Hudak P., “Memory Coherence in Shared Virtual Memory Systems”, ACM Transactions
on Computer Systems Vol. 7, No.4, pp 321-359, 1989.

[LI90a] Li J. and Chen M., “Generating Explicit Communication from Shared-Memory Program Refer-
ences ”, IEEE/ACM Supercomputing ’90, New York, November 1990.

References 153

[LI90b] Li Z. and Yew P-C. and Zhu C-Q., “An Efficient Data Dependence Analysis for Parallelizing
Compilers ”, IEEE Transactions on Parallel and Distributed Systems Vol. 1 No .1 , Jan 1990.

[LI91] Li Z., “Compiler Algorithm for Event Variable Synchronization ”, CSRD Report 1082, 1991.

[LU90] Lu L-C., “A Unified Framework for Systematic Loop Transformations”, 3rd ACM Symposium on
the Principles and Practice of Parallel Programming, April 1991.

[LU90a] Lu L-C. and Chen M.C., “Subdomain Dependence Test for Massive Parallelism”, IEEE Proceed-
ings of Supercomputing ’90, Los Alamitos, CA. 1990.

[MARG90] Margulis N. “i860 Microprocessor Architecture, Intel/Osborne-McGraw Hill, 1990.

[MAYD91] Maydan D.E., Hennesey J.L. and Lam, M.S. “Efficient and Exact Data Dependence Analysis”,
Proc. of ACM SIGPLAN June 1991.

[MEIK87] Meiko, “ Meiko Computing Surface Hardware Manual”, Bristol, 1987.

[MUND86] Mundie D.A. and Fisher D.A., “ Parallel Programming in Ada”, IEEE Computer Vol. 19, No. 8
pp20-25, August 1986.

[MCGR85] McGraw J.R., Skedzielewski S.K., Allan S., Grit D., Oldehoeft R., Glauert J.R.W., Dobes I. and
Hohensee P., “SISAL - Streams and Iteration in a Single-Assignment Language", Language Refer-
ence Manual, Version 1.2, Lawrence Livermore National Laboratory, California, January 1985.

[NICO90] Nicol D.M and Reynolds P.F.,“Optimal Remapping of Data Parallel Computations”, IEEE Trans-
actions on Computers Vol. 39, No. 2, pp206-219, February 1 990.

[NICO90a] Nicol D.M and Saltz J.H.,“An Analysis of Scatter Decomposition”, IEEE Transactions on Com-
puters Vol. 39, No. 11, pp1337-1345 , November 1990.

[NOBL88] Noble B. and Daniel J.W.,“Applied Linear Algebra”, Prentice-Hall, NJ 1988.

[OBOY92] O’Boyle M.F.P. and Hedayat G., Load Balancing of Parallel Affine Loops by Unimodular Trans-
formations, to appear at the European Workshop on Parallel Computing, Barcelona 1992.

[OLDE85] Oldehoeft R.R, Allan S.J.,, “Adaptive Exact-Fit Storage Management ”, Communications of the
ACM Vol.28, pp506-511, May 1985.

[OLDE88] Oldehoeft R.R, Cann D.C., “Applicative Parallelism on a Shared-Memory Multiprocessor”, IEEE
Software 1988

[PAAL90] Paalvast E.M.,van Gemund A.J. and Sips H.J., “A Method for Parallel Program Generation with
an Application to the Booster Language”, International Conference of SuperComputing, pp 457-
469,Amsterdam 1990.

[PADU86] Padua D.A. and Wolfe M.J., “Advanced Compiler Optimizations for Supercomputers”, Commu-
nications of the ACM Vol.29 No.12 pp 1184-1201, December 1986.

[PARB87] Parberry I., “Parallel Complexity Theory”, Pitman, London 1987.

[PEYT86] Peyton-Jones S., The Implementation of Functional Programming Languages, Prentice - Hall 1986.

[PING90] Pingali K. and Rogers A., “Compiler Parallelization of SIMPLE for a Distributed Memory Ma-
chine”, Technical Report TR 90-1084, Department of Computer Science, Cornell University, Jan-
uary 1990.

[POLY87] Polychronopoulos C.D., and Kuck D.J., “Guided Self-Scheduling: A Practical Scheduling Scheme
for Parallel Supercomputers”, IEEE Transactions on Computers, Vol. C-36, No. 12, pp. 1425-
1439, December 1987.

References 154

[PUGH91] Pugh W., “Uniform Techniques for Loop Optimisation”, International Conference on Supercom-
puting, June 1991.

[RAMA90] Ramanujan J. and Sadyappan P., “Nested Loop Tiling for Distributed Memory Machines”, The 5th
Distributed Memory Computing Conference 5, pp 1115-1121, Charleston, April 1990.

[RANE87] Ranelletti J.E., “Graph Transformation Algorithms for Array Memory Optimization in Application
Languages”, Ph.D. thesis, University of California at Davis, Computer Science Department, Davis,
California, 1987.

[REDD73] Reddaway S.F., “DAP - A Distributed Array Processor”, IEEE/ACM 1st Annual Symposium on
Computer Architecture, Florida, 1973.

[REED87] Reed D.A., Adams L.M. and Patrick M.L. “Stencils and Problem Partitionings: Their Influence
on the Performance of Multiple Processor Systems ”, IEEE Transactions on Computers Vol c-36
No. 7, July 1987.

[RIBA90] Ribas H.B, “Automatic Generation of Systolic Programs from Nested Loops”, Ph.D. thesis,
Carnegie-Mellon University, Computer Science Department, June 1990.

[ROGE90] Rogers A. and Pingali K., “Process Decomposition through Locality of Reference”, Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Implementation,pp 69-80,
1989.

[ROGE91] Rogers A., “Compiling for Locality of Reference”, Technical Report TR 91-1195, Department of
Computer Science, Cornell University, March 1991.

[ROSI90] Rosing M., Schnabel R. and Weaver R. The DINO parallel programming language, Technical
Report CU-CS-457-90, University of Colorado at Boulder, April 1990.

[RUHL90] Rühl R. and Annaratone M., “Parallelization of FORTRAN Code on Distributed-memory Par-
allel Processors”, Proceedings of the International Conference of SuperComputing, pp342-353
Amsterdam 1990.

[RUSS78] Russell R. M., “The CRAY-1 Computer System ”, Communication of the ACM, Vol. 21, pp63-72
1978.

[SALT90] Saltz J., Crowley K., Mirchandaney R. and Berryman “Run-time Scheduling and Execution of
Loops on Message Passing Machines”, Journal of Parallel and Distributed Computing, Vol.8
pp303-312, 1990.

[SARK88] Sarkar V., “An Automatically Partitioning Compiler for SISAL”, Proceedings Conpar88, Stream
B, pp 26-33, 1988

[SARK89] Sarkar V., “Partitioning and Scheduling Parallel Programs for Execution on Multiprocessors”,
Research Monographs in Parallel and Distributed Computing, The MIT Press, Cambridge, Mas-
sachusetts, 1989.

[SARG86] Sargeant J., “Load Balancing, Locality and Parallelism Control in Fine-Grain Parallel Machines”
Tech. Rep. UMCS-86-11-5, Dept. of Computer Science, University of Manchester, 1986.

[SEQU87] Sequent, “Balance Technical Summary”, Sequent Computer Inc., Beverton, Oregon, 1987.

[SCHR86] Schrijver A., “Theory of Linear and Integer Programming”, Wiley, Chichester 1986

[SHEN90] Shen Z., Li Z. and Yew P-C,“An Empirical Study of Fortran Programs Parallelizing Compilers”,
IEEE Transactions on Parallel and Distributed Systems Vol. 1 No. 3, July 1990.

[SHOR73] Shore J.E.,“Second Thoughts on Parallel Processing”, Computer Electrical Engineering, Vol. 1
pp 95-109, 1973.

References 155

[SHIE88] Shield D.T., “Translating SISAL into occam”, (M.Sc. Thesis), Department of Computer Science,
University of Manchester, 1988.

[SKED85] Skedzielewski S.K. and Glauert J.R.W., “IF1 - An Intermediate Form for Applicative Languages”,
Reference Manual M-170, Lawrence Livermore National Laboratory, California, January 1985.

[STAN86] Stanley R.P., “ Enumerative Combinatorics Volume 1”, Wadsworth and Brooks, 1986.

[STUA91] Stuart J.L. and Weaver J.R. “Matrices that Commute with a Permutation Matrix”, Linear Algebra
and its Applications, No. 150 pp 255-265, 1991.

[TANG90] Tang P., Yew P-C. and Zhu C-Q., “Compiler Techniques for Data Synchronization on Nested
Parallel Loops”, Proceedings of the International Conference on Supercomputing, 1990, Vol. 1,
pp177-186, May 1990.

[THOR70] Thorton J.E., “Design of a Computer, the Control Data 6600, Scott, Foresman and Co., Illinois,
1970.

[TSEN89] Tseng P-S., “A Parallelizing Compiler for Distributed Memory Parallel Computers”, Ph.D. Thesis,
Technical Report CMU-CS-89-148, Computer Science Department, Carnegie Mellon University,
May 1989.

[TSEN90] Tseng P-S., “Compiling Programs for a Linear Systolic Array”, Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementation White Plains New York,
1990.

[VELD90] Van de Velde E.F.,“Data Redistribution and Concurrency”, Parallel Computing Vol. 16, pp 125-
138,1990.

[WATS88] Watson I. et al., “Flagship: A Parallel Architecture for Declarative Programming”, Proceedings
of the 15th Annual Symposium on Computer Architectures, pp. 124-130, 1988.

[WEIS91] Weiss M., “ Strip Mining on SIMD Architectures”, International Conference on Supercomputing,
June 1991.

[WEND89] Wendleborn A., “The Development and Efficient Execution of SISAL programs”, Proceedings of
the Eilat Workshop on Dataflow Computation, Bic L. and Gaudiot J.L., May 1989.

[WHIT90] Whitfield D. and Soffa M.L., “An Approach to Ordering Optimizing Transformations”, Proceed-
ings of the 2nd ACM SIGPLAN Symposium on Principles and Practise of Parallel Programming,
pp177-186, Seattle 1990.

[WOLF91a] Wolf M.E. and Lam M.,“A Data Locality Optimizing Algorithm”, ACM SIGPLAN Conference on
Programming Language Design and Implementation, June 1991.

[WOLF89] Wolfe M.,“Optimising Supercompilers for Supercomputers”, Research Monograph in Parallel and
Distributed Computing, Pitman, London, 1989.

[WOLF90a] Wolfe M.,“Massive Parallelism through Program Restructuring”, Technical Report CS/E90-009
Department of Computer Science and Engineering Oregon Graduate Institute, June 1990.

[WOLF90b] Wolfe M.,“Data Dependence and Program Restructuring”, Technical Report CS/E90-007 Depart-
ment of Computer Science and Engineering Oregon Graduate Institute, May 1990.

[WOLF90c] Wolfe M.,“Serial vs Parallel Optimisations”, Technical Report CS/E90-010 Department of Com-
puter Science and Engineering Oregon Graduate Institute, July 1990.

[WOLF90d] Wolfe M.,“A Loop Restructuring Research Tool”, Technical Report CS/E90-010 Department of
Computer Science and Engineering Oregon Graduate Institute, August 1990.

References 156

[WOLF90e] Wolfe M. and Tseng C-W,.“The Power Test for Summarising Data Access and its Use in Paral-
lelism Enhancing Transformations’, Technical Report CS/E90-010 Department of Computer Sci-
ence and Engineering Oregon Graduate Institute, August 1990.

[WOLF91] Wolfe M.,“Data Dependence and Program Restructuring”, The Journal of Supercomputing Vol.4
No. 4, January 1991.

[WOLF88] Wolfram S.,“Mathematica: A System for doing Mathematics by Computer ”, Addison-Wesley,
Reading, Mass., 1988.

[YANG91] Yang A. and Choo Y-L., “Parallel-Program Transformations Using a Metalanguage”, Third ACM
SIGPLAN Syposium on Principles and Practice of Parallel Programming. pp 11-20, April 1991.

[ZIMA88] Zima H.P. Bast H,J. and Gerndt H.M, “A Tool for Semi-Automatic MIMD/SIMD parallelization”,
Parallel Computing 6, pp1 - 18 1988.

