ME@ I\R’Igsb(i)luerce IST-2001-33149 (MRG)

Guarantees

Periodic progress report: year 2

23rd February 2004

Project start date: 1 Jan 2002

Project duration: 36 months

Project coordinator: University of Edinburgh

Project partners: University of Edinburgh, Ludwig-Maximilians-Universitat Miinchen

_ Funded by the European Community’s “Information Society
r Technologies” Programme (1998-2002) under the FET proactive
initiative on Global Computing.

IST-2001-33149 (MRG) 23rd February 2004

Contents
1 Executive Summary

2 Work progress overview

2.1 Specific objectives for the reporting period L.

2.2 Overview of the progress of the project during the reporting period

2.3 Comparison of planned activities and actual work
2.4 World-wide ’state-of-the-art’ update
2.5 Clarifications regarding previous review reports
2.6 Planned work for the next reporting period
2.7 Assessment of project results and achievements

3 Project management and co-ordination

4 Cost breakdown

5 Information dissemination and exploitation of results
References

A Financial summary

26

28

28

31

37

IST-2001-33149 (MRG) 23rd February 2004 1

1 Executive Summary

The MRG project started on 1st Jan 2002. The aim of the project is to develop the infrastruc-
ture needed to endow mobile code with independently verifiable certificates describing its resource
behaviour. These certificates will be condensed and formalised mathematical proofs of a resource-
related property which are by their very nature self-evident and unforgeable.

The MRG workplan is structured into ten technical workpackages (and one administrative
workpackage) of which seven were scheduled for activity during year 2 with planned work including
many core tasks. On top of this, the project was behind schedule at the end of year 1 due partly
to delays in recruiting staff and partly to the fact that some key tasks turned out to be much more
time-consuming than expected. Year 2 has therefore been a busy period for the project with effort
focussed on core tasks at the expense of some tasks that are not on the critical path. We took
advantage of underspend on personnel in Edinburgh and the availability of well-qualified researchers
to recruit additional manpower at that site, which eased the situation considerably. The project is
now much closer to being on schedule and most of the components of the planned infrastructure
are now in place.

The deliverables for year 2 are in the form of reports or software prototypes. All reports and
software are downloadable from the project website. The content of the deliverables and key deci-
sions are explained in Section 2.2 below, and deliverable D11h compares progress with checkpoints
and quality measures previously specified in the Self Evaluation Plan (D11f). Deliverables pro-
duced between 31st Dec 2003 and the date that this report was prepared are also mentioned, in
order to accurately reflect what we will be prepared to present during the project review meeting.
However, the work done on these since 31st Dec 2003 is not reflected in the figures on manpower.

Section 2.6 proposes some changes to the workplan for year 3, to eliminate some tasks that are
peripheral to the core objectives of the project and add tasks that did not appear in the original
workplan but now seem to be worthy of effort. This is in accordance with recommendations from
the reviewers at the end of year 1.

2 Work progress overview

2.1 Specific objectives for the reporting period

As discussed during the first review meeting, our main goal during year 2 was to build on the
solid infrastructure established during year 1 to provide the basic elements required for a full
implementation of proof-carrying code for heap space bounds. Specifically, we hoped to:

e Complete the bytecode logic (task 2b) and its implementation (task 2c) and subsequent tasks
in WP2 that aim to ensure the quality of the logic and its implementation;

e Implement a resource type system for heap space bounds for Camelot (tasks 4b and 4c); and

e Implement a function taking a Camelot program with a heap space bound described by a
resource typing to a proof in the bytecode logic that the Grail code generated by the Camelot
compiler satisfies that bound (see task 6a).

Additional priorities were tasks from WP3 (3d and 3e) that were scheduled for year 1 but had not
been completed, and WP4 tasks from year 2 (4e and 4f). Secondary priorities were tasks in WP5
and WP10 that were scheduled for years 1 and 2.

Section 2.2 and the self-assessment report for year 2 (D11h) give an overview of the work done
towards these objectives.

2 IST-2001-33149 (MRG) 23rd February 2004

2.2 Overview of the progress of the project during the reporting period

The following table lists the deliverables that have been completed since the last report.

Del. | Deliverable name WP | Est. Del. type | Planned | Complete?
no. no. | person- delivery
months (month)

D2a | Language of assertions for 2 2 report 5/02 9/03
bytecode logic

D2b | Proof rules for bytecode logic 2 3 report 7/02 9/03

D2c¢ | Proof checker for bytecode 2 4 prototype | 4/03 11/03
logic

D2e | Theorem prover for bytecode logic | 2 3 prototype | 9/03 11/03

D2f | Encoding of VM semantics in 2 1 prototype | 5/03 5/03
theorem prover [optional task]

D3d | Extend compiler with 3 4 prototype | 1/03 11/03
immutable objects and higher-
order functions

D3e | Extend compiler with optimisations | 3 3 prototype | 11/02 9/03

D3f | Extend with mutable state and 3 1 prototype | 4/04 2/04
concurrency [optional task]

D4b | Type system for space-like 4 4 report 12/02 11/03
resources

D4c | Typechecker for compiler 4 4 prototype | 3/03 11/03

D4e | Proof of soundness over cost 4 6 report 12/03 no
model

D4f | Proof of soundness over 4 4 report 8/03 no
bytecode logic

Db5a | Type system for expressing 5 4 report 12/02 2/04
limits on parameter values

D5b | Proof of soundness for 5 3 report 10/04 2/04
parameter value constraints

Dbd | Resource type system for bytecode | 5 6 report 6/03 no

D6a | Certificate generator 6 6 prototype | 9/03 no

D7a | Extension of type system by 7 3 report 11/03 no
allowing user annotations

D7b | Adaptation of bound 7 5) prototype, | 9/03 no
generation/certification to report
optimisations

D10a | Practical effectiveness of 10 4 report 10/02 3/03
mobile virtual machines

D10b | Metalanguage for describing 10 6 report 12/03 2/04
virtual machine configuration

D11d | Workshop at end of year 2 11 1|0 workshop | 12/03 3/04

D11h | Assessment of progress in year 2 11 0 report 1/04 2/04

Workpackages 2 and 3 are thereby completed.

IST-2001-33149 (MRG) 23rd February 2004 3

Below is a verbatim copy of relevant parts of the MRG workplan, augmented with a description
of what work has been carried out under each workpackage and task and explaining significant
departures from what was foreseen. Workpackages and tasks on which work was neither planned
nor carried out during year 2 are not included.

WP2: Definition of bytecode logic

Objectives: Development of bytecode logic, including language of assertions and proof rules, and
a proof checker.

The purpose of this workpackage is to provide a language (2a) for making assertions about the
resource usage of bytecode programs with respect to the cost model defined in 1b, and a logic (2b)
for proving such assertions. The certificates that will be attached to dowloadable bytecode will
be proofs in this logic (but see 9). Certificates must be easily checkable by the recipient, and the
implementation of the proof checker (2c) will be part of the trusted code base (TCB); thus the logic
and its implementation must be simple and generally acceptable. To ensure the quality of the logic
and its implementation, we have included related tasks (2e and 2f) whose main underlying aim is
assessment of these components, and do not directly feed into later work.

a. Develop language of assertions. (2 months)
Deliverables: technical report Prerequisites: 1b
We will develop a logical language for asserting resource-related properties of bytecode pro-
grams. This will probably take the form of a Hoare-style logic, with assertions making ex-
plicit reference to code fragments. The expressiveness and convenience of the notation will
be checked using examples from 1b and its semantics will be formally defined.

Work carried out: This was submitted in year 1 but was not accepted by the reviewers. The
original purpose of this task was as a precursor to 2b, so the results have been incorporated
into a combined deliverable D2a/b.

b. Develop proof rules. (3 months)
Deliverables: conference/journal paper Prerequisites: 2a
We will develop rules for proving assertions expressed in the language of 2a. The goal is
rules that are simple, without computationally intractable conditions, that enable a large
class of interesting assertions to be proved in a relatively straightforward way. We aim to
generate proofs automatically via the use of novel type systems (see 4) so these rules will
not normally be used directly by users (although see 7a). Understandability is nevertheless
important to instill confidence in the integrity of our framework, and the length of proofs is
also an important issue in practice (see 9). It will be essential to demonstrate that the rules
are sound with respect to the cost model in 1b, and we will also attempt to check relative
completeness of certain fragments.

Work carried out: Completed and delivered in September 2003 as Deliverable D2a/b,
which presents a VDM-style logic for Grail encoded in Isabelle/HOL together with soundness
and completeness proofs and examples that validate the appropriateness of the logic for the
purposes of the project. The soundness and relative completeness of the proof rules with
respect to the semantics has been proved in Isabelle/HOL; this takes advantage of the decision
to develop the proof rules and semantics in Isabelle and provides more confidence in these

rules than any informal proof ever could. This work has been written up and submitted for
publication [ABHT04].

IST-2001-33149 (MRG) 23rd February 2004

c. Implement a proof checker. (4 months)
Deliverables: prototype implementation Prerequisites: 2b
Given an ostensible proof built using the rules in 2b, we need to be able to efficiently and
automatically check that it is valid. For this purpose, Necula [Nec97] uses Edinburgh LF
[HHP93], a generic type-theoretic framework for encoding and checking proofs. Depending
on how complicated the logic is, we will take the same approach or alternatively handcraft a
proof checker.

Later work (for example 6d) requires that a rudimentary metalanguage be provided, so that
lemmas can be proved and then referred to, or for construction of proofs by primitive recursion.
Basic facilities of this kind will be provided. The estimate of work required is under the
assumption that this will be relatively straightforward. Some care is required to prevent
denial of service attacks based on the creation of huge proofs.

Work carried out: Since the proof rules in D2a/b are encoded in Isabelle/HOL, and Isabelle
supports exportable proof terms as representations of proofs and contains a proof checking
module, we can use Isabelle as a proof checker. Deliverable D2c, delivered in November 2003,
explains this and studies the alternatives, taking into account tradeoffs between the size of
certificates and the desire to re-use existing software.

d. Milestone: Completion of implemented logic. Prerequisites: 2c

This has been successfully achieved by the delivery of Deliverables D2a/b and D2c.

e. Implement a theorem prover. (3 months)
Deliverables: experimental implementation; case studies Prerequisites: 2b
Here we plan to experiment with the use of an interactive theorem prover such as Isabelle [Pau94]
for generating proofs. This will give access to the features provided by such provers, e.g. con-
text management, goal-directed proof search, and built-in decision procedures. The main
point of this work is to explore some of the ramifications of the choice of proof rules in 2b; in
practice proofs will be generated by other means, see 4.

Work carried out: Completed and delivered in November 2003 as Deliverable D2e, which
describes experiments in the use of Isabelle/HOL for conducting proofs in the bytecode logic.
These focus on the use of high-level combinators built on top of the proof rules from D2a/b
to support the automatic generation of proofs, as a step towards the automatic generation of
certificates, see WP6.

f. Optional: encode VM semantics in theorem prover. (1 month)
Deliverables: experimental implementation Prerequisites: 2b
Here we would encode the entire virtual machine with its semantics in a general-purpose
theorem prover such as PVS [ORS92], and then use this to formally establish that the proof
rules in 2b are sound. The aim would be to explore some of the consequences of our earlier
choices in order to validate these decisions. This could be carried out as a final year student
project under the supervision of project personnel; this supervision is what is allowed for in
the manpower estimate.

Work carried out: Completed and delivered in May 2003 as Deliverable D2f. The virtual
machine for the jGrail subset of JVML and its cost model were encoded in Isabelle, along with
the translation from Grail to jGrail, and a proof was given that the translation is correct.

IST-2001-33149 (MRG) 23rd February 2004 5

The research in this package is a mixture of design, assessment, and implementation work. A
working proof checker (2c) will be an essential component part of the final overall system, and the
quality of the logic that it implements is vital to the success of the entire framework.

WP3: Design of experimental high-level language

Objectives: Design and implementation of high-level programming language targeted at the byte-
code language of WP1, to provide a test bed for WP4-7.

The preceding workpackages provide a grounding for resource guarantees on bytecode; but this
is too low a level for practical programming. The objective of this workpackage is to write a
compiler for a high-level programming language targeted at the bytecode language of la. This will
provide a test bed for the higher-level developments of packages 4, 5, 6 and 7. The compiler should
be small enough to allow for rapid progress, yet sufficiently expressive to demonstrate that scaling
up to real languages is possible.

The most distinctive requirement on the compiler is transparency: it must be possible to cal-
culate how a particular fragment of high-level code will transform into bytecode, and what its
resulting resource usage will be according to the cost model of 1b. This is vital to support the
language-level approach of following workpackages.

As this compiler is to provide a framework for later development, it should also be extensible.
Other packages aim to add functionality, like resource types (4c) and generation of certificates (6a).
This must be possible without disturbing the basic action of the compiler. To meet these require-
ments the compiler needs an open and well-documented architecture, in sufficient detail to support
reasoning (formal and informal) about its behaviour (4e). Consequently, the technical documen-
tation produced by this workpackage is of particular importance, providing reference material for
later work.

d. Extend with immutable objects and higher-order functions. (4 months)
Deliverables: prototype implementation; technical documentation Prerequisites: 3b
These additional features make the language more expressive, and will assist more advanced
parts of later packages, like 7c. Like the base language and compiler, these extensions need
comprehensive documentation: covering both the semantics of the language features them-
selves, and their compilation to bytecode. This particularly important for higher-order func-
tions, as they typically fit less well with existing object-style VM’s.

Work carried out: Completed and delivered in November 2003 as Deliverable D3d. The
O’Camelot language adds object-oriented programming to Camelot, and in doing so goes con-
siderably beyond the original proposal for immutable objects. It includes objects with state,
class and subclass declarations, run-time checked casts, and full interoperation with existing
Java libraries, including callbacks. The O’Camelot compiler is available for download from
the project website. Several object-oriented examples have been successfully compiled, in
O’Camelot and mixed O’Camelot/Java. The deliverable describes a specific example of code
for Sun’s MIDP platform, to run on handheld devices. It compiles and runs on a PalmOS
PDA, making use of the device-specific GUI; it also runs successfully within the Java smart-
phone emulator testbed. The accompanying technical paper gives semantics, compilation
details, and discusses resource implications, and has been accepted for publication [WMO04].

e. Implement well-understood optimisations in the compiler. (8 months)
Deliverables: prototype implementation; technical report Prerequisites: 3b

6 IST-2001-33149 (MRG) 23rd February 2004

It is sensible to extend the compiler with optimisations whose effect can be determined stat-
ically. Example are some uses of in-place update, or the replacement of tail recursion by
iteration. Exactly what is possible will depend on the chosen bytecode and its cost model
— because of the need to keep track of resource usage in a provable way, this is a tighter
constraint than for most compilers.

Work carried out: Completed and delivered in September 2003 as Deliverable D3e. The
compiler now performs elimination of tail-recursion and variable consolidation. The technical
report includes correctness proofs, and an analysis of the effect on stack usage. For optimi-
sation of heap usage, we have extended the Camelot language with annotations for datatype
representation that control the size of objects generated by the compiler. In all cases, we have
checked that the “optimisations” do indeed strictly improve space usage of programs.

f. Optional: Incorporate mutable state and concurrency. (1 month)
Deliverables: prototype implementation; technical documentation Prerequisites: 3d
Although existing virtual machines provide good support for both of these features, they are
less amenable to the kind of formal reasoning presented here. Concurrency in particular has
a complex interaction with resource usage. This optional component is closely tied to 7e.
This could be carried out as a final year student project, and the manpower estimate is for
supervision time.

Work carried out: Completed and delivered in February 2004 as Deliverable D3f, which is
a study of the use of O’Camelot for writing stateful multi-threaded programs, while retaining
existing resource bounds on individual routines within such code. This introduces new issues
concerning resources shared between threads, and the threads themselves as a resource.

WP4: From reasoning principles to high-level type systems

Objectives: Develop reasoning principles and type systems for characterising resource usage,
including a typechecker and soundness proofs.

This workpackage builds on the foundational strands in the first three packages. Beginning from
the experimental high-level language designed in 3a, we investigate ways of expressing resource
constraints and proving that they are satisfied by the compiled program, according to the cost
model of 1b. We begin from reasoning principles, perhaps related to the bytecode logic, and then
move towards type systems. The notion of type is a very broad one: type-checking can be used to
enforce simple consistency checks (that the addition operation + is always applied to two numeric
arguments) but also rich semantic notions (such as interference [Rey78], presence of side-effects
[TJ92], and resource usage as proposed here or studied in [Hof00]).

Our approach is to stick with type systems where the type-checking problem is decidable,
whereas the problem of proving that a resource constraint is satisfied will generally be undecidable.
This means that we accept an unavoidable gap (the “slack”) between the set of programs which
are typable in a resource type system and the larger set of programs which satisfy the resource
property of interest. For many natural examples, though, the resource bounds are met for obvious
reasons which are in the scope of our type systems. The craft of designing type systems lies in
capturing these natural examples and minimising the slack, while retaining a practical notion of
type and practical type-checking algorithms.

b. Develop a type system for space-like resources. (4 months)
Deliverables: working design document Prerequisites: 4a

IST-2001-33149 (MRG) 23rd February 2004 7

The first type system will be one for ensuring space-like resource bounds. There is some
relevant recent research here, including [Hof00] which describes a type system with a special
resource type which corresponds to a unit of reusable space. Hughes and Pareto [HP99]
describe a type system for programming in bounded space. Crary and Weirich [CW00] have
a type system which provides explicit bounds for time usage: the run time of a function can
be expressed as a function of the input. We want to extend and adapt these systems, in
particular investigating ways of attaching explicit bounds on space usage. Other resources,
such as file handles, network connections, or hardware resources, could be treated in a similar
way to space usage in these systems; this will be a novel approach and should help to eliminate
a common class of program failures.

Work carried out: Completed and delivered in November 2003 as part of the combined
deliverable D4b/c. This describes a space-aware type system for Camelot that is directly
inspired by work on LFPL described in [Hof00], with linear use of “diamonds” to account for
space usage. Diamond annotations may be added explicitly by the programmer to control
re-use manually, or otherwise allocated automatically from a free-list.

In fact, linearity as used in [Hof00] is rather strict and forbids programs which reuse data
structures, but nonetheless evaluate correctly within the claimed space bounds. Therefore one
direction of our work has been to study and implement more permissive typing systems which
analyse aliasing. Konetny and Atkey have worked on typing schemes for analysing sharing,
intended as adjuncts to the existing space analysis. Their work can be seen as improvements
of the system of Aspinall and Hofmann [AH02], although they each take different approaches.

Konecny’s system of conditions and guarantees [Kon03] annotates a function with aliasing
information based on the structure of datatypes and the data flow within the function. Atkey’s
type system [Atk04] equips a typing context with information describing relations between
resources used by values declared. The main example is regions of memory and the relation
of separation.

c. Implement a typechecker for the compiler described in 3b. (4 months)
Deliverables: prototype implementation Prerequisites: 3b,4b
To test our type systems on real examples, we must implement a typechecker for our high-
level language. In a production compiler, implementing a typechecker can be a considerable
task, especially if there is significant inference involved in type-checking. At the beginning,
we will want to separate most of the issues concerning type inference, perhaps requiring extra
type annotations in the source language. This means that our type-checking algorithm will
be straightforward to implement, especially if we have a syntaz-directed system where the
choice of typing rule is uniquely determined by the syntax of the term we wish to type-check.
We will defer more sophisticated type inference until 7d.

Work carried out: Completed and delivered in November 2003 as part of the combined
deliverable D4b/c, describing a typechecker for the type system in 4b that has been im-
plemented and integrated with the Camelot compiler described in D3b. A compiler switch
turns on/off a simple linearity check which, when engaged, guarantees correct evaluation of
programs which use in-place update instructions. The extended Camelot compiler has been
successfully run on numerous example programs. Experiments with a Java profiling tool
demonstrate a striking correlation between resource typings and actual heap usage: after the
initial costs of JVM and GUI initialisation, heap usage follows exactly the pattern of usage
predicted by our analysis.

8 IST-2001-33149 (MRG) 23rd February 2004

d. Milestone: Implemented type system for space-like resources. Prerequisites: 4c

This has been successfully achieved by the delivery of Deliverable D4b/c.

e. Prove soundness over the cost model. (6 months)
Deliverables: technical report Prerequisites: /b
It is natural to ask that our type systems should bear a close relationship to the cost model, so
that they can be understood intuitively. Soundness is fundamental: a typing assertion should
imply the intended cost constraints, as expressed by our model. Since the cost model applies
to the byte code, we must reason about the translations made by the Compiler implemented
in 3b. The task here is to conduct a detailed pencil and paper proof to validate this claim.

Work carried out: This soundness requirement can be seen as the combination of “sound-
ness over the bytecode logic” (task 4f) and the soundness of the bytecode logic presented in
D2a/b. We are therefore not planning to produce a separate deliverable for 4e.

f. Prove soundness over the bytecode logic. (4 months)
Deliverables: technical report; conference/journal paper Prerequisites: /b
By the previous part we have a direct connection with the cost model, we know that our
type system can also be sound with respect to the bytecode logic for the compiled byte code.
In other words, a typing assertion should imply a corresponding proposition in the bytecode
logic. The job here is to prove that. It is also something of a test for the bytecode logic,
since that is expressed in rather different terms than the type system. Therefore insights from
the type system development may lead to tweaks in the proof rules for the bytecode logic,
although in general the latter should be stronger (i.e. capable of proving more).

Work carried out: This work is almost complete and a draft of D4f has been produced.
Rather than provide an informal argument that the space type system is sound with respect to
the bytecode logic, we have worked on formally embedding the type system into the logic, by
using a form of “modified assertions” constructed on top of the bytecode logic. The modified
assertions are closely related to the type system and its soundness proof (albeit presented at
the level of Grail code rather than Camelot).

g. Milestone: Soundness proofs. Prerequisites: 4e,Jf

This has not yet been reached but it will be soon with the completion of DA4f.

The research in this package is a combination of improving existing work and combining several
different ideas, previously treated in separation and with different motivations. Drawing together
these strands is a vital step towards our vision.

WP5: Further high-level and low-level type systems

Objectives: Generalise type systems in WP4 to accommodate more general notions of resource,
and develop type systems for expressing resource bounds at the byte-code level.

This workpackage continues and expands on the work begun in 4. The idea here is to begin
to generalise the systems for space-like resources studied there to consider more general notions of
resource. As a particular case, we will examine type systems for expressing limits on parameter
values (5a).

This package also broadens the scope of the type systems to consider low-level type systems
for expressing resource bounds at the level of the VM byte code. Although our main interest is

IST-2001-33149 (MRG) 23rd February 2004 9

in ensuring that resource bounds are met for programming in high-level languages, a way to help
ensure this is to push the resource type information as far down as we can, and annotate the
bytecode with additional typing information.

a. Develop a type system for expressing limits on parameter values. (4 months)
Deliverables: technical report; conference paper Prerequisites: 4a
As one of the potentially most useful concepts in our generalised concept of resource bounds,
we want to have type systems which express restrictions on parameter values for functions.
This generalises the most common case needed in programming: that of ensuring that an array
access does not violate the bounds of the array. One particularly general way of achieving this
is with so-called dependent types where the type expression can contain ordinary terms from
the language. In practice, full dependent types lead to complex type systems which are almost
always undecidable, but restricted forms of dependent types may be useful here. There is
interesting related recent research [XHO01, Aug98] which may help here. Apart from dependent
types, there are other novel type systems for programming languages which propose ideas we
might adapt, such as the notion of shape [BM97].

Work carried out: Completed and delivered in February 2004 as Deliverable D5a/b, which
consists of a book chapter [AHO05] together with technical notes. The goal is achieved through
the reuse of existing technology including Hongwei Xi’s Dependent ML [XP99]. This is
illustrated for the case of an embedded automobile control system, where it is critical that
a whenever a “brake” procedure be called, its parameters lie within a safety window. It is
shown how to represent this with dependent types in a functional language, and so ensure
that any program which type checks is guaranteed to satisfy the safety constraints.

b. Extend soundness proofs for parameter value constraints (3 months)
Deliverables: technical report Prerequisites: 5a,4e,4f
The task here is to replay the proofs from 4e and 4f for the new kinds of resource type. This
will exercise the generality of our framework; we hope that the earlier proofs will already be
amenable to this kind of generalization.

Work carried out: We regard this as completed with the delivery in February 2004 of
Deliverable D5a/b. Soundness of this type system is a combination of type soundness of
Dependent ML, which is established in [XP99], and the evident soundness of the extension
of the bytecode logic described in the deliverable with respect to the extension of the cost
model also described there.

c. Milestone: Type system for parameter value constraints with soundness proofs.
Prerequisites: 5b

This has been successfully achieved by the delivery of D5a/b.

d. Develop resource type systems for bytecode. (6 months)
Deliverables: conference/journal paper Prerequisites: 1a,2b,4a,4b,5a
Here we want to invent low-level resource type systems for the bytecode itself. There are
several reasons to want to do this. First, because the type system will have a closer connection
with the machine than the high-level type systems, we can have greater confidence that it
truly reflects the resource usage of the machine (especially if later work in 6 and 8 draw
on this). Moreover, it establishes a common resource typing level, that we might utilise in
generalizing the high-level type systems to different languages and language constructs (for
example in 7c).

10 IST-2001-33149 (MRG) 23rd February 2004

There are also specific formal properties that a bytecode type system enables. A low-level
type system makes it possible to state and prove a type preservation property for a compiler:
that a well-typed high-level language compiles to well-typed bytecode. And we can formalize
the type preservation of bytecode optimisations using a bytecode type system. In our setting,
well-typed means that relevant resource bounds are met, and type preservation will mean
that the same resource bounds are met.

Work on this subtask will include design of the type systems for the bytecode, perhaps
adopting the ideas from 4b and ba. It could also include formal proofs of soundness for the
the bytecode logic, analogous to 4e and 4f.

This subtask is related to existing work on applying high-level programming language type
systems to low-level assembly code [MWCG99, CGG199] and work on type systems for Java
bytecode [SA99]. A more direct connection is with recent work on applying space-bound type
systems to low-level assembly code [AC03].

Work carried out: We have not begun work on bytecode type systems specifically for Grail
and our current plan is to omit tasks 5d and 5e in order to concentrate on work that is more
central to the project. However Amadio, who worked with MRG in 2002/2003, has recently
demonstrated such a type system for a simplified functional bytecode, building on his work
within the MRG project [ACGDZJ04]. This ensures explicit space bounds on execution,
based on the quasi-interpretations method of deliverable D4a.

WP6: Generation of certificates

Objectives: Define format of certificates and implement a certificate generator. Experiment with
reducing size of certificates.

This package is concerned with generating mobile guarantees of resource boundedness. The
guarantee, or certificate, is what will be shipped together with the code, as irrefutable evidence for
the consumer that the code obeys the desired resource constraints. Here we consider the format of
the certificates, and their generation.

a. Implement a certificate generator. (6 months)
Deliverables: prototype implementation Prerequisites: jc
Given a program which is typed in one of the high-level type systems developed in 4 and 5,
we want to automatically generate a certificate which provides manifest evidence of this fact.
The certificate contains a proof in our program logic. Here we must design a format for
certificates (perhaps based on XML), and implement a software component which generates
these from type-checked programs.

Work carried out: Deliverable D6a is close to completion. The precise format of certificates
has not yet been defined; this is an essentially straightforward task, but we are postponing
it until work on certificate content is finalised. The content of a certificate will consist of an
Isabelle representation of the target Grail code, together with typing annotations on methods,
which are provided by the compiler based on information output by the type analysis. The
compiler will also generate an Isabelle goal representing the claim that the resource typings
are valid, together with a tactic invocation that will prove this.

The work in this package is mainly applied research, involving the design and construction of
software components. Working software from this package will be an essential part of the final
overall system.

IST-2001-33149 (MRG) 23rd February 2004 11

Package 9 is dedicated to advanced research topics with the motivation of reducing certificate
size. Parts 6¢c and 6d in this workpackage address this issue. We expect these approaches to be
fruitful but not the final word; the results will be useful input for 9.

WPT7: Advances in high-level type systems

Objectives: Improve expressiveness, user-friendliness, and accuracy of the type systems developed
in WP4 and WP5.

The goal of this workpackage is to improve expressiveness, user-friendliness, accuracy of the
type systems developed under 4 and 5.

a. Improving accuracy of type system by allowing for user interaction. (3 months)
Deliverables: technical report Prerequisites: 4a,4b,5a
The aim here is to augment the basic type system from 4 with user annotations in the form
of supplied proofs based, for example, on the derived rules from 4a. Also more abstract
annotations such as loop invariants could be considered here.

If very restrictive resource bounds are imposed (e.g. hard limits on stack size) we might
have to give the programmer the possibility to implement certain critical methods directly in
bytecode with corresponding certificates obtained by hand, supported by a theorem prover.
The task here will be to enable smooth integration of such user-supplied and -certified routines
with high-level code.

Work carried out: The Camelot compiler has been modified to make possible the transfer
of user annotations from Camelot programs through to certification generation. However, the
language has not yet been extended with user annotations. Although this would be desirable,
it is less crucial than planned, in view of our advances with inference mechanisms. It is hoped
that this work will be completed as part of an MSc or undergraduate student project.

b. Adaptation of bound generation/certification to optimisations (5 months)
Deliverables: research paper; prototype implementation Prerequisites: 3e
Usually, applicability of compiler optimisations (such as those mentioned in 3e) is decided on
an ad-hoc basis with correctness of the optimisation being the only criterion. Whether or not
an optimisation has taken place is not made visible to the user, it is only through improved
overall runtime and space behaviour that the user becomes aware of them.

The purpose of this task is to identify static approximations as to the applicability of certain
optimisations and to take their effect into account when calculating resource bounds and
certificates. When a tail recursive definition is transformed into an iteration, no memory space
for maintaining a stack should be counted when computing resource estimates. Similarly, we
must report and appropriately account for the possibility for reusing a temporary file as
opposed to creating a new one.

In order to be able to compute resource bounds statically and to retain transparency for the
user, it becomes necessary to delineate the applicability of an optimisation by well-defined
static criteria. For instance, it will not be sufficient to implement optimisation of tail recursion
by discarding the stack frame of the caller at runtime in case the called function is in tail
position, because the effect of this on resource usage depends on dynamic aspects known only
at runtime. We rather have to syntactically characterise tail recursion and transform the code
before actually running it.

12

IST-2001-33149 (MRG) 23rd February 2004

Similar but more challenging is the situation with garbage collection. In order to be able to
take its effect into account we will have to consider static approximations such as the type
system in [Hof00].

This substantially extends the approach to compiler optimisation in [Nec97, PSS98] where it is
shown how correctness proofs for an unoptimised program can be transformed into proofs for
the optimised program by composing with a general proof that the optimisation is semantics
preserving.

In order to demonstrate feasibility it will be sufficient to restrict attention to two represen-
tative optimisations, for example tail recursion as iteration and static memory reuse in the

style of [Hof00].

Work carried out: No work has been undertaken explicitly on this topic so far, in part
because the space-usage inference mechanism takes place at an intermediate stage of compi-
lation, after optimisations have been performed. This means that resource bounds expressed
by the inferred types automatically take into account optimisations. Our current plan is
therefore to omit this task.

. Type inference (6 months)

Deliverables: research paper; implementation (optional) Prerequisites: 4b,5a,7a,7b
The basic type system developed under 4 and the extensions developed under 7a and 7b
may rely on any number of user-supplied type annotations, for instance, recursive functions
might be annotated by suggested bounds on their resource usage which are merely certified,
cf. [CWO0O0].

The aim here is to develop ways to infer such annotations automatically to a certain degree
based on decision procedures for arithmetic inequalities [HP99], automata-theoretic methods
[PWO97], unification [Mil78], program analyses, fixpoint methods [PS91], etc.

Work carried out: Automatic type inference analysis has assumed a more central role
than we originally anticipated, and we have made significant research advances on this topic.
Type inference following [HJO03] is now a part of the Camelot compiler, and there is also a
sophisticated automatic analysis of sharing as described in [Kon03|. Both of these analyses
will be used to provide information to the certificate generation phase in WP6.

This workpackage forms part of the scientific core of the proposal. Successful completion will

demonstrate that our proposal extends beyond the basic feasibility validated in 1, 2, 4. The goals
set out here are ambitious but realistic. In case of difficulty or progress slower than expected it is
possible to scale down by e.g. dropping the parts of 7b related to memory management.

WPS8: Integration with existing security model

Objectives: Implement resource manager and relate proof-checking infrastructure to present-day
security management.

The preceding workpackages have detailed a proof-checking infrastructure which advances the

state of the art in security management capabilities. This workpackage will enrich our understand-
ing of this infrastructure by relating it to present-day security management.

b. Experimental implementation (2 months)

Deliverables: experimental prototype Prerequisites: 2c¢,8a,5¢,6a

IST-2001-33149 (MRG) 23rd February 2004 13

A prototype implementation of a certificate-led resource manager will be produced. This
will provide a platform for further speculative research on developments in static security
assessment. Recent work on Java-based agent models which work with the Java 2 security
model [GP01] would provide the basis for further development here.

Work carried out: This task, which was scheduled for near the end of year 3, has been
brought forward in order to support an early demonstration of what MRG intends to deliver
as its main final product, to encourage implementation and integration of project components,
and to enhance visibility of the project. At this point it will consist of an integrated web-based
demonstration platform that will allow one to receive a program endowed with a certificate
of resource usage, check the certificate, and run the program if the check succeeds. The
program will be a JVM class file generated by our Camelot compiler and the certificate will
be an Isabelle proof script referring to a specialised logic tuned for making statements on
space consumption, which builds on our bytecode logic for Grail. Ancillary components in
this infrastructure are a driver for the inference of space consumption in Camelot programs,
and the automatic generation of Isabelle predicates based on this information. The suitability
of our technology for mobile code will be demonstrated at the project review by executing
the compiled code on a standard PDA.

WP10: Mobile virtual machines

Objectives: Investigate extension to support downloadable virtual machines.

This workpackage develops a thread of investigation into a mechanism to support mobility
between computational environments. As with 9 this investigation is visionary and speculative.
Here we are concerned with a promising technology which could provide a way to enable greatly
increased interoperability of mobile software. The foundational technology is the mobile virtual
machine, a bytecode interpreter which is itself downloaded before the bytecode application which
is to be interpreted by it. Mobile virtual machines can be realised as circlets [Bre98]. One use of
this technology would be to allow more advanced virtual machines to be installed between high-level
language programs and the JVM. Another would be to perform upgrades on pre-installed micro
virtual machines.

a. Understanding the practical effectiveness of the technology (4 months)
Deliverables: internal technical report Prerequisites: 1b

To add another layer of software interpretation to the static virtual machine model calls
into question the practical usefulness of this technology in terms of system performance.
To consider that the target platform of the mobile virtual machine might be a handheld
device further heightens this concern. This task will investigate the use of re-configurable
hardware as an implementation technology for this concept. Re-configurable hardware offers
the promise of performance close to that of circuitry but without the same specificity.

Work carried out: Completed and delivered in March 2003 as Deliverable D10a, which
reached the conclusion that the state-of-the-art in re-configurable hardware and is not suffi-
ciently advanced, and the physical limitations on the technology are sufficiently severe, that
it cannot at present be used as a credible technology for virtual machine implementation.

b. A metalanguage for virtual machines (6 months)
Deliverables: research paper Prerequisites: 10a,4b,5d

14 IST-2001-33149 (MRG) 23rd February 2004

Another tool to provide partial support for this technology would be a configuration language
(or metalanguage) for describing the configuration of next-generation configurable virtual
machines. These VMs could then be subject to just-in-time performance tuning just before
bytecode interpretation by setting or disabling certain optimisation methods. Recent devel-
opments in Java technology such as the Java 2 Micro Edition (J2ME) release already define
the notion of a configuration as a virtual machine and a minimal set of core class libraries
and APIs. A J2ME configuration specifies a generalized runtime environment for consumer
electronic and embedded devices. Our configuration language would extend this through
reference to our virtual machine cost model.

Work carried out: Completed and delivered in February 2004 as Deliverable D10b, which
uses the configurable Ant build tool as the vehicle for expressing virtual machine configuration
information. This tool is programmed by scripts written in XML, with the definition of the
configuration language stated formally as a schema-limited XML file format.

WP11: Project management, dissemination and evaluation

Objectives: Project management, dissemination and evaluation.

The project requires close collaboration between the two sites and provides many opportunities
for dissemination. The purpose of this workpackage is to ensure that collaboration proceeds effec-
tively and with attention to internal and external evaluation, while being able to take advantage
of a wide variety of forms of dissemination for the results.

The small size of the project enables decisions about the overall technical direction of the project
to be taken in close consultation with all of the people involved. Milestones and periodic meetings
provide checkpoints where progress can be reviewed and plans adjusted if necessary. Meetings for
technical coordination will be as follows:

e A kickoff workshop in month 2 plus workshops in months 11, 23 and 35. These will be
attended by all project personnel, insofar as possible. One prominent non-EU expert will be
invited to speak at each of the first three workshops at the project’s expense; this will give a
useful source of comment and advice without the need for project staff to visit these people
individually. All of these workshops will be open to people from outside the project, with the
final workshop being publicized more widely.

e Internal project meetings in months 7, 17 and 29. Each of these will include technical meetings
on all active workpackages, and will be attended by all project personnel involved with those
workpackages.

Individual visits are also planned for collaborative technical work.

The results of the project will be made available to all through a website set up at the beginning
of the project and maintained under the direction of the Project Coordinator for the duration of
the work. This is intended to give interested parties a view of the results as they accumulate. It
will include at least the following:

e An introduction to the project including title, partners, and summary, with links to appro-
priate European Commission websites (GC, FET, IST and/or FP5).

e All of the deliverables and other publications produced by the project, as they are produced.
Those that are most appropriate for external consumption will be given special prominence.

IST-2001-33149 (MRG) 23rd February 2004 15

e A section (protected from access by non-project personnel) for working drafts, internal project
documents, etc.

The results of the project will also be presented at appropriate conferences and published in aca-
demic journals. Many of these conferences take place outside the EU and this is taken into account
in the travel budget.

The project workshops provide an opportunity for external participants to learn about the
project’s progress and to contribute their views. The final workshop will be associated with an
established international conference for increased visibility; this event is intended more for dissem-
inating the results of the project than for technical coordination and a proceedings is planned.
Linking workshops with the annual project evaluation meetings will allow more efficient use of the
travel budget.

For self-assessment, each Workpackage Coordinator will supply in advance measurable criteria
of progress/success for the different stages of the workpackage which will later be used to assess
progress. This assessment of progress will take place in connection with each of the end-of-year
project workshops.

a. Project website (1 month)
Deliverables: website

Work carried out: The project website has been maintained continuously since its estab-
lishment. It was thoroughly re-vamped in February 2004.

d. Workshop at end of year 2 (0 months)
Deliverables: workshop

Work carried out: A workshop involving all the projects in Global Computing pro-active
initiativeis taking place at Rovereto in March 2004, incorporating reviews of all these projects
including MRG; we regard this as completing Deliverable 11d. Although this will give valuable
opportunities for cross-fertilization between projects, we do not expect to have sufficient time
there for in-depth technical discussion and collaboration between MRG project participants.
We are therefore planning an additional internal workshop in Spring 2004.

h. Assessment of progress in year 2 (0 months)
Deliverables: report

Work carried out: Completed and delivered in February 2004 as Deliverable D11h.

Most of the deliverables are allocated 0 person-months because this work will be done by the
main investigators rather than the researchers who are employed by the project.

2.3 Comparison of planned activities and actual work

Most of the objectives for year 2 listed in Section 2.1 have been fully achieved. Specifically:

e “Complete the bytecode logic (task 2b) and its implementation (task 2c) and subsequent tasks
in WP2 that aim to ensure the quality of the logic and its implementation”: all achieved

e “Implement a resource type system for heap space bounds for Camelot (tasks 4b and 4c)”:
achieved

16 IST-2001-33149 (MRG) 23rd February 2004

e “Implement a function taking a Camelot program with a heap space bound described by a
resource typing to a proof in the bytecode logic that the Grail code generated by the Camelot
compiler satisfies that bound (see task 6a)”: close to completion

“Additional priorities were tasks from WP3 (3d and 3e) that were scheduled for year 1 but had not
been completed”: achieved

“...and WP4 tasks from year 2 (4e and 4f)”: close to completion

“Secondary priorities were tasks in WP5 and WP10 that were scheduled for years 1 and 2”: WP5
most achieved, WP10 achieved

Some of the tasks that were scheduled for year 2 in the original project workplan are not yet
complete, see the table in Section 2.2. Many of these are well underway. Specifically:

e 4e: will be merged with 4f since it follows directly from D4f and the soundness proof in
D2b

e 4f: is almost complete

e 5d: will be dropped in order to concentrate on work that is more central to the project
e Ga: is almost complete

e Ta: is low priority in view of our advances with type inference mechanisms

e 7b: will be dropped since our approach to space type inference automatically takes optimi-
sations into account.

Details may be found under each of these tasks in Section 2.2.

In Section 2.6 below we propose some changes to the workplan for year 3, to eliminate some
tasks that are peripheral to the core objectives of the project and add tasks that did not appear in
the original workplan but now seem to be worthy of effort.

The following charts record the per-workpackage per-site per-annum activity. Manpower is given
in person-months and refers only to the researchers paid by the project. The estimated manpower
figures are incomplete, since the figures that were required for the Technical Annex were per-
workpackage per-site totals, and per-task overall totals, but not the detailed per-workpackage per-
site per-annum totals that would be most relevant here. Where it is possible to extract information
from the figures in the Technical Annex (for instance, when a Workpackage is scheduled for activity
in a single year) then this is recorded in the chart; otherwise the entry is left blank. In such cases,
partial information may be obtained by comparing the cumulative totals with the planned totals
over the entire project duration.

Year 1 Year 2 Cumulative Full project
WP1 Planned | Actual || Planned | Actual || Planned | Actual || Planned
UEDIN 9 12 0 0 9 12 9
LMUMUN || 4 0 0 0 4 0 4
Total 13 12 0 0 13 12 13

WP1 was finished in year 1. The total amount of effort required was according to plan, but contrary
to plan the work was carried out entirely by Edinburgh personnel. Munich effort during year 1 was
initially on WP3 and then almost exclusively on WP2 once it became apparent that much more
work would be required there than planned.

IST-2001-33149 (MRG) 23rd February 2004 17

Year 1 Year 2 Cumulative Full project
WP2 Planned | Actual | Planned | Actual || Planned | Actual || Planned
UEDIN 2 16 7 18 7
LMUMUN 9.5 10 6 19.5 6
Total 11.5 26 13 37.5 13

WP2 is now complete. The effort required was much more than planned, with most of this work
(23.5 person-months versus the planned 3 person-months) going into task 2b. This caused major
disruption to the planned distribution of work and to the schedule.

Year 1 Year 2 Cumulative Full project
WP3 Planned | Actual | Planned | Actual || Planned | Actual || Planned
UEDIN 3.5 8.8 12.3 9
LMUMUN 5.5 0 5.5 4
Total 9 8.8 17.8 13

WP3 is now (Feb 2004) complete, ahead of schedule. The total amount of effort and the distribution
of work between the partners is approximately according to plan.

Year 1 Year 2 Cumulative Full project
WP4 Planned | Actual | Planned | Actual || Planned | Actual || Planned
UEDIN 2 9 8 11 8
LMUMUN 4 2 16 6 16
Total 6 11 24 17 24

WP4 is close to completion. The total amount of effort required has been somewhat more than
planned, and the distribution is rather different, with considerable unplanned work in Edinburgh
going into space-aware type systems.

Year 1 Year 2 Cumulative Full project
WP5 Planned | Actual | Planned | Actual || Planned | Actual || Planned
UEDIN 0 0 0 9
LMUMUN 1 3 4 9
Total 1 3 4 18

It appears that WP5 will require much less effort than required if the proposal to drop tasks 5d and
5e is accepted, with 5a/b now complete (Feb 2004) and having required less effort than planned.
This compensates for the greater amount of work required for some tasks in other workpackages.

Year 1 Year 2 Cumulative Full project
WP6 Planned | Actual | Planned | Actual || Planned | Actual || Planned
UEDIN 0 1.5 1.5 11
LMUMUN 0 9 9 6
Total 0 10.5 10.5 17

WP6 is on track, although more work has been done in Munich than planned and work started
later than scheduled.

18 IST-2001-33149 (MRG) 23rd February 2004

Year 1 Year 2 Cumulative Full project
WP7 Planned | Actual | Planned | Actual || Planned | Actual || Planned
UEDIN 0 5 5 6
LMUMUN 0 0 0 15
Total 0 5 5 21

Most work on WP7 has been postponed in order to speed up progress on key tasks such as 6a.
Some of the progress that has been made here is the work of a PhD student in Munich (Steffen
Jost) who is not employed by MRG.

Year 1 Year 2 Cumulative Full project
WPS Planned | Actual | Planned | Actual || Planned | Actual || Planned
UEDIN 0 0 0 0 0 0 6
LMUMUN | 0 1.5 0 1 0 2.5 2
Total 0 1.5 0 1 0 2.5 8

Work on WP8 has been brought forward from year 3 in order to support an early demonstration of
what MRG intends to deliver, to encourage implementation and integration of project components,
and to enhance visibilty of the project.

Year 1 Year 2 Cumulative Full project
WP9 Planned | Actual | Planned | Actual || Planned | Actual || Planned
UEDIN 0 0 0 0 0 0 9
LMUMUN || 0 0 0 0 0 0 9
Total 0 0 0 0 0 0 18

Work on WP9 is scheduled for year 3.

Year 1 Year 2 Cumulative Full project
WP10 Planned | Actual | Planned | Actual || Planned | Actual || Planned
UEDIN 0 3.3 3.3 14
LMUMUN 0 0 0 2
Total 4 0 4 3.3 10 3.3 16

Progress on WP10 is according to schedule. The amount of effort invested has been rather less
than planned, with a corresponding decrease in the level of ambition of the tasks, in order to devote
effort to tasks that are on the critical path.

Year 1 Year 2 Cumulative Full project
WP11 Planned | Actual || Planned | Actual || Planned | Actual || Planned
UEDIN 1 0.5 0 0 1 0.5 1
LMUMUN || 0 0 0 0 0 0 0
Total 1 0.5 0 0 1 0.5 1

WP11 is proceeding according to schedule. Most of the tasks are allocated 0 person-months because
the work is being done by the main investigators rather than the researchers who are employed by
the project.

IST-2001-33149 (MRG) 23rd February 2004 19

Year 1 Year 2 Cumulative Full project
ALL WP Planned | Actual | Planned | Actual || Planned | Actual || Planned
UEDIN 30 20 30 43.6 60 63.6 90
LMUMUN || 24 21.5 24 25 48 46.5 72
Total 54 41.5 54 68.6 108 110.1 163

As discussed in the first progress report, delays in recruiting staff and other circumstances led
to a shortage of manpower in year 1, particularly at the Edinburgh site. During year 1 it also
became apparent that some key tasks would be much more time-consuming than expected. We
responded to this situation by devoting a very large proportion of the available effort to the crit-
ical tasks and taking advantage of underspend on personnel in Edinburgh and the availability of
well-qualified researchers to recruit additional manpower at that site. The underspend has arisen
because researchers were appointed that are more junior than anticipated in the original budget.
In particular, a 50% post for a senior researcher at professorial level was included in the budget and
was planned to be filled by the Project Coordinator who would be released from 50% of his normal
duties to devote this time to technical work on the project, but this turned out to be impossible
under Commission rules.

2.4 World-wide ’state-of-the-art’ update

This section provides a brief account of particularly relevant technical developments world-wide,
which do not already appear in the workplan or previous periodic progress report. We outline each
of these developments, giving an evaluation and analysis of their impact on the project.

e At LIF in Marseille, Amadio and others are working on verifying resource bounds for low
level code [ACGDZJ04]. Following in part the work done by Amadio within WP4 of MRG
[Ama03], they have developed quasi-interpretations as a strong technical tool for reasoning
about the size of computed values. Rather than the Java target of MRG, they have a custom
seven-instruction bytecode, suitable for first-order functional programs. The current state of
their project is that given some bytecode with appropriate annotations, they verify that it ter-
minates and runs within specified polynomial space. Separate work considers the problem of
automatically synthesising annotations. Although their bytecode is much simpler than Grail,
we are interested in their use of termination analysis, and choices for bytecode annotation,
to inform the further development of our bytecode logic.

e The SecSafe project is developing static analysis methods for security and safety, with Java-
Card as one particular focus [Sec|. This has generated the Carmel language, giving a formal
operational semantics to model the JavaCard virtual machine [Siv04]. Also working with
JavaCard, the firm Trusted Logic (www.trustedlogic.com) have released their Application
Diagnosis Tool which analyses bytecode for conformance to security policies.

e There is continuing work at Sun’s research laboratories on the future for Java on very small de-
vices, which naturally has implications for MRG. The Sun Squawk system described in [SSB03]
is a Java CLDC implementation that runs with a RAM footprint of 1k—8k, and cleanly han-
dles the tripartite memory environment typical of smart cards (RAM, non-volatile memory,
and ROM). One of the techniques used is for Squawk to constrain the form of bytecode, in
ways very similar to Grail and also to Leroy’s work in [Ler02, Ler03]. Such restrictions on
control flow and stack use, as investigated in WP1, aid us in precise reasoning about resource
usage; for Squawk they simplify verification and garbage collection. In addition, Squawk

20 IST-2001-33149 (MRG) 23rd February 2004

limits bytecodes that may trigger garbage collection, and uses region-aware memory manage-
ment to track pointers between different kinds of memory; both of these should be relevant
to improving our own analyses.

e Various groups are working on resource bounds for high-level programming languages. Lee,
Yang and Yi [LY'Y03] have a static analysis approach used to apply a source-level transforma-
tion that inserts explicit free commands into program text. Some of this resembles Camelot,
but it can also generate explicit memory deallocations that are inexpressible in our current
linear type system.

Vasconcelos and Hammond [VHO04] present a type system for inferring program run-time,
expressed as beta-reductions in a high-level operational semantics. This is more abstract
than the explicit clock ticks of the Grail bytecode logic; but their work does apply to full
higher-order functions, and may offer us some insights into bounds for higher-order Camelot.

e Work continues on the development of Reynold’s separation logic [Rey02]. In particular,
recent work of O’Hearn and others [BCO04, OYRO04] approaches a general “frame rule” for
modular reasoning about pointer structures and hence objects. Calcagno has also demon-
strated impressive tools for automating modular reasoning about pointers in certain situa-
tions [Cal03]. Inspired by this work, we have experimented under WP4/WP5 with separation
logic as an idiom for more advanced proof techniques in the Grail bytecode logic, with en-
couraging first results.

e Embedded systems face significant resource issues, and relevant to MRG the Real-Time Spec-
ification for Java [BGT00] describes Java support for programming devices with time and
space constraints. It does this by giving the programmer explicit control of scheduling and
memory management, rather than formal guarantees; however, we believe that the high-level
resource information of Camelot could guide automatic generation of this explicit control
code.

e Also with embedded systems, the Hume project works on a high-level functional language
for safety-critical systems [HMO03, MHS04]. This uses strong typing and semantic analysis
to generate tight time and space bounds on program execution. Current proposals for the
immediate successor to this work involve the Munich MRG group as one partner, and explicitly
plan to draw on Grail and the Grail bytecode logic developed in our project [Ham04].

2.5 Clarifications regarding previous review reports

In their report on the first year of MRG the reviewers made several recommendations. We note
here the action we have taken in response.

Deliverable D2a was not accepted: The new deliverable D2a/b combines a completely revised
D2a with D2b.

Deliverables D2a and D2b were required by 1 Sep 2003: D2a/b was delivered on time. This
was a very substantial piece of work and the reviewers were right to be worried about it. In the
end, the effort required was 31.5 person-months of paid researchers’ time (plus considerable
input from the main investigators) instead of the planned 5 person-months. We believe that
the result is an extremely firm basis for the many tasks in rest of the project that depend on
it. We hope that the reviewers will agree that it addresses all of the concerns in their report.

IST-2001-33149 (MRG) 23rd February 2004 21

Submit a reduced and more rational deliverable list: Changes to the workplan are proposed
in Section 2.6 below.

MRG should interact more with other GC projects ...: There has been somewhat increased
interaction with other projects, see Section 3 below. However, since we have been behind
schedule, work on the tasks in the MRG workplan and publication of results has taken prece-
dence over external interaction. Now that we are almost back on schedule we can devote
more effort to this; furthermore we now have much more to offer that is of potential interest
to other GC projects than we did a year ago.

in particular PROFUNDIS: The specific suggestion concerning PROFUNDIS was that
one of its workpackages has as explicit objective “to develop new type systems to control
interference among processes, and to control resource usage”. The main thrust of the research
of the PROFUNDIS project is concerned with mobility calculi for processes. This can be used
to provide guarantees relating to inter-process properties such as non-interference and secure
information flow. These can be regarded as resource guarantees, but the resources involved
tend to be of a type which are orthogonal to types of resources considered by MRG.

The research which has been performed in the PROFUNDIS project to date is generally
much more abstract than that of MRG; PROFUNDIS deals with a very high-level view of
mobile computation, whereas MRG is concerned with providing precise bounds on fine-grained
resources. Although the stated aims of the two projects are superficially similar there is quite
a large gap between the activities of the projects in practise, and it is difficult to find concrete
connections between the projects at the present time.

The PROFUNDIS workplan seems to suggest that their work will become more concrete with
the progress of time; thus it may be the case that there will a certain amount of convergence
with the MRG project, providing better opportunities for collaboration. One example of this
is their proposed Task 3.1 of WP3 (“space in types”). They state that they

“... intend to design new, more intensional type operators based on spatial logic

operators. As an example of such properties, a type could express the fact that
a mobile computation that executes over a host can perform remote outputs only
until it does not perform local inputs.” [sic]

This looks as if it could potentially be interesting in relation to MRG, in particular to Dba
(Type system for expressing limits on parameter values). Unfortunately, it appears that
PROFUNDIS have as yet made no progress with this task. However they intend to work on
this task in the coming year, and this might be an area where fruitful collaboration would be
feasible.

2.6 Planned work for the next reporting period

We propose a number of changes to the workplan for year 3, for several reasons. First, the proposals
are intended to address the slippage of the project with respect to the original schedule, which was
due to a combination of factors including a manpower shortage in year 1 and some key tasks being
much more time-consuming than expected. Second, it is proposed to merge a few closely related
tasks in order to give a schedule of deliverables that is less crowded, with a smaller number of
larger deliverables. This has already been done with some of the deliverables in year 2 and is
proposed above for 4e/f. Finally, we now find that some of the tasks in the original workplan are

22

IST-2001-33149 (MRG) 23rd February 2004

peripheral to the core objectives to the project and deserve little or no effort (for example, 5d and
7b above) while others have arisen that deserve to receive attention before the project is complete.
The overall aim of these changes are to ensure the production of solid results for the core objectives
of the project.

We also propose to extend the project by four months. This will allow participants to dissemi-
nate the results of the project at the planned Global Computing event to be held at ETAPS 2005
in April 2005.

The following changes to the workplan are proposed:

4e (Proof of soundness over cost model): Merge with 4f into a single task 4e/f entitled
“Soundness of type system”, since it amounts to a combination of 4f and soundness of the
bytecode logic established in 2a/b.

5d (Resource type system for bytecode), 5e (Implementation of bytecode type system), 6f
(Bytecode typing derivation generator): Omit, as peripheral to the central concerns of the
project.

6¢ (Experiment with smaller certificates via formalised soundness proof), 6d (Experiment
with smaller certificates via prooflets), 9a (Size-reducing effect of proof-theoretic methods):
There is little point to these tasks given the decision to use Isabelle proof scripts in certificates
rather than proof terms. Although it is important to the practical use of PCC, the size of
proof terms is not a resource-specific issue and we have already done experiments on this as
part of D2c. A much more significant gap concerns resource policies and their relationship to
the rest of the MRG infrastructure, so add a task to WP8 to study that, see below.

7a (Extension of type system by allowing user annotations): Optional task, perhaps as a
student project. It is low priority in view of our advances with type inference mechanisms.

7b (Adaptation of bound generation/certification to optimisations): Omit, since our approach
to space type inference automatically takes optimisations into account.

9b (Feasibility of probabilistic certification), 9c¢ (Negotiation-based protocols for resource
certification): Merge into a single task 9b/c, entitled “Advanced techniques of certification”.

Add a task to WP8 to address the issue of resource policies:

8e. Expressing and relating resource policies

Deliverables: technical report Prerequisites: 6a
Our type-system technology will at first allow us to express resource properties of the
result of compiling individual functions in the high-level language. We would like to
have a way to combine these properties and relate them to user-level statements about
the resource usage of a whole program, perhaps dependent on input parameters. An
example statement might be “for positive integer inputs n and m, executing the main()
method requires heap space 32 *n + 16 *m”. This level of description is appropriate for
expressing resource policies of the code consumer. In this task, we want to investigate
ways of expressing and relating resource policies. The aim will be to allow either of
two routes towards resource usage checking: generating certificates according to a given
resource policy, or attempting to show that a given certificate satisfies an arbitrary
resource policy.

IST-2001-33149 (MRG) 23rd February 2004 23

e Add tasks to WP5 and WP6 to address the issue of termination, to take account of the fact
that the bytecode logic is a logic of partial correctness assertions.

5g.

5h.

6g.

6h.

Termination checker

Deliverables: prototype implementation; technical report Prerequisites: WP2, WP
The Grail bytecode logic formulates and proves partial correctness assertions. This
means that any such assertion will be true for a nonterminating program. Therefore, it
is desirable to be able to detect and certify termination as well.

The reason for decoupling termination from correctness as we have done is that usually
different methods are used to prove either so that the two properties are better dealt
with in isolation. The alternative would have been a bytecode logic for total correctness
with much more complicated rules for method and function invocation.

To address total correctness we will therefore implement a termination checker for
Camelot. We hope to largely be able to use existing technology such as [LJBAO03].

Extension of bytecode logic with total correctness

Deliverables: technical report Prerequisites: WP38
This task is concerned with turning output provided by the termination checker into
a formal certificate of total correctness in the bytecode logic. As already mentioned,
the bytecode logic in its current state cannot express termination. It must therefore
be extended to cover this case. The idea is that we will have both partial correctness
assertions and total correctness assertions (program terminates under a precondition
and assertion is valid). We will prove a metatheorem allowing one to pass from a partial
correctness assertion, obtained e.g. by certificate generation, to the corresponding total
correctness assertion in the presence of a proof of termination.

Certification of termination

Deliverables: prototype implementation; technical documentation Prerequisites: 5g, 5h,
ba

Proofs of termination in the bytecode logic will be automatically generated from the
output of the termination checker.

Optional: Non-terminating programs

Deliverables: technical report Prerequisites: 6g
There are programs that deliberately do not terminate such as user interfaces which
take the form of a single infinite loop. In this case one must analyse termination and
resource behaviour of the loop body in isolation. In this task we want to investigate this
phenomenon in more detail and in particular develop a suggestive example.

24

IST-2001-33149 (MRG) 23rd February 2004

2.7 Assessment of project results and achievements

Questions about
project’s outcomes

No.

Comments or suggestions for further
investigation

1. Scientific and technological achievements of the project (and why are they so)

Question 1.1.

Which is the ‘Breakthrough’
or ‘real’ innovation achieved
in the considered period

N/A

The MRG system as developed so far contains a
number of innovations: including the Grail byte-
code, its logic, and the Camelot heap manage-
ment annotations. However, the most distinctive
‘Breakthrough’ innovation is the work on infer-
ring such annotations using linear programming.
Automatic inference for resource types is a leap
ahead of expectations, and its implementation
within the latest versions of the Camelot compiler
show it to be effective and efficient.

2. Impact on Science and Technology: Scientific Publications in scientific

magazines

Question 2.1.

Scientific or technical publi-
cations on reviewed journals
and conferences

32

Details in Section 5

Question 2.2.

Scientific or technical publi-
cations on non-reviewed jour-
nals and conferences

Details in Section 5

Question 2.3.

Invited papers published in
scientific or technical journal
or conference.

Details in Section 5

3. Impact on Innovation and Micro-economy

A - Patents

Question 3.1.

Patents filed and pending 0
Question 3.2.
Patents awarded 0
Question 3.3.
Patents sold 0

B - Start-ups

IST-2001-33149 (MRG) 23rd February 2004

Questions about No. Comments or suggestions for further
project’s outcomes investigation

Question 3.4.

Creation of start-up No

Question 3.5.

Creation of new department No
of research (ie: organisational
change)

C - Technology transfer of project’s results

Question 3.6.

Collaboration/partnership No
with a company?

4. Other effects

A - Participation to Conferences/Symposium/Workshops or other dissemination

events
Question 4.1.
Active participation to Con- 8 | Details in Section 5
ferences in EU Member
states, Candidate countries /
NAS. (specify if one partner
or ”collaborative” between
partners)
Question 4.2.
Active participation to Con- 1 | Details in Section 5

ferences outside the above
countries (specify if one part-
ner or ’collaborative” be-
tween partners)

B - Training effect

Question 4.3.

Number of PhD students 2 | Field: Computer Science
hired for project’s completion

C - Public Visibility

Question 4.4.

Media appearances and gen- No
eral publications (articles,
press releases, etc.)

26 IST-2001-33149 (MRG) 23rd February 2004

Questions about No. Comments or suggestions for further
project’s outcomes investigation

Question 4.5.

http://www.lfcs.ed.ac.uk/mrg

Web-pages created or other 3 MRG project website
web-site links related to the http://www.lfcs.ed.ac.uk/camelot
project Camelot compiler download site

http://wuw.lfcs.ed.ac.uk/gc
Global Computing summer school

Question 4.6.

Video produced or other dis- 0
semination material

Question 4.7.

Key pictures of results 0

D - Spill-over effects

Question 4.8.

Any spill-over to national pro- | Yes | Details in Section 3.
grams

Question 4.9.

Any spill-over to another part | Yes | OpenFET; details in Sections 3 and 5
of EU IST Programme

Question 4.10.

Are other team(s) involved in | Yes | An up-to-date list of related projects is on the
the same type of research as project web site.
the one in your project ?

3 Project management and co-ordination

Cooperation within the consortium has been excellent. The fact that there are only two partners
has meant that collaboration is strong.

Project meetings. MRG organized two internal project workshops during year 2, as in year 1.
The first workshop was held in Edinburgh during 25-26 May 2003 and involved project personnel
and students only. The second workshop was held in Oberschleissheim near Munich during 21-22
November 2003, and involved researchers from Tobias Nipkow’s group at the Technical University of
Munich and Michal Kone¢ny of Aston University (a former MRG member) in addition to project
personnel. Several other “outsiders” were invited to this workshop, including Antoine Galland
from the Gemplus Software Research Lab in Marseille, but because of the timing none were able
to attend. An open workshop involving all projects in the Global Computing pro-active initiative
will be held in Rovereto during 9-12 March 2004 in Rovereto.

The original plan was for one internal workshop and one open workshop per year, with the open
workshop being combined with the project review and used partly for dissemination. However, the
Global Computing workshops have not provided sufficient opportunity for detailed technical work

IST-2001-33149 (MRG) 23rd February 2004 27

and so we have found that an additional meeting to be essential for this purpose.

Collaboration. Most tasks involve contributions from both sites. Most collaboration is via e-
mail but intensive periods of joint work have taken place during visits by reseachers at each site to
the other site, as follows:

e Beringer to Munich, 27 Jul — 3 Aug 2003

e Loidl to Edinburgh, 10-23 Mar 2003

e Loidl to Edinburgh, 3-17 Sep 2003

e MacKenzie to Munich, 15-23 Feb 2003

e Momigliano to Munich, 21-27 Oct
In addition, in most cases researchers travelling to project workshops spent extra days before or
after the workshop at the host site for collaboration.
Personnel changes. The following personnel changes have taken place during year 2:

Roberto Amadio spent a 6-month sabbatical in Munich working on MRG. He returned to Mar-
seille at the beginning of February. He remains in contact and has continued MRG-relevant
research, e.g. [ACGDZJ04].

Michel Koneény left the Edinburgh site to take up a lectureship at Aston University at the be-
ginning of September. He continues his involvement with MRG and is helping us to integrate
his work on type inference in WP8.

Alberto Momigliano joined the Edinburgh site in July. Since the beginning of November he has
been working 50% for MRG and 50% for the University of Milan.

Nicholas Wolverson joined the Edinburgh site in June. Since the beginning of October he has
been working 57% for MRG while studying for a PhD.

Brian Campbell joined the Edinburgh site in September, working 57% for MRG while studying
for a PhD.

We have been fortunate to recruit such highly qualified researchers. In particular, Momigliano’s
background in theorem proving using Isabelle and Twelf provides an ideal complement to the
expertise of other project members.

Cooperation with other projects.

e Martin Hofmann is coordinator of the APPSEM-II thematic network. APPSEM theme H is
“Resource models and web data”, which includes MRG, making APPSEM a useful forum for
discussion of MRG and related work with other experts.

e There are several points of contact between MRG and the AGILE project. Martin Hofmann
and Martin Wirsing (AGILE coordinator, Munich) are conducting preliminary investigations
on an extension of the MRG framework to UML using AGILE technology. Don Sannella and
Andrzej Tarlecki (AGILE, Warsaw) are collaborating on studying the application of work

28

IST-2001-33149 (MRG) 23rd February 2004

from AGILE in the MRG framework, with support from a travel grant funded by the British
Council and the Polish Ministry of Scientific Research and Information Technology. David
Aspinall is involved in a related investigation with Piotr Hoffman (AGILE, Warsaw).

Don Sannella is a member of the MIKADO advisory committee.

Roberto Amadio, who spent 6 months in 2002/2003 working on MRG at the Munich site, is
a member of PROFUNDIS. We remain in contact with him since his return to Marseille and
he has continued MRG-related research.

Stephen Gilmore is a member of the DEGAS project. A case study from the DEGAS project
(a multi-player on-line role playing game that runs on a Java-enabled mobile telephone) is
being used in a student project at Edinburgh which is attempting to build a resource-bounded
implementation in Camelot.

In July, the Edinburgh site organized the EC-sponsored EEF Global Computing Summer
School. The courses in the summer school were given by Davide Sangiorgi (PROFUNDIS),
Martin Wirsing (AGILE coordinator), Rocco De Nicola (AGILE and MIKADO), Martin
Hofmann (MRG), Andrew Gordon (Microsoft Research) and Ian Clarke (Freenet). These are
all top-ranking researchers and most of them are members of projects in the Global Computing
initiative, speaking about research being done within these projects. The summer school was
therefore an excellent opportunity to learn about the latest work and to exchange ideas.

Hans-Wolfgang Loidl and Martin Hofmann are members of a consortium for a STREP pro-
posal under FET Open to study resource bounds in embedded systems.

MRG continues to have useful interactions with the ConCert project at Carnegie Mellon
University as reported last year.

Members of MRG have been invited to attend CASSIS (Construction and Analysis of Safe,
Secure and Interoperable Smart Devices) in Marseille during March, an invitation-only work-
shop organized by the Everest group at INRIA Sophia Antipolis. This is a prime opportunity
for interaction with the main academic and industrial researchers in smart cards, and the invi-
tation amounts to recognition by members of that community that work in MRG is applicable
there.

Don Sannella, Stephen Gilmore and Ian Stark have had discussions with staff at the National
e-Science Centre in Edinburgh and with an advisor to the UK e-Science programme on proof-
carrying code and resource bounds for grid applications. These discussions have had a (minor)
influence on the agenda of e-Science research in the UK.

4 Cost breakdown

See Appendix A.

5 Information dissemination and exploitation of results

Dissemination of the results of MRG has been via publications, research talks and presentations,
courses, the project website, software, organization of workshops and joint dissemination activities,
and involvement with other projects at national and international level.

IST-2001-33149 (MRG) 23rd February 2004 29

Publications. The following publications by MRG members have been appeared or been ac-
cepted during 2003.

Invited papers: [HKS03]

Refereed journals and conferences: [ACMO03a], [ACMO03b], [AL03], [Asp03], [Atk04], [Ber03],
[BDG'03], [BDGKO03a], [BDGK03b], [BMS03], [CGH'03], [CGH'04], [GHKRO03], [GHKR04],
[Gil04], [GKO03], [HES], [HJ03], [Hof03], [HS], [Jos04], [Kon03], [LDST03], [MA03], [MHSTO03],
[MPO03a], [MP03b], [MT03], [RTL03], [RTLO4], [MWO04], [WMO4]

Non-refereed journals and conferences: [BGHPO03|

Research talks and presentations. Talks to present the conference papers listed above, plus
the following:

e David Aspinall gave a talk on “Mobile Resource Guarantees” at Warsaw University.

e Stephen Gilmore gave a talk on “Mobile Resource Guarantees for Grid Applications” at the
Grids and Applied Language Theory Workshop at the National e-Science Centre, Edinburgh

e Martin Hofmann gave an invited talk on “Certification of memory usage” at the Eighth Italian
Conference on Theoretical Computer Science.

e Martin Hofmann gave an invited talk on “Mobile Resource Guarantees” at the Formal Meth-
ods for Mobility workshop, Marseille.

e Martin Hofmann gave an invited talk on “A resource-aware program logic” at FGC, Eind-
hoven.

e Hans-Wolfgang Loidl gave a talk on “A Program Logic for a JVM-like Language” at the
Workshop on Hoare Logics, LMU Munich, Munich.

e Hans-Wolfgang Loidl gave a talk on “Mobile Resource Guarantees: Resource Bounds for
Functional Languages” at TU Munich.

e Don Sannella gave a talk on “Mobile Resource Guarantees” at the Univerity of Wales in
Swansea

e Tan Stark gave a talk on “Mobile Resource Guarantees” in the Analysis of Informatic Phe-
nomena Seminar at Oxford University Computing Laboratory.

e Jan Stark gave a talk on “Mobile Resource Guarantees” at the APPSEM II Workshop in
Nottingham.

Courses. Martin Hofmann taught a course on “Type systems for resource control” in the EC-
sponsored FEF Global Computing Summer School held in Edinburgh during July 2003. This was
attended by 50 participants, mostly PhD students from EU countries, see http://www.lfcs.inf.
ed.ac.uk/events/global-computing/. The lectures covered background material and work being
done in MRG, and software produced by MRG was used in laboratory sessions.

Project website. The project website is at http://groups.inf.ed.ac.uk/mrg/. It has recently
received a thorough facelift.

30 IST-2001-33149 (MRG) 23rd February 2004

Software. Grail and Camelot are available for download from the project website, and all other
software produced by MRG will also be made available there.

Organization of workshops.

e David Aspinall was organiser and joint Programme Committee chair of the 5th Workshop on
User Interfaces for Theorem Provers in Rome.

e Stephen Gilmore was Programme Committee chair for the 4th International Symposium on
Trends in Functional Programming in Edinburgh.

e Stephen Gilmore was a member of the Programme Committee of the Implementation of
Functional Languages workshop in Edinburgh.

e Martin Hofmann was a member of the Programme Committee of the 7th International Sym-
posium on Functional and Logic Programming in Nara, Japan.

e Martin Hofmann is a member of the Programme Committee of the 6th International Workshop
on Implicit Computational Complexity in Turku.

e Martin Hofmann organized a joint TU-Munich/LMU Mini Workshop on Byte Code Logics
in Munich.

e Alberto Momigliano was a member of the Programme Committee of the 5th ACM-SIGPLAN
International Conference on Principles and Practice of Declarative Programming in Uppsala.

e Don Sannella was a member of the Programme Committee of the Workshop on Foundations
of Global Computing in Eindhoven.

e Don Sannella and MRG members in Edinburgh organized the EFF Summer School on Global
Computation in Edinburgh.

Involvement with other projects. See Section 3 above.

Exploitation of results. Gemplus, the world’s largest maker of smart cards, has shown a strong
interest in MRG. Antoine Galland from the Gemplus Software Research Lab in Marseille attended
an MRG workshop in September 2002. In his view, MRG offers what seems to be ultimately the
most promising approach to the problem of space resource control, which is a critical issue for
smart card software because of the severe restrictions on memory size in smart cards imposed by
the physical constraints. We have kept up e-mail contact since then and he has been helpful in
pointing us to relevant developments and potential examples. We invited him to an MRG workshop
in November but he was unable to attend. He has invited us to a meeting at Gemplus in March but
there is a direct clash with the MRG review meeting; however Martin Hofmann will meet him and
others from Gemplus at the CASSIS workshop in Marseille immediately after the MRG review.
Don Sannella has given short presentations of progress in MRG to researchers from Sun Labs
and NTT and to the head of BT Engineering Group. There has been a great deal of interest from
NTT in particular, which has a group in California working on applications of proof-carrying code
in mobile telephony, but nothing concrete yet. Sun Labs indicates interest in the connection with
real-time Java mentioned in Section 2.4 above. Hans-Wolfgang Loidl has discussed MRG with the
company AbsInt in Saarbriicken and has collaborated with them on a proposal for a STREP under

IST-2001-33149 (MRG) 23rd February 2004 31

FET Open coordinated by the University of St Andrews that will build on MRG results on Grail
and the Grail bytecode logic.

References

[ABH*04]

[AC03]

[ACGDZJ04]

[ACMO3a)

[ACMO3b]

[AH02]

[AHO5]

[ALO3]

[Ama03]

[Asp03]

[Atk0A]

[Aug9s]

David Aspinall, Lennart Beringer, Martin Hofmann, Hans-Wolfgang Loidl, and Al-
berto Momigliano. A program logic for resource verification. 2004. Submitted for
publication.

David Aspinall and Adriana Compagnoni. Heap bounded assembly language. Journal
of Automated Reasoning, 2003. To appear.

Roberto Amadio, Solange Coupet-Grimal, Silvano Dal Zilio, and Line Jakubiec. A
functional scenario for bytecode verification of resource bounds. Rapport LIF 17-2004,
Laboratoire Informatique Fondamentale, January 2004. Submitted for publication.

Simon Ambler, Roy Crole, and Alberto Momigliano. A combinator and presheaf
topos model for primitive recursion over higher order abstract syntax. In Proceedings
of the 8th Kurt Godel Colloguium, Vienna, 2003.

Simon Ambler, Roy Crole, and Alberto Momigliano. A definitional approach to
primitive recursion over higher order abstract syntax. In Proc. MERLIN 2003, 2003.

David Aspinall and Martin Hofmann. Another type system for in-place update. In
Proc. 11th Furopean Symposium on Programming, Grenoble, volume 2305 of Lecture
Notes in Computer Science. Springer, 2002.

David Aspinall and Martin Hofmann. Dependent types. In Benjamin Pierce, editor,
Advanced Topics in Types and Programming Languages, chapter 4. MIT Press, to
appear in 2005.

David Aspinall and Christoph Liith. Proof General meets IsaWin. In Proc. User
Interfaces for Theorem Provers 2003 (UITP’03), September 2003. Available from
http://www.informatik.uni-bremen.de/uitp03/.

Roberto Amadio. Max-plus quasi-interpretations. In Proceedings of the 6th Inter-
national Conference on Typed Lambda Calculus and Applications, number 2701 in
Lecture Notes in Computer Science, pages 31-45. Springer-Verlag, 2003.

David Aspinall. Type checking parametrised programs and specifications in
ASL+FPC. In M. Wirsing, D. Pattinson, and R. Hennicker, editors, Recent Trends
in Algebraic Development Techniques, 16th International Workshop, WADT 2002,
Frauenchiemsee, Germany, 2002, Revised Selected Papers, LNCS 2755. Springer,
2003.

Robert Atkey. A calculus for resource relationships. In SPACE 2004: Second work-
shop on Semantics, Program Analysis, and Computing Environments for Memory
Management, Venice, 2004.

Lennart Augustsson. Cayenne — a language with dependent types. In ICFP ’98:
Proceedings of the Third ACM SIGPLAN International Conference on Functional
Programming, pages 239-250. ACM Press, 1998.

32

[BCOO4]

[BDGT03]

[BDGKO03a]

[BDGKO3b)

[Ber03]

[BG00]

[BGHP03]

[BM97]

[BMS03]

[Bre9s]

[Cal03]

IST-2001-33149 (MRG) 23rd February 2004

Richard Bornat, Cristiano Calcagno, and Peter O’Hearn. Local reasoning, separation
and aliasing. In SPACE 2004: Second workshop on Semantics, Program Analysis,
and Computing Environments for Memory Management, Venice, 2004.

L. Brodo, P. Degano, S. Gilmore, J. Hillston, and C. Priami. Performance evaluation
for global computation. In C. Priami, editor, Global Computing: Programming envi-
ronments, languages, security, and analysis of systems. Proceedings of the IST/FET
International Workshop (GC 2003), volume 2874 of LNCS, pages 229-253, Rovereto,
Italy, February 2003. Springer-Verlag.

J.T. Bradley, N.J. Dingle, S.T. Gilmore, and W.J. Knottenbelt. Derivation of
passage-time densities in PEPA models using IPC: The Imperial PEPA Compiler. In
G Kotsis, editor, Proceedings of the 11th IEEE/ACM International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunications Systems,
pages 344-351, University of Central Florida, October 2003. IEEE Computer Society
Press.

J.T. Bradley, N.J. Dingle, S.T. Gilmore, and W.J. Knottenbelt. Extracting passage
times from PEPA models with the HYDRA tool: A case study. In S. Jarvis, editor,

Proceedings of the Nineteenth annual UK Performance Engineering Workshop, pages
79-90, Warwick, July 2003.

Lennart Beringer. A programming language based analysis of operand forwarding. In
Proceedings of the 12th Advanced Research Working Conference on Correct Hardware
Design and Verification Methods (CHARME’03), number 2860 in LNCS, L’Aquila,
2003. Springer-Verlag.

Greg Bollella, James Gosling, et al. The Real-Time Specification for Java. Addison-
Wesley, 2000.

L. Brodo, S. Gilmore, J. Hillston, and C. Priami. Mapping coloured stochastic Petri
nets to stochastic process algebras. In P. Kemper, editor, On-site proceedings of the
ICALP Workshop on Stochastic Petri Nets and Related Formalisms, pages 4766,
Eindhoven, Holland, 2003. University of Dortmund Research Report number 780.

G. Belle and E. Moggi. Type intermediate languages for shape-analysis. In Typed
Lambda Calculi and Applications: Proceedings of the Third International Confer-
ence TLCA ’97, number 1210 in Lecture Notes in Computer Science, pages 11-29.
Springer-Verlag, April 1997.

Lennart Beringer, Kenneth MacKenzie, and lan Stark. Grail: a functional form for
imperative mobile code. In Foundations of Global Computing: Proceedings of the
2nd FATCS Workshop, number 85.1 in Electronic Notes in Theoretical Computer
Science. Elsevier, June 2003.

Gordon Brebner. Circlets: Circuits as applets. In IEEE Symposium on FPGAs for
Custom Computing Machines, April 1998. Napa Valley, California.

Cristiano Calcagno. A low complexity fragment of separation logic. First APPSEM-II
Workshop, Nottingham, UK, March 2003.

IST-2001-33149 (MRG) 23rd February 2004 33

[CGGT99]

[CGH*03]

[CGH*04]

[CWO00]

[GHKRO3]

[GHKRO04]

[Gil04]

[GKO3]

[GPO1]

[HamO04]

[HES]

[HHP93]

[HJO03]

K. Crary, N. Glew, D. Grossman, R. Samuels, F. Smith, D. Walker, S. Weirich,
and S. Zdancewic. TALx86: A realistic typed assembly language. In 1999 ACM
SIGPLAN Workshop on Compiler Support for System Software Atlanta, GA, USA,
pages 25-35, May 1999.

C. Canevet, S. Gilmore, J. Hillston, M. Prowse, and P. Stevens. Performance mod-
elling with UML and stochastic process algebras. IEE Proceedings: Computers and
Digital Techniques, 150(2):107-120, March 2003.

C. Canevet, S. Gilmore, J. Hillston, L. Kloul, and P. Stevens. Analysing UML 2.0
activity diagrams in the software performance engineering process. In Proceedings

of the Fourth International Workshop on Software and Performance, pages 74-78,
Redwood Shores, California, USA, January 2004. ACM Press.

K. Crary and S. Weirich. Resource bound certification. In Proc. 27th Symp. Principles
of Prog. Lang. (POPL), pages 184-198. ACM, 2000.

S. Gilmore, J. Hillston, L. Kloul, and M. Ribaudo. PEPA nets: A structured perfor-
mance modelling formalism. Performance FEvaluation, 54:79-104, 2003.

S. Gilmore, J. Hillston, L. Kloul, and M. Ribaudo. Software performance modelling
using PEPA nets. In Proceedings of the Fourth International Workshop on Software
and Performance, pages 13-24, Redwood Shores, California, USA, January 2004.
ACM Press.

S. Gilmore. Extending camelot with mutable state and concurrency. In Proceedings of
the International Conference on Computational Science (1CCS’04), LNCS, Krakéw,
Poland, June 2004. Springer-Verlag.

S. Gilmore and L. Kloul. A unified tool for performance modelling and predicition.
In Proceedings of the 22nd International Conference on Computer Safety, Reliability
and Security (SAFECOMP’03), number 2788 in LNCS, pages 179-192, Edinburgh,
Scotland, September 2003. Springer-Verlag.

Stephen Gilmore and Marco Palomino. BabylonLite: Improvements to a Java-based
distributed object system. In Proc. 4th CaberNet Plenary Workshop, Pisa, 2001.

Kevin Hammond, coordinator. EmBounded: Automatic prediction of resource
bounds for embedded systems. FET Open STREP project proposal, January 2004.

Martin Hofmann, Martin Escardo, and Thomas Streicher. On the non-sequential
nature of the interval-domain model of exact real-number computation. Mathematical
Structures in Computer Science.

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. JACM,
40(1):143-184, 1993.

Martin Hofmann and Steffen Jost. Static prediction of heap space usage for first-
order functional programs. In Proceedings of the 30th ACM Symposium on Principles
of Programming Languages, New Orleans, 2003.

34

[HKS03]

[HMO3]

[Hof00]

[Hof03]

[HP9Y]

[HS]

[Jos04]

[Kon03]

[LDST03]

[Ler02]

[Ler03]

[LIJBAO3]

[LYYO03]

IST-2001-33149 (MRG) 23rd February 2004

Jo Hannay, Shin-ya Katsumata, and Donald Sannella. Semantic and syntactic ap-
proaches to simulation relations. In Proc. 28th Intl. Symp. on Mathematical Foun-
dations of Computer Science, volume 2747 of Lecture Notes in Computer Science,
pages 68-91. Springer, 2003.

Kevin Hammond and Greg Michaelson. Hume: a domain-specific language for real-
time embedded systems. In Generative Programming and Component Engineering:
Proceedings of GPCE 2003, number 2830 in Lecture Notes in Computer Science,
pages 37-56, September 2003.

Martin Hofmann. A type system for bounded space and functional in-place update.
Nordic Journal of Computing, 7(4):258-289, 2000.

Martin Hofmann. Linear types and non size-increasing polynomial time computation.
Information and Computation, 183:57-85, 2003.

J. Hughes and L. Pareto. Recursion and dynamic data structures in bounded space:
towards embedded ML programming. In Proc. International Conference on Func-
tional Programming (ACM). Paris, September '99., pages 70-81, 1999.

Martin Hofmann and Philip Scott. Realizability models for BLL-like languages.
Theoretical Computer Science.

Steffen Jost. 1fd_infer: an implementation of a static inference on heap space usage.
In Proceedings of Second Workshop on Semantics, Program Analysis and Computing
Environments for Memory Management (SPACE 2004), 2004.

Michal Kone¢ny. Functional in-place update with layered datatype sharing. In Pro-
ceedings of the 6th International Conference on Typed Lambda Calculus and Applica-
tions, number 2701 in Lecture Notes in Computer Science, pages 195-210, Valencia,
2003. Springer-Verlag.

H-W. Loidl, F. Rubio Diez, N.R. Scaife, K. Hammond, U. Klusik, R. Loogen, G.J.
Michaelson, S. Horiguchi, R. Pena Mari, S.M. Priebe, A.J. Rebon Portillo, and P.W.
Trinder. Comparing parallel functional languages: Programming and performance.
Higher-Order and Symbolic Computation, 16(3):203-251, 2003.

Xavier Leroy. Bytecode verification for Java smart card. Software Practice € Expe-
rience, 32:319-340, 2002.

Xavier Leroy. Java bytecode verification: Algorithms and formalizations. Journal of
Automated Reasoning, 30(3-4):235-269, 2003.

Chin Soon Lee, Neil D. Jones, and Amir Ben-Amram. The size-change principle for
program termination. In Proceedings of the 28th ACM Symposium on Principles of
Programming Languages, London, 2003.

Oukseh Lee, Hongseok Yang, and Kwangkeun Yi. Inserting safe memory reuse com-
mands into ML-like programs. In Proceedings of the 10th Annual International Static
Analysis Symposium, number 2694 in Lecture Notes in Computer Science, pages 171—
188. Springer-Verlag, 2003.

IST-2001-33149 (MRG) 23rd February 2004 35

[MAO3]

[MHS04]

[MHSTO03]

[Mil78]

[MP03a

[MPO3b)]

[MT03]

[MWO4]

[MWCG99]

[Nec97]

[ORS92]

[OYRO04]

[Pau94]

[PS91]

Alberto Momigliano and Simon Ambler. Multi-level meta-reasoning with higher
order abstract syntax. In Proc. 6th Intl. Conf. on Foundations of Software Science
and Computation Structures, Warsaw, 2003.

Greg Michaelson, Kevin Hammond, and Jocelyn Serot. FSM-Hume: Programming
resource-limited systems using bounded automata. In SAC 2004: Proceedings of the
19th Annual ACM Symposium on Applied Computing. ACM Press, 2004. To appear.

Till Mossakowski, Anne Haxthausen, Donald Sannella, and Andrzej Tarlecki.
CASL—the common algebraic specification language: Semantics and proof theory.
Computing and Informatics, 22:285-321, 2003.

Robin Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences, 17:348-375, August 1978.

Alberto Momigliano and Frank Pfenning. Higher-order pattern complement and the
strict lambda-calculus. Transactions on Computational Logic, 4(4):493-529, 2003.

Alberto Momigliano and Jeff Polakow. A formalization of an ordered logical frame-
work in hybrid with applications to continuation machines. In Proc. MERLIN 2003,
2003.

Alberto Momigliano and Alwen Tiu. Induction and co-induction in sequent calculus.
In Post-Proceedings of TYPES workshop, 2003.

Kenneth MacKenzie and Nicholas Wolverson. Camelot and Grail: resource-aware
functional programming for the JVM. In Trends in Functional Programming, 2004.
To appear.

G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typed assembly
language. ACM Transactions on Programming Languages and Systems,, 21(3):528—
569, May 1999.

George Necula. Proof-carrying code. In Proceedings of the ACM Symposium on
Principles of Programming Languages, 1997.

S. Owre, J. Rushby, and N. Shankar. PVS: a prototype verification system. In Proc.
11th Intl. Conf. on Automated Deduction, Springer LNCS vol. 607, pages 748-752,
1992.

Peter W. O’Hearn, Hongseok Yang, and John C. Reynolds. Separation and informa-
tion hiding. In POPL 2004: Conference Record of the 31st Annual ACM Symposium
on Principles of Programming Languages. ACM Press, 2004.

Lawrence C. Paulson. Isabelle — A Generic Theorem Prover. Lecture Notes in
Computer Science 828. Springer-Verlag, 1994.

Jens Palsberg and Michael Schwartzbach. Object-oriented type inference. In Proc.
ACM Conference on Object-Oriented Programming Systems, Languages, and Appli-
cations (OOPSLA), pages 246-161, 1991.

36

[PSS98]

[PWO97]

[Rey78]

[Rey02]

[RTLO3]

[RTLOA4]

[SA99]

[Sec]

[Siv04]

[SSBO3]

[TJ92]

[VHO4]

[WMO4]

[XHO1]

IST-2001-33149 (MRG) 23rd February 2004

Amir Pnueli, Michael Siegel, and Eli Singerman. Translation validation. In Proc. of
the 4th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’98), LNCS 1384, pages 151-166, 1998.

Jens Palsberg, Mitchell Wand, and Patrick O’Keefe. Type inference with non-
structural subtyping. Formal Aspects of Computing, 9:49-67, 1997.

J. C. Reynolds. Syntactic control of interference. In Proc. Fifth ACM Symp. on
Princ. of Prog. Lang. (POPL), 1978.

John Reynolds. Separation logic: A logic for shared mutable data structures. In
LICS 2002: Proceedings of the Seventeenth Annual IEEE Symposium on Logic in
Computer Science, pages 5574, 2002.

Andre Rauber Du Bois, Phil Trinder, and Hans-Wolfgang Loidl. Mobile computa-
tion in haskell. In Proc. 12th Intl. Workshop on Functional and (Constraint) Logic
Programming, Valencia, 2003.

A. Rauber Du Bois, P.W. Trinder, and H-W. Loidl. Implementing mobile Haskell.
In Trends in Functional Programming, 2004. To appear.

Raymie Stata and Martin Abadi. A type system for Java bytecode subroutines.
In ACM Transactions on Programming Languages and Systems 21, volume 21(1),
January 1999.

SecSafe. Secure and safe systems based on program analysis. IST Project 1999-29075.
http://www.doc.ic.ac.uk/"siveroni/secsafe/.

Igor Siveroni. Formalisation of the operational semantics of the Java Card virtual
machine. Journal of Logic and Algebraic Programming, 58(1-2):3-25, January 2004.

Nik Shaylor, Douglas N. Simon, and William R. Bush. A Java virtual machine
architecture for very small devices. In Language, Compiler, and Tool Support for
Embedded Systems: Proceedings of LCTES ’03, number 38(7) in ACM SIGPLAN
Notices, pages 31-41, July 2003.

Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline. In Seventh
Annual IEEE Symposium on Logic in Computer Science, Santa Cruz, California,
pages 162-173, Los Alamitos, California, 1992. IEEE Computer Society Press.

Pedro Vasconcelos and Kevin Hammond. Inferring costs for recursive, polymorphic
and higher-order functional programs. In IFL 2003: Proceedings of the 15th Inter-
national Workshop on the Implementation of Functional Languages, Lecture Notes
in Computer Science. Springer-Verlag, 2004. To appear.

Nicholas Wolverson and Kenneth MacKenzie. O’Camelot: Adding objects to a re-
source aware functional language. In Trends in Functional Programming, 2004. To
appear.

Hongwei Xi and Robert Harper. A dependently typed assembly language. In Proc. 6th
ACM SIGPLAN Intl. Conf. on Functional Programming, pages 169—180, Florence,
September 2001.

IST-2001-33149 (MRG) 23rd February 2004 37

[XP99] Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In
Proceedings of the 26th ACM SIGPLAN Symposium on Principles of Programming
Languages, pages 214—227, San Antonio, January 1999.

A Financial summary

UEDIN LMUMUN TOTAL

Year 2 Total | Year 2 Total || Year 2 Total
Personnel, estimated 174128 | 341561 || 114156 | 223934 || 288284 | 565495
Personnel, actual 131319 | 196518 || 119146 | 216649 || 250465 | 413167
Durable equipment, estimated 0| 12495 0 7990 0| 20485
Durable equipment, actual 4248 5782 2096 | 10090 6343 | 15872
Subcontracting, estimated 0 0 0 0 0 0
Subcontracting, actual 0 0 0 0 0 0
Travel and subsistence, estimated 17080 | 32160 9720 | 22440 26800 | 54580
Travel and subsistence, actual 13807 | 23011 11150 | 13338 24957 | 36349
Consumables, estimated 1130 2260 1110 2219 2240 4479
Consumables, actual 1868 3070 0 0 1868 3070
Computing, estimated 6107 | 12214 4500 9000 10607 | 21214
Computing, actual 4950 4950 4491 8982 9441 | 13932
Protection of knowledge, estimated 0 0 0 0 0 0
Protection of knowledge, actual 0 0 0 0 0 0
Other specific costs, estimated 2400 | 15380 4260 5460 6660 | 20840
Other specific costs, actual 0 559 0 0 0 559
Subtotal, estimated 200845 | 416070 || 133746 | 271043 || 334591 | 687113
Subtotal, actual 156193 | 233890 || 136883 | 249059 || 293076 | 482949
Overheads, estimated 40169 | 83214 || 26749 | 54208 66918 | 137422
Overheads, actual 31239 | 46779 27377 | 49812 58615 | 96591
Total, estimated 241014 | 499284 | 160495 | 325251 || 401509 | 824535
Total, actual 187431 | 280669 || 168146 | 298870 | 371107 | 579539

