CS3 Database Systems

Assignment 2. Due 4pm Monday, 8 November, 2010

Submission instructions. Prepare a folder with the following files:

e An answers file in pdf format — call it answers.pdf
e For each program you write, a file a file containing that program.
e For each program you write, a file containing the output of that program.

e Files containing any input data you used.

All data and program files should be references in answers. pdf
Submit hour homework no later than 4pm on Monday 8 November
To submit your homework, use submit cs3 dbs 2 myfolder, where myfolder is the name of your folder.

In doing the SQL homework, please (a) write your queries as clearly as possible (use intermediate tables
or views) (b) comment your queries, and (c) make sure your programs can be easily run and checked.

Please note that, when you starting to work with databases, it is a very bad idea to create a database by
doing manual inserts. Instead, write scripts to do this and keep the scripts. That way, if you have some
kind of disaster you can easily rebuild the database.

1. [40 points|(Scottish History) The SQL script on the course web site is a partial and slightly doctored
list of Scottish monarchs. It consists of a single table of the following form:

name start | stop
Aed 877 878
Alexander I 1107 | 1124

Alexander 11 1214 | 1249
Alexander III 1249 | 1286
Constantine I 862 | 877
Constantine IT | 900 943
Constantine III | 995 | 997
Culen 966 | 971

Use SQL to answer the following queries. For complex queries define intermediate tables (views)
if needed and describe what those views represent. Hand in both the queries and the output they
generate.

(a) A list of all the monarchs who reigned before the year 1000.
Answer:

SELECT name
FROM monarchs
WHERE start < 1000;

(b) A list which gives pairs of monarchs consisting of a monarch and their immediate successor — if one
exists. Note: a immediately succeeds b if a reigned after b and no other monarch reigned between
a and b.

Answer:

SELECT ml.name, m2.name

FROM monarchs ml, monarchs m2

WHERE m1.start = m2.start AND

NOT EXISTS (SELECT * FROM monarchs m3
WHERE m1.start < m3.start AND
m3.start < m2.start);

Note: the answer to this and some other questions would be complicated if there were monarchs
who reigned for less than a year. These answers assume there isn't, but maybe bonus points should
be given to people who attempt to deal with this situation.

(c) The name(s) of the monarch(s) with the longest reign(s).
Answer:

SELECT ml.name, ml.stop - ml.start AS duration
FROM monarchs m1
WHERE m1.stop - ml.start >= ALL (SELECT stop - start FROM monarchs);

Note: duration is not required.

(d) The average duration of the reigns of all monarchs.

Answer:
SELECT AVG(stop - start) AS duration FROM monarchs;

(e) A list of the interregna. An interregnum is a period between two monarchs for which there was no
monarch. Give the start and stop dates.

Answer:

SELECT m1l.stop as start, m2.start as stop

FROM monarchs ml, monarchs m2

WHERE ml.stop < m2.start

AND NOT EXISTS (SELECT * FROM monarchs m3
WHERE m1l.stop j= m3.start AND
m3.start < m2.start);

Notes: “/" in SQL (or at least psql) does integer division. ORDER BY is not needed, but nice

(f) A list of the centuries in which there was a reigning monarch together with the average duration of
the reigns of those monarchs whose reigns ended in that century. (Use the starting year, e.g. 1100,
to describe the centuries.)

Answer:
SELECT 100 *(stop / 100) as century, AVG(stop-start)
FROM monarchs

GROUP BY stop / 100
ORDER BY century;

Notes: “/" in SQL (or at least psql) does integer division. ORDER BY is not needed, but nice

2. [60 points] An interesting way of representing XML in a relational database is to record, for each
node, the start position and the end position. Consider, for example, the XML document

(db) (person) (name) joe (/name) (tel) 1234 (/tel) (/person) (cat) (name) kitty (/name) (/cat) (/db)
i 2 3 1 5 6 7 3 9 10 11 2 13 14 5

Here each tag and each text string has been annotated by its position in the document.

Elements = start | stop | tag TextNodes = pos
10 14 | cat
3 5 | name
1 13 | db
2 9 | person
6 8 | tel
11 13 | name

The XML document can be described by two tables: one for elements which has the positions of its
start and stop tags and its tag name; and one for character data that has the positions of the text
nodes. Note that the start position is a key for the elements table and the position is a key for the

text nodes table.

In this question we’ll only consider XML with text and element nodes (no attributes). Moreover we’ll
assume that there is no mixed content.

(a) Write a program in your favourite programming language that uses a SAX parser to construct
the database. On the course Web site there is an Python example of using a sax parser to
traverse an XML document to obtain the relevant information. There is also information on
how to call SQL from Python. In this and subsequent questions your program should not require
main memory storage of the document. All your programs should be capable of working on huge
documents by building a large database.

Answer: Here is my code. I made slight modifications to the SAX example given out. The func-
tion createtables creates the tables, and populates them by calling the SAX parser. Sample
output in exhibit 2a at end of this answer sheet.

import psycopg?2
import xml.sax

This is a modification of the code given out to use SAX to populate
an e(lement) table and a c(haracter) table over a cursor, cur, that
are passed in as parameters to the constructor
class TableFiller(xml.sax.handler.ContentHandler):
def __init__(self,cursor,etable,ctable):
self .nodecount = 0 #The serial number of the tag or text node
self.buffer = "" #For collecting character strings
self.stack = [] #The stack "remembers" the matching start tag.
self.cursor = cursor
self.etable = etable
self.ctable ctable

def startElement(self,nme,att):
self.stack.append((self.nodecount,nme))
self .nodecount=self.nodecount+1

def endElement(self,nme):
(tcount,tnme)=self.stack.pop()
if tnme <> nme: print "non-well-formed document"
ss = self.buffer.strip()
if len(ss) <> 0:
cur.execute ("INSERT INTO "+ self.ctable + " (pos, pcdata) " +
"VALUES (%s,%s);", (self .nodecount,ss))
self .nodecount=self.nodecount +1
self.buffer=""
cur.execute("INSERT INTO "+ self.etable + " (start, stop, tag) " +
"VALUES (%s,%s,%s);", (tcount, self.nodecount, nme))
self .nodecount=self.nodecount+1
def characters(self,data):
self.buffer = self.buffer+data

This function reads an XML file and creates the named tables
using the cursor c.

def createtables(c,xmlfile, etable, ctable):
#create the tables
c.execute("CREATE TABLE " + etable + " (start INT, stop INT, tag TEXT);")
c.execute("CREATE TABLE " + ctable + " (pos INT, pcdata TEXT);")
#make a parser and handler
parser=xml .sax.make_parser ()
parser.setContentHandler(TableFiller(c,etable,ctable))
and run it over the file
parser.parse(xmlfile)

Now test it
conn = psycopg2.connect ("dbname=peter")

cur = conn.cursor()
createtables(cur,"emps.xml","Elements", "TextNodes")
conn.commit ()

cur.close()

conn.close()

(b) Write a program — something like descendants(c,t) where ¢ is a positions and ¢ is a tag name
that generates an SQL query to generate the result of the XPATH expression .//t applied at
the context node c. All the computation should be done in SQL.

Answer:

import psycopg?2

I’ve parametrised my getdescendants function with the cursor,

the name of the element table, the context node and the tag name.

The function returns a python list of the positions of the XPATH result
If there were ever a possibility that the XPATH result would be huge, it
should be changed to return a Python generator.

def getdescendants(c, etable, context, tag):
Set up the query. We do this in two stages: we first use Python string
manipulation to "plug in" in the relevant table names. Then we use
psycopg2 conventions (%%s) for adding in the remaining fields.
query ="""
SELECT e2.start
FROM %s as el, %s as e2
WHERE e2.tag = %ks AND el.start = %%s
AND el.start < e2. start and e2.stop < el.stop;
nnny(etable,etable,)
print query # in case you want to see it
c.execute(query, (tag,context))
result = []
while True:
t = c.fetchone()
if t == None: break
result.append(t[0])
return result

#Now test the whole thing with .//tel applied at context node 1

conn = psycopg?2.connect ("dbname=peter")

cur = conn.cursor()

print getdescendants(cur,"Elements", 1, "tel")
cur.close()

conn.close()

This produced the output [5, 12, 26]

(c) Write a program — something like children(c,t) where ¢ is a position and ¢ is a tag name that
generates an SQL query to generate the result of the XPATH expression ./t applied at the
context node c. (Note: this is harder than the previous question)

Answer:

import psycopg?2

To make this understandable, here is the '"generic" SQL query that returns
the children with tag TAG of the context node CONTEXT defined by its start
position in table ELEMENTS. All we do is find the elements that are "inside"
the context node, but are not inside an element that is inside the context
node

#

SELECT e2.start

FROM ELEMENTS as el, ELEMENTS as e2

WHERE e2.tag = TAG AND el.start = CONTEXT

AND el.start < e2. start and e2.stop < el.stop

AND NOT EXISTS (SELECT * FROM ELEMENTS as e3

WHERE el.start < e3.start AND e3.start < e2.START

AND e2.stop <e3.stop and e3.stop <e 1.stop);

Parameterisation works as in the previous question

def getchildren(c, etable, context, tag):
Set up the query as before
query ="""
SELECT e2.start
FROM Y%s as el, %s as e2
WHERE e2.tag = Y%s AND el.start = %is
AND el.start < e2. start and e2.stop < el.stop
AND NOT EXISTS (SELECT * FROM %s as e3
WHERE el.start < e3.start AND e3.start < e2.START
AND e2.stop <e3.stop and e3.stop <el.stop);
nnny(etable,etable,etable)
print query # in case you want to see it
c.execute(query, (tag,context))
result = []
while True:
t = c.fetchone()
if t == None: break
result.append(t[0])
return result

#Now test the whole thing with .//tel applied at context node 1

conn = psycopg2.connect ("dbname=peter")

cur = conn.cursor()

print getchildren(cur,"Elements", 1, "tel")
cur.close()

conn.close()

This produced the result [5]

(d) Write an SQL query to check whether a pair of such tables is consistent with some XML
document. I.e., the tables are “well-formed”. You should assume that the node positions are

ordered but it is not necessary to assume that adjacent positions are consecutively numbered.

E.g. <cgt> <na1r1ne> k|1t2ty (/n&me) </§§t> is an acceptable numbering. The SQL query should return

a table containing 1 if the tables are consistent with XML and 0 otherwise.

Answer: To do this we need to check that the elements table is properly nested — there are no
tuples t1,t2 such that tl[start] j t2[start] and t1[stop] , t2[stop]. We also want to check that
there are no text nodes whose pos is between adjacent start nodes or between adjacent stop
nodes.

The requirement of this question — to produce a SQL table containing 1 for well-formed and 0
otherwise is annoying (sorry about that!) Obviously what is wanted is a return in Python (or
the host language) of True or False.

Here is a SQL query that produces a non-empty result if the ELEMENTS table fails to obey
the nested tags rule:

SELECT DISTINCT 0 AS flag
FROM ELEMENTS el, ELEMENTS e2
WHERE el.start < e2.start AND e2.stop < e2.stop

And here is a query on the TEXTNODES and ELEMENTS tables to check that every text
node is enclosed in an element and that element (no mixed content) does not contain any other
element

SELECT DISTINCT 0 AS flag

FROM TEXTNODES t1

WHERE NOT EXISTS (SELECT * FROM ELEMENTS el //There must be a surrounding element
WHERE el.start < tl.pos AND tl.pos < el.stop
AND NOT EXISTS (SELECT * FROM ELEMENTS e2
WHERE el.start < e2.start and e2.stop < el.stop))

Similarly for stop tags. Finally (and apologies again for this needless step), suppose T is a table
with a flag column that contains either a 1 or is empty. Postgres allows one to construct a table
with a single 1 by SELECT 1 AS flag; So to get the desired answer: SELECT MIN flag FROM
(SELECT 1 AS flag UNION T)

The code is shown in exhibit 2 with tests.

(e) Write a function — something like delete(s) to delete a set of nodes from the database. The set s
is a set of positions, and the function should have the effect of deleting the node at each position
in s from the document tree together will all its descendants. To do this construct a temporary
table containing the positions in s.

Answer: Suppose the nodes to be deleted are in single column (id) table deletetable. Then the
following code will delete those nodes (if they exist) and any node contained in them.

— Deletes any text node contained in an element whose position is in deletetable
DELETE FROM TEXTNODES t WHERE t.pos IN
(SELECT tl.pos FROM TEXTNODES t1, deletetable d, ELEMENTS e
WHERE tl.pos = d.id OR (e.start = d.id AND e.start < tl.pos AND tl.pos < e.stop));

— Deletes any element contained in an element whose position is in deletetable

DELETE FROM ELEMENTS e where e.start IN

(SELECT e2.start FROM deletetable d, ELEMENTS el, ELEMENTS e2
WHERE el.start = d.id AND e2.start >= el.start AND e2.stop <= el.stop);

The only issue is creating the the table of nodes to be deleted. It is best to do it in one go rather
than repeatedly calling an SQL query for each member of a python list as this is very expensive.

Exhibit 2e shows the code for this and sample output.

(f) Write a function — something like generateXML(e, ¢, f) that generates an XML document from a
well-formed database consisting of an elements table e and a text nodes table ¢ and writes it into
a file f. The function should be capable of working on very large databases. Hint: use SQL’s
ORDER-BY. Demonstrate your function by reading in some XML, deleting a set of nodes with
a given tag name, and writing the XML back to a file.

Answer: Both the SQL code and the Python code are simple. Here is the SQL code:

(SELECT start AS id, 'start’ AS type, tag AS value FROM Elements
UNION
SELECT stop AS id, 'stop’ AS type, tag AS value FROM Elements
UNION
SELECT pos AS id, 'text” AS type, pcdata AS valueb FROM TextNodes)
ORDER by id;

The output of such a query looks like:

id | type | value
_____ S

0 | start | db
1 | start | department
2 | start | dname
3 | text | manufacturing
4 | stop | dname
5 | start | tel
6 | text | 1432
7 | stop | tel

The Python code uses a cursor to scan the output and write the appropriate tags and text
to a file. Note that this program can work on very large XML representations. All the space
management is in the database, not in the Python code.

The code to read in some XML (question 2a), delete some nodes (question 2e) and write the
XML back to a file is shown in exhibit 2f.

10

Exhibit 2a

select * from Elements;

start | stop | tag
_______ o
2 | 4 | dname
5 | 7 | tel
9 | 11 | name
12 | 14 | tel
15 | 17 | sal
18 | 20 | project
8 | 21 | employee
23 | 25 | name
26 | 28 | tel
29 | 31| sal
32 | 34 | project
35 | 37 | project
22 | 38 | employee
40 | 42 | name
43 | 45 | sal
46 | 48 | project
39 | 49 | employee
1| 50 | department

select * from TextNodes;

pos | pcdata
_____ o

3 | manufacturing

6 | 1432

10 | Jane Dee

13 | 6734

16 | 50

19 | Methods and Standards

24 | Mary Smith

27 | 1432

30 | 45

33 | Data Mining

36 | Systems Development

41 | John Brown

44 | 25

47 | Logistics

53 | sales

56 | 3221

60 | Fred Beans

63 | 3221

66 | 32

Exhibit 2d
The code:

import psycopg?2

def wellformed(c, etable, ttable): #cursor, elements and text nodes
query =nun

SELECT MIN(TEMP.flag) FROM

(SELECT 1 as flag

UNION

SELECT DISTINCT O AS flag
FROM %s el, %s e2
WHERE el.start < e2.start AND e2.stop < e2.stop

UNION

SELECT DISTINCT O AS flag
FROM %s t1
WHERE NOT EXISTS (SELECT * FROM %s el
WHERE el.start < tl.pos AND tl.pos < el.stop
AND NOT EXISTS (SELECT * FROM %s e2
WHERE el.start < e2.start and e2.stop < el.stop))
) AS TEMP;
nnny(etable,etable,ttable,etable,etable)
print query # in case you want to see it
c.execute(query)

result = []
t = c.fetchall()
print t

return t[0] [0]== 1

12

Exibit 2d — Some tests

The following tests show the contents of the result table and the (more sensible)
python return value

conn = psycopg2.connect ("dbname=peter")

cur = conn.cursor()

print "Test 1 -- on the employees/departments data given with the homework."
print wellformed(cur, "Elements", "TextNodes")
print

print "Create empty element and text node test tables"
cur.execute ("""

CREATE TABLE els(start int, stop int, tag text);
CREATE TABLE txts (pos int, pcdata text);""")

print

print "Test 2 -- on empty element and text tables -- should be well-formed"
print wellformed(cur,"els","txts")
print

print "Test 3 -- insert a text node (5, ’Some text’) (no surrounding element)"
cur.execute ("INSERT INTO txts VALUES(%s,%s)",(5,"Some text"))

print wellformed(cur,"els","txts")

print

print "Test 4 -- now insert a surrounding element (O, 10,’tagl’) "
cur.execute ("INSERT INTO els VALUES(%s,%s,%s)",(0, 10,"tagl"))
print wellformed(cur,"els","txts")

print

print "Test 6 -- now insert an element (1, 3, ’tag2’) that creates mixed content"
cur.execute ("INSERT INTO els VALUES(%s,%s,%s)",(1, 3,"tag2"))

print wellformed(cur,"els","txts")

print

cur.close()
conn.close()

Exhibit 2d — output from these tests

>>> Test 1 -- on the employees/departments data given with the homework.
[(1,)]

True
Create empty element and text node test tables
Test 2 -- on empty element and text tables -- should be well-formed

[(1,)]

True

13

Test 3 -- insert a text node (5, ’Some text’) (no surrounding element)

£€0,)]

False

Test 4 -- now insert a surrounding element (0, 10,’tagl’)
[(1,)0]

True

Test 6 -- now insert an element (1, 3, ’tag2’) that creates mixed content
[(0,)]
False

14

Exhibit 2e — code

import psycopg2

#1 is a python list of nodes to be deleted.
def deletenodes(c, etable, ttable, 1):
#First construct the SQL command to insert 1 into deletetable
if 1 == []: delstring = ""
else:
delstring = "(" + str(1[0]) + ")"
for x in 1[1:]: delstring = delstring + ", (" + str(x) + ")"
Set up the query as before

query —nun
CREATE TABLE deletetable(id int);
INSERT INTO deletetable VALUES %s; -- Python should construct this in one shot

—-- Deletes any text node contained in an element whose position is in deletetable
DELETE FROM %s t WHERE t.pos IN

(SELECT t1.pos FROM %s tl1, deletetable d, %s e

WHERE tl.pos = d.id OR (e.start = d.id AND e.start < tl.pos AND tl.pos < e.stop));

—-- Deletes any element contained in an element whose position is in deletetable
DELETE FROM %s e where e.start IN

(SELECT e2.start FROM deletetable d, %s el, %s e2

WHERE el.start = d.id AND e2.start >= el.start AND e2.stop <= el.stop);

DROP TABLE deletetable;

nnny (delstring,ttable,ttable,etable,etable,etable,etable)
print query # in case you want to see it
c.execute(query)

Test

conn = psycopg2.connect ("dbname=peter")

cur = conn.cursor()

deletenodes(cur, "Elements", "TextNodes", [51, 5, 150, 108])
conn.commit ()

cur.close()

conn.close()

15

Exhibit 2e — results from class data after deletion

peter=> select * from elements;

start | stop | tag
_______ o
2 | 4 | dname
9 | 11 | name
12 | 14 | tel
15 | 17 | sal
18 | 20 | project
8 | 21 | employee
23 | 25 | name
26 | 28 | tel
29 | 31| sal
32 | 34 | project
35 | 37 | project
22 | 38 | employee
40 | 42 | name
43 | 45 | sal
46 | 48 | project
39 | 49 | employee
1| 50 | department
88 | 90 | dname
91 | 93 | tel
95 | 97 | name
98 | 100 | tel
101 | 103 | tel
104 | 106 | sal
107 | 109 | project
110 | 112 | project
94 | 113 | employee
115 | 117 | name
118 | 120 | tel
121 | 123 | sal
124 | 126 | project
114 | 127 | employee
87 | 128 | department
01| 129 | db
(33 rows)

16

Exhibit 2f — the program

def genXML(c, file, etable, ttable):
Set up the query as before
query ="""
(SELECT start AS id, ’start’ AS type, tag AS value FROM Y%s
UNION
select stop AS id, ’stop’ AS type, tag AS value FROM %s
UNION
select pos AS id, ’text’ AS type, pcdata AS valueb FROM %s)
ORDER by id;
nnny (etable,etable,ttable)
print query # in case you want to see it
outs = open(file, ’w’)
c.execute(query)
while True: #Now iterate through the result
s = c.fetchone()

if s == None: break

(id,type,val) = s

if type == "start": outs.write("<"+val+">")
elif type == "stop": outs.write("</"+val+">")
else: outs.write(" " + val + " ")

outs.close()

conn = psycopg?2.connect ("dbname=peter")

cur = conn.cursor()

createtables(cur,"emps.xml","Elements", "TextNodes") #question 2a
deletenodes(cur, "Elements", "TextNodes", [61, 5, 150, 108]) #question 2e

genXML(cur,"test.xml","Elements", "TextNodes")
cur.close()
conn.close()

Exhibit 2e — the generated XML file
(I passed the output file through xmllint to format it nicely)

<db>
<department>
<dname> manufacturing </dname>
<employee>
<name> Jane Dee </name>
<tel> 6734 </tel>
<sal> 50 </sal>
<project> Methods and Standards </project>
</employee>
<employee>

<name> Mary Smith </name>

<tel> 1432 </tel>

<sal> 45 </sal>

<project> Data Mining </project>

17

<project> Systems Development </project>
</employee>
<employee>
<name> John Brown </name>
<sal> 25 </sal>
<project> Logistics </project>
</employee>
</department>
<department>
<dname> research </dname>
<tel> 7776 </tel>
<employee>
<name> Sara Lee </name>
<tel> 5554 </tel>
<tel> 3221 </tel>
<sal> 32 </sal>
<project/>
<project> Data Mining </project>
</employee>
<employee>
<name> Jim Bean </name>
<tel> 1223 </tel>
<sal> 25 </sal>
<project> Methods and Standards </project>
</employee>
</department>
</db>

18

