
CS3 Database Systems
Handout 1

Introduction and XML

Peter Buneman

21 Sept, 2010

Administrative Stuff
Time & Place: Tuesdays 11:10am-1pm DHT Fac Room South *

Web site: http://homepages.inf.ed.ac.uk/opb/dbs

Instructors: Peter Buneman (opb at inf.ed.ac.uk)

Office 5.15 Informatics Forum

Office hours: Wednesdays 1:00 - noon*

Text: Database Management Systems Raghu Ramakrishnan and Johannes Gehrke,

McGraw Hill. Currently available from Amazon at £30-40 and maybe less

from other places

* Subject to change. Please consult the web site.

DBS 1.1

Other texts

• Jeffrey D. Ullman and Jennifer Widom, A First Course in Database Systems, Prentice

Hall, 2nd Edition.

• Ramez A. Elmasri and Shamkant B. Navathe Fundamentals of Database Systems,

Addison-Wesley, 3rd edition.

• Serge Abiteboul, Richard Hull and Victor Vianu Foundations of Databases. Addison-

Wesley 1995. For theory heavyweights.

DBS 1.2

Databases at Edinburgh

• e-Science centre

• Digital Curation Centre

• Strongest DB research group in the Europe

• New DB courses:

– Applied Databases

– Advanced Databases

– Querying and Storing XML

– Distributed Databases

– Data Integration and Exchange

• Scottish Database Group email list (seminars)

DBS 1.3

Important notes

• Please check the web site first!

• There are no tutorials for this course, but I will be available during office hours and will be

happy to review material and discuss homeworks. So will the demonstrtator/assistant.

• The homeworks will contain questions like those on the exam. Do them!

• The exam has a simple “answer several short questions” format. A sample will be

posted.

DBS 1.4

What you need in order to take this course

• An understanding of the basic mathematical tools that are used in computer science:

basic set theory, graph theory, theory of computation (regular expressions and finite

state automata) and first-order logic.

• The ability to pick up and use almost any programming language. In this course you

may want to use: Java, SQL, XQuery, XSLT, Python, Perl, PHP, etc.

Students who have completed the first two years of the Informatics honours degree

should have acquired these abilities provided they have understood the basic principles of

computation and programming languages.

DBS 1.5

Assessment

• Coursework consists of three assignments for a total of 25%. Each assignment will

consist partly of some short questions (like those on the exam) and partly of project

work that you will develop during the semester. The assignments, their values and due

dates are:

– Assignment 1: basic relational model, data formats relational model, XML, relational

algebra (written answers, 8%); assigned 1 October, due 15 October

– Assignment 2: SQL programming (10%), assigned 21 Octber, due 4 November

– Assignment 3: normalization, optimization query/transaction processing, XML

(written answers, 7%), assigned 18 November, due 2 December.

• Exam (short questions) 75%

Plagiarism will be refereed externally

Late submissions will be penalised

DBS 1.6

What the subject is about

• Organization of data

• Efficient retrieval of data

• Reliable storage of data

• Maintaining consistent data

• Sharing data (concurrency)

• Semistructured data and documents (XML)

Not surprisingly all these topics are related.

DBS 1.7

We won’t start with relational databases ...

We’ll start with XML. Why?

• Because you are familiar with it (or at least with HTML.)

• Because XML query systems are relatively “lightweight”.

• Because it serves as a good introduction for why data organization and efficiency are

needed.

• The “busy work” – computer accounts, learning new systems, etc. is better distributed.

We’ll start, however, with a brief introduction to databases in general.

DBS 1.8

What is a Database?

• A database (DB) is a large, integrated collection of data.

• A DB models a real-world “enterprise” or collection of knowledge/data.

• A database management system (DBMS) is a software package designed to store and

manage databases.

DBS 1.9

Why study databases?

• Everybody needs them, i.e. $$$ (or even £££).

• They are connected to most other areas of computer science:

– programming languages and software engineering (obviously)

– algorithms (obviously)

– logic, discrete math, and theory of comp. (essential for data organization and query

languages).

– “Systems” issues: concurrency, operating systems, file organization and networks.

• There are lots of interesting problems, both in database research and in implementation.

• It is a great area in which systems and theory get combined (relational DBs, transactions,

database design, XML processing, distributed data, Google, . . .)

DBS 1.10

Why not “program” databases when we need them?

For simple and small databases this is often the best solution. Flat files and grep get us a

long way.

We run into problems when

• The structure is complicated (more than a simple table)

• The database gets large

• Many people want to use it simultaneously

DBS 1.11

Example: A personal calendar

Of course, such things are easy to find, but let’s consider designing the “database”

component from scratch. We might start by building a file with the following structure:

What When Who Where

Lunch 24/10 1pm Fred Joe’s Diner
CS123 25/10 9am Dr. Egghead Room 234
Biking 26/10 9am Jane Start at Jane’s
Dinner 26/10 6pm Jane Cafe le Boeuf
...

This text file is an easy structure to deal with (though it would be nice to have some

software for parsing dates etc.) So there’s no need for a DBMS.

DBS 1.12

Problem 1. Data Organization

So far so good. But what about the “who” field? We don’t just want a person’s name, we

want also to keep e-mail addresses, telephone numbers etc. Should we expand the file?

What When Who Who-email Who-tel Where

Lunch 24/10 1pm Fred fred@abc.com 1234 Joe’s Diner
CS123 25/10 9am Egghead eggy@boonies.edu 7862 Room 234
Biking 26/10 9am Jane janew@xyz.org 4532 Start at Jane’s
Dinner 26/10 6pm Jane janew@xyz.org 4532 Cafe le Boeuf
...

But this is unsatisfactory. It appears to be keeping our address book in our calendar and

doing so redundantly.

So maybe we want to link our calendar to our address book. But how?

DBS 1.13

Problem 2. Efficiency

Probably a personal address book would never contain more than a few hundred entries,

but there are things we’d like to do quickly and efficiently – even with our simple file.

Examples:

• “Give me all appointments on 10/28”

• “When am I next meeting Jim?”

We would like to “program” these as quickly as possible.

We would like these programs to be executed efficiently. What would happen if you were

maintaining a “corporate” calendar with hundreds of thousands of entries?

DBS 1.14

Problem 3. Concurrency and Recovery

Suppose other people are allowed access to your calendar and are allowed to modify it?

How do we stop two people changing the file at the same time and leaving it in a physical

(or logical) mess?

Suppose the system crashes while we are changing the calendar. How do we recover our

work?

Example: You schedule a lunch with a friend, and your secretary simultaneously schedules

lunch with your chairman?

You both see that the time is open, but only one will show up in the calendar. Worse, a

“mixture” or corrupted version of the two appointments may appear.

DBS 1.15

Transactions

• Key concept for concurrency is that of a transaction – a sequence of database actions

(read or write) that is considered as one indivisible action.

• Key concept for recoverability is that of a log – a record of the sequence of actions that

changed the database.

• DBMSs are usually constructed with a client/server architecture.

Web servers, GUIs
Database Adminstrators

CS3 students

Transactions, SQL

DBMS

DBS 1.16

Database architecture – the traditional view

It is common to describe databases in two ways:

• The logical structure. What users see. The program or query language interface.

• The physical structure. How files are organized. What indexing mechanisms are used.

Further it is traditional to split the “logical” level into two components. The overall

database design and the views that various users get to see.

This led to the term “three-level architecture”

DBS 1.17

Three-Level Architecture

External
memory

Schema

(file organisation,
indexing)

Physical Level

Conceptual Level

View 1 View 2 View n. . .

DBS 1.18

Example

A user of a relational database system should be able to use SQL to query the database,

e.g.

SELECT When, Where
FROM Calendar
WHERE Who = "Bill"

without knowing, nor caring about how the precisely how data is stored.

After all, you don’t worry much how numbers are stored when you program some arithmetic

or use a computer-based calculator. This is really the same principle.

DBS 1.19

That’s the traditional view, but ...

Three-level architecture is never achievable. When databases get big, users still have to

worry about efficiency.

There are databases over which we have no control. The Web is a giant, disorganized,

database.

There are also well-organized databases on the web, for example,

http://www.moviedatabase.com

http://www.cia.gov/cia/publications/factbook/

which have a very clean organization, but for which the terminology does not quite apply.

DBS 1.20

XML – Outline

• Background: documents (SGML/HTML) and databases

• XML Basics

• Programming with XML: SAX and DOM

• XPath and XQuery

• Document Type Descriptors

DBS 1.21

Some URLs

• XML standard: http://www.w3.org/TR/REC-xml

A caution. Most W3C standards are quite impenetrable. There are a few exceptions to

this –some of the XQuery and XML schema documents are readable – but as a rule,

looking at the standard is not the place to start

• Annotated standard: http://www.xml.com/axml/axml.html. Useful if you are

consulting the standard, but not the place to start.

• Lots of good stuff at http://www.oasis-open.org/cover/xml.html

• Pedestrian tutorials: http://www.w3schools.com/xml/default.asp and

http://www.spiderpro.com/bu/buxmlm001.html

• General articles/standards for XML, XSL, XQuery, etc.: http://www.w3.org/TR/REC-xml

DBS 1.22

Documents vs. Databases

Documents have structure and contain data. What’s the difference?

Documents Databases

Lots of small documents Fewer large databases

Usually static Usually dynamic (lots of updates)

Implicit structure (section, paragraph,...) Explicit structure (schema)

Structure conveyed by tagging Structure conveyed by tuples/classes, like

types in Java

Human friendly Machine friendly

Concerns: presentation, editing, character

encodings, language.

Concerns: queries, models, transactions,

recovery, performance.

DBS 1.23

Document Formats

HTML is widely used, but there are many others: Tex, LaTex, RTF....

<HTML>
 <HEAD><TITLE>Welcome to XML </TITLE></HEAD>
 <BODY>

 <H1>Introduction</H1>
 Blah blah blah and <i> more </i> blah ...
 >
 </BODY>
</HTML>

Opening tag Text (PCDATA)

Closing tag

�� Bachelor�� tag

Attribute name Attribute value

DBS 1.24

The thin line...

... between document formats and data formats. Much of the world’s data – especially

scientific data – is held in pre-XML data formats.

Files that conform to some data format are sometimes called “flat” files. But their structure

is far from flat!

Examples:

• Personal address book

• Configuration files

• Data in specialized formats (e.g. Swissprot)

• Data in generic formats such as ASN.1 (bibliographic data, GenBank)

DBS 1.25

Data formats: many years of my address book

N Achison, Malcolm
F Dr. M.P. Achison
A Dept. of Computer Science
A University of Edinburgh
A Kings Buildings
A Edinburgh E12 8QQ
A Scotland
T 031−123−8855 ext. 4359 (work)
T 031−345−7570 (home)

N Albani, Paolo
F Prof. Paolo Albani
A Dip. Informatica e Sistemistica
A Universita di Roma La Sapienza
 ...

1977

N Achison, Malcolm
F Prof. M.P. Achison
A Dept. of Computing Science
A University of Glasgow
A Lilybank Gardens
A Glasgow G12 8QQ
A Scotland
T 041−339−8855 ext. 4359
T 041−357−3787 (private)
T 031−667−7570 (home)
X 041−339−0090
C mpa@uk.ac.gla.cs

N Achison, Malcolm
F Prof. M.P. Achison
A 34 Inverness Place
A Edinburgh, EH3 8UV

1990

N Achison, Malcolm
F Prof. M.P. Achison
A Department of Computing Science
...
T 031−667−7570 (home)
X 041−339−0090
C mpa@dcs.gla.ac.uk
W http://www.dcs.gla.ac.uk/mpa

1997

N Achison, Malcolm
F Dr. M.P. Achison
A Dept. of Computer Science

T 031−667−7570 (home)
C mpa@uk.ac.ed.cs

1980

Today?

DBS 1.26

My Calendar (format of the ical program)
Appt [
Start [720]
Length [60]
Uid [horus.cis.upenn.edu_829e850c_17e9_70]
Owner [peter]
Text [16 [Lunch -- Sanjeev]]
Remind [5]
Hilite [always]
Dates [Single 4/12/2001 End
]
]
Appt [
Start [1035]
Length [45]
Uid [horus.cis.upenn.edu_829e850c_17e9_72]
Owner [peter]
Text [7 [Eduardo]]
Remind [5]
...

DBS 1.27

Data formats: Swissprot

ID 11SB CUCMA STANDARD; PRT; 480 AA.
AC P13744;
DT 01-JAN-1990 (REL. 13, CREATED)
DT 01-JAN-1990 (REL. 13, LAST SEQUENCE UPDATE)
DT 01-NOV-1990 (REL. 16, LAST ANNOTATION UPDATE)
DE 11S GLOBULIN BETA SUBUNIT PRECURSOR.
OS CUCURBITA MAXIMA (PUMPKIN) (WINTER SQUASH).
OC EUKARYOTA; PLANTA; EMBRYOPHYTA; ANGIOSPERMAE; DICOTYLEDONEAE;
OC VIOLALES; CUCURBITACEAE.
RN [1]
RP SEQUENCE FROM N.A.
RC STRAIN=CV. KUROKAWA AMAKURI NANKIN;
RX MEDLINE; 88166744.
RA HAYASHI M., MORI H., NISHIMURA M., AKAZAWA T., HARANISHIMURA I.;
RL EUR. J. BIOCHEM. 172:627-632(1988).
RN [2]
RP SEQUENCE OF 22-30 AND 297-302.
RA OHMIYA M., HARA I., MASTUBARA H.;
RL PLANT CELL PHYSIOL. 21:157-167(1980).

DBS 1.28

Swissprot – cont
CC -!- FUNCTION: THIS IS A SEED STORAGE PROTEIN.
CC -!- SUBUNIT: HEXAMER; EACH SUBUNIT IS COMPOSED OF AN ACIDIC AND A
CC BASIC CHAIN DERIVED FROM A SINGLE PRECURSOR AND LINKED BY A
CC DISULFIDE BOND.
CC -!- SIMILARITY: TO OTHER 11S SEED STORAGE PROTEINS (GLOBULINS).
DR EMBL; M36407; G167492; -.
DR PIR; S00366; FWPU1B.
DR PROSITE; PS00305; 11S SEED STORAGE; 1.
KW SEED STORAGE PROTEIN; SIGNAL.
FT SIGNAL 1 21
FT CHAIN 22 480 11S GLOBULIN BETA SUBUNIT.
FT CHAIN 22 296 GAMMA CHAIN (ACIDIC).
FT CHAIN 297 480 DELTA CHAIN (BASIC).
FT MOD RES 22 22 PYRROLIDONE CARBOXYLIC ACID.
FT DISULFID 124 303 INTERCHAIN (GAMMA-DELTA) (POTENTIAL).
FT CONFLICT 27 27 S -> E (IN REF. 2).
FT CONFLICT 30 30 E -> S (IN REF. 2).
SQ SEQUENCE 480 AA; 54625 MW; D515DD6E CRC32;

MARSSLFTFL CLAVFINGCL SQIEQQSPWE FQGSEVWQQH RYQSPRACRL ENLRAQDPVR
RAEAEAIFTE VWDQDNDEFQ CAGVNMIRHT IRPKGLLLPG FSNAPKLIFV AQGFGIRGIA
IPGCAETYQT DLRRSQSAGS AFKDQHQKIR PFREGDLLVV PAGVSHWMYN RGQSDLVLIV
...

DBS 1.29

And if you need futher convincing...

... cd to the /etc directory and look at all the “config” files (.cf, .conf, .config,

.cfg).

These are not huge amounts of data, but having a common data format would at least

relieve the need to have as many parsers as files!

DBS 1.30

The Structure of XML

We start with the basic structure of XML.

• XML consists of tags and text

• Tags come in pairs 〈date〉. . . 〈/date〉
• They must be properly nested

– 〈date〉...〈day〉...〈/day〉...〈/date〉 — good

– 〈date〉...〈day〉...〈/date〉...〈/day〉 — bad

(You can’t do 〈i〉 ...〈b〉 ...〈/i〉 ...〈/b〉 in HTML)

The recent specification of HTML makes it a subset of XML (fixed tag set). Bachelor tags

(e.g. 〈p〉) are not allowed.

DBS 1.31

XML text

XML has only one basic type – text.

It is bounded by tags e.g.

〈title〉The Big Sleep〈/title〉 〈year〉1935〈/year〉 — 1935 is still text

XML text is called PCDATA (for parsed character data). It uses a 16-bit encoding, e.g.

\&\#x0152 for the Hebrew letter Mem

Some proposals for XML “types”, such as XML-schema, propose a richer set of base types.

DBS 1.32

XML structure

Nesting tags can be used to express various structures. E.g. A tuple (record) :

〈person〉
〈name〉 Malcolm Atchison 〈/name〉
〈tel〉 0141 898 4321 〈/tel〉
〈email〉 mp@dcs.gla.ac.sc 〈/email〉

〈/person〉

DBS 1.33

XML structure (cont.)

We can represent a list by using the same tag repeatedly:

〈addresses〉
〈person〉...〈/person〉
〈person〉...〈/person〉
〈person〉...〈/person〉
. . .

〈/addresses〉

DBS 1.34

Terminology

The segment of an XML document between an opening and a corresponding closing tag is

called an element.

1. 〈person〉
2. 〈name〉 Malcolm Atchison 〈/name〉
3. 〈tel〉 0141 247 1234 〈/tel〉
4. 〈tel〉 0141 898 4321 〈/tel〉
5. 〈email〉 mp@dcs.gla.ac.sc 〈/email〉
6. 〈/person〉

The text fragments 〈person〉...〈/person〉 (lines 1-6), 〈name〉...〈/name〉 (line 2), etc.

are elements.

The text between two tags is (e.g. lines 2-5) is sometimes called the contents of an

element.

DBS 1.35

XML is tree-like

name tel tel email

person

Malcolm Atchison 0141 247 1234 0141 898 4321 mp@dcs.gla.ac.sc

DBS 1.36

Mixed Content

An element may contain a mixture of text and other elements. This is called mixed content

〈airline〉
〈name〉 British Airways 〈/name〉
〈motto〉

World’s 〈dubious〉favorite〈/dubious〉 airline
〈/motto〉

〈/airline〉

XML generated from databases and data formats typically do not have mixed content. It

is needed for compatibility with HTML.

DBS 1.37

A Complete XML Document

〈?xml version="1.0"?〉
〈person〉
〈name〉 Malcolm Atchison 〈/name〉
〈tel〉 0141 247 1234 〈/tel〉
〈tel〉 0141 898 4321 〈/tel〉
〈email〉 mp@dcs.gla.ac.sc 〈/email〉

〈/person〉

DBS 1.38

How would we represent “structured” data in XML?

Example:

• Projects have titles, budgets, managers, ...

• Employees have names, employee empids, ages, ...

DBS 1.39

Employees and projects mixed

〈db〉
〈project〉
〈title〉 Pattern recognition 〈/title〉
〈budget〉 10000 〈/budget〉
〈manager〉 Joe 〈/manager〉

〈/project〉
〈employee〉
〈name〉 Joe 〈/name〉
〈empid〉 344556 〈/empid〉
〈age〉 34 〈/age〉

〈/employee〉
〈project〉...〈/project〉
〈project〉...〈/project〉
〈employee〉...〈/employee〉

〈/db〉

DBS 1.40

Employees and Projects Grouped

〈db〉
〈projects〉
〈project〉
〈title〉 Pattern recognition 〈/title〉
〈budget〉 10000 〈/budget〉
〈manager〉 Joe 〈/manager〉

〈/project〉
〈project〉...〈/project〉
〈project〉...〈/project〉

〈/projects〉
〈employees〉
〈employee〉...〈/employee〉
〈employee〉...〈/employee〉

〈/employees〉
〈/db〉

DBS 1.41

No tags for employees or projects

〈db〉
〈title〉 Pattern recognition 〈/title〉
〈budget〉 10000 〈/budget〉
〈manager〉 Joe 〈/manager〉
〈name〉 Joe 〈/name〉
〈empid〉 344556 〈/empid〉
〈age〉 34 〈/age〉
〈title〉...〈/title〉
〈budget〉...〈/budget〉
〈manager〉...〈/manager〉
〈name〉...〈/name〉
...

〈/db〉

Here we have to assume more about the tags and their order.

DBS 1.42

And there is more to be done

• Suppose we want to represent the fact that employees work on projects.

• Suppose we want to constrain the manager of a project to be an employee.

• Suppose we want to guarantee that employee ids are unique.

We need to add more to XML in order to state these constraints.

DBS 1.43

Attributes

An (opening) tag may contain attributes. These are typically used to describe the content

of an element

〈entry〉
〈word language = "en"〉 cheese 〈/word〉
〈word language = "fr"〉 fromage 〈/word〉
〈word language = "ro"〉 branza 〈/word〉
〈meaning〉 A food made ...〈/meaning〉

〈/entry〉

DBS 1.44

Attributes (contd)

Another common use for attributes is to express dimension or type

〈picture〉
〈height dim= "cm"〉 2400 〈/height〉
〈width dim= "in"〉 96 〈/width〉
〈data encoding = "gif" compression = "zip"〉

M05-.+C$@02!G96YE<FEC ...
〈/data〉

〈/picture〉

A document that obeys the nested tags rule and does not repeat an attribute within a tag

is said to be well-formed.

DBS 1.45

When to use attributes

It’s not always clear when to use attributes

〈person id = "123 45 6789"〉
〈name〉 F. McNeil 〈/name〉
〈email〉 fmcn@barra.org.sc 〈/email〉

〈/person〉

〈person〉
〈id〉 123 45 6789 〈/id〉
〈name〉 F. McNeil 〈/name〉
〈email〉 fmcn@barra.org.sc 〈/email〉

〈/person〉

Attributes can only contain text — not XML elements.

DBS 1.46

How do we program with or query XML?

Consider the equivalent of a really simple database query

“Find the names of employees whose age is 55”

We need to worry about the following:

• How do we find all the employee elements? By traversing the whole document or by

looking only in certain parts of it?

• Where are the age and name elements to be found? Are they children of an employee
element or do they just occur somewhere underneath?

• Are the age and name elements unique? If they are not, what does the query mean?

• Do the age and name elements occur in any particular order?

If we knew the answers to these questions, it would probably be much simple to write a

program/query. A DTD provides these answers, so if we know a document conforms to a

DTD, we can write simpler and more efficient programs.

However, most PL interfaces and query languages do not require DTDs.

DBS 1.47

Programming language interfaces. (APIs)

• SAX – Simple API for XML. A parser that does a left-to-right tree walk (or document

order traversal) of the document. As it encounters tags and data, it calls user-defined

functions to process that data.

– Good: Simple and efficient. Can work on arbitrarily large documents.

– Bad: Code attachments can be complicated. They have to “remember” data. What

do you do if you don’t know the order of name and age tags?

• Document Object Model (DOM). Each node is represented as a Java (C++, Python,

...) object with methods to retrieve the PCDATA, children, descendants, etc. The

chldren are represented (roughly speaking) as an array.

– Good: Complex programs are simpler. Easier to operate on multiple documents.

– Bad: Most implementations require the XML to fit into main memory.

DBS 1.48

Some Sample XML

〈db〉

〈department〉
〈dname〉 manufacturing 〈/dname〉
〈tel〉 1432 〈/tel〉
〈employee〉
〈name〉 Jane Dee 〈/name〉 〈tel〉 6734 〈/tel〉 〈sal〉 50 〈/sal〉
〈/employee〉
〈employee〉
〈name〉 Mary Smith 〈/name〉 〈tel〉 1432 〈/tel〉 〈sal〉 45 〈/sal〉
〈/employee〉
〈employee〉
〈name〉 John Brown 〈/name〉 〈sal〉 25 〈/sal〉
〈/employee〉
〈/department〉
〈department〉
〈dname〉 sales 〈/dname〉
〈tel〉 3221 〈/tel〉

DBS 1.49

〈employee〉
〈name〉 Fred Beans 〈/name〉 〈tel〉 3221 〈/tel〉 〈sal〉 32 〈/sal〉
〈/employee〉
〈employee〉
〈name〉 Kate Smith 〈/name〉 〈tel〉 1432 〈/tel〉 〈sal〉 42 〈/sal〉
〈/employee〉
〈/department〉
〈department〉
〈dname〉 research 〈/dname〉
〈tel〉 7776 〈/tel〉
〈employee〉
〈name〉 Sara Lee 〈/name〉 〈tel〉 5554 〈/tel〉
〈tel〉 3221 〈/tel〉 〈sal〉 32 〈/sal〉
〈/employee〉
〈employee〉
〈name〉 Jim Bean 〈/name〉 〈tel〉 1223 〈/tel〉 〈sal〉 25 〈/sal〉
〈/employee〉
〈/department〉
〈/db〉

DBS 1.50

A DOM example

Print the names of employees and their telephone numbers.

from xml.dom.minidom import parse

source = open("emps.xml", "r")

domtree= parse(source)

for e in domtree.getElementsByTagName("employee"):
for n in e.getElementsByTagName("name"):

for c in n.childNodes: print c.data,
for n in e.getElementsByTagName("tel"):

for c in n.childNodes: print c.data,
print "\n",

DBS 1.51

The output ...

Jane Dee 6734

Mary Smith 1432

John Brown

Fred Beans 3221

Kate Smith 1432

Sara Lee 5554 3221

Jim Bean 1223

Note that the data is “ragged”.

DBS 1.52

The preamble

from xml.dom.minidom import parse
Import the parse function. Python is dynamically typed – the “classes” are generated on

the fly.

source = open("emps.xml", "r")
Usual – open a file in read-only mode.

domtree= parse(source)
Create the DOM “tree”. domtree is the root node. We use node methods to navigate

the tree

DBS 1.53

Traversing the tree

for e in domtree.getElementsByTagName("employee"):
This binds e sucessively to all employee nodes encountered in a depth-first, left-to-right

traversal of the tree.

for n in e.getElementsByTagName("name"):
This binds n to name nodes in a traversal of the subtree of e

for c in n.childNodes: print c.data,
Text nodes have their character data in data. DOM does not assume that the character

data is stored in just one node.

DBS 1.54

The same thing in SAX?
class EmpHandler(xml.sax.handler.ContentHandler):

def init (self):
self.buffer = ""

def startElement(self, name, attributes):
if (name == "tel") or (name == "name"):

self.buffer = ""

def endElement(self, name):
if name == "employee":

print ""
elif (name == "name") or (name == "tel"):

print self.buffer,
self.buffer = ""

def characters(self,data):
self.buffer = self.buffer+data

DBS 1.55

How it works

The class EmpHandler inherits from the class ContentHandler defined in

xml.sax.handler. It overwrites the methods of this class so that the code you have written

gets called as the sax parser traverses the document. [Classes are partly implemented with

smoke and mirrors in Python, but the idea works well.]

The idea is to collect characters whenever we are inside a name or tel element and print

them out when we leave that element.

def init (self):
self.buffer = ""

The 0-argument constructor that initializes the character buffer.

DBS 1.56

How it works – continued

def startElement(self, name, attributes):
if (name == "tel") or (name == "name"):

self.buffer = ""

When we enter a tel or name element, re-initialise the buffer.

def characters(self,data):
self.buffer = self.buffer+data

Whenever we encounter character data, append it to the buffer.

DBS 1.57

How it works – continued

def endElement(self, name):
if name == "employee":

print ""
elif (name == "name") or (name == "tel"):

print self.buffer,
self.buffer = ""

When we leave a tel or name element print the buffer (and flush it). Print a new-line

when we leave an employee element

DBS 1.58

The whole program

import xml.sax

class EmpHandler(xml.sax.handler.ContentHandler):
- - - as above

parser = xml.sax.make parser()

parser.setContentHandler(EmpHandler())

parser.parse("emps.xml")

Create a parser (there may be several ways of doing this); create an instance of the

EmpHandler class and tell the parser to use it; finally make the parser parse the document.

DBS 1.59

Does it work?

1432 Jane Dee 6734
Mary Smith 1432
John Brown
3221 Fred Beans 3221
Kate Smith 1432
7776 Sara Lee 5554 3221
Jim Bean 1223

The problem is that it prints the contents of every tel element. We have to know when

we are “inside” an employee element.

DBS 1.60

The changes needed

We add a flag that is set whenever we are inside a Employee element

def init (self):

self.buffer = ""

self.inemp = 0

def startElement(self, name, attributes):

if name == "employee":

self.inemp =1

if (name == "tel") or (name == "name"):

self.buffer = ""

def endElement(self, name):

if name == "employee":

self.inemp = 0

print ""

elif ((name == "name") or (name == "tel")) and self.inemp:

DBS 1.61

print self.buffer,

self.buffer = ""

Unfortunately this is still not doing the same as our DOM code. The contents of the name
and tel elements are (with the code above) printed in the order in which they appear

in the document. Try change the order of <name> Jane Dee </name> and <tel> 6734
</tel> in the XML file.

In order to get closer to the DOM code we have to do more buffering.

DBS 1.62

Further buffering

def init (self):
self.namelist=[]
self.tellist=[]
self.buffer = ""

def startElement(self, name, attributes):
if name == "employee":

self.namelist=[]
self.tellist=[]

elif (name == "tel") or (name == "name"):
self.buffer = ""

def characters(self,data):
self.buffer = self.buffer+data

DBS 1.63

def endElement(self, name):
if name == "employee":

for n in self.namelist:
print n,

for n in self.tellist:
print n,

print ""
self.namelist = []
self.tellist = []

elif name == "name":
self.namelist.append(self.buffer)
self.buffer = ""

elif name == "tel":
self.namelist.append(self.buffer)
self.buffer = ""

DBS 1.64

Style sheets and Query languages

• Style sheets. Intended for “rendering” XML in a presentation format such as HTML.

Since HTML is XML, style sheets are query languages. However, they are typically only

“tuned” to simple transformations – that is, the structure of the output corresponds to

the structure of the input.

Output of a stylesheet can be something other than XML

Early style sheets could not “join” data from different sources.

• Query languages. Arguably easier for complex queries – derived from database

paradigms. They have a SELECT ... FROM ... WHERE (SQL) flavor.

Query languages have been developed for XML-to XML transformations.

The big question: Will we achieve a storage method, evaluation algorithms, and

optimization techniques that make query languages work well for large XML “documents”?

DBS 1.65

XPath and XQuery – reading material

Note: documents on XQuery typically describe XPath too.

• The XQuery specification (impenetrable): http://www.w3.org/TR/xquery

• XML Query Use Cases. A set of examples used to “show off” XQuery (or maybe to

test implementations). Lots of examples. Much more readable than the standard:

http://www.w3.org/TR/xmlquery-use-cases

• A nice, straightforward, tutorial: http://www.brics.dk/˜amoeller/XML/querying/

• An interesting paper showing how XQuery can be typed. Quite readable even if you are

not interested in types! http://homepages.inf.ed.ac.uk/wadler/papers/...
... xquery-tutorial/xquery-tutorial.pdf

DBS 1.66

XQuery and XPath

Again, consider the simple database-like query “Find the names of employees whose age
is 55”. How do we do this using XQuery? We first discuss XPath.

• XPath gives us the sets of nodes. In this case it will be a set of employee nodes. It

binds variables to nodes

• XQuery is very like a database query language such as SQL and uses these sets to

produce XML (the query result) as output.

Caution! XPath is a relatively complex language. You have the option of expressing

certain things, such as selection, conditions either in XPath or elsewhere in the surrounding

XQuery.

Caution! XQuery is the current standard query language for XML. It has supplanted other

QLs (some nicer than XQuery).

DBS 1.67

XPath – quick start

Navigation is remarkably like navigating a unix-style directory.

 aaa aaa

 aaa aaa

 ccc

 ccc bbb

3

Context node

21

4 5 6 7

All paths start from some context node.

aaa all the child nodes of the context node labeled aaa {1,3}
aaa/bbb all the bbb children of aaa children of the context node {4}
*/aaa all the aaa children of any child of the context node {5,6}.

. the context node

/ the root node

DBS 1.68

XPath- child axis navigation (cont)

/doc all the doc children of the root

./aaa all the aaa children of the context node (equivalent to aaa)

text() all the text children of the context node

node() all the children of the context node (includes text and attribute nodes)

.. parent of the context node

.// the context node and all its descendants

// the root node and all its descendants

//para all the para nodes in the document

//text() all the text nodes in the document

@font the font attribute node of the context node

DBS 1.69

Predicates

[2] the second child node of the context node

chapter[5] the fifth chapter child of the context node

[last()] the last child node of the context node

person[tel="12345"] the person children of the context node that have

one or more tel children whose string-value is "1234"

(the string-value is the concatenation of all the text on

descendant text nodes)

person[.//firstname = "Joe"] the person children of the context node whose

descendants include firstname element with string-

value "Joe"

From the XPath specification ($x is a variable – see later):

NOTE: If $x is bound to a node set then $x = "foo" does not mean the same as

not($x != "foo") .

DBS 1.70

Unions of Path Expressions

• employee | consultant – the union of the employee and consultant nodes that

are children of the context node
• For some reason person/(employee|consultant) – as in general regular expressions

– is not allowed
• However person/node()[boolean(employee|consultant)] is allowed!!

From the XPath specification:

The boolean function converts its argument to a boolean as follows:
• a number is true if and only if it is neither positive or negative zero nor NaN
• a node-set is true if and only if it is non-empty
• a string is true if and only if its length is non-zero
• an object of a type other than the four basic types is converted to a boolean in a way that is

dependent on that type.

DBS 1.71

Our Query in XPath

Consider SQL: SELECT age FROM employee WHERE name = "Joe"

We can write an XPath expression:

//employee[name="Joe"]/age

Find all the employee nodes under the root. If there is at least one name child node whose

string-value is "Joe", return the set of all age children of the employee node.

Or maybe

//employee[//name="Joe"]/age

Find all the employee nodes under the root. If there is at least one name descendant node

whose string-value is "Joe", return the set of all age descendant nodes of the employee
node.

DBS 1.72

Why isn’t XPath a proper (database) query language?

It doesn’t return XML – just a set of nodes.

It can’t do complex queries invoking joins.

We’ll turn to XML shortly, but there’s a bit more on XPath.

DBS 1.73

XPath – navigation axes

In Xpath there are several navigation axes. The full syntax of XPath specifies an axis after

the /. E.g.,

ancestor::employee: all the employee nodes directly above the context node

following-sibling::age: all the age nodes that are siblings of the context node and

to the right of it.

following-sibling::employee/descendant::age: all the age nodes somewhere

below any employee node that is a sibling of the context node and to the right

of it.

/descendant::name/ancestor::employee: Same as //name/ancestor::employee or

//employee[boolean(.//name)]

DBS 1.74

So XPath consists of a series of navigation steps. Each step is of the form: axis::node

test[predicate list]

Navigation steps can be concatenated with a /

If the path starts with / or //, start at root. Otherwise start at context node.

The following are abbreviations/shortcuts.

• no axis means child

• // means /descendant-or-self::

The full list of axes is: ancestor, ancestor-or-self, attribute, child,
descendant, descendant-or-self, following, following-sibling, namespace,
parent, preceding, preceding-sibling, self.

DBS 1.75

The XPath axes

ancestor

descendant

followingpreceding

following− siblingpreceding− sibling

child

attribute

namespace

self

DBS 1.76

XQuery

XPath is central to XQuery as well as to style sheets. In addition to XPath, XQuery

provides:

• XML “glue” that turns XPath node sets back into XML.

• Variables that communicate between XPath and XQuery.

• Programming structures that allow us to do things like joins, aggregates and more

sophisticated conditions than those in XPath.

XQuery is somewhat more complicated than SQL and is best learnt after SQL. Also, there

is nothing as clean as the relational algebra on which to base optiisation.

DBS 1.77

Document Type Descriptors

XML has gained acceptance as a standard for data interchange. There are now hundreds

of published DTDs. DTDs are described in the XML standard and in most XML tutorials.

• A Document Type Descriptor (DTD) constrains the structure of an XML document.

• There is some relationship between a DTD and a database schema or a type/class

declaration of a program, but it is not close – hence the need for additional “typing”

systems, such as XML-Schema.

• A DTD is a syntactic specification. Its connection with any “conceptual” model may

be quite remote.

Note: DTDs have been subsumed by XML-Schema, another W3C standard for constraining

XML. XML-Schema is verbose and much more complicated than DTDs. To understand it

you need DTDs as a starting point in any case!

DBS 1.78

Example: The Address Book

〈person〉
〈name〉 McNeil, John 〈/name〉 must exist

〈greet〉 Dr. John McNiel 〈/greet〉 optional

〈addr〉 1234 Huron Street 〈/addr〉 as many address lines as needed

〈addr〉 Rome, OH 98765 〈/addr〉
〈tel〉 (321) 786 2543 〈/tel〉 0 or more tel and faxes in any order

〈fax〉 (123) 456 7890 〈/fax〉
〈tel〉 (321) 198 7654 〈/tel〉
〈email〉 jm@abc.com 〈/email〉 0 or more email addresses

〈/person〉

DBS 1.79

Specifying the Structure

name to specify a name element

greet? to specify an optional (0 or 1) greet elements

name,greet? to specify a name followed by an optional greet

addr* to specify 0 or more address lines

tel | fax a tel or a fax element

(tel | fax)* 0 or more repeats of tel or fax

email* 0 or more email elements

DBS 1.80

Specifying the structure (cont)

So the whole structure of a person entry is specified by

name, greet?, addr*, (tel | fax)*, email*

This is a regular expression in slightly unusual syntax. Why is it important?

DBS 1.81

Regular Expressions

One could imagine more complicated and less complicated specifications for the structure

of the content of an XML element.

Regular expressions are “rich enough” (arguable) and easy to parse with a DFA. Examples:

name email

email

email

tel

name

tel

fax
fax

email

name,addr*,(tel|fax)*,email*
name,addr*,email

addr addr

Try adding in greet?. The DFA can get large!

DBS 1.82

A DTD for the address book

〈!DOCTYPE address [
〈!ELEMENT addressbook (person*)〉
〈!ELEMENT person (name, greet?, addr*, (fax|tel)*, email*)〉
〈!ELEMENT name (#PCDATA)〉
〈!ELEMENT greet (#PCDATA)〉
〈!ELEMENT addr (#PCDATA)〉
〈!ELEMENT tel (#PCDATA)〉
〈!ELEMENT fax (#PCDATA)〉
〈!ELEMENT email (#PCDATA)〉
]〉

DBS 1.83

Our “database” revisited

Recall:

• Projects have titles, budgets, managers, ...

• Employees have names, employee ids, ages, ...

DBS 1.84

DTDs for the relational DB

Tuples intermixed

〈!DOCTYPE db [
〈!ELEMENT db (project | employee)*〉
〈!ELEMENT project (title, budget, managedBy)〉
〈!ELEMENT employee (name, empid, age)〉
〈!ELEMENT title #PCDATA〉
...
]〉

DBS 1.85

Tables grouped:

〈!DOCTYPE db [
〈!ELEMENT db (projects,employees)〉
〈!ELEMENT projects (project*)〉
〈!ELEMENT employees (employee*)〉
〈!ELEMENT project (title, budget, manager)〉
〈!ELEMENT employee (name, empid, age)〉
...
]〉

Tuples unmarked:

〈!DOCTYPE db [
〈!ELEMENT db)((name, empid, age)|(title, budget, manager))*)〉
...
]〉

DBS 1.86

Recursive DTDs

〈!DOCTYPE genealogy [
〈!ELEMENT genealogy (person*)〉
〈!ELEMENT person (
name,
dateOfBirth,
person, // mother

person // father

)〉
]〉

What is the problem with this?

DBS 1.87

Another try ...

〈!DOCTYPE genealogy [
〈!ELEMENT genealogy (person*)〉
〈!ELEMENT person (
name,
dateOfBirth,
person?, // mother

person? // father

)〉
]〉

What is now the problem with this?

DBS 1.88

Some things are hard to specify

Each employee element is to contain name, age and empid elements in some order.

〈!ELEMENT employee (
(name, age, empid)
| (age, empid, name)
| (empid, name, age)
...
)〉

Suppose there were many more fields!

This is a fundamental problem in trying to combine XML schemas with simple relational

schemas. Research needed!

DBS 1.89

This is what can happen

〈!ELEMENT PARTNER (NAME?, ONETIME?, PARTNRID?, PARTNRTYPE?,
SYNCIND?,ACTIVE?, CURRENCY?, DESCRIPTN?, DUNSNUMBER?, GLENTITYS?,
NAME*, PARENTID?, PARTNRIDX?, PARTNRRATG?, PARTNRROLE?, PAYMETHOD?,
TAXEXEMPT?, TAXID?, TERMID?, USERAREA?, ADDRESS*, CONTACT*)〉

Cited from oagis segments.dtd (one of the files in Novell Developer Kit

http://developer.novell.com/ndk/indexexe.htm)

〈PARTNER〉〈NAME〉 Dewey Cheatham 〈/NAME〉〈/PARTNER〉

Question: Which NAME is it?

DBS 1.90

Specifying attributes in the DTD

〈!ELEMENT height (#PCDATA)〉
〈!ATTLIST height

dimension CDATA #REQUIRED
accuracy CDATA #IMPLIED〉

The dimension attribute is required; the accuracy attribute is optional.

CDATA is the ”type” the attribute – it means string.

DBS 1.91

Specifying ID and IDREF attributes

〈!DOCTYPE family [
〈!ELEMENT family (person)*〉
〈!ELEMENT person (name)〉
〈!ELEMENT name (#PCDATA)〉
〈!ATTLIST person
id ID #REQUIRED
mother IDREF #IMPLIED
father IDREF #IMPLIED
children IDREFS #IMPLIED〉
]〉

DBS 1.92

Consistency of ID and IDREF attribute values

• If an attribute is declared as ID the associated values must all be distinct (no confusion).

• If an attribute is declared as IDREF the associated value must exist as the value of

some ID attribute (no “dangling pointers”).

• Similarly for all the values of an IDREFS attribute

• ID and IDREF attributes are not typed.

DBS 1.93

Connecting the document with its DTD

• In line:

〈?xml version="1.0"?〉
〈!DOCTYPE db [〈!ELEMENT . . . 〉. . .]〉
〈db〉...〈/db〉

• Another file:

〈!DOCTYPE db SYSTEM "schema.dtd"〉
• A URL:

〈!DOCTYPE db SYSTEM "http://www.schemaauthority.com/schema.dtd"〉

DBS 1.94

Well-formed and Valid Documents

• Well-formed applies to any document (with or without a DTD): proper nesting of tags

and unique attributes

• Valid specifies that the document conforms to the DTD: conforms to regular expression

grammar, types of attributes correct, and constraints on references satisfied

DBS 1.95

DTDs v.s Schemas or Types

• By database or programming language standards DTDs are rather weak specifications.

– Only one base type – PCDATA

– No useful abstractions e.g., sets

– IDREFs are untyped. You point to something, but you dont know what!

– No constraints e.g., child is inverse of parent

– No methods

– Tag definitions are global

• On the other hand DB schemas don’t allow you to specify the linear structure of

documents.

XML Schema, among other things, attempts to capture both worlds. Not clear that it

succeeds.

DBS 1.96

Summary

• XML is a new data format. Its main virtues are widespread acceptance, its ability to

represent structured text, and the (important) ability to handle semistructured data

(data without a pre-assigned type.)

• DTDs provide some useful syntactic constraints on documents. As schemas they are

weak

• How to store large XML documents.

• How to query them efficiently.

• How to map between XML and other representations.

• How to make XML schemas work like database schemas and programming language

types. Current APIs and query languages make little or no use of DTDs.

DBS 1.97

Review

• XML

– Basic structure and terminology

– Well-formed documents

• DOM and SAX

• XPath

– What XPath expressions produce

– Basic form of navigation.

– Axes and general navigation.

• DDTs

– Specifying child order (regular expressions)

– Specifying attributes

– Valid documents

DBS 1.98

