DBS Database Systems
The Relational Model, the Relational Algebra and SQL

Peter Buneman
5 Oct, 2010

The Relational Model - an Introduction

This 30-year old model is by far the most popular, but not the first, "logical" approach to databases.

In these lectures we are going to discuss relational query languages.
We'll discuss a "theoretical language": relational algebra and then SQL
The "theoretical" language is not useless. To implement and optimize SQL we use relational algebra as the "internal" language

Why is the database like this?

Each peak has an an id, a height, a latitude, a longitude, and a rating (how difficult it is.) Each hiker has an id, a name, a skill level and an age.
A climb records who climbed what peak on what date and how long it took (time).
We will deal with how we arrive at such a design later. Right now observe that the data values in these tables are all "simple". None of them is a complex structure - like a tuple or another table.

Some Terminology

The column names of a relation/table are often called attributes or fields
The rows of a table are called tuples
Each attribute has values taken from a domain
For example, the domain of HName is string and that for Rating is real

A Note on Domains

Relational DBMSs have fixed set of "built-in" domains, such as int, string etc. that are familiar in programming languages.

The built-in domains often include other useful domains like date but probably not, for example, degrees:minutes:seconds which in this case would have been be useful. (The minutes and seconds were converted to fractions of a degree)

One of the advantages of object-oriented and object-relational systems is that new domains can be added, sometimes by the programmer/user, and sometimes they are "sold" by the vendor.

Database people, when they are discussing design, often get sloppy and forget domains They write, for example,
Munros(MId, MName, Lat, Long, Height, Rating)

Describing Tables

Tables are described by a schema which can be expressed in various ways, but to a DBMS is usually expressed in a data definition language - something like a type system of a programming language

Munros(MId:int, MName:string, Lat:real, Long:real, Height:int Rating:real)

Hikers(HId:int, HName:string, Skill:string, Age:int)
Climbs(HId:int, MId:int, Date:date, Time:int)
Given a relation schema, we often refer to a table that conforms to that schema as an instance of that schema.

Similarly, a set of relation schemas describes a database, and a set of conforming instances is an instance of the database.

Keys

A key is a set of attributes that uniquely identify a tuple in a table. HId is a key for Hikers; MId is a key for Munros

Keys are indicated by underlining the attribute(s)
Hikers(HId, Hname, Skill, Age)

What is the key for Climbs?
A key is a constraint on the instances of a schema: given values of the key attributes, there can be at most one tuple with those attributes

In the "pure" relational model an instance is a set of tuples. SQL databases allow multisets, and the definition of a key needs to be changed.

We'll discuss keys in more detail when we do database design.

Relational Algebra

R\&S 4.1, 4.2
Relational algebra is a set of operations (functions) each of which takes a one or more tables as input and produces a table as output.
There are six basic operations which can be combined to give us a reasonably expressive database query language.

- Projection
- Selection
- Union
- Difference
- Rename
- Join

Projection - continued

Suppose the result of a projection has a repeated value, how do we treat it?
$\pi_{\text {Rating }}$ (Munros) is

Rating
4
4
2.5
1.5

In "pure" relational algebra the answer is always a set (the second answer). However SQL and some other languages return a multiset for some operations from which duplicates may be eliminated by a further operation.

Projection

Given a set of column names A and a table $R, \pi_{A}(R)$ extracts the columns in A from the table. Example, given Munros $=$

MId	MName	Lat	Long	Height	Rating
1	The Saddle	57.167	5.384	1010	4
2	Ladhar Bheinn	57.067	5.750	1020	4
3	Schiehallion	56.667	4.098	1083	2.5
4	Ben Nevis	56.780	5.002	1343	1.5

$\pi_{\text {MId, Rating }}$ (Munros) is

MId	Rating
1	4
2	4
3	2.5
4	1.5

Selection

Selection $\sigma_{C}(R)$ takes a table R and extracts those rows from it that satisfy the condition C. For example,
$\sigma_{\text {Height }}>1050$ (Munros) $=$

MId		MName	Lat	Long	Height
Rating					
3	Schiehallion	56.667	4.098	1083	2.5
4	Ben Nevis	56.780	5.002	1343	1.5

What can go into a condition?

Conditions are built up from:

- Values, consisting of field names (Height, Age, ...), constants (23, 17.23, "The Saddle",)
- Comparisons on values. E.g., Height > 1000, MName = "Ben Nevis"
- Predicates constructed from these using \vee (or), \wedge (and), \neg (not).
E.g. Lat > $57 \wedge$ Height >1000.

It turns out that we don't lose any expressive power if we don't have compound predicates in the language, but they are convenient and useful in practice.

Set operations - set difference

We can also take the difference of two union-compatible tables:

Hikers - Climbers $=$	HId	HName	Skill	Age
	123	Edmund	EXP	80
	313	Bridget	EXP	33
	212	James	MED	27

N.B. We'll start with a strict interpretation of "union-compatible": the tables should hav the same column names with the same domains. In SQL, union compatibility is determined by the order of the columns. The column names in $R \cup S$ and $R-S$ are taken from the first operand, R

Set operations - union

If two tables have the same structure (Database terminology: are union-compatible. Programming language terminology: have the same type) we can perform set operations. Example:

Hikers =	HId	HName	Skill	Age	Climbers $=$	HId	HName	Skill	Age
	123	Edmund	EXP	80		214	Arnold	BEG	25
	214	Arnold	BEG	25		898	Jane	MED	39
	313	Bridget	EXP	33					
	212	James	MED	27					

Hikers \cup Climbers $=$	HId	HName	Skill	Age
	123	Edmund	EXP	80
	214	Arnold	BEG	25
	313	Bridget	EXP	33
	212	James	MED	27
	898	Jane	MED	39

Set operations - other

It turns out we can implement the other set operations using those we already have. For example, for any tables (sets) R, S

$$
R \cap S=R-(R-S)
$$

We have to be careful. Although it is mathematically nice to have fewer operators, this may not be an efficient way to implement intersection. Intersection is a special case of a join, which we'll shortly discuss.

Optimization - a hint of things to come

We mentioned earlier that compound predicates in selections were not "essential" to relational algebra. This is because we can translate selections with compound predicates into set operations. Example:

$$
\sigma_{C \wedge D}(R)=\sigma_{C}(R) \cap \sigma_{D}(R)
$$

However, which do you think is more efficient?
Also, how would you translate $\sigma_{\neg C}(R)$?

Joins

Join is a generic term for a variety of operations that connect two tables that are not union compatible. The basic operation is the product, $R \times S$, which concatenates every tuple in R with every tuple in S. Example:

$$
\begin{array}{l|ll}
\\
A & B \\
\hline a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array} \times \begin{array}{l|l|l|l|l}
& \\
\\
& & & & \\
a_{1} & b_{1} & C & c_{1} & d_{1} \\
a_{1} & b_{1} & c_{2} & d_{2} \\
c_{1} & d_{1} \\
c_{2} & d_{2} \\
c_{3} & d_{3} & b_{1} & c_{3} & d_{3} \\
a_{2} & b_{2} & c_{1} & d_{1} \\
a_{2} & b_{2} & c_{2} & d_{2} \\
a_{2} & b_{2} & c_{3} & d_{3}
\end{array}
$$

Database Queries

Queries are formed by building up expressions with the operations of the relational algebra. Even with the operations we have defined so far we can do something useful. For example, select-project expressions are very common:
$\pi_{\text {HName } \text {, Age }}\left(\sigma_{\text {Age }}>30(\right.$ Hikers $\left.)\right)$

What does this mean in English?
Also, could we interchange the order of the σ and π ? Can we always do this?
As another example, how would you "delete" the hiker named James from the database?

Product - continued

What happens when we form a product of two tables with columns with the same name? Recall the schemas: Hikers(HId, HName, Skill, Age) and Climbs(HId, MId, Date, Time). What is the schema of Hikers \times Climbs?
Various possibilities including:

- Forget the conflicting name (as in R\&G) (__, HName, Skill, Age, __, MId, Date, Time). Allow positional references to columns.
- Label the conflicting colums with $1,2 \ldots$ (HId.1, HName,Skill, Age, HId.2, MId, Date, Time)

Neither of these is satisfactory. The product operation is no longer commutative (a property that is useful in optimization.)

Natural join

For obvious reasons of efficiency we rarely use unconstrained products in practice.
A natural join (\bowtie) produces the set of all merges of tuples that agree on their commonly named fields.

Renaming

To avoid using any positional information in relational algebra, we rename columns to avoid clashes $\rho_{A \rightarrow A^{\prime}, B \rightarrow B^{\prime}, \ldots}(R)$ produces a table with column A relabelled to A^{\prime}, B to B^{\prime}, etc.

In practice we have to be aware of when we are expected to use a positional notation and when we use a labelled notation.

Labelled notation is in practice very important for subtyping. A query typically does not need to know the complete schema of a table.

It will be convenient to roll renaming into projection (not in R\&G) $\pi_{A \rightarrow A^{\prime}, B \rightarrow B^{\prime}, \ldots}(R)$
extracts the A, B, \ldots columns from R and relabels them to $A^{\prime}, B^{\prime}, \ldots$
That is, $\pi_{A_{1} \rightarrow A_{1}^{\prime}, \ldots, A_{n} \rightarrow A_{n}^{\prime}}(R)=\rho_{A_{1} \rightarrow A_{1}^{\prime}, \ldots, A_{n} \rightarrow A_{n}^{\prime}}\left(\pi_{A_{1}, \ldots, A_{n}}(R)\right)$

Natural Join - cont.

Natural join has interesting relationships with other operations. What is $R \bowtie S$ when

- $R=S$
- R and S have no column names in common
- R and S are union compatible

R\&S also uses $R \bowtie_{C} S$ for $\sigma_{C}\left(R \bowtie_{C} S\right)$
In these notes we shall only use natural join. When we want a product (rather than a natural join) we'll use renaming

Examples

The names of people who have climbed The Saddle
$\pi_{\text {HName }}\left(\sigma_{\text {MName }}=\right.$ "The Saddle" $($ Munros \bowtie Hikers \bowtie Climbs $\left.)\right)$

Note the optimization to

In what order would you perform the joins?

Examples - cont

The highest Munro(s)
This is more tricky. We first find the peaks (their MIds) that are lower than some other peak.

$$
\text { LowerIds }=\pi_{\text {MId }}\left(\sigma_{\text {Height }<\text { Height }},\left(\text { Munros } \bowtie \pi_{\text {Height } \rightarrow \text { Height }},(\text { Munros })\right)\right)
$$

Now we find the MIds of peaks that are not in this set (they must be the peaks with maximum height)

$$
\text { MaxIds }=\pi_{\text {MId }}(\text { Munros })-\text { LowerIds }
$$

Finally we get the names:

$$
\pi_{\text {MName }}(\text { MaxIds } \bowtie \text { Munros })
$$

Important note: The use of intermediate tables, such as LowerIds and MaxIds improves readability and, sometimes, efficiency. We'll see this when we discuss SQL views.

Division

The last example is special case of division of one table by another. Suppose we have two tables with schemas $R(A, B)$ and $S(B) . R / S$ is defined to be the set of A values in R which are paired (in R) with all B values in S. That is the set of all x for which $\pi_{B}(S) \subseteq \pi_{B}\left(\sigma_{A=x}(R)\right)$.

As we have already seen, division can be expressed with our existing operators:

$$
A / B=\pi_{A} R-\pi_{A}\left(\pi_{A}(R) \bowtie \pi_{B}(S)-R\right)
$$

One should not write queries like this! Build them out of pieces as we did with the previous example.

The general definition of division extends this idea to more than one attribute.

Examples - cont

The names of hikers who have climbed all Munros
We start by finding the set of HId,MId pairs for which the hiker has not climbed that peak. We do this by subtracting part of the Climbs table from the set of all HId,MId pairs.

$$
\text { NotClimbed }=\pi_{\mathrm{HId}}(\text { Hikers }) \bowtie \pi_{\mathrm{MId}}(\text { Munros })-\pi_{\mathrm{HId}, \mathrm{MId}}(\mathrm{Climbs})
$$

The HIds in this table identify the hikers who have not climed some peak. By subtraction we get the HIds of hikers who have climbed all peaks:

$$
\text { ClimbedAll }=\pi_{\mathrm{HId}}(\text { Hikers })-\pi_{\mathrm{HId}}(\text { NotClimbed })
$$

A join gets us the desired information:
$\pi_{\text {HName }}($ Hikers \bowtie ClimbedAll)

What we cannot compute with relational algebra

Aggregate operations. E.g. "The number of hikers who have climbed Schiehallion" or "The average age of hikers". These are possible in SQL which has numerous extensions to relational algebra.

Recursive queries. Given a table Parent (Parent, Child) compute the Ancestor table. This appears to call for an arbitrary number of joins. It is known that it cannot be expressed in first-order logic, hence it cannot be expressed in relational algebra.

Computing with structures that are not (1NF) relations. For example, lists, arrays, multisets (bags); or relations that are nested. These are ruled out by the relational data model, but they are important and are the province of object-oriented databases and "complex-object" /XML query languages.

Of course, we can always compute such things if we can talk to a database from a full-blown (Turing complete) programming language. We'll see how to do this later. But communicating with the database in this way may well be inefficient, and adding computational power to a query language remains an important research topic.

Review

Readings: R\&G Chapters 1 and 3

- Introduction. Why DBs are needed. What a DBMS does
- 3-level architecture: separation of "logical" and "phyisical" layers
- The relational model
- Terminology: domains, attributes/column names, tables/relations, relational schema instance, keys.
- Relational algebra: the 6 basic operations.
- Using labels vs. positions.
- Query rewriting for optimization
- Practice with relational algebra.
- Connection with relational calculus and first-order logic
- Limitations of relational algebra

Things to remember about SQL

- Although it has been standardised, few DBMSs support the full standard (SQL-92), and most DBMSs support some "un-standardised" features, e.g. asserting indexes, a programming language extension of the DML, and annotations for optimisation.
- SQL is large. The SQL-92 standard is 1400 pages! Two reasons:
- There is a lot of "other stuff"
- SQL has evolved in an unprincipled fashion from a simple core language
- Most SQL is generated by other programs - not by people.

SQL

Reading: R\&G Chapter 5

Claimed to be the most widely used programming language, SQL can be divided into three parts:

- A Data Manipulation Language (DML) that enables us to query and update the database
- A Data Definition Language (DDL) that defines the structure of the database and imposes constraints on it.
- Other stuff. Features for triggers, security, transactions.

SQL has been standardised (SQL-92, SQL:99)

Basic Query

SELECT	[DISTINCT] target-list
FROM	relation-list
WHERE	condition

- relation-list: A list of table names. A table name may be followed by a "range variable" (an alias)
- target-list: A list of attributes of the tables in relation-list: or expressions built on these
- condition: Much like a condition in the relational algebra. Some more elaborate predicates (e.g. string matching using regular expressions) are available.
- DISTINCT: This optional keyword indicates that duplicates should be eliminated from the result. Default is that duplicates are not eliminated.

Conceptual Evaluation Strategy

- Compute the product of relation-list
- This is the natural join when there are no common column names.
- Discard tuples that fail qualification
- Project over attributes in target-list
- If DISTINCT then eliminate duplicates

This is probably a very bad way of executing the query, and a good query optimizer will use all sorts of tricks to find efficient strategies to compute the same answer.

Product

HId	HName	Skill	Age	HId	MId	Date	Time
123	Edmund	EXP	80	123	1	$10 / 10 / 88$	5
214	Arnold	BEG	25	123	1	$10 / 10 / 88$	5
313	Bridget	EXP	33	123	1	$10 / 10 / 88$	5
212	James	MED	27	123	1	$10 / 10 / 88$	5
123	Edmund	EXP	80	123	3	$11 / 08 / 87$	2.5
214	Arnold	BEG	25	123	3	$11 / 08 / 87$	2.5
\ldots							

Note that column names get duplicated. (One tries not to let this happen.)

Select-Project Queries

Product with selection (join)

SELECT	H.HName, C.MId			
FROM	Hikers H, Climbs C			
WHERE	H.HId = C.HId			
AND	C.Time >= 5	\quad gives \quad	HName	MId
:---	:---			
Edmund	1			
Arnold	2			
Bridget	2			

Note the use of aliases (a.k.a. local variables) H and C. The are here only for convenience (they make the query a bit shorter.)

When we want to join a table to itself, they are essential.

Duplicate Elimination

Arithmetic

Arithmetic can be used in the SELECT part of the query as well as in the WHERE part.
Columns can be relabelled using AS.

MName	HeightInFeet
The Saddle	3313
Ladhar Bheinn	3346

Question: How would you compute $2+2$ in SQL?

String Matching

LIKE is a predicate that can be used in where clause. _ is a wild card - it denotes any character. $\%$ stands for 0 or more characters.

$$
\begin{array}{l|l|l|l|l|l|}
\text { MId } & \text { MName } & \text { Lat } & \text { Long } & \text { Height } & \text { Rating } \\
\hline 3 & \text { Schiehallion } & 56.667 & 4.098 & 1083 & 2.5 \\
\hline
\end{array}
$$

Set Operations - Union

The default is to eliminate duplicates from the union.

To preserve duplicates, use UNION ALL

What Does "Union Compatible" Mean?

SELECT	HId Hikers	gives	HId
FROM			123
Union			214
SELECT	MId		313
FROM	Climbs;		212
			1
			3 2
SELECT	HName		
FROM	Hikers		
UNION		gives	Error!!!
SELECT	MId		
FROM	Munros;		

- It means that the types as determined by the order of the columns must agree
- The column names are taken from the first operand.

Nested Queries
The predicate x In S tests for set membership. Consider

SELECT HId				and	SELECT	HId
FROM WHERE	Climbshid In				FROM	Climbs
		(SELECT	HId		INTERSE	
		FROM	Hikers		SELECT	
		where	Age < 40)		$\underset{\text { From }}{\text { WHERE }}$	Hikers

Do these give the same result?

Intersection and difference

The operator names are INTERSECT for \cap, and MINUS (sometimes EXCEPT) for -.
These are set operations (they eliminate duplicates).
Should MINUS ALL and INTERSECT ALL exist? If so, what should they mean?
Using bag semantics (not eliminating duplicates) for SELECT . ..FROM . ..WHERE . . . is presumably done partly for efficiency.

For MINUS and INTERSECT it usually doesn't cost any more to eliminate duplicates (why?) so one might as well do it.

For UNION the story is different, so why is it treated like MINUS and INTERSECT? This is typical of the unprincipled evolution of SQL from relational algebra.

Correlated Nested Queries

"Correlated" means using a variable in an inner scope.

```
SELECT HId FROM Hikers h
WHERE EXISTS (SELECT * FROM Climbs c
    WHERE h.HId=c.HId AND c.MId = 1);
```

```
SELECT CId FROM Hikers h
WHERE NOT EXISTS (SELECT * FROM Climbs c
    WHERE h.CId=c.CId);
```

SELECT CId FROM Hikers h
wHERE EXISTS UNIqUE (SELECT * FROM Climbs c
wHERE h.CId=c.CId);

EXISTS $=$ non-empty, NOT EXISTS $=$ empty, EXISTS UNIQUE $=$ singleton set.

Comparisons with sets

x op ANY S means x op s for some $s \in S$
x op ALL S means x op s for all $s \in S$

```
SELECT HName, Ag
FROM Hikers
wHERE Age >= AlL (SELECT Age
    FROM Hikers)
```

```
SELECT HName, Age
FROM Hikers
WHERE Age > ANY (SELECT Age
    FROM Hikers
    WHERE HName='Arnold')
```

What do these mean ?

Views

[R\&G 3.6]
To make complex queries understandable, we should decompse them into understandable $\begin{array}{lll}\text { NC }:= & \begin{array}{l}\text { SELECT } \\ \\ \text { FROM }\end{array} & \begin{array}{l}\text { HId } \\ \text { Hikers } \\ \\ \\ \\ \text { MINUS } \\ \\ \\ \text { SELECT }\end{array} \\ & \text { HId }\end{array}$ and then
pieces. E.g. We want to say something like: Climbs ;

SELECT	HName
FROM	NC, Hikers
WHERE	NC. HId $=$ Hikers.HId;

Instead we write
CREATE VIEW NC

SQL is compositional

You can use a SELECT . . . expression wherever you can use a table name
Consider the query: "Find the names of hikers who have not climbed any peak."

```
SELECT HName
FROM (SELECT HId
        FROM Hiker
        minuS
        SELECT HId
        FROM Climbs) Temp,
    Hikers
WHERE Temp.HId = Hikers.HId
```


Views - cont

The difference between a view and a value (in the programming language sense) is that we expect the database to change

When the DB changes, the view should change. That is, we should think of a view as a niladic function, which gets re-evaluated each time it is used

In fact, SQL92 now extends views to functions.

```
CREATE VIEW ClosePeaks(MyLat, MyLong)
    AS SELECT *
        From Munros
            WHERE MyLat-0.5 < Lat AND Lat < MyLat+0.5
            AND MyLong-0.5 < Long AND Long < MyLong+0.5
```


Evaluating Queries on Views

FROM MyPeaks
WHERE MName $=$ 'Ben Nevis'
get rewritten to

SELECT	MName, Height
FROM	Munros
WHERE	MName $=$ 'Ben Nevis'

Is this always a good idea?
Sometimes it is better to materialise a view.

Universal Quantification - an Alternative

The HIds of hikers who have climbed all peaks

```
SELECT HId
From Hikers h
HERE NOT EXISTS
    ( SELECT RId }\leftarrow\mathrm{ Munros not climbed by h
    SELECT RId
        FROM Munros m
        WHERE NOT EXEST
            FROM Climbs c
            FROM Climbs c
            AND c.MId=m.MId
```

It's not clear whether this version is any more comprehensible!

Universal Quantification

We can follow relational algebra in implementing queries with universal quantification Example: "The names of hikers who have climbed all Munros"

```
CREATE VIEW NotClimbed 
    S SELECT HId, MId FROM Hikers, Munros
        MINUS (d, MId FROM Climbs
CREATE VIEW ClimbedAll 
    SELECT HId FROM Hikers
        MinuS
        EELECT HId FROM NotClimbed
    SEEECT
    FROM Hikers, ClimbedAll
    WHERE Hikers.HId = ClimbedAll.Hid
```


SQL so far

So far what we have seen extends relational algebra in two ways:

- Use of multisets/bags as well as sets (SELECT DISTINCT, UNION ALL, etc.)
- Arithmetic and more predicates in WHERE and arithmetic in SELECT output.

These are minor extensions. A more interesting extension is the use of aggregate functions.

	Counting		
SELECT COUNT(MId) FROM Munros;	and	$\begin{aligned} & \hline \text { SELECT } \\ & \text { FROM } \end{aligned}$	COUNT (Rating) Munros;

both give the same answer (to within attribute labels):

Why?
To fix the answer to the second, use SELECT COUNT(DISTINCT Rating)

GROUP BY - selecting on the "grouped" attributes

SELECT	Rating, AVG(Height)	gives		
FROM	Munros		Rating	AVG(Height)
GROUP BY	Rating		4	1015

HAVING acts like a WHERE condition on the "output fields" of the GROUP BY. I.e., on the GROUP BY attributes and on any aggregate results.

GROUP BY

The effect of GROUP BY is to partition the relation according to the GROUP BY field(s). Aggregate operations can be performed on the other fields. The result is always a "flat" (1NF) relation

Note that only the columns that appear in the GROUP BY statement and "aggregated" columns can appear in the output:

SELECT FROM GROUP BY	Rating, MName, COUNT(*) Munros Rating;

Null Values

The value of an attribute can be unknown (e.g., a rating has not been assigned) or inapplicable (e.g., does not have a telephone).

SQL provides a special value null for such situations
The presence of null complicates many issues. E.g.:
Special operators needed to check if value is/is not null
Is Rating >3 true or false when Rating is null? How do AND, OR and NOT work on null? (C.f. lazy evaluation of AND and OR in programming languages.)

Operations that generate null values
An example：

Tuple Insertion

INSERT INTO Munros（MId，Mname，Lat，Long，Height，Rating）
VALUES（5，＇Slioch＇，57．671， 5.341 981，3．5）；
One can also insert sets．E．g．，given MyPeaks（Name，Height）

INSERT INTO	MyPeaks（Name，Height）
SELECT	MName，Height
FROM	Munros
WHERE	Rating >3

Note positional correspondence of attributes．

Updates

There are three kinds of update：insertions，deletions and modifications．
Examples：
INSERT INTO $\mathrm{R}\left(a_{1}, \ldots, a_{n}\right)$ VALUES $\left(v_{1}, \ldots, v_{n}\right) ;$
DELETE FROM R WHERE 〈condition〉；
UPDATE R SET 〈new－value assignments〉 WHERE 〈condition〉；
Note：an update is typically a transaction，and an update may fail because it violates some integrity constraint．

DBS 2.57

Deletion
This is governed by a condition．
DELETE FROM Munros WHERE MName $=$＇Snowdon＇
In general one deletes a set．Use a key to be sure you are deleting at most one tuple

Modifying Tuples

Non-key values of a relation can be changed using UPDATE.
Example (global warming):

UPDATE Munros SET Height = Height - 1 WHERE Lat < 5;

Old Value Semantics. Given

Emp	Manager	Salary
1	2	32,000
2	3	31,000
3	3	33,000

What is the effect of
"Give a 2,000 raise to every employee earning less than their manager" ?

DBS 2.60

Schema modification

Extremely useful, because database requirements change over time. Examples

1. DROP TABLE Hikers;
2. DROP VIEW Mypeaks;
3. ALTER TABLE Climbs ADD Weather $\operatorname{CHAR}(50)$;
4. ALTER TABLE Munros DROP Rating;

Almost all of these could violate an integrity constraint or cause a "legacy" program to fail.
Only ALTER TABLE . . ADD . . . is usually innocuous. It is also very useful.

Updating Views

This is a thorny topic. Since most applications see a view rather than a base table, we need some policy for updating views, but if the view is anything less than a "base" table, we always run into problems.

CREATE	VIEW	MyPeaks SELECT	MId, MName, Height
	FRRM FHERE	Munros Height >1100	

Now suppose we INSERT INTO MyPeaks (7, 'Ben Thingy', 1050). What is the effect on Munros? We can add nulls for the fields that are not in the view. But note that, if we do the insertion, the inserted tuple fails the selection criterion and does not appear in our view!!

SQL-92 allows this kind of view update. With queries involving joins, things only get worse. [R\&G 3.6]

Review

- Basic SELECT ... FROM ... WHERE ... Naive evaluation. DISTINCT.
- Other operations, aliases, nested queries, membership, comparison with sets.
- Views. Evaluation of queries on views.
- Aggregate functions, GROUP BY.
- Null values
- Updates, view updates, schema modification.

