
DBS Database Systems
Implementing and Optimising Query Languages

Peter Buneman

9 November 2010

Storage and Indexing

Reading: R&G Chapters 8, 9 & 10.1

We typically store data in external (secondary) storage. Why? Becuase:

• Secondary storage is cheaper. £100 buys you 1gb of RAM or 100gb of disk (2006

figures)

• Secondary storage is more stable. It survives power cuts and – with care – system

crashes.

DBS 4.1

Differences between disk and main memory

• Smallest retrievable chunk of data: memory = 1 byte, disk = 1 page = 1kbyte (more

or less)

• Access time (time to dereference a pointer): memory < 10−8 sec, disk > 10−2 sec.

However sequential data, i.e. data on sequential pages, can be retrieved rapidly from disk.

DBS 4.2

Communication between disk and main memory

A buffer pool keeps images of disk pages in main memory cache.

Also needed a table that maps between positions on the disk and positions in the cache

(in both directions)

Buffer pool

Disk

DBS 4.3

When a page is requested

• If page is already in pool present, return address.

• If there is room in the pool, read page in and return address.

• If no room, choose a frame for replacement.

– if current frame is dirty – it has been written to – write frame to disk.

• read page in and return address.

Requesting process may pin page. Indicating that it “owns” it.

Page replacement policy: LRU, MRU, random, etc. Pathological examples defeat MRU

and LRU.

DBS 4.4

Storing tuples

Tuples are traditionally stored contiguoulsy on disk. Three possible formats (at least) for

storing tuples:

% % % %

Offset array

Delimited

Fixed size

INT CHAR(4) VARCHAR(6) CHAR(6)

DBS 4.5

Comments on storing tuples

Fixed format appears more efficient. We can “compile in” the offsets. But remember that

DB processing is dominated by i/o

Delimited can make use of variable length fields (VARCHAR) and simple compression (e.g.

deleting trailing blanks)

Fixed and delimited formats require extra space to represent null values. We get them for

free (almost) in the offset array representation.

DBS 4.6

Placing Records on a Page

We typically want to keep “pointers” or object identifiers for tuples. We need them if we

are going to build indexes, and we’d like them to be persistent.

1 2 3 4
1

3

4

7

Array of tuples

Array of pointers

DBS 4.7

Comments on page layouts

Array of tuples suitable for fixed length records.

• Object identifier is (page-identifier, index) pair.

• Cannot make use of space economy of variable-length record.

Pointer array is suitable for variable length records

• Object identifier is (page-identifier, pointer-index) pair.

• Can capitalize on variable length records.

• Records may be moved on a page to make way for new (or expanded) records.

DBS 4.8

File organization – unordered data

Keep two lists: pages with room and pages with no room.

Full

Free space

Variations:

• Keep an array of pointers.

• Order by amount of free space (for variable length tuples)

These are called heap files.

DBS 4.9

Other organizations

• Sorted files. Records are kept in order of some attribute (e.g. Id). Records are assumed

to be fixed-length and “packed” onto pages.

That is, the file can be treated as an array of records.

• Hashed files. Records are kept in an array of pages indexed by some hash function

applied to the attribute. Naive example:

Tuple with id = 1234Page 34

.
Hash function = id mod 100 100 pages

DBS 4.10

I/O Costs

We are primarily interested in the I/O (number of page reads and writes) needed to perform

various operations. Assume B pages and that read or write time is D

Scan Eq. Search Range Search Insert Delete

Heap BD 0.5BD BD 2D Search +D

Sorted BD D log2B D log2B +m∗ Search +BD Search +BD

Hashed 1.25BD D 1.25BD 2D Search +D

∗ m = number of matches

Assumes 80% occupancy of hashed file

DBS 4.11

Indexing – Introduction

Index is a collection of data entries with efficient methods to locate, insert and delete data

entries.

Hashed files and sorted files are simple examples of indexing methods, but they don’t do

all of these efficiently.

We index on some key.

Note the index key is not (necessarily) the “key” in the database design sense of the term.

We can only organize a data file by one key, but we may want indexes on more than one

key.

DBS 4.12

Example. Hash indexes and files

3000
3000
5004
5004

4003
2007
6003
6003

file of record id / sal
pairs hashed on age

Smith
Jones
Tracy

Ashby
Basu
Bristow

Cass
Daniels

44
40
44

3000
6003
5004

25
33
29

3000
4003
2007

50
22

5004
6003

File hashed on age

age mod 4 sal mod 4age sal

DBS 4.13

Indexes are needed for optimization

How are these queries helped by the presence of indexes?

SELECT *

FROM Employee

WHERE age = 33

SELECT *

FROM Employee

WHERE age > 33

SELECT *

FROM Employee

WHERE sal = 3000

SELECT *

FROM Employee

WHERE sal > 3000

DBS 4.14

What an index can provide

Given a key k, an index returns k∗ where k∗ is one of three things:

1. A data record (the tuple itself) with the search key value k

2. A pointer to a record with search key k together with k.

3. A list of pointers to records with search key k together with k.

DBS 4.15

Clustered vs. Unclustered Indexes

If we use tree indexing (to be described) we can exploit the ordering on a key and make

range queries efficient.

An index is clustered if the data entries that are close in this ordering are stored physically

close together (i.e. on the same page).

Data entries

(Index File)
(Data file)

Data Records

Data entries

Data Records

CLUSTERED
UNCLUSTERED

DBS 4.16

Tree indexing

Why not use the standard search tree indexing techniques that have been developed for

main memory data (variations on binary search trees): AVL trees, 3-3 trees, red-black

trees, etc?

Reason: binary search is still slow. 106 tuples (common) log2(10
6) = 20 – order 1

second because “dereferencing” a pointer on disk takes between 0.01 and 0.1 seconds.

Solution:

1. Use n-ary trees rather than binary.

2. Keep only keys and pointers at internal nodes. Leaves can be data values (either

records or record-id/key-value pairs)

DBS 4.17

Range Search

Example of point (2). We can speed up ordinary binary search on a sorted array by keeping

indexes and page pointers in a separate file.

The “index file” will typically fit into cache.

Page 1 Page 2 Page NPage 3 Data File

k2 kNk1 Index File

Consider queries such as SELECT *

FROM Employee

WHERE 20 < Sal AND Sal < 30

or

“Find all employees whose name begins with ‘Mac’.” (also a range search)

DBS 4.18

ISAM

ISAM = Indexed Sequential Access Method: a search tree whose nodes contain m keys

and m+ 1 pointers. m is chosen to “fill out” a page. A “pointer” is a page-id.

The pointer pi between keys ki−1 and ki points to a subtree whose keys are all in the

range ki−1 < k < ki.

Non− leaf
Pages

Overflow
page Primary pages

Pages
Leaf

PP00 KK11 PP11 KK22 PP22 KKmmPPmm

DBS 4.19

How ISAM works

• Create file(s): Data entries are sorted. Leaf data pages are allocated sequentially. Index

is constructed. Space for overflow pages is allocated.

• Find an entry (search). Obvious generalisation of method for binary search tree.

– If pages are large, we can also do binary search on a page, but this may not be worth

the effort. I/o costs dominate!

• Insert an item. Find leaf data page (search) and put it there. Create overflow page if

needed.

• Delete and item. Find leaf data page (search) and remove it. Maybe discard overflow

page.

Note. In ISAM, the index remains fixed after creation. It is easy to construct pathological

examples which make ISAM behave badly.

DBS 4.20

A simple ISAM example

This is not realistic. The example is only a 3-ary tree. In practice one might have 100-way

branching.

Note that we can perform an ordered traversal of the data entries by a traversal of the

index.

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

DBS 4.21

ISAM after inserts

Inserting 23∗, 48∗, 41∗, 42∗

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

23* 48* 41*

42*

Overflow

Pages

Leaf

Index

Pages

Pages

Primary

DBS 4.22

ISAM after deletes

Deleting 42∗, 51∗

Note that 51 appears as a key but no longer as a leaf value.

10* 15* 20* 27* 33* 37* 40* 46* 55* 63*

20 33 51 63

40

Root

23* 48* 41*

Main problem with ISAM: index is fixed. Can become worse than useless after a long series

of inserts and deletes.

DBS 4.23

B+ Tree. The Standard Index

• Each node (page) other than the root contains between d and 2d entries. d is called

the order of the tree. Pages are not always full.

• Suitable for both equality and range searches.

• Lookup (equality), insertion and deletion all take approx. logk(N) page accesses where

d ≤ k ≤ 2d.

• Tree remains perfectly balanced! All the leaf nodes are the same distance from the

root.

• In practice B-trees are never more than 5 levels deep, and the top two levels are typically

cached.
Index Entries

Data Entries
("Sequence set")

(Direct search)

DBS 4.24

Example B+ Tree

Search is again the obvious generalization of binary tree search. Could do binary search on

nodes.

Key values need not appear in any data entries.

Data pages are linked (we’ll see why shortly)

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

DBS 4.25

Inserting into a B+ Tree

• Find leaf page that should hold k∗

• If page is not full, we can insert k∗ and we are done.

• If not, split the leaf page into two, putting “half” he entries on each page and leaving

a middle key k′to be inserted in the node above.

• Recursively, try to insert k′ in the parent node.

• Continue splitting until either we find a node with space, or we split the root. The root

need only contain two children.

Either the tree grows fatter or (very occasionally) it grows deeper by splitting the root.

DBS 4.26

Example Insertion

Inserting 8∗. The page is full so the leaf page splits and 5, the middle key, is pushed up.

(5∗ remains in the leaf page.)

2* 3* 5* 7* 8*

55

The parent page is also full so this page splits and 17 is pushed up. (This is not in a data

entry, so it does not remain on one of the child pages.)

55 24 30

17

13

The new root contains just 17

DBS 4.27

The Resulting Tree

33* 34* 38* 39*24* 27* 29*19* 20* 22*

24 30

17

14* 16*

root

2* 3*

5 13

8*7*5*

We could have avoided the root split by sideways redistribution of data on the leaf pages.

But how far sideways does one look?

DBS 4.28

Deleting from a B+ Tree

• Find leaf page with entry to be deleted.

• Remove entry. If page is still half full we are done.

• Otherwise look at adjacent siblings with the same parent. Is there one that is more

than half full? Re-distribute (involves parent) and we are done.

• If not, merge with an adjacent sibling with same parent.

• Key in parent node must now be removed.

• If needed, recursively merge – possibly removing the existing root.

DBS 4.29

After Some Deletions

Having inserted 8∗ we delete 19∗ and then 20∗

Deleting 19∗ does not cause the page to become less than half full.

Deleting 20∗ can be done by moving 24∗ from the adjacent page and moving a new key,

27, up.

33* 34* 38* 39*

27 305 13

17

14* 16*

root

22* 24* 27* 29*2* 3* 8*7*5*

DBS 4.30

One more deletion...

We delete 24∗. Need to merge with adjacent sibling and remove key 27 from parent.

Parent is now too empty and must be merged with left sibling.

33* 34* 38* 39*22* 27* 29*

30

33* 34* 38* 39*22* 27* 29*

17 305 13

14* 16*

root

2* 3* 8*7*5*

DBS 4.31

Redistributing at Internal Nodes

Here we have just deleted 24 from some other tree.

Current tree is “unfinished”. We cannot merge node containing 30 with adjacent node,

but we can redistribute

30

33* 34* 38* 39*17* 18* 20* 21*

17 205 13

22

14* 16*2* 3* 8*7*5* 29*27*22*

root

DBS 4.32

After Redistribution

We could have moved just 20; we’ve also moved 17

33* 34* 38* 39*17* 18* 20* 21*14* 16*2* 3* 8*7*5* 29*27*22*

root

5 13 22

17

20 30

DBS 4.33

B+ Trees in practice

• Typical order: 100. Typical fill-factor: 67%.

– average fanout = 133

• Typical capacities:

– Height 4: 1334 = 312,900,700 records

– Height 3: 1333 = 2,352,637 records

• Can often hold top levels in buffer pool:

– Level 1 = 1 page = 8 Kbytes

– Level 2 = 133 pages = 1 Mbyte

– Level 3 = 17,689 pages = 133 MBytes

DBS 4.34

Hashing

An alternative to tree indexing

2961
1297
 657
8209

2706
1298
7058

Primary pages Overflow Pages

. . .

. . .
127

0

Id mod 128

2577

18

17

• Lookup, insert and update usually

take 1 read except when

restructuring is needed.

• No good for range searches.

• Typically hash to bucket (page)

h(x) mod m where m is number

of pages.

DBS 4.35

Expanding Hash Tables

If the hash table becomes “full”, which can happen because

• we don’t have overlow pages and a page becomes full, or

• the number (ratio) of overflow pages exceeds some threshold,

we need to restructure the hash table.

We can double the number of buckets and split each one.

E.g. 1297 mod 128 = 17 = 1297 mod 256. So 1297 stays on page 17.

However 2961 mod 128 = 17 but 2961 mod 256 = 145, so 2961 gets moved from

page 17 to page 145.

DBS 4.36

Doubling the table size

1298

 657

7058
2706

8209
2577

Primary pages Overflow Pages

Id mod 256

. . .

. . .

. . .

18

17

145 2961

146

 657

DBS 4.37

Alternative Hashing Techniques

Reconfiguring a whole hash table because can be very time consuming. Need methods of

“amortizing” the work.

• Extendible hashing Keep an index vector of n pointers. Double the index when needed,

but only split pages when they become full.

• Linear Hashing. Clever hash function that splits pages one at a time. This does not

avoid overflow pages, but we add a new page when the number of records reaches a

certain threshold. (80-90%) of maximum capacity.

DBS 4.38

Linear Hashing

0

0 1

0 2 1 3

0 4 2 6 1 5 3 7

8 4 2 10 6 14 1 9 3 11 7 15130 12 5

11 buckets with bucket 3 about to split

Suppose we want k buckets

Choose n s.t. 2n ≤ k ≤ 2n+1

Assume we have h – a hash function into

some large range.

This diagram shows how the buckets split.

Rearrange in order to see their layout in

memory. N.B. New bucket is always

appended.

Bucket for x = h(x) mod 2n if (h(x) mod 2n) ≥ 2n − k
= h(x) mod 2n+1 otherwise

Bucket to split when we increment k to k+1 is bucket k− 2n All other buckets stay put.

DBS 4.39

Review

• Properties of storage media

• Caching

• Placemant of tuples

• File Organization

• Relative merits of heap files, hashed files, ordered files.

• What indexes provide

• Clustered/unclustered indexes

• ISAM

• B-trees: lookup, insertion and deletion.

• Hash tables – basic properties.

DBS 4.40

Implementing Relational Operations

Reading: R&G 12.

The figures and example are taken from this chapter.

We’ll consider implementation of the following operations:

• Join (./)

• Selection (σ)

• Projection (π)

• Union (∪)

• Difference (\)

• Aggregation (GROUP-BY queries)

Union and difference are closely related to join, which is by far the most interesting

operation.

DBS 4.41

Object-oriented databases – a brief digression

The idea is that an object-oriented programming language (C++, Java, etc.) with minor

embelishments gives us a DBMS.

Example. Objectstore is an extension of C++ with “persistent” objects in secondary

storage. In Java the “DDL” would look something like:

class Department {
extent Departments

int DeptId

char DName[20]

string Address

...}

class Employee {
extent Employees

int EmpId

char Name[30]

Department Dept // a "pointer"

...}

Employees and Departments are global names (like table names) and contain “all” the

Employee and Department objects.

DBS 4.42

OQL, an object-oriented QL

OQL: SELECT e.Name, e.Dept.DName

FROM Employees e

WHERE e.Age > 40

SQL: SELECT e.Name, d.DName

FROM Employees e, Departments d

WHERE e.Age > 40

AND e.DeptId = d.DeptId

Which is more efficient?

Sometimes it is better to do a join than a set of derefences. It may pay to “optimize” the

OQL query to an SQL query!!

DBS 4.43

An example for relational operator optimization.

• Table R: pR tuples/page, M pages (= MpR) tuples.

• Table S: pS tuples/page, N pages (= MpS) tuples

Some plausible numerical values. When pages are 4000 bytes long, R tuples are 40 bytes,

and S tuples are 50 bytes long.

tuples/page # pages # tuples

pR = 100 M = 1000 100, 000

pS = 80 N = 500 40, 000

DBS 4.44

Equality join on one column

SELECT *

FROM R, S

WHERE R.i = S.i

Assume i is a key for S and is a foreign key in R, thus NpS tuples in output

Simple nested loop join:

for each tuple r ∈ R
for each tuple s ∈ S

if ri = si then add r, s to output

Cost (of I/O) = M + pRMN = 1000 + 100× 1000× 500 = 50, 001, 000. This is

the cost of reading all the pages of R plus the cost of reading all the pages of S for each

tuple in R.

DBS 4.45

Page-oriented Nested Loop Join

for each page BR of R

for each page BS of S

for each tuple r ∈ BR

for each tuple s ∈ BS

if ri = si then add r, s to output

Cost is now M +MN = 1000 + 1000× 500 = 501, 000 (Read all pages of R + all

pages of S for every page of R

If we interchange the “inner” and “outer” tables, we getN+NM = 500+1000×500 =

500, 500

DBS 4.46

Block Nested Loop Join

Extension of page-oriented nested loop join. We read as many pages of the outer table

into the buffer pool as we can (a “block” of pages).

. . .

. . .

R & S
Hash table for block of R

(k < B− 1 pages)

Input buffer for S Output buffer

. . .

Join Result

Note that we can make each block a hash table to speed up finding matching tuples.

DBS 4.47

I/O cost of block nested loop join

Cost: Scan of outer table + # outer blocks × scan of inner table

(# outer blocks = d# pages of outer / blocksizee)

• With R as outer, and blocksize=100:

– Cost of scanning R is 1000 I/Os; a total of 10 blocks.

– Per block of R, we scan S; 10× 500 I/Os.

– TOTAL: 6, 000 I/Os

• S as outer, and blocksize=100:

– Cost of scanning S is 500 I/Os; a total of 5 blocks.

– Per block of S, we scan R; 5 ∗ 1000 I/Os.

– TOTAL: 5, 500 I/Os

DBS 4.48

Index joins

for each tuple r ∈ R
for each tuple s with key ri in index for S

add r, s to output

Suppose average cost of lookup in index for S is L.

Cost of join is # of pages in R plus one lookup for each tuple in R. M +MLpR =

1000 + 100, 000L

If L = 3, this is 301, 000

The minimum value for L is 1 (when tuples of S are stored directly in hash-table buckets.)

Total is then 101, 000

DBS 4.49

Sort-merge join

• Sort both R and S on join column

• “Merge” sorted tables

Cost of sorting. Under reasonable assumptions about the size of a buffer pool, external

memory sorting on 1000 pages can be done in two passes. Each pass requires us to read

and write the file.

Note. Sorting m = 100, 000 tuples requires m log2m ≈ 1, 700, 000 main memory

comparisons. The I/O time in this example dominates.

Cost of sorting R and S is 4× 1, 000 + 4× 500 = 6, 000

Cost of Merge = 1, 500

Total: 7, 500

DBS 4.50

Hash join – phase 1

Partition both relations using hash function h applied to the join column values: R tuples

in partition i will only match S tuples in partition i.

B main memory buffers DiskDisk

Original
Relation OUTPUT

22INPUT

11

hash
function

hh B− 1

Partitions

11

22

B−1

. . .

DBS 4.51

Hash join – phase 2

We do a block-nested join on each pair of partitions: read in a partition of R, hash it using

h2 (must be different from h) then scan matching partition of S and search for matches.

Partitions
of R & S

Input buffer
for Si

Hash table for par tition
Ri (k < B− 1 pages)

B main memory buffersDisk

Output
 buffer

Disk

Join Result

hash
fn
h2

h2

DBS 4.52

Observations on Hash-Join

• The number of partitions is determined by the number of buffer pages, B − 1

• We want each partition (of R) to fit into the buffer memory, the partitions should have

less than B − 2 pages.

• Thus each table should occupy less than ≈ B2 pages.

• Can apply the technique recursively if needed.

Cost of hash-join = 3 passes through both tables, 3(M +N) = 4, 500!!

Hash-join is parallelisable.

DBS 4.53

General Join Conditions

• Equi-join on several fields. Straightforward generalisation of join on one field. Can

make use of index on all or any of the join columns.

• Inequality joins, e.g., R ./R.i<S.i S. Hash joins inapplicable. Variations on sort-merge

may work. E.g. for “approximate” joins such as

R ./S.i−C<R.i ∧ R.i<S.i+C S.

Indexing may work for clustered tree index.

Block nested loop join is a good bet.

DBS 4.54

Selection

Single column selections, e.g. σi=C(R) and σi>C(R).

• No index on i – scan whole table.

• Index on i

– Hash and tree index OK for equality.

– Tree index may be useful for σi>C(R), especially if index is clustered.

If tree index is unclustered:

∗ Retrieve qualifying rid’s.

∗ Sort these rid’s.

∗ Retrieve from data pages with a “merge”.

DBS 4.55

Selection on “complex” predicates

General problem, can indexes do better than a complete scan of the table. Look for special

cases.

• Range queries, σA<i∧i<B(R). Use tree index.

• Conjunction of conditions, e.g. σi=A∧j=B(R)

– Index on (i, j) – Good!

– Index on i. Obtain tuples and then perform σj=B.

– Separate indexes on i and j. Obtain and sort rid’s from each index. Intersect (use

merge) the sets of rid’s.

DBS 4.56

Projection

Only interesting case is a “real” projection, SELECT DISTINCT R.i, R.j FROM R.

• Eliminate duplicates by sorting

– Eliminate unwanted fields at first pass of sort.

If the projection fields are entirely contained within an index, e.g., we have an index on

(i, j), we can obtain results from index only.

DBS 4.57

Other set operations

• Intersection is a special case of join.

• Union and difference are similar. Again, the problem is eliminating duplicates.

– Sorting based approach:

∗ Sort both relations (on combination of all attributes).

∗ Scan sorted relations and merge them.

– Hash based approach to:

∗ Partition R and S using hash function h.

∗ For each S-partition, build in-memory hash table (using h2), scan corresponding

R-partition and add tuples to table while discarding duplicates.

DBS 4.58

Query optimization – brief notes

We have examined how to evaluate each relational operation efficiently. How do we

evaluate a whole query?

We make use of the rich set of rewriting rules for relational algebra. Examples:

• Join re-ordering. R ./ S ./ T = R ./ S ./ T . Do the most “selective” join first.

• Pushing selection through σR.i=C(R ./ S) = σR.i=C(R) ./ S.

DBS 4.59

Problem: the search space of expressions can be very large. In practice query optimizers

explore a small subset of the possibilities.

πR.m, S.n

R.i = S.j

σR.k=C

R

S

πR.m, S.n

R.i = S.j

σR.k=C πS.j, S.n

R S

πR.m, S.n

R.i = S.j

σR.k=C

SR

= = etc

DBS 4.60

Cost-based optimization

Whether or not a particular rewriting is a good idea depends on the statistics of the data.

Consider pushing selection through joins. Is it a good idea in the following queries?

SELECT E.Name, D.DName

FROM Employee E, Department D

WHERE E. DeptId = D.DeptId

AND D.Address = "KB"

AND E. Age < 20

SELECT E.Name, D.DName

FROM Employee E, Department D

WHERE E. DeptId = D.DeptId

AND D.Address = "KB"

AND E. Age < 60

Keeping statistics of tables such as the selectivity of an attribute is needed to decide when

a rewriting is useful. This compounds the problem of finding the optimum.

DBS 4.61

Implementing Relational Operations - Review

• Joins

– Page-oriented joins

– Block-nested loop joins

– Index-based joins

– Sort-merge joins

– Hash joins

• Using indexes in selections.

• Projection – elimination of duplicates

• Union and Difference

• Query rewriting, why algebraic identities are useful

• Cost-based optimization.

DBS 4.62

