A compact linear translation for bounded model checking

Paul B. Jackson¹ Daniel Sheridan²

¹University of Edinburgh

²Adelard LLP

BMC '06

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Aim of translation

- Assume given
 - Kripke structure $\hat{M} = \langle \hat{l}, \hat{T} \rangle$ over set of Boolean variables V $\hat{l} = \hat{l}(V)$ describes initial states $\hat{T} = \hat{T}(V, V')$ describes transition relation
 - I = I(V, V) describes transition relation
 - LTL formula ϕ in negation normal form
 - ▶ bound k > 0

Variables V used for atomic propositions in ϕ

- A state s of \hat{M} is a valuation of V (function $V \to \mathbb{B}$)
- ► A path s₀, s₁,... is an infinite sequence of states such that s₀ satisfies Î, and every pair (s_i, s_{i+1}) satisfies T
- ► Translation produces Boolean formula satisfiable in two cases prefix case: all paths of M̂ with some common prefix s₀,...s_{k-1} satisfy φ
 loop case: some loop path of form s₀,...s_{l-1}(s_l,..., s_{k-1})^ω for some l satisfies φ

Sketch of translation

- For every subformula ψ of φ and each timestep i < k, introduce a new Boolean variable (ψ)_i
- Create constraints relating variables. Constraints for F, G, U,
 R are based on fixpoint characterisations. G θ is greatest solution to

$$\mathbf{G}\,\theta= heta\wedge\mathbf{X}\,\mathbf{G}\, heta$$

and get constraints of form

$$(\mathbf{G}\, heta)_i \Rightarrow (heta)_i \wedge (\mathbf{G}\, heta)_{i+1}$$

- Could use \Leftrightarrow too. \Rightarrow is sufficient and more concise
- Strong similarity with automata-based LTL translations and Helsinki work
- For least-fixpoint operators (F, U), additional constraints are necessary (cf Büchi acceptance conditions)

Structure of translation result

Boolean formula produced is equivalent to

$$[\hat{M}]_{k} \wedge \left([\psi]_{k}^{0} \vee \bigvee_{l=0}^{k-1} \left({}_{l}L_{k}(\hat{M}) \wedge {}_{l}[\psi]_{k}^{0} \right) \right)$$

where

$$\begin{split} [\hat{M}]_k &\doteq \hat{l}(V^0) \wedge \bigwedge_{i=0}^{k-2} \hat{T}(V^i, V^{i+1}) \\ {}_{l}L_k(\hat{M}) &\doteq \hat{T}(V^{k-1}, V^l) \end{split}$$

► Size of formula translations [\u03c6]_k⁰ and _l[\u03c6]_k⁰ is linear in k. Formulae very similar. Can factor so overall size is linear in k.

Approach to deriving and verifying translation

- Bulk of translation expressed as series of equational transformations on LTL syntax.
- Most important transformation steps are:
 - Conversion of temporal operators F, G, U, R into explicit fixpoint versions. Syntax added: μα.φ and να.φ.

 $\mathbf{G}\phi \longrightarrow \nu\alpha. \phi \wedge \mathbf{X}\alpha$

- Replacement of fixpoint expressions by suitably constrained existentially quantified variables. Syntax added: ∃α.φ.
- Advantages of approach
 - Aids understanding and justification of translation
 - Simplifies consideration of alternate translations

In literature, translations usually given in monolithic form

Outline

Overview

Denotational semantics framework

Translation of greatest fixpoint operators

Translation of least fixpoint operators

Distinction between denotation and translation

Conclusions

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Denotational semantics

- Equational transformations justified using denotational semantics
- Each equational step justified by asserting equality of denotations of formulae before and after
- Denotational approach well-suited for giving semantics of fixpoint operators
- 3 semantics
 - Infinite semantics
 - Finite prefix-case semantics
 - Finite loop-case semantics
- Finite semantics also guide generation of Boolean formulae from LTL formulae produced by equational transformations

Infinite denotation function

• LTL semantics commonly given using satisfaction relation $\pi \models^i \phi$ for path π and position *i* on path.

$$\pi \models^{i} \mathbf{G} \phi \quad \Leftrightarrow \quad \forall j \ge i. \ \pi \models^{j} \phi$$

► The infinite denotation ^π[[φ]] of formula φ is an element of B^ω. Has property

$${}^{\pi}\llbracket\phi\rrbracket(i) \quad \Leftrightarrow \quad \pi \models^{i} \phi$$

Example

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \dots$$

$${}^{\pi}\llbracket\phi\rrbracket = \bot \quad \top \quad \bot \quad \top \quad \top^{\omega}$$

$${}^{\pi}\llbracket\mathbf{G}\phi\rrbracket = \bot \quad \bot \quad \bot \quad \top \quad \top^{\omega}$$

Finite loop-case representations

 Finite loop-case denotation function works with finite representations of infinite loop paths and denotations

• Assume given bound k and loop start l < k.

finite path s_0, \ldots, s_{k-1} such that $T(s_{k-1}, s_l)$ represents

infinite loop path $s_0 \dots s_{l-1} (s_l \dots s_{k-1})^{\omega}$

finite denotation a_0, \ldots, a_{k-1} where $a_i \in \mathbb{B}$ represents

infinite denotation $a_0 \ldots a_{l-1} (a_l \ldots a_{k-1})^{\omega}$

A loop-case inflation function ↑[∞]_o maps finite paths and denotations to the corresponding infinite paths and denotations.

The finite loop-case denotation function

- Written as ^{ⁱπ_I}[^Fφ]]_k. <sup>ⁱπ is a k-bounded path representing a (k, l) loop path. Maps φ to element of B^k
 </sup>
- Constructed from auxiliary function on LTL operators

$$\overset{\overset{\circ}{\pi}}{}_{I}^{\mathrm{F}} [\![\mathbf{O} \phi]\!]_{k} \stackrel{\doteq}{=} {}_{I}^{\mathrm{F}} [\![\mathbf{O}]\!]_{k} (\overset{\overset{\circ}{\pi}}{}_{I}^{\mathrm{F}} \phi]\!]_{k}) \quad \text{for } \mathbf{O} \in \{\mathbf{X}, \mathbf{F}, \mathbf{G}\}$$

$$\overset{\overset{}{\mu}}{}_{I}^{\mathrm{F}} [\![\mathbf{X}]\!]_{k} (\dot{a})(i) \stackrel{\doteq}{=} \begin{cases} \dot{a}(i+1) & \text{if } i < k-1 \\ \dot{a}(I) & \text{if } i = k-1 \end{cases}$$

$$\overset{}{\mu} \overset{}{}_{I}^{\mathrm{F}} [\![\mathbf{G}]\!]_{k} (\dot{a})(i) \stackrel{\doteq}{=} \forall j \in \{\min(i, I) \dots k-1\}. \dot{a}(j)$$

where $\dot{a} \in \mathbb{B}^k$ is a finite denotation, position $i \in \{0 ... k-1\}$ Finite denotation exactly mimics infinite denotation

$${}^{\dot{\pi}\uparrow^{\infty}_{\circ}}\llbracket\phi\rrbracket = {}^{\dot{\pi}}_{\prime}\llbracket\phi\rrbracket_{k}\uparrow^{\infty}_{\circ}$$

Correctness of loop-case equational transformations

Correctness statement

$${}^{\dot{\pi}\uparrow^{\infty}_{\circ}}[\![\phi]\!] \;=\; {}^{\dot{\pi}}_{\prime}[\![\mathcal{N}(\phi)]\!]_{k}\uparrow^{\infty}_{\circ}$$

where $\mathcal{N}()$ carries out equational transformations

- Proof involves justifying
 - 1. initial equational steps with $\pi[\cdot]$ semantics
 - 2. switch to $\frac{\pi}{l} [\cdot]_{k}$ semantics
 - 3. subsequent equational steps with $\overset{\circ}{}_{l}^{\mathrm{F}}$ semantics

Semantics of fixpoint operators

Infinite semantics is standard Tarski-Knaster construction

$$\begin{aligned} {}^{\pi} \llbracket \nu \alpha. \phi \rrbracket^{\rho} &= \operatorname{gfp} \left({}^{\pi} \llbracket \lambda \alpha. \phi \rrbracket^{\rho} \right) \\ &= \bigsqcup \{ \boldsymbol{a} \in \mathbb{B}^{\omega} \mid \boldsymbol{a} \sqsubseteq {}^{\pi} \llbracket \phi \rrbracket^{\rho[\alpha \mapsto \boldsymbol{a}]} \} \end{aligned}$$

Here \sqcup is least upper bound operator on complete lattice

where

$$a \sqsubseteq b \doteq \forall i \in \mathbb{N}. a(i) \Rightarrow b(i)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\langle \mathbb{B}^{\omega}, \sqsubseteq \rangle$

finite loop-case and prefix-case semantics are similar

Translation of greatest-fixpoint operators (loop-case)

1. Introduce gfp operator ν

$$\pi \llbracket \mathbf{G} \,\beta \rrbracket = \pi \llbracket \nu \alpha. \,\beta \wedge \mathbf{X} \,\alpha \rrbracket$$

where π is any infinite path

2. Switch to finite semantics

$$\dot{\pi}\uparrow^{\infty}_{\circ}\llbracket\nu\alpha.\ \beta\wedge\mathbf{X}\,\alpha\rrbracket = \dot{f}_{I}^{\mathrm{F}}\nu\alpha.\ \beta\wedge\mathbf{X}\,\alpha\rrbracket_{k}\uparrow^{\infty}_{\circ}$$

where $\dot{\pi}$ is a length k path representing a (k, l) loop path

Introduction of the existential quantification

Translation is

where $\Psi[\cdot]$ is a monotone context and

$$\overset{\stackrel{\stackrel{}_{\alpha}}{}_{l}^{\mathrm{F}}}{[\!\![}\overset{}{\exists}\alpha. \phi]\!\!]_{k}^{\dot{\rho}}(i) \stackrel{\stackrel{}_{=}}{=} \exists \dot{a} \in \mathbb{B}^{k}. \overset{\stackrel{\stackrel{}_{\beta}}{}_{l}^{\mathrm{F}}\!\![\phi]\!\!]_{k}^{\dot{\rho}[\alpha \mapsto \dot{a}]}(i)$$

$$\overset{\stackrel{}_{\mathrm{F}}}{}_{l}^{\mathrm{F}}\!\![\mathbf{G}_{0}]\!\!]_{k}(\dot{a})(i) \stackrel{\stackrel{}_{=}}{=} \forall j \in \{0...k-1\}. \dot{a}(j)$$

• Intuition is from semantics of $\nu \alpha. \phi$:

$$\overset{\dot{\pi}}{}_{J}^{\mathrm{F}}\llbracket\nu\alpha.\phi]\!]_{k}^{\dot{\rho}} = \bigsqcup\{\dot{a} \in \mathbb{B}^{k} \mid \dot{a} \sqsubseteq \overset{\pi}{}_{J}^{\mathrm{F}}\llbracket\phi]\!]_{k}^{\dot{\rho}[\alpha \mapsto \dot{a}]}\}$$

▶ \exists derives from \square operator

• $\mathbf{G}_0(\alpha \Rightarrow \phi)$ expresses in syntax the constraint $\dot{a} \sqsubseteq \frac{\dot{\pi}}{l} \begin{bmatrix} \phi \end{bmatrix}_k^{\dot{\rho}[\alpha \mapsto \dot{a}]}$

Both pulled through context Ψ

Example of translation

► Translation yielding Boolean formula satisfiable by finite path $\dot{\pi}^{\mathrm{F}}_{j}$ [$p \wedge \mathbf{G} q$]_k $(0) = \top$

Equational transformations are

$$p \wedge \mathbf{G} q \longrightarrow p \wedge \nu \alpha. \ q \wedge \mathbf{X} \alpha$$
$$\longrightarrow \exists \alpha. \ \mathbf{G}_0 \ (\alpha \Rightarrow q \wedge \mathbf{X} \alpha) \wedge p \wedge \alpha$$

Final (existentially quantified) Boolean formula is

$$\exists a_0, \dots, a_{k-1}. \bigwedge_{i=0}^{k-2} (a_i \Rightarrow q^i \land a_{i+1}) \land (a_{k-1} \Rightarrow q^{k-1} \land a_l) \land p^0 \land a_0$$

Translation of least-fixpoint operators (loop case)

1. Introduce lfp operator μ

$${}^{\pi}\llbracket \mathbf{F}\,\beta\rrbracket = {}^{\pi}\llbracket \mu\alpha. \ \beta \lor \mathbf{X}\,\alpha\rrbracket$$

where π is any infinite path

2. Switch to finite semantics

$$\dot{\pi}\uparrow^{\infty}_{\circ}\llbracket\mu\alpha.\ \beta\vee\mathbf{X}\,\alpha\rrbracket \ = \ \dot{\gamma}^{\mathrm{F}}_{l}\llbracket\mu\alpha.\ \beta\vee\mathbf{X}\,\alpha\rrbracket_{k}\uparrow^{\infty}_{\circ}$$

where $\dot{\pi}$ is a length k path representing a (k, l) loop path. 3. Eliminate gfp operator μ

$$\overset{\star}{}_{I}^{F} \llbracket \Psi[\mu\alpha. \phi]] \overset{\dot{\rho}}{}_{k} = \overset{\star}{}_{I}^{F} \llbracket \forall \alpha. \mathbf{G}_{0} (\phi \Rightarrow \alpha) \land \Psi[\alpha]] \overset{\dot{\rho}}{}_{k}$$

4. Translation yields QBF problems, not SAT problems

5. Way out: enable switch to gfp by making fixpoint unique

Approach to least fixpoints using single loop unroll

- Want alternate expression of finite loop-case semantics for F that involves fixpoint characterisation where fixpoint is unique
- Let à ∈ B^k represent infinite (k, l) loop denotation a = à ↑_o[∞].
 Consider i ∈ {0.. k−1}. Have that

$$\begin{split} {}_{I}^{\mathrm{F}} \mathbf{F} \mathbf{J}_{k}(\dot{a})(i) &= \mathbf{I} \mathbf{F} \mathbf{J}(a)(i) \\ &= \exists j \geq i. \ a(j) \\ &= \exists j \in \{i \dots k' - 1\}. \ a(j) \\ &= i \mathbf{I} \mathbf{F} \mathbf{F}^{\perp} \mathbf{J}_{k'}(a|_{k'})(i) \end{split}$$

where k' = k + (k - l) (1 loop unroll)

- Step *** valid since sufficient to visit distinct values of a once
- Similar argument explains F, U treatment in original TACAS '99 paper and F, U, G, R treatment in Helsinki FMCAD '04 paper

Alternate F using a greatest fixpoint

Definitions are

$$\int_{I}^{F} [\mathbf{X}^{\perp}]_{k}(\dot{a})(i) \doteq \begin{cases} \dot{a}(i+1) & \text{if } i < k-1 \\ \perp & \text{if } i = k-1 \end{cases}$$
$$\tilde{\mathbf{F}}^{\perp} \alpha \qquad \doteq \nu\beta. \ \alpha \lor \mathbf{X}^{\perp} \beta$$

▶ **F**[⊥] has property
$$\int_{k}^{F} [\mathbf{F}^{\bot}]_{k}(\dot{a})(i) = \exists j \in \{i ... k-1\}. \dot{a}(j)$$
▶ $\int_{k}^{F} [\mathbf{F}^{\bot}]_{k}(\dot{a})$ is greatest \dot{b} such that

$$egin{array}{lll} b(j) & \Leftrightarrow & \dot{a}(j) ee b(j{+}1) & orall j < k{-}1 \ \dot{b}(k{-}1) & \Leftrightarrow & \dot{a}(k{-}1) ee ot \end{array}$$

- Existence of upper bound on position at which fixpoint constraint calculated forces uniqueness of fixpoint
- Hence ν is adequate

Optimisation of alternate **F** handling

► Step *** corresponds to treatment of **F** in TACAS '99

Semantic functions vs translation functions

- Distinction blurred in literature
- Are very similar translation derived from finite denotation

$$\overset{\stackrel{\scriptscriptstyle +}{}}{}_{l}^{\mathrm{F}} [\mathbf{F} \, \psi]]_{k}(i) \quad \doteq \quad \exists j \in \{\min(i, l) \dots k - 1\}. \overset{\stackrel{\scriptscriptstyle +}{}}{}_{l}^{\mathrm{F}} [\mathbf{F} \, \psi]]_{k}(i)$$

$${}_{l} [\mathbf{F} \, \phi]_{k}^{i} \qquad \doteq \quad \bigvee_{j=\min(i, l)}^{k-1} {}_{l} [\phi]_{k}^{j}$$

Not the same thing

$$\overset{\stackrel{\stackrel{}_{}}{}}{}_{l}^{\mathrm{F}}[v]]_{k}(i) \doteq s_{i}(v) \qquad \qquad {}_{l}[v]_{k}^{i} \doteq v^{i}$$

Literature includes awkward hybrid statements similar to

-

$$\left| \begin{bmatrix} v \end{bmatrix}_{k}^{i} \doteq v(s_{i}) \right|$$

Relationship is

$$\overset{\pi}{}_{I}^{F}[\![\phi]\!]_{k}(i) \quad \Leftrightarrow \quad \dot{\pi} \models {}_{I}[\![\phi]\!]_{k}^{i}$$

Semantic vs symbolic Kripke structures

► Symbolic Kripke structure (Î, Î) over variables V induces semantic Kripke structure (S, I, T) where

•
$$S = V \rightarrow \mathbb{B}$$

$$I \subseteq S$$

- $T \subseteq S \times S$
- With symbolic Kripke structure, can write translation of path constraint more accurately as

$$\hat{I}(V^0)\wedge igwedge_{i=0}^{k-2} \hat{T}(V^i,V^{i+1})$$

rather than

$$I(s_0) \land \forall i \in \{0 \dots k-2\}. \ T(s_i, s_{i+1})$$

Conclusions

Contributions:

- new BMC translation for LTL linear in bound k
 - Appears to be more compact
 - Experimental evaluation needed
- Rigorous framework for reasoning about translations
 - Helps exploration of alternatives
 - Applicable to other translations
 - Addresses need for improved confidence
 - Published papers have errors
 - Correctness arguments subtle (particularly with past time)

Industry needs correctness

Future work:

- Implement and evaluate
- Complete tech report
- Extend to past time