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Aim of translation

I Assume given
I Kripke structure M̂ = 〈Î , T̂ 〉 over set of Boolean variables V

Î = Î (V ) describes initial states
T̂ = T̂ (V ,V ′) describes transition relation

I LTL formula φ in negation normal form
I bound k > 0

Variables V used for atomic propositions in φ

I A state s of M̂ is a valuation of V (function V → B)

I A path s0, s1, . . . is an infinite sequence of states such that
s0 satisfies Î , and
every pair 〈si , si+1〉 satisfies T̂

I Translation produces Boolean formula satisfiable in two cases

prefix case: all paths of M̂ with some common prefix
s0, . . . sk−1 satisfy φ

loop case: some loop path of form
s0, . . . sl−1(sl , . . . , sk−1)

ω for some l satisfies φ



Sketch of translation

I For every subformula ψ of φ and each timestep i < k,
introduce a new Boolean variable (ψ)i

I Create constraints relating variables. Constraints for F, G, U,
R are based on fixpoint characterisations. G θ is greatest
solution to

G θ = θ ∧ XG θ

and get constraints of form

(G θ)i ⇒ (θ)i ∧ (G θ)i+1

I Could use ⇔ too. ⇒ is sufficient and more concise

I Strong similarity with automata-based LTL translations and
Helsinki work

I For least-fixpoint operators (F, U), additional constraints are
necessary (cf Büchi acceptance conditions)



Structure of translation result

I Boolean formula produced is equivalent to

[M̂]k ∧
(
[ψ]0k ∨

k−1∨
l=0

(
Ll k(M̂) ∧ [l ψ]0k

))
where

[M̂]k
.
= Î (V 0) ∧

∧k−2
i=0 T̂ (V i ,V i+1)

Ll k(M̂)
.
= T̂ (V k−1,V l)

I Size of formula translations [ψ]0k and [l ψ]0k is linear in k.
Formulae very similar. Can factor so overall size is linear in k.



Approach to deriving and verifying translation

I Bulk of translation expressed as series of equational
transformations on LTL syntax.

I Most important transformation steps are:
I Conversion of temporal operators F, G, U, R into explicit

fixpoint versions. Syntax added: µα.φ and να.φ.

Gφ −→ να. φ ∧ Xα

I Replacement of fixpoint expressions by suitably constrained
existentially quantified variables. Syntax added: ∃α.φ.

I Advantages of approach
I Aids understanding and justification of translation
I Simplifies consideration of alternate translations

In literature, translations usually given in monolithic form
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Denotational semantics

I Equational transformations justified using denotational
semantics

I Each equational step justified by asserting equality of
denotations of formulae before and after

I Denotational approach well-suited for giving semantics of
fixpoint operators

I 3 semantics
I Infinite semantics
I Finite prefix-case semantics
I Finite loop-case semantics

I Finite semantics also guide generation of Boolean formulae
from LTL formulae produced by equational transformations



Infinite denotation function

I LTL semantics commonly given using satisfaction relation
π |=i φ for path π and position i on path.

π |=i Gφ ⇔ ∀j ≥ i . π |=j φ

I The infinite denotation [[π φ]] of formula φ is an element of
Bω. Has property

[[π φ]](i) ⇔ π |=i φ

I Example

0 1 2 3 4 . . .

[[π φ]] = ⊥ > ⊥ > >ω

[[π Gφ]] = ⊥ ⊥ ⊥ > >ω



Finite loop-case representations

I Finite loop-case denotation function works with finite
representations of infinite loop paths and denotations

I Assume given bound k and loop start l < k.

finite path s0, . . . , sk−1 such that T (sk−1, sl)
represents

infinite loop path s0 . . . sl−1(sl . . . sk−1)
ω

finite denotation a0, . . . , ak−1 where ai ∈ B
represents

infinite denotation a0 . . . al−1(al . . . ak−1)
ω

I A loop-case inflation function ↑∞◦ maps finite paths and
denotations to the corresponding infinite paths and
denotations.



The finite loop-case denotation function

I Written as π̇
l

F

[[φ]]k . π̇ is a k-bounded path representing a (k, l)
loop path. Maps φ to element of Bk

I Constructed from auxiliary function on LTL operators

π̇
l

F

[[Oφ]]k
.
= l

F

[[O]]k(π̇
l

F

[[φ]]k) for O ∈ {X,F,G}

l

F

[[X]]k(ȧ)(i)
.
=

ȧ(i+1) if i < k−1

ȧ(l) if i = k−1

l

F

[[G]]k(ȧ)(i)
.
= ∀j ∈ {min(i , l) .. k−1}. ȧ(j)

where ȧ ∈ Bk is a finite denotation, position i ∈ {0 .. k−1}
I Finite denotation exactly mimics infinite denotation

[[π̇↑∞◦ φ]] = π̇
l

F

[[φ]]k ↑
∞
◦



Correctness of loop-case equational transformations

I Correctness statement

[[π̇↑∞◦ φ]] = π̇
l

F

[[N (φ)]]k ↑
∞
◦

where N () carries out equational transformations

I Proof involves justifying

1. initial equational steps with [[π ·]] semantics

2. switch to π̇
l

F

[[·]]k semantics

3. subsequent equational steps with π̇
l

F

[[·]]k semantics



Semantics of fixpoint operators

I Infinite semantics is standard Tarski-Knaster construction

[[π να.φ]]ρ = gfp
(

[[π λα.φ]]ρ
)

= t{a ∈ Bω | a v [[π φ]]ρ[α 7→a]}

Here t is least upper bound operator on complete lattice

〈Bω,v〉

where
a v b

.
= ∀i ∈ N. a(i) ⇒ b(i)

I finite loop-case and prefix-case semantics are similar



Translation of greatest-fixpoint operators (loop-case)

1. Introduce gfp operator ν

[[π Gβ]] = [[π να. β ∧ Xα]]

where π is any infinite path

2. Switch to finite semantics

[[π̇↑∞◦ να. β ∧ Xα]] = π̇
l

F

[[να. β ∧ Xα]]k ↑
∞
◦

where π̇ is a length k path representing a (k, l) loop path



Introduction of the existential quantification

I Translation is

π̇
l

F

[[ Ψ[να. φ] ]]ρ̇k = π̇
l

F

[[ ∃α. G0 (α⇒ φ) ∧Ψ[α] ]]ρ̇k

where Ψ[·] is a monotone context and

π̇
l

F

[[∃α. φ]]ρ̇k(i)
.
= ∃ȧ ∈ Bk . π̇

l

F

[[φ]]
ρ̇[α 7→ȧ]
k (i)

l

F

[[G0]]k(ȧ)(i)
.
= ∀j ∈ {0 .. k−1}. ȧ(j)

I Intuition is from semantics of να.φ:

π̇
l

F

[[να.φ]]ρ̇k = t{ȧ ∈ Bk | ȧ v π̇
l

F

[[φ]]
ρ̇[α 7→ȧ]
k }

I ∃ derives from t operator

I G0 (α⇒ φ) expresses in syntax the constraint ȧ v π̇
l

F

[[φ]]
ρ̇[α7→ȧ]
k

I Both pulled through context Ψ



Example of translation

I Translation yielding Boolean formula satisfiable by finite path

π̇ just when π̇
l

F

[[p ∧ G q]]k(0) = >

I Equational transformations are

p ∧ G q −→ p ∧ να. q ∧ Xα

−→ ∃α. G0 (α⇒ q ∧ Xα) ∧ p ∧ α

I Final (existentially quantified) Boolean formula is

∃a0, . . . , ak−1.
k−2∧
i=0

(ai ⇒ qi∧ai+1)∧(ak−1 ⇒ qk−1∧al)∧p0∧a0



Translation of least-fixpoint operators (loop case)

1. Introduce lfp operator µ

[[π Fβ]] = [[π µα. β ∨ Xα]]

where π is any infinite path

2. Switch to finite semantics

[[π̇↑∞◦ µα. β ∨ Xα]] = π̇
l

F

[[µα. β ∨ Xα]]k ↑
∞
◦

where π̇ is a length k path representing a (k, l) loop path.

3. Eliminate gfp operator µ

π̇
l

F

[[ Ψ[µα. φ] ]]ρ̇k = π̇
l

F

[[ ∀α. G0 (φ⇒ α) ∧Ψ[α] ]]ρ̇k

4. Translation yields QBF problems, not SAT problems

5. Way out: enable switch to gfp by making fixpoint unique



Approach to least fixpoints using single loop unroll
I Want alternate expression of finite loop-case semantics for F

that involves fixpoint characterisation where fixpoint is unique
I Let ȧ ∈ Bk represent infinite (k, l) loop denotation a = ȧ ↑∞◦ .

Consider i ∈ {0 .. k−1}. Have that

l

F

[[F]]k(ȧ)(i) = [[F]](a)(i)

= ∃j ≥ i . a(j)

= ∃j ∈ {i .. k ′−1}. a(j) ***

= l

F

[[F̃⊥]]k ′(a|k ′)(i)

where k ′ = k + (k − l) (1 loop unroll)

I Step *** valid since sufficient to visit distinct values of a once
I Similar argument explains F,U treatment in original TACAS

’99 paper and F,U,G,R treatment in Helsinki FMCAD ’04
paper



Alternate F using a greatest fixpoint

I Definitions are

l

F

[[X⊥]]k(ȧ)(i)
.
=

{
ȧ(i + 1) if i < k−1

⊥ if i = k−1

F̃⊥ α
.
= νβ. α ∨ X⊥ β

I F̃⊥ has property l

F

[[F̃⊥]]k(ȧ)(i) = ∃j ∈ {i .. k−1}. ȧ(j)

I
l

F

[[F̃⊥]]k(ȧ) is greatest ḃ such that

ḃ(j) ⇔ ȧ(j) ∨ ḃ(j+1) ∀j < k−1

ḃ(k−1) ⇔ ȧ(k−1) ∨ ⊥

I Existence of upper bound on position at which fixpoint
constraint calculated forces uniqueness of fixpoint

I Hence ν is adequate



Optimisation of alternate F handling
I With k ′ = k + (k − l)

l

F

[[F]]k(ȧ)(i)

= ∃j ∈ {i .. k ′−1}. a(j)

= (∃j ∈ {i .. k−1}. ȧ(j)) ∨ (∃j ∈ {k .. k ′−1}. ȧ(j))

= (∃j ∈ {i .. k−1}. ȧ(j)) ∨ (∃j ∈ {l .. k−1}. ȧ(j))[
= ∃j ∈ {min(i , l) .. k−1}. ȧ(j)

]
***

I With l

F

[[loopstart]]k(ȧ)(i)
.
= ȧ(l) have that

π̇
l

F

[[ Fα ]]ρ̇k = π̇
l

F

[[ F̃⊥ α ∨ loopstart F̃⊥ α ]]ρ̇k

I Only need fixpoint constraints up to k, not 2k worst case
I Step *** corresponds to treatment of F in TACAS ’99



Semantic functions vs translation functions

I Distinction blurred in literature

I Are very similar – translation derived from finite denotation

π̇
l

F

[[Fψ]]k(i)
.
= ∃j ∈ {min(i , l) .. k−1}. π̇

l

F

[[Fψ]]k(i)

[l Fφ]ik
.
=

∨k−1
j=min(i ,l) [l φ]

j
k

I Not the same thing

π̇
l

F

[[v ]]k(i)
.
= si (v) [l v ]ik

.
= v i

I Literature includes awkward hybrid statements similar to

[l v ]ik
.
= v(si )

I Relationship is

π̇
l

F

[[φ]]k(i) ⇔ π̇ |= [l φ]
i
k



Semantic vs symbolic Kripke structures

I Symbolic Kripke structure 〈Î , T̂ 〉 over variables V induces
semantic Kripke structure 〈S , I ,T 〉 where

I S = V → B
I I ⊆ S
I T ⊆ S × S

I With symbolic Kripke structure, can write translation of path
constraint more accurately as

Î (V 0) ∧
k−2∧
i=0

T̂ (V i ,V i+1)

rather than

I (s0) ∧ ∀i ∈ {0 .. k−2}. T (si , si+1)



Conclusions

Contributions:
I new BMC translation for LTL linear in bound k

I Appears to be more compact
I Experimental evaluation needed

I Rigorous framework for reasoning about translations
I Helps exploration of alternatives
I Applicable to other translations
I Addresses need for improved confidence

I Published papers have errors
I Correctness arguments subtle (particularly with past time)
I Industry needs correctness

Future work:

I Implement and evaluate

I Complete tech report

I Extend to past time
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