
A compact linear translation for bounded model
checking

Paul B. Jackson1 Daniel Sheridan2

1University of Edinburgh

2Adelard LLP

BMC ’06

Aim of translation

I Assume given
I Kripke structure M̂ = 〈Î , T̂ 〉 over set of Boolean variables V

Î = Î (V) describes initial states
T̂ = T̂ (V ,V ′) describes transition relation

I LTL formula φ in negation normal form
I bound k > 0

Variables V used for atomic propositions in φ

I A state s of M̂ is a valuation of V (function V → B)

I A path s0, s1, . . . is an infinite sequence of states such that
s0 satisfies Î , and
every pair 〈si , si+1〉 satisfies T̂

I Translation produces Boolean formula satisfiable in two cases

prefix case: all paths of M̂ with some common prefix
s0, . . . sk−1 satisfy φ

loop case: some loop path of form
s0, . . . sl−1(sl , . . . , sk−1)

ω for some l satisfies φ

Sketch of translation

I For every subformula ψ of φ and each timestep i < k,
introduce a new Boolean variable (ψ)i

I Create constraints relating variables. Constraints for F, G, U,
R are based on fixpoint characterisations. G θ is greatest
solution to

G θ = θ ∧ XG θ

and get constraints of form

(G θ)i ⇒ (θ)i ∧ (G θ)i+1

I Could use ⇔ too. ⇒ is sufficient and more concise

I Strong similarity with automata-based LTL translations and
Helsinki work

I For least-fixpoint operators (F, U), additional constraints are
necessary (cf Büchi acceptance conditions)

Structure of translation result

I Boolean formula produced is equivalent to

[M̂]k ∧
(
[ψ]0k ∨

k−1∨
l=0

(
Ll k(M̂) ∧ [l ψ]0k

))
where

[M̂]k
.
= Î (V 0) ∧

∧k−2
i=0 T̂ (V i ,V i+1)

Ll k(M̂)
.
= T̂ (V k−1,V l)

I Size of formula translations [ψ]0k and [l ψ]0k is linear in k.
Formulae very similar. Can factor so overall size is linear in k.

Approach to deriving and verifying translation

I Bulk of translation expressed as series of equational
transformations on LTL syntax.

I Most important transformation steps are:
I Conversion of temporal operators F, G, U, R into explicit

fixpoint versions. Syntax added: µα.φ and να.φ.

Gφ −→ να. φ ∧ Xα

I Replacement of fixpoint expressions by suitably constrained
existentially quantified variables. Syntax added: ∃α.φ.

I Advantages of approach
I Aids understanding and justification of translation
I Simplifies consideration of alternate translations

In literature, translations usually given in monolithic form

Outline

Overview

Denotational semantics framework

Translation of greatest fixpoint operators

Translation of least fixpoint operators

Distinction between denotation and translation

Conclusions

Denotational semantics

I Equational transformations justified using denotational
semantics

I Each equational step justified by asserting equality of
denotations of formulae before and after

I Denotational approach well-suited for giving semantics of
fixpoint operators

I 3 semantics
I Infinite semantics
I Finite prefix-case semantics
I Finite loop-case semantics

I Finite semantics also guide generation of Boolean formulae
from LTL formulae produced by equational transformations

Infinite denotation function

I LTL semantics commonly given using satisfaction relation
π |=i φ for path π and position i on path.

π |=i Gφ ⇔ ∀j ≥ i . π |=j φ

I The infinite denotation [[π φ]] of formula φ is an element of
Bω. Has property

[[π φ]](i) ⇔ π |=i φ

I Example

0 1 2 3 4 . . .

[[π φ]] = ⊥ > ⊥ > >ω

[[π Gφ]] = ⊥ ⊥ ⊥ > >ω

Finite loop-case representations

I Finite loop-case denotation function works with finite
representations of infinite loop paths and denotations

I Assume given bound k and loop start l < k.

finite path s0, . . . , sk−1 such that T (sk−1, sl)
represents

infinite loop path s0 . . . sl−1(sl . . . sk−1)
ω

finite denotation a0, . . . , ak−1 where ai ∈ B
represents

infinite denotation a0 . . . al−1(al . . . ak−1)
ω

I A loop-case inflation function ↑∞◦ maps finite paths and
denotations to the corresponding infinite paths and
denotations.

The finite loop-case denotation function

I Written as π̇
l

F

[[φ]]k . π̇ is a k-bounded path representing a (k, l)
loop path. Maps φ to element of Bk

I Constructed from auxiliary function on LTL operators

π̇
l

F

[[Oφ]]k
.
= l

F

[[O]]k(π̇
l

F

[[φ]]k) for O ∈ {X,F,G}

l

F

[[X]]k(ȧ)(i)
.
=

ȧ(i+1) if i < k−1

ȧ(l) if i = k−1

l

F

[[G]]k(ȧ)(i)
.
= ∀j ∈ {min(i , l) .. k−1}. ȧ(j)

where ȧ ∈ Bk is a finite denotation, position i ∈ {0 .. k−1}
I Finite denotation exactly mimics infinite denotation

[[π̇↑∞◦ φ]] = π̇
l

F

[[φ]]k ↑
∞
◦

Correctness of loop-case equational transformations

I Correctness statement

[[π̇↑∞◦ φ]] = π̇
l

F

[[N (φ)]]k ↑
∞
◦

where N () carries out equational transformations

I Proof involves justifying

1. initial equational steps with [[π ·]] semantics

2. switch to π̇
l

F

[[·]]k semantics

3. subsequent equational steps with π̇
l

F

[[·]]k semantics

Semantics of fixpoint operators

I Infinite semantics is standard Tarski-Knaster construction

[[π να.φ]]ρ = gfp
(

[[π λα.φ]]ρ
)

= t{a ∈ Bω | a v [[π φ]]ρ[α 7→a]}

Here t is least upper bound operator on complete lattice

〈Bω,v〉

where
a v b

.
= ∀i ∈ N. a(i) ⇒ b(i)

I finite loop-case and prefix-case semantics are similar

Translation of greatest-fixpoint operators (loop-case)

1. Introduce gfp operator ν

[[π Gβ]] = [[π να. β ∧ Xα]]

where π is any infinite path

2. Switch to finite semantics

[[π̇↑∞◦ να. β ∧ Xα]] = π̇
l

F

[[να. β ∧ Xα]]k ↑
∞
◦

where π̇ is a length k path representing a (k, l) loop path

Introduction of the existential quantification

I Translation is

π̇
l

F

[[Ψ[να. φ]]]ρ̇k = π̇
l

F

[[∃α. G0 (α⇒ φ) ∧Ψ[α]]]ρ̇k

where Ψ[·] is a monotone context and

π̇
l

F

[[∃α. φ]]ρ̇k(i)
.
= ∃ȧ ∈ Bk . π̇

l

F

[[φ]]
ρ̇[α 7→ȧ]
k (i)

l

F

[[G0]]k(ȧ)(i)
.
= ∀j ∈ {0 .. k−1}. ȧ(j)

I Intuition is from semantics of να.φ:

π̇
l

F

[[να.φ]]ρ̇k = t{ȧ ∈ Bk | ȧ v π̇
l

F

[[φ]]
ρ̇[α 7→ȧ]
k }

I ∃ derives from t operator

I G0 (α⇒ φ) expresses in syntax the constraint ȧ v π̇
l

F

[[φ]]
ρ̇[α7→ȧ]
k

I Both pulled through context Ψ

Example of translation

I Translation yielding Boolean formula satisfiable by finite path

π̇ just when π̇
l

F

[[p ∧ G q]]k(0) = >

I Equational transformations are

p ∧ G q −→ p ∧ να. q ∧ Xα

−→ ∃α. G0 (α⇒ q ∧ Xα) ∧ p ∧ α

I Final (existentially quantified) Boolean formula is

∃a0, . . . , ak−1.
k−2∧
i=0

(ai ⇒ qi∧ai+1)∧(ak−1 ⇒ qk−1∧al)∧p0∧a0

Translation of least-fixpoint operators (loop case)

1. Introduce lfp operator µ

[[π Fβ]] = [[π µα. β ∨ Xα]]

where π is any infinite path

2. Switch to finite semantics

[[π̇↑∞◦ µα. β ∨ Xα]] = π̇
l

F

[[µα. β ∨ Xα]]k ↑
∞
◦

where π̇ is a length k path representing a (k, l) loop path.

3. Eliminate gfp operator µ

π̇
l

F

[[Ψ[µα. φ]]]ρ̇k = π̇
l

F

[[∀α. G0 (φ⇒ α) ∧Ψ[α]]]ρ̇k

4. Translation yields QBF problems, not SAT problems

5. Way out: enable switch to gfp by making fixpoint unique

Approach to least fixpoints using single loop unroll
I Want alternate expression of finite loop-case semantics for F

that involves fixpoint characterisation where fixpoint is unique
I Let ȧ ∈ Bk represent infinite (k, l) loop denotation a = ȧ ↑∞◦ .

Consider i ∈ {0 .. k−1}. Have that

l

F

[[F]]k(ȧ)(i) = [[F]](a)(i)

= ∃j ≥ i . a(j)

= ∃j ∈ {i .. k ′−1}. a(j) ***

= l

F

[[F̃⊥]]k ′(a|k ′)(i)

where k ′ = k + (k − l) (1 loop unroll)

I Step *** valid since sufficient to visit distinct values of a once
I Similar argument explains F,U treatment in original TACAS

’99 paper and F,U,G,R treatment in Helsinki FMCAD ’04
paper

Alternate F using a greatest fixpoint

I Definitions are

l

F

[[X⊥]]k(ȧ)(i)
.
=

{
ȧ(i + 1) if i < k−1

⊥ if i = k−1

F̃⊥ α
.
= νβ. α ∨ X⊥ β

I F̃⊥ has property l

F

[[F̃⊥]]k(ȧ)(i) = ∃j ∈ {i .. k−1}. ȧ(j)

I
l

F

[[F̃⊥]]k(ȧ) is greatest ḃ such that

ḃ(j) ⇔ ȧ(j) ∨ ḃ(j+1) ∀j < k−1

ḃ(k−1) ⇔ ȧ(k−1) ∨ ⊥

I Existence of upper bound on position at which fixpoint
constraint calculated forces uniqueness of fixpoint

I Hence ν is adequate

Optimisation of alternate F handling
I With k ′ = k + (k − l)

l

F

[[F]]k(ȧ)(i)

= ∃j ∈ {i .. k ′−1}. a(j)

= (∃j ∈ {i .. k−1}. ȧ(j)) ∨ (∃j ∈ {k .. k ′−1}. ȧ(j))

= (∃j ∈ {i .. k−1}. ȧ(j)) ∨ (∃j ∈ {l .. k−1}. ȧ(j))[
= ∃j ∈ {min(i , l) .. k−1}. ȧ(j)

]

I With l

F

[[loopstart]]k(ȧ)(i)
.
= ȧ(l) have that

π̇
l

F

[[Fα]]ρ̇k = π̇
l

F

[[F̃⊥ α ∨ loopstart F̃⊥ α]]ρ̇k

I Only need fixpoint constraints up to k, not 2k worst case
I Step *** corresponds to treatment of F in TACAS ’99

Semantic functions vs translation functions

I Distinction blurred in literature

I Are very similar – translation derived from finite denotation

π̇
l

F

[[Fψ]]k(i)
.
= ∃j ∈ {min(i , l) .. k−1}. π̇

l

F

[[Fψ]]k(i)

[l Fφ]ik
.
=

∨k−1
j=min(i ,l) [l φ]

j
k

I Not the same thing

π̇
l

F

[[v]]k(i)
.
= si (v) [l v]ik

.
= v i

I Literature includes awkward hybrid statements similar to

[l v]ik
.
= v(si)

I Relationship is

π̇
l

F

[[φ]]k(i) ⇔ π̇ |= [l φ]
i
k

Semantic vs symbolic Kripke structures

I Symbolic Kripke structure 〈Î , T̂ 〉 over variables V induces
semantic Kripke structure 〈S , I ,T 〉 where

I S = V → B
I I ⊆ S
I T ⊆ S × S

I With symbolic Kripke structure, can write translation of path
constraint more accurately as

Î (V 0) ∧
k−2∧
i=0

T̂ (V i ,V i+1)

rather than

I (s0) ∧ ∀i ∈ {0 .. k−2}. T (si , si+1)

Conclusions

Contributions:
I new BMC translation for LTL linear in bound k

I Appears to be more compact
I Experimental evaluation needed

I Rigorous framework for reasoning about translations
I Helps exploration of alternatives
I Applicable to other translations
I Addresses need for improved confidence

I Published papers have errors
I Correctness arguments subtle (particularly with past time)
I Industry needs correctness

Future work:

I Implement and evaluate

I Complete tech report

I Extend to past time

	Overview
	Denotational semantics framework
	Translation of greatest fixpoint operators
	Translation of least fixpoint operators
	Distinction between denotation and translation
	Conclusions

