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This thesis describes substantial enhancements that were made to the software
tools in the Nuprl system that are used to interactively guide the production of
formal proofs. Over 20,000 lines of code were written for these tools. Also, a
corpus of formal mathematics was created that consists of roughly 500 definitions
and 1300 theorems. Much of this material is of a foundational nature and supports
all current work in Nuprl. This thesis concentrates on describing the half of this
corpus that is concerned with abstract algebra and that covers topics central to
the mathematics of the computations carried out by computer algebra systems.

The new proof tools include those that solve linear arithmetic problems, those
that apply the properties of order relations, those that carry out inductive proof
to support recursive definitions, and those that do sophisticated rewriting. The
rewrite tools allow rewriting with relations of differing strengths and take care of
selecting and applying appropriate congruence lemmas automatically. The rewrite
relations can be order relations as well as equivalence relations. If they are order
relations, appropriate monotonicity lemmas are selected.

These proof tools were heavily used throughout the work on computational
algebra. Many examples are given that illustrate their operation and demonstrate
their effectiveness.

The foundation for algebra introduced classes of monoids, groups, rings and
modules, and included theories of order relations and permutations. Work on
finite sets and multisets illustrates how a quotienting operation hides details of
datatypes when reasoning about functional programs. Theories of summation
operators were developed that drew indices from integer ranges, lists and multisets,
and that summed over all the classes mentioned above. Elementary factorization
theory was developed that characterized when cancellation monoids are factorial.
An abstract data type for the operations of multivariate polynomial arithmetic was



defined, and the correctness of an implementation of these operations was verified.
The implementation is similar to those found in current computer algebra systems.

This work was all done in Nuprl’s constructive type theory. The thesis discusses
the appropriateness of this foundation, and the extent to which the work relied on
it.
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Chapter 1

Introduction

1.1 Motivation

This thesis describes foundational work in the design of computer systems to as-
sist engineers, mathematicians and scientists in the production and checking of
completely-rigorous mathematical arguments.

There is a long history of the successtul use of computers to automate mathe-
matical calculations involving numbers and arithmetic. For evidence of this, one
only need look at the wealth of current work in scientific computation and numer-
ical analysis.

More recently, there has been very rapid growth in the popularity of computer
algebra systems such as Mathematica [Wol91] and Maple [CGGT91]. At their
core, these systems have routines for carrying out such symbolic manipulations as
factorizing polynomials, for computing integrals and differentials, and for finding
symbolic solutions to sets of equations. They also provide languages for rapidly
constructing packages that extend the systems’ capabilities.

A major problem with many computer algebra systems is that they have few
design features to ensure that the symbolic manipulations that they carry out
respect the mathematical meaning of the symbols being manipulated. For example,
Mathematica has no type system and does not by default do capture-avoiding
substitution. The algorithms used are often complicated and it is all too easy for
programmers to make mistakes. Further, computer-algebra-system programmers
often find it convenient to ignore special cases so that the procedures they write
are not even logically sound. A trivial example of this is the common practice of
simplifying 1/(1/x) to x, where x is might be understood to range over real or
complex numbers but there is no check on = being non-zero. Such decisions are
often made because there is no way of uniformly carrying out such checks, and even
if checks were attempted, they might considerably slow down symbolic calculation.
Further, users of computer algebra systems might well be unaware of the corners



that were cut by the programmers of the packages that they use.

Computer algebra systems such as Maple [CGGT91] and Axiom [JS92] are ad-
dressing the issue of the meaning of symbolic expressions by adopting sophisticated
type systems. Some too make an attempt to track side conditions of calculations.
However, all computer algebra systems lack the absolute notion of rigor found in
mathematics.

Rigor in mathematics is established by having precise languages for stating
logical propositions and precise rules defining what is a valid inference and what
is a valid proof. Unfortunately, computer algebra systems have only vague notions
of what a proposition is, and no notions of what a proof is, or what a formally
correct inference procedure is.

An until-now fairly separate field of research has been the construction of me-
chanical theorem provers. 1 use this term here in a loose sense, encompassing
not only resolution theorem provers and systems such as NQTHM [BM88a], but
also systems perhaps better called proof checkers such as Automath [dB80] and
Mizar [Rud92], and proof development systems such as Nuprl and HOL [GM93].
The HOL group refers to their system as a theorem proving environment, which I
think is an apt phrase for describing all these kinds of system.

Such systems all support notions of definition, theorem and proof analogous
to those that a mathematician employs. They have precise semantics and are
carefully engineered to ensure that inferences always comply with this semantics.
One technique used to ensure correctness is to insist that all inference procedures
eventually justify themselves in terms of a small fixed number of primitive rules.
Another is to have scrupulous code walk-throughs and testing regimens. Another,
still in its early stages, is to use theorem provers to formally verify core parts of
their own designs. This last technique is often called reflection.

Because of the foundational nature of theorem provers, their domains of reason-
ing have usually been both far more restricted and of a different nature than those
of computer algebra systems; they have mostly been successtully applied in areas
of concrete, discrete mathematics. Currently, the principle motivating application
of theorem provers is increasing the reliability of digital hardware and software,
particularly when errors can be life-threatening or very costly. The inherent rigor
of theorem provers makes them ideal for checking masses of tedious details and
identifying subtle errors.

However, it is becoming increasingly desirable to obtain the assurances of safety,
reliability and correctness that theorem provers can provide in domains much more
traditionally associated with computer algebra systems. FEngineers want to check
the designs of digital signal processing (DSP) systems and hybrid control systems
where there is an intimate mixture of algebraic operations on continuous, quasi-
continuous (e.g. floating-point numbers) and discrete quantities.



1.2 Aims

One of the major aims of the work described in this thesis has been to broaden the
range of domains and the kinds of operations that the Nuprl proof development
system can be used to reason about. The approach has been to try to do thisin an
abstract unified way, rather than repetitively developing many disparate concrete
theories.

I was also keen to provide software tools that could simplify and speed interac-
tive proof development by automating away tedious detail and offer very general
and controllable modes of reasoning.

Another major aim has been to explore techniques for formal specification and
implementation of abstract data types. Abstract data types (and the related notion
of classes in object-oriented programming) provide fundamental mechanisms for
the control of complexity in large software systems by encouraging modularization
and code reuse.

I chose to look at in particular the specification and implementation of a set of
operations for multivariate polynomial arithmetic. This topic was chosen because
of the rich algebraic structures involved, and it was clear that it would provide
an excellent opportunity for demonstrating the software tools and formal mathe-
matical theories I had developed earlier. This topic is also a very relevant to the
program of formally verify core parts of theorem-proving and computer algebra
systems; the implementation I chose to verify is similar to that which is commonly
used in current computer algebra systems.

1.3 Overview of Nuprl System

I took as my starting-point the Nuprl proof-development system [CT86]. The core
of Nuprl is a program called the refiner which has knowledge of a set of primitive
inference rules and which is ultimately responsible for constructing every proof.
Therefore, the correctness of proofs depends solely on the refiner.

The inference rules provide very small steps in proofs. Larger steps are made
by invoking programs called tactics which choose and sequence the primitive rules.
Some tactic invocations result in only one or two primitive rules being applied,
others can result in 10* or more!

A key feature of tactics is that they are modular; their behaviours are easy to
predict and it is straightforward to combine existing tactics into new larger tactics.
Indeed the user is encouraged to do this as he or she becomes more competent with
the system. Nuprl’s tactic collection form a tool-kit of mathematical techniques
for carrying out proof. The tactic software-engineering paradigm was pioneered in
the LCF project and since has been adopted in several other theorem provers in
use today such as HOL and Isabelle.



When using Nuprl, each proof is maintained as tree shaped data-structure.
Nodes of the tree indicate states of the proof, and tactic text annotates each
node, showing how immediate children nodes were generated. Tactics therefore
document proofs and make proofs readable. Several examples of such proof trees
are given in this thesis. By way of contrast, other tactic-based provers by default
don’t maintain proof trees; during proof they only maintain the unproven leaves
of a proof and after a proof is completed they only retain the script of tactic text.
Such scripts are often cryptic and the explanatory potential of tactics is lost.

Nuprl’s primary application was intended to be the verification and synthesis
of correct programs. Previous experience at Cornell with the PL-CV project had
suggested that even when just reasoning about programs, it would be very advan-
tageous to choose a logic that could be used as a foundation for all of mathematics.

The most well-known foundational theories for mathematics are set theories;
in particular Zermelo-Fraenkel set theory. However, it can be rather difficult and
clumsy to reason about computations in set theory. Nuprl adopted a type-theoretic
language close in spirit to that of DeBruijn’s Automath system [dB80] and strongly
influenced by work of Scott [Sco70] and Martin-Lof [ML82]. A major difference
between type theory and set theory is that in type theory, the notion of function
is considered to be primitive and that type theories provide as primitive, at the
very least, ways of constructing primitive recursive functions. It seems plausible
therefore, that type theories should be better for reasoning about computation.
Martin-Lof’s type theory was particularly interesting because it was proposed as
being an alternative foundation for mathematics, more specifically for constructive
mathematics.

In constructive mathematics, one distinguishes between different kinds of proof
techniques that are normally considered to be equivalent. For example, in order
to prove a proposition dx. P, it is usually sufficient to prove the impossibility
of the proposition Vx. =P;. A constructivist would deny this. She would say
that a valid proof of dz. P, must come up with a specific a such that P, is true.
Further, a constructivist would only accept a proof of a proposition Va Jy. Py if
a uniform method could be exhibited for constructing a y such that Py, given
some arbitrary x. A wuniform method is frequently taken to mean some recursive
function or computer program.

Interest in constructive mathematics has revived recently for a couple of rea-
sons. Firstly, constructive mathematics provides a way of viewing the language of
logical propositions as a specification language for programs. An ongoing thrust
of work in computer science has been to develop program specification languages
and formalisms for systematically deriving programs from specifications. For con-
structive mathematics to provide such a methodology, techniques are needed for
systematically extracting programs from constructive proofs. Farly work in this
field includes that of Bishop [Bis70] and Constable [Con71]. What distinguished
Martin-Lof’s ’82 type theory was that the method it suggested for program syn-



thesis was exceptionally simple: a direct correspondence was set up between the
constructs of mathematical logic, and the constructs of a functional programming
language. Specifically, every proposition was considered to be isomorphic to a type
expression, and the proof of a proposition would suggest precisely how to construct
an inhabitant of the type, which would be a term in a functional programming lan-
guage. The term that inhabits the type corresponding to a proposition is often
referred to as the computational content of the proposition.

Secondly, designers of computer algebra systems and researchers in fields such
as computational geometry really care about whether constructions described in
algebra text books are effective or not. There has been a revival of much algebra
done in the last century when more attention was paid to the constructive nature
of mathematics.

From the start, I was concerned about the strengths and weaknesses of working
in Nuprl’s constructive type theory. I have tried to address at various points in
this thesis where the type theory was a help and where a hindrance. Importantly,
I should emphasize to the reader that though all the work described in this thesis
was does within the constructive type theory of Nuprl, most of the issues discussed
are relevant to any design of any theorem-proving environment with algebraic
capabilities, no matter what the foundational logic.

1.4 Contributions

1.4.1 Proof Development Tools

When I joined the Nuprl group, a significant amount of work had been done in V3
of the Nuprl system and the groundwork was being done for V4 (see Section 1.5.1
for more information). I started out by rewriting many of the V3 tactics for the
then fledgling V4 system, and over the course of my PhD, I made many significant
changes and extensions.

1.4.1.1 Rewrite Package

The most significant extension I made to the tactics was with a package to sup-
port rewriting. Usual treatments of rewriting [DJ90] assume that the equivalence
relations being rewritten with respect to are global congruence relations, so that
the substitutions suggested by rewrite rules are always valid. However, there are
common instances where one wants to rewrite using relations that are not always
respected.

The rewrite package 1 designed verifies every application of a rewrite rule,
checking automatically that all relevant congruence properties are obeyed. The
package handles also rewrite rules where the rewrite relation is an order relation. In
these cases 1t checks the appropriate monotonicity properties. Examples are given



throughout the thesis of both monotone and congruence reasoning. The ability to
rewrite with order relations has also been exploited in recent work in Nuprl on real
analysis and I expect it could be very useful when developing theories of program
refinement calculi and process algebras.

The package was designed around the notion of conversion [Pau83b]. Conver-
sions provide a modular language for composing rewrite rules into rewrite strate-
gies.

1.4.1.2 Main Automatic Procedures

Relational Reasoner 1 devised a simple tactic that automatically solved goals
that depended on basic properties of order and equivalence relations, such as sym-
metry, antisymmetry, reflexivity, irreflexivity, transitivity and linearity.

Arithmetic Reasoner [ implemented a new inference rule for solving linear in-
equalities over the integers, based on Bledsoe’s sup-inf algorithm [Ble75]. The chief
enhancement [ made was to take full advantage of the linear arithmetic properties
of non-linear arithmetic functions and non-arithmetic functions that have integer
values.

Type-Checker All type checking in the Nuprl system is done by proof. En-
hancements I made to the type checking tactics included adding much better ca-
pabilities for reasoning about type inclusion (necessary because terms in Nuprl’s
type theory frequently have multiple types) and enabling the type checking of
definitions with binding structure. Such definitions were new to V4.

1.4.1.3 Other Features

Recursive Definitions and Induction Tactics 1 implemented a methodol-
ogy for simply defining general recursive functions using the Y combinator. The
potential for doing this had been previously recognized by Howe and Allen, but
had not been exploited to any extent in Nuprl V3. Much of the work here was in
developing well-founded-induction tactics for use in proofs of totality of recursive
functions. These tactics had to work on the edge of Nuprl’s type theory.

Universe Polymorphism Constructive type theories including Nuprl’s have a
cumulative hierarchy of type universes. It is common when universes are mentioned
to have some kind of scheme for implicitly quantifying over the levels of these
universes. Such a feature was added in Nuprl V4.1. T had to do a significant
amount of work to Nuprl’s matching code to ensure that these levels would be
appropriately instantiated whenever lemmas were applied.



1.4.2 Formal Algebra
1.4.2.1 Approach in Nuprl’s Type Theory

Nuprl’s type theory provides a more restrictive environment for doing mathematics
in than say Zermelo-Fraenkel set theory. For instance, when considering how to
represent ideals of rings, I was faced with several alternatives, none of which was
that satisfactory. On the other hand, I was able to develop the basic theory
of common algebraic classes such as monoids, groups, rings and modules in a
style similar to that adopted in the computer algebra system Axiom [JS92, DT92,
DGT92], and had success with interpreting free constructions computationally.

I took approaches towards inheritance and subtyping of classes which were very
simple, but which functioned adequately and highlighted features that one would
want to include in a more sophisticated approach.

1.4.2.2 Permutations

I gave a constructive development of the group of permutations on an arbitrary
type and then specialized this development to permutations on a finite set. For
example, I proved that every permutation is a product of pairwise interchanges.
I applied this theory of permutations to developing a theory of the permutation
relation on lists. I compared this approach to one based on a recursive definition
of the permutation relation and to one based on a count function which computed
the multiplicity of elements in lists. The description of this work can be found in

Chapter 7.

1.4.2.3 Finite Multisets and Finite Sets

[ developed a theory of (finite) multisets which included definitions and character-
izations of basic multiset operations and predicates. Finite sets were defined as a
subtype of these finite multisets and many of the finite multiset operations were
given alternative characterizations on sets.

The novelty of this development was chiefly in the use of Nuprl’s quotient
type [CT86]. The quotient type allows hiding of internal structure of types; multi-
sets were defined from lists by hiding the order of elements in lists. The quotient-
ing operation on types does not group elements of a type into equivalence classes;
instead it merely changes the equality relation associated with a type. The signif-
icance of this is that quotient types can then be used to give an abstract view of
computable functions.

1.4.2.4 Summations

I developed theories of summation over monoids, rings, modules and algebras. I
experimented with several summation operators that took indices indexing the



expressions being summed over from integer ranges, lists and multisets. Theorems
were proven about the way sums can be rearranged and eliminated and how they
interact with other operations.

1.4.2.5 Factorization Theory

Factorization is an important basic topic in computer algebra, as well as in mathe-
matics in general. Factorization theory is commonly studied over integral domains,
though the basics can be formulated over abelian monoids with cancellation: the
non-zero elements of an integral domain under multiplication always form such a
monoid.

I developed the elementary theory of factorizations in cancellation monoids,
and proved a theorem characterizing when a cancellation monoid is a unique-
factorization (or factorial) monoid. The fundamental theorem of arithmetic was
shown to be a special case of this theorem.

The case study illustrated the importance of combinatorics and discrete math-
ematics in algebra. Much of the work in developing these lemmas was in first
creating the theory of permutations mentioned previously, and characterizing the
notion of ‘essential uniqueness’.

1.4.3 Polynomial Arithmetic

Abstract algebra and the theory of abstract data types (ADT’s) in programming
languages have strong similarities that have pointed out many times in the ADT
literature [Wir90]; in each case one first defines some class of objects, each object
with a domain and certain operations over that domains that have certain abstract
properties. Then one studies the characteristics of the objects, drawing on just
what one knows from the class definition.

When working in constructive type theory, the same kinds of class definition
can be used in either case. In particular, every definition of a class, familiar in
abstract algebra, can be viewed as an ADT specification.

1.4.3.1 Specification

I created algebraic classes for monomials and polynomials based on the character-
ization found in Lang [Lan84] or Bourbaki [Bou74] of the algebra of polynomials
as being a free monoid algebra over the ring of coefficients and the free abelian
monoid of indeterminates.

An interesting characteristic of this development was the treatment of freeness
properties. These freeness properties were viewed as the specifications for functions
that instantiated the indeterminates in monomials and polynomials.



1.4.3.2 Implementation

I based the implementation on the standard sparse representation of monomials
and polynomials used in most computer algebra systems [DST93, Zip93a]. This
representation involves using association lists (a-lists) of indeterminates and expo-
nents to represent monomials, and a-lists of monomials and coefficients to represent
polynomials. The keys (indices) of these a-lists were drawn from linear orders and
the keys in an a-list were always maintained in order. This ordering requirement
resulted in the maintenance of monomials in lexicographic order.

1.4.3.3 Verication

The verification into two stages:

1. I characterized a-lists as defining functions of finite support; that is, functions
that return some default value on all but a finite number of arguments from
their domains. All the operations on monomials and polynomials were char-
acterized in terms of these functions of finite support. All inductive proofs
were localized to this part of the verification.

2. I verified all the algebraic properties of the monomial and polynomial opera-
tions solely by referring to these function-of-finite-support characterizations,
never by referring to the recursive definitions. These verifications involved a
significant amount of algebraic manipulations, but never one induction. The
algebraic manipulations were all conceptually straightforward, but many, es-
pecially those that involved monotonicity reasoning, would be very difficult
to implement in present-day computer algebra systems.

Since a-lists were common to both the monomial and polynomial construec-
tions, I performed much of the initial verification of their properties while con-
sidering them to be an implementation of a group class and a monoid copower
class. I showed that any implementation of the monoid copower class can simply
be specialized to obtain an implementation of the free abelian monoid class, and I
generalized the construction of a monoid copower to obtain a free monoid algebra.

1.5 Previous and Related Work

1.5.1 In Nuprl

The Nuprl project [CB83, C186] grew out of the earlier PL-CV [CJES82] and Lamb-
daPrl [Bat79] projects in program verification and synthesis at Cornell, and the
LCF project [GMWT79] at Edinburgh. From LCF, Nuprl borrowed the idea of a
tactic-driven refiner and the ML language for the tactics. Nuprl’s original arith-
metic decision procedure ‘arith’ came from the PL-CV2 system, as did ideas for
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the user interface. In the early 1980’s the project was under the principle guidance
of R. Constable and J. Bates, and in the later 1980’s, D. Howe and S. Allen took
over from J. Bates. The Nuprl V4.1 implementation was started around 1990 with
S. Allen doing much of the design work for a new editor, R. Eaton implementing
the new editor and myself developing the tactics and libraries. All together over
the years, over a dozen people have been involved in various ways with the Nuprl
project.

The Nuprl type-theory is based on one of Martin-Lof’s [ML82]. Nuprl’s type-
theory is discussed in more detail in Chapter 2. Theories developed in Nuprl in-
clude the fundamental theorem of arithmetic [How87], metatheory [Kno87, How88a,
ACHA90, CH90], category theory [AP90], Ramsey’s theorem [Bas89], Higman’s
lemma [Mur90], hardware verification [BD89, Jac91, Lee92] and software verifica-
tion [AL92, How88b]. The previous tactics used in Nuprl were developed in chief
by Howe [How88a]. In Chapter 3, I compare my tactics with those of Howe as well
as with some rewriting tactics that Basin developed [Bas89].

Others have experimented with constructing algebraic classes in Nuprl: Al-
tucher and Panangaden produced a definition of a class of categories [AP90], and
Basin and Constable discuss abstract data-type definitions for multisets and for
propositional logic [BC93].

Several major changes were made in moving from Nuprl V3 to Nuprl V4.1,
aside from my work on the tactics and theories. They included:

e the addition of the abstraction (definition) facility,
e moving to a completely new display-form selection and formatting facility,

e the addition of a rule interpreter, so that most rules are not hard coded, but
represented by objects in Nuprl’s library,

e the introduction of rules for universe-level polymorphism,
e the addition of a reflection mechanism [ACHA90],

o the creation of a World-Wide-Web server for Nuprl so that theories can be
interactively browsed from across the Internet.

1.5.2 Theorem Proving

DeBruijn’s Automath project was an early and very influential investigation into
techniques for mechanically proof-checking mathematics [dB80]. Van Jutting for-
malized all of a foundational text on elementary analysis — Landau’s “Grundla-
gen” — in Automath [Jut77].

Recently, more mathematics has been formalized in the MIZAR system than
any other. MIZAR [Rud92] has been developed over the last 20 years by a team
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under the leadership of A. Trybulec at the Bialystok branch of the University of
Warsaw. It is based on classical first-order predicate logic, extended with second-
order schema, and Tarski-Grothendieck set theory. Roughly speaking, this set
theory is like Zermelo-Fraenkel set theory, extended with uncountably many inac-
cessible cardinals. All work done in Mizar is grouped into articles. Currently, over
300 articles have been written in the MIZAR language by over 60 authors. These
articles contain over 6000 theorems in total. Articles are published in a Journal
of Formalized Mathematics [Mat94] which is largely-automatically type-set from
information in the MIZAR database. The subjects of the articles have been mostly
in the fields of analysis, topology and algebra (including some universal algebra
and category theory).

I think there are several keys to MIZAR’s success. Firstly, it started with a set
theoretic framework which is known to be theoretically adequate for all of mathe-
matics, including category theory. Secondly, a rich type-theory was layered on top
of the set theory. The type theory allows for the definition of subtypes and param-
eterized types, and has a structure facility for the definition of algebraic classes.
The system copes automatically with set subtyping relationships between elements
of classes that have different underlying signatures. Section 5.4 explains my termi-
nology here. Unlike in Nuprl, all type-checking is done automatically, before proof.
Thirdly, much effort has been put into the organisation of articles in the MIZAR
database to ease and speed cross-referencing between articles. Typically an arti-
cle draws on the definitions and theorems from many previous articles. The level
of automation is surprisingly low when compared to that in most other theorem-
proving environments. This point underscores the significance of the other design
decisions in constructing MIZAR.

It is instructive to note that MIZAR is able to reap many of the benefits as-
sociated with using a type theory, without having to use a type theory as the
foundation of their logic.

In terms of applying theorem-provers to hardware and software verification,
most success has been with the NQTHM system of Boyer and Moore [BM79,
BM88a]. Accomplishments include the checking the RSA public-key encryption
algorithm [BM84] and the verification of microprocessor designs [HB92]. NQTHM
has also been used to formalize Godel’s incompleteness theorem [Sha86]. The
generation of proofs in NQTHM is highly automated. The user commonly only
guides proofs by perhaps giving a few high level hints and suggesting useful lemmas.
NQTHM automatically guesses how to do inductions and how to prove the subgoals
of inductions. NQTHM also has a linear-arithmetic decision procedure tightly
integrated in with the the prover program. NQTHM’s logic is significantly weaker
than Nuprl’s: it is quantifier-free and includes a theory of recursive functions
over Lisp-like S-expressions. Its strength is roughly that of Primitive Recursive
Arithmetic (PRA). This logic is too weak for abstract algebra: there is no way
to define algebraic classes of objects and reason with them in ways common in
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algebra, though ‘functional instantiation’ extensions do allow some basic algebraic
reasoning.

The HOL system [GM93] is a tactic-based interactive theorem prover with a
classical logic similar on Church’s simple theory of types [Chu40] but with the ad-
dition of a type-polymorphism scheme similar to that found in the ML functional
programming language. This theory is slightly weaker than ZF set theory. HOL has
mostly been used in domains related to hardware and software verification, though
its foundational theories are quite general purpose and some success has been had
with more abstract mathematics. Harrison developed some real analysis covering
topics including limits of series, differentiability and properties of transcendental
functions [Har92]. Harrison and Thery demonstrated using the Maple computer
algebra system [CGGT91] to factor and integrate expressions for HOL [HT93].
Maple’s operations were verified in HOL by carrying out the much simpler inverse
operations of expanding out factors and differentiation. E. Gunter[Gun89] devel-
oped a basic theory of groups, proved the group isomorphism theorems and showed
that the integers mod n form a group. A. Gordon demonstrated how to prove the
binomial theorem over arbitrary rings [Gro91].

Formulating abstract algebra in HOL is awkward because the type theory pro-
vides so few features in comparison with set theory. Decisions have to be made
about how to represent the most basic notions of algebra in the type theory: notions
such as set, cartesian product and function space. It is simplest to use a HOL type
to represent a set, but also rather limiting. For instance, there is no general way of
defining a subtype relation that asserts that one type is a subtype of another. Still,
Harrison was able to use this approach in his analysis work when he defined the no-
tion of a topology . Another approach to representing a set is to use a type together
with a unary predicate on that type. Gunter took this approach, representing the
carrier set o of a group by a type 7 and a predicate p. She then defined the func-
tion space ¢ — o — o of the operator of a group as the HOL type 7 — 7 — 7
together with the predicate Af:ir — 7 = 7. Vo,yim. (px Apy) = p (f = y).
The awkwardness here is that all instances of groups now must have operators de-
fined for arguments over the whole of type 7 rather than just over o. Further, the
equality relation provided by the type theory for functions like this group operator
is stronger than desired: two functions f and g, thought of as being members of
the function space o — o, might agree on all arguments in o, yet might not be
considered equal by the HOL type-theory’s equality relation because they disagree
on an argument in 7 but outside of o.

Another major limitation of HOL’s current type theory is that any quantifi-
cation over types is always universal and always on the outside of any formula.
Embeddings of set theory without this restriction are being explored by R. Jones
at ICL in the UK. In this work, HOL’s type theory takes on more the role of a
metalogic. Recently, M. Gordon has also been investigating techniques for merging

HOL with set theory [Gor94].
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Other theorem provers that use a constructive type theory and encode logic us-
ing the propositions-as-types correspondence include Alf [ACN90], LEGO [Pol90],
and Coq [DFHT91]. Alf uses a more recent type theory of Martin-Lof’s. Both
LEGO and Coq use the Calculus of Constructions (CoC) [CH85], extending it
with a kind of inductive definitions [Luo89, PPM89]. Bailey developed a concrete
theory of polynomials in one variable in the LEGO system and has proven the cor-
rectness of Euclid’s algorithm over these polynomials [Bai93]. Aczel and Barthe
are currently investigating doing Galois theory in LEGO [Acz93, Bar93].

The most significant differences between the CoC based type theories and
Nuprl’s, from the point of view of formalizing algebra, are in the treatment of
equality and in that the CoC-based theories don’t have a set type constructor.
Equality between elements of types is always essentially a g5 equality: two terms
are equal just when they evaluate to the same normal form and their subterms are
equal. There is no notion of quotienting a type. Without a construct corresponding
to Nuprl’s set type, the only way of of forming something close to a subtype is by
using a dependent product type. Type-checking is decidable in these systems, but
doing abstract algebra is rather involved. The approaches that have been looked
at involve using a somewhat cumbersome encoding for sets called setoids. I discuss
these in Chapter 5.

Theorem provers such as Larch [GH93], IMPS [FGT92b], PVS [ORS92], and
20BJ [GSHH91] have notions of theories or modules which allow the collection
together of type definitions, operator definitions and specification of predicates
that the operators must satisfy. Further, these modules can be parameterized
by one another and can inherit structure from one another. As with module-like
structures in programming languages, these modules help structure these systems’
libraries of definitions and theorems.

Although these superficially resemble the algebraic class definitions I have made
in Nuprl, they are defined at a level of abstraction above the type system and
cannot be included in formulae in the same way that types are. For example, I
think it would be hard if not impossible in these systems to define a class of groups
using one of these modules and then show that a ring structure can be imposed
on the set of homomorphisms between the groups.

Interestingly, the PVS system also has dependent data types similar to Nuprl’s
dependent product and dependent function types, so the class definitions could be
set up as described in this thesis. However, without some version of quotient types
it would be difficult to verify constructive implementations of the classes where the
equality on the representation type must be weakened in order to hide irrelevant
detail.

One other theorem-proving system worth mentioning is McAllester’s Ontic sys-
tem [McA89]. This system is based on Zermelo-Fraenkel set-theory. A milestone
reached in it is the Stone representation theorem. Chen looked at adapting the
inference algorithms that McAllester devised to the Nuprl environment [Che92].
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1.5.3 Computer Algebra

Clarke and Zhao have added theorem-proving capabilities to Mathematica [Wol91]
to create their Analytica system [CZ92]. They have impressive results in proving
equivalences of sums of series, but their work has been hindered by the lack of
rigor inherent in the Mathematica environment.

In several computer algebra systems, much effort has been put into allow-
ing computations over a wide variety of types; for example Axiom [JS92, DT92,
DGT92] which evolved from the ScratchPad system at IBM. There are strong sim-
ilarities between Axiom’s approach to constructivity and the approach adopted in
this thesis.

My interest in computer algebra has been stimulated by discussions with Zippel
who has designed his own system Weyl [Zip93b]. An ongoing project at Cornell is
to set up links between Nuprl and Weyl.

1.5.4 Constructive Mathematics

Excellent introductions to constructivism in mathematics have been given by for
example, Troelstra and van Dalen [TvD88] and Dummett [Dum?77]. Through-
out the history of mathematics there has been some sensitivity to constructivity
in algebra. For example, Edwards [Edw89] wrote in summarizing Kronecker’s
views: “Kronecker believed that a mathematical concept was not well defined
until you had shown how, in each specific instance, to decide [algorithmically]
whether the definition was fulfilled or not.” However, after the turn of the century
when significant new results were proven non-constructively (for example, Hilbert’s
Basis Theorem), and non-constructive set-theoretic foundations were established
for mathematics, constructivist sympathies were rejected by many mathemati-
cians. There were definitely exceptions, especially among logicians; for example,
there was Brouwer who founded a school of ‘Intuitionistic’ mathematics that was
dogmatically constructive. Brouwer’s work was revived by Heyting [Hey66] and
Bishop [Bis67, BB85] who tried to show how to systematically hide constructive de-
tails so that constructive mathematics more resembled classical mathematics. To-
day, a few mathematicians are exploring constructive algebra in this light [MRRS88,
BB85]. Other investigations have been carried out where the computations are
made more explicit [FFSh5, MNT9].

The strongest revival of interest in constructivity in algebra has undoubtably
come from those concerned with the theory and design of computer algebra sys-
tems. One of the most significant results here has been the discovery and sub-
sequent refinement by Buchburger of the Grobner Basis algorithm for finding an
elegant normal form for the generating set of an ideal in polynomial rings over
a field, given an arbitrary initial finite set of generators of the ideal. This algo-
rithm in some form is used in many computer algebra systems today for solving
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systems of polynomial equations. This algorithm and others are surveyed in many
of the new texts that have come out recently on the mathematics of computer

algebra [BWi93, CL0O92, DST93, Mis93, Zip93a].

1.6 Layout of Thesis

The layout of the thesis is as follows:

Chapter 2 gives background information on Nuprl’s type theory and the
present state of the Nuprl V4.1 system. This chapter ends with a summary
of the theories I have developed in V4.1.

Chapter 3 surveys the current tactic collection, highlighting the new con-
tributions I have made, but also trying to give a general overview of the
tactics.

Chapter 4 covers in depth the rewrite package that I set up for Nuprl V4.1.

Chapter 5 discusses the alternatives approaches that I considered to making
definitions in Nuprl’s type theory for algebraic classes, and indicates why I
made the choices that 1 did.

Chapter 6 gives introduces the information on the basic algebraic classes that
I set up. It also covers my treatment of order relations on these classes, the
theory of summations, and tactics developed to support reasoning over these
algebraic classes. The work described in later chapters depends heavily on
this work.

Chapter 7 describes the development of the theory of permutation functions
and relations.

Chapter 8 covers work on unique factorization in cancellation monoids, end-
ing with an example of how the fundamental theorem of arithmetic is a
special case of the last theorem proven.

Chapter 9 describes my implementation of finite sets and multisets and op-
erations over them, illustrates the use of Nuprl’s quotient type and provides
a warm-up case study in ADT specification and implementation.

Chapter 10 gives an extended case study in the specification and implemen-
tation of an ADT for multivariate polynomials.

Chapter 11 summarizes the contributions of the thesis, outlines directions for
future work, and discusses both the appropriateness of Nuprl’s type theory
and the dependence of the work described on it.



Chapter 2

Background on Nuprl

2.1 Type Theory

The most common formal system studied in logic as a foundation for mathematics
is first-order predicate calculus and some set theory, most commonly Zermelo-
Fraenkel set theory [Sho67]. Nuprl uses instead a type theory which takes the place
of both predicate calculus and set theory.

2.1.1 What is Type Theory?

Type theory is an active research area in mathematics, logic and computer science
and a diverse range of theories are collected under this name. Here, I look at a few
of the characteristics of type theories, concentrating on those relevant to Nuprl’s.

In set theory, one often thinks of there existing a platonic universe of sets,
and set notation provides a way of naming many of the principal ones. In type
theory, one starts out assuming the existence of specific base sets or types like
the booleans and the integers. There are then standard ways for producing richer
types, for example, using the operations of cartesian product and function space
formation. Type theories provide primitive operations for creating elements higher
up this hierarchy from elements lower down. For example, a pairing operation
creates elements of cartesian products and lambda abstraction creates elements of
function spaces.

Type theories also provide primitive operations for taking apart elements and
define notions of evaluation on elements. For example, the 71 function selects the
first element of a pair (a, b) so that the element 71({a, b)) evaluates to a.

Type theories are of much interest in computer science because often at least
a subset of the elements of types can be regarded as programs and data in a func-
tional programming language. The type theories themselves then provide a formal
language for reasoning about these programs. Many type theories are abstractions
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of the type systems that have been used in programming languages from Algol68
onwards.

Theorem-prover designers have found type theories appealing because they in-
trinsically impose much more structure on the world than set theory, and narrow
the gap between the theory foundations and statements about objects of interest.
Often too, it is convenient that a major subject matter for theorem provers is
program verification.

The study of type theories is usually taken to have started with Russell’s ‘theory
of types’ [Rus08, WR27] where a rather complicated system of types are introduced
in order to avoid certain ‘vicious circle’ paradoxes. Church introduced a ‘simple
theory of types’ [Chu40] that was adapted for use in the HOL theorem-proving sys-
tem [GM93]. A recently-developed family of type theories is that of constructive
type theories [Gir71, CH88]. These exploit a notion that has come to be known
as the ‘propositions-as-types’ correspondence [CF58, Sco70, Con71] where every
logical proposition corresponds to a type, and a proof of a proposition involves
finding an element of the type corresponding to the proposition. Since elements
of types are often programs, a phrase commonly associated with the ‘propositions
as types’ approach is ‘proofs as programs’ [BC85]. These type theories are con-
structive because they yield a constructive or intuitionistic logic, and because they
give a recipe for automatically building functions that effect the constructions that
theorems in constructive logic and mathematics talk about.

Nuprl’s type theory [C186, All87a, AlI8Th] is most closely related to a type
theory proposed by Martin-Lof in 1979 as a foundation for constructive mathe-
matics [ML82]. The main differences are:

o Martin-Lof’s four kinds of judgement are reduced to one. Roughly speaking,
a judgement is a kind of sequent. The semantics of Nuprl’s judgement is dif-
ferent from any of Martin-Lof’s in that a judgement in Nuprl assumes rather
than requires the well-formedness of hypotheses. Nuprl’s treatment of equal-
ity in its judgement is more complicated than that in Martin-Lot’s. These
changes enabled particular kinds of induction rule to be defined. Without
them, the approach we have been using in Nuprl of first introducing gen-
eral recursive functions and then proving them total over some domain by
induction would not have been possible.

e In Nuprl, equality of types is explicitly intensional (i.e. structural). Martin-
Lofclaimed in his paper that his equality on types was extensional (types are
equal if they have the same members), though he never gave rules to make
an intensional interpretation of his type theory inconsistent. This change
enabled the reduction in kinds of judgement.

e Nuprl’s type theory has several extra types including the set type [Con85al,
the quotient type [Con8bal, recursive types [CM85], and partial function
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types [CS87].

Allen has given a semantics for Nuprl’s type theory without the recursive or
partial types [All87a, AlI87b]. This semantics takes the form of a second-order posi-
tive inductive definition that is both classical-set-theoretically valid and acceptable
to most constructivist mathematicians. The definition is of a relation from which
a type membership relation and a typed equality relation are derived. The defi-
nition essentially if of a term model in that terms do not denote anything other
than themselves. Mendler [Men88] gave a semantics for Nuprl’s recursive types
and Smith [Smi89] gave a semantics for the partial function types. Howe [How91la]
has given a set-theoretic model in which terms denote sets, and has shown by this
model that it is consistent to extend Nuprl’s type theory with oracle functions so
that the logic created by the propositions-as-types correspondence is classical.

I give below an informal account of Nuprl’s type theory.

2.1.2 Basic Types

In Nuprl’s type theory, the word term encompasses the constructs of its functional
programming language, types and propositions.

The programming language terms include the untyped lambda calculus, and
constructors and destructors associated with each of the types listed below.

A lazy evaluation relation is defined on terms. Any term evaluates to at most
one canonical term, and canonical terms always evaluate to themselves.

The basic type constructors of Nuprl’s type theory that are relevant for this
thesis include:

e The integers Z. Primitive operations include binary +, —, X, =, rem (remain-
der), and unary —. Defined subsets of the integers include the non-negative
integers N, and the positive integers Nt (occasionally written as ZT).

o A dependent-function type constructor —. If A is a type and By is a family
of types, indexed by « € A, then 2:A — B, is the type of functions f, such
that f(a) € By for all @ € A. If By is the same for all # € A, I write the
type as simply A — B. I assume that — associates to the right.

Since all functions constructible in Nuprl’s type theory are computable, each
type A — B is considered as containing only the computable functions from
A to B rather than all set theoretic functions.

Every canonical element of a dependent-function type is a lambda term Az.t.

Dependent-function types are sometimes known as Il types, in which case a
notation commonly used is Il z:A. B,. Elsewhere these types are sometimes
called cartesian-product or dependent-product types. These names are not
used here in order to avoid confusion with Nuprl’s dependent-product type.
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A dependent-product type constructor X . If Ais a type and B, is a family
of types, indexed by @ € A, then 2:A X B, is the type of pairs (a,b), such
that « € A and b € B,. If B, is the same for all + € A, I write the type as
simply A X B. Sometimes I write A X A as A%. Tassume that X associates
to the right.

Dependent-product types are sometimes known as ¥ or dependent sum types,
in which case a notation commonly used is ¥ z:A. B,.

e A binary (disjoint-) union type +. If A and B are types, then A+ B is a
type. Its canonical elements are of form inl(a) (read ‘in left’) and inr(b) (read

‘in right’) for « € A and b € B.

o A set type constructor {-:-|-}. If Ais a type and P, is a proposition in which
z of type A may occur free, then {z:A|P,} is the type of those elements x of
A for which P, is true.

e Recursive types. These include A List for finite sequences of elements of type
A. The operation a::s appends element a to the front of sequence s, and
the empty sequent is denoted by []. The type theory also includes a type
constructor for building types of tree-like data-structures.

o Universes of types U; for + = 1,2,3... . U; includes as base types U; for
all j < 2 and is closed under the type constructors listed above. Note that
Section 2.1.5 describes the allowable expressions that may be used for the
subscript ¢ and the conditions under which the subscript is often dropped.

e The type Void. It has no elements. The type Unit. It has the one element -’
(read as ‘it”). The boolean type B has two elements: tt for ‘true’” and ff for
‘false’. Unit and B are defined types, but for nearly all intents and purposes,
they can be thought of as being primitive.

Every type has an equality relation associated with it. A three-place atomic
proposition - = - € - is used to refer to this equality. The relation + = y € T
means that = and y are members of type T" and are equal by the equality relation
associated with T. Sometimes, | write © = y € T as ¢ =7 y, and when T is
obvious from context, the reference to T"1s dropped altogether. Functions can only
be given a function type when they respect the type equalities of the components
of the function type; if function f has type S — 7', then fz =7 fz' must hold
whenever # =g 2'. Similarly, all members of a function type are assumed to
to respect the equalities of the components of that type. This assumption of
function extensionality is non-trivial because of the way in which the equality
relation associated with a type can be changed.

Specifically, the equality associated with a type can be weakened using Nuprl’s
quotient type constructor; if R is an equivalence relation on type T, then the
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quotient type constructed from 7" and R is written z,y:T//xRy. The inhabitants
of x,y:T/ /xRy are the same as the inhabitants of T'; the quotient type does not
group elements of T into equivalence classes. Inhabitants are considered equal
when they are related by R.

I use fairly usual notation for programming language constructs. Function
application is designated by juxtaposition. For example, [ write f a. Application is
assumed to associate to the left, so (f a) bis written f a b. Often I use infix notation
for the application of binary curried-functions. For example, if x € T' > T — T,
then for (x a) b I write a * b. It should be obvious whenever infix notation is being
used.

2.1.3 Propositions

Logic is injected into type theory using the propositions-as-types correspondence,
so all propositional term constructors are defined from types [Con85b]. The defi-
nitions are:

1L =4y Void
AANB =def Ax B
AVEB =45 A+ B
A=DB =4y A—B
VoA By =qey v:A— B,
du:A. By =gqey v:A X By
| Jw:A. By =qe5 {v:A| B}
P =4y U

The symbol L denotes falsity. Negation, —A, is defined as A =1, and bi-
implication (if and only if) A <= B is defined as (A = B) A (B = A). The
type | do:A. B, is read as ‘squash exists’ Not shown is the definition of the propo-
sitional relation @ = b € T since this is actually a primitive type in the Nuprl
type theory (this type has one element when the equality is true and is otherwise
empty). As one can see, the encoding is very direct.

Each predicate-logic expression corresponds to a type with the type being in-
habited just when the predicate-logic expression is provable. The proof of a logical
expression specifies exactly how to construct a term that inhabits the type cor-
responding to the logical expression. Sometimes the inhabitant is interesting; for
example it might be a function that computes something useful. In this case, we
can view the logical expression corresponding to the type it inhabits as a kind of
program specification. When I talk about the computational content of a logical
expression, | am referring to the possible inhabitants of the corresponding type.
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In the discussions of computational content in this thesis, I recommend that the
reader refer back to the above definitions and try to imagine what kinds of terms
might inhabit the types that correspond to the propositions being discussed.

Nuprl’s logic is well-suited to constructive mathematics, but it also can support
classical styles of reasoning.

2.1.4 Sequents, Rules and Proofs

Nuprl’s rules are formulated in a sequent calculus. A sequent in Nuprl consists of a
list of 0 or more hypotheses Hy, ... , Hy and a conclusion . It is usually written
as:

oy, ..., Hy k- C.

Each hypothesis H; is either a proposition P or a declaration z:T" declaring vari-
able = to be of type T'. The conclusion is a proposition. Collectively, I refer to
hypotheses and the conclusion as clauses. A declaration x:T" as hypothesis H;
binds free occurrences of x in hypotheses H;41 ... H, and in conclusion C'. For
this reason, the order of the hypotheses is important. One can’t arbitrarily per-
mute hypotheses. Sequents are always closed; every free variable in some clause
is bound by some declaration to the left. A sequent is considered true if one can
prove the conclusion C' under the hypotheses Hy, ... , Hy.

Thinking purely type-theoretically, all clauses of a sequent are types. Hypothe-
ses thought of as a propositions declare the type of a variable which is normally
never visible. A sequent is true just when there exists a function from the types
of the hypotheses to the type of the conclusion. In some Nuprl literature, the
turnstile symbol I is written instead as >> to be suggestive of a function arrow.

Rule in a sequent calculus are commonly written in the form:

C

where A; and C are sequents and n > 0. The A; are the antecedents of the rule
and C is the consequent. Such a rule can be read top down as saying that if all the
A; are true, then C is true. The rule can also be read bottom up as saying that in
order to prove C is true, it is sufficient to prove that all the A; are true.

The rules in the intuitionistic logic yielded by Nuprl’s type theory are similar
to those in Gentzen’s LJ system [Pra71]. Nearly all the logic rules, when read top
down, tell us how to introduce a logical connective or quantifier in a hypothesis
or the conclusion. When read bottom-up they explain how to break down or
decompose the connective. I refer to such rules in Nuprl as decomposition rules,
because rules are always applied in a bottom-up fashion.
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Slightly simplified versions of the rule for decomposing = in a hypothesis and
in the conclusion are

I'A = B AFA T,A = B,A,BFC
A = B,AFC

and
A+ B
I'-A = B
Another rule, the hypothesis rule, states that

T, A, AF A

Here A and B stand for arbitrary propositions, and I' and A stand for arbitrary
(maybe empty) lists of hypotheses. Note that the hypothesis rule is an example of
a rule with no antecedents.

A proof of some proposition P in Nuprl’s logic is usually constructed by starting
with the sequent = P. One then applies rules bottom-up, building the proof tree
upwards. Since most of the rules when viewed bottom-up decompose a connective,
propositions generally get simpler as one moves from the root of the tree out along
the branches. Branches of a proof tree terminate with such rules as the hypothesis
rule above.

This style of theorem proving bears a close resemblance to the tableau method
for proving theorems [Smu68], which is commonly taught in logic courses, and
which students usually find the simplest to use.

Because rules are applied bottom-up, it is common to present Nuprl rules upside
down. The general form of a rule is then:

C
BY rulename
Ai
Ay
With this style of rule, proof trees have their root at the top, and their branches
grow downwards. The full set of rules for the Nuprl type theory can be found in
the Nuprl book [CT86] and in the system library.

Thinking of the conclusions of sequents as types, all Nuprl rules have infor-
mation about how to create an element of the conclusion of the rule consequent,
given elements of the conclusions of each of the antecedents. When a proof of some
proposition is completed, this information can be used to synthesize an inhabitant

of the proposition, considered as a type. This synthesis process goes by the name
of extraction.
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2.1.5 TUniverse Polymorphism

An initially unappealing aspect of Nuprl’s type theory is the stratification of types
(and hence propositions) into universes, in a style reminiscent of Whitehead and
Russell’s in Principia Mathematica [WR27, Rus08], but much simpler.

In Nuprl V3 and before, the levels of universe terms were constants, which was
inconvenient because often variants of the same lemma had be introduced which
differed only in the levels of their universe terms.

In Nuprl V4.1, a kind of universe polymorphism was introduced, where levels
in universe terms are replaced by level expressions. Level expressions are of form:

e k where k is a natural number constant > 1.

e v where v is a level expression variable. Level expression variables are im-
plicitly quantified over levels; natural numbers > 1.

o ¢ k where e is a level expression and k is a natural number constant > 0. e k
is understood to be level e plus k.

o [c1]|...|en] where €1 ... ¢, are level expressions. [eq]...|ey] is understood to
be the maximum of levels ey ... e,.

The rules and semantics for this universe polymorphism were proposed by
Howe [How91b]: a rule with clauses involving level variables is considered to be
true just when the rule is true for all instantiations of level variables by con-
stants. This semantics for universe polymorphism is different from that proposed
by Allen [AlI87b].

The level expression ‘e 17 is often abbreviated as e'.

Note that it is often convenient to suppress the explicit mention of the universe
levels, especially when a level expression is simply the level variable ¢ or the level
constant 1. Also, I sometimes transfer the prime character (') to the term being
subscripted. For example, I write P’ instead of P,.

2.1.6 Well-Formedness Checking

Nuprl’s type theory is sufficiently complex that the problem of determining whether
a term has a given type is in general undecidable: the halting problem [HU79]
can be reduced to the type membership problem by constructing a type whose
inhabitants are the numbers of those Turing machines that halt on zero input. A
consequence of this is that there is no general way to check the well-formedness of
arbitrary terms, since well-formedness of a term is expressed in the type theory by
saying that the term has a type.

Instead, the semantics of sequents and the rules of Nuprl’s type theory are set
up so that the well-formedness of expressions is shown by proof. Every complete
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proof of a theorem in Nuprl contains not only a proof that the theorem is valid,
but also a proof that the theorem is well-formed. The well-formedness proof is
distributed through the proof of validity by adding extra premises to many of the
Nuprl rules. For example, the rule for = decomposition on the right is (prettied
up using the propositions-as-types correspondence):

'rA= B

BY implies decomposition on right at level ¢
I'-AelP;
I'AFB

The obligation to show that the proposition A is well-formed is phrased as the
universe membership sub-goal I' H A € P;. As explained in Section 3.2, such well-
formedness obligations are almost always solved automatically so the user need
not be concerned with them.

Checking well-formedness by proof is unfortunately much slower than checking
by some completely automatic type checker, and is a major source of inefficiency in
the Nuprl system. Furthermore the nature of the rules causes the well-formedness
of expressions to be rechecked many times over. Nearly all other theorem provers
do their well-formedness checking entirely by completely automatic means, distinct
from proof generation.

2.2 Mechanization

2.2.1 Overview

The Nuprl V4.1 system is currently used on Unix-based workstations that run X-
Windows and hopetfully will soon be ported to run on Macintoshes and PC’s. All
Nuprl code is either written in Common Lisp or a the functional language ML (see
Section 2.2.8 for a description of the ML dialect used). The ML compiler is written
in Common Lisp and compiles MLi code by first translating it into Lisp and then
compiling the Lisp code.

Mathematics in Nuprl is organized into blocks called theories. A theory is a
linear list of various kinds of objects including definitions, theorems, and comments.
Theories are stored as Unix files. Users load theories into the Nuprl environment
called the library as and when needed.

Nuprl is an interactive system. The user develops theories by carrying on a
dialog with a Nuprl session via special purpose editors as well as an ML top-loop.
The editors are briefly described in Section 2.2.2 and Section 2.2.7.
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2.2.2 Terms and Structured Editing

In Nuprl, a term is a general-purpose uniform tree-shaped data-structure. Terms
are Nuprl’s equivalent of Lisp’s S-expressions, though they have more intrinsic
structure; terms have provisions for specifying variables to be bound in subterms,
and for parameters that allow the injection of families of constants such as natural
numbers into the term language. Terms have a variety of uses:

o All propositions in Nuprl’s logic are represented as terms, as are all expres-
sions and types in its type theory.

e All kinds of objects in theories except proofs are represented as terms.

Note that this use of the word term is more general than the use introduced
in Section 2.1.2, where it only refers to the constituents of Nuprl’s type-theoretic
language.

The definition of terms assumes the existence of syntactic classes of variables
and opids (operation identifiers). The elements of these classes are alphanumeric
strings starting with a letter. The ‘_’ character is counted as a letter. The definition
of terms also assumes that there is a collection of parameter kinds and that there is a
set of parameter values associated with each parameter kind. The main parameter
kinds are described later on.

The set of terms is inductively defined as the least set such that:

e if v is variable, then v is a term,

x) . are variables
?

o ifn>0and m >0, if for 1 < ¢ < n we have that :1;’1,
and t; is a term, and if we define

)

then

opid{pi:ki,...,pm:km}(s1;...;5n)
is a term.
The parts of a term are:
o opid{p1:ki,...,pm:km} is the operator.

The parts of the operator are:

— opid is the operator identifier.

— pj:k; 1s the jth parameter. k; is a parameter kind and p; is some
parameter value appropriate to kind %;.
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e The tuple (ay,...,a,) where aj > 0 is the arity of the term.

o s, =al ..., l’flltl is the tth bound-term of the term. This bound-term binds

free occurrences of the variables z, . . . ,:L'Zl. in ¢;. Frequently, a; is 0, in which
case | omit the ‘" (period) preceding t;.

The parameter kinds include:

e token for character strings
e nat for natural numbers

e level-expression for level expressions (level expressions are described in
Section 2.1.5).

These kinds are abbreviated respectively as t, n and 1.

Using the parameter mechanism, the number 3 is injected into the term lan-
guage as the term natural{3:n}. Parameters are actually also used to inject
variables into the term language: the variable foo when considered as a term is
represented by the term variable{foo:t}. To improve readability, I never show
a variable term written out in this way. Likewise, I abbreviate natural-number
terms: [ write 3 for the natural-number term 3.

When writing terms, [ sometimes omit the brackets around the parameter list
if it is empty.

2.2.3 Term Display and Entry

The visual appearance of each term constructor is governed by display form objects
in the Nuprl library. Display forms give one control over

e The order in which binding variables, parameter values and subterms are
displayed.

o The text separating each binding variable, parameter and subterm.
e Line-breaking and indentation

e Parenthesization. Display forms can be set up to introduce parentheses based
on the relative precedences assigned to display forms and subterm slots of
display forms.

o [teration of terms. Often it is desirable to use special notation when similar
terms are nested inside one another.

e Elision of subterms, binding variables and parameter values that are deemed
uninteresting.
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Display forms greatly increase the readability of terms. For example, the term:
all(int();i.all(int();j.exists(int () ;k.ge(k;multiply(i;j)))))
is usually displayed as:
Vi,j:Z. 3 k: Z. k > i * j

In this example, a special display form has been used for the nested all term con-
structors. Currently, all displays are generated using characters from a fixed-width
ASCII font, extended with roughly 60 graphics characters. At some stage in the
near future, it should be possible to use for example Display PostScript technology
to generate displays multiple sizes and kinds of fonts, and two dimensional layout
of formulae.

All terms shown in this thesis have been automatically formatted by Nuprl’s
current display routines.

Terms are interactively edited and viewed exclusively using a structured editor.
The structured editor supports a variety of tree editing operations on terms. It
also supports the editing of paragraphs of text within terms, with these paragraphs
themselves having term trees embedded within them. This feature is particularly
useful for typing in ML text that often has terms from Nuprl’s object language
embedded within it. Numerous examples can be seen of this throughout the thesis.

The structured editor deliberately has no capabilities for parsing the displayed
text of a term back into the underlying term data-structure. This gives the user
much greater freedom in designing notations and means that display forms can be
changed independently of one another; when designing a grammar to be parsed,
careful attention has to be paid to the inter-relations between the grammar con-
structs.

It is common mathematical practice to try to use as concise notation as pos-
sible. Conciseness enhances comprehension (and also speeds writing). Apparent
ambiguities are resolved by the reader’s knowledge of the context the notation is
presented in, and of what does and doesn’t make sense semantically.

In several theorem proving projects (MIZAR [Rud92] and Isabelle [Pau90]), for
example), much effort has been expended on designing parsers so that reasonably
concise notation can be typed using character-based text-editors !. These parsers
often use type checking to resolve ambiguities and type inference to infer implicit
type arguments. The automatic inference of implicit type information is common
too in such systems as HOL [GM93] and Coq [DFH*91]. Still, such an approach
limits notation to being in one font without a full range of mathemtical symbols,
subscripts and superscripts, and doesn’t support two-dimensional notation. A

'By character-based I mean editors such as emacs or vi in Unix systems where
there is usually a one-one correspondence between the set of character byte-codes in
files that are edited, and the set of glyphs that are used to display those characters.
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partial solution is to separate notations for input and output, in which case fancier
formatting can be used for output. This approach is now common in computer
algebra systems.

The structured editor approach has the advantage that very concise notations
can be used for both input and output. With Nuprl’s editor, short mnemonic
alphanumeric key sequences are assigned to various constructs so entry is possible
both by touch-typing and picking constructs from menus.

Another advantage of the Nuprl editor is that it allows display forms to be
changed in the middle of a Nuprl session, with these changes taking immediate
effect. This feature is frequently used when many display forms elide unimportant
arguments of terms. When eliding display forms are defined, non-eliding backup
display forms are usually also defined. Users then in the middle of a session can
ask for the backup display forms to be used when they want to see what the elided
arguments are.

This structured editing approach has several disadvantages. In theorem-proving
there are far fewer conventions for notation and users often invent new notation to
hide formal detail. One user’s concise notation frequently will be hard for another
to read. When working interactively with Nuprl, it is possible to mouse-click on
notation and ask for it to be explained, but this option isn’t available on paper. It
can be impossible to figure out in printouts of notation what precisely is meant;
at least with machine-parseable notation, the reader knows that he or she should
be able (in principle) to figure out what is going on.

Another disadvantage is that it takes a lot of work to get the ergonomics of
a structured editor right. Currently, new users of Nuprl take some time getting
used to the editor. Hopefully, this situation will improve as both the editor and
tutorials on it improve.

2.2.4 Abstractions

Terms are either primitive or abstract. Primitive terms have fixed pre-defined
meanings. Abstract terms or abstractions are defined in abstraction objects as
being equal to other terms. For example, here is an abstraction for the ‘divides’
relation on the integers:

bl a==3c:Z. a=Db *x c

I call the process of replacing an instance of the left-hand side of an abstraction
by the right-hand side unfolding and the reverse process folding.

Throughout this thesis, I often refer to abstractions as simply ‘definitions’ or
sometimes ‘notational abbreviations’. Abstractions are used not only for Nuprl’s
object language, but also for example in terms that occur in display-form def-
initions and in ML code. The graph of the dependencies of abstractions on one
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another should always be acyclic. However, recursive definitions can be introduced
as described in Section 2.2.5.

2.2.5 Recursive Definitions

Recursive definitions in Nuprl are coded using the Y combinator; since Nuprl’s
computation language is untyped, the standard A-calculus definition of the Y com-
binator can be used:

ycomb:

Y == Af.(Ax.f (x x)) (XAx.f (x x))

Previously, Nuprl had primitive recursion terms for each of the base types (integers,

lists and ‘simple’ recursive types) which were both awkward to use and unnecessary.
In this thesis, I sometimes use the notation [hs==rrhs to introduce a recursive

definition. For example, here is the definition of the Fibonacci function:

fib(n) ==r
if (m =, 0) Vy, (n =, 1)
then 1
else fib(n - 1) + fib(n - 2)
fi

This lhs ==r rhs notation is a notational abbreviation for a call to an ML function
called add_rec_def with [hs and rhs as arguments. add_rec_def takes care of
setting the actual abstraction objects for recursive definitions. The abstraction for
the fib(n) function looks like:

(Afib,n.
if (n=, 0) Vp(n =, 1)
then 1
else fib (n - 1) + fib (n - 2)
fi)

Normally, in Nuprl theories, such abstractions are made invisible and the [hs ==r rhs
ML function calls are retained, both because they document the recursive defini-
tions in a cleaner fashion, and because they inform definition folding and unfolding
tactics about the special nature the the definitions. Various tactics and rewrite
conversions (see Chapter 4) unfold and fold instances of recursive definitions in a
single step so the user is normally never aware of the Y combinator representation.
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The introduction of recursive definitions using the Y combinator is only possible
in Nuprl because of a unusual feature of the induction rules that permits the proof
of lemmas that characterize when a recursive definition defines a total function.
This issue is discussed more in Section 3.5.

2.2.6 Theories

The Nuprl V4.1 data-base of definitions and theorems is divided into theories. 1
commonly present listings of parts of theories. Figure 2.1 shows a listing of part
of a theory dealing with functions.

A theory contains a sequence of library objects or objects for short. Object
descriptions in theory listings often start with a symbolic character (usually *)
and a capital letter. The symbolic character gives the status of the object. *
means that the object is complete and has been verified. Other status characters
include # for incomplete, and - for bad in some sense.

The capital letter gives the kind of the object. Kinds of objects include:

D for display form definitions.
C for comments.

M for ML code. ML code in theories is commonly used to introduce theory-specific
ML definitions for tactics and rewrite rules, and to provide extra information
about definitions to the tactic system.

T for a theorem object. A theorem object contains a proposition that has been
proven just when the status of the object is *.

A for abstractions.

Following the kind of an object is the object’s name and the contents of an
object. For conciseness, the contents of theorem objects are abbreviated; only the
statement of the theorem is shown. Theorem objects also contain proof scripts
and extract terms. See Section 2.2.7 for details. Complete listings showing extract
terms and proofs can also be generated.

For the purposes of this thesis, it is not necessary to understand the formatting
directives given in display form objects and usually I'll not show these. When
necessary, | give informal accounts of notational conventions I have chosen to use.

Nuprl sessions always have a library window which allows the user to view
segments of the loaded library in a format similar to that described above.

Currently over 30 theories have been defined in Nuprl V4.1. These These are
summarised in Section 2.3, and many parts of these theories are described in this
thesis..
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*C

*D
*A
*T
*M

*D

*A
*T

*M

*T

*T

*T

tidentity_com
The type argument of tidentity is never used
on the right-hand side of the definition,

tidentity_df

tidentity

tidentity_wf

but it helps with type inference.

Id{<T:T:*>}== tidentity{}(<T>)

I4{T} == Ax.x

VA:U. Id{A} € 4 — A

tidentity_ml

compose_df

compose
compose_wf

compose_ml

comp_assoc

comp_id_1

comp_id_r

let tidentityC =
SimpleMacroC ‘tidentityC®

lTa{Ty = [xl
‘‘tidentity identity‘‘ ;;

add_AbReduce_conv ‘tidentity‘ tidentityC ;;

Prec(inop)::Parens ::
<f:fun:L>{\\?} o <g:fun:L>
== compose{}(Kf>; <g>)

fog==2Ax.f (g x)

VA,B,C:U. Vf:B — C. Vg:A — B.

let rem_composeC,add_composeC =
DoubleMacroC ‘composeC®

foged —C

(SemiNormC *‘compose‘‘) [(f o g) xl

dc £ (g 01

add_AbReduce_conv ‘compose‘ rem_composeC;;

V4,B,C,D:U. Vf:A — B. Vg:B — C. Vh:C — D.

ho(gof)=(thog)of €A —0D

VA,B:U. Vf:A — B. Id{B} o f

VA,B:U. Vf:A — B. f o Id{A}

f € A — B

f € A — B

Figure 2.1: Partial Listing of Theory on Functions
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2.2.7 Theorems and Proofs

The heart of the Nuprl system is a piece of code called the refiner. Its responsibility
is to build proofs by iteratively applying primitive rules of inference from Nuprl’s
type theory. The correctness of proofs relies almost exclusively on the correctness
of the refiner and of the implementation of the primitive rules themselves.

One rarely build proofs by selecting individual rules to use, one-by-one. Instead,
one invokes programs written in ML(see Section 2.2.8) called tactics that automati-
cally select and sequence appropriate rules. Tactics can be quite sophisticated, but
still the correctness of any proof doesn’t depend on them, only on the underlying
refiner. This tactic paradigm was introduced in the LCF system [GMWT9] and
has also been adopted in theorem provers such as HOL [GM93] and LEGO [Pol90].
Other interactive theorem provers such as IMPS [FGT92a], and PVS [ORS92] have
proof development languages that have many similarities with tactic languages.

Ideally, all the rules the refiner implements should be in some sense straightfor-
ward and obviously correct. Most of Nuprl’s rules have a fairly simple structure;
they are specified by rule objects in a preliminary theory that is always loaded
in any Nuprl library. Each rule object contains a pattern for a rule that is in-
stantiated to give rule instances. Nuprl also has some more sophisticated rules
which are implemented by Lisp and ML procedures rather than pattern matching.
Theoretically, the reasoning accomplished by most of these procedures could also
by accomplished by pattern-matching rules, but at a considerable loss of efficiency
and convenience.

I describe the tactic collection I created for Nuprl V4.1 in Chapter 3.

A simple proof in Nuprl is that all functions in the type N —N are not enumer-
able. Figure 2.2 shows a printout of this proof. Here, the function £ is considered
to give a putative enumeration of all the functions. The theorem states that for
any f, there will always a function g that £ misses out. I generated this proof using
Nuprl’s proof editor by first entering the goal of the theorem:

FVE:N—- N — N. 3g:N — N. Vi:N. -(f i=g & N — N)

and then entering each of the tactics after the word BY. For brevity, this proof
printout only shows at each step of the proof the clauses of the sequent that have
changed.

The proof editor generates a window that shows a sequent at some point of a
proof, the tactic (if any) run on that sequent, and any subgoals generated. For
example, one window onto the above proof is shown in Figure 2.3.

One difference between Nuprl’s refiner and that of most other theorem provers
is that Nuprl’s maintains a proof-tree data-structure. Others just maintain the
fringe of the proof tree. Maintaining whole proof trees makes interactive develop-
ment of proofs considerably easier and makes it simple to go back and experiment
with different proof strategies. Also, proof trees serve to document proofs; Nuprl
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FVE:N—-N— N. 3g:N — N. Vi:N. -(fi=g&€ N — N)

BY (Unfold ‘not‘ O
THENM D O
THENM InstConcl [’An.fnn + 1°] ...?)

1. f: N—- N —- N

2. i: N

3.fi=(Qn.fnn+1) € N— N
F False

BY (With i’ (EqHD 3) THENM Reduce 3 ...a)
3.fii=fii+1€&N
BY Auto

Figure 2.2: Example Proof Printout

EDIT THM cantor

* top 1

1. f: N—- N —> N

2. i: N

3.fi=((An.fnn+1) € N—>N
F False

BY (With ’i’> (EqHD 3) THENM Reduce 3 ...a)

3. fii=fii+1€&N

Figure 2.3: Example Proof Window
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users frequently study proof techniques and learn tactic behavior by browsing ex-
isting proof trees. This explanatory capability of tactics is much harder to take
advantage of in theorem provers without proof trees, because there the tendency
is to store all the tactics that generate a proot as an unreadable monolithic block.
To understand an existing proof in these systems, often the only option the user
has is to interactively replay the proof, line by line, and still, the replay will not
make the branching structure of proofs clear.

Nuprl V4.1 has an option for maintaining proof-trees at the primitive rule level
as well at the tactic level. This is necessary for extraction purposes, although
this option is often disabled since the primitive rule trees can be very large. An
interesting use of this feature is to maintain proof trees simultaneously at different
levels of abstractions. Tactics can easily be set up to generate such multi-level
proofs. Then, when a user is trying to follow a proof, she can select the level of
explanation as she wants.

Tactics are always expressions in the ML language of type tactic, although it
is often convenient to use notational abbreviations so that tactics do not always

>and ‘.. .a’ notations at the

appear to be in the ML syntax. For example, the ‘...
end of tactics are generated by ‘tactic-wrapper’ notational abbreviations. It is a
Nuprl convention that tactic wrappers with *...” indicate application of variants
of Nuprl’s Auto tactic. These wrappers cause variants of the Auto tactic to carry
out obvious steps of reasoning and solve trivial subgoals after the execution of the
tactics contained in the wrapper. For example, one action of the ‘...?" wrapper
around the tactic:

Unfold ‘not‘ O

THENM D O

THENM InstConcl [’An.fnn + 1°]

is to prove that the function An.f n n + 1 really has type N — N (this is done
by using the SupInf tactics discussed in Section 3.9).

Currently, proofs are stored in the form of proof seripts that contain the tactics
necessary for regenerating the proofs. Occasionally, the regeneration of a proof
breaks because of minor changes to tactics between the regeneration time and the
time the proof was originally created. Usually, it is pretty easy to fix such proofs.

2.2.8 The ML Language

The ML language used in Nuprl is a functional language closely-related to the ML
of the Edinburgh LCF theorem proving system [GMWT79] and is a predecessor of
ML used in Cambridge LCF [Pau85] and the SML language [MTH91, Pau91]. As
in the LCF system, ML is used for writing all the tactics (ML originally stood
for meta-language; it was designed for writing tactics). ML is also used as a top-
level language for interacting with Nuprl: the user can load and save theories, and
invoke term and proof editors from an ML top-loop.
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It is assumed that the reader is familiar with some functional programming
language. For the purposes of this thesis, the main features of the ML language
that the reader needs to know are:

o It has a polymorphic type system. All terms are strongly typed. Types
can always be inferred and it is rare that code explicitly contains type an-
notations. Occasionally, for clarity when documenting functions, I indicate
explicitly argument types. For example, [ might write an argument as i:int
indicating that argument i has the type int of integers.

e The primitive types constructors include -> for functions, # for products, +

for disjoint sums, and 1list for lists. Atomic types include bool, int and
tok. tok is a type of tokens. A token is any string of characters, enclosed in
‘“’s (back-quotes). Function application is denoted by juxtaposition, pairing
by an infix ‘,” (comma), and list consing by ‘.” (period). The notation
for lists uses [ and ] to delimit the list and ; to separate elements. A
sequence of characters delimited by ¢ on each end is interpreted as a list
of tokens. For example ¢ ‘this is a token list‘‘ is synonymous with
[‘this‘, ‘is‘,‘a‘, ‘“token‘, ‘list‘].
Nuprl also has a primitive type string of strings. These strings are delimited
by doublequotes (") on either side. Strings and tokens are implemented by
different data structures in Lisp (strings and symbols respectively) that have
different performance characteristics for their elementary operations.

e A kind of abstract data types is supported. In an ML abstract-data-type
definition, a representation type is specified along with a set of functions
for creating and operating on elements of the representation type. Outside
the definition, the only way of manipulating elements of the abstract data
type are via the functions set up in the definition. Recursive abstract types
can be defined. The types term and proof are abstract types. Instances
of type term are either delimited by *?’s (forward quotes) or by a [ on the
left and a | on the right (half way through producing the thesis, I wanted
more distinctive tem delimiters so I changed the display form that produces
them). The use of the abstract type proof for proofs guarantees that only
the refiner can build new proofs.

e Concrete type abbreviations are supported. Here, one gives a name for a
type pattern and the name is then used for occurrences of the pattern. For
example, the type tactic is an concrete type abbreviation for proof ->
proof list # validation and validation is an abbreviation for proof
list -> proof.

o User-defined binary functions can be declared to be infix. Most infix funec-
tions are easily recognized because their names use only capital letters. Nor-
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mal function application binds more strongly than infix function application.
The keywords let and letrec introduce respectively non-recursive and re-
cursive declarations. Two semicolons (; ;) always terminate declarations and
expressions to be evaluated.

e Exceptions can be thrown and caught. This is essential for the behaviour of
tacticals such as ORELSE and conversionals such as ORELSEC.

e Comments are delimited by percent (%) characters.

2.3 Summary of Libraries

Here is a summary of the main theories I had set up for Nuprl V4.1, by the time
that this thesis was completed. There is not space in this thesis to give full listings
for all these theories. They should be all publically available in the Nuprl V4.1
release sometime before the end of 1994 and also should be browseable on the
World-Wide-Web [BCL194]. Contact the author for details. Other developments
in Nuprl V4.1 include theories on the semantics of an imperative programming
language [All94] and constructive real analysis [For93].

e core_1: Display forms for primitive terms. Definitions for propositions-as-
types correspondence.

e core_2: Intuitionistic propositional and predicate logic.

e bool_1: The boolean type and boolean operators. Demorgan laws and sim-
plification theorems and tactics. Tactics for case splitting on the value of
boolean expressions, especially when they are arguments of if then else
terms.

o fun 1: Identity function and function composition. Standard predicates on
functions (injective, surjective, bijective) and theorems relating them.

e well fnd: Basic theory of well-founded relations. Definition of tactics for
induction on the rank of some expression.

e int_1: Definition of standard subsets of the integers. Theorems and tactics
for linear and complete induction over subsets.

e list_1: Common list functions that do not involve equality testing (for
example map, hd, tl, length).

e num_thy_1: Divisibility in Z. GCDs, coprimality, Chinese remainder theo-
rem. Does not involve any iterated operations over integers.
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e rat_1: Rational numbers and arithmetic operations on rationals. This the-
ory has been much extended by Forester in proving the Intermediate Value
Theorem.

e gen_algebra_1: Common algebraic predicates (for example, associativity
commutativity). Order and equivalence relations.

e sets_1: Class of discrete types (a type is discrete when its equality relation
is decidable) and types with decidable order relations.

e groups_1: Classes for groups and monoids. Abelian and discrete variants.
[terated operations over a monoid. Homomorphisms. Normal subgroups and
quotient groups.

e rings_1: Classes of rings, integral domains and fields. Ideals and quotient
rings. Lifting of iterated operations to sum and product operations.

e perms_1: The permutation group on any type. Permutations on a finite
type. Building permutations from swaps. Invariance of iterated operations
over abelian monoids.

o perms_2: The permutation relation on lists.

e list_2: List functions over discrete sets and monoids (for example, member,
reduce). Gives many monoid-related and permutation-related lemmas.

e factor_1: Conditions for existence and uniqueness of factorizations in can-
cellation monoids.

o mset: Multisets built from lists using quotient type. Show that have a free
abelian monoid.

e algebras_1: Classes of modules and algebras.

e polynomials_1: Class definitions for free abelian monoid, free monoid alge-
bra and polynomial algebra. Development of multivariate polynomial imple-
mentation.

The theories 1 have developed contain roughly 500 definitions (not counting
those that support ML and the editor), and 1300 theorems (not counting the pri-
mary well-formedness theorem that nearly always accompanies each definition).
When assessing these numbers, remember that what counts as a theorem or def-
inition in formal mathematics is often much less than what counts in the normal
practice of mathematics. By studying this thesis, the reader should gain some idea
of the granularity of Nuprl theories and the level of detail.



Chapter 3

Tactics

3.1 Introduction

A variety of algorithms have been implemented in Nuprl’s ‘meta-language’ ML
to automate parts of proof development. These algorithms are encapsulated into
these procedures that are called tactics which users select amongst and apply when
they want to construct formal proofs in Nuprl.

In this chapter, I survey the tactic collection that I have created for Nuprl V4.1
and describe a few of the algorithms that underlie these tactics. Where appropriate,
I point out the relationship between these tactics and those found in Nuprl V3,
as well as in other theorem-proving systems. Note that the rewrite tactics are
described separately in Chapter 4. For more details on the tactics, consult the
Nuprl V4.1 Reference Manual [Jac94b].

[ have ordered the sections of this chapter roughly according the the complexity
of the tactics that they describe. The last section of the chapter, Section 3.10,
covers the matching routines that are used in several of the tactic families described
in this chapter, as well as extensively in the the rewrite tactics.

In total, over 3000 functions have been defined in over 20,000 lines of ML code
(not counting blank lines and comments). Fortunately, the average user need only
be tfamiliar with perhaps 20 or 30 of these functions in order to complete most
proofs.

3.2 Well-formedness Reasoning

In practice, most well-formedness goals can be solved automatically by a set of
heuristics built into Nuprl’s Auto tactic. The advantage of this approach over a
syntactic one is that one can easily experiment with extensions to the type regimen
that one commonly works in. For example, we often work in Nuprl with terms

38
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that have several alternative typings and Auto selects the appropriate typings in
different instances.

A serious disadvantage with Nuprl’s approach is that it is tremendously slow
compared to syntactic methods; frequently, 90% or more of tactic execution time
is spend in type checking. Efforts to streamline things with caching schemes have
had some success so far, but it’s not clear whether one can ever approach the
efficiency of syntactic methods.

Another disadvantage is that showing the initial well-formedness of new def-
initions can be a significant burden to the user. When proving well-formedness
lemmas, one is severly restricted in what rewriting and chaining tactics one can
make use of. Part of the work I describe in Section 3.5 below has been in developing
methodologies for making the proof of these lemmas more straightforward.

In presenting the behaviour of tactics in this chapter, I often suppress the
well-formedness subgoals generated. Auto is almost always run on well-formedness
subgoals created by tactics, so such goals are rarely seen in practice.

3.3 Decomposition

The decomposition tactics provide access to the decomposition rules of Nuprl’s
logic — the rules which as described in Section 2.1.4 correspond to the left and
right introduction rules of a Gentzen L-style sequent calculus for predicate logic.
The simplest decomposition tactic is the tactic D of type int -> tactic. The tactic
D i decomposes the outermost constructor in clause 2. For example, remembering
that the conclusion is considered to be ‘clause 0, here is the D tactic decomposing
an implication in the conclusion:

. FP=qQ
BY DO

main: ...,P F @

This tactic example is read as indicating that if the tactic D 0 is run on a goal

F P = (@, then the subgoal ..., P F () is generated. The main indicates
a goal label on this subgoal. Some tactics generate labels on subgoals and other
tactics discriminate on these labels. Goal labels are visible to the user when doing
interactive proof and often give hints as to where otherwise mysterious subgoals
have originated from. The D tactic above also generates a second well-formedness
subgoal with label wf, but as mentioned in Section 3.2, I'll frequently not show
such goals.
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The D tactic works on the standard logical connectives and quantifiers as well
as on hypothesis types. Sometimes, an additional argument needs to be specified.
For example:

coey JNVT AP, .0 F L
BY With a (D j)

main: ..., j.FP,,... F ...
wt: coey JVTI AP, ... F a€e A

I use the j. here before the Vx:A.P; to indicate that this is the jth hypothesis.

The D tactic usually does nothing more than select an appropriate primitive
rule to do the decomposition and take care of perhaps unfolding an abstraction or
two before applying the primitive rule. The user can specify extensions to D for
cases when some other course of action would be most useful.

Several decomposition tactics do repeated decomposition. For example, the
RepD tactic repeatedly decomposes any V and = propositions in the conclusion and
A hypotheses. The GenExRepD tactic in addition decomposes 3 and V hypotheses
and A conclusions. The ProveProp tactic repeatedly and exhaustively applies the
D tactic everywhere, backtracking when necessary. As the name implies, it is good
for proving goals that involve just propositional reasoning. A variant on ProveProp
allows alternative tactics to be run on the leaves of the search tree that ProveProp
generates.

3.4 Member and Equality Decomposition

A family of decomposition tactics work on the arguments of membership (¢t € T')
and equality (t = t' € T') terms. MemCD works on the arguments of membership
terms in the conclusion. For example:

. FE<a,b>ex:AX By

BY MemCD
subterml: ... F ac€ A
subterm2: ... - b€ B,
wt: o, A F B, eU

MemCD tries to use well-formedness lemmas or wf-lemmas for its reasoning. For
example, a wi-lemma for rational plus function is:

F Va:Q. Vb:Q. a +4b € Q
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A more complicated wf-lemma is for an operator X for summing up an integer-
indexed sequence of elements of a monoid g:

F Vg:Monoid
VYm:Z Vn:{m. ..}
VEAm...n—1} — |g]
(S(9) m <k <n. E[}]) € |g]

An example use of this wi-lemma is:

+ (Z((Z,—I—,O>)1§i<10.i*i) e Z
BY MemCD

subtermi: F (Z,+,0) € Monoid
subterm2: F 1€Z

subterm3: F 10€{l...}

subterm4: :{1...10} F ¢x¢ € [(Z,+,0)]

This example illustrates a couple of subtleties of the operation of MemCD. Firstly,
it handles smoothly operators with binding. Secondly, types often have to be
juggled to make them match up correctly. This is taken care of by the Inclusion
tactic that MemCD invokes. Here, the Inclusion tactic recognizes that that the type
expressions |(Z,+,0)| and Z are the same thing. MemCD is at the heart of the Nuprl
tactics such as Auto that are used to prove well-formedness subgoals.

Closely related to MemCD is EqCD which used for congruence reasoning. It de-
composes equalities in the conclusion of terms with the same outermost term con-
structor into equalities between the corresponding subterms. For example:

R p+l=q¢+41.€Q

BY EqCD
subterml: F p=¢€Q
subterm2: + 1. 1 ceQ

Wi-lemmas implicitly contain information about congruence properties of terms,
and as in the above example, EqCD is able to use this information.

Other decomposition tactics include MemHD and EqHD for decomposing terms in
hypothesis memberships and equalities, and MemTypeCD and EqTypeHD for decom-
posing just types in membership terms and equalities. The latter are applicable to
set types, quotient types, recursive types and type abstractions built using these

types.
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3.5 Induction

Induction is commonly used over well-founded orders. I desgined theorems and
tactics for showing that successively richer orders are well-founded and doing in-
duction over these orders.

One problem with Nuprl’s type theory is that when proving well-formedness
lemmas, it is very easy to generate well-formedness subgoals that are as hard
to solve as the one being proved. This happens whenever one tries to use an
induction lemma as a step in a proof a well-formedness lemma. Fortunately, if
the pattern of primitive rules used in proving the induction lemma and previous
lemmas is duplicated, the induction can be done without creating these unwanted
subgoals. To simplify matters, I added in a proof analogy mechanism whereby a
tactic executes by copying a portion of an existing proof, but perhaps uses different
specific parameters.

An example of such a tactic is is the RankInd rank induction tactic. Figure 3.1
illustrates its use in a proof of the well-formedness of a gcd (greatest-common-
divisor) function.  The invocation pattern for RankInd is RankInd p R Tac 1,

1. b: Z
F Va:Z. gcd(a;b) € Z
|

BY (OnVar ‘b’ (RankInd ’Ai.li|’ ’N’ CompNatInd)
THENM D 0 ...a)

|
|
2
3. a: Z
l_

. Vb1:Z. b1l < |bl = (Va:Z. gcd(a;bl) € Z)
gcd(a;b) € Z

Figure 3.1: Use of RankInd Induction Tactic

where ¢ indicates the hypothesis declaring the variable that the induction is over,
p is the rank function, R is the range of the rank function, and Tac is a tactic for
complete induction over the range type R. The OnVar ‘b’ is a tactical for applying
tactics that apply to hypotheses. It allows reference to declarations by name rather
than by number.

3.6 Chaining

Forward and backward chaining involve treating a component of a universal for-
mula as a derived rule of inference. I consider a universal formula to be one
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generated by the grammar

P = VA P|Q=P|P<=Q
| P\P| PP
| R

where A is a type and R is a propositional term not of the above form. They are
sometimes called positive definite formulae or horn clauses. I call the proposition
R, a consequent and each (), an antecedent. 1 call the formulae generated by
this grammar without the A and <= connectives, simple universal formulae. A
universal formula is logically equivalent to one or more simple universal formulae,
one for each consequent. I consider these simple universal formulae to be the
components of a universal formulae.

Universal formulae used for chaining appear either as a hypotheses in proofs
one is working on or as previously proven lemmas in the Nuprl library.

Backward chaining involves matching the conclusion of a sequent against the
consequent of a universal formula. The antecedents of the universal formula, in-
stantiated using the substitution resulting from the match, then become new sub-
goals. The tactics for 1-step backchaining are BackThrulemma and BackThruHyp,
often abbreviated to BLemma and BHyp respectively. An example use of BLemma is:

i:ZF3 x 1 < 3 % (1L + 1)
BY BLemma ‘mul_preserves_lef

main: F i < (i + 1)
where mul _preserves_le is the lemma:
F Va:Z. Vb:Z. Vn:N. a < b =>nx*xa<n*b

There are several tactics for repeating backchaining steps using lemmas and
hypotheses. These tactics allow optionally for backtracking and so can be used
for prolog-style proof search. They also have some basic loop detection built in to
prevent some kinds of unbounded backchaining (for example, when backchaining
through commutativity lemmas).

Forward chaining involves matching hypotheses of a sequent against antecedents
of a universal formula. The consequent of the universal formula, instantiated us-
ing the substitution resulting from the match, then becomes a new hypothesis.
The tactics for 1 step forward chaining are FwdThruLemma and FwdThruHyp, often
abbreviated to FLemma and FHyp respectively. An example use of FLemma is:

1.i:Z, 2. 3% i< 3% ({1 +1)F...
BY FLemma ‘mul_cancel_in_le‘ [2]

main: 3. i <i+1F ...
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where mul_cancel_in_le is the lemma:
F Va:Z. Vb:Z. Vo:Nt. nxa<n*xb=a<hb

The forward chaining tactics take a list of numbers of hypotheses to try to match
against the lemma antecedents (the [2] in the example above).

3.7 Constructive and Classical Reasoning

[ review here the mechanisms I've put in place for assisting constructive reasoning.
In the last section, I discuss how one can reason classically.

3.7.1 Constructive Reasoning

The intrinsic constructivity of Nuprl’s logic manifests itself in three main ways
with the tactics:

1. For any proposition P, the goal PV —P is not in general provable.

2. When applying the D tactic to a hypothesis that has a set term outermost,
the predicate part of the set term becomes a hidden hypothesis. For example:

nad{y TPy, o0 F oLl
BY D ¢

vt e+ 1] Py, oo F oL

Here, the [| surrounding the hypothesis number ¢ + 1 indicate that this hy-
pothesis is hidden. A hidden hypothesis is not immediately usable though
there are ways in which it might become usable later in a proof. The need for
hiding is a consequence of the constructivity of Nuprl’s type theory. Without
hiding, the rule invoked by the D tactic above would be unsound.

3. To prove a conclusion (' it is not in general legitimate to assume the negation
of C' and prove falsity; The goal ... C cannot in general be refined to the
goal ...=C I~ False.

Tactics to simplify dealing with these issues are described in the next three
sections.
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3.7.2 Decidability

Many useful instances of PV—P are provable constructively and the ProveDecidable
tactic is set up to construct these proofs in a systematic way. To discuss it, I first
introduce the decidable abstraction:

DeC(P) =def Pv-P

It turns out that the property Dec(P) can be inferred for many P from knowing
that Dec(®) for the immediate subterms @ of P. For example, if - Dec(Q;) for
i = 1,2, then F Dec(Q1 V ()2) and + Dec(Q1 <= (Q)2). Decidability over product
types can also be inferred from decidability over the component types. This can
be stated by the lemma:

VA, B-U.
(Va,a’:A. Dec(a = d' € A))
= (Vb,V:B. Dec(b =1V € B))
= (Ve,d:A X B. Dec(e = € A X B))

ProveDecidable takes advantage of this property of decidability, and attempts
to prove goals of the form

... Dec(P)

by backchaining with a user-extensible set of decidability lemmas. ProveDecidable
is usually invoked via the Decide tactic which is used to case-split on whether a
proposition () is true or false. It generates two main subgoals; one with the new
assumption () and the other with the new assumption —(). It also generates a
subgoal ... F Dec()) and runs the ProveDecidable tactic on this subgoal.

3.7.3 Squash Stability and Hidden Hypotheses
Squash stability is defined in the Nuprl library as:

SqStabIe(P) =def |P=P

The proposition | P (read ‘squash P’) is considered true exactly when P is true.
However, P’s computational content when true can be arbitrary whereas | P’s
computational content when true can only be the trivial constant term - (read ‘it’)
that inhabits the unit type. (| P is defined as {a:Unit| P} where a does not occur
free in P.)

Informally, a proposition is squash stable if it is possible to figure out what its
computational content is, given that it is known that some computational content
exists (in the classical sense). The computational content of a proposition is some
term that inhabits the proposition when it is considered as a type.
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Squash stability is a useful concept because it characterizes exactly when a hid-
den hypothesis can be unhidden. Specifically, a hidden hypothesis P in a sequent
o can be unhidden if one of two conditions are met:

1. The proposition P is squash stable.
2. The conclusion of ¢ is squash stable.

As with decidability, it turns out that the property SqStable(P) can be inferred
for many P from knowing that SqStable(Q) for the immediate subterms @ of P.
It is also true that Dec(P) = SqStable(P) for any P. The tactic ProveSqStable
takes advantage of these facts and attempts to prove goals of the form

... F SqStable(P)

by backchaining with a user-extensible list of lemmas about squash stability and
also resorting to checking whether P is decidable. Various tactic that unhide
hypotheses create SqStable subgoals that are proven using the ProveSqStable
tactic.

3.7.4 Stability and Negating the Conclusion

Squash stability is closely related to the stability predicate in constructive logic; a
proposition P is stable if == P = P. As explained at the end of the next section,
the two predicates can be considered equivalent.

The refinement step of proving a conclusion €' by assuming the negation -C'
and proving a contradiction is only constructively valid when C' is stable. The
NegateConcl tactic carries out this step and checks the stability of ' using the
ProveSqStable tactic.

3.7.5 Classical Reasoning

To reason non-constructively, one needs to have as an explicit hypothesis the ex-
cluded middle proposition

vYP:P.PV-P

(or at least some instances of it). The xmiddle abstraction provides an abbrevia-
tion for this:

xmiddle: XM =g VP:P.Dec(P)

The Decide, NegateConcl and hypothesis unhiding tactics all recognize whenever
the xmiddle abstraction occurs as some hypothesis, and in this case never fail.

A non-constructive theorem is stated by using xmiddle as a precondition of the
theorem. Such theorems are then usually of form F XM = P.
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There are two common cases when in proving a part of a constructive theorem,
classical reasoning becomes allowable:

1. If the conclusion is the squashed exists term | dx:T. P, and the existential
is about to be instantiated using the tactic With ¢ (D 0). Squashed exists is
defined as:

sq-exists: |Jda:T. Plz] =g {2:7T|Pla]}
When the tactic AddXM is used first, the refinement has form:

LRl deT Py
BY AddXM 1 THEN With ¢ (D O)

wf XM... +FteT
main XM... F £
wf XM...z2T' v P, cP

AddXM 1 adds the hypothesis XM as a hidden hypothesis, so there are no
soundness problems here. XM becomes unhidden in the first and third sub-
goals since here the conclusion is recognized as being trivially squash stable.
XM becomes unhidden in the second subgoal since from here on, any compu-
tational content in the proof cannot contribute to the computational content
of the original goal of the theorem.

2. If the conclusion is squash stable. When AddXM 1 is run, the proposition XM
is added as a hidden first hypothesis and one of the unhiding tactics unhides
it.

The AddXM tactic assumes that the proposition
FL (VP:P. PV —P)

is true; that is, the corresponding type is inhabited. This is not true according to
the set-theoretic semantics that Allen gave, but is true according to the model of
Howe in which the computation language is enriched with non-computable oracles.
The outermost squash operator ensures that the oracular inhabitants of the above
proposition never make their way into any other extracts of theorems and so upset
Nuprl’s constructivity. When | (VP:P. PV =P) is assumed true, stability and
squash stability are equivalent notions. The NegateConcl tactic described in the
previous section takes advantage of this fact.
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3.8 Relational Reasoning

For the rewrite package described in Chapter 4, I established conventions for build-
ing libraries so that tactics would have easy access to information about various
characteristics of binary relations (see Section 4.3).

I took advantage of this accessibility in the design of a tactic Re1RST ! that
automates solving goals that depend on these characteristics. The heart of this
tactic is a routine that builds a directed graph based on the binary relations in a
sequent and finds shortest paths in the graph. Extensions were made to this routine
to allow it to handle strict order relations and relations with differing strengths.

I ended up adding features to RelRST so that it also could take advantage of
antisymmetry, irreflexivity and linearity properties of relations.

RelRST generalizes the Eq tactic in previous versions of Nuprl that only handled
such reasoning with the equality relation of Nuprl’s type theory.

Here are a couple of examples of Re1RST’s use from a theory of divisibility over
the integers:

. a: 7z
a7z
. b: Z
. b Z

1

2

3

4

5. ...
6. a’ | a
7. b | b’
8. ...
9. al|b
Fa | b’
|

BY (RelRST ...)

and

1. a: Z

2. b: Z

3. y1: Z

4. ...

5. gcd(a;b) = yi
6. y2: Z

7. ...

8. gcd(bja) = y2
9. ...

10. y1 ~ y2

F gcd(a;b) ~ ged(b;a)

'standing for Rel(ation) R(eflexivity), S(ymmetry) and T(ransitivity)
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I
BY (RelRST ...)

Here, I have elided hypotheses that were not required by RelRST to solve the goals.
The ~ relation is the associated relation and ged(a;b) is a function that computes
the greatest common divisor of a and b. The second example illustrates how Re1RST
is able to cope with relations of differing strengths.

3.9 Arithmetic Reasoning

The integers and subsets of the integers such as the naturals are amongst the most
common data-types in theorem proving. Consequently, goals involving arithmetic
reasoning come up frequently. These goals can be very tedious to solve by manual
application of sets of lemmas derived from Peano-like axioms and recursive defi-
nitions of the arithmetic functions, despite the fact that the goals are often very
obvious to the theorem prover user.

There are several standard algorithms for solving some kinds of arithmetic
problems. For example, for deciding the satisfiability of conjunctions of inequalities
over linear rational expressions, there is Fourier’s technique of variable elimination
that has been known for over a century [Chv83]. This problem can easily be re-
phrased as a linear programming problem for which the commonly used method
in the operations research community is the simplex algorithm [Chv83].

Nuprl inherited from the PL-CV system built at Cornell a procedure called
arith for solving arithmetic problems over the integers [CJES82, CT86]. Roughly
speaking, arith tries to solve a goal by putting arithmetic expressions into a normal
form and then applying congruence closure. It also has some basic capabilities for
solving inequalities.

However, arith cannot solve general sets of linear inequalities over the inte-
gers though such problems are abundant when for example doing array bounds
checking. Solving linear inequalities over the integers is a strictly harder problem:;
polynomial time algorithms are known for the solving linear inequalities over the
rationals, but integer linear programming is NP complete. In practice in theorem
proving, simple adaptations of methods over the rationals have worked well for the
integers.

I chose to implement in Nuprl a tactic that uses the Sup-Inf method for solving
integer inequalities [Ble75]. The basic algorithm considers a conjunction of inequal-
ities 0 < e1 A ... A0 < ¢, where the ¢; are linear expressions over the rationals
in variables 1 ...z, and determines whether or not there exists an assignment of
values to the x; that satisfies the conjunction. The algorithm works by determin-
ing upper and lower bounds for each of the variables in turn — hence the name
‘sup-inf’. The bound calculations are always conservative, so that if some upper
bound is strictly below some lower bound, then the conjunction is unsatisfiable.
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Shostak [Sho77] showed that the calculated bounds are the best possible, and
hence that the algorithm is complete for the rationals. He proposed a simple
modification that made the algorithm return an explicit satisfying assignment when
the conjunction is satisfiable.

When used over the integers, the Sup-Inf algorithm is sound, but not complete;
if there is no satisfying assignment over the rationals, then there is also none over
the integers. However, there are cases when the algorithm finds a rational-valued
satisfying assignment even though none exists that is integer valued. There are
standard techniques for restoring completeness, but it has been both Shostak’s and
our experiences to date that examples for which the algorithm is incomplete are
rare in practice.

The procedure I implemented currently does the following:

1. Takes a goal ¢ and extracts a logical expression P built from the logical
connectives A,V,—, the order relations on the integers < and <, and the
equality relation = on the integers, such that if =P is not satisfiable, then
the goal ¢ is true. If the goal has the form

X1,...xn: by, T1,...TE F 1o

where the r; are all instances of the <, <, = relations over the integers in-
volving expressions over the integer variables z1,..., x,, then =P has form

ri A .. AT Ay

2. The expression =P is put into disjunctive normal form. Occurrences of = and
< relations are eliminated in favour of <. Where possible, =’s are eliminated
by substitution rather than splitting into inequalities.

3. The left-hand argument of each <is moved to right-hand side and the integer
expressions are put into a sum of products normal form. Each product has
any constant coefficient brought out to the left of the product.

4. Each distinct non-linear expression is generalized to a new rational variable.
These non-linear expressions might involve * and =+, as well as integer-valued
functions (for example, the list length function). The arithmetic expressions
are now all linear.

5. Each disjunct is augmented with extra arithmetic information suitably nor-
malized that comes from various sources including:

(a) typing of variables and generalized non-linear expressions. If variable ¢
has type {j ...}, then j <7 can be added.
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(b) arithmetic property lemmas. An example is a lemma stating that the
length of two lists appended is the sum of the lengths of each list.

This augmentation is in general a recursive procedure; the inferred arith-
metic propositions can themselves contain variables and non-linear expres-
sions about which further information can be inferred.

The Sup-Inf algorithm is run on each disjunct. If none is satisfiable, then the
original goal is true. If a satisfying assignment is found, then it is returned
to the user as a counter-example.

. When no disjunct is satisfiable, the procedure creates several well-formedness

subgoals. Some of these check the well-formedness of the arithmetic expres-
sions in the conclusion of the original goal ¢. Others check that the arithmetic
property lemmas can be instantiated as the procedure assumed they could

be.

The inference of arithmetic properties from typing and from property lemmas
greatly increases the procedure’s usefulness.
Unlike most other tactics, but like the arith rule which SupInf largely su-

percedes, SupInf’s inferences are not refined down to primitive rule level, so Nuprl’s

soundness now depends on the soundness of a core part of SupInf’s implementa-
tion. Efforts are now underway to see if the functions used in the SupInf tactic
can be formally verified in Nuprl.

|

goal:

give a couple of examples of uses of the SupInf tactic. It is able to prove the

Z
S/
Z

*x y+3 <5 *z

finds the counterexample x= 1 and y= 2. Examples of arithmetic property lemmas
are:
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FViiZ.Vj:Z.1i2>20=3j>0=0<iremj <]
where rem is the remainder function and:

F VA:U. Vas:A list. Vn:Nlas|. (Inth_tl(n;as)| = las| - n)

where nth t1(n;as) takes the nth tail of list as, [+| is the list length function
and Nlas|. is an abbreviation for the integer segment {0...las|-1}. The latter
lemma is invoked when SupInf proves the goal:

1. T: U

2. as: T List

3. m: N

4. n: N

5. las| < m +n

F Inth_tl(n;as)| < m

3.10 Matching

3.10.1 Second-Order Matching and Substitution

Matching routines are at the heart of several tactics such as the rewriting tactics
(see Chapter 4) and the chaining tactics (see Section 3.6).

Nuprl V4.1’s matching routine is based on a second-order restriction [HL78]
of Huet’s higher-order unification algorithm [Hue75]. This second-order routine
handles patterns with bound variables, in contrast to Nuprl V3’s first-order routine
which did not. The advantage of using this second-order algorithm, rather than the
full higher-order algorithm, is that it is much more controlled; unique most-general
substitions (or unifiers) exist with it. With Huet’s full algorithm, a potentially
infinite lazy stream of unifiers are generated, even though nearly always, all but
the first one are not needed. I have found that second-order matching is adequate
nearly all the time so far, Miller reports similar positive experiences when working
in the system A-prolog with a similar second-order unification algorithm that he
calls Bo-unification [Mil91], and I know that Paulson and Nipkow have had success
with something similar in Isabelle [Pau90].

To discuss second-order matching, I first introduce the notions of second-order
terms and second-order substitutions. Second-order terms are a generalization of
terms. They can be thought of as ‘terms with holes’, terms with zero or more
subtrees missing. It is both convenient to fill the holes in a second-order term with
distinct variables, so forming a first-order term. The notation for a second-order
term is then wi,...,wy,.t where the occurrences of the variables w; in ¢ indicate

the holes.
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A second-order variable is a new kind of variable that in addition to a name
has a natural-number arity. A instance of second-order variable v of arity n has
form: v[ay;...;ay], where ay, ..., a, are its arguments.

A second-order substitution is a list of second-order bindings, pairs of second-
order variables and the second-order terms they are bound to. The result of ap-
plying the binding [v +— w1, ..., wy.t] to the variable instance v[ay;...;ay], is the
term t[ay,...,an/wi,...,wy|, where the notation -[-/-] denotes capture-avoiding
first-order substitution.

Second-order substitution is useful for instantiating pattern terms involving
binding structure. For example the second-order substitution [P +— .2 > 0] applied
to the pattern Va:N. P[x] yields the instance Va:N. 2 > 0.

Second-order matching involves taking a pattern term p and an instance term
¢ and determining whether there is a second-order substitution 6 such that dp = z.

The matching algorithm implemented requires that least one occurrence of ev-
ery second-order variable in the pattern have as arguments only variables and fur-
ther that all these variables be bound in the pattern. The pattern term Va:N. P[z]
is an example that satisfies this restriction.

Second-order variable instances are allowed in abstraction definitions, but not
in theorems and their proofs. There, second-order variable instances are simulated
by applications of first-order variables, and second-order substitution is simulated
by a combination of first-order substitution and beta-reduction.

3.10.2 Match Extension

[ used a match extension routine, much as described by Howe [How88a]; instanti-
ating bindings for universally quantified expressions cannot always be figured out
solely from initial matches. in some cases one has to go through an iterative pro-
cess of matching types of existing bindings against the types of the corresponding
variables in the universally quantified expressions. This need for match exten-
sion occurs frequently when reasoning with polymorphic functions. For example,
consider this lemma about collapsing two map functions:

F VA,B,C:U
Vi:A — B
Vg:B — C
Vas:A List. map(g;map(f;as)) = map(g o f;as) € C List

It this were used as a left-to-right rewrite rule, then Nuprl would try using its
matching function to find expressions that matched the pattern map(g;map(£f;as)).
Assume a match is found and the matching routine generates bindings for g, £ and
as. The match extension process then finds bindings for A,B and C as explained
above.
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3.10.3 Universe Polymorphism

It turned out to be non-trivial to modify the matching procedures to accomodate
the level expressions found in universe terms and abstractions involving universe
terms. The problem was that I needed the matching routines to in general solving
sets of inequalities and that one couldn’t begin to solve these inequalities until any
match extension had been completed. The main matching routines had all to be
modified to propagate and collect these inequalities.

Solving the inequalities themselves was fairly straightforward; I came up with
an algorithm that always finds a match if there is one, and further which finds an
equality match if possible [Jac94c].



Chapter 4

Rewriting

4.1 Introduction

Rewriting [DJ90], the process of using equations as transformational rules, is a
common technique in theorem-proving. In resolution theorem provers, rewriting is
often accomplished using the demodulation and paramodulation rules [WOEB84].
Most interactive theorem provers have some kind of rewriting facility. For example,
the NQTHM prover uses rewriting heavily for simplification and for application
of inductive hypotheses [BM88a]. Rewriting is also common in computer algebra
systems. For example, Mathematica [Wol91] allows users to phrase transformation
and simplification strategies as sets of rewrite rules.

The repeated exhaustive application of a set of rewrite rules at all nodes of a
term tree can often be an inefficient method for achieving simplification, though it
is a topic commonly studied in the rewriting literature. Often rewrite rules have
structure that can be taken advantage of. For example, a set of simplifying rewrite
rules might do all the work they might ever do in a single pass over a term tree
starting from the leaves and ending at the root. Other problems with exhaustive
application include the difficulty of obtaining guarantees that a set of rules doesn’t
cycle and of figuring out whether to turn equations into left-to-right rewrite rules
or or right-to-left rules. An example of the fruits of careful analysis of a rewriting
problem can be found in the work of Bundy and others; starting with a study
of the rewriting strategies used in inductive proofs by NQTHM, they developed
an elegant family of strategies that they have called rippling strategies, since the
changes effected by rewrite rules propagate around term trees like ripples on a
pond [BvHH*89, BvHSI90].

To provide systematic control of rewriting in the LCF proof development sys-
tem, Paulson introduced a language of conversions and conversionals [Pau83a,
Pau87], reminiscent of the language of tactics and tacticals, which allows the piec-
ing together of rewrite strategies from sets of rewrite rules. Conversional languages

)
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have been adopted in the HOL system [GM93], in Paulson’s Isabelle system, in
rewrite tactics written for Nuprl V3 [CH90, Bas89], and in the rewrite package that
I have developed for Nuprl V4.1. In Section 4.2, I introduce the notion of conver-
sions and give examples of conversionals that I commonly use. Many examples of
the use of this rewrite package can be found in later chapters.

Features of this rewrite package include that it it uses second-order matching
for rewrite rules( see Section 3.10.1), that it supports rewriting with respect to a
variety of equivalence relations of varying strengths. It also assists in reasoning
with order relations, in which case it automatically checks monotonicity properties
of term constructors.

4.2 Conversions and Conversionals

To convey the idea of conversions and conversionals in this section, I present a
simplified implementation of them. In later sections, I describe the actual conver-
sions that I implemented. Note however that the conversionals introduced here
have the same names and same behaviours as those in Nuprl V4.1. I therefore do
not survey the main conversionals I created for Nuprl V4.1 elsewhere.

Let convn be an ML concrete type alias for the type of conversions. Later on, I
describe the type that convn is an alias for in Nuprl V4.1. In this section, assume
that convn is an alias for the type term -> term, where term is a type of terms
that we want to rewrite. If ¢ is of type convn, then we can use ¢ to rewrite ¢ of
type term by simply running the ML evaluator on the application ¢ .

For the purposes of the section only, I introduce a basic conversion called RuleC
: term -> convn. The conversion RuleC expects its term argument to be of form
a = b where the free variables of b are a subset of those in a. If the conversion
RuleC ’a = b’ is applied to a term ¢, RuleC tries to find a substitution # such
that fa = t. If it succeeds, it returns the term #b. If a substitution cannot be
found, RuleC raises an exception. The conversion RuleC ’a = b’ therefore rewrites
instances of a to corresponding instances of b. For example:

RuleC 2+ 0 = 2’

when applied to the term (2 x 3) 4+ 0 yields the term 2 x 3.
RuleC cannot by itself rewrite subterms of a term; if

RuleC 2+ 0 = 2’

is applied to the term (1 4 0) x 3, it fails. There are a variety of higher-order
conversions that map a conversion such as RuleC over all subterms of a term. An
example of a conversional is SweepUpC : convn -> convn. If ¢is a conversion, then
SweepUpC cis also a conversion. if SweepUpC c is applied to some term ¢, an attempt
is made to apply ¢ once to each subterm of £ working from the leaves of term ¢ up
to its root. SweepUpC ¢ only fails every every application of ¢ fails. So if
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SweepUpC (RuleC 'z + 0 =12’)

is applied to term (1 4 0) x 3, it succeeds and returns the term 1 x 3.

The basic conversion for sequencing conversions is ANDTHENC : convn -> convn
-> convn. In Nuprl, we reserve all-capital names for infix functions so a normal
application of ANDTHENC to conversions ¢; and ¢z has form ¢; ANDTHENC c;. When
applied to a term ¢, ¢; ANDTHENC ¢, first applies ¢; to £. If ¢ succeeds, returning
a term t', then ¢y is applied to ¢ and the result is returned. If either ¢; or ¢
fails, then ¢; ANDTHENC ¢, also fails. By analogy with tacticals being higher-order
tactics, ANDTHENC is called a conversional.

The ORELSEC : convn -> convn -> convn conversional is for combining alter-
native conversions. When ¢; ORELSEC ¢, is applied to a term ¢, it first tries applying
c1 to t, and if this succeeds returns the result. If the application of ¢; fails, then it
tries applying ¢y to ¢, failing if ¢ fails.

The definition for SweepUpC is:

letrec SweepUpC c t = (SubC (SweepUpC c) ORTHENC c) t

SubC : convn -> convn when applied to a conversion ¢ and a term ¢, applies ¢ to
each of the immediate subterms of ¢. It fails only when ¢ fails on every immedi-
ate subterm. Hence, it always fails when ¢ is a leaf node and has no immediate
subterms. ¢; ORTHENC ¢, is similar to ¢; ANDTHENC ¢, in that it first tries ¢; and
then ¢y. However ORTHENC only fails if both ¢; and ¢; fail. So, a call of SweepUpC ¢
on argument ¢ first tries to apply SweepUpC ¢ to the immediate subterms of ¢ and
then then tries to apply ¢ to t itself. Note that without the t argument on the left
and right sides of the definition, SweepUpC in ML’s call-by-value evaluation scheme
would recurse indefinitely.
The definition for ORTHENC is:

let c¢1 ORTHENC c2 = (c1 ANDTHENC TryC c2) ORELSEC c2

where TryC c is defined as ¢ ORELSE IdC and IdC: convn, when applied to any ¢,
always returns ¢.

Other conversionals that are commonly used in the work described in this thesis
are:

e FirstC : convn list -> convn which is an n-ary version of ORELSEC,

® RepeatC : convn -> convn which repeatedly tries applying a conversion till
no further progress is made,

e HigherC : convn -> convn which applies a conversion to only nodes higher
in a term tree. What I mean by ‘higher’ is probably best understood by
studying the definition of HigherC:

letrec HigherC ¢ t = (c ORELSEC SubC (HigherC c¢)) t
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® SweepDnC : convn -> convn which sweeps a conversion down over a term
tree from the root towards the leaves. Its definition is:

letrec SweepDnC c t = (c ORTHENC SubC (SweepDnC c)) t

e NthC int -> convn -> convn. NthC 7 ¢ t tries ¢ on each node in t in pre-
order order, but only on the ¢th success of ¢ does it go through with the
rewrite that ¢ suggests. This is very useful during interactive proot when for
example you want to unfold one instance of a definition but not any others.

4.3 Relations

The rewrite package supports rewriting with respect to both primitive and user-
defined equivalence relations. Some examples are:

e ~, the computational equality relation,

e - = € -, the primitive equality relation of the type theory,
o < if and only if,

® = mod , equality on the integers, mod a positive natural,
e —,, equality of rationals represented as pairs of integers,

e =. the permutation relation on lists.

The package also supports ‘rewriting’” with respect to any relation that is tran-
sitive but not necessarily symmetric or reflexive. This needs a bit of explaining.
Proofs involving transitive relations and monotonicity properties of terms can be
made very similar in structure to those involving equivalence relations and con-
gruence properties.

For example, consider the following proof step that came up Forester’s devel-
opment of real analysis in Nuprl [For93].

i:NT

7:NT

f:Nt — Nt

mono( f)

|_

UFitq 15 <g Vitel/i

BY RWH (RevLemmaC ‘monotonele‘) 0O

|_
Vitgl/j <q Vi+g1/)
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Here, the definition mono( f) is:
mono(f) =4ef Va, Nt a < b= fa< fb
and the theorem monotone_le is:
VN — Nt mono(f) = Vi:NT.n < fn

The tactic RWH ¢ ¢ tries to apply the conversion ¢ once to each subterm of clause
2 of the sequent and the conversion RevLemmaC name converts lemma name into a
right-to-left rewrite rule. Other examples of monotone rewriting can be found in
Section 10.7.1.

It is interesting to note that logical implication = can be treated a rewrite
relation, since it is transitive. When it is, we have a generalization of forward and
backward chaining.

For each user-defined relation, the user provides the rewrite package with lem-
mas about transitivity, symmetry, reflexivity and strength (a binary relation R
over a type 1" is stronger than a relation R over T if for all @ and b in 7', the
relation a R b implies that a R' b). These lemmas are used by the package for the
justification of rewrites (see Section 4.4).

The user also provides a declaration in an ML object that identifies relation
families and extra properties of relations. For example, here is relation family
declarations for the standard order relations on integers:

1t_family:
Relation Family
i<j

]

YIVIIIA 2

TR e R

'_I
\'4
IV TIA

and here is the divides relation from the theory of cancellation monoids described
in Chapter 8:

mdivides_order_fam:
Relation Family
aplbing
ta| bing
:a ~{grb
:a |by bing

?

YIVIUIN 2
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4.4 Justification of Rewrites

In a theorem-proving setting, rewriting has to be rigorously justified. Firstly,
rewrite rules must be generated from previously proven lemmas or from hypothe-
ses; a conversion such as RuleC described in the previous section is not allowed.
Secondly, there must be reason to believe that congruence properties are respected.
For example, if the conclusion of a sequent is C[t] where C[ ] is a context, and term
{ is rewritten to ¢, then we might expect the sequent:

t=1FC[t] &= C[t']

to be provable. Some logics guarantee that equal terms can always be substituted
for one another in any context, so in these logics congruence properties need not
be explicitly checked during proof.

Nuprl has a rich variety of equality and equivalence relations, some primitive
and some user defined. The strongest, a computational equality relation, has been
shown to be a congruence relation everywhere [How89]; it is always valid to replace
some term by a computationally equivalent one. However, many other relations
are only congruence relations in certain contexts.

Rewriting with respect to the computational equality is justified using direct-
computation primitive rules. All other rewrites are justified by tactics that con-
struct congruence proofs. The direct computation rules are described in Sec-
tion 4.4.1 and congruence proofs are described in Section 4.4.2.

4.4.1 Direct Computation

The main direct-computation rule enable one to select arbitrary redices in clauses
of sequents and contract them. A redex is the left-hand side of some computation
rule such as the § rule:(Ax.by) a — by. The right-hand-side of such a rule is
sometimes called the contractum and the process of replacing instances of the left
with instances of the right contraction.

Redices within a clause are identified to the rule by giving the rule a copy of
the clause with the selected redices tagged. Section 4.6 gives examples of tagged
terms. A variant on the main rule allows a clause to be replaced with another
computationally-equal term with new redices. Here, one gives the rule the clause
with the new redices tagged, and the rule checks that reducing the tagged redices
gives the original clause.

The direct-computation rules are extremely useful. Rewrites using direct com-
putation are 10-100 times faster than similar rewrites using congruence proofs.

The same tagging scheme is also used to select abstractions in clauses for folding
and unfolding.
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4.4.2 Congruence Proofs

An example of a rewrite justified by a congruence proof is as follows. This example
comes from an auxiliary theorem that was used to prove the Chinese Remainder
Theorem. Say we want to prove the goal:

z,y,a,b:Z, m:NT, e =1modm, y=0mod mF axx+b*xy =amod m

then a first step might be to rewrite using the hypotheses to eliminate  and y
from the conclusion, giving the new sequent:

z,y,a,b:Z, m:NT, 2 =1modm, y=0modmFax1+b%x0=amodm

This can be justified because *, + and - = - mod m all respect - = - mod m. However,
if the conclusion were instead a*xx+bxy = a € Z, the rewrites could not be justified,
since - = - € Z does not respect - = - mod m.

Such rewrites are justified by executing tactics that do top-down congruence
reasoning. Part of the justification for the above rewrite is shown in Figure 4.1.

Faxx+bxy=amod m<=ax1+b+x0=a mod m
BY functionality
Moo.Faxe+bxy=ax1+0b%x0 mod m
BY functionality
N Faxxz=a*x]1 mod m
BY functionality
...Fa=a mod m
(continued)

..F2z=1 mod m
(continued)

. Fbxy=bx0 mod m
(continued)

M...Fa=a mod m
(continued)

> Fm=mcZ
(continued)

Figure 4.1: Rewrite Justification

At each BY, a functionality tactic is applied which reduces the goal of proving the
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equivalence of two terms with the same outermost term constructor to the proving
of the equivalence of corresponding immediate subterms. These tactics draw on
functionality information about terms from primitive rules and lemmas. Ignoring
parameters that relations can have, (like the m above), a functionality lemma has
the basic form:

Vo, y1:dh, . o xn, Yn:Tn. 1 11Y1 = ... = TpTaln
= op(@1;...;2a) R op(y1;..;yn)

Most commonly the relations R and r; are equivalence relations, but in general
they needn’t be. See Section 4.3 for details. Also, whenever subterm ¢ of op
is thought of as a parameter that never normally would get rewritten, then the
antecedent involving r; can be dropped and x; can be used on both the left and
right of the consequent of the formula.

Other parts of justifications contain tactics that draw on transitivity informa-
tion and information on the relative strengths of relations. Continuing the previous
example, suppose we included rewrite rules for arithmetic simplification based on
lemmas such as:

FVeZ.ix1=1€%Z

into our rewrite. Part of the justification might then look like as shown in Fig-
ure 4.2.  The transitivity step draws on the transitivity of - = - mod m and the

Faxx=a mod m
BY transitivity
M axz =ax1 mod m
BY functionality
a = a mod m
(continued)

z =1 mod m
BY hypothesis

“>Faxl=a mod m
BY strengthening
b axl=acZ

BY lemma
(continued)

Figure 4.2: Justification with Transitivity Step

strengthening step draws on the fact that - = - € Z is a stronger relation than

- = - mod m. Again, this information comes from both primitive rules and lemmas.
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Tactics that create justification proofs are generated automatically by Nuprl
conversions. Section 4.5 gives some basic details on how this is done.

4.5 Operation of Nuprl Conversions

In Nuprl the conversion type convn is an alias for
env -> term -> (term # reln # just)

Here, env is an ML abstract type for environments, reln is an ML abstract type
for rewrite relations and just is an ML abstract type for justifications. 1 explain
what each of these abstract types is below.

If a conversion ¢ of type convn is applied to an environment ¢ and a term to
be rewritten ¢, it returns a triple (¢, r, 7). The environment e tells the conversion
¢ about the context of the term ¢. This includes the types of all the variables that
might be free in ¢, as well as propositions that the conversion can assume true.
The term t' is the rewritten version of the term ¢. The relation r specifies the
relationship between ¢ and #'. The justification j indicates how the relation ¢ r ¢/
may be proven.

The function

Rewrite : convn -> int -> tactic

is the basic tactic for applying conversions.

Rewrite c¢ 7 applies conversion ¢ to ();, clause 7 of the sequent. Rewrite works
in two phases; firstly it constructs an environment from the sequent and passes that
and (); to the conversion. The conversion constructs a justification j in a bottom-
up fashion, starting from successful instances of rewrite rule applications, and also
returns the term @} and the relation r. Secondly, Rewrite executes justification j.
If 5 is of the direct computation kind, it is passed to a direct computation tactic
to rewrite clause 2. If j is a tactic justification, then it is used to prove the goal
F Qi r Q! and some simple logical reasoning allows clause i to be replaced by Q1.

Using Rewrite, rewrite tactics are constructed that rewrite with respect to sets
of lemmas, hypotheses and direct-computation rules (Section 4.6 and Section 4.7
describe these rules).

A single set of conversionals handles justification of rewrites both by direct
computation and by tactic-driven congruence proofs. Where possible computation
justifications are used, but sometimes it is necessary to convert a computation
justification to a tactic justification.

loccasionally, when one hypothesis is rewritten using another hypothesis as a
rewrite rule, () contains free variables declared to the right of position i in the
hypothesis list. In this case, @} is usually placed at the end of the hypothesis list.
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4.6 Direct Computation Conversions

A justification for a direct-computation conversion takes the form of a compute
sequence. A compute sequence is of type (tok # term) list, where each pair in a
sequence is of form op,t. The token op indicates a direct-computation operation.
The possible values of op are NOP for a null operation, FWD for a forward computa-
tion step, and REV for a reverse computation step. The term ¢ is a possibly tagged
term. A compute sequence

lop1, 115 0p2, t2; . . . opn, L]
is a justification for rewriting term ¢, to term t; if all the following hold:
1. opy1,t; = NOP. ¢,
2. opn,1n, = NOP, 1,

3. if op; 1s FWD, then executing a forward computation step as indicated by the
tags on term ¢; results in a term equal to term #;41 with tags removed.

4. if op; 1s REV, then executing a forward computation step as indicated by the
tags on term ¢; results in a term equal to term ;1 with tags removed.

5. sequences of consecutive FWD and REV operations are separated from one
another by NOP operations.

An example of a compute sequence that justifies the unrolling of a Y combinator
is:

[NOP, Y F

:FWD, F

;FWD, ‘(Af.()\x.f(xx)) (Ax.£(xx))) F‘
FWD, |(x.F(xx)) (Ax.F(xx))]

;NOP, F ((Ax.F(xx)) (Ax.F(xx)))

;REV, F ‘(Af.()\x.f(xx)) (Ax.£(xx))) F‘

REV, F (Y] F)

:NOP, F (Y F)]

Here, the [ Js indicate tags.

Compute sequences have a couple of nice properties. Firstly, they can be spe-
cialized; if a compute sequence justifies rewriting term ¢, to term 5, then a compute
sequence that justifies rewriting #¢, to 0t; for any substitution § can be formed
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by applying 6 to each term in the compute sequence. Secondly, they can be re-
versed; a compute sequence justifying rewriting term ¢, to term ¢; can be easily
transformed into one that justifies rewriting ¢; to t,.

I exploited both these properties in defining a direct computation conversion:

MacroC : convn —term —convn —term —convn

MacroC ¢, t, ¢ tj creates a conversion for rewriting instances of ¢, to instances of
ty, providing that applying the conversion ¢, to t, and ¢ to t; results in the same
term.

MacroC allows the easy construction of quite complicated yet well controlled
conversions; often the conversions used for ¢, and ¢; can be much simpler than
if an equivalent conversion were built without MacroC. For example, consider the
following definitions in Nuprl V4.1’s theory about the booleans:

bool:
B == Unit + Unit

bfalse:
ff == inr .

ifthenelse:
if b then t else f fi == case b of inl() => t | inr() => f

band:
P Ns q == if p then q else ff fi

and the conversion definition:

let SimpleMacroC t1 t2 names =
MacroC (SemiNormC names) t1 (SemiNormC names) t2

Here, SemiNormC names is a normalization conversion that unfolds abstractions
named in names and reduces all redices. A simplification conversion for band with
false left-hand-subterm could then be written:

let band_£f£f_1C =
SimpleMacroC *ff Ab u’ ’ff’ [band;ifthenelse;bfalse] ;;

Without MacroC this conversion would have to be written as

let band_ff_1C =
UnfoldTopC ‘band®
ANDTHENC UnfoldTopC ‘ifthenelsef
ANDTHENC AddrC [1] (UnfoldTopC ‘bfalse‘)
ANDTHENC RedexC ;;
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Here, RedexC is the basic conversion for contracting primitive redices, AddrC applies
a conversion to an addressed subterm and UnfoldTopC unfolds a named abstraction.

MacroC can be thought as providing a means of proving and then applying
direct-computation ‘lemmas’. Unfortunately, the gain in efficiency expected from
using lemmas is not realized, because MacroC still has to replay all the primitive
intermediate steps of the direct-computation calculation that it encapsulates, every
time it is applied.

I have constructed a variety of direct-computation conversions. Probably the
most widely used is AbReduceC which reduces both primitive and abstract redices.
By an abstract redex I mean some abstract term that unfolds to a primitive redex.
For example, £f A x is an abstract redex which unfolds to the primitive redex case
inr - of inl() => 2z | inr() => ff. Each time a new non-canonical abstraction
is introduced, the user can define conversions for it like the band_ff_1C above.

Whenever recursive function definitions are created (see Section 2.2.5), the
system automatically uses MacroC to create a conversion for unrolling the definition.
These conversions completely hide the underlying Y-combinator definition of the
recursive functions.

4.7 Tactic Conversions

The basic tactic conversions are LemmaC and HypC which take lemmas and hypothe-
ses respectively and convert them into rewrite rules. The lemmas and hypotheses
usually have form:

VouTy, ... xnTy. A= ... = A =>trt

LemmaC and HypC convert such formulae into rules for rewriting instances of ¢ to
instances of /. There are variants on these conversions that allow for right-to-
left rewriting, checking the assumptions A; before allowing the rule to be applied,
providing explicit bindings for one or more of the z; and handling formulae with
a conjunction of rewrite relations instead of just one.

The SubC : convn -> convn conversional is responsible for adding functionality
steps to the justification. If SubC ¢ is applied to some term ¢(aq;...;ay), then ¢
is applied to each of the a;. SubC succeeds if at least one application of ¢ succeeds.
let b; be the term that ¢ rewrites a; to when ¢ succeeds, and be a; otherwise. Let
T; be the tactic that can justify the goal F a; = b; and Fun(¢) be a tactic that
incorporates functionality information about ¢. Then SubC ¢ constructs a tactic
Fun(¢) THENL [Ty;...;T,] as the justification for ¢(ai;...;an) = ¢(b1;...;bp).

In practice for a single term ¢ there might be many different relations that
subterms of ¢ are rewritten with respect to. For example, subterms of +7 might
be rewritten with respect to <z, <z, =z, >z, >z or - = - mod m. For each combi-
nation of subterm relations, SubC has to come up with some appropriate tactic. It
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would be impractical to have a distinct tactic for each combination. Instead, SubC
keeps a small set of tactics for each term ¢ and adapts these as and when nec-
essary. If the subterms of ¢ are rewritten with respect to relations ry...r,, then
SubC picks a tactic that expects subterm relations s;, where each s; is no stronger
than r;. It then uses relation strengthening tactics when necessary to bridge the
gap between each s; and the r;. The strengthening step shown in Section 4.4.2 is
generated by SubC in this manner. If there is a choice of tactics, SubC picks the
one that expects the strongest relation between ¢(a1;...;a,) and ¢(by;...;b,). If
there is no unique strongest relation then currently, the first which occurs in the
Nuprl library is chosen. So far, this hasn’t been a problem

For the 47 operator, SubC currently uses tactics that can prove the following
goals:

r=y, 2=y Ftata=y+y
r<y, o <ybFaotd<y+y
r<y, <y Fatdd <y+y
r<y, <y tatd <y+y
r=ymodm, ¥ =y modmbtar+2'=y+ 1y modm

When using order relations, SubC is able to invert relations when necessary to
match the available tactics.

The ANDTHENC : convn -> convn -> convn conversional adds transitivity steps
to justifications. In a similar way to SubC, the ANDTHENC conversion picks a suitable
transitivity tactic for each pair of relations it finds that terms have been rewritten
with respect to.

4.8 Abbreviations and Extensions

In this thesis, I use several abbreviations for tactics that apply conversions. Here
are a few of them:

° let RW = Rewrite ;;
let RWH ¢ = Rewrite (HigherC c) ;;
let RWD ¢ = Rewrite (SweepDnC c) ;;
let RWU ¢ = Rewrite (SweepUpC c) ;;

e RWW string (standing for R(e)W(rite) W(ith)) is a rewrite tactic for using a set
of rewrite rules named in string. There are conventions for selecting hypothe-
ses, lemmas, definitions and direct-computation conversions as rewrite rules
to be repeatedly applied. Names can be annotated to indicate that equations
should be turned into right-to-left rewrite rules rather than left-to-right rules.

e RWO (standing for R(e)W(rite) O(nce)) is like RWW except that it uses HigherC
to apply the named set of rules in a more restricted fashion.
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In Section 10.7.1 there are also several instances given of tacticals and con-
versionals with the word Force in them; for example, ForceReduceC ‘5¢. Here I
was experimenting with assigning Nuprl terms differing strengths, strengths being
arranged into a partial order. Simplification conversions could be passed a force as
an extra parameter, and rewrite rules in the simplification conversion would only
be enabled when applied to terms with strength no greater than this force.

4.9 Discussion

This rewrite package has been invaluable for the work described in this thesis. 1
created conversions for my algebraic theories that put expressions over monoids,
abelian monoids, groups, abelian groups, rings and commutative rings into normal
form. I also experimented with conversions that worked well in conjunction with
NthC for the precise and repeated application of certain rules (see the end of Sec-
tion 4.2 for a description of this conversional and Section 10.7.1 for examples of its
use). In the theories described in this thesis, roughly two-thirds of all tactic invo-
cations involved some kind of rewriting. The most widely used rewrite tactic was
AbReduce, based on AbReduceC, that reduces both primitive and abstract redices.
I give several examples later on of how [ exploited features such as handling dif-
fering strengths of rewrite relations, handling monotone reasoning, and using the
second-order matching.

This rewrite package has was also extensively used in Forester’s implementation
of constructive real analysis in Nuprl V4.1 [For93].

This package differs from that developed by Basin for Nuprl V3 [Bas89] in
that he only implemented support for rewriting with respect to the - = - € -
equality relation of Nuprl’s type theory and the if and only if relation <=-. He also
didn’t implement any direct computation conversions. Howe also experimented
with rewriting with respect to - = - € - and <=, and in constructing simplification
conversions that grouped together sets of rewrite rules [CH90]. He did implement
some direct-computation conversions, but these were not integrated with the tactic-
based conversions and were much more basic than those that I developed.

To my knowledge, the issue of dealing with multiple strengths of rewrite rela-
tions has not yet been addressed anywhere other than in Nuprl. Researchers in
the field of rewriting have begun to consider monotone rewriting [LA93, BG94]. It
will be interesting to see whether these ideas can be adapted to work well in an
interactive theorem proving context.



Chapter 5

Methodology for Algebra

5.1 Introduction

I discuss in this chapter some of the issues involved in defining classes of algebraic
objects in Nuprl’s type theory. I'intend the phrase algebraic objects here to include:

e groups, rings and modules; mathematical structures that have a carrier and
a set of operations over the carrier.

o (Categories, topologies, orders.

o ADT’s: for example, stacks or parsers. A class corresponds to a specification
of an ADT and the objects in the class are implementations of the ADT.
Closely related are the implementations of modules in languages such as

SML.
In general, a class definition can be considered to contain

o A signature. This specifies the types of the components of instances of the
class. Sometimes I call these instances objects of the class, or implementa-
tions of the class. I include in the notion of component constants, relations,
functions and sets. Sometimes I refer to the component of an object and
the corresponding type in its signature as a field of that object or signature
respectively.

o A predicate on instances of the signature that specifies properties that com-
ponents of instances should have.

Classes can be parameterized, often by objects of other classes. For example, a
class for vector spaces could take a field as a parameter.

In theory it should be quite straightforward to use Nuprl’s dependent-product
type and set type to construct such classes. In practice, a number of issues have
to be carefully considered.

69
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One major one is the approach towards constructivity. Choices often have to be
made about how to deal with the computational content of classes. For example,
classically, in the class of integral domains, a partial division function can always
be defined. Constructively, we could set up definitions for two kinds of integral
domain: one requiring that a computable division function be supplied and one
not. In Nuprl’s type theory there are a couple of options as to how we could design
an integral domain class to require such a function:

1. a type could be explicitly reserved in the class signature for the function.
Perhaps the type
T? — (T + Unit)

would be used. The class predicate might then include the following predicate
on inhabitants of the type T% — (T + Unit):

M:T? — (T + Unit). Va,y,z:T. 0 = z%y = d (x,y) =inl(2)
Vao,y:T. 32T v = zxy = d (x,y) = inr(+)

I sometimes refer to this as the explicitly constructive approach.

2. A type considered as a proposition could be included in the signature. The
proposition might be

Va,y:T. (Fz:T. o = zxyV -32:T. v = z x y).

The division function is then implicit in the computational content of this
proposition. This becomes clearer if the proposition is written out as the
corresponding type:

T —yT — (2T Xaz=zxy)+ ((z:T. Xz = z+xy) — Void)).

I sometimes refer to this as the implicitly constructive approach.

The issue of computational content also comes up when considering the equal-
ity relation on the carrier of algebraic objects and membership in subsets of the
carrier. [ haven’t seen this discussed in the literature on constructive algebra, but
as [ explain in Section 5.2 and Section 5.3 this content could be considered signifi-
cant. These sections also discuss the decidability and stability of the equality and
membership relations.

Section 5.4 explores how class design affects the subtyping relationship between
classes and Section 5.5 discusses the approach I adopted for the work in this thesis.
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5.2 Equality Relations

5.2.1 Computational Content

One significant issue when considering the design of classes for implicitly construc-
tive mathematics is the importance of the computational content of the equality
relation on the carriers of implementations of classes. A few examples of equality
relations that have non-trivial computational content when true, and examples of
their uses in implementations of classes are as follows:

o the <= relation on propositions, used when forming a Heyting algebra. The
computational content of A <= B when true is a pair of functions of types

A— Band B — A.

o the permutation relation perm on lists, used when forming an abelian monoid
of multisets using lists. The computational content of the proposition

perm(as, bs)

when true might be a bijective function f on {l1...n} — {1...n}, n being
the length of both as and bs, that indicates how the bs are a permutation of
the as.

e the associate relation ~ in the factorization theory of cancellation monoids or
integral domains. The computational content of @ ~ b might be considered
to be a pair (u,v) such that a X u = b and b x v = a.

o the equality relation on a group quotiented by a normal subgroup where
membership in the normal subgroup is computationally interesting. Let a
normal subgroup of a group G be represented by a unary predicate H on
the group carrier |G|. We are then assuming that H a for a in |G] is in
general computationally interesting (see Section 5.3.6 for examples of such
relations). The computational content of the relation ¢ = b(mod H) is then
the computational content of H (a — b).

When an equality relation over an implementation carrier has non-trivial com-
putational content, then the predicates stating that the relation is reflexive, sym-
metric and transitive all have computational content, as do predicates stating that
functions over the carrier respect the equality. It is easy to imagine that the com-
putational content of such predicates might find its way into theorem extracts,
especially when one is reasoning by rewriting with respect to such relations.

An example of a predicate involving a computationally-interesting equality re-
lation is the following, which says that the permutation relation on lists perm is
symmetric:

Va,b:T List. perm(a,b) = perm(b,a) .
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The computational content might be a function

Aa? b? p' Inv(p)7

where inv is a function for inverting a bijective function. Note that a bijective
function is commonly represented constructively by a pair of functions that are
mutual inverses of each other. With such a representation, the constructive imple-
mentation of inv is trivial; it simply swaps elements of pairs.

Another computationally-interesting predicate involving the perm relation is
one stating the functionality of the list append operation @ with respect to the
perm relation:

Va,b,c,d:T List. perm(a,b) = perm(c¢,d) = perm(a @ ¢, b @ d).
The computational content of this proposition might be the function
Aa,b,c,d, p,q. permappend(p, ¢),

where permappend is a function for suitably combining the permutations p and g¢.
For permappend to be properly constructive it usually will also take as argument
the length of one of the lists a, b, ¢ or d. I describe a development of permutations
in Nuprl in Chapter 7.

The design strategy for classes in Nuprl’s type theory is very different depend-
ing on whether or not one wants the capability of extracts accessing the computa-
tional content of class predicates such as described above. The alternative design
strategies are explored in the next two sections.

5.2.2 Ignoring Computational Content

If the computational content of the carrier equalities is always to be ignored, then
the equality relation can be taken to be the one that is naturally associated with
the carrier type by the type theory. One suitable definition for the class of abelian
semigroups is then:

AbSGrp = G:U
X {x:(G* = G)| Va,bye:G.(axb)xc=ax*(bxc)e G
AVa,b:G.axb=bxa € G}

There can never be a problem here using the set type for the associativity predicate
since the predicate is stable. The type theory guarantees that for any pair (G, *)
in the AbSGrp class, the operation * respects the equality on G.

One nice feature of this approach is that we can take advantage of Nuprl’s
quotient type when forming instances. For example, assume we wanted to show
that lists of integers under the uncurried append function formed an abelian group.
We cannot prove that the pair

(Z List, append)
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is an instance of AbSGrp, because append is not commutative when considered as
a function over lists. However, it is commutative when considered as a function on
multisets, so if we define a multiset type using Nuprl’s quotient type:

T MSet = x,y:T List//perm(x,y)
then we could show that the pair
(Z MSet, append)

is an instance of the AbSGrp class.

5.2.3 Maintaining Computational Content

Here we assume that the equality relation of instances of classes might sometimes
have significant computational content. The equality relation associated with the
carrier type by the type theory is always free of computational content, so it cannot
be used in class definitions. Instead, the equality relation on the carrier instances
has to supplied as an explicit part of instances. One suitable definition for the
class of abelian semigroups is then:

SGroup = G:U
X eq:(G* — P)
X x:(G? = @)

X Va,ad'bb:G. (a eqb)= (a' eq V)= (a x a')eq(b* V)
X Ya,b,e:G. ((axb)*c) eq (ax*(bxc))
X Ya,b:G. (axb) eq (b*a)

We need explicitly a predicate stating that * respects the equality eq. Both this
functionality predicate, the associativity predicate, and the commutativity pred-
icate might have significant computational content, so neither may be hidden in
the right-hand side of a set type.

5.2.4 Stability Considerations

The notion of stability in Nuprl is introduced in Section 3.7.3.

If an equality relation on the carrier of an instance of a class is stable, then it
would be possible to set up rewrite tactics so that the class definition ignores the
computational content of the equality relation, but also so that the computational
content is generated when rewriting in contexts in which it is needed for an extract.
This generated extract might not be as efficient to execute as when using classes
that maintain computational content.
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Stable equality relations that have interesting computational content are not
uncommon. For example, the permutation relation on lists is stable when the lists
are over a discrete type, and the associated relation is stable when there exists a
division function. Also, the <= relation is stable when its arguments are stable.

5.2.5 Discreteness

It is standard practice in constructive mathematics to say that an equality relation
is discrete when it is decidable. However, in constructive type theory, there are
two clearly-defined distinct kinds of decidability.

Let a predicate P on a variable x of type T" be constructively decidable if the
proposition Va:T. P,V — Py is true, or, by the propositions-as-types correspondence,
the type a:T — (P + (P, — Void)) is inhabited. Let a predicate P be classically
decidable if there is a function of type T'— B that returns tt on argument a when
the type P, is inhabited and ff otherwise. It is trivial to show that a predicate is
constructively decidable just when it is classically decidable and it is stable.

Computer algebra systems such as Axiom commonly require that instances
of algebraic classes come equipped with boolean-valued equality functions. From
the constructive type-theory point-of-view, such classes are therefore classically
decidable, but not necessarily constructively stable.

5.3 Subsets

5.3.1 Introduction

Here I discuss how we might talk generally about the ‘subsets’ of a type, thinking
in particular about subsets of the carrier type of implementations of classes, though
much of this discussion is more general. Approaches to subsets should allow the
straightforward definition of

e a power-type, a type of all subsets of a type.
e common operations such as intersection, union and complement.
e relations such as the subset relation between subsets.

o families of subsets and operations such as intersection and union over these
families.

I consider several approaches in Section 5.3.4 to Section 5.3.5. For simplicity,
these approaches all just consider defining subsets of a type whose equality is the
natural one associated with the type. However, the equality naturally associated
with the power-type definition is almost always not subset equivalence, so these
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power-type definitions, as presented, cannot be applied to themselves to generate
types of families of subsets. This point is returned to in Section 5.5.

Some approaches consider the computational content of subset membership to
be important and some don’t. In Section 5.3.6 I give several instances of subsets
whose membership could be considered to be computationally interesting.

5.3.2 Using Type-Valued Predicates

Here we consider a subtype of some type T' to be a type-valued predicate on T.
The type of all subtypes of type T'is then the function type T' — P. Membership
in a subtype is expressed simply by predicate application; An element x of type
T is in a subtype S, where S € T" — P, just when the type S(x) is inhabited. In
general this inhabiting term could be computationally interesting.

It is very straightforward to develop some basic ‘set theory” based on predicates,
treating T as a ‘universal’ type. For example, binary union and intersection are
easily defined, as are the membership relation and the subtype relation. These
sets are not exactly like classical sets in that the complement of the complement
of some set is in general a super-set of that set rather than equivalent to it. Huet
observed that such subsets can be thought of as topological open sets, in which
case the double complement operation corresponds to set closure.

It is slightly inconvenient that subtypes are now functions rather than types.
To form the type corresponding to some subtype S, we have two options: if we
don’t care about the computational information related to subtype membership,
then we can use the set type constructor to form the type {z:7'| S x}. Otherwise,
we use the dependent product type to form the type :7" X 5 z.

Another drawback of this representation of subtypes is that the equality relation
- = €T — P provided by Nuprl’s type theory on this subtype representation
type is much stronger than the desired extensional equality.

5.3.3 Using Boolean-Valued Predicates

This is the standard approach in classical type theories such as HOL. A subtype
of some type T is a boolean-valued predicate on T'. The type of all subtypes of T'
is then T" — B. The appeal of this approach is that if the built-in equality on 7' is
the one we care about, then the built-in equality on subtypes is then the desired
one.

However, in Nuprl’s constructive type theory, we are restricted as to what
instances of such subtypes we can talk about. All instances have to be computable
functions. We are prevented, for example, from using the quantifiers of predicate
logic to define instances whenever the domains of quantification are not finite. This
is a severe restriction.
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5.3.4 Using Types

Unlike set theory, Nuprl’s type theory has no true 2-place membership predicate
- € -, so there is no way to make the definition:

PwT(T) = {S:U|Va:S.zeT}

The proposition in Nuprl displayed elsewhere in this thesis as t € T', is a notational
abbreviation for t = ¢ € T'. A consequence of this is that the proposition t € T" in
Nuprl’s type theory is only considered well-formed when it also happens to be true!
Furthermore, there are serious problems trying to add a fully-fledged membership
predicate. One is that there is no obvious way to work a type corresponding to
this predicate into the semantics for Nuprl given by Allen. Another is that even if
such a type could be introduced, the semantics of Nuprl’s sequents would make it
very difficult to formulate any rules about it.

The current type theory provides no primitive power-type constructor that is
the analog of the power-set constructor in set theory. Perhaps one could be added.
However, it a subtype relation type C were added to the type theory, we could
make the definition:

PwT(T) = {S:U|ScCT}

The type S C T would be inhabited by some trivial element just in case every
element of type S were a member of type T" and the equalities relations naturally
associated with S and T were the same. Howe, Allen and Mendler [Men88] have
each considered such an extension, and not thought it problematic.

Unfortunately, because equality of set-types is intensional in Nuprl’s current
type theory, the natural equality associated with PwT(7") would be stronger than
desired no matter what the equality associated with the the C relation is.

Assume a C relation has been added and PwT(7') has been defined as above.
A 3 place membership predicate can be defined as follows:

zer S = {yT|y = 2T} CS

This predicate would be well formed if some type T were given that x inhabits,
but now there is no well-formedness constraint that « be a member of 5.

From a constructive point of view, the very notion of a power-type is not as use-
ful as one might imagine. It is easy to give examples of families of subtypes where
each member of a subtype has associated with it extra computational information
justifying why it is in the subtype. See Section 5.3.6 for details.

5.3.5 Using Domains of Injections

Following Bishop, we could define a subtype of a type T' as a pair of a type V and
an injective function of type V' — T. A definition of the power-type of T" would
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then be:
PwT(T) = V:UX{f:V —T| fisinjective}

The basic definitions are that of a subtype of T' defined by a predicate P of type
T— P

{e | Pa}r = (yT X Py, de. z.1)
and the predicate expressing membership of an element = of T' in a subtype S:
rer S = Jz:(51). (52) z =1«

Here, the ; and 2 postfix operators project out the first and second elements,
respectively, of pairs. From these definitions it is straightforward to define con-
structive functions for intersection, union and complement, and to define subset
and equivalent predicates. Again, as with the subtype-as-predicates approach, the
set equivalence relation is weaker than the equality relation naturally associated
with the PwT(T') type.

The advantage of this approach over predicates is that the subtype relation
is now much more wide-ranging. For example, the integers are expressible as a
subtype of the rationals and the rationals of the reals, even though the representing
types are quite different.

5.3.6 Examples with Interesting Computational Content

Subset membership can be computationally interesting. For simplicity, let us as-
sume here that a subsets-as-predicates approach is taken. Membership in subsets of
a type T, that are generated by finite collections of elements of T, is almost always
computationally interesting. Consider principal ideals in commutative ring theory.
Using the ‘subtypes as type-valued predicates’ approach, the natural definition of
the principal ideal generated by the element @ of some ring R is:

Princldeal(a; R) = Ab.3e:|R|. cxgpa=pgb.

where |R| is notation for the carrier of ring R. If some element x € |R| is in
the principal ideal Princldeal(a; R), then there must be some ¢ € |R| such that
c*p a =p x. The element ¢ is part of the interesting computational content
associated with x being in the ideal. The equality itself might also have interesting
computational content.

Another example of interesting computational content in subset membership is
that of membership in the image of a class morphism between two implementations
R and S of a class. A suitable definition of ‘image’ is:

Image of f from Rto S = As.3r:|R|. fr=gs

Also, membership in kernels of morphisms is computationally interesting if equality
is computationally interesting.
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If membership in a subset is computationally interesting, then so are many of
the predicates on subsets. For example, consider the predicate stating that a subset
of a group carrier is a subgroup. Also, equality relations formed using subsets (such
as by the quotienting operation) are then computationally interesting.

5.3.7 Stability

Again, as with equality, it can often be the case that membership in a subset is not
only computationally interesting, but also stable. In these cases, the computational
content can be recovered as and when needed, and doesn’t have to be carried
around explicitly. For example, the computational content of membership in a
principle ideal of a ring is stable when the ring has a division function and equality
is stable. However, as with equality, there might be efficiency penalties for extracts.

5.3.8 Detachability

A subset is detachable if membership in it is decidable. Again, if we are careful,
we need to distinguish between constructive and classical decidability.

5.4 Class Subtyping

In algebra, natural subtyping relationships between algebraic classes are ubiqui-
tous. Presentations of material from algebra are far more concise and readable,
if it can be assumed that the reader understands the conventions about these
relationships.

Similarly, in object-oriented programming and in programming languages with
abstract data types, the exploitation of subtyping relationships leads to great econ-
omy and increases in understandability of code. Similarly too, many theorem-
proving environments exploit subtyping relationships to economize on theory de-
velopments and increase the clarity and reusability of theories.

Nuprl’s type theory provides no built-in support for defining classes and for
handling subtyping, but there are several ways in which schemes for defining classes
can be set up. Before discussing these, let me for convenience give names to three
kinds of subtyping relationships between classes A and B:

o Ais a set-subtype of B just when every instance of A is also an instance of
B. T use the term set here, because in Nuprl, set-subtypes of a class can be
created by using its set type which provides a method for creating subtypes
of a type analogous to set comprehension in set theory.

o A is a signature-subtype of B just when A is a set-subtype of B and A and
B share the same underlying signature. The reader might be thinking that
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this amounts to the same thing as set-subtyping, but as 1 explain below, in
Nuprl’s type theory, this is sometimes a more restricted form of subtyping.

o Ais a forgetful subtype of B just when there is some functor f between the
signatures of A and B that maps every instance = of A into some instance
of B. I call it forgetful subtyping, because prime examples of the functor
f are forgettul functors. Often, such as with groups and monoids, there is
an obvious functor between classes. Other times, such as with rings and
monoids, there is more than one.

The simplest approach to building class definitions, is to use the X type of
Nuprl’s type theory as illustrated earlier in this chapter. This defining of classes
as sets of tuples is analogous to the usual practice in set theory. However, when
mechanizing formal algebra, it leads to a need for an abundance of forgetful func-
tors. Every time one wants to add an extra component to a class, a new signature
has to be created and a forgetful functor has to be created for mapping elements of
this new class into the old class. These functors would quickly create tremendous
clutter. Of course, the computer could come to the rescue too. Automatic ‘functor
inference’ could insert the functors and display technology could hide them. Still,
it seems that they might still get in the way.

With this approach, the only kind of subtyping that Nuprl’s type theory pro-
vides is signature subtyping. This can still be quite useful. For example, classes of
unique factorization domains, integral domains, commutative rings and rings can
all share the same underlying signature. Note however, if we decide that the com-
putational content of equalities should be maintained, then virtually every class
will have a distinct signature and there will be next-to-no subtyping provided by
the type theory.

Some schemes of classes can be set up in Nuprl’s type theory where set sub-
typing relationships exist between classes with different underlying signatures.
The most straightforward of these assumes that there are no dependencies be-
tween components of class signatures; a class signature with components labelled
aj ...ap and with component a having type T, can be represented by the II type:
z:{ay,...,an} — Ty. Any element of this signature is also an element of any other
signature gotten by removing one or more of the a; from the domain. Such signa-
ture types are essentially equivalent to the record types found in languages such as
Pascal. Note that we are taking essential advantage here of the non-set-theoretic
nature of functions in Nuprl.

However, this approach breaks down when the types of some components of
a signature depend on those of others. What is needed is a ‘highly dependent’
function type where the type of a function’s value on some argument is dependent
on its value at other arguments. To make such a type sensible, some well-founded
ordering would need to be placed on the arguments. Perhaps such a type could be
added. Hickey has been looking into this possibility [Hic94].
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Alternatively, a combination of ¥ types and record types could be used, since
the degree of dependency in most class signatures is fairly small. In single sorted
algebras, if the the predicates are treated as computationally interesting types, then
there are two levels of dependency: the operator types depend on the carrier and
the predicates depend on the carrier and operators. If an explicitly constructive
approach is taken, then the predicates don’t figure in the signature at all. In this
case any algebraic class would have the structure T:U X (a:{a1,...,an} — T3)
where each T, would be dependent on 7.

5.5 Approach Adopted

The implicit constructive agenda of doing mathematics constructively, but making
it look like classical mathematics seems frought with difficulties. As explained
above, there is computational content floating around everywhere, and it’s difficult
to say definitely which ought and ought not be ignored. To try preserving all
computational content just in case it might be interesting seems too unwieldy
an approach, and would be anyway an approach guaranteed to lead to inefficient
extracts of theorems.

One way of managing the implicit computational content would be to develop
a theory of setoids that looks superficially like a theory of sets but that keeps track
of the computational content of subset membership and equalities. Other features
of setoids could include

1. noting when the subset membership and equality predicates of setoids are
stable and in those cases not tracking content,

2. an optional function for deciding equality.

Algebraic classes would then be defined over setoids rather than types. The idea
of setoids has been explored by members of the LEGO group including Pollack,
Bailey and Barthe [Bar94, Bai93].

For simplicity, I chose in the work described described in this thesis to take an
explicitly constructive approach as far as class definitions are concerned. This al-
lowed me to always use the built-in equalities associated with types for the equality
relations associated with the carrier component of algebraic class instances.

Again for simplicity, I chose to use X' types for building class signatures. To
decrease the frequency with which I would need forgetful functors between classes,
I made an effort to minimize the number of distinct class signatures; for example,
in my implementation of the monoid class, I use the group signature class rather
than a monoid signature class. A drawback of this approach is having to supply
dummy components in instances of classes; when specifying an inhabitant of the
monoid class, I have to supply a dummy inverse function. However, as described in
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Section 6.3, I adopted a fairly abstract approach to defining class signatures, and
defining sets of functions for projecting out components of instances. Therefore, I
anticipate that in the future it would be fairly straightforward to switch to some
more flexible scheme.

Defining subsets of carrier types is still a problem, since as explained above,
even those approaches that ignore computational content still all define subsets
with stronger equalities than desired. [ did experiment with using type-valued
predicates to define such notions as ideals of rings. However, I wasn’t too satisfied
with this work because of this awkwardness with equality, even after I had made
special definitions for subset and equality relations on subsets of carriers and had
set up appropriate lemmas to support rewriting with respect to these relations.
This work on type-valued predicates is not reported in this thesis.



Chapter 6

General Algebra

6.1 Introduction

I present here the introductory theories I have used in my algebraic work. From a
mathematical point of view the definitions and theorems are all trivial, but they do
serve to illustrate the approach I have taken and do identify some of the problems
involved in implementing algebra in Nuprl.

I also describe in Section 6.12 general-purpose tactics and support functions I
have written to support reasoning with classes

6.2 Algebraic Predicates

6.2.1 Predicates on Class Components
Here are notational abbreviations I made for common algebraic properties.
IsEqFun(T;eq) == Vx,y:T. T(x eqy) <= x =y €T

Ident(T;op;id)
== Vx:T. xopid=x €T A idopx=x €T

Assoc(T;op)
== Vx,y,z:T. xop (yopz) = (xopy)opz€&€T

Comm(T;op) == Vx,y:T. xopy=yopx €T

Inverse(T;op;id;inv)
== Vx:T. x op (dnv x) = id € T A (dnv x) op x = id € T

Bilinear(T;pl;tm)

== Va,x,y:T.
atm(xply)=(atmx)pl (atmy) €T
A (xply)tma=(xtma)pl (ytma) €T

82
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IsBilinear(A;B;C;+a;+b;+c;f)
== (Yal,a2:A. Vb:B.
(al +a a2) f b = (a1 £ b) +c (a2 f b) € C)
A (Va:A. VYb1,b2:B.
af (bl +b b2) = (a £ bl) +c (a £ b2) € C)

IsAction(A;x;e;S;f)
== (Ya,b:A. YVu:S. (axb) fu=af (bfu) €85)
A (Vu:S. e fu=uc€§s)

Distilop20pLR(A;lop;20p)

== Yu,v:A.
lop (u 20p v) = (lop u) 20p v € A
A lop (u 20p v) = u 20p (lop v) € A

FunThru2op(4;B;opa;opb; L)
== Val,a2:A. f (al opa a2) = (f al) opb (f a2) € B

Cancel(T;S;op)
== Yu,v:T. Vu:S. wopu=wopv eET=>u=v €T

The prefix notation 1 is for a function that converts boolean-valued (B-valued)
propositions to type-valued (P-valued) propositions. All these predicates are sta-
ble, so there is no problem unhiding them as and when necessary.

6.2.2 Binary relations

Here are the basic definitions I used for predicates on binary relations:
Refl(T;x,y.Elx; y]) == Va:T. E[a; al
Sym(T;x,y.Elx; y]) == Va,b:T. E[a; b] = E[b; al

Trans(T;x,y.E[x; y])
== Va,b,c:T. E[a; b] = E[b; c] = E[a; c]

EquivRel(T;x,y.E[x; y1)
== Refl(T;x,y.Elx; y1)
A Sym(T;x,y.Elx; yl)
A Trans(T;x,y.E[x; y])

AntiSym(T;x,y.R[x; y1)
== Vx,y:T. Rlx; y] = Rly; x] => x =y

StAntiSym(T;x,y.R[x; y1)
== Vx,y:T. =(R[x; yl A R[y; x1)
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Connex(T;x,y.R[x; y1)
== Vx,y:T. R[x; yl V Rly; x]

Preorder(T;x,y.R[x; y])
== Refl(T;x,y.Rlx; y]1) A Trans(T;x,y.R[x; yI)

Order(T;x,y.R[x; y1)

== Refl(T;x,y.Rlx; y]1)
A Trans(T;x,y.R[x; y])
A AntiSym(T;x,y.Rlx; y1)

Linorder(T;x,y.R[x; y])
== Order(T;x,y.R[x; y]) A Connex(T;x,y.R[x; yl1)

The name StAntiSym is short for strictly anti-symmetric. The other names should
all be obvious. All the R[x; y] expressions are second-order variables with two
arguments. Second-order matching and substitution is used when unfolding these
definitions. For example, the instance of the Sym predicate:

Sym(N;i,j.i = j € N)
unfolds to
Va,b:N. a=b € N=>b=a¢€&N

The well-formedness lemmas for these definitions were all very straightforward.
For example, the well-formedness lemma for EquivRel was:

VT:U. VE:T — T — P. (EquivRel(T;x,y.E[x;y]) € P)

I also created an alternative set of definitions which treated relations as higher
order rather than first order objects; that is, as binary (curried) functions rather
than terms with arguments supplied as subterms. For example,

Sym(T;E) == Sym(T;x,y.E x y)

Standard operations of taking the reflexive closure, symmetric closure and strict
part of a relation were defined on these higher-order relations:

E°{T} == Ax,y.x =y €TV Exy
E= == AXx,y.Exy AEyx
E\ == Ax,y.Ex y A 7 (Ey x)

Commonly, I used a display form for the reflexive closure that hid the type argu-
ment; with this display form, E°{T} is instead displayed as simply E°.
Various theorems were proven about these operators on relations, including:
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xxorder_split:
VT:U. VR:T — T — P.
Order(T;R)
= (Vx,y:T. Dec((x =y € T)))
= (Va,b:T. Rab <= R\ abVa=beT

xxtrans_imp_sp_trans:
VT:U. VR:T — T — P. Trans(T;R) = Trans(T;R\)

refl_cl_is_order:
VT:U. VR:T — T — P.
Irrefl(T;R) = Trans(T;R) = Order(T;R%)

irrefl_trans_imp_sasym:
vT:U. VR:T — T — P.
Irrefl(T;R) = Trans(T;R) = StAntiSym(T;R)

xxconnex_iff_trichot:
VT:U. VR:T — T — P.
(Va,b:T. Dec((R a b)))
= (Connex(T;R) <= {Va,b:T. R\ ab V R= ab V R\ b a})

xxconnex_iff_trichot_a:
VT:U. VR:T — T — P.
Connex(T;R°) «<— (Va,b:T. RabVa=be&eTVRDa)

The xx prefix on some of the lemma names here was to distinguish these lemmas
from similar ones that involved predicates treating binary relations as first order.

While this higher order approach was mathematically more elegant and less ver-
bose, it did have a few minor drawbacks: firstly, when reasoning about equivalence
of relations, I had to define and work with a new equivalence relation:

binrel_eqv:
E <=>{T} E’ == Vx,y:T. Exy <= E xy

This wasn’t a serious problem since I designed the rewrite package to easily cope
with handling new relations. Secondly, the convention adopted in all previously
existing theories had been to define equivalence relations in a first-order style, and it
was awkward to have to switch back and forth between styles. Thirdly, unfolding
of definitions of specific higher-order relations required extra [-reduction steps.
Fourthly, I had less flexibility with defining display forms for particular relations;
the positions of a relation’s arguments were determined by the display forms for
binary function application, rather than the display form for the relation. With
the first-order approach, I could define a display form so that an instance of a
mod relation would be displayed as a = b mod n, whereas with the higher order
approach I would have had to settle for maybe a ={mod n} b.
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6.3 Discrete and Ordered Sets

I found it convenient to package a type with a boolean-valued equality function
and an optional boolean-valued inequality relation. I introduced a signature class
of all such packaged types with the ML library object shown in Figure 6.1. All

create_poset_sig:
h (p)artially (o)rdered (set) (sig)nature.
Includes equality function for discrete sets.%

Class Declaration for: p &€ PosetSig

Long Name: poset_sig
Short Name: set

Parameters:

Fields:
(lpl) car : U
(=pp) eq : car — car — B
(<yp) le : car — car — B

Universe: U’

Figure 6.1: Declaration for PosetSig Class

the text here from the Class Declaration down is generated by a display form
for a call to an ML function. The first time this function is called in a given
declaration, it creates definitions for a class signature and projection functions for
each component of class instances. In this case, the definitions created are

poset_sig:
PosetSig == car:U X eq:(car — car — B) X (car — car — B)
set_car:
lpl ==p.1
set_eq:
=p == p.2.1
set_le:

<pp == p.2.2
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Note that PosetSig has a level expression argument. I have set up display forms
so that if this argument is not the level variable i, then it is explicitly displayed.
For example, if it is j, then the class is displayed as PosetSig{j}. This convention
is an extension of that adopted for universe terms in Section 2.1.2. 1 have used
this convention for the displays of all class definitions.

Well-formedness lemmas are created automatically by class declarations. In
this case, they were:

poset_sig_wf:
PosetSig € U’

set_car_wf:
Vp:PosetSig. |pl € U

set_eq_wf:
Vp:Poset3ig. =,p € Ilpl — Ipl — B

set_le_wf:
Vp:Poset3ig. <;p € Ipl — Ipl — B

Finally, class declarations create conversions for reducing the projection functions
when they are applied to tuples. These conversions are automatically added to the
to the AbReduceC conversion described in Section 4.6. Class declarations are stored
in ML objects in theories to document classes and to ensure that the appropriate
conversions are created each time the theory is loaded. As indicated above, a
Class declaration only creates the set of definitions and theorems for a class once.
Afterwards, these definitions and theorems are dumped to files and loaded from
files along with the rest of the theory that they reside in.

The terms in parentheses at the start of the lines in the Fields section of a
class declaration show the display forms adopted for each field component. For
clarity in class definitions, the argument of every projection function is shown, but
frequently it is useful to hide this argument. These terms and the term to the right
of the Class Declaration heading effectively have the status of comments. When
the Class Declaration abstraction is expanded to reveal the call to the underlying
class declaration ML function, these terms disappear. 1 happen to have put these
‘comments’ in by hand, but it would be easy to have them added automatically.

With some class declarations (see Section 10.3 for examples), the field terms
displays are not shown as comments. In these cases, the displays for the projection
functions are the default displays. The default displays always consist of a postfix
period, followed by the name of the field. For example, the default display for the
eq field projection function applied to an instance p of the PosetSig class is p.eq.

I created several subtypes of the PosetSig class.

dset:
DSet == {s:PosetSigl| IsEqFun(ls|;=;s)}
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qoset:
QO0Set == {s:DSet| Preorder(lsl|;a,b.a <s b)}

poset:
P0Set == {s:Q0Set| AntiSym(ls|;a,b.a <s b)}

loset:
L0Set == {s:P0Set| Connex(lsl|;x,y.x <s y)}

The prefixes to the class names stand for discrete, quasi-ordered, partially-ordered,
and linearly-ordered.

I introduced a definition for the strict order function corresponding to the
reflexive one provided by the PosetSig, and also found it convenient to define
propositional (type-valued) versions of both order relations.

set_blt:
a<3pb==1{(a<ppb) Ay (b <pp a)

set_leq:
a <pb=="T( <;p b)

set_1t:
a<pb==1(a <pb)

Here for clarity I show the parameter p to these definitions, but often I hide it
When it is hidden, its value can always be inferred by the reader by looking at the
types of the relation arguments.

I introduced lemmas about these relations such as:

set_lt_transitivity_1:
Vs:Q0Set. Va,b,c:lsl. a <sb => b<sc = ac<sc

loset_trichot:
Vs:L0Set. Va,b:|s|l. a<sbVa=Dbe€&€ |s] VDb<sa

set_leq_complement:
Vs:L0Set. Va,b:ls|. —-1(a <s b) <= b <s a

This need to sometimes have both boolean and propositional versions of pred-
icates 1s an unavoidable feature of Nuprl’s constructive type theory.
For introducing instances of these classes, I added the definitions

mk_dset:
mk_dset(T, eq) == <T, eq, eq>

mk_oset:
mk_oset (T, eq, leq) == <T, eq, leg>
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and created lemmas that characterized when they constructed instances of the
various classes above. For instance, one lemma for mk_oset was:

mk_oset_wf:
VT:U. Veq,leq:T — T — B.
IsEqFun(T;eq)
= Linorder(T;a,b.T(a leq b))
= mk_oset(T;eq;leq) € LOSet

Such definitions and lemmas are inessential, but with them, the internal imple-
mentation details of class declarations are localized to the theory where they are
introduced.

6.4 Monoids and Groups

I made monoids and groups share the same underlying signature, to avoid having
to create explicit coercion functions between them. The underlying class signature
GrpSig is introduced by the class declaration shown in Figure 6.2.  With the

Class Declaration for: g &€ GrpSig

Long Name: grp_sig
Short Name: grp

Parameters:

Fields:
(lgl) car : U
(=pg) eq : car — car — B
(<pg) le : car — car — B
(*g) op : car — car — car
(eg) 1id : car
(~g) 1inv : car — car

Universe: U’

Figure 6.2: Declaration for GrpsSig Class

definitions

IsMonoid(T;op;id) == Assoc(T;op) A Ident(T;op;id)

IsGroup(T;op;id;inv) == IsMonoid(T;op;id) A Inverse(T;op;id;inv)
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the definitions of subclasses of GrpSig are:
IMonoid == {g:GrpSigl| IsMonoid(lgl;*g;eg)}
Mon == {g:GrpSigl| IsMonoid(lgl;*g;eg) A IsEqFun(lgl;=5g)?}
IAbMonoid == {g:IMonoid| Comm(|gl;*g)}
AbMon == {g:Mon| Comm(|gl;*g)}
IGroup == {g:IMonoid| Inverse(lgl;*g;eg;~g)}
Group == {g:Mon| Inverse(lgl|;*g;eg;~g)}
IAbGrp == {g:IGroup| Comm(lgl;*g)}
AbGrp == {g:Group| Comm(|gl;*g)}

The I prefix stands for indiscrete, since instances of these classes don’t have their
eq components constrained to agree with the equality relation associated with the
carrier of the instances.
Obvious theorems about groups include:
grp_op_cancel _1:
Vg:IGroup. Va,b,c:lgl. a*xb=a*c = Db =c

grp_inv_id:
Vg:IGroup. ~ e = e

grp_inv_inv:

Vg:IGroup. Va:lgl. ~ (~ a) = a
grp_inv_id:

Vg:IGroup. ~ e = e
grp_inv_inv:

Vg:IGroup. Va:lgl. ~ (~ a) = a

grp_inv_assoc:
Vg:IGroup. Va,b:|gl.
a*x ((~a) *b) =b A (~a)x(axb)=>b

grp_op_cancel _1:
Vg:IGroup. Va,b,c:lgl. a*xb=a*c = Db =c

grp_inv_diff:
Vg:IGroup. Va,b:lgl. ~ (a * (~ b)) =b * (~ a)

Note that here I have switched to suppressing the arguments of the group projection
functions and the equality propositions.
A forgetful functor mapping from GrpSig to PosetSig is

glset == <lgl, =g, <pg>
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6.5 Ordered Monoids and Groups

In the work described in Chapter 10, several definitions of ordered monoids and
groups were needed. Here are the class definitions:

OMon == {g:AbMon| Linorder(lgl;x,y.T(x <pg y))}

0CMon
== {g:AbMon|
Linorder(lgl;x,y.T(x <y g y))
A Cancel(lgl;lgl;*g)
A (Vz:lgl. Monot(lgl;x,y.T(x <pg y);Aw.2 *g w))}

0Grp == {g:0CMon| Inverse(lgl;*g;eg;~g)}

where

Monot (T;x,y.R[x; y]1;f)
== Vx,y:T. R[x; y]l = RI(f x); (f y)]

As with the set class, several order relation definitions were introduced:

grp_blt:
a<3gb==ac<,gloset d

grp_lt:
a <g b ==a<glsetd

grp_leq:
a <gb=="T( <;gb)

The definitions grp_1t and grp_blt were defined in terms of their set counterparts
to simplify the specialization of set theorems about order relations to corresponding
group theorems. Section 6.12.2 discusses lemma specialization. The theorem

grp_lt_trichot:
Vg:0CMon. Va,b:lgl. a<gbVa=>b € lgl Vb<ga

is an example of the specialization of the set theorem set_1t_trichot given above.
Theorems proven involving both the group operation and an order relation
include:

grp_lt_op_1:
Vg:0Grp. Va,b,c:lgl. a <b <= c*xa<cx*xb

grp_op_polarity:
Vg:0Grp. Va,b:lgl. e < a=>e<b=>e< axbh
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6.6 Half Groups

The notion of a halt group of a linearly-ordered group turned out to be a useful
one in the work described in Chapter 10. The definitions are

hgrp_car:
lglt == {x:1gll eg <g x}

hgrp_of _ogrp:
glhgrp == <|g|+, = g, Sbg, *g, eg, AX.XO>

and typing lemmas are

hgrp_car_wf:
Vg:GrpSig. Iglt™ € U

hgrp_of_ogrp_wf2:
Vg:0Grp. glhgrp € 0CMon

Note that in forming the halt group, the group inverse operation ~ cannot be used
in the inverse slot of the half-group tuple, since it is not in general closed on the
half-group domain.

The non-negative integers under addition are the half group of the group of
integers under addition. Similarly, the non-negative rationals under addition are
a half group.

6.7 Rings

The signature class for rings is given in Figure 6.3.  here, the notation 74 is a
notational abbreviation for the type A + Unit.

The definitions of the classes of discrete rings and discrete commutative rings
are

IsRing(T;plus;zero;neg;times;one)
== IsGroup(T;plus;zero;neg)

N IsMonoid(T;times;one)

A BilLinear(T;plus;times)

Rng
== {r:RngSigl
IsRing(|r|;+r;0r;-r;*r;1r) A IsEqFun(lr|;=,r)}

crng:
CRng == {r:Rng| Comm(|r|;*r)}
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Class Declaration for: r &€ RngSig

Long Name: rng_sig
Short Name: rng

Parameters:

Fields:
(Irl) car : U
(=pr) eq : car — car — B
(<pr) le : car — car — B
(+r) plus : car — car — car
(0r) =zero : car
(-r) minus : car — car
(xr) times : car — car — car
(1r) one : car
(+r) div : car — car — ?car

Universe: U’

Figure 6.3: Declaration for RngSig Class
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Plenty of elementary theorems about rings were proven. It probably suffices
for the reader to know that these exist. Definitions of forgetful functors from the
RngSig class to the GrpSig class are:

mul_mon_of_rng:
rlxmn == <|r|, s r, <pr, *r, 1r, Az.2>

add_grp_of_rng:
r|+gp == <|rl, s, <pr, +r, Or, -r>

and example typing lemmas for these are

add_grp_of_rng_wf:
Vr:RngSig. r|+gp € GrpSig

add_grp_of_rng_wf_b:
Vr:Rng. r|+gp € AbGrp

mul_mon_of_rng_wf:
Vr:RngSig. r|xmn € GrpSig

mul_mon_of_rng_wf_a:
Vr:Rng. rlxmn € Mon

mul_mon_of_rng_wf_b:
Vr:CRng. r|xmn € AbMon

6.8 Modules and Algebras

The signature class for modules and algebras is given in Figure 6.4.
The definitions of module, algebra and commutative algebra classes are:

A-Module
== {m:AlgebraSig(|Al)|
IsGroup(|ml ;+m;O0m;-m)
A Comm(|m] ;+m)
N IsAction(|A|;*A;14A; |m|;-m)
A IsBilinear(|Al;Im|;|m|;+A;+m;+m;-m)
A IsEqFun(lm|;m.eq)}

A-Algebra
== {m:A-Module|
IsMonoid(Im]| ;xm;1m)
A BilLinear(|m] ;+m;xm)
A (Va:|A|. Distlop2opLR(lml;m a;xm))}
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Class Declaration for: a € AlgebraSig(Aa)

Long Name: algebra_sig
Short Name: alg

Parameters:

A: U

Fields:
(lal) car : U
(a.eq) eq : car — car — B
(a.le) 1le : car — car — B
(+a) plus : car — car — car
(0a) =zero : car
(-a) minus : car — car
(xa) times : car — car — car
(1a) one : car
(+a) div : car — car — ?car
(\a) act : A — car — car

Universe: U’

Figure 6.4: Declaration for AlgebraSig(4) Class
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calgebra:
A-CAlgebra == {m:A-Algebra| Comm(|m|;xm)}

and forgetful functors are:

rng_of_alg:
alrg == <lal, a.eq, a.le, +a, Oa, -a, xa, la, +a>

grp_of_module:
m|grp == m|rg|+gp
Example typing lemmas for these are:

grp_of _module_wf2:
Va:RngSig. Vm:a-Module. m|grp € AbGrp

rng_of_alg_wf2:
Va:CRng. Vm:a-Algebra. m|rg € Rng

The definitions for module and algebra homomorphisms are:

module_hom_p:
Va:RngSig. Vm,n:AlgebraSig(lal). Vi:Im| — Inl.
IsModuleHom{a,m,n}(f)
= (FunThru2op(lml|;|nl;+m;+n;f)
A (Vu:lal. fun_thru_tlop(lml;Inl;m u;-n u;£)))
cP

module_hom:
VA:RngSig. VM,N:AlgebraSig(lAl).
A-ModuleHom(M;N)
= {f:|M| — |IN|| IsModuleHom{A,M,N}(f)}
e U

alg_hom_p:
Va:RngSig. Vm,n:AlgebraSig(lal). Vi:Im| — Inl.
IsAlgHom{a,m,n}(f)
= (IsModuleHom{a,m,n}(f)
A FunThru2op(Iml; Inl;xm;xn;f)
A f im = 1n € Inl)
eP

algebra_hom:
VA:RngSig. VM,N:AlgebraSig(lAl).
A-AlgebraHom(M;N)
= {f:A-ModuleHom(M;N) |
FunThruZop(IM|; IN|;xM;xN;£) A £ 1M = 1IN € |NI}
e U

As explained in Section 10.2, these are typed definitions.
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6.9 Common Instances of Algebraic Classes

Typing lemmas for standard class instances that were used elsewhere in this thesis
included:

band_mon_wf:
<B,A, > € AbMon{1}

bor_mon_wf:
<B,V, > € AbMon{i}

int_add_grp_wf2:
<Z+> € 0Grp{1i}

lapp_mon_wf:
Vs:DSet. <s List, @ € Mon

In lapp_mon_wf, the @ symbol stands for the list append function. Its definition
was:

append:
as @ bs
==r case as of [] => bs | a::as’ => a::(as’ @ bs) esac

The definition of the equality function that made <s List, @> discrete was:

eq_list_ml:
as =, 8 bs
==r case as of
[1 => null(bs)
a::as’ => case bs of

[l => £f
b::bs’” => a =8 b Ay as’ =8 bs’
esac

esac

6.10 Iterated Operations on Integer Segments

6.10.1 Definitions

Being able to iterate a binary operation over a finite sequence of values is fun-
damental in mathematics. This theory can be developed generally either over
arbitrary monoids or over arbitrary semigroups. When over arbitrary semigroups,
the finite sequences must be non-empty. There is no such restriction with monoids.
Since monoid structures were much more common than non-monoidal semigroup
structures in the data-types I wanted to consider, I chose to develop this theory
first over monoids.
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Examples of monoid structures are abundant and include the booleans with A,
and V; , the integers, rationals and reals, with + and *, and lists with the append
operation.

Examples of non-monoidal semigroup structures include the integers with bi-
nary max and min functions, though the naturals with max do form a monoid.

In this section I describe functions I set up for iterating over sequences indexed
by ranges of integers. In Section 6.11, I describe similar functions for working on
lists.

Note that I use the terms ‘iterated operator’, ‘product’ and ‘sum’ interchange-
ably when discussing iterating a monoid operation on a finite sequence. Sometimes
too [ used the phrase ‘general sum’ and ‘general product’. When dealing with rings
and modules and algebras, I use ‘sum’ and ‘product’ in their normal senses to refer
to iterating the ‘plus’ and ‘times’ operations.

The mon_itop operation iterator takes the product of a sequence of elements
from a monoid. It was defined in two stages:

IT(op,id) 1b < i < ub. E[i]

==rif 1b <z ub
then X (op,id) 1b < i < ub - 1. E[i] op E[(ub - 1)]
else id
fi

II(g) 1b < i < ub. E[i] == II(*g,eg) 1b < i < ub. E[i]

The typing lemma for mon_itop was

Vg:IMonoid. Vp,q:Z. VE:{p..q"}+ — lgl.
II(g) p < i< q. E[L] € gl

where the notation {p..q~} was introduced by the definition

int_seg:
{i..37F = 4{k:Z| 1 < k < j}

Note how {p..q~} was used for the domain of the indexed expression E. In type
theories of total functions without subtyping such as HOL’s, such a function would
have to be defined over the whole of the naturals or integers, and often a default
value would have to be supplied for E on indices that are out of some normal range
of consideration.

6.10.2 Theorems

A variety of simple useful lemmas were proven about these iterated operators. For
example:
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mon_itop_unroll_base:
Vg:IMonoid. Vi,j:Z.
i=]

= (VE:{i..j"} — lgl. Ig i < k < j. E[X]

mon_itop_unroll_unit:
Vg:IMonoid. Vi,j:Z.
i+1=7

= (VE:{i..j"} — lgl. Ig i < k < j. E[X]

mon_itop_unroll_hi:
Vg:IMonoid. Vi,j:Z.
i<
= (VE:{i..i"} — Igl
IIg i < k < j. E[k]

= (IIg i < k<j-1.E[k] *g E[j - 1]

€ lgl)

mon_itop_unroll_lo:
Vg:IMonoid. Vi,j:Z.
i<
= (VE:{i..j } — Igl
IIg i < k < j. E[k]
= E[i] *g (IIg i + 1 < k < j. E[k])
€ lgl)

mon_itop_shift:
Vg:IMonoid. Va,b:Z.
a<b
= (VE:{a..b™} — lIgl. Vk:Z.
ITg a < j < b. E[]]
=Iga+k<3j<b+k. E[j-Kk]
€ lgh

mon_itop_split:
Vg:IMonoid. Va,b,c:Z.
a<b
b < ¢
(VE:{a..c™} — lgl
IIg a < j < c. E[]]

=
=

eg € lgl)

E[i] € Igl)

= (IIga < j<b. E[J]) *g (UIgb < j < c. E[JD

€ lgl)
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mon_itop_split_el:
Vg:IMonoid. Va,b,c:Z.

a<b

= b < c

= (VE:{a..c™} — Igl
IIg a < j < c. E[]]
= (IIg a < j <b. E[D

xg (E[b] *g (ITg b + 1 < j < c. E[F1))

€ lgh

mon_itop_op:
Vg:IAbMonoid. Va,b:Z.
a<b
= (VE,F:{a..b"} — lIgl.
IIg a < i < b. E[i] *g F[i]
= (IIga <i<b. E[i]) *g (IIga < i < b. F[i])
€ lgh

When working in a mechanized formal environment, one dilemma with choosing
group notation is deciding whether to use additive or multiplicative notation. The
notation that is presented in this thesis is not quite consistent; fields of the group
class are written multiplicatively, yet the natural action (see Section 6.10.3) is
written as if groups were additive. A simple extension that will be made in the
near future to Nuprl’s current display algorithm is one that will allow the user to
group display forms into named blocks and then enable or disable blocks all at
once. With this extension, it will be possible to switch notations in seconds and
assign preferred notation blocks to theories. With notation blocks for additive and
multiplicative group notation, we should have a more acceptable solution to this
notation problem for groups.

6.10.3 Natural and Integer Actions

The mon_itop operator was used to define natural and integer action (or exponen-
tiation) operators:

nat_op:
n x(op;id) a == X¥(op,id) 0 < i < n. a

mon_nat_op:
n -g a == n x(xg;eg) a

int_op:
i x(op;id;inv) a
== if 0 <z i then i x(op;id) a else inv -i x(op;id) a fi
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grp_int_op:
i g a ==n x(xg;eg;~g) a

Theorems proved about these operators included

mon_nat_op_op:
Vg:IAbMonoid. Vn:N. Va,b:|gl.
(n.g (a*g b)) = (n-ga)*g (n-gb) € Igl

mon_nat_op_add:
Vg:IMonoid. Ve:lgl. Va,b:N.
((a+Db) :ge) =(a-ge)*xg (b :ge) € gl

mon_nat_op_mul:
Vg:IMonoid. Vm,n:N. Ve:|gl.
(n.g(m-ge)) =nx*m ge) € lgl

mon_nat_op_hom_swap:
Vg,h:IMonoid. Vf:MonHom(g,h). Vn:N. Vu:lgl.
(nh(fuw)=1f (-.gu € l|hl|

6.10.4 Binomial Theorem

The binomial theorem is an example of a theorem that used a summation operator
on rings, and natural actions over both the additive and multiplicative monoid of
rings. I proved it in Nuprl as a simple exercise. The statement of it was

binomial:
Vr:CRng. Va,b:|r|. Vn:N.
(a+Db) Tn

=XY0<i<n+1.
choose(n;i) - ((a T i) * (b T (n - i)))
Here, the - was the natural action the additive monoid of the ring r and 1 was the

natural action on the multiplicative monoid. The definition of choose was

choose(n;i)

==r if (i =, 0) V; (i =, n)
then 1
else choose(n - 1;i - 1) + choose(n - 1;i)
fi

6.11 Iterated Operations on Lists

6.11.1 Definitions and Basic Theorems

Sometimes, it was more convenient to work with finite sequences represented using
lists rather than functions on ranges of integers. I first made the definitions:
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reduce:
reduce(f;k;as)
==r case as of [] => k | a::as’ => f a reduce(f;k;as’) esac

mon_reduce:
IT (m) as == reduce(*m;em;as)

with the corresponding typing lemmas:

reduce_wf:
VA,B:U. Vf:A — B — B. Vk:B. Vas:A List.
reduce(f;k;as) € B

mon_reduce_wf:
Vg:IMonoid. Vas:|gl List. II(g) as € |gl

Sometimes [ suppressed the monoid argument to the mon_reduce operator when
the monoid was obvious from context.

As is done in NQTHM [BM88a], and similar in style to the product operation
mon_itop defined in Section 6.10, I found it very useful to define a For binding
product operation over lists.

for:
For{T,op,id} x € as. f[x]
== reduce(op;id;map(Ax:T. f[x];as))

mon_for:
For{T,g} x € as. f[x] == For{T,*g,eg} x € as. f[x]

The typing lemmas for these are

for_wt:
Va,B,C:U. VE:B — C — C. Vk:C. Vas:A List. Vg:A — B.
(For{A,f,k} x € as. glx]) € C

mon_for_wf:
Vg:IMonoid. VA:U. Vas:A List. Vf:A — Igl.
(For{A,g} x € as. f[x]) € Igl

I showed the views of summation presented in this and the previous chapter to be
equivalent

mon_reduce_eq_itop:
Vg:IMonoid. Vas:|gl| List.
II(g) as = IIg 0 < i < [|las||. as[i] € Igl

and proved basic lemmas about mon_reduce and mon_for, including
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mon_reduce_append:
Vg:IMonoid. Vas,bs:|gl| List.
IT(g) as @ bs = II(g) as *g II(g) bs € Igl

mon_for_append:
Vg:IMonoid. VA:U. Vf:A — |gl. Vas,as’:A List.
(For{A,g} x € as @ as’. f[x])
= (For{A,g} x € as. f[x]) *g (For{A,g} x € as’. f[x])
€ lgl

6.11.2 Commutative Operations

Commonly, the binary operation used for the summing operation is commutative,
and in this case, many more algebraic facts are true about For. For example, I
proved

mon_for_functionality_wrt_permr:
Vg:IAbMonoid. VA:U. Vas,as’:A List. V£, f’:4 — |Igl.
(as =(4) as’)
= (Vx:A. mem_f(A;x;as) = £[x] = £’[x] € Igl)
= (For{A,g} x € as. f[x])
= (For{A,g} x € as’. £’[x])
€ lgl

mon_for_map:
Vg:IAbMonoid. VA,B:U. Ve:A — B. Vf:B — |gl|l. Vas:A List.
(For{B,g} y € map(e;as). flyl)
= (For{A,g} x € as. fle x])
€ lgl

mon_for_of_op:
Vg:IAbMonoid. VA:U. Ve,f:A — |gl. Vas:A List.
(For{A,g} x € as. elx] *g f[x])
= (For{A,g} x € as. e[x]) *g (For{A,g} x € as. f[x])
€ lgl

mon_for_of_id:
Vg:IAbMonoid. VA:U. Vas:A List.
(For{A,g} x € as. eg) = eg € Igl

mon_for_swap:
Vg:IAbMonoid. VA,B:U. Vf:A — B — |gl|. Vas:A List.
Vbs:B List.
(For{A,g} x € as. For{B,gr y € bs. flx;y])
= (For{B,g} y € bs. For{A,g} x € as. flx;y])
€ lgl
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The =(4) relation in the first theorem is the permutation relation on lists. It is
described in Section 7.3.1.

6.11.3 Iterating over Heads and Tails

A variant on For called HTFor was defined that gives the expression being summed
access to both the head and tail of each position in the sequence being summed
over, rather than just the head. Its definition and definitions of auxiliary functions
were:

mapconsl:

mapcons (f;as)
==r case as of

=>10
a::as’ => (f a as’)::mapcons(f;as’)
esac

for_hdtl:
ForHdT1{A,f,k} h::t € as. gl[h; t]
== reduce(f;k;mapcons(Ah,t.glh; t];as))

mon_htfor:
HTFor{A,g} h::t € as. f[h; t]
== ForHdT1{A,*,e} h::t € as. f[h; t]

and the corresponding typing lemmas were:

mapcons_wf:
VA,B:U. Vf:A — A List — B. V1:A List.
mapcons (f;1) € B List

for_hdtl_wf:
VA,B,C:U. VE:B — C — C. Vk:C. Vas:A List. Vg:A
— A List
— B.

mon_htfor_wf:
Vg:IMonoid. VA:U. Vas:A List. Vf:A — A List — Igl.
(HTFor{A,g} h::t € as. f[h;t]) € Igl

HTFor was used to define predicates charactering lists as ordered and as having
distinct elements.
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6.11.4 Conditional Iterated Operations

Frequently a binary operation is iterated over a sequence of elements subject to
some condition being true of the elements. Rather than introduce a separate
version of For to allow this, I took advantage of the fact that For summed over
monoids and defined a simple construct I called when. The definition was

mon_when:
when{g}r b . p == if b then p else eg fi

and the typing lemma was

mon_when_wf:
Vg:IMonoid. Vb:B. Vp:lgl. when{gr b . p € lIgl

Basic lemmas proved about when included:

mon_when_of_id:
Vg:IMonoid. Vb:B. when b. e = e

mon_when_thru_op:
Vg:IMonoid. Vb:B. Vp,q:lgl.
when b. p * q = (when b. p) * (when b. q)

mon_when_swap:
Vg:Mon. Vb,b’:B. Vp:lgl.
when b. when b’. p = when b’. when b. p

mon_when_when:
Vg:Mon. Vb,b’:B. Vp:lgl.
when b. when b’. p = when b Ay b’. p

Lemmas about the interaction of when and For included:

mon_for_when_swap:
Vg:Mon. VA:U. Vas:A List. Vb:B. Vf:4 — |Igl.
(For{g} x € as. when b. f[x])
= when b. (For{g} x € as. f[x])

mon_for_when_none:
Vs:DSet. Vg:IMonoid. Vf:|s|l — Igl. Vb:|s| — B.
Vas:|s| List.
(Vx:lsl. T(x € as) = —Tblxl)
= (For{g} x € as. when b[x]. f[x]) = e
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mon_for_when_unique:
Vs:DSet. Vg:IMonoid. Vf:|s| — lgl. Vb:ls| — B. Vu:lsl.

Tb[ul

= (Vas:l|s| List
Tdistinct{s}(as)
= T(u € as)
= (VYv:lsl. Tblvl = (v & as) = v = u)
= (For{g} x € as. when b[x]. f[x]) = f[ul)

The theorem mon_for_when_unique described exactly when a For and a when cancel.
The preconditions of this theorem essentially say that the sequence being summed
over must contain all distinct elements and that the predicate b must be true at
exactly one of those elements.

The definition of distinct was:

distinct:
distinct{s}(ps)
== HTFor{ls|,<B,A; >} q::qs € ps. Vor(:lsl) € gqs. 4 (r =5 Q)

The function HTFor is described in Section 6.11.3.

6.11.5 Specializations

Specializations of the For operation to concrete domains included:

ball:
Vyx(:A) € as. f[x] =

For{A,<B,A; >} x € as. fl[x]

bexists:
dp x(:A) € as. f[x] =

For{A,<B,V, >} x € as. fl[x]

Specializations to summation operations on the ring and algebra classes was done
for the multiset version of For. Specializations to product operations would have
been trivial, but were not needed for the work described in this thesis.

6.11.6 Iterated Operations Indexed by Multisets

Since the order of elements being summed up by the For operator is irrelevant
when summing with a commutative binary operation, it is as natural to think of
the elements as coming from a multiset rather than a sequence. In the development
of finite multisets and sets (described in Chapter 9), I introduced a variant on For
I called msFor that drew indices from a multiset rather than from a list. Since
multisets there were implemented as lists, msFor was nothing other than a retyping
of the For operator. Its definition, typing lemma and proof of typing lemma are
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all given in Section 9.3.2, along with several basic theorems about it corresponding
to theorems given above for For.

This multiset summation operator and its specializations to summation op-
erators over rings and modules were used extensively in the ADT case study on
polynomial arithmetic described in Chapter 10. Relevant lemmas about the mul-
tiset summation operators can be found there.

6.12 ML Support

6.12.1 Simplifying Algebraic Expressions

Normal forms can be described for expressions constructed from the operators of a
class instances and it is often straightforward to design normalization procedures.
I created rewrite conversions for normalizing expressions over most of the classes
described above. These conversions were made generic by supplying conversions
for basic rewrite rules as arguments. Several examples are as follows. The examples
hopefully illustrate the elegance of the notion of conversion.

The function

RAssocC : convn -> convn

creates conversions for right-associating trees built from binary associative opera-
tors. Its definition is:

let RAssocC AssocC = TryC (SweepDnC (RepeatC AssocC)) ;;
where AssocC is assumed to have behavior
AssocC (¢ + b)) + ¢ — a 4+ (b + ¢ .

RAssocC works top-down repeatedly applying the AssocC conversion at each level
until the left child is no longer an instance of the binary operator.
The function BubbleSortC

BubbleSortC
EndSwapC : convn
InsideSwapC : convn
dest_op : term -> (term # term)
tm_1t : (term # term) -> bool

Cc  convn

constructs a conversion for normalizing expressions built from a associative com-
mutative operator. The arguments EndSwapC and InsideSwapC are assumed to
have behaviours
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EndSwapC a + b — b + «a
InsideSwapC a + (b + ¢) — b 4+ (a + ¢) ,

dest_op is assumed to be a destructor function for the binary operator and tm_1t
is assumed to be a total term order on terms. BubbleSortC assumes that the
expressions are already right associated. It maintains the right-associatedness and
orders the fringe of the tree formed by the binary operator left-right according
to the tm_1t relation. As the name implies, the bubble-sort algorithm is used. I
chose bubblesort because it is the simplest algorithm to implement by rewriting.
Rewriting strategies for others (such as merge-sort) could have been coded too with
a bit more work, but bubblesort proved to be good enough for the cases where I
needed it.

6.12.2 Lemma Specialization

Frequently, a Lemma is proven about general instances of some class, and one then
desires versions of the lemma that are specialized to either a specific instance of
the class or to general instances of a more specific class. For example, consider the
lemma abmonoid ac_1:

- Vg:IAbMonoid. Va,b,c:lgl. a g.op (b g.op c) = b g.op (a g.op ¢)

One instance of the IAbMonoid class is the additive monoid over the rationals. The
above lemma, instantiated with this instance is:

F Va,b,c:Q. a +,(b+, c) =b +, (a+, c)

Examples of the abmonoid ac_1 lemma about general instances over a more specific
classes are

F Vr:IRng. Va,b,c:lr|. a +r (b +r ¢c) = b +r (a +r c)
F Vr:ICRng. Va,b,c:lr|. a *r (b *r c) = b *r (a *r c)

Ideally, such instantiations would be computed on-the-fly by a fancy matching
function. There is the issue here of how the matcher would guess appropriate
instantiations, and in practice, there probably would be some way for the user to
provide suitable hints to the matcher. The developers of the IMPS theorem prover
have experimented with such ideas [FGT92b] and it would be interesting to see
whether these could be adapted to Nuprl.

For simplicity, I have not touched the matcher, but have written utility func-
tions that automatically instantiate sets of similar lemmas. One use of these func-
tions is in creating sets of lemmas as needed by the simplification conversions
described in the previous section.



Chapter 7

Permutations

7.1 Introduction

Section 7.2 presents a development of the basic theory of permutation functions,
and Section 7.3 presents two approaches that were explored to defining a permu-
tation relation on lists. One of these approaches involved defining a permutation
relation in terms of permutation functions. This work is presented in Section 7.3.1.
The other approach involved defining the relation recursively, and is presented in
Section 7.3.2.

I developed first the definition in terms of permutation functions, because I
was curious to explore the difficulties in pushing through an abstract development,
close in style to that which might be found in an algebra textbook. Section 7.3.1
together with Section 7.2 might serve as the beginning of an exposition on the
theory of (constructive) permutations.

This definition was adequate for use in the factorization work described in
Chapter 8. Later however, in the development of the theory of finite multisets and
sets (see Chapter 9), I needed a computable definition, and resorted to recursive
definition of the permutation relation on lists.

Showing the two definitions equivalent was awkward, because I chose to char-
acterize the auxiliary functions involved in the recursive definition in terms of the
functional definition. This entailed proving many theorems about the properties
of the list element select function on these auxiliary functions.

In retrospect, it probably would have been more elegant to have shown the
equivalence of the two definitions by going through a third characterization of
two lists being a permutation of one-another when the counts of each possible
element in each list are the same. This third characterization was very useful in
my development of the theory of finite sets and multisets (see Chapter 9).

109
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7.2 Permutation Functions

Classically, a permutation on a set S is a bijection of type S — 5. Implicit in the
definition of bijection f of type A — B is the existence of an inverse function ¢ of
type B — A. There is no way in general of computing ¢ from f, even though g¢
is a useful function, so constructively a bijection is commonly defined as a pair of
functions (f, g) that are mutual inverses.

The definition for the type of permutations Perm(T) over type T was:

Perm(T) == {p:PermSig(T)| InvFuns(T,T,p.f,p.b)}
where the PermSig definition
PermSig(T) == (T — T) X (T — T)

was introduced by the class declaration shown in Figure 7.1, and the definition of

Class Declaration for: PermSig(T)

Long Name: perm_sig
Short Name: perm

Parameters:
T: U
Fields:
f: T—T
b : T —T

Universe: U

Figure 7.1: Signature Class for Permutation Functions

InvFuns was
InvFuns(A;B;f;g) == go f=Id € A - AANfog=Id€B —B

Definitions for the components of the group of permutation functions on a type
were:

fog-==2Ax.f (g x)
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mk_perm(f;b) == <f,b>

id_perm() == mk_perm(Id;Id)

inv_perm(p) == mk_perm(p.b;p.f)

p 0 g == mk_perm(p.f o q.f;9.b o p.b)

perm_igrp(T) == mk_igrp(Perm(T);Ap,q.p 0 g;id_perm();Ap.inv_perm(p))

and the theorem that perm_igrp(T) was indeed a group was:
FVT:U. perm_igrp(T) € IGroup

Note that perm_igrp(T) is in general an indiscrete group; there is no way of
deciding the equality of functions when no deciding function is provided for their
range or when the functions’ domain is not finite and enumerable !,

I then concentrated my efforts on proving properties about Sym(n), the sym-
metry group on n elements:

N<j:nat>== {0..<j>"}
Sym(n) == Perm(Nn)
In particular, a result I wanted was showing that every permutation in Sym(n) is
a composition of transpositions. I started with a definition of a swap function
swap(i;j)
== An.if (n =, i) then j
if (n =, j) then i

else n
fi

which had typing lemma
vn:N. Vi,j:Nn. swap(i;j) € Nn — Nn
I proved such theorems as:

swap_order_2:
vn:N. Vi,j:Nn. swap(i;j) o swap(i;j) = Id € Nn — Nn

sSwWap_sym:
vn:N. Vi,j:Nn. swap(i;j) = swap(j;i) € Nn — Nn

!Not all constructive notions of finiteness imply enumerability, so this is not a
redundant qualifier
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triple_swap:
Vn:N. Vi,j,k:Nn.
= —(j = k)
= swap(i;]j)
= swap(i;k) o (swap(j;k) o swap(i;k))
€ Nn — Nn

The proof of the last theorem was made manageable by writing a tactic to automate
case-splits (over 50 case splits were involved). The swap definition was used to
define a transposition permutation

txpose_perm(i;j) == mk_perm(swap(i;j);swap(i;j))
and corresponding theorems were proven. For example:

vn:N. Vi,j:Nn.
txpose_perm(i;j) 0 txpose_perm(i;j) = id_perm() € Sym(n)

This tedious doubling of definitions and theorems, first over N—N, and then
over Sym(n), occurred throughout the development of permutations. The doubling
was needed so that a computable function for taking inverses of permutations could
be defined; in keeping with the constructive approach of Nuprl’s type theory, no
methods are provided for constructing non-computable functions. Note that Howe
showed that it is consistent to add such functions [How9la] to the type theory,
and also, one can always prove theorems with an explicit hypothesis about the
existence say of an e Hilbert choice function [HB70]. T did not explore either of
these approaches here.

The theorem I proved about every element of Sym(n) being a composition of
swaps was:

sym_grp_is_swaps:

Fvn:N
Vp:Sym(n)
Jabs:(Nn X Nn) list
(p
= JI{(perm_igrp(Nn)} map(Aab.let a,b = ab in txpose_perm(a;b);abs)
€ Sym(n))

where the generalized-product function IT{-} is introduced in Section 6.10 and
map(f;as) was the usual polymorphic function for mapping a function £ over a
list as.

I proved this theorem by induction on n, using a number of auxiliary theorems
about extending and restricting permutations such as

extend_perm_over_id:
vn:N. T{n}(id_perm()) = id_perm() € Sym(n + 1)
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extend_perm_over_comp:
vn:N. Vp,q:Sym(n).
T{n}p 0 q) = T{n} () 0 T{n}(q9) € Sym(n + 1)

extend_perm_over_itcomp:
vn:N. Vps:Sym(n) List.
T{n}(IIperm_igrp(Nn) ps)
= ITperm_igrp(N(n + 1)) map(Ap.T{n}(p);ps)
€ Sym(n + 1)

extend_perm_over_txpose:
vn:N. Vi,j:Nn.
T{n}(txpose_perm(i;j)) = txpose_perm(i;j) € Sym(n + 1)

extend_restrict_perm_cancel:
Vn:{1...}. Vp:Sym(n).
p.f(n-1)=n-1¢& Nn
= T{n - 1}(restrict_perm(p;n - 1)) = p € Sym(n)

restrict_perm_using_txpose:
Vn:{1...}. Vp:Sym(n).
dq:Sym(n - 1)
Ji,j:Nn. p = txpose_perm(i;j) 0 T{n - 1}(g) &€ Sym(n)

where
extend_permf:

extend_permf(pf;n) == Ai.if (i =, n) then i else pf i fi

extend_perm:
T{n}(p) == mk_perm(extend_permf(p.f;n);extend_permf(p.b;n))

restrict_perm:
restrict_perm(p;n) == p

The extend_perm and restrict_perm definitions have the typing lemmas

extend_perm_wf:

Vn:N. Vp:Sym(n). T{n}(p) € Sym(n + 1)

restrict_perm_wf:
vn:N. Vp:Sym(n + 1).
p.fn=n¢€& N+ 1) = restrict_perm(p;n) € Sym(n)

From the sym_grp_is_swaps theorem, I proved a couple of useful induction
lemmas for permutations. One of them was:



114

perm_induction_a:
F Vn:N
vQ:Sym(n) — P
Qlid_perm()]
= (Vp:Sym(n). Qlp] = (Vi:{1..n7}. Q[txpose_perm(i;0) 0 pl))
= {Vp:Sym(n). Qpl}

I used this induction lemma to prove the invariance of the value of sums of elements
of abelian monoids under permutation of the order of the elements:

mon_itop_perm_invar:
Vg:IAbMonoid. Vn:N. VE:Nn — |gl|. Vp:Sym(n).
INg 0 < j <n. E[p.f j1] =IIg0 < j<n. E[J] € Igl

7.3 Permutation Relations

7.3.1 Defined using Permutation Functions

The definition of the permutation relation permr on lists says that two lists as and
bs are a permutation of each other if they are the same length and the forward
permutation function permutes the bs into the as. The definition was:

permr:
as =(T) bs
== (|lasl|| = Ilbsll) cA (Fp:Sym(llas||)
Vi:Nllas||. as[(p.f 1)] = bs[il)

where | |+| | is the length function for lists, and as[i] is the select function for
selecting the ith element from list as (counting the head of as as the 0th element).
The definitions of these functions were

length:
| las| |==r case as of [] => 0 | a::as’ => |las’|| + 1 esac

nth_t1:
nth_tl(n;as)
==r if n <z O then as else nth_tl(n - 1;tl(as)) fi

select:
1[i] == hd(nth_t1(i;1))

The notation cA is for a conditional and constructor. Its definition is the same as
the usual A of Nuprl’s type theory. However it is type checked slightly differently.
In particular, in order to prove P cA Q well-formed, one has to prove P well-formed,
and then only has to prove Q well-formed when P is assumed true. With P cA Q,
one has to prove Q well-formed irrespective of th truth of P. The ‘conditional and’
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is needed to guarantee that the index argument to the select functions are always
in range.

The theorems stating that permr is an equivalence relation followed immedi-
ately from the group properties of permutations.

permr_weakening:
VT:U. Vas,bs:T List. as = bs = (as =(T) bs)

permr_inversion:
VT:U. Vas,bs:T List. (bs =(T) as) = (as =(T) bs)

permr_transitivity:
VT:U. Vas,bs,cs:T List.
(as =(T) bs) = (bs =(T) ¢cs) = (as =(T) cs)

Given the permr relation, I immediately was able to restate the permutation
invariance theorem given at the end of the last section in terms of lists and the
generalized list product function IT.

mon_reduce_functionality_wrt_permr:
Vg:IAbMonoid. Vxs,ys:|gl List.
(xs =(lgl) ys) = II xs = II ys

A theorem involving permr that I needed for the factorization work was:

select_reject_permr:

VT:U. Vas:T List. Vi:N|las||. ((as[il::as\[i]) =(T) as)

where as\[1i] is the reject function for removing the ith element from the list
as and :: is the list cons constructor. I could have proved this by figuring out the
permutation function, but instead I chose to prove it using induction over the list
as and the lemmas:

cons_functionality_wrt_permr:
VT:U. Va,b:T. Vas,bs:T List.
a=b = (as =(T) bs) = ((a::as) =(T) (b::bs))

hd_two_swap_permr:
VT:U. Vas:T List. Va,a’:T. ((a::a’::as) =(T) (a’::a::as))

The first of these theorems was a little more work than I expected because the
permutation extension function I defined before worked on the ‘hi end’ of permu-
tations rather than the ‘lo end’: let p be the permutation that permutes a list bs
into the list as. Then, the permutation I used for permuting the list a: :bs into
the list a::as was

conj{=p{las| + 1}}(T{las|}(conj{=p{las|}}F(p)))
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where the conjugate permutation operator conj and the reverse permutation =
are defined as:

rev_permf(n) == Ai.(n - 1 - 1)

=p{n} == mk_perm(rev_permf(n);rev_permf(n))

conj{p}(q) == p 0 q 0 inv_perm(p)
With display forms that suppress parameters obvious from type-checking, this
permutation looks like:
conj{=p} (] (conj{=p}rp)))

A generalization of permr that was useful in the work on factorization in Chap-
ter 8 was permr_upto:
as = bs upto x,y.R[x; vyl

== (las| = |bsl) cA (Jp:Sym(lasl|). Vi:Nlas|. Rlas[(p.f 1)]; bs[ill)

where R[x; y] could be instantiated with some arbitrary equivalence relation. In
the factorization work, I instantiated R with the ‘associate’ relation in order to
define the relation ‘list as is a permutation of list bs up to associates’.

7.3.2 Defined Recursively

The recursive definition I used for the list permutation relation was:
as =; bs
==r case as of
[ => null(bs)
ar:as’ => a €, bs A, as’ =, bs \ a
esac
with typing lemma:
Vs:DSet. Vas,bs:|s| List. (as =, bs) € B

In this definition, €, was the list member function, and bs \ a was a function for
removing one occurrence of a from the list bs, simply returning bs if a was not a
member of bs. Their definitions were:

mem:
a €8s as == A, x(:lsl) € as. x =8 a
removel:
as \s a
==r case as of
1 => [
a’::as’ => if a’ =, 8 a
then as’
else a’::(as’ \s a)
fi

esac
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Note that the definitions of =, , \, and €, all take as an argument an element
of the discrete set class DSet, but that this argument is normally hidden by the
display forms I chose for these definitions. This argument supplies the computable
equality function that these definitions need.

Standard properties of the =, relation were proven by induction and the two
definitions were shown equivalent.

7.4 Technical Detalils

The definitions described in Section 7.2 exposed a couple of weaknesses of the
current Nuprl proof checking setup.

1. The match completion algorithm relies on being able to complete matches
by inferring types of already found bindings. Occasionally matches failed
because the algorithm couldn’t infer T in the type Perm(T) of expressions
such as:

inv_perm(id_perm) 0 id_perm

though T was inferable from the wider context in which such expressions
occurred. I completed such steps by explicitly supplying a binding for 7" to
the matcher, though I don’t consider this a solution. One solution would be
to add a type tag to id_perm, so that we would have the definition:

id_perm(T) == mk_perm(Id;Id)
and corresponding typing lemma:
VT:U. (id_perm(T) &€ Perm(T))

Subsequent to noting this example, I encountered several others of a similar
nature. A better long term solution would be to improve type inference so
that it can look at surrounding contexts of matches in order to find types
or to explore doing some automatic type-inference at term input time, and
having the system fill in type tag slots of term. The display of some of these
slots could be suppressed, so things would look the same as they do now.

2. Terms sometimes have well-formedness conditions that rely on predicates
being true that are not generally provable by the Auto tactic. For example,
the well-formedness lemma for mk_perm is:

F VvT:U. VE,b:T — T. InvFuns(T,T,f,b) = mk_perm(f;b) € Perm(T)
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The rewriter creates a functionality tactic for mk_perm from this lemma that
insists that the InvFuns predicate be checked every time the £ or b argument
to mk_perm is rewritten. I had examples where at stages before and after
a rewrite, it was trivial to check that mk perm well-formed because it was
buried inside another abstraction. However during rewrite, it was exposed
so I got the well-formedness antecedent to prove. It would be much cleaner
if issues of well-formedness were separated from rewriting when it’s known
that rewriting doesn’t affect well-formedness. However, this isn’t possible in
Nuprl’s present type theory.



Chapter 8

Divisibility Theory

Divisibility theory in algebra is commonly first presented abstractly in integral do-
mains, though much of the theory is only concerned with the multiplicative monoid
of non-zero elements. For example, results concerning the existence and unique-
ness of atomic factorizations and the properties of GCD’s can first be developed
over this multiplicative monoid.

A cancellation monoid with the property that every non-unit can be factored
essentially uniquely into atoms is called a unique-factorization monoid (UFM).
Essentially uniquely means up to permutations and associates. The monoid of
non-zero elements of a unique-factorization domain (UFD) is an example of a
UFM.

I present in this chapter my development of a theorem that characterizes when
a cancellation monoid is a UFM. I also show that the fundamental theorem of
arithmetic is an instance of this theorem.

The development drew on several other theories, most notably the basic theory
of permutations developed in Chapter 7.

8.1 Factorization in Monoids

8.1.1 Basic Definitions

The basic definitions for divisibility theory over an abelian monoid g were all very
straightforward:

bl aing == dc:lgl. a=>b *gc € Igl
g-unit(u) == u | eg in g
aplbing ==albing A (b | aing)

Symmetrize(x,y.R[x; y]l;a;b) == R[a; b] A R[b; al

119
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a ~{g} b == Symmetrize(x,y.x | y in g ;a;b)

Here, | is the divides relation, ~ is the associate relation and pl is the ‘properly
divides’ relation. The notation ~ is potentially ambiguous, since it is also used
to denote the group inverse. However, factorization in groups is trivial (every
element is a unit), so both uses of this symbol should never occur in one theorem.
In particular, all occurrences of the ~ symbol in this chapter denote the associate
relation defined above.

I showed that the divides relation is a preorder, and that the associate relation
is an equivalence relation. I proved the latter fact as an instance of a theorem that
stated that any symmetrized preorder is an equivalence relation.

All factorization theory over monoids is modulo associates; all the basic pred-
icates and functions respect the associate relation ~ and predicates concerning
equality lift to predicates concerning associates. For example, | showed that the
monoid operation * respects the associate relation ~ and that cancellation with
respect to equality implies cancellation with respect to ~:

grp_op_ap2_functionality_wrt_massoc:
Vg:IAbMonoid. Va,a’,b,b’:|gl.
a~Db=a ~Db = a*xa ~Dbx*xDb’

massoc_cancel:
Vg:IAbMonoid
Cancel(lgl;lgl;*) = (Va,b,c:lgl. a*b ~a*xc=Db~ c)

Other definitions I needed were for reducibility, atomicity (irreducibility) and
primeness. For convenience I defined both types and predicates for atomicity and
primeness.

IsPrime{g}(a)
== —g-unit(a)
A (Vb,c:lgl.
alb*gcing = albing Valcing)

Prime{g} == {x:lgl| IsPrime{g}r(x)}

Reducible{g}(a)
== Jb,c:lgl. —g-unit(b) A —g-unit(c) A a =b *g c € gl

Atomic{g}(a) == —g-unit(a) A —Reducible{g}(a)
Atom{g} == {a:lgl| Atomic{g}(ad}

A choice in making these definitions concerned reducibility and atomicity. I first
defined reducibility so that if an element of Igl were composite, then two proper
factors would be witnessed. Then I defined atomicity in terms of compositeness.
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Note that whereas Atomic has no computational content and so can always be
unhidden when it occurs in the Atom type, the Prime predicate does have significant
computational content.

From these definitions I proved various facts such as that every prime is an
atom in a cancellation monoid:

mprime_imp_matomic:
Vg:IAbMonoid
Cancel(lgl;lgl;*g)
= (Va:lgl. Prime{g}(a) = Atomic{g}(a))

The notions of of primeness and atomicity are equivalent in UFM’s (the non-
zero integers under multiplication, for example), but are not equivalent in general.
For example, consider the set of complex numbers of form a + by/—5 with ¢ and b
drawn from the integers and both not equal to zero. This set forms a cancellation
monoid under normal multiplication. In this monoid, 9 has two factorizations:
3-3 and (2 4+ /—5)(2 — vV/=5). Each of the factors is atomic, but none are prime
([JacT4], p136).

8.1.2 Existence Theorem

The main existence theorem I proved stated that in any cancellation monoid, if
the ‘properly divides’ relation is well-founded and if reducibility is constructively
decidable ', then every non-unit factors into atomic elements. The statement of
this theorem in Nuprl was

mfact_exists:
Vg:IAbMonoid
Cancel(lgl;lgl;*)
= WellFnd(lgl;x,y.x pl v )
= (Vc:lgl. Dec(Reducible(c)))
= (Vb:lgl. ng-unit(b) = (Jas:Atom{g} List. b = IT as))

where the WellFnd predicate was defined as:

WellFnd(A;x,y.R[x; y1)
== VP:A — P
(Vj:A. (Vk:A. R[k; j1 = Plk]) = P[j1) = {Vn:A. P[nl}

In classical mathematics, this predicate is equivalent to the statements that there
are no infinite descending chains, and that every subset has a minimal element.
Constructively, all three statements are inequivalent; the one above is the strongest.
It is not implied by either of the other two. The advantage of the one above is

T explain what I mean by constructively decidable in Section 5.2.5
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that provides a means of doing a constructive well-founded induction in the proof
of the theorem.

An abbreviated proof printout for the theorem is shown in Figure 8.1.

The abbreviated proof is presented in a style very similar to that in which
Nuprl proofs are normally presented:

At BY, one or more inference steps are explained which refine the goal imme-
diately above the BY into zero or more subgoals below the BY. For compactness,
the proot only shows those parts of the sequent that have been changed by the
refinement. The printout starts after a trivial initial step that uses the RepD tactic.
I have described each refinement in English, so hopefully the proof can be read
without further explanation.

The full proof when printed out is less than two pages long, but the formal tactic
language makes it less accessible. It can be found in Section A.1 of Appendix A.

A trivial corollary did away with the restriction about non-units, providing that
being a unit was decidable.

mfact_exists_a:
Vg:IAbMonoid
Cancel(lgl;lgl;*)
= WellFnd(lgl;x,y.x pl y)
= (Vc:lgl. Dec(Reducible(c)))
= (Vc:lgl. Dec(g-unit(c)))
= (Vb:lgl. Jas:Atom{g} List. b ~ II as)

The mfact_exists and mfact_exists_a theorems have the classic V3 structure of
theorems with interesting computational content; read constructively, the theo-
rem claims that given a monoid that satisfies all the preconditions, and given an
arbitrary element b of that monoid, a factorization into atomic elements can be
computed.

8.1.3 Uniqueness Theorem

The main uniqueness theorem I proved stated that in any cancellation monoid, if
the ‘divides’ relation is constructively decidable, then every element of the monoid
factors into primes in an essentially unique way. The statement of this theorem in
Nuprl was

unique_mfact:
Vg:IAbMonoid
Cancel(lgl;lgl;*)
= (Va,b:lgl. Dec(a | b))
= (Vps,qs:Prime(g) List. II ps ~ II qs = ps = gs upto ~)
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1. g: IAbMonoid
2. Cancel(lgl;lgl;*)

3. WellFnd(lgl;x,y.x pl y)

4. Vec:lgl. Dec(Reducible(c))

5. b: Igl

6. - (g-unit(b))

i— Jas:Atom{g} List. b = II as

fY Induction on b using hyp 3.

5. 5: lgl

6. Vk:lgl. kX pl j = —(g-unit(k)) = (Jas:Atom{g} List. k = II as)
7. =(g-unit(j))

F das:Atom{g} List. j = II as

BY Decide if j s atomic or reducible.
8. Reducible(j)

fY Hyp 8 implies that j has two proper divisors: b and c.
8. b: Igl

9. c: gl

10. —(g-unit(b))

11. = (g-unit(c))

12. j =b * ¢

13. b pl j

14. ¢ pl j

!

BY Apply hyp 6 to b and c

156. as1: Atom{gl} List

16. b = II asi

17. as2: Atom{g} List

18. ¢ = II as2

BY Use ’(asl @ as2)’ for as in concl.

Conel then follows by hyps 12, 16 and 18.

8. —Reducible(j)

BY Use ’j::[1? for as in concl and then concl is obvious.

Figure 8.1: Abbreviated Proof of Existence of Atomic Factorizations
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Here, the notation ‘ps = gqs upto ~’isfor a ‘permutation and associates’ relation.
It can be read as saying “ps is equal to qs up to permutations and associates.” Its
two-stage definition was:

permr_upto:
as = bs upto x,y.R[x; y]
== (|lasl|| = Ilbsll) cA (Fp:Sym(llas||)
Vi:Nllasl|. R[as[(p.f 1)]; bs[ill)

permr_massoc:
as = bs upto ~{g} == as = bs upto x,y.x ~{g} ¥y

An abbreviated proof of the theorem is shown in Figure 8.2. The full proof
printout is less than 3 pages long and can be found in full in Section A.2 of
Appendix A.

One of the more interesting steps in the full proof is reproduced in Figure 8.3.
This corresponds to the penultimate step of the abbreviated proof. The lemma
referred to is

select_reject_permr:

VT:U. Vas:T List. Vi:N|las||. ((as[il::as\[i]) =(T) as)

In order to rewrite the conclusion, the rewriter looked up a lemma, verifying that
the = upto relation respected the permutation relation =(lgl). Also, in order to
rewrite the hypothesis that moved to the end of the hypothesis list, the rewriter
checked that the IT (g) respected the permutation relation; specifically, it checked
that g was abelian.

8.1.4 TUnique Factorization Monoid Existence

I present here a summarizing theorem that I proved that gives conditions for when
a cancellation monoid is a UFM. First, I give a few definitions. A uniquely satisfies
up to predicate was defined as

uni_sat_upto:
ar 'x:T. Qlx] == Q[al] A (Va’:T. Q[a’] = a’ [r] a)

Given a type T, an equivalence relation r on T, and an element a of type T, the
expression ‘a r 'x:T. Q[x]’ can be read as “upto r, a is the unique x of type T
such that Q[x] holds”.

An exists unique up to predicate was defined in terms of the ‘uniquely satisfies
up to” predicate as:

exists_uni_upto:
(r)3a'x:T. Q[x] == Fa:T. a r 'x:T. Q[x]
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'
B

1. g: IAbMonoid

2. Cancel(lgl;lgl;*)
3.
4
l_

Va,b:|gl. Dec(a | b)

. ps: Prime(g) List

Vqs:Prime(g) List. II ps ~ Il gs = ps = gs upto ~

Y Lust induction on ps.

5. gs: Prime(g) List

6. e ~ II gs

F [1 = gs upto ~

BY hyp 6 says that IT qs s a unit. This can only happen if q = []

5. p: Prime(g)

6. ps’: Prime(g) List

7. Vqs:Prime(g) List. II ps’ ~ II qs = ps’ = gs upto ~
8. gs: Prime(g) List

9. p* II ps’ ~ II gs

l_

p::ps’ = gs upto ~
BY Hyp 9 wmplies that p divides II gs
Since p 1s prime, p divides an element 1 of gs.

10. i: NJlgsl|
11. p | gs[i]

BY Since p non-unit and qs[i] atomic, hyp 11 can be strengthened.
11. p ~ gs[i]

BY Move hyp 9 to end of hyps to put in scope of 1i.
Bring qs[i] to front of qs in moved hyp 9 and conel.

9. i: N|lgsl|
10. p ~ gs[i]
11. p * IT ps’ ~ qs[i] * IT gs\[i]

i— p::ps’ = gs[il::gs\[i] upto ~

BY Decompose :: n concl and apply cancellation hyp 2 to hyp 11.

!
11. II ps’ ~ II gs\[i]

F ps’ = gs\[i] upto ~

BY Concl follows from hyp 11 using induction hyp 7.

Figure 8.2: Abbreviated proof of Uniqueness of Prime Factorizations
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10.

1. g: IAbMonoid

2. Cancel(lgl;lgl;*)

3. Va,b:lgl. Dec(a | b)
4. ps: Prime(g) List

5.
6
7
8
9

p: Prime(g)

. ps’: Prime(g) List
. Vqs:Prime(g) List. II(g) ps’ ~qg} II(g) gqs = ps’ = gs upto ~{g}
. gs: Prime(g) List

. p *xg II(g) ps’ ~{g} II(g) gs

i: Nllgsll|

11. p ~{g} gslil
F p::ps’ = gs upto ~{g}

!

BY MoveToEnd 9

9.

THEN (OnMCls [0;-1] (RWH (IfIsC [gsl
(RevLemmaWithC [¢i’,lil] ‘select_reject_permr€))) ..
THEN AbReduce (-1)

i: Nllgs||

10. p ~{g} gslil
11. p *g II(g) ps’ ~Ag} qsl[i] *g IT(g) qs\[il]
F p::ps’ = qsli]::qs\[i] upto ~{g}

Figure 8.3: Step in Proof of Uniqueness of Prime Factorizations

.a)
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Given a type T and an equivalence relation r on T, the expression (r)3!x:T. Q[x]
can be read as “upto r, there exists a unique x of type T such that Q[x] holds”.

A UFM predicate was defined as

IsUFM(g)
== Vb:lgl. = (g-unit(b)) = (=~)3Ilas:Atom{g} List. (b = IT as)

Here, the =~ notation denotes the ‘permutation and associates’ relation on g. So
this definition can be read as “g is a unique factorization monoid, just when every
non-unit can be factored uniquely (up to permutations and associates) into atomic
elements”.

The previous two theorems about the existence and uniqueness of factorizations
were then combined into the single theorem:

ufm_char:

Vg:IAbMonoid
Cancel(lgl;lgl;*g)
= WellFnd(lgl;x,y.x pl y in g )
= (Va:Atom{g}. IsPrime{g}(a))
= (Va:lgl. Dec(Reducible{g}(a)))
= (Va,b:lgl. Dec(a | b in g ))
= IsUFM(g)

8.1.5 The Fundamental Theorem of Arithmetic

The fundamental theorem of arithmetic essentially says that the monoid of the
positive integers under multiplication form a UFM. With the definition of the
multiplicative monoid of positive integers:

<Z7F, x>

== <N*, Xx,y.(x =, y), Xx,y.x <z y, Ax,y.x * y, 1, Ax.x>

and a set of lemmas, verifying that <Z*,*> satisfied all the preconditions of the
ufm_char lemma in the previous section, I established the theorem:

IsUFM(KZ™T,*>)



Chapter 9

Finite Sets and Finite Multisets

9.1 Introduction

The work described in the this chapter was done with several aims in mind:

1. To explore the view of algebraic class definitions as abstract-data-type (ADT)
specifications, and of inhabitants of these classes as implementations of the
specifications. In particular, I wanted to explore the properties of free alge-
braic class definitions.

This work served as a foundation for the much larger case study on ADT
specification and implementation described in Chapter 10.

2. To investigate the abstracting properties of Nuprl’s equality-quotienting type.

3. To develop a library of definitions and theorems covering constructive finite
sets and multisets. By constructive here, I mean that all sets and multisets
have a concrete representation, and all the primary functions and predicates
are computable.

This library was put to use in characterizing the ADT implementations de-
veloped in Chapter 10. Note that this use was quite distinct from the use
described above.

The particular algebraic class studied in this chapter as an ADT specification,
is that of free abelian monoids over a set. All elements of this class are isomorphic,
and so in mathematics one usually talks of the free abelian monoid on some set
s. However, instances of this class can be constructed in quite different ways and
have different computational characteristics. The implementation described here is
based on using lists of elements of s with the order of elements in the lists ignored.
A second implementation was produced in the work on polynomials described
in Chapter 10. This implementation was based on association lists (a-lists) and
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assumed that the set s was linearly ordered. It allowed multiset operations such
as union and intersection to be computed in O(n) time as oppose to in O(n?) time
for the list implementation here.

9.2 Definition of Free Abelian Monoid Class

The abstract characterization of being a free abelian monoid says that a monoid
M = (M, *,¢e) is a free abelian monoid over a set S if there is an mapping ¢ of S
into M, such that for any abelian monoid M’ and mapping ¢ of S into M’, there
is a unique abelian monoid homomorphism qAﬁ from M to M’ which satisfies the
equation ¢ = q; o «. This equation can be stated pictorially by saying for each M’
and ¢ there is a unique qAﬁ such that the following diagram commutes:

M.

This property of a free abelian monoid is a paradigmatic example of a universal
property. Such properties are extensively studied in algebra, universal algebra and
category theory.

The class definition that I used for free abelian monoids is shown in Figure 9.1.
This definition captures the requirement that there is an appropriate mapping
into any abelian monoid by insisting that a function be supplied that generates
this mapping. Such a function is useful for building a variety of more specific
functions.

Auxiliary definitions used in the definition of FAbMon are:

MonHom(M1,M2) == {f:(|M1|] — |M2|)| monoid_hom_p(M1;M2;f)}

monoid_hom_p(M1;M2;f) == fun_thru_2op(|M1];|M2]|;M1l.0p;M2.0p;L)
A ((£f M1.id) = M2.id € |M2])

{'x:T | P[x1} == {x:TI (P[x] A (Vy:T. Ply] = (y=x € TN}

FAbMon is an example of a class definition that is parameterized by an element of
another class (DSet in this case).

To exercise this definition, I proved the uniqueness of instances of this class up
to isomorphism:

F VS:DSet
VM, N:FAbMon (S)
3f :MonHom(M.mon,N.mon) .
Jdg:MonHom(N.mon,M.mon) . InvFuns(|M.mon|;|N.mon|;f;g)
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Class Declaration for: FAbMon(S)

Long Name: free_abmonoid
Short Name: free_abmon

Parameters:
S : DSet

Fields:
mon : AbMon
inj : IS| — |monl]
umap : mon’:AbMon
— £2:(IS| — Imon’|)
— {!g:MonHom(mon,mon’) | g o inj
= £’
€ ISl — |mon’ |}

Universe: U’

Figure 9.1: Class of Free Abelian Monoids

Note the constructive content of this theorem; the content is a computable func-
tion that given any free abelian monoids M and N, can come up with the monoid
homomorphisms that shows that the monoids are isomorphic. This theorem is
only provable constructively because the class definition for free abelian monoids
requires this universal mapping function to be supplied.

This theorem indicates the genericity of any implementation of the class; it a
function is definable on one implementation of the class, then the mapping func-
tions can be used to construct an equivalent function on any other implementa-
tion. In theory, this might be a very handy feature; some functions are much more
easily defined on one implementation than another. In practice, the translation
back-and-forth might not be too efficient.

9.3 Implementation of Free Abelian Monoid

Here I show an implementation of the free abelian monoid class over a set S that
uses lists of elements of S as the monoid carrier. One of the main purposes of this
example is to illustrate the usefulness of Nuprl’s quotient type.

As explained earlier, my approach to building classes in Nuprl hinges on being
able to use the quotient type to build carrier types with appropriate associated
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equality relations. I also discuss limitations of the current quotient type and di-
rections in which it needs to be improved.
Incidentally, this example also proves that free abelian monoids exist.

9.3.1 Sketch of Implementation

Ignoring typing and verification issues, the construction of an implementation
based on lists was rather straightforward. In order to have a computable equality
relation on the carrier of the free abelian monoid be computable, I needed the
generating set to be some element s of the DSet class rather than just a type in
universe U. The monoid was formed using lists over |s| for the monoid carrier, list
append @ for the binary monoid operation, and the empty list [] for the monoid
unit. For the boolean-valued function computing whether two lists were equal
when considered as multisets, [ used the bpermr function from the list_2 theory.
bpermr{s}(as,bs) returns tt just when the list as is a permutation of the list bs.

The injection of an element a of |s| into the monoid was the singleton list
a::[]. Using the mon_for summation function, the universal mapping function
was defined as:

Am,f,y.For{lsl,m} z € y. £ z

9.3.2 Definitions

Here are the actual definitions, their typing lemmas, and comments on how relevant
properties about them were proved.
The definition and well-formedness lemma for the multiset type were:

*A mset MSet{s} == as,bs:(|s| List)//(as =(l|sl|) bs)
*T mset_wf Vs:DSet. MSet{s} € U

The =(Is|) relation is the permr ‘are related by permutation’ relation from the
perms_2 theory and the // operation is Nuprl’s type-quotienting operation.

The very first issue I came across in using this type was how to deal with its
inclusion properties. I proved the lemma:

*T mset_qginc Vs:DSet. (Is| List) C MSet{s}

Here the differences between type theory and set theory really became apparent.
In Nuprl’s type theory, to prove A C B (defined as Vx:A. x € B) one must not
only show that every element of A is also an element of B, but also that if two
elements are equal elements of A they are also equal elements of B. The lemma
mset_qginc is provable partly because two lists that are considered equal as lists,
are also related by a permutation (the identity permutation).
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It and when proper subtyping predicates are added to Nuprl’s type theory, it
probably make sense to introduce two: one for when the equalities are the same
but the elements might differ and the other for when the elements are the same but
the equalities differ. One interesting question is whether suitable rules in Nuprl’s
type theory could be devised that cleanly make this distinction apparent. Having
equality reasoning ‘built-in’ to the type theory might make things rather awkward.

[ set up the Inclusion tactic (and hence the Auto tactic) to automatically look
for and apply quotient inclusion lemmas such as mset_ginc above.

Since the computation language of Nuprl is intrinsically untyped, I found myself
often unsure in the middle of a proof whether I was thinking of some term as a
list or a multiset. Conceptually, I found it helpful to think of the MSet{s} type
as more abstract than the |s| List type and where possible I introduced extra
definitions that made this abstraction more explicit. As I explain in Section 9.3.5,
I also introduced a set of rewrite lemmas for shifting around the position in a term
where this abstraction is considered to be made.

The first definition I introduced was a function injecting lists into multisets:

*A mk_mset mk_mset(as) == as
*T mk_mset_wf Vs:DSet. Vas:|s| List. mk_mset(as) € MSet{s}

I considered this function an ‘encapsulation function’; it took lists, ordered se-
quences of elements over some type as input, and returned as output multisets of
these elements, collections in which the order of elements was effectively hidden.
Note that in Nuprl’s type theory, it is not always possible to type a function that
opens up multisets represented as lists, and returns the underlying lists. Nuprl
requires all functions to respect the equalities of their domain and range types.
An ‘opening up’ function would have to map lists thought of as equal multisets,
to equal lists. Such a function could only be constructively defined if extra struc-
ture were assumed of the type of elements of the lists. For example, if the type
were linearly ordered, then a sorting function would make a suitable ‘opening up’
function.

I used the mk_mset definition in defining the injection function from |s| into
DSet:

*A mset_inj mset_inj{s}(x) == mk_mset(x::[])
*T mset_inj_wf Vs:DSet. Vx:|s|. mset_inj{s}(x) € MSet{s}

I gave the mset_inj abstraction an extra parameter s to indicate the type of the
multiset being injected into. This made sure that the type of mset_inj was inferable
when needed. Perhaps this wasn’t strictly necessary since the type could have been
inferred from the type of x. However, there had been similar times in previous
proofs when type inference had failed because the inferred type of x was say Z rather
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than |<Z,Ax,y.x =z y>|. The type inference function didn’t know enough to
convert a raw type into an appropriate element of the DSet class. To be consistent,
I probably should have also given mk_mset an extra similar parameter.

The null multiset, multiset sum and multiset equality were defined as:

*A null_mset 0{s} == [1

*T null_mset_wf Vs:DSet. 0{s} € MSet{s}

*A mset_sum a+b==a@hb

*T mset_sum_wf Vs:DSet. Va,b:MSet{s}. a + b &€ MSet{s}

In Figure 9.2, T show the proof of mset_sum_wf because it illustrates the form of
some the basic Nuprl rules for dealing with quotient types. The D 3 and D
2 tactics invoke the decomposition rule for quotient types in the hypothesis list.
This rule is rather specialized in comparison with other hypothesis decomposition
rules in that it requires the conclusion to be of a certain form, namely that it is an
equality term. The rule turned out to be adequate for this multiset theory. The
EqTypeCD tactic invokes the decomposition rule for the quotient type being the type
of an equality in the conclusion. RelArgCD is a generalization of the EqCD tactic;
it refines a goal involving an equivalence relation in the conclusion over two terms
with same outermost constructor, to relations between the immediate subterms of
the equivalence relation. In this case, the relations between the subterms follow
immediately from the hyps 4 and 7.

[introduced a new variant on For for summing over multisets rather than lists:

*A mset_for
msFor{s,m} x € a. f[x] == For{ls|,m} x € a. f[x]

*T mset_for_wf
Vs:DSet. Vg:IAbMonoid. Vf:|s| — |gl|. Va:MSet{s}.
msFor{s,g} x € a. f[x] € Igl

The proof of the mset for wf lemma was straightforward and is shown in Fig-
ure 9.3. Here as elsewhere, [ had already done all the harder work of showing
functionality of various operators with respect to permr, so things look perhaps
deceptively simple.

An interesting feature of the mset_for_wf lemma is that it requires g to be an
abelian monoid. This lemma is unprovable, if g is merely required to be an element
of the GrpSig class that IAbMonoid is derived from. This fact can easily be seen by
considering the last step of the proof shown in Figure 9.3; the summation value is
only invariant under permutation of the list being summed over when g at least
has the properties of an abelian monoid.



134

F Vs:DSet. Va,b:MSet{s}. a + b € MSet{s}
BY Unfold ‘mset_sum‘ O
THEN (UnivCD ...a)

1. s: DSet

2. a: MSet{s}

3. b: MSet{s}

F a @b & MSet{s}

BY Unfold ‘member‘ O
Fa@b=a@b & MSet{s}

BY (New [‘b1’;‘b2’] (D 3) ...a)

3. bl: Is| List
4, b2: |sl| List
5. b1 =(Isl) b2
Fa @bl =a@b2 & MSet{s}
B

Y (New [‘a1’;‘a2’] (D 2) ...a)

}
2. bl: |s| List
3. b2: |s| List
4. b1 =(Isl) b2
5. al: |s| List
6. a2: |s| List
7. a1l =(ls|) a2
i— al @ bl = a2 @ b2 € MSet{s}
B

Y (EqTypeCD ...a)

}
i— (a1 @ b1) =(lsl) (a2 @ b2)
BY (RelArgCD ...)

Figure 9.2: Proof of mset_sum_wf Lemma
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F Vs:DSet. Vg:IAbMonoid. Vf:|s| — |gl. Va:MSet{s}.
msFor{s,g} x € a. flx] € lIgl

BY (UnivCD ...a)

1. s: DSet

2. g: IAblMonoid

3. f: |zl — gl

4. a: MSet{s}

r msFor{s,g} x € a. f[x] € Igl
BY Unfolds ¢ ‘member mset_for‘‘ 0
THEN (D 4 ...a)

4. al: |s| List

5. a2: |s| List

6. al =(Isl) a2

F (For{lsl,g}t x € al. f[x]) = (For{lsl,g} x € a2. f[x]) € Igl
!

B

Y (RWH (HypC 6) 0 ...)

Figure 9.3: Proof of mset_for_wf Lemma

9.3.3 Constructing a monoid of multisets

I generated lemmas showing some of the expected properties of the multiset oper-

ators:
*T mset_sum_comm Vs:DSet. Comm(MSet{s};\a,b.a + b)
*T mset_sum_assoc Vs:DSet. Assoc(MSet{s};Aa,b.a + b)

*T assert_of_eq_mset
Vs:DSet. Va,b:MSet{s}. Teq_mset{s}(a,b) <= a = b € MSet{s}

and then gave the construction of the multiset monoid:

*A mset_mon

mset_mon{s}

== <MSet{s}
, AX,y.eq_mset{s}(x,y)
, AX,y.tt
, AX,y.X + ¥
, 0{s}
, AX.X>

*T mset_mon_wf Vs:DSet. mset_mon{s} € AbMonoid
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The proof of mset mon_wf was straightforward; I either referred back to one of the
property lemmas as above or proved the property on the spot.

9.3.4 Evaluating the multiset summation function

Here I describe a rewrite conversion I put together for symbolically evaluating
expressions involving msFor when it is the domain of some multiset expression:
specifically when it is either a sum of two multisets, a singleton multiset or the
null multiset. The lemmas involved were:

*T mset_for_mset_sum
Vs:DSet. Vg:IAbMonoid. Vf:|s| — Igl. Va,b:MSet{s}.
msFor{s,g} x € a + b. f[x]
= (msFor{s,g} x € a. flx]) *g (msFor{s,g} x € b. f[x])
€ lgl

*T mset_for_mset_inj
Vs:DSet. Vg:IAbMonoid. Vf:Is| — |gl. Vu:lsl.
msFor{s,g} x € mset_inj{s}(u). £[x] = f[u] € Igl

Rewrite conversions for the null multiset and for normalizing expressions involving
mset_for were defined by the ML object:

*M mset_for_eval
let mset_for_null_msetC =
MacroC ‘mset_for_null_msetC®
(EvalC ‘‘mset_for null_mset‘*)
'msFor{s,g} x € 0{s}. f[x]’
IdC
'g.id’

)

let mset_for_normC =
TryC (SweepDnC
(mset_for_null_msetC
ORELSEC LemmaC ‘mset_for_mset_sum®
ORELSEC LemmaC ‘mset_for_mset_inj‘))

It might help here to use some general mathematical notation to describe the rules.
Assuming + is multiset sum, {u} is a singleton multiset, } is the empty multiset,

and that msFor is summing over a multiplicative monoid, the mset for normC
implements the rewrite rules:

IIn -1

€
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II fo — fu

ze{u}
II fo = IIfxIlf
rCatb r€a rEh

Examples of the use of mset_for normC can be found in the proof of the
mset _fmon_wf theorem given in Section 9.3.6.

9.3.5 Multiset elimination

Here I describe a rewrite conversion [ constructed for converting an expression
or proposition involving the MSet type and operators over multisets into one in-
volving lists and the underlying list operations. The lemmas and MacroC atomic
conversions involved are as follows:

*T all_mset_elim
Vs:DSet. VF:MSet{s} — P.
(Va:MSet{s}. SqStable(F[al))
= ((Va:MSet{s}. F[al) <= (Va:ls| List. F[mk_mset(a)]))

*T equal_mset_elim
Vs:DSet. Vas,bs:|s| List.
mk_mset(as) = mk_mset(bs) € MSet{s} «— (as =(ls|) bs)

*M mset_elim_1
let null_mset_elimC = SimpleMacroC ‘null_mset_elimC*
lo{s} mk_mset([1)! ‘null_mset mk_mset‘‘;;

let mset_inj_elimC = SimpleMacroC ‘mset_inj_elimC*
mset_inj{s}(x)! mk_mset(x::[1)] ‘‘mset_inj mk_mset‘‘;;

let mset_sum_elimC = SimpleMacroC ‘mset_sum_elimC*
mk_mset(as) + mk_mset(bs)! [mk_mset(as @ bs)!
‘‘mset_sum mk_mset‘‘ ;;

*T mset_mon_for_elim
Vs:DSet. VT:U. Vf:T — |sl| List. Vas:T List.
(For{T,mset_mon{s}} x € as. mk_mset(f[x]))
= mk_mset(For{T,lapp_mon(s)} x € as. f[x])
€ MSetq{s}
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*M mset_elim_2
let mset_for_elimC = SimpleMacroC ‘mset_for_elimC*
(msFor{s,g} x € mk_mset(as). F[x]!
[For{ls| .8 X € as. F[x]! ‘‘mset_for mk_mset‘‘ ;;

let raise_mk_msetC =
FirstC
[null_mset_elimC;mset_inj_elimC;mset_sum_elimC;mset_for_
elimC] ;;

let mset_elimC =
TryC (SweepDnC (LemmaC ‘all_mset_elim‘))
ANDTHENC TryC (SweepUpC raise_mk_msetC)
ANDTHENC TryC (HigherC (LemmaC ‘mset_mon_for_elim‘))
ANDTHENC TryC (HigherC (LemmaC ‘equal_mset_elim‘))

)

The lappmon(s) monoid in mset mon for _elim is the monoid of lists over |s|
with the empty list [] as the unit and @ as the binary operator.
Note the following pattern of behavior in the various atomic rewrite rules:

1. the LemmaC ‘all_mset_elim‘, null_mset_elimC and mset_inj_elimC intro-
duce mk_mset terms,

2. the mset_sum_elimC and LemmaC mset_mon_for_elim raise mk_mset terms up-
wards in term trees,

3. LemmaC ‘equal_mset_elim‘ and mset_for_elimC absorb mk_mset terms.

This pattern motivates the order in which the rewrite rules were assembled into
one conversion.
The mset_elimC conversion was used in the proof a couple of theorems:

*T dist_hom_over_mset_for
Vs:DSet. Vm,n:IAbMonoid. Vf:MonHom(m,n). Va:MSet{s}.
Vg:lsl — Iml.
f (msFor{s,m} x € a. glx])
= msFor{s,n} x € a. £ glx]
€ Inl

*T mset_fact
Vs:DSet. Va:MSet{s}.
a = msFor{s,mset_mon{s}} x € a. mset_inj{s}(x) € MSet{s}
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F Vs:DSet. Vm,n:IAbMonoid. Vf:MonHom(m,n). Va:MSet{s}.
Vg:lsl — Iml.
f (msFor{s,m} x € a. glx]) = msFor{s,n} x € a. £ glx] € Inl

BY (RepeatMFor 4 (D 0) ...a)

1 : DSet

2 IAbMonoid

3 IAbMonoid

4, f: MonHom(m,n)

T Va:MSet{s}. Vg:ls| — Iml.
B

H B B n

f (msFor{s,m} x € a. glx]) = msFor{s,n} x € a. £ glx] € Inl
Y (RW mset_elimC O ...a)

'

F Va:ls| List. Vg:Ils|l — [m].

l f (For{lsl,m} x € a. glx]) = (For{lsl|,n} x € a. f glx]) € Inl
B

Y (Backchain ‘‘dist_hom_over_mon_for‘‘ ...)

Figure 9.4: Proof of dist_hom_over_mset_for Lemma

F Vs:DSet. Va:MSet{s}.
a = msFor{s,mset_mon{s}} x € a. mset_inj{s}(x) € MSet{s}

BY (DO ...a)

1. s: DSet
F Va:MSet{s}
a = msFor{s,mset_mon{s}} x € a. mset_inj{s}(x) € MSet{s}

BY (RW mset_elimC O ...a)

!

F Va:ls| List. (a =(lsl|) (For{ls|,lapp_mon(s)} x € a. (x::[1)))

BY (DO ...a)
THEN (StrengthenRel THENM BLemma ‘lapp_fact‘ ...)

Figure 9.5: Proof of mset_fact Lemma
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The proofs of these theorems are given in Figure 9.4 and Figure 9.5. These
proofs used the following lemmas from the 1ist_2 theory:

*T lapp_fact
Vs:DSet. Vas:|s| List.
as = (For{lsl|,lapp_mon(s)} x € as. (x::[])) € Is| List

*T dist_hom_over_mon_for
VT:U. Vm,n:IMonoid. Vf:MonHom(m,n). Va:T List. Vg:T — Im].
f (For{T,m} x € a. glx]) = (For{T,n} x € a. £ glx]) € Inl

9.3.6 The main theorem

The definition of the free abelian monoid tuple of multiset functions, and the
theorem that states that this tuple really is a free abelian monoid were

*A mset_fmon
mset_fmon(s)
== <mset_mon{s}
, Ax.mset_inj{s}(x)
, Am,f,y.msFor{s,m} z € y. £ z>

*T mset_fmon_wf Vs:DSet. mset_fmon(s) &€ FAbMon(s)

The proof of the mset_mon_wf theorem is shown in Figure 9.6 to Figure 9.9. 1
have included comments at most of the steps to explain what’s going on.

9.4 Finite Multisets

As in the previous section, most of the functions here were first defined on lists,
and then characterized as having a multiset type.
The relevant list functions had the typed definitions:

diff:
Vs:DSet. Vas,bs:|s| List.
(as -s bs)
= case bs of [] => as | b::bs’ => (as \s b) -s bs’ esac
€ Is| List
Imax:

Vs:DSet. Vas,bs:|s| List.
Imax(s;as;bs) = (as -s bs) @ bs € |s| List

Imin:
Vs:DSet. Vas,bs:|s| List.
Imin(s;as;bs) = (as -s (as -s bs)) € |s| List
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F Vs:DSet. mset_fmon(s) € FAblMon(s)
BY % Open definitions and let Auto rip %
(Unfolds ¢ ‘mset_fmon free_abmonoid‘‘ 0 ...)
% Only non-trivial goals to check wmvolve the umap %

s: DSet

m: AbMonoid

f: sl — Iml

(Ay.msFor{s,m} z € y. £ z) € {!g:MonHom(mset_mon{s},m)
g o (Ax.mset_inj{s}(x))
= £
€ Isl — Iml}

T w N

BY % Open up unique set concl type %
(MemTypeCD ...)
M (Ay.msFor{s,m} z € y. £ z) € MonHom(mset_mon{s},m)

BY % Check umap is a homomorphism %

M (Ay.msFor{s,m} z € y. £ z) o (Ax.mset_inj{s}(x)) = £ € [s| — |m]|

BY % Check commutativity of umap triangle %

“» 4. y: MonHom(mset_mon{s},m)
5. y o (Ax.mset_inj{s}(x)) = £ € Is|l — Iml
Fy= (Ay.msFor{s,m} z € y. £ z) € MonHom(mset_mon{s},m)

BY % Check uniqueness of umap %

!

Figure 9.6: Proof of mset fmon_wf Theorem: Top Part
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F (Ay.msFor{s,m} z € y. £ z) € MonHom(mset_mon{s},m)
BY % Check umap is a homomorphism %

(MemTypeCD ...)
THEN AbEval ¢ ‘monoid_hom_p fun_thru_20p‘‘¢ 0
THEN (GenUnivCD ...a)

4. al: MSet{s}

5. a2: MSet{s}

F (msFor{s,m} z € a1l + a2. f z)
= (msFor{s,m} z € al. f z) m.op (msFor{s,m} z € a2. f z)
€ Iml

BY (RW mset_for_normC 0 ...)

- (msFor{s,m} z € 0{s}. £ z) = m.id € Iml|

BY (RW mset_for_normC O ...)

Figure 9.7: Proof of mset_fmon_wf Theorem: umap hom Part

F (Ay.msFor{s,m} z € y. £ 2) o (Ax.mset_inj{s}(x)) = £ € |s| — |m|
BY % Check commutativity of umap triangle %
(Ext ...a) THEN AbReduce O

4. x: |sl
F (msFor{s,m} z € mset_inj{s}(x). £ z) = f x € |m]|

!

BY (RW mset_for_normC 0 ...)

Figure 9.8: Proof of mset_fmon_wf Theorem: umap comm Part
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i y = (Ay.msFor{s,m} z € y. £ z) € MonHom(mset_mon{s},m)
LY % Check uniqueness of umap %

l RenameVar ‘g’ 4 % fix name to avoid confusion %

4. g: MonHom(mset_mon{s},m)

5. g

o (Ax.mset_inj{s}(x)) = f € Is|l — |ml
F g = (Ay.msFor{s,m} z € y. £ z) € MonHom(mset_mon{s},m)

LY % Open up MonHom type in concl %
(EqTypeCD ...a)

s og = (Ay.msFor{s,m} z € y. £ z) € |mset_mon{s}| — Iml
BY % Show functions equal by using function extensionality rule %

(New [‘w’] Ext ...a) THEN AbReduce O

6. w: |mset_mon{s}|
Fgw= (msFor{s,m} z € w. £ z) € [m|

BY % Fliminate £ n concl using hyp 5 %
(RWH (RevHypC 5) O ...a) THEN AbReduce O
F gw= (msFor{s,m} z € w. g mset_inj{s}(z)) € [m]|

BY % Pull g out past msFor and apply mset_fact lemma %

(RWH (RevLemmaC ‘dist_hom_over_mset_for‘) 0
THENM RWH (RevLemmaC ‘mset_fact‘) 0 ...)

-+ monoid_hom_p(mset_mon{s};m;g)
BY % concl follows trivially from hyp 4

(AddProperties 4 ...)

Figure 9.9: Proof of mset fmon wf Theorem: umap unique Part
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bsublist:
Vs:DSet. Vas,bs:|s| List.
bsublist(s;as;bs) = null(as -s bs)

count:
Vs:DSet. Va:ls|. Vbs:|s| List.
a #€s bs = (For{lsl|,<Z+>} x € bs. b2i(x =5 a))

The count function provided the essential characterization of what the @, 1max,
lmin and diff functions did when order was ignored. It provides the view of lists
as ‘functions of finite support’ from the set s that the multisets are over into the
naturals. Finite support means in particular here, that the functions map all but
a finite number of elements in the domain to 0.

Theorems proved included:

count_append:
Vs:DSet. Vas,bs:|s| List. Vc:|sl.
c #€s (as @ bs) = (c #€s as) + (c #E€s bs)

count_diff:
Vs:DSet. Vas,bs:|s| List. Vc:|sl.
c #€s (as -s bs) = (c #€s as) -- (c #€s bs)

count_lmax:
Vs:DSet. Vas,bs:|s| List. Vc:|sl.
c #€s Ilmax(s;as;bs) = imax(c #Es as;c #Es bs)

count_1lmin:
Vs:DSet. Vas,bs:|s| List. Vc:|sl.
c #€s Imin(s;as;bs) = imin(c #E€s as;c #Es bs)

count_bsublist_a:
Vs:DSet. Vas,bs:|s| List.
Tbsublist(s;as;bs) <= (Vc:lsl|. c #€s as < c #Es bs)

Once I proved a characterization of the permr list permutation relation (see
Section 7.3) in terms of the count function

permr_iff_eq_counts:
Vs:DSet. Vas,bs:|s| List.
(as =(lIs]) bs) <— (Vx:ls|. x #€s as = x #Es bs)

it was straightforward to make new definitions for corresponding multiset opera-
tions

mset_union:
Vs:DSet. Va,b:MSet{s}. a Us b = lmax(s;a;b) € MSet{s}
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mset_inter:
Vs:DSet. Va,b:MSet{s}. a Ns b = 1lmin(s;a;b) € MSet{s}

mset_diff:
Vs:DSet. Va,b:MSet{s}. a -s b = (a -s b) € MSet{s}

bsubmset:
Vs:DSet. Va,b:MSet{s}. a Cys b = bsublist(s;a;b)

and to make corresponding count theorems:

mset_count_sum:
Vs:DSet. Vas,bs:MSet{s}. Vc:lIs]|.
c #€ (as + bs) = (c #€ as) + (c #€ bs)

mset_count_union:
Vs:DSet. Vas,bs:MSet{s}. Vc:lIs]|.
c #€ (as U bs) = imax(c #€ as;c #€ bs)

mset_count_diff:
Vs:DSet. Vas,bs:MSet{s}. Vc:lIs]|.
c #€ (as - bs) = (c #€ as) -- (c #€ bs)

count_bsubmset:
Vs:DSet. Va,b:MSet{s}.
T(a & b) <= (Vx:lsl|. x #€ a < x #€ b)

Additional definitions introduced for multisets included:

mset_map:
Vs,s’:DSet. Vf:|s| — |s’|. Va:MSet{s}.
msmap{s,s’}(f;a)
= msFor{mset_mon{s’}} x € a. mset_inj{s’}(f x)

With the count characterization, it was trivial to verify algebraic properties of
the union and inter operations:

mset_inter_assoc:
Vs:DSet. Va,b,c:MSet{s}. anNs (bnNs c) = (aNnNsb) Ns c

mset_inter_comm:

Vs:DSet. Va,b:MSet{s}. a Ns b =D>bNs a
mset_union_ident_1:
Vs:DSet. Va:MSet{s}. O{s} U a = a

With such theorems, I showed that union operation formed an abelian monoid:

mset_union_mon_wf:
Vs:DSet. <MSet{s},U,0> &€ AbMon



146

9.5 Finite Sets

Finite sets on some discrete set s were simply defined as a subset of the multisets
on set s.

fset:
FSet{s} == {a:MSet{s}| Vx:lIsl|. x #€ a < 1}

A function was defined to reduce any finite multiset to the corresponding finite
set.

fset_of_mset:
Vs:DSet. Va:MSet{s}.
fset_of_mset(s;a)
= msFor{<MSet{s},U,0>} x € a. mset_inj{s}(x)

With this, a mapping function for finite sets was defined:

fset_map:
Vs,s’:DSet. Vf:|s| — |s’|. Va:MSet{s}.
fs-map(f, a) = fset_of_mset(s’;msmap{s,s’}(f;a))

I proved alternative well-formedness lemmas for the multiset operations:
null _mset_wf_f:

Vs:DSet. 0{s} € FSet{s}

mset_union_wf_f:
Vs:DSet. Va,b:FSet{s}. a U b &€ FSet{s}

mset_inter_wf_f:
Vs:DSet. Va,b:FSet{s}. a Ns b € FSet{s}

mset_diff_wf_f:
Vs:DSet. Va,b:FSet{s}. a - b € FSet{s}

mset_inj_wf_f:
Vs:DSet. Vx:|s|. mset_inj{s}(x) € FSet{s}

A multiset member function was introduced:
mset_mem:

Vs:DSet. Vx:|sl|l. Va:MSet{s}. x €, a=x €, a

where the €; on the right denotes the mem function on lists.
and the multiset operations were recharacterized in terms of it:

mset_mem_sum:
Vs:DSet. Va,b:MSet{s}. Vu:ls]|.
u€, a+b=(ué& a) V,(ué€&, b)
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mset_mem_union:
Vs:DSet. Vas,bs:MSet{s}. Vc:lIs]|.
c €, as U bs = (¢ €, as) Vp (c €, bs)

mset_mem_inter:
Vs:DSet. Vas,bs:MSet{s}. Vc:lIs]|.
C €, as Ns bs =c €, as N, Cc €, bs

mset_mem_diff:
Vs:DSet. Vas:FSet{s}. Vbs:MSet{s}. Vc:|s]|.
c €, as - bs =c €, as N, — (c €, bs)

mem_bsubmset :
Vs:DSet. Va:FSet{s}. Vb:MSet{s}.
T(a Cp b) <= (Vx:lsl. T(x € a) = T(x € b))



Chapter 10

Polynomials

10.1 Introduction

The aim of this chapter is to present a case study in the verification of an im-
plementation of functions for multivariate polynomial arithmetic. The case study
demonstrates how one can mix inductive and algebraic styles of reasoning, and the
rich variety of symbolic manipulations possible in a theorem proving system.

The implementation verified is very similar to the basic sparse implementa-
tion described in texts on the design of computer algebra systems such as Dav-
enport,Siret, Tournier [DST93] and Zippel [Zip93a]. This kind of implementation
is in common use in current computer algebra systems. It involves representing
a monomial by an association list (a-list) with indeterminates as keys ! and in-
determinate exponents as values, and representing a polynomial by an a-list with
monomials as keys and monomial coefficients as values.

I based the ADT specification on the standard abstract mathematical character-
ization of multivariate polynomials found in say Lang [Lan84] or Bourbaki [Bou74].
The characterization defines algebraic structures for the monomials and polyno-
mials over a given set of indeterminates and commutative ring of coefficients:

1. monomials are a free abelian monoid on the indeterminates.

2. polynomials are a free monoid algebra on the commutative ring of coefficients
and the monoid of monomials.

I present in this chapter how I demonstrated in Nuprl that implementation
types and functions for monomials and polynomials have all the abstract properties
one would expect from this characterization. More specifically, I constructed the
classes of all monomial and polynomial implementations and then proved that my
implementations inhabit these classes.

lsometimes called indices
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Since a-lists are used for both the monomial and polynomial implementations,
I chose to first develop a common core theory of a-lists over a set of keys and
over an abelian monoid of values. 1 showed that, algebraically, these a-lists have a
monoid copower structure.

I then specialized this construction to get a free abelian monoid implementation
and generalized it to get the free monoid algebra implementation.

In reading this chapter, bear in mind that it draws heavily on definitions and
theorems introduced in Chapter 6 and Chapter 9.

10.2 Conventions Adopted

1. All typewriter font text presented in this chapter is taken verbatim from
Nuprl library printouts. It is identical to what the user would see if interact-
ing with Nuprl.

2. To clearly distinguish the nullary unary and binary concrete operations on
a-lists from abstract operations on arbitrary classes, I in most cases double
up the principle character of the display form for the concrete operations.
For example, a-list ‘addition’ is denoted by ++.

3. Many of the definitions here take parameters that I have chosen not to dis-
play. This significantly increases legibility of the Nuprl text. It should always
be easy for the reader to infer what these parameters are from typing con-
siderations. On occasion without specific mention, I have revealed certain
parameters because their value is particularly informative.

During proof, the user can switch the suppression of various parameters on
and off in a few seconds, so the parameter hiding rarely causes a problem.

4. Definitions in this chapter are presented as typed definitions. These have
form

Vx1:T1 ... Vxn:Tn
1hs
= rhs
ET

Such a definition defines the term 1hs in terms of the term rhs. This format
combines information presented separately in other chapters in abstraction
definitions and well-formedness lemmas. Recursive definitions are also pre-
sented as typed definitions. In these cases, there are one or more occurrences
of the 1hs term inside the rhs term.
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The type parameter T of Nuprl’s standard equality relation is displayed in
these type definitions though it usually isn’t displayed elsewhere in this chap-
ter.

When a definition has more than one typing lemma, I have usually chosen to
base the typed definition on the lemma with a smaller type T; such lemmas
in general provide more information about the definition (though often too,
these lemmas place more restrictions on the definition’s arguments).

5. Both boolean and and propositional (type-valued) predicates are presented
in this case study. Most boolean-valued predicates have a ‘y * subscript in
their display. The prefix function ‘7’ converts boolean values to propositional
values.

10.3 Specification

10.3.1 Monoid Copower

A monoid copower is a specialization of the categorical coproduct construction in
the category of abelian monoids to the case when all the monoids that the product
is being taken over are the same.

The signature for the monoid copower class is introduced in Figure 10.1 and
the definition of the monoid class is given in Figure 10.2. The notation a =

Class Declaration for: MCopowerSig(s;g)

Long Name: mcopower_sig
Short Name: mcopower

Parameters:
s : DSet
g : AbMon

Fields:
mon : AbMon
inj : Isl — lgl — Imonl|
umap : h:AbMon — (ls| — gl — |hl) — Imon| — I|h|

Universe: U’

Figure 10.1: Signature Class for Monoid Copowers
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MCOpOWer :
Vs:DSet. Vg:AbMon.
MCopower(s;g)
= {c:MCopowersSig(s;g) |
(Vj:lsl. IsMonHom{g,c.mon}(c.inj j))
A (Yh:AbMon. Vf:|s| — MonHom(g,h).
c.umap h £
= !'v:|c.mon| — |h].
IsMonHom{c.mon,h}(v)
AN (Vjilsl. £ j=voc.inj j € Igl — |hlI))}

Figure 10.2: Class of Monoid Copowers

1x:T. Q[x] can be read as “a is the unique x of type T such that Q[x] holds”. Its
definition was

uni_sat:
a=1x:T. Qlx] == Q[al] A (Va’:T. Q[a’] = a’ = a)

I chose to make the construction in two stages so that the verification of im-
plementations two could be split into two stages; one just involving basic type-
checking of the implementation and the other involving checking all its algebraic
properties. In the free abelian monoid case study described in Chapter 9, I had
lumped everything into a single definition. Splitting things up didn’t save any
work, and probably made the definition slightly more verbose, but it seemed a
natural thing to do, and I think it might make for easier-to-read definitions.

10.3.2 Free Abelian Monoid

The class definition for this was introduced in Section 9.2. The typed definition
for the mapping from the class of monoid copowers into the class of free abelian
monoids was:

fabmon_of_nat_mcp:
Vs:DSet. Vm:MCopower(s;<Z+>|hgrp).
fabmon_of _nat_mcp(m)
= <m.mon
, Au.m.inj u zhgrp(1)
, Am’ ,f.m.umap m’ (Az,n.(nat(n) m’> (£ z)))>
€ FAbMon(s)
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10.3.3 Free Monoid Algebra

The signature for the class of free monoid algebras is given in Figure 10.3 and the
class definition is given in Figure 10.4.

Class Declaration for: FMASig(G;A)

Long Name: fma_sig
Short Name: fma

Parameters:
G : GrpSig
A : RngSig

Fields:
alg : AlgebraSig(|Al)
inj : IGl — lalgl
umap : N:A-Algebra — (|G| — IN|) — lalgl — |[N|

Universe: U’

Figure 10.3: Signature Class for Free Monoid Algebras

fmonalg:
Vg:AbMon. Va:CRng.
FMonAlg(g;a)
= {m:FMASig(g;a)l
IsMonHom{g,m.alg|rg|xmn}(m.inj)
A (Vn:a-Algebra. Vf:MonHom(g,n|rg|xmn).
m.umap n f
= 1f’:|m.algl — |nl.
IsAlgHom{a,m.alg,n}(£f’)
A f> om.inj = f € lgl — InD)}

Figure 10.4: Class of Free Monoid Algebras
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10.3.4 Polynomial Algebra

The polynomial algebra class was introduced by the class declaration shown in

Figure 10.5.

Class Declaration for: PolynomAlg(S;Aa)

Long Name: polynom_alg
Short Name: polyalg

Parameters:

S : DSet
A : CRng

Fields:

mo : FAbMon(S) % the monomials Y%
poly : FMonAlg(mo.mon;A) % the polynomials %

Universe: U’

Figure 10.5: Class of Polynomial Algebras

10.4 Monoid Copower Construction

10.4.1 Ordered A-List Type

The basic type of a-lists with keys from a set a and values from an abelian monoid
or group bis (lal X Ibl|) List. There were extra restrictions I wanted to consider
on the a-lists; that

1. The set a would be linearly ordered and the keys in an a-list would be in
strictly descending order,

2. the values in an a-list would all be non-zero.

These restrictions define a canonical form on a-lists representing monomials or
polynomials. Two a-lists represent the same monomial or polynomial just when
their canonical forms are equal as a-lists.

The restriction of having the keys linearly ordered is a standard one in com-
puter algebra; linear orders are commonly assumed on indeterminates and sets of
monomials.
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This canonical form is preserved by all the functions on a-lists that I defined.

Since I desired a constructive implementation of a-lists, I needed to explicitly
generate an boolean-valued equality function for a-lists. The structure of this
function exactly mirrors the structure of the underlying type (lal x Ib|) List,
so | designed a collection of ‘discrete set’ constructors that paralleled the type
constructors of Nuprl. Their typed definitions were:

eq_pair:
Vs,t:DSet. Va,b:Isl X [t].
a=, b=(a.1 35 b.1) Ap(a.2 = b.2) € B

set_prod:
Vs,t:DSet. s X t = mk_dset(ls| X |tl|;\a,b.a =, b) € DSet

eq_list:
Vs:DSet. Vas,bs:|s| List.
as =, bs

= case as of
[1 => null(bs)
a::as’ => case bs of

0 => ff
b::bs’ => (a =, b) Ay (as’ = bs?)
esac
esac
c B
dset_list:

Vs:DSet. (s List) = mk_dset(|s| List;Ax,y.x =, y) € DSet

dset_set:
Vs:DSet. VQ:|s| — P.
{x:s| Q[x]} = mk_dset({x:I|s|| Q[x]} ;=) € DSet

Using these definitions, I defined the discrete set of ordered a-lists as

oalist:
Va:L0Set. Vb:AblMon.
oalist(a;b)
= {ps:(a X blset) List|
Tsd_ordered(map(Ax.x.1;ps)) A —Tmem(e,map(Ax.x.2;ps))}
€ DSet
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Here, mem is the list membership function and sd_ordered is a predicate on lists
over an ordered type, stating that the elements of the list are in strictly descending
order.

mem:
Vs:DSet. Va:ls|. Vbs:|s| List.
mem(a,bs) = (For{<B,V, >} x € bs. x =, a) € B

sd_ordered:
Vs:DSet. Vas:|s| List.
sd_ordered(as)
= case as of

0 => tt
a::bs => before(a;bs) A, sd_ordered(bs)
esac
c B

before:
Va:DSet. Vps:lal List. Vu:lal.
before(u;ps) = null(ps) V; (hd(ps) < u) € B

I chose to make the mem function boolean-valued since it is a useful function to
be able to compute. The sd_ordered function could have equally well been a
propositional-valued predicate. An extra awkwardness working in Nuprl’s con-
structive framework is that one constantly has to make choices as to whether to
represent predicates as propositional or boolean-valued, and often one ends up
doing a lot of inter-converting.

LOSet is a sub-class of DSet. It is the type of linearly-ordered discrete sets with
computable inequality relations.

10.4.2 Ordered A-List Functions

The primary functions I introduced that assume the a-list values are drawn from
an abelian monoid, are described by the type definitions:

cal_nil:
Ya:L0Set. Vb:AbMon. [Ja,b = [] € |oalist(a;b)]|

oal_inj:
Va:L0Set. Vb:AbMon. Vk:|al|l. Vv:|b].
inj(k,v)
= if v =, e then [] else <k, v>::[] fi
€ l|oalist(a;b) |
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oal_merge:
Va:L0Set. Vb:AbMon. Vps,qs:loalist(a;b)|.

ps ++ gs

= if null(ps) then gs
if null(qs) then ps
if hd(gs).1 < hd(ps).1 then hd(ps)::(tl(ps) ++ gs)
if hd(ps).1 < hd(gs).1 then hd(gs)::(ps ++ tl(gs))
if (hd(ps).2 * hd(gqs).2) =, e then tl(ps) ++ tl(gs)
else <hd(ps).1, hd(ps).2 * hd(gs).2>::(t1l(ps) ++ tl(gs))
fi

€ l|oalist(a;b) |

oal_lk:
Vs:L0Set. Vg:AbMon. Vps:|oalist(s;g)|.
—(ps = [Is,g € loalist(s;g)|) = 1lk(ps)

hd(ps).1 € |Isl

oal_lv:
Vs:L0Set. Vg:AbMon. Vps:|oalist(s;g)|.
—(ps = [Is,g € loalist(s;g)|) = lv(ps)

hd(ps).2 € lIgl

oal_null:
Vs:L0Set. Vg:AbMon. Vps:|oalist(s;g)|.
null(ps) = null(ps) € B

Note that in the oal_null definition, the function displayed on the left as null is
the new definition and the function displayed on the right as null is a previously
defined function. The difference is that the new definition has some extra unshown
parameters that help with type-checking it.

Function definitions I introduced that are suitable when the a-list values come
from an abelian group are:

oal_neg:
Va:L0Set. Vb:AbMon. Vps:|oalist(a;b)|.
--ps = map(Akv.<kv.1, ~ kv.2>;ps) € |oalist(a;b)|

ocal_bpos:
Vs:L0Set. Vg:AbGrp. Vps:|oalist(s;g)|.
pos(ps) = —pnull(ps) Ay (e < lv(ps)) € B

oal_blt:
Vs:L0Set. Vg:AbGrp. Vps,qs:|oalist(s;g)|.
ps << gs = pos(gqs ++ --ps) € B

oal_ble:
Vs:L0Set. Vg:AbGrp. Vps,qs:|oalist(s;g)|.
ps <<, gs = (ps =, q8) Vp (ps <<, gs) € B
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The order relations introduced here define a standard lexicographic ordering on
a-lists.

By waiting to define the order function on the a-lists until I was assuming
that the values were drawn from a linearly ordered group rather than a linearly
ordered monoid, I was able to define the function in terms of a-list subtraction.
Note that when the oalist type is specialized to that of monomials, the structure
instantiating the type of the a-list values, namely the naturals under addition, is a
monoid and not a group. However, still [ needed the order function over monomials
in order to just define the type of polynomials (recall that when a-lists are used
for polynomials, the monomials are the keys and the keys must be over an ordered
set).

Note that typings ascribed to functions are sometimes more permissive than
the environments in which they are typically used. For example, all the above
functions, with values from a group, are only used when the < relation on the
group is assumed to be linear order and the group operation is assumed to be
monotone.

10.4.3 Basic Properties of Functions

The algebraic properties of a-lists are most clearly revealed when they are consid-
ered to be functions of finite support. In fact, the standard ‘concrete’ construction
of monomials and polynomials in algebra text-books starts from this point. The
two functions that enable this view of a-lists are:

oal_dom:
Va:L0Set. Vb:AbMon. Vps:|oalist(a;b)|.
dom(ps) = mk_mset(map(Az.z.1;ps)) € FSet{a}

lookup:
Va:PosetSig. VB:U. Vz:B. Vk:lal. Vxs:(lal X B) List.
xs[k]l{a,z}
= case xs of
=z
b::bs => let <bk,bv> = b
in
if bk =p a k then bv else bs[kl{a,z} fi
esac
€ B

Note that the lookup function returns the default value z when the key being looked
up in an a-list doesn’t match any of the keys in the list. The a-lists described in this
chapter always have values drawn from either monoids or rings, and this default
value is either the monoid identity or the ring zero respectively. The truth of many
of the theorems that are presented in this chapter relies on the default values being
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what they are. Since this default-value argument to the lookup function can be
easily inferred, I normally suppress it. I also suppress the domain set argument (a
in the definition) since this too can be easily inferred.

Trivially, since every a-list only has a finite number of keys, the lookup function
must be a function of finite support.

As is shown later, it was essential to be able to compute the exact support of
any a-list. The oal_dom function does this. Note that it returns a finite set as
defined in Section 9.5, not a list. In this chapter, all functions that make use of the
result of this domain function are typed to expect a finite set, or more generally,
a finite multiset.

The following lemmas spell out the relationship between a-lists and the lookup
and domain functions.

lookup_non_zero:
Va:L0Set. Vb:AbMon. Vk:|al. Vps:|oalist(a;b)|.
—(pslk] = e € |bl) <= ImsMem(k,dom(ps))

lookups_same_a:
Va:L0Set. Vb:AbMon. Vps,qs:loalist(a;b)|.
(Vu:lal. pslul = gsl[ul € Ibl) = ps = qs € |oalist(a;b)|

The lemma lookup_non_zero says that the lookup function is surjective onto the
set of functions of finite support. The lemma lookups_same_a says that lookup
function is injective into the set of functions of finite support. Therefore the lookup
function is a bijection between the oalists and the functions of finite support.

The next step was to characterize the value of the lookup and oal_dom functions
when applied to the a-list operations of merging, injection and negation. defined
above.

oal_dom_merge:
Va:L0Set. Vb:AbMon. Vps,qs:loalist(a;b)|.
T(dom(ps ++ gs) C, dom(ps) U dom(gs))

lookup_merge:
Va:L0Set. Vb:AbMon. Vk:|al. Vps,qs:loalist(a;b)|.
(ps ++ gs)[k] = pslk] * gs[k]

oal_dom_inj:
Va:L0Set. Vb:AbMon. Vk:lal. Vv:|b].
dom(inj(k,v))
= if v =, e then Oa else inj(k) fi
€ FSet{a}

lookup_oal_inj:
Ya:L0Set. Vb:AbMon. Vk,k’:|lal. Vv:|b].
inj(k,v)[k’] = when k =, k’ . v
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oal_dom_neg:
Va:L0Set. Vb:AbGrp. Vps:|oalist(a;b)|.
dom(--ps) = dom(ps) € FSet{a}

lookup_oal_neg:
Va:DSet. Vb:IGroup. Vk:lal. Vps:(lal X [|bl) List.
(--ps)[k] = ~ ps[k] € Ibl

Using these lemmas it was then trivial to show that the functions oal_nil,
oal_merge and oal_neg defined an abelian group structure on oalists whenever the
a-list values were over a group, and similarly how they defined an abelian monoid
when the values were over a monoid.
cal_mon:

Va:L0Set. Vb:AbMon.
oal_mon(a;b)
= <|oalist(a;b)l, =, =, Ax,y.x ++ y, [Ja,b, Ax.x>
€ AbMon

oal_grp:
Vs:L0Set. Vg:AbGrp.

oal_grp(s;g)

= <|oalist(s;g)|
s b
» }\X,y.X SSb y
» AX,J.X ++ 5
» [s.g
, AX.--X>

€ AbGrp

10.4.4 Linear Monotonic Order on A-Lists

The oal_blt relation (<<;) is a lexicographic order. When the a-lists are represent-
ing monomials, it corresponds to the lexicographic monomial ordering, common
in computer algebra. For the purposes of this case-study, it was not necessary to
show that this order is well-founded; indeed in general here is it not, because I
don’t adopt any assumption about the well-foundedness of a-list keys.

To show that oal_blt is a lexicographic order, I created a standard definition
of a lexicographic order

oal_lt:
Vs:L0Set. Vg:0CMon. Vps,qs:|oalist(s;g)|.
(ps << gs)
= (Jk:|sl
(Vk’:Isl. k <s k’ = pslk’] = qs[k’])
A pslk] < gs[kl)
e P
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and proved that oal_blt was logically equivalent to this definition.

assert_of_oal_blt:
Vs:L0Set. Vg:0CGrp. Vps,qs:|oalist(s;g)|.
T(ps <<, q8) <= ps << gs

It was straightforward to verify that oal_1t and hence oal_blt was irreflexive
and transitive.

oal_lt_irrefl:
Vs:L0Set. Vg:0CMon. Irrefl(|oal(s;g)l;ps,qgs.ps << gs)

oal_lt_trans:
Vs:L0Set. Vg:0CMon. Trans(loal(s;g)l;ps,qs.ps << gs)

To show that oal_blt was a linear order it was simplest to first prove a trichotomy-
like property for the oal_bpos definition.

oal_bpos_trichot:
Vs:L0Set. Vg:0CGrp. Vrs:|oalist(s;g)|.
Tpos(rs) V rs = [Is,g € loalist(s;g)| V Tpos(--rs)

oal_lt_trichot:
Vs:L0Set. Vg:0CGrp. Vps,qs:|oalist(s;g)|.
ps <{s,g} qs V ps = gqs € loalist(s;g)| V gs <{s,g} ps

For later verification, I needed that the oal_merge function was monotonic with
respect to the oal_1t relation:

oal_merge_preserves_lt:
Vs:L0Set. Vg:0CMon. Vps,qs,rs:|oalist(s;g)|.
gqs << rs = ps ++ s << ps ++ rs

In retrospect, it probably would have been slightly easier to derive all the properties
of ocal_blt from equivalent properties of oal_bpos.

All the above properties on the oal_blt relation induce corresponding proper-
ties on oal_ble, its reflexive closure. Once these properties, were verified, | was
able to prove a second lemma for oal_grp:

oal_grp_wf2:
Vs:L0Set. Vg:0Grp. oal_grp(s;g) € 0Grp

As it stood, this lemma was too specialized to apply to monomials, since it required
the a-list values to be drawn from a group, whereas with monomials, the values
come from a monoid. To fix this, I proved the following lemma, which simply says
that any g:GrpSig that can be isomorphically embedded into an 0CMon, is itself an
0CMon.
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inj_into_ocmon:
Vg:GrpSig

(3h:0CMon
df:lgl — |nl
IsMonHomInj(g;h;f)
A RelsIso(lgl;lhl;x,y.T(x = y);x,y.T(x = y);£)
A RelsIso(lgl;Ihl;x,y.T(x g.le y);x,y.7(x h.1le y);£f))

= g & 0CMon

where the typed definition for RelsIso is

rels_iso:
vT,T7°:U. VR:T - T — P. VR":T’ — T° — P. V£:T — T’.
RelsIso(T;T’;x,y.RIx;y];x,y.R’ [x;y];%)
= (Vx,y:T. RIx;y] <= R’[f x;f y])
cP

I then applied the half group construction described in Section 6.6 to the
linearly-ordered group of values of ordered a-lists to yield a corresponding con-
struction on the a-lists themselves.

oal_hgp:
Vs:L0Set. Vg:0Grp.

oal_hgp(s;g)

= <|oalist(s;g|hgrp) |
s b
» }\X,y.X SSb y
s AX,V.X ++ 5
, [Os,glhgrp
s AX.XD

€ 0CMon

Now, since the naturals are a half group of the group of integers under addition,
I could instantiate this theorem with the group of integers as the ‘extended’ a-list
values domain, and get that a-lists with the group of naturals under addition as
values form an ordered cancellation monoid.

10.4.5 Monoid Copower Assembly

The universal mapping function is defined in terms of the multiset summation
function msFor introduced in Section 9.3.2:

cal_umap:
Vs:L0Set. Vg,h:AbMon. Vf:|s| — Igl — |hl.
umap (h,f)

= (Aps:loalist(s;g)|. msFor{h} k¥ € dom(ps). f k ps[k])
€ loalist(s;g)| — |hl
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Once characterizing lemmas about the oal_inj and oal_umap definitions were
proven, assembly of the monoid copower was trivial.

oal_inj_mon_hom:
Ya:L0Set. Vb:AbMon. Vk:|al.
IsMonHom{b,o0al_mon(a;b)}(Av.inj(k,v))

ocal_umap_char_a:
Vs:L0Set. Vg,h:AbMon. Vf:|s| — MonHom(g,h).
umap (h,f)
= lv:|oalist(s;g)| — I|hl.
IsMonHom{oal_mon(s;g) ,h}(v)
A (Vjilsl. £ j =vo (Aw.inj(j,w)) € lgl — |nl)

cal_omcp:
Vs:L0Set. Vg:0Grp.
oal_omcp{s,g}
= <oal_hgp(s;g), Ak,v.inj(k,v), Ah,f.umap(h,f)>
€ MCopower(s;glhgrp)

10.5 Free Monoid Algebra Construction

Here, I assumed more structure on the a-list keys and values. Specifically, 1 as-
sumed that the keys come from a monoid and the values from a commutative ring.
Remember that from here on, the default value returned by the a-list function
lookup (as[k]) is the zero of the values ring of the a-lists.

10.5.1 Lifting of Definitions and Theorems

For convenience, I first lifted many of the definitions and theorems from the theory
of a-lists developed previously. The convenience was chiefly cosmetic; it enabled
me to avoid having an abundance of forgetful functors floating around and saved
on typing.

The type-checking tactics can cope with these functors, though they can slow
it down. An example definition that wasn’t lifted was the lookup function.

The lifting was very straightforward; 1 wrote a simple ML function that au-
tomatically lifted all the necessary theorems and entering the new definitions was
very quick. However, this exercise did indicate the desirability of a better handling
of class subtyping where forgetful functors, if needed at all, are always inserted
automatically.

Here is a sampling of the lifted definitions with parameter suppression disabled
so that the forgetful functors are visible.
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omralist:
Vg:0CMon. Vr:CRng.
omralist(g;r) = oalist(glset;r|+gp) € DSet

omral_dom:
Vg:0CMon. Vr:CRng. Vps:lomralist(g;r)|.
dom{g,r}(ps) = dom{g|set,r|+gp}(ps) € FSet{g|set}

omral_plus:
Vg:0CMon. Vr:CRng. Vps,qs:|lomralist(g;r)|.
ps ++g,r gs = ps ++g|set,r|+gp qs € |omralist(g;r)|

omral _zero:
Vg:0CMon. Vr:CRng.
00g,r = [lg|set,r|+gp € lomralist(g;r)|

omral_minus:
Vg:0CMon. Vr:CRng. Vps:lomralist(g;r)|.
--g,r ps = --glset,r|+gp ps € |omralist(g;r) |

omral_inj:
Vg:0CMon. Vr:CRng. Vk:l|gl. Vv:Irl.
inj{g,r}(k,v) = inj{glset,r|+gp}(k,v) € |omralist(g;r) |

10.5.2 Multiplicative Functions on Ordered A-Lists

The multiplicative functions that 1 defined to create an algebra structure on a-lists
were:
omral_scale:
Vg:0CMon. Vr:CRng. Vk:|gl. Vv:|rl|. Vps:|omralist(g;r)|.
<k,v>* ps
= case ps of
1 => []
p::ps’ => if (v * p.2) =, O
then <k,v>* ps’
else <k * p.1, v * p.2>::(<k,v>* ps’)
fi
esac
€ lomralist(g;r) |

omral_times:
Vg:0CMon. Vr:CRng. Vps,qs:|lomralist(g;r)|.

ps ** gs

= case ps of
=>10
p::ps’ => <p.1,p.2>* gqs ++ (ps’ ** gs)

esac
€ lomralist(g;r) |
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omral_one:
Vg:0CMon. Vr:CRng. 11g,r = inj(e,1r) € |omralist(g;r)|

omral_action:
Vg:0CMon. Vr:CRng. Vv:|rl|. Vps:|omralist(g;r)|.
v .- ps = <e,v>* ps € |omralist(g;r)|

As before, the key to deriving these functions’ algebraic properties was to con-
sider the a-alists as functions of finite support. The theorems I proved included

omral_dom_scale:
Vg:0CMon. Vr:CRng. Vk:|gl. Vv:|rl|. Vps:|omralist(g;r)|.
T(dom(<k,v>* ps) C; fs-map(Ak’.k’ * k, dom(ps)))

lookup_omral_scale_d:
Vg:0CMon. Vr:CRng. Vz,k:|gl. Vv:|r|. Vps:|omralist(g;r)|.
(k,v>* ps) [z]
= (Xry € dom(ps). when (k * y) =, z. v * pslyl)
€ Irl

omral_times_dom:
Vg:0CMon. Vr:CRng. Vps,qs:|lomralist(g;r)|.
T(dom(ps ** gqs) C; dom(ps) Xg dom(gs))

lookup_omral_times_a:
Vg:0CMon. Vr:CRng. Vps,qs:lomralist(g;r)|. Vz:lgl.
(ps ** qs)[=]
= (Xr x € dom(ps)
Yr y € dom(gs). when (x * y) =, z. pslx] * gslyl)
€ Irl

omral_dom_action:
Vg:0CMon. Vr:CRng. Vv:|rl|. Vps:|omralist(g;r)|.
T(dom(v -+ ps) C; dom(ps))

lookup_omral_action:
Vg:0CMon. Vr:CRng. Vk:|gl. Vv:|rl|. Vps:|omralist(g;r)|.
(v «« pa)[k] = v *x ps[k] € |rl

10.5.3 Properties of Multiplicative Functions

Using the above characterization I proved:

omral_times_assoc_a:
Vg:0CMon. Va:CRng. Vps,qs,rs:|omralist(g;a)l.
ps ** (qs **x rs) = (ps ** qs) ** rs
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omral_times_comm_a:
Vg:0CMon. Va:CRng. Vps,qs:|omralist(g;a)l.
pPS **% gs = gs ** ps

omral_bilinear_a:
Vg:0CMon. Va:CRng. Vps,qs,rs:|omral(g;a)l.
ps ** (gs ++ rs) = (ps ** gqs) ++ (ps **x rs)
A (qs ++ rs) *x% ps = (qs * % ps) ++ (rs *x* ps)

omral_times_ident_1:
Vg:0CMon. Vr:CRng. Vps:lomralist(g;r)|.
11 **x ps = ps

omral_times_ident_r:
Vg:0CMon. Vr:CRng. Vps:lomralist(g;r)|.
ps **x 11 = ps

omral_action_one:
Vg:0CMon. Vr:CRng. Vps:lomralist(g;r)|.
1 .. ps = ps

omral_action_times:
Vg:0CMon. Vr:CRng. Vv,w:|r|. Vps:|omralist(g;r)|.
(V*W) ..ps:v..(w..ps)

omral_action_times_rl:
Vg:0CMon. Vr:CRng. Vv:|r|. Vps,qs:|omralist(g;r)|.
v +- (ps ** qs8) = (v - ps) ** gs

omral_action_times_r2:
Vg:0CMon. Vr:CRng. Vv:|r|. Vps,qs:|omralist(g;r)|.
v +- (ps ** gqs8) = ps *x (v -+ gs)

omral_action_plus_1:
Vg:0CMon. Vr:CRng. Vv,w:|r|. Vps:|omralist(g;r)|.
(V + W) .o ps = (V .o ps) ++ (W .o ps)

omral_action_plus_r:
Vg:0CMon. Vr:CRng. Vv:|r|. Vps,qs:|omralist(g;r)|.
V e (ps ++ qs) = (V .o ps) ++ (V .o qs)

and hence was able to assemble the algebra structure:
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omral_alg:
Vg:0CMon. Vr:CRng.
omral_alg(g;r)
= <|omralist(g;r) |
s b
, AX,y.tt
s AX,V.X ++ 5
, 00
, AX.--X
s AX,V.X ** y
, 11
, Ax,y.(inr - )
, Aa,x.a - x>
€ AlgebraSig(lrl)

10.5.4 Assembly of Free Monoid Algebra

For the free monoid algebra, I needed the definition for the universal mapping

function

omral_alg_umap:
Vg:0CMon. Va:CRng. Vn:a-Algebra. VI:|gl — |[nl.
alg_umap{g,a}(n,f)
= (Aps:lomral(g;a)|. X{gloset,n|rg} k € dom{g,a}t(ps).
pslkl{gloset,0a} -n (f k))
€ lomral(g;a)| — Inl

and with several characterizing theorems about this and the omral_inj function:

omral_action_inj:
Vg:0CMon. Vr:CRng. Vk:l|gl. Vv,v’:|rl.
v -~ inj(k,v’) = inj(k,v * v’) € |omralist(g;r) |

omral_inj_mon_op:
Vg:0CMon. Vr:CRng. Vk,k’:|gl.
inj(k * k?,1) = inj(k,1) ** inj(k’,1) € |omralist(g;r) |

omral_alg_umap_is_hom:
Vg:0CMon. Va:CRng. Vn:a-Algebra. Vf:MonHom(g,n|rg|xmn).
IsAlgHom{a,omral_alg(g;a),n}(alg_umap(n,f))

omral_alg_umap_tri_comm:
Vg:0CMon. Va:CRng. Vn:a-Algebra. VI:|gl — |[nl.
alg_umap(n,f) o (Ak.inj(k,1)) = £
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omral_alg_umap_unique:
Vg:0CMon. Va:CRng. Vn:a-Algebra. VI:|gl — |[nl.
Vi’ :a-AlgebraHom(omral_alg(g;a);n).
£’ o (Ak:lgl. inj(k,1)) = £ = £’ = alg_umap(n,f)

I demonstrated that a-lists over ordered monoids as keys and commutative rings
as values are a free monoid algebra.

omral_fma:
Vg:0CMon. Va:CRng.
omral_fma(g;a)
= <omral_alg(g;a), Ak.inj(k,1), An,f.alg_umap{g,a,n,f}>
€ FMASig(g;a)

10.6 Polynomial Algebra Assembly

This was very straightforward, given all the previous work. Here are the typed
definitions:

oal_fabmon:
Vs:L0Set
oal_fabmon(s)
= fabmon_of _nat_mcp(oal_omcp{s,<Z+>})
€ FAbMon(s)

oal_polyalg:
Vs:L0Set. Va:CRng.
oal_polyalg(s;a)
= <oal_fabmon(s), omral_fma(oal_fabmon(s) .mon;a)>
€ PolynomAlg(s;a)

10.7 Proof Examples

Here I have selected a few proof fragments to indicate the styles of reasoning used
in building this theory.

10.7.1 Algebraic Manipulation of Sums

The theorem I am studying here is

omral_times_assoc_a:
Vg:0CMon. Va:CRng. Vps,qs,rs:|omral(g;a)l.
ps ** (qs **x rs) = (ps ** qs) ** rs
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In Figure 10.6, quantifiers are stripped and attention is focussed on the value
of the product expressions at the a-list key u. The context in hypotheses 1-6
remains unchanged for the rest of the proof, so I have elided it in subsequent
displays. Also, to simplify the presentation I have elided the right-hand side of
the conclusion equality and the tactics that affect it. However, since many tactics
work on both the left and right-hand sides simultaneously, the full proof involves
only a third more tactic invocations than are shown here.

!

- Vg:0CMon. Va:CRng. Vps,qs,rs:|omral(g;a)l.
ps ** (qs ** rs) = (ps ** gs) ** rs

BY (RepD
THENM BLemma ‘omral_lookups_same_a‘
THENM RepD ...a)

1. g: 0CMon

2. a: CRng

3. ps: lomral(g;a)l
4. gs: lomral(g;a)l

5. rs: |omral(g;a)l

6. u: |gl

1— (ps ** (gs ** rs))[u] = ((ps **x gs) *x rs)[u]

Figure 10.6: Focussing Attention at u.

The goal of the proof is to put the left and right-hand sides in some com-
mon form. Consider the left-hand side of the equality in omral_times_assoc_a,
expanded using the lemma lookup_omral_times_a:

Yx € dom(ps).
Yy € dom(gs ** rs).
when (x * y) =, u.
ps[x]
* (Xx1 € dom(gs).
Yyl € dom(rs). when (x1 * y1) =, y. gslx1] * rsly1l)

The strategy is to bring the summation over y and the expression when (x1 * y1)
=, y together and then cancel them using the following lemma for summation over
a single value:
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rng_fset_for_when_eq:
Vs:DSet. Vr:Ring. Vf:|s| — |Irl. Ve:ls|. Vas:FSet{s}.
T(e €, as) = (Xx € as. when x =, e. f[x]) = fle]

Note the precondition of this lemma (e €, as). This precondition is not always
satisfied because given x1 € dom(qs) and y1 € dom(rs), it is not always true that
x1 * y1 € dom(gs ** rs) (cancellation may occur). Fortunately, the relation

omral_times_dom:
Vg:0CMon. Vr:CRng. Vps,qs:|lomral(g;r)|.
T(dom(ps ** gqs) C; dom(ps) X dom(gs))

holds and the value of the summation over y doesn’t change when the summation
range is widened from dom(gs ** rs) to dom(qs) X dom(gs), since its argument
is zero in the intervening range. This strategy was formalized as follows.
In Figure 10.7, the lookup of the outer is expanded, but not the inner product.
In Figure 10.8, the widening of the domain of summation of y is carried out.

!

F (ps ** (gqs ** rs))[u]l = ...

|

BY (RWO "lookup_omral_times_a" O ...a)

!

F (XYx € dom(ps).
XYy € dom(gs ** rs).
when (x * y) =, u. pslx] * (qs ** rs)[yl)

Figure 10.7: Expanding Outer Lookup

Note that this is an example of mononicity reasoning being done by the rewrite
package. The first sub-goal is to check the condition that the summation value
really is zero on the range being widened over. It is generated because the rewrite
package selected the functionality lemma for the summation term

rng_mssum_functionality_wrt_bsubmset:
Vs:DSet. Vr:Ring. Vf,f’:[s| — |rl. Vp,q:MSet{s}.
(Vx:lsl. T(x €, q-p) = £2[x] = 0)
= 1 S @
= (Vx:lsl. T(x & p) = flx] = £’ [x])
=> (Mx €p. flx]) = (Xx € q. £’ [x])

when justifying the rewrite. Note how the functionality lemma takes care of intro-
ducing the necessary assumptions 7 and 9 in the subgoal.
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!

F (Xx € dom(ps).

XYy € dom(gs ** rs).
when (x * y) =, u. pslx] * (qs ** rs)[yl)

BY (RWO "omral_times_dom" O ...a)

N7, x| (glset) |

8. T(x €, dom(ps))

9. y: |(glset)|

10. T(y &€, (dom(gs) Xg dom(rs)) - dom(gs ** rs))
F when (x * y) =, u. ps[x] * (gs ** rs)[y] = 0

“»H (Xx € dom(ps).

Yy € dom(qs) Xg dom(rs).
when (x * y) =, u. pslx] * (gs ** rs)[yl)

Figure 10.8: Expanding Domain of Summation over y

|

7.
8.
9.

: | (gloset) |

X
T(x &€ dom(ps))
y

: | (gloset) |

10. T(y € (dom(gs) Xg dom(rs)) - dom(gs ** rs))
F when (x * y) =, u. ps[x] * (qs ** rs)[y] =0

|

BY (RWN 2 (LemmaC ‘lookup_omral_eq_zero‘) O

THENM RW RngNormC O
THENM RWH (LemmaC ‘rng_when_of_zero‘) O ...)

F =T(y &€, dom(qs ** rs))

BY (RWH (LemmaC ‘mset_mem_diff‘) 10

THENM RW bool_to_propC 10 ...)

Figure 10.9: Proof of Summation Arg being 0 in Widening Range
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The proot of this subgoal is shown in Figure 10.9. In the first step, I noted
that the lookup on the a-list gs ** rs is 0, whereupon the whole expression on
the left-hand side of the equality simplifies to 0. The resulting goal of 0 = 0 is not
shown because it is trivially proved by the Auto tactic. The goal

—T(y €, dom(qs ** rs))

was a side condition of the lookup_omral_eq_zero lemma; its statement and the
statement of the rng_when_of_zero lemma were:

lookup_omral_eq_zero:
Vg:0CMon. Vr:CRng. Vk:|gl|. Vps:|omral(g;r)|.
—T(k €, dom(ps)) = pslk] =0

rng_when_of _zero:
Vr:Ring. Vb:B. when b. 0 = 0

The latter lemma could easily have been folded into the ring normalization con-
version RngNormC. The tactic RWN n ¢ i applies conversion ¢ to clause ¢, but only
does the conversion in the nth position in pre-order that ¢ is enabled. Note that
the lemma lookup_omral_eq_zero could not have been applied if back in the step
of the proof shown in Figure 10.7, the lemma lookup_omral_times_a had been
repeatedly applied where-ever it could have made progress.

The antecedent of the lookup_omral_eq_zero lemma was solved by applying
the lemma

mset_mem_diff:
Vs:DSet. Vas:FSet{s}. Vbs:MSet{s}. Vc:|s]|.
c €, as - bs = (c €, as) N, (c €, bs)

and converting the boolean-valued hypothesis to a proposition using the conversion
bool_to_propC.

In Figure 10.10, the next 3 steps of the proof are shown. Here, the inner
multiplication was expanded and the summation over y was brought adjacent to
the when expression containing y as one of subjects of the equality.

The kind of rewriting required in the last step (with the HereDnC conversional)
is tricky. The lemmas used are:

rng_mssum_swap:
Vr:Ring. Vs,s’:DSet. Vf:|s| — |s’| — |r|. Va:MSet{s}.
Vb:MSet{s’}.
(Y¥x € a. Yy € b. flx;y]) = (Xy € b. Xx € a. flx;y])

rng_when_swap:
Vr:Ring. Vb,b’:B. Vp:lrl.
when b. when b’. p = when b’. when b. p
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'

F (¥x € dom(ps).

Yy € dom(gs) Xg dom(rs).

when (x * y) =, u. pslx] * (qs #** rs)[yl)

BY (RWW "lookup_omral_times_a" 0 ...a)

F (¥x € dom(ps).
Yy € dom(gs) Xg dom(rs).
when (x * y) = u.
ps[x]
* (Xx € dom(gs).
Yyl € dom(rs).
when (x * y1) =, y. gslx] * rsly1l))

BY % float up sigmas and whens %
(RWW "rng_times_mssum_1
g
rng_times_mssum_r
rng_mssum_when_swap<
rng_times_when_1
rng_times_when_r" 0 ...a)

F (¥x € dom(ps).
Yy € dom(gs) Xg dom(rs).
Yx1 € dom(gs).
Yyl € dom(rs).
when (x * y) = u.
when (x1 * y1) = y. pslx] * (gslx1] * rsly1l))

BY (RWN 2 (HereDnC (PolyC '"rng_mssum_swap rng_when_swap'")) O
..a)

F (¥x € dom(ps).
Yx1 € dom(gs).
Yyl € dom(rs).
Yy € dom(gs) Xg dom(rs).
when (x1 * y1) = y.
when (x * y) =, u. pslx] * (gs[x1] * rs[y1l))

Figure 10.10: Bringing ¥ and when over y Together
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The first lemma needed to be applied repeatedly, but in a controlled way to have
the right effect. The conversion HereDnC ¢ when applied to a term ¢, tries applying
¢ at the top of t. If it succeeds, it then tries applying ¢ on all subterms of ¢
by applying ¢ once at each node of ¢ and then at the children of that node. Its
definition in ML was:

let HereDnC c = c ANDTHENC TryC (SubC (SweepDnC c)) ;;

I only used this conversion a couple of times in this case study, but its ease of
definition demonstrates the versatility of the conversional approach to structuring
rewrite rules. Of course, in the long run such rewriting should be directed by
higher level reasoning. For instance, one could envisage directing a rewrite tactic
to ‘bring the ¥ and when involving y together’. The tactic might then create a
suitable cost function to direct the rewrite equations.

The cancellation of the X and when is shown in Figure 10.11. Note again how
a functionality lemma, in this case:

rng_mssum_functionality_wrt_equal:
Vs:DSet. Vr:Ring. Vf,f’:|s| — |rl|. Va,a’:MSet{s}.
a = a’
= (Vx:lsl. 7(x € a) = flx] = £’[x])
= (Xx € a. f[x]) = (Xx € a’. f’[x])

takes care of introducing the necessary assumptions for the subgoal created by the
antecedent of rng_fset_for_when_eq.

The initial proof step in Figure 10.11 is necessary to set things up right for
a match to be generated against the rng_fset_for_when_eq lemma. The effect of
the grp_eq_sym lemma is clear, but the effect of the conversion dset_of_monC is
hidden. The problem is that the expression

(x1 % y1) = y
at the top of Figure 10.11 and the expression
x = e

in lemma rng_fset_for_when_eq really involve different equalities. If hidden pa-
rameters are made visible, giving respectively

(x1 % y1) S8y
where g is an element of the 0CMon class and
X =8 e

where s i1s an element of the DSet class, the difference is more apparent. One =
is the equality function on the 0CMon class and the other is the equality function
on the DSet class. The conversion dset_of_monC adds in an appropriate forgetful
functor from 0CMon to DSet. More specifically, it rewrites:
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!
F (¥x € dom(ps).
Yx1 € dom(gs).
Yyl € dom(rs).
Yy € dom(gs) X dom(rs).
when (x1 * y1) = y.
when (x * y) =, u. pslx] * (gs[x1] * rs[y1l))

BY (RWN 1 (LemmaC ‘grp_eq_sym‘) O
THENM RWH dset_of_monC 0 ...a)

F (¥x € dom(ps).
Yx1 € dom(gs).
Yyl € dom(rs).
Yy € dom(gs) X dom(rs).
when y =5 (x1 * yi1).
when (x * y) =, u. pslx] * (gs[x1] * rs[y1l))

BY (RWO "rng_fset_for_when_eq" 0 ...a)

M7, x: | (glset) |

8. T(x €; dom(ps))

9. x1: [(glset)l|

10. T(x1 €; dom(gs))

11. y1: |(glset)|

12. T(y1 €; dom(rs))

F T(x1 * y1 €, dom(gs) X dom(rs))

BY (BLemma ‘prod_in_mset_prod‘ ...)

-t (Yx € dom(ps).
Yx1 € dom(gs).
Yyl € dom(rs).
when (x * (x1 * y1)) =, u.
pslx] * (qs[x1] * rs[y1l))

Figure 10.11: Cancelling the X and when over y
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(x1 % y1) S8y
to
(x1 * y1) =, (glset) y

The final step part of the proof, now with the work on the right-hand side
included, is shown in Figure 10.12.

F (Xx € dom(ps).
Yx1 € dom(gs).
Yyl € dom(rs).
when (x * (x1 * y1)) = u. pslx] * (qs[x1] * rsly1l))
= (Xy € dom(rs).
Yx1 € dom(ps).
Yyl € dom(gs).
when ((x1 * y1) * y) =, u.
(pslx1] * gsly1l) * rslyl)

BY (RWN 3 (HereDnC (LemmaC ‘rng_mssum_swap‘)) O
THENM RW MonNormC O
THENM RW RnglormC O ...)

Figure 10.12: Making Both Sides Equal

10.7.2 Exploiting Algebraic Properties of Concrete
Functions

Once it has been shown that a set of functions form some algebraic structure, it
is then desirable to apply theorems about that algebraic structure to the set of
functions. One way in Nuprl of doing this is to instantiate blocks of theorems
about the algebraic structure with the instance in hand. Another is to temporarily
rephrase the way in which the concrete functions are represented so that their
algebraic structure is trivially recognized.

An example of this latter way is shown in Figure 10.13 which is the core of
the proof of the theorem oal_lt_trichot from the theorem oal_bpos_trichot.
Here the conversion oal_grpC rephrases the instances of functions that make up
the oal_grp definition as projections from oal_grp. The group theorems

grp_inv_diff:
Vg:IGroup. Va,b:lgl. ~ (a * (~ b)) =b *x (~ a) € Igl
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s: LOSet

g: 0Grp

ps: loal(s;g) |

. gs: loal(s;g) |

Tpos(qs ++ --ps) V ps = gqs € loal(s;g)| V Tpos(ps ++ --gs)

Y RWD oal_grpC O

T W —T b WN -+

Tpos(gs * (~ ps))
V ps = gqs € loal_grp(s;g)l
V Tpos(ps * (~ gs))

BY (RWN 2 (PolyC "grp_inv_diff<") O
THENM RWO "grp_eq_shift_right" O ...a)

F Tpos(gs * (~ ps))
V gs * (~ ps) = e € |oal_grp(s;g)l|
V Tpos(~ (gs * (~ ps)))

BY RWD rem_oal_grpC O

!

F Tpos(gs ++ --ps)
V 00 = gs ++ --ps € loal(s;g)|
V Tpos(--(qs ++ --ps))

Figure 10.13: Viewing Concrete Functions Algebraically
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grp_eq_shift_right:
Vg:IGroup. Va,b:lgl. a=>b € Igl <= e =b *x (~ a) € gl

are applied in the central tactic and finally rem_oal_grpC removes the abstract
group. The oal_grpC and rem_oal_grpC conversions are simply defined using the

MacroC direct-computation conversion.

let oal_grpC,rem_oal_grpC =
let cprs =
map (\t,t’. DoubleMacroC ‘oal_grpC‘ IdC t (ForceReduceC ‘5¢) t’)
[[Ioalist(s;g)|1,[Ioa1_grp(s;g)|1
;lps ++ gsl,lps * gsl
;T-- psl, [~ psl
; fnil{s;gﬂ s [l
]
in
FirstC (map fst cprs),FirstC (map snd cprs)

)

10.7.3 Monotonicity Reasoning

A good example of monotonicity reasoning is shown in Figure 10.14. This proof
step is from the proof of theorem oal_times_dom. The lemma being explicitly

invoked is:
omral_plus_dom:
Vg:0CMon. Vr:CRng. Vps,qs:|lomral(g;r)|.
T(dom(ps ++ gs) C, dom(ps) U dom(gs))
and the monotonicity lemmas that are automatically applied by the rewrite package
include:
mset_mem_functionality_wrt_bsubmset:

Vs:DSet. Va:FSet{s}. Vb:MSet{s}. Vu:l|sl.
T(@a & b) = T((u & a) = (ué& b))

assert_functionality_wrt_bimplies:
Yu,v:B. T(u =4 v) = {Tu = vt
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:

1. g: 0CMon

2. r: CRng

3. gs: lomral(g;r)|
4. x: |(glset)|

5. ps: lomral(g;r)|
6. ...

7. x1: gl

8. y: Irl

9. ...

10.

11. T(x €, dom(<xl,y>* gs ++ (ps ** gqs)))
...

|

BY (RWH (LemmaC ‘omral_plus_dom‘) 11 ...a)

!

11. T(x €p dom(<xl,y>* gs) U dom(ps ** gs))

Figure 10.14: Monotonic Reasoning




Chapter 11

Conclusions

11.1 Summary of Achievements

This thesis has presented work in building proof tools and developing formal the-
ories that has transformed the Nuprl system into a substantially richer and more
ergonomic environment for the production of formal mathematics. The case study
on polynomial arithmetic in Chapter 10 demonstrates this success of this transfor-
mation.

More specifically, that case study demonstrates Nuprl’s new capabilities for rea-
soning with abstract algebraic operations and for reasoning about concrete com-
putations. Further, it shows how the capabilities can be intimately intertwined
and I think it stands as a paradigm for the ADT (abstract data type) approach to
program specification and implementation.

11.2 Future Directions

There are several directions that I think are worthy of further exploration.

o [ myself am very keen to apply this work to formal reasoning about digi-
tal hardware and software systems where significant algebraic dexterity is
required. For example, digital-signal-processing, fast-fourier-transform, and
hybrid control systems. I see these applications as providing focussed and
worthwhile challenges for theorem proving technology. This is an area of
interest that I pursued earlier in my thesis research [Jac91, Jac92] and that
provided the initial motivation for much of the work described in this thesis.

e One of the most significant problems with Nuprl is that of performance.
The main cause of this problem is the highly redundant checking of well-
formedness by proof. Proof-caching schemes have been experimented with
in Nuprl a little, and they have helped, but no-one has got close yet to the
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optimal performance for such a scheme. By optimal, I am thinking here
of when the total of the sizes of all the terms type-checked in a proof is
a small constant factor times the sum of the initial size of the proposition
being proven, and the new term fragments that are added by proof steps.
I’'m sure too that the well-formedness problem is masking other performance
problems. Performance improvement of is critical if users are going to be
able push through larger examples than those discussed here without having
their patience exhausted.

I think promising work could be done in further exploring the use of Nuprl
to support program development using the Abstract Data Type paradigm.
Better mechanisms for inheritance of structure between class definitions and
subtyping between classes are definitely needed.

As indicated in Section 5.4, there is still some room for progress to be made
within Nuprl’s current type theory, and Jason Hickey, a graduate student at
Cornell, has started on work looking at helpful extensions to the type theory
to better support inheritance and subtyping [Hic94].

It would be interesting to see if this work could be tied in to current research
in type systems for object-oriented programming [GM94], where similar is-
sues crop up.

The work described in this thesis has many connections with that going on
in the implementation and use of computer algebra systems.

— As shown in this thesis, we are beginning to be able to formally verity
the correctness of the core code of a computer algebra system.

— Rich kinds of algebraic manipulations that are awkward to carry out in
current computer algebra systems, are becoming straightforward in the-
orem proving systems. For example, consider the rewrite rules demon-
strated in Section 10.7 for rearranging sums. These rules have side
conditions requiring non-trivial proof to solve.

— Since the algebraic vocabulary of Nuprl is becoming more significant
and more similar to that found in some computer algebra systems, pos-
sibilities are opening up of a theorem-proving environment providing
useful logical-inference services to a computer algebra system.

— A computer algebra system could be used to enhance a theorem proving
environment by having the computer algebra system carry out compli-
cated potentially-unsound computations that the prover then verifies.
As mentioned in Section 1.5.2, Harrison and Thery experimented with

this idea in HOL and Maple.
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— The type systems adopted by theorem-proving systems such as Nuprl
and computer algebra systems such as Axiom [JS92] or Weyl [Zip93b]
have a lot of similarities. Could a theorem-prover and a computer al-
gebra system share a system of types? This clearly would simplify
interfacing the two kinds of systems, since then they would be working
in the same mathematical language.

In the short term, I am sure that some success is to be had in encouraging
the linking of existing theorem provers and computer algebra systems. Here
at Cornell, Zippel and I am currently engaged in investigating possibilities
for interactions between Nuprl and Weyl [Jac94a).

In the long run, I see both technologies as developing so as to become more
compatible with one another. However, it may be unwise to try to construct
some monolithic hybrid system. Rather, it is probably best to create an
environment in which these tools can interact in ways that are both rich and
varied, yet also completely formal. This topic is currently being pursued by
the Logic Group at Stanford [GK94], and there is considerable interest in it
at Cornell.

e As shown in this thesis, the Nuprl system can produce quite readable proofs.
I think with a modest further increase in automation, possibly just achieved
with the existing tactics that I have developed, it should be possible to
produce both readable and completely formal expositions of small bodies of
mathematics or computer science; for example, of a chapter or two of a book
on number theory [HWT8], ‘concrete mathematics’ [GKP89] or functional
programming [AS85, Pau9l].

An interface between the World-Wide-Web [BCLT94] and Nuprl is currently
undergoing test. It would be very exciting if say an undergraduate in math-
ematics or computer science could access such formal expositions over the
Web and follow them if they had some familiarity with the topic, but little
or no prior preparation in languages or systems for formal proof.

11.3 Dependence on Nuprl’s Type Theory

Nearly all the ideas behind the proof tools described in this thesis do not depend
in any way on the fact that Nuprl’s type theory is constructive, or indeed, on
that Nuprl uses a type theory at all. All the ideas in the rewrite package, the
relational-reasoning tactic, or the arithmetic tactic, could just as easily be made to
work in any interactive theorem prover. Of course, integrating decision procedures
into theorem provers where proofs are mostly generated automatically is a much
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different (and often much harder) problem, as is shown in Boyer and Moore’s work
in NQTHM [BM88b)].

Much of the work in abstract algebra did make heavy use of Nuprl’s dependent
function and dependent product types (II andX types), so I think it would be
difficult to duplicate this work in say the present HOL system [GM93], which has
a much simpler type theory.

On the other hand, in a classical set-theoretic framework such as Mizar’s, the
concepts of a dependent function and a dependent product are defined rather than
primitive notions (though the type system in Mizar does have these concepts built
into it for convenience). Set-theoretic frameworks are known to be adequate for
virtually all of mathematics, so one rarely runs into problems in these frameworks
of not knowing at all how to formalize some concept. Of course, there might be
much debate about which method of formalization is best.

When I was in the mode of creating and proving properties about functional
programs, [ did find it very elegant that Nuprl’s constructive type theory forced
me to make the functions computable; if I was creating a sorting function, I was
forced into supplying the sorting function with a computable order function as an
argument, as | would have had to in any other functional programming language.
It one is defining such functions in a classical type theory such as HOL’s, such
a discipline is only enforced by the user and not by the system. Indeed, when it
comes to passing functions for computing equality to other functions, a user of HOL
might find it convenient to ignore the fact that ‘real’” functions in a programming
language require such an argument. Note that the insistence on functions being
computable is not just a practice found in constructive type theories. It also occurs
in simpler logics such as the ‘computational logic’ of NQTHM [BM88al.

Other times though, I found the computability restrictions of Nuprl petty. For
example, the split between the type of propositions and the type of booleans lead to
— from a classical point of view — much unaesthetic duplication of definitions and
theorems. Also in the work on permutation functions in Section 7.2, constructivity
considerations forced me to make many definitions and prove many theorems twice
that only would have to be done once in a classical system. 1 felt that formal
mathematics is tedious enough as it is, without all these extra distinctions thrown
in.

One solution to this dilemma involves building a theory of the semantics of a
programming language in some classical framework. By default, functions are not
necessarily computable. Then, when one wants to establish the computability of
some function, one has to explicitly give an expression in the programming lan-
guage that has that function as its denotation in the semantics. The advantage of
this approach is that it smoothly opens the door to reasoning about the compu-
tational complexity of functions. Theories of programming languages have been
developed in several theorem provers such as HOL and NQTHM.

Constructive type theory offers no features for proving theorems about com-
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plexity, unless one considers adding in some reflection mechanism. A fair amount
of work has been done in this direction in Nuprl [Kno87, How88a, ACHA90, CH90].
However, reflection in a constructive type theory requires constructing a theory of
not only a functional programming language, but also a theory of sequents, rules
and proofs; this is a much more challenging task, especially in a type theory as
structurally complicated at Nuprl’s.

Another promising solution to this dilemma involves trying to combine set
theory with a functional computation language [HS94]. Functions in this language
are computable just when they are constructed in certain well-defined ways.

11.4 Appropriateness of Nuprl’s Type Theory

It is elegant to be working in a foundational theory where the objects you are often
reasoning about are computable functions that you can actually execute. However,
I think that Nuprl’s present type theory is an inadequate foundation for abstract
algebra, be it classical or constructive; the discussion in Chapter 5 explains the
difficulties with adequatly formulating such basic notions as the collection of all
subtypes of a type.

Part of the problems with Nuprl’s type theory are certainly not intrinsic to
the idea of a constructive type theory; things would have been less awkward if
the standard equality on types had been extensional rather than intensional, if
equality-respecting hadn’t been so wrapped up in the semantics of Nuprl sequents
and if the type theory had included a subtyping predicate. Fortunately, I think
that much of the theory development and all the proof tool development would
remain intact if a type theory were adopted with these or equivalent changes. Howe
has put much thought into how such changes might be achieved [How93, HS94].

However, part of the problems are inherent in the constructivist agenda of see-
ing potential computational content in every logical proposition. The constructivist
makes many subtle distinctions that a classical mathematician ignores. Then, to
make the presentation of the mathematics readable, the constructive mathemati-
cian hides a lot of these distinctions so they are implicit rather than explicit in
the notation. I didn’t know how in Nuprl’s type theory to systematically formalize
this hiding of detail for constructive algebra, but I did get the definite sense that
mechanical formalizations of constructive type theories can play an important role
in helping constructive mathematicians make their ideas precise.

The approach I adopted to constructive algebra was predominantly an explicit
one; that is, I assumed that constructions would always be made explicit and not
be assumed implicit in the computational content of propositions. This approach
was close in spirit to that taken in Scratchpad and Axiom [JS92, DT92, DGT92]. If
inhabitants of algebraic classes were to have a decidable equality, then a function
would be explicitly required to compute that equality in the signature. If in a
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group it was desired that that every element have a computable inverse, then an
inverse function had to explicitly appear in the group signature.

In a way, [ was taking advantage of how Nuprl’s type theory limited me. The
fact that Nuprl the boolean type and the type of propositions in are distinct, forced
me into giving an explicit treatment of equality in the algebraic classes I set up,
and forced me into developing the beginnings of a theory of discrete types (I called
them discrete sets or DSet’s, see Section 6.3 and Section 10.4.1).

Note that in Chapter 8, [ did explore taking a naive view of a completely implicit
constructive approach; I was careful never to ignore the computational content of
any proposition. The results were that I had one theorem that from a constructive
point-of-view, specified a program for computing the rich computational content of
an equivalence relation ‘a is equal to b up to permutations and associates’, where
a and b were lists of elements of a cancellation monoid(see Section 8.1.3). It was
questionable whether anyone would care about this computational content. How-
ever, another theorem I proved specified a program for computing factorizations
in cancellation monoids, a more useful computation to want.



Appendix A

Divisibility Theory

This appendix reproduces in full the proofs abbreviated in Figure 8.1 and Figure 8.2
of Chapter 8. The numbers interspersed in the vertical bars of the proof branches
serve to help trace branches when proof printouts such as these run over several

pages.

A.1 Existence Theorem

F Vg:IAbMonoid
Cancel(lgl;lgl;*)
= WellFnd(lgl;x,y.x pl y)
= (Vc:lgl. Dec(Reducible(c)))
= (Vb:lgl. = (g-unit(b)) = (Jas:Atom{g} List. b = II as))

BY (UnivCD ...a)

1. g: IAbMonoid

2. Cancel(lgl;lgl;*)

3. WellFnd(lgl;x,y.x pl y)

4. Vec:lgl. Dec(Reducible(c))

5. b: Igl

6. —(g-unit(b))

F Jas:Atom{g} List. b = II as

BY (WFndHypInd 3 5 THENM D 0 ...a)

5. 3: lgl

6. Vk:lgl. k¥ pl j = —(g-unit(k)) = (Jas:Atom{g} List. k = II as)
7. =(g-unit(j))

F Jas:Atom{g} List. j = II as

B

Y (Decide [Reducible(j)! ...a)

8. Reducible(j)
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1 BY UnfoldTopAb 8 THEN ExistHD 8
8. b: Igl
9. c: lgl

10. —(g-unit(b))
11. = (g-unit(c))
12. j = b * ¢

1 BY (SwapEquands 12
l THEN FLemma ‘non_munit_diff_imp_mpdivides‘ [12] ...a)

12. b * ¢ = j
13. b pl j

1 BY (RWH (LemmaC ‘abmonoid_comm‘) 12
l THENM FLemma ‘non_munit_diff_imp_mpdivides‘ [12] ...a)

12. ¢ * b = j

14. ¢ pl j
1 iY (FHyp 6 [13] THENM FHyp 6 [14] ...a)
i5. Jas:Atom{g} List. b = II as
16. Jas:Atom{g} List. ¢ = II as
1 %Y New [‘as2’] (D 16) THEN New [‘as1’] (D 15)

156. as1: Atom{g} List
16. b = II asi
17. as2: Atom{g} List
18. ¢ = II as2

1 BY (With last @ as2! (D 0)
THENM RewriteWith [] ¢‘mon_reduce_append‘‘ 0 ...a)

F j=1II asl * II as2
1 BY (RWH (RevHypC 18 ORELSEC RevHypC 16) 0
THENM RW AbMonNormC 12 ...)

8. —Reducible(j)

!

BY (Wwith [j::[11 (D 0) THENM AbReduce O ...a)
M € Atom{g}
1 BY (MemTypeCD ...)

F Atomic(j)
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b

1 BY (Unfold ‘matomic‘ O ...)

Li—j:j*e

BY (RW MonNormC O ...)
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A.2 Uniqueness Theorem

F Vg:IAbMonoid
Cancel(lgl;lgl;*)
= (Va,b:lgl. Dec(a | b))
= (Vps,qs:Prime(g) List. II ps ~ II gs = ps = gs upto ~)

BY (RepeatMFor 4 (D 0) ...a)

1. g: IAbMonoid

2. Cancel(lgl;lgl;*)

3. Va,b:lgl. Dec(a | b)

4. ps: Prime(g) List

i— Vqs:Prime(g) List. II ps ~ II gs = ps = (s upto ~

BY (New [‘p’;‘ps\’’] (ListInd 4)
THEN OnAll AbReduce ...)

5. gs: Prime(g) List
6. e ~ II gs
F [0 = gs upto ~

1 BY D 6 THEN Thin 6 THEN FoldTop ‘munit‘ 6
6. g-unit (Il gs)

1 BY MoveToConcl 6

THEN Wew [‘q’; ‘gs\’’] (D 5)
THEN (D O ...a)

THEN OnAll AbReduce

6. g-unit(e)
F [0 = [1 upto ~

1 2 BY (StrengthenRel ...)

L

(o]

. q: Prime(g)

7. gs’: Prime(g) List

8. g-unit(q * II gs’)

F [0 = q::9s’ upto ~
B

Y Assert [False!l THENM Trivial
THEN D 6 THEN D 7

6. q: lgl

7. = (g-unit(q))

8. Vb,c:lgl. gl b*c=>qglbVglec
9. gs’: Prime(g) List

10. g-unit(q * II gs’)
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l F False
1 BY (FLemma ‘munit_of_op‘ [10] ...)

5. p: Prime(g)

6. ps’: Prime(g) List

7. Vgqs:Prime(g) List. II ps’ ~ II qs = ps’ = gs upto ~
8. gs: Prime(g) List

9. p* II ps’ ~ II gs

l_

p::ps’ = gs upto ~
B

Y Assert Ip | IT gsl
M= p | I gs

1 BY OnCls [9;9] D

9. c: gl
10. IT gqs = (p * Il ps’) * ¢
11. IT gs | p * II ps’

1 BY (With [IT ps’ * ¢! (D 0)
THENM RW MonNormC 10 ...)

~»10. p | II gs

BY (FLemma ‘mprime_divs_list_el® [-1] ...a)
THENM (Thin (-2) THEN D (-1))

F IsPrime(p)
1 BY (D 5 THEN NoteConclSqStable ...)

10. i: Nllgs|
11. p | gs[i]

BY Assert Ip ~ gs[i]]
THENM Thin 11

M op o~ gsli]

1 BY (Backchain ‘‘mdivisor_of_atom_is_assoc
mprime_imp_matomic‘‘ ...)

F —(g-unit(p))
1 2 BY (D 5 THEN Unhide THENM D 6 ...)

L»F IsPrime(qs[i]l)
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BY (4ssert [qs[i] € Prime(g)! THENM MemTypeHD (-1) ...a
l )

12. gs[i] = gs[il]

[13]. IsPrime(gs[i])

1
1 BY (NoteConclSqStable ...)
L»11. p ~ gslil

BY MoveToEnd 9
THEN (OnMCls [0;-1] (RWH
(1£IsC lqs! (RevLemmaWithC [‘i’,[il] ‘select_r
eject_permr‘))) ...a)
THEN AbReduce (-1)

9. i: N|lgsl|
10. p ~ gs[i]
11. p * IT ps’ ~ qs[i] * IT gs\[i]

F p::ps’ = gs[il::qs\[i] upto ~

BY (SeqOnM
[RWH (HypC 10) 11;FLemma ‘massoc_cancel‘ [11];Thin (
_2)

;RelArgCD] ...)

11. II ps’ ~ II gs\[i]
F ps’ = gs\[i] upto ~

BY (BHyp 7 ...)
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