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ENHANCING THE NUPRL PROOF DEVELOPMENT SYSTEM ANDAPPLYING IT TO COMPUTATIONAL ABSTRACT ALGEBRAPaul Bernard Jackson, Ph.D.Cornell University 1995This thesis describes substantial enhancements that were made to the softwaretools in the Nuprl system that are used to interactively guide the production offormal proofs. Over 20,000 lines of code were written for these tools. Also, acorpus of formal mathematics was created that consists of roughly 500 de�nitionsand 1300 theorems. Much of this material is of a foundational nature and supportsall current work in Nuprl. This thesis concentrates on describing the half of thiscorpus that is concerned with abstract algebra and that covers topics central tothe mathematics of the computations carried out by computer algebra systems.The new proof tools include those that solve linear arithmetic problems, thosethat apply the properties of order relations, those that carry out inductive proofto support recursive de�nitions, and those that do sophisticated rewriting. Therewrite tools allow rewriting with relations of di�ering strengths and take care ofselecting and applying appropriate congruence lemmas automatically. The rewriterelations can be order relations as well as equivalence relations. If they are orderrelations, appropriate monotonicity lemmas are selected.These proof tools were heavily used throughout the work on computationalalgebra. Many examples are given that illustrate their operation and demonstratetheir e�ectiveness.The foundation for algebra introduced classes of monoids, groups, rings andmodules, and included theories of order relations and permutations. Work on�nite sets and multisets illustrates how a quotienting operation hides details ofdatatypes when reasoning about functional programs. Theories of summationoperators were developed that drew indices from integer ranges, lists and multisets,and that summed over all the classes mentioned above. Elementary factorizationtheory was developed that characterized when cancellation monoids are factorial.An abstract data type for the operations of multivariate polynomial arithmetic was



de�ned, and the correctness of an implementation of these operations was veri�ed.The implementation is similar to those found in current computer algebra systems.This work was all done in Nuprl's constructive type theory. The thesis discussesthe appropriateness of this foundation, and the extent to which the work relied onit.
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Chapter 1Introduction1.1 MotivationThis thesis describes foundational work in the design of computer systems to as-sist engineers, mathematicians and scientists in the production and checking ofcompletely-rigorous mathematical arguments.There is a long history of the successful use of computers to automate mathe-matical calculations involving numbers and arithmetic. For evidence of this, oneonly need look at the wealth of current work in scienti�c computation and numer-ical analysis.More recently, there has been very rapid growth in the popularity of computeralgebra systems such as Mathematica [Wol91] and Maple [CGG+91]. At theircore, these systems have routines for carrying out such symbolic manipulations asfactorizing polynomials, for computing integrals and di�erentials, and for �ndingsymbolic solutions to sets of equations. They also provide languages for rapidlyconstructing packages that extend the systems' capabilities.A major problem with many computer algebra systems is that they have fewdesign features to ensure that the symbolic manipulations that they carry outrespect the mathematicalmeaning of the symbols being manipulated. For example,Mathematica has no type system and does not by default do capture-avoidingsubstitution. The algorithms used are often complicated and it is all too easy forprogrammers to make mistakes. Further, computer-algebra-system programmersoften �nd it convenient to ignore special cases so that the procedures they writeare not even logically sound. A trivial example of this is the common practice ofsimplifying 1=(1=x) to x, where x is might be understood to range over real orcomplex numbers but there is no check on x being non-zero. Such decisions areoften made because there is no way of uniformly carrying out such checks, and evenif checks were attempted, they might considerably slow down symbolic calculation.Further, users of computer algebra systems might well be unaware of the corners1



2that were cut by the programmers of the packages that they use.Computer algebra systems such as Maple [CGG+91] and Axiom [JS92] are ad-dressing the issue of the meaning of symbolic expressions by adopting sophisticatedtype systems. Some too make an attempt to track side conditions of calculations.However, all computer algebra systems lack the absolute notion of rigor found inmathematics.Rigor in mathematics is established by having precise languages for statinglogical propositions and precise rules de�ning what is a valid inference and whatis a valid proof. Unfortunately, computer algebra systems have only vague notionsof what a proposition is, and no notions of what a proof is, or what a formallycorrect inference procedure is.An until-now fairly separate �eld of research has been the construction of me-chanical theorem provers. I use this term here in a loose sense, encompassingnot only resolution theorem provers and systems such as NQTHM [BM88a], butalso systems perhaps better called proof checkers such as Automath [dB80] andMizar [Rud92], and proof development systems such as Nuprl and HOL [GM93].The HOL group refers to their system as a theorem proving environment, which Ithink is an apt phrase for describing all these kinds of system.Such systems all support notions of de�nition, theorem and proof analogousto those that a mathematician employs. They have precise semantics and arecarefully engineered to ensure that inferences always comply with this semantics.One technique used to ensure correctness is to insist that all inference procedureseventually justify themselves in terms of a small �xed number of primitive rules.Another is to have scrupulous code walk-throughs and testing regimens. Another,still in its early stages, is to use theorem provers to formally verify core parts oftheir own designs. This last technique is often called reection.Because of the foundational nature of theorem provers, their domains of reason-ing have usually been both far more restricted and of a di�erent nature than thoseof computer algebra systems; they have mostly been successfully applied in areasof concrete, discrete mathematics. Currently, the principle motivating applicationof theorem provers is increasing the reliability of digital hardware and software,particularly when errors can be life-threatening or very costly. The inherent rigorof theorem provers makes them ideal for checking masses of tedious details andidentifying subtle errors.However, it is becoming increasingly desirable to obtain the assurances of safety,reliability and correctness that theorem provers can provide in domains muchmoretraditionally associated with computer algebra systems. Engineers want to checkthe designs of digital signal processing (DSP) systems and hybrid control systemswhere there is an intimate mixture of algebraic operations on continuous, quasi-continuous (e.g. oating-point numbers) and discrete quantities.



31.2 AimsOne of the major aims of the work described in this thesis has been to broaden therange of domains and the kinds of operations that the Nuprl proof developmentsystem can be used to reason about. The approach has been to try to do this in anabstract uni�ed way, rather than repetitively developing many disparate concretetheories.I was also keen to provide software tools that could simplify and speed interac-tive proof development by automating away tedious detail and o�er very generaland controllable modes of reasoning.Another major aim has been to explore techniques for formal speci�cation andimplementation of abstract data types. Abstract data types (and the related notionof classes in object-oriented programming) provide fundamental mechanisms forthe control of complexity in large software systems by encouraging modularizationand code reuse.I chose to look at in particular the speci�cation and implementation of a set ofoperations for multivariate polynomial arithmetic. This topic was chosen becauseof the rich algebraic structures involved, and it was clear that it would providean excellent opportunity for demonstrating the software tools and formal mathe-matical theories I had developed earlier. This topic is also a very relevant to theprogram of formally verify core parts of theorem-proving and computer algebrasystems; the implementation I chose to verify is similar to that which is commonlyused in current computer algebra systems.1.3 Overview of Nuprl SystemI took as my starting-point the Nuprl proof-development system [C+86]. The coreof Nuprl is a program called the re�ner which has knowledge of a set of primitiveinference rules and which is ultimately responsible for constructing every proof.Therefore, the correctness of proofs depends solely on the re�ner.The inference rules provide very small steps in proofs. Larger steps are madeby invoking programs called tactics which choose and sequence the primitive rules.Some tactic invocations result in only one or two primitive rules being applied,others can result in 104 or more!A key feature of tactics is that they are modular; their behaviours are easy topredict and it is straightforward to combine existing tactics into new larger tactics.Indeed the user is encouraged to do this as he or she becomes more competent withthe system. Nuprl's tactic collection form a tool-kit of mathematical techniquesfor carrying out proof. The tactic software-engineering paradigm was pioneered inthe LCF project and since has been adopted in several other theorem provers inuse today such as HOL and Isabelle.



4When using Nuprl, each proof is maintained as tree shaped data-structure.Nodes of the tree indicate states of the proof, and tactic text annotates eachnode, showing how immediate children nodes were generated. Tactics thereforedocument proofs and make proofs readable. Several examples of such proof treesare given in this thesis. By way of contrast, other tactic-based provers by defaultdon't maintain proof trees; during proof they only maintain the unproven leavesof a proof and after a proof is completed they only retain the script of tactic text.Such scripts are often cryptic and the explanatory potential of tactics is lost.Nuprl's primary application was intended to be the veri�cation and synthesisof correct programs. Previous experience at Cornell with the PL-CV project hadsuggested that even when just reasoning about programs, it would be very advan-tageous to choose a logic that could be used as a foundation for all of mathematics.The most well-known foundational theories for mathematics are set theories;in particular Zermelo-Fraenkel set theory. However, it can be rather di�cult andclumsy to reason about computations in set theory. Nuprl adopted a type-theoreticlanguage close in spirit to that of DeBruijn's Automath system [dB80] and stronglyinuenced by work of Scott [Sco70] and Martin-L�of [ML82]. A major di�erencebetween type theory and set theory is that in type theory, the notion of functionis considered to be primitive and that type theories provide as primitive, at thevery least, ways of constructing primitive recursive functions. It seems plausibletherefore, that type theories should be better for reasoning about computation.Martin-L�of's type theory was particularly interesting because it was proposed asbeing an alternative foundation for mathematics, more speci�cally for constructivemathematics.In constructive mathematics, one distinguishes between di�erent kinds of prooftechniques that are normally considered to be equivalent. For example, in orderto prove a proposition 9x: Px, it is usually su�cient to prove the impossibilityof the proposition 8x: :Px. A constructivist would deny this. She would saythat a valid proof of 9x: Px must come up with a speci�c a such that Pa is true.Further, a constructivist would only accept a proof of a proposition 8x9y: Pxy ifa uniform method could be exhibited for constructing a y such that Pxy, givensome arbitrary x. A uniform method is frequently taken to mean some recursivefunction or computer program.Interest in constructive mathematics has revived recently for a couple of rea-sons. Firstly, constructive mathematics provides a way of viewing the language oflogical propositions as a speci�cation language for programs. An ongoing thrustof work in computer science has been to develop program speci�cation languagesand formalisms for systematically deriving programs from speci�cations. For con-structive mathematics to provide such a methodology, techniques are needed forsystematically extracting programs from constructive proofs. Early work in this�eld includes that of Bishop [Bis70] and Constable [Con71]. What distinguishedMartin-L�of's '82 type theory was that the method it suggested for program syn-



5thesis was exceptionally simple: a direct correspondence was set up between theconstructs of mathematical logic, and the constructs of a functional programminglanguage. Speci�cally, every proposition was considered to be isomorphic to a typeexpression, and the proof of a proposition would suggest precisely how to constructan inhabitant of the type, which would be a term in a functional programming lan-guage. The term that inhabits the type corresponding to a proposition is oftenreferred to as the computational content of the proposition.Secondly, designers of computer algebra systems and researchers in �elds suchas computational geometry really care about whether constructions described inalgebra text books are e�ective or not. There has been a revival of much algebradone in the last century when more attention was paid to the constructive natureof mathematics.From the start, I was concerned about the strengths and weaknesses of workingin Nuprl's constructive type theory. I have tried to address at various points inthis thesis where the type theory was a help and where a hindrance. Importantly,I should emphasize to the reader that though all the work described in this thesiswas does within the constructive type theory of Nuprl, most of the issues discussedare relevant to any design of any theorem-proving environment with algebraiccapabilities, no matter what the foundational logic.1.4 Contributions1.4.1 Proof Development ToolsWhen I joined the Nuprl group, a signi�cant amount of work had been done in V3of the Nuprl system and the groundwork was being done for V4 (see Section 1.5.1for more information). I started out by rewriting many of the V3 tactics for thethen edgling V4 system, and over the course of my PhD, I made many signi�cantchanges and extensions.1.4.1.1 Rewrite PackageThe most signi�cant extension I made to the tactics was with a package to sup-port rewriting. Usual treatments of rewriting [DJ90] assume that the equivalencerelations being rewritten with respect to are global congruence relations, so thatthe substitutions suggested by rewrite rules are always valid. However, there arecommon instances where one wants to rewrite using relations that are not alwaysrespected.The rewrite package I designed veri�es every application of a rewrite rule,checking automatically that all relevant congruence properties are obeyed. Thepackage handles also rewrite rules where the rewrite relation is an order relation. Inthese cases it checks the appropriate monotonicity properties. Examples are given



6throughout the thesis of both monotone and congruence reasoning. The ability torewrite with order relations has also been exploited in recent work in Nuprl on realanalysis and I expect it could be very useful when developing theories of programre�nement calculi and process algebras.The package was designed around the notion of conversion [Pau83b]. Conver-sions provide a modular language for composing rewrite rules into rewrite strate-gies.1.4.1.2 Main Automatic ProceduresRelational Reasoner I devised a simple tactic that automatically solved goalsthat depended on basic properties of order and equivalence relations, such as sym-metry, antisymmetry, reexivity, irreexivity, transitivity and linearity.Arithmetic Reasoner I implemented a new inference rule for solving linear in-equalities over the integers, based on Bledsoe's sup-inf algorithm [Ble75]. The chiefenhancement I made was to take full advantage of the linear arithmetic propertiesof non-linear arithmetic functions and non-arithmetic functions that have integervalues.Type-Checker All type checking in the Nuprl system is done by proof. En-hancements I made to the type checking tactics included adding much better ca-pabilities for reasoning about type inclusion (necessary because terms in Nuprl'stype theory frequently have multiple types) and enabling the type checking ofde�nitions with binding structure. Such de�nitions were new to V4.1.4.1.3 Other FeaturesRecursive De�nitions and Induction Tactics I implemented a methodol-ogy for simply de�ning general recursive functions using the Y combinator. Thepotential for doing this had been previously recognized by Howe and Allen, buthad not been exploited to any extent in Nuprl V3. Much of the work here was indeveloping well-founded-induction tactics for use in proofs of totality of recursivefunctions. These tactics had to work on the edge of Nuprl's type theory.Universe Polymorphism Constructive type theories including Nuprl's have acumulative hierarchy of type universes. It is common when universes are mentionedto have some kind of scheme for implicitly quantifying over the levels of theseuniverses. Such a feature was added in Nuprl V4.1. I had to do a signi�cantamount of work to Nuprl's matching code to ensure that these levels would beappropriately instantiated whenever lemmas were applied.



71.4.2 Formal Algebra1.4.2.1 Approach in Nuprl's Type TheoryNuprl's type theory provides a more restrictive environment for doing mathematicsin than say Zermelo-Fraenkel set theory. For instance, when considering how torepresent ideals of rings, I was faced with several alternatives, none of which wasthat satisfactory. On the other hand, I was able to develop the basic theoryof common algebraic classes such as monoids, groups, rings and modules in astyle similar to that adopted in the computer algebra system Axiom [JS92, DT92,DGT92], and had success with interpreting free constructions computationally.I took approaches towards inheritance and subtyping of classes which were verysimple, but which functioned adequately and highlighted features that one wouldwant to include in a more sophisticated approach.1.4.2.2 PermutationsI gave a constructive development of the group of permutations on an arbitrarytype and then specialized this development to permutations on a �nite set. Forexample, I proved that every permutation is a product of pairwise interchanges.I applied this theory of permutations to developing a theory of the permutationrelation on lists. I compared this approach to one based on a recursive de�nitionof the permutation relation and to one based on a count function which computedthe multiplicity of elements in lists. The description of this work can be found inChapter 7.1.4.2.3 Finite Multisets and Finite SetsI developed a theory of (�nite) multisets which included de�nitions and character-izations of basic multiset operations and predicates. Finite sets were de�ned as asubtype of these �nite multisets and many of the �nite multiset operations weregiven alternative characterizations on sets.The novelty of this development was chiey in the use of Nuprl's quotienttype [C+86]. The quotient type allows hiding of internal structure of types; multi-sets were de�ned from lists by hiding the order of elements in lists. The quotient-ing operation on types does not group elements of a type into equivalence classes;instead it merely changes the equality relation associated with a type. The signif-icance of this is that quotient types can then be used to give an abstract view ofcomputable functions.1.4.2.4 SummationsI developed theories of summation over monoids, rings, modules and algebras. Iexperimented with several summation operators that took indices indexing the



8expressions being summed over from integer ranges, lists and multisets. Theoremswere proven about the way sums can be rearranged and eliminated and how theyinteract with other operations.1.4.2.5 Factorization TheoryFactorization is an important basic topic in computer algebra, as well as in mathe-matics in general. Factorization theory is commonly studied over integral domains,though the basics can be formulated over abelian monoids with cancellation: thenon-zero elements of an integral domain under multiplication always form such amonoid.I developed the elementary theory of factorizations in cancellation monoids,and proved a theorem characterizing when a cancellation monoid is a unique-factorization (or factorial) monoid. The fundamental theorem of arithmetic wasshown to be a special case of this theorem.The case study illustrated the importance of combinatorics and discrete math-ematics in algebra. Much of the work in developing these lemmas was in �rstcreating the theory of permutations mentioned previously, and characterizing thenotion of `essential uniqueness'.1.4.3 Polynomial ArithmeticAbstract algebra and the theory of abstract data types (ADT's) in programminglanguages have strong similarities that have pointed out many times in the ADTliterature [Wir90]; in each case one �rst de�nes some class of objects, each objectwith a domain and certain operations over that domains that have certain abstractproperties. Then one studies the characteristics of the objects, drawing on justwhat one knows from the class de�nition.When working in constructive type theory, the same kinds of class de�nitioncan be used in either case. In particular, every de�nition of a class, familiar inabstract algebra, can be viewed as an ADT speci�cation.1.4.3.1 Speci�cationI created algebraic classes for monomials and polynomials based on the character-ization found in Lang [Lan84] or Bourbaki [Bou74] of the algebra of polynomialsas being a free monoid algebra over the ring of coe�cients and the free abelianmonoid of indeterminates.An interesting characteristic of this development was the treatment of freenessproperties. These freeness properties were viewed as the speci�cations for functionsthat instantiated the indeterminates in monomials and polynomials.



91.4.3.2 ImplementationI based the implementation on the standard sparse representation of monomialsand polynomials used in most computer algebra systems [DST93, Zip93a]. Thisrepresentation involves using association lists (a-lists) of indeterminates and expo-nents to represent monomials, and a-lists of monomials and coe�cients to representpolynomials. The keys (indices) of these a-lists were drawn from linear orders andthe keys in an a-list were always maintained in order. This ordering requirementresulted in the maintenance of monomials in lexicographic order.1.4.3.3 VericationThe veri�cation into two stages:1. I characterized a-lists as de�ning functions of �nite support; that is, functionsthat return some default value on all but a �nite number of arguments fromtheir domains. All the operations on monomials and polynomials were char-acterized in terms of these functions of �nite support. All inductive proofswere localized to this part of the veri�cation.2. I veri�ed all the algebraic properties of the monomial and polynomial opera-tions solely by referring to these function-of-�nite-support characterizations,never by referring to the recursive de�nitions. These veri�cations involved asigni�cant amount of algebraic manipulations, but never one induction. Thealgebraic manipulations were all conceptually straightforward, but many, es-pecially those that involved monotonicity reasoning, would be very di�cultto implement in present-day computer algebra systems.Since a-lists were common to both the monomial and polynomial construc-tions, I performed much of the initial veri�cation of their properties while con-sidering them to be an implementation of a group class and a monoid copowerclass. I showed that any implementation of the monoid copower class can simplybe specialized to obtain an implementation of the free abelian monoid class, and Igeneralized the construction of a monoid copower to obtain a free monoid algebra.1.5 Previous and Related Work1.5.1 In NuprlThe Nuprl project [CB83, C+86] grew out of the earlier PL-CV [CJE82] and Lamb-daPrl [Bat79] projects in program veri�cation and synthesis at Cornell, and theLCF project [GMW79] at Edinburgh. From LCF, Nuprl borrowed the idea of atactic-driven re�ner and the ML language for the tactics. Nuprl's original arith-metic decision procedure `arith' came from the PL-CV2 system, as did ideas for



10the user interface. In the early 1980's the project was under the principle guidanceof R. Constable and J. Bates, and in the later 1980's, D. Howe and S. Allen tookover from J. Bates. The Nuprl V4.1 implementation was started around 1990 withS. Allen doing much of the design work for a new editor, R. Eaton implementingthe new editor and myself developing the tactics and libraries. All together overthe years, over a dozen people have been involved in various ways with the Nuprlproject.The Nuprl type-theory is based on one of Martin-L�of's [ML82]. Nuprl's type-theory is discussed in more detail in Chapter 2. Theories developed in Nuprl in-clude the fundamental theorem of arithmetic [How87], metatheory [Kno87, How88a,ACHA90, CH90], category theory [AP90], Ramsey's theorem [Bas89], Higman'slemma [Mur90], hardware veri�cation [BD89, Jac91, Lee92] and software veri�ca-tion [AL92, How88b]. The previous tactics used in Nuprl were developed in chiefby Howe [How88a]. In Chapter 3, I compare my tactics with those of Howe as wellas with some rewriting tactics that Basin developed [Bas89].Others have experimented with constructing algebraic classes in Nuprl: Al-tucher and Panangaden produced a de�nition of a class of categories [AP90], andBasin and Constable discuss abstract data-type de�nitions for multisets and forpropositional logic [BC93].Several major changes were made in moving from Nuprl V3 to Nuprl V4.1,aside from my work on the tactics and theories. They included:� the addition of the abstraction (de�nition) facility,� moving to a completely new display-form selection and formatting facility,� the addition of a rule interpreter, so that most rules are not hard coded, butrepresented by objects in Nuprl's library,� the introduction of rules for universe-level polymorphism,� the addition of a reection mechanism [ACHA90],� the creation of a World-Wide-Web server for Nuprl so that theories can beinteractively browsed from across the Internet.1.5.2 Theorem ProvingDeBruijn's Automath project was an early and very inuential investigation intotechniques for mechanically proof-checking mathematics [dB80]. Van Jutting for-malized all of a foundational text on elementary analysis | Landau's \Grundla-gen" | in Automath [Jut77].Recently, more mathematics has been formalized in the MIZAR system thanany other. MIZAR [Rud92] has been developed over the last 20 years by a team



11under the leadership of A. Trybulec at the Bialystok branch of the University ofWarsaw. It is based on classical �rst-order predicate logic, extended with second-order schema, and Tarski-Grothendieck set theory. Roughly speaking, this settheory is like Zermelo-Fraenkel set theory, extended with uncountably many inac-cessible cardinals. All work done in Mizar is grouped into articles. Currently, over300 articles have been written in the MIZAR language by over 60 authors. Thesearticles contain over 6000 theorems in total. Articles are published in a Journalof Formalized Mathematics [Mat94] which is largely-automatically type-set frominformation in the MIZAR database. The subjects of the articles have been mostlyin the �elds of analysis, topology and algebra (including some universal algebraand category theory).I think there are several keys to MIZAR's success. Firstly, it started with a settheoretic framework which is known to be theoretically adequate for all of mathe-matics, including category theory. Secondly, a rich type-theory was layered on topof the set theory. The type theory allows for the de�nition of subtypes and param-eterized types, and has a structure facility for the de�nition of algebraic classes.The system copes automatically with set subtyping relationships between elementsof classes that have di�erent underlying signatures. Section 5.4 explains my termi-nology here. Unlike in Nuprl, all type-checking is done automatically, before proof.Thirdly, much e�ort has been put into the organisation of articles in the MIZARdatabase to ease and speed cross-referencing between articles. Typically an arti-cle draws on the de�nitions and theorems from many previous articles. The levelof automation is surprisingly low when compared to that in most other theorem-proving environments. This point underscores the signi�cance of the other designdecisions in constructing MIZAR.It is instructive to note that MIZAR is able to reap many of the bene�ts as-sociated with using a type theory, without having to use a type theory as thefoundation of their logic.In terms of applying theorem-provers to hardware and software veri�cation,most success has been with the NQTHM system of Boyer and Moore [BM79,BM88a]. Accomplishments include the checking the RSA public-key encryptionalgorithm [BM84] and the veri�cation of microprocessor designs [HB92]. NQTHMhas also been used to formalize G�odel's incompleteness theorem [Sha86]. Thegeneration of proofs in NQTHM is highly automated. The user commonly onlyguides proofs by perhaps giving a few high level hints and suggesting useful lemmas.NQTHM automatically guesses how to do inductions and how to prove the subgoalsof inductions. NQTHM also has a linear-arithmetic decision procedure tightlyintegrated in with the the prover program. NQTHM's logic is signi�cantly weakerthan Nuprl's: it is quanti�er-free and includes a theory of recursive functionsover Lisp-like S-expressions. Its strength is roughly that of Primitive RecursiveArithmetic (PRA). This logic is too weak for abstract algebra: there is no wayto de�ne algebraic classes of objects and reason with them in ways common in



12algebra, though `functional instantiation' extensions do allow some basic algebraicreasoning.The HOL system [GM93] is a tactic-based interactive theorem prover with aclassical logic similar on Church's simple theory of types [Chu40] but with the ad-dition of a type-polymorphism scheme similar to that found in the ML functionalprogramming language. This theory is slightly weaker than ZF set theory. HOL hasmostly been used in domains related to hardware and software veri�cation, thoughits foundational theories are quite general purpose and some success has been hadwith more abstract mathematics. Harrison developed some real analysis coveringtopics including limits of series, di�erentiability and properties of transcendentalfunctions [Har92]. Harrison and Th�ery demonstrated using the Maple computeralgebra system [CGG+91] to factor and integrate expressions for HOL [HT93].Maple's operations were veri�ed in HOL by carrying out the much simpler inverseoperations of expanding out factors and di�erentiation. E. Gunter[Gun89] devel-oped a basic theory of groups, proved the group isomorphism theorems and showedthat the integers mod n form a group. A. Gordon demonstrated how to prove thebinomial theorem over arbitrary rings [Gro91].Formulating abstract algebra in HOL is awkward because the type theory pro-vides so few features in comparison with set theory. Decisions have to be madeabout how to represent the most basic notions of algebra in the type theory: notionssuch as set, cartesian product and function space. It is simplest to use a HOL typeto represent a set, but also rather limiting. For instance, there is no general way ofde�ning a subtype relation that asserts that one type is a subtype of another. Still,Harrison was able to use this approach in his analysis work when he de�ned the no-tion of a topology . Another approach to representing a set is to use a type togetherwith a unary predicate on that type. Gunter took this approach, representing thecarrier set � of a group by a type � and a predicate p. She then de�ned the func-tion space � ! � ! � of the operator of a group as the HOL type � ! � ! �together with the predicate �f :� ! � ! �: 8x; y:�: (p x ^ p y) =) p (f x y).The awkwardness here is that all instances of groups now must have operators de-�ned for arguments over the whole of type � rather than just over �. Further, theequality relation provided by the type theory for functions like this group operatoris stronger than desired: two functions f and g, thought of as being members ofthe function space � ! �, might agree on all arguments in �, yet might not beconsidered equal by the HOL type-theory's equality relation because they disagreeon an argument in � but outside of �.Another major limitation of HOL's current type theory is that any quanti�-cation over types is always universal and always on the outside of any formula.Embeddings of set theory without this restriction are being explored by R. Jonesat ICL in the UK. In this work, HOL's type theory takes on more the role of ametalogic. Recently, M. Gordon has also been investigating techniques for mergingHOL with set theory [Gor94].



13Other theorem provers that use a constructive type theory and encode logic us-ing the propositions-as-types correspondence include Alf [ACN90], LEGO [Pol90],and Coq [DFH+91]. Alf uses a more recent type theory of Martin-L�of's. BothLEGO and Coq use the Calculus of Constructions (CoC) [CH85], extending itwith a kind of inductive de�nitions [Luo89, PPM89]. Bailey developed a concretetheory of polynomials in one variable in the LEGO system and has proven the cor-rectness of Euclid's algorithm over these polynomials [Bai93]. Aczel and Bartheare currently investigating doing Galois theory in LEGO [Acz93, Bar93].The most signi�cant di�erences between the CoC based type theories andNuprl's, from the point of view of formalizing algebra, are in the treatment ofequality and in that the CoC-based theories don't have a set type constructor.Equality between elements of types is always essentially a �� equality: two termsare equal just when they evaluate to the same normal form and their subterms areequal. There is no notion of quotienting a type. Without a construct correspondingto Nuprl's set type, the only way of of forming something close to a subtype is byusing a dependent product type. Type-checking is decidable in these systems, butdoing abstract algebra is rather involved. The approaches that have been lookedat involve using a somewhat cumbersome encoding for sets called setoids. I discussthese in Chapter 5.Theorem provers such as Larch [GH93], IMPS [FGT92b], PVS [ORS92], and2OBJ [GSHH91] have notions of theories or modules which allow the collectiontogether of type de�nitions, operator de�nitions and speci�cation of predicatesthat the operators must satisfy. Further, these modules can be parameterizedby one another and can inherit structure from one another. As with module-likestructures in programming languages, these modules help structure these systems'libraries of de�nitions and theorems.Although these super�cially resemble the algebraic class de�nitions I have madein Nuprl, they are de�ned at a level of abstraction above the type system andcannot be included in formulae in the same way that types are. For example, Ithink it would be hard if not impossible in these systems to de�ne a class of groupsusing one of these modules and then show that a ring structure can be imposedon the set of homomorphisms between the groups.Interestingly, the PVS system also has dependent data types similar to Nuprl'sdependent product and dependent function types, so the class de�nitions could beset up as described in this thesis. However, without some version of quotient typesit would be di�cult to verify constructive implementations of the classes where theequality on the representation type must be weakened in order to hide irrelevantdetail.One other theorem-proving system worth mentioning is McAllester's Ontic sys-tem [McA89]. This system is based on Zermelo-Fraenkel set-theory. A milestonereached in it is the Stone representation theorem. Chen looked at adapting theinference algorithms that McAllester devised to the Nuprl environment [Che92].



141.5.3 Computer AlgebraClarke and Zhao have added theorem-proving capabilities to Mathematica [Wol91]to create their Analytica system [CZ92]. They have impressive results in provingequivalences of sums of series, but their work has been hindered by the lack ofrigor inherent in the Mathematica environment.In several computer algebra systems, much e�ort has been put into allow-ing computations over a wide variety of types; for example Axiom [JS92, DT92,DGT92] which evolved from the ScratchPad system at IBM. There are strong sim-ilarities between Axiom's approach to constructivity and the approach adopted inthis thesis.My interest in computer algebra has been stimulated by discussions with Zippelwho has designed his own system Weyl [Zip93b]. An ongoing project at Cornell isto set up links between Nuprl and Weyl.1.5.4 Constructive MathematicsExcellent introductions to constructivism in mathematics have been given by forexample, Troelstra and van Dalen [TvD88] and Dummett [Dum77]. Through-out the history of mathematics there has been some sensitivity to constructivityin algebra. For example, Edwards [Edw89] wrote in summarizing Kronecker'sviews: \Kronecker believed that a mathematical concept was not well de�neduntil you had shown how, in each speci�c instance, to decide [algorithmically]whether the de�nition was ful�lled or not." However, after the turn of the centurywhen signi�cant new results were proven non-constructively (for example, Hilbert'sBasis Theorem), and non-constructive set-theoretic foundations were establishedfor mathematics, constructivist sympathies were rejected by many mathemati-cians. There were de�nitely exceptions, especially among logicians; for example,there was Brouwer who founded a school of `Intuitionistic' mathematics that wasdogmatically constructive. Brouwer's work was revived by Heyting [Hey66] andBishop [Bis67, BB85] who tried to show how to systematically hide constructive de-tails so that constructive mathematics more resembled classical mathematics. To-day, a few mathematicians are exploring constructive algebra in this light [MRR88,BB85]. Other investigations have been carried out where the computations aremade more explicit [FS55, MN79].The strongest revival of interest in constructivity in algebra has undoubtablycome from those concerned with the theory and design of computer algebra sys-tems. One of the most signi�cant results here has been the discovery and sub-sequent re�nement by Buchburger of the Gr�obner Basis algorithm for �nding anelegant normal form for the generating set of an ideal in polynomial rings overa �eld, given an arbitrary initial �nite set of generators of the ideal. This algo-rithm in some form is used in many computer algebra systems today for solving



15systems of polynomial equations. This algorithm and others are surveyed in manyof the new texts that have come out recently on the mathematics of computeralgebra [BWi93, CLO92, DST93, Mis93, Zip93a].1.6 Layout of ThesisThe layout of the thesis is as follows:� Chapter 2 gives background information on Nuprl's type theory and thepresent state of the Nuprl V4.1 system. This chapter ends with a summaryof the theories I have developed in V4.1.� Chapter 3 surveys the current tactic collection, highlighting the new con-tributions I have made, but also trying to give a general overview of thetactics.� Chapter 4 covers in depth the rewrite package that I set up for Nuprl V4.1.� Chapter 5 discusses the alternatives approaches that I considered to makingde�nitions in Nuprl's type theory for algebraic classes, and indicates why Imade the choices that I did.� Chapter 6 gives introduces the information on the basic algebraic classes thatI set up. It also covers my treatment of order relations on these classes, thetheory of summations, and tactics developed to support reasoning over thesealgebraic classes. The work described in later chapters depends heavily onthis work.� Chapter 7 describes the development of the theory of permutation functionsand relations.� Chapter 8 covers work on unique factorization in cancellation monoids, end-ing with an example of how the fundamental theorem of arithmetic is aspecial case of the last theorem proven.� Chapter 9 describes my implementation of �nite sets and multisets and op-erations over them, illustrates the use of Nuprl's quotient type and providesa warm-up case study in ADT speci�cation and implementation.� Chapter 10 gives an extended case study in the speci�cation and implemen-tation of an ADT for multivariate polynomials.� Chapter 11 summarizes the contributions of the thesis, outlines directions forfuture work, and discusses both the appropriateness of Nuprl's type theoryand the dependence of the work described on it.



Chapter 2Background on Nuprl2.1 Type TheoryThe most common formal system studied in logic as a foundation for mathematicsis �rst-order predicate calculus and some set theory, most commonly Zermelo-Fraenkel set theory [Sho67]. Nuprl uses instead a type theory which takes the placeof both predicate calculus and set theory.2.1.1 What is Type Theory?Type theory is an active research area in mathematics, logic and computer scienceand a diverse range of theories are collected under this name. Here, I look at a fewof the characteristics of type theories, concentrating on those relevant to Nuprl's.In set theory, one often thinks of there existing a platonic universe of sets,and set notation provides a way of naming many of the principal ones. In typetheory, one starts out assuming the existence of speci�c base sets or types likethe booleans and the integers. There are then standard ways for producing richertypes, for example, using the operations of cartesian product and function spaceformation. Type theories provide primitive operations for creating elements higherup this hierarchy from elements lower down. For example, a pairing operationcreates elements of cartesian products and lambda abstraction creates elements offunction spaces.Type theories also provide primitive operations for taking apart elements andde�ne notions of evaluation on elements. For example, the �1 function selects the�rst element of a pair ha; bi so that the element �1(ha; bi) evaluates to a.Type theories are of much interest in computer science because often at leasta subset of the elements of types can be regarded as programs and data in a func-tional programming language. The type theories themselves then provide a formallanguage for reasoning about these programs. Many type theories are abstractions16



17of the type systems that have been used in programming languages from Algol68onwards.Theorem-prover designers have found type theories appealing because they in-trinsically impose much more structure on the world than set theory, and narrowthe gap between the theory foundations and statements about objects of interest.Often too, it is convenient that a major subject matter for theorem provers isprogram veri�cation.The study of type theories is usually taken to have started with Russell's `theoryof types' [Rus08, WR27] where a rather complicated system of types are introducedin order to avoid certain `vicious circle' paradoxes. Church introduced a `simpletheory of types' [Chu40] that was adapted for use in the HOL theorem-proving sys-tem [GM93]. A recently-developed family of type theories is that of constructivetype theories [Gir71, CH88]. These exploit a notion that has come to be knownas the `propositions-as-types' correspondence [CF58, Sco70, Con71] where everylogical proposition corresponds to a type, and a proof of a proposition involves�nding an element of the type corresponding to the proposition. Since elementsof types are often programs, a phrase commonly associated with the `propositionsas types' approach is `proofs as programs' [BC85]. These type theories are con-structive because they yield a constructive or intuitionistic logic, and because theygive a recipe for automatically building functions that e�ect the constructions thattheorems in constructive logic and mathematics talk about.Nuprl's type theory [C+86, All87a, All87b] is most closely related to a typetheory proposed by Martin-L�of in 1979 as a foundation for constructive mathe-matics [ML82]. The main di�erences are:� Martin-L�of's four kinds of judgement are reduced to one. Roughly speaking,a judgement is a kind of sequent. The semantics of Nuprl's judgement is dif-ferent from any of Martin-L�of's in that a judgement in Nuprl assumes ratherthan requires the well-formedness of hypotheses. Nuprl's treatment of equal-ity in its judgement is more complicated than that in Martin-L�of's. Thesechanges enabled particular kinds of induction rule to be de�ned. Withoutthem, the approach we have been using in Nuprl of �rst introducing gen-eral recursive functions and then proving them total over some domain byinduction would not have been possible.� In Nuprl, equality of types is explicitly intensional (i.e. structural). Martin-L�ofclaimed in his paper that his equality on types was extensional (types areequal if they have the same members), though he never gave rules to makean intensional interpretation of his type theory inconsistent. This changeenabled the reduction in kinds of judgement.� Nuprl's type theory has several extra types including the set type [Con85a],the quotient type [Con85a], recursive types [CM85], and partial function



18types [CS87].Allen has given a semantics for Nuprl's type theory without the recursive orpartial types [All87a, All87b]. This semantics takes the form of a second-order posi-tive inductive de�nition that is both classical-set-theoretically valid and acceptableto most constructivist mathematicians. The de�nition is of a relation from whicha type membership relation and a typed equality relation are derived. The de�-nition essentially if of a term model in that terms do not denote anything otherthan themselves. Mendler [Men88] gave a semantics for Nuprl's recursive typesand Smith [Smi89] gave a semantics for the partial function types. Howe [How91a]has given a set-theoretic model in which terms denote sets, and has shown by thismodel that it is consistent to extend Nuprl's type theory with oracle functions sothat the logic created by the propositions-as-types correspondence is classical.I give below an informal account of Nuprl's type theory.2.1.2 Basic TypesIn Nuprl's type theory, the word term encompasses the constructs of its functionalprogramming language, types and propositions.The programming language terms include the untyped lambda calculus, andconstructors and destructors associated with each of the types listed below.A lazy evaluation relation is de�ned on terms. Any term evaluates to at mostone canonical term, and canonical terms always evaluate to themselves.The basic type constructors of Nuprl's type theory that are relevant for thisthesis include:� The integersZ. Primitive operations include binary +;�;�;�, rem (remain-der), and unary �. De�ned subsets of the integers include the non-negativeintegers N, and the positive integers N+ (occasionally written as Z+).� A dependent-function type constructor !. If A is a type and Bx is a familyof types, indexed by x 2 A, then x:A! Bx is the type of functions f , suchthat f(a) 2 Ba for all a 2 A. If Bx is the same for all x 2 A, I write thetype as simply A! B. I assume that ! associates to the right.Since all functions constructible in Nuprl's type theory are computable, eachtype A! B is considered as containing only the computable functions fromA to B rather than all set theoretic functions.Every canonical element of a dependent-function type is a lambda term �x:t.Dependent-function types are sometimes known as � types, in which case anotation commonly used is � x:A: Bx. Elsewhere these types are sometimescalled cartesian-product or dependent-product types. These names are notused here in order to avoid confusion with Nuprl's dependent-product type.



19� A dependent-product type constructor � . If A is a type and Bx is a familyof types, indexed by x 2 A, then x:A�Bx is the type of pairs ha; bi, suchthat a 2 A and b 2 Ba. If Bx is the same for all x 2 A, I write the type assimplyA�B. Sometimes I write A�A as A2. I assume that � associatesto the right.Dependent-product types are sometimes known as � or dependent sum types,in which case a notation commonly used is � x:A: Bx.� A binary (disjoint-) union type +. If A and B are types, then A + B is atype. Its canonical elements are of form inl(a) (read `in left') and inr(b) (read`in right') for a 2 A and b 2 B.� A set type constructor f�: � j�g. If A is a type and Px is a proposition in whichx of type A may occur free, then fx:AjPxg is the type of those elements x ofA for which Px is true.� Recursive types. These include A List for �nite sequences of elements of typeA. The operation a::s appends element a to the front of sequence s, andthe empty sequent is denoted by []. The type theory also includes a typeconstructor for building types of tree-like data-structures.� Universes of types Ui for i = 1; 2; 3 : : : . Ui includes as base types Uj forall j < i and is closed under the type constructors listed above. Note thatSection 2.1.5 describes the allowable expressions that may be used for thesubscript i and the conditions under which the subscript is often dropped.� The type Void. It has no elements. The type Unit. It has the one element `�'(read as `it'). The boolean type B has two elements: tt for `true' and � for`false'. Unit and B are de�ned types, but for nearly all intents and purposes,they can be thought of as being primitive.Every type has an equality relation associated with it. A three-place atomicproposition � = � 2 � is used to refer to this equality. The relation x = y 2 Tmeans that x and y are members of type T and are equal by the equality relationassociated with T . Sometimes, I write x = y 2 T as x =T y, and when T isobvious from context, the reference to T is dropped altogether. Functions can onlybe given a function type when they respect the type equalities of the componentsof the function type; if function f has type S ! T , then fx =T fx0 must holdwhenever x =S x0. Similarly, all members of a function type are assumed toto respect the equalities of the components of that type. This assumption offunction extensionality is non-trivial because of the way in which the equalityrelation associated with a type can be changed.Speci�cally, the equality associated with a type can be weakened using Nuprl'squotient type constructor; if R is an equivalence relation on type T , then the



20quotient type constructed from T and R is written x; y:T==xRy. The inhabitantsof x; y:T==xRy are the same as the inhabitants of T ; the quotient type does notgroup elements of T into equivalence classes. Inhabitants are considered equalwhen they are related by R.I use fairly usual notation for programming language constructs. Functionapplication is designated by juxtaposition. For example, I write f a. Application isassumed to associate to the left, so (f a) b is written f a b. Often I use in�x notationfor the application of binary curried-functions. For example, if � 2 T ! T ! T ,then for (� a) b I write a � b. It should be obvious whenever in�x notation is beingused.2.1.3 PropositionsLogic is injected into type theory using the propositions-as-types correspondence,so all propositional term constructors are de�ned from types [Con85b]. The de�-nitions are: ? =def VoidA ^B =def A�BA _B =def A+BA) B =def A! B8x:A: Bx =def x:A! Bx9x:A: Bx =def x:A�Bx# 9x:A: Bx =def fx:A jBxgPi =def UiThe symbol ? denotes falsity. Negation, :A, is de�ned as A )?, and bi-implication (if and only if) A () B is de�ned as (A ) B) ^ (B ) A). Thetype # 9x:A: Bx is read as `squash exists' Not shown is the de�nition of the propo-sitional relation a = b 2 T since this is actually a primitive type in the Nuprltype theory (this type has one element when the equality is true and is otherwiseempty). As one can see, the encoding is very direct.Each predicate-logic expression corresponds to a type with the type being in-habited just when the predicate-logic expression is provable. The proof of a logicalexpression speci�es exactly how to construct a term that inhabits the type cor-responding to the logical expression. Sometimes the inhabitant is interesting; forexample it might be a function that computes something useful. In this case, wecan view the logical expression corresponding to the type it inhabits as a kind ofprogram speci�cation. When I talk about the computational content of a logicalexpression, I am referring to the possible inhabitants of the corresponding type.



21In the discussions of computational content in this thesis, I recommend that thereader refer back to the above de�nitions and try to imagine what kinds of termsmight inhabit the types that correspond to the propositions being discussed.Nuprl's logic is well-suited to constructive mathematics, but it also can supportclassical styles of reasoning.2.1.4 Sequents, Rules and ProofsNuprl's rules are formulated in a sequent calculus. A sequent in Nuprl consists of alist of 0 or more hypotheses H1; : : : ; Hn and a conclusion C. It is usually writtenas: H1; : : : ; Hn ` C:Each hypothesis Hi is either a proposition P or a declaration x:T declaring vari-able x to be of type T . The conclusion is a proposition. Collectively, I refer tohypotheses and the conclusion as clauses. A declaration x:T as hypothesis Hibinds free occurrences of x in hypotheses Hi+1 : : :Hn and in conclusion C. Forthis reason, the order of the hypotheses is important. One can't arbitrarily per-mute hypotheses. Sequents are always closed; every free variable in some clauseis bound by some declaration to the left. A sequent is considered true if one canprove the conclusion C under the hypotheses H1; : : : ; Hn.Thinking purely type-theoretically, all clauses of a sequent are types. Hypothe-ses thought of as a propositions declare the type of a variable which is normallynever visible. A sequent is true just when there exists a function from the typesof the hypotheses to the type of the conclusion. In some Nuprl literature, theturnstile symbol ` is written instead as >> to be suggestive of a function arrow.Rule in a sequent calculus are commonly written in the form:A1 : : : AnCwhere Ai and C are sequents and n � 0. The Ai are the antecedents of the ruleand C is the consequent. Such a rule can be read top down as saying that if all theAi are true, then C is true. The rule can also be read bottom up as saying that inorder to prove C is true, it is su�cient to prove that all the Ai are true.The rules in the intuitionistic logic yielded by Nuprl's type theory are similarto those in Gentzen's LJ system [Pra71]. Nearly all the logic rules, when read topdown, tell us how to introduce a logical connective or quanti�er in a hypothesisor the conclusion. When read bottom-up they explain how to break down ordecompose the connective. I refer to such rules in Nuprl as decomposition rules,because rules are always applied in a bottom-up fashion.



22Slightly simpli�ed versions of the rule for decomposing ) in a hypothesis andin the conclusion are�; A ) B;� ` A �; A ) B;�; B ` C�; A ) B;� ` Cand �; A ` B� ` A ) BAnother rule, the hypothesis rule, states that�; A; � ` AHere A and B stand for arbitrary propositions, and � and � stand for arbitrary(maybe empty) lists of hypotheses. Note that the hypothesis rule is an example ofa rule with no antecedents.A proof of some proposition P in Nuprl's logic is usually constructed by startingwith the sequent ` P . One then applies rules bottom-up, building the proof treeupwards. Since most of the rules when viewed bottom-up decompose a connective,propositions generally get simpler as one moves from the root of the tree out alongthe branches. Branches of a proof tree terminate with such rules as the hypothesisrule above.This style of theorem proving bears a close resemblance to the tableau methodfor proving theorems [Smu68], which is commonly taught in logic courses, andwhich students usually �nd the simplest to use.Because rules are applied bottom-up, it is common to present Nuprl rules upsidedown. The general form of a rule is then:CBY rulenameA1...AnWith this style of rule, proof trees have their root at the top, and their branchesgrow downwards. The full set of rules for the Nuprl type theory can be found inthe Nuprl book [C+86] and in the system library.Thinking of the conclusions of sequents as types, all Nuprl rules have infor-mation about how to create an element of the conclusion of the rule consequent,given elements of the conclusions of each of the antecedents. When a proof of someproposition is completed, this information can be used to synthesize an inhabitantof the proposition, considered as a type. This synthesis process goes by the nameof extraction.



232.1.5 Universe PolymorphismAn initially unappealing aspect of Nuprl's type theory is the strati�cation of types(and hence propositions) into universes, in a style reminiscent of Whitehead andRussell's in Principia Mathematica [WR27, Rus08], but much simpler.In Nuprl V3 and before, the levels of universe terms were constants, which wasinconvenient because often variants of the same lemma had be introduced whichdi�ered only in the levels of their universe terms.In Nuprl V4.1, a kind of universe polymorphism was introduced, where levelsin universe terms are replaced by level expressions. Level expressions are of form:� k where k is a natural number constant � 1.� v where v is a level expression variable. Level expression variables are im-plicitly quanti�ed over levels; natural numbers � 1.� e k where e is a level expression and k is a natural number constant � 0. e kis understood to be level e plus k.� [e1j : : : jen] where e1 : : : en are level expressions. [e1j : : : jen] is understood tobe the maximum of levels e1 : : : en.The rules and semantics for this universe polymorphism were proposed byHowe [How91b]: a rule with clauses involving level variables is considered to betrue just when the rule is true for all instantiations of level variables by con-stants. This semantics for universe polymorphism is di�erent from that proposedby Allen [All87b].The level expression `e 1' is often abbreviated as e0.Note that it is often convenient to suppress the explicit mention of the universelevels, especially when a level expression is simply the level variable i or the levelconstant 1. Also, I sometimes transfer the prime character (0) to the term beingsubscripted. For example, I write P0 instead of Pi0.2.1.6 Well-Formedness CheckingNuprl's type theory is su�ciently complex that the problem of determining whethera term has a given type is in general undecidable: the halting problem [HU79]can be reduced to the type membership problem by constructing a type whoseinhabitants are the numbers of those Turing machines that halt on zero input. Aconsequence of this is that there is no general way to check the well-formedness ofarbitrary terms, since well-formedness of a term is expressed in the type theory bysaying that the term has a type.Instead, the semantics of sequents and the rules of Nuprl's type theory are setup so that the well-formedness of expressions is shown by proof. Every complete



24proof of a theorem in Nuprl contains not only a proof that the theorem is valid,but also a proof that the theorem is well-formed. The well-formedness proof isdistributed through the proof of validity by adding extra premises to many of theNuprl rules. For example, the rule for =) decomposition on the right is (prettiedup using the propositions-as-types correspondence):� ` A =) BBY implies decomposition on right at level i� ` A 2 Pi�; A ` BThe obligation to show that the proposition A is well-formed is phrased as theuniverse membership sub-goal � ` A 2 Pi. As explained in Section 3.2, such well-formedness obligations are almost always solved automatically so the user neednot be concerned with them.Checking well-formedness by proof is unfortunately much slower than checkingby some completely automatic type checker, and is a major source of ine�ciency inthe Nuprl system. Furthermore the nature of the rules causes the well-formednessof expressions to be rechecked many times over. Nearly all other theorem proversdo their well-formedness checking entirely by completely automatic means, distinctfrom proof generation.2.2 Mechanization2.2.1 OverviewThe Nuprl V4.1 system is currently used on Unix-based workstations that run X-Windows and hopefully will soon be ported to run on Macintoshes and PC's. AllNuprl code is either written in Common Lisp or a the functional language ML (seeSection 2.2.8 for a description of the ML dialect used). The ML compiler is writtenin Common Lisp and compiles ML code by �rst translating it into Lisp and thencompiling the Lisp code.Mathematics in Nuprl is organized into blocks called theories. A theory is alinear list of various kinds of objects including de�nitions, theorems, and comments.Theories are stored as Unix �les. Users load theories into the Nuprl environmentcalled the library as and when needed.Nuprl is an interactive system. The user develops theories by carrying on adialog with a Nuprl session via special purpose editors as well as an ML top-loop.The editors are briey described in Section 2.2.2 and Section 2.2.7.



252.2.2 Terms and Structured EditingIn Nuprl, a term is a general-purpose uniform tree-shaped data-structure. Termsare Nuprl's equivalent of Lisp's S-expressions, though they have more intrinsicstructure; terms have provisions for specifying variables to be bound in subterms,and for parameters that allow the injection of families of constants such as naturalnumbers into the term language. Terms have a variety of uses:� All propositions in Nuprl's logic are represented as terms, as are all expres-sions and types in its type theory.� All kinds of objects in theories except proofs are represented as terms.Note that this use of the word term is more general than the use introducedin Section 2.1.2, where it only refers to the constituents of Nuprl's type-theoreticlanguage.The de�nition of terms assumes the existence of syntactic classes of variablesand opids (operation identi�ers). The elements of these classes are alphanumericstrings starting with a letter. The `_' character is counted as a letter. The de�nitionof terms also assumes that there is a collection of parameter kinds and that there is aset of parameter values associated with each parameter kind. The main parameterkinds are described later on.The set of terms is inductively de�ned as the least set such that:� if v is variable, then v is a term,� if n � 0 and m � 0, if for 1 � i � n we have that xi1; : : : ; xiai are variablesand ti is a term, and if we de�nesi = xi1; : : : ; xiai :ti ;then opidfp1:k1; : : : ; pm:kmg(s1; : : : ; sn)is a term.The parts of a term are:� opidfp1:k1; : : : ; pm:kmg is the operator.The parts of the operator are:{ opid is the operator identi�er.{ pj :kj is the jth parameter. kj is a parameter kind and pj is someparameter value appropriate to kind kj .



26� The tuple ha1; : : : ; ani where aj � 0 is the arity of the term.� si = xi1; : : : ; xiai:ti is the ith bound-term of the term. This bound-term bindsfree occurrences of the variables xi1; : : : ; xiai in ti. Frequently, ai is 0, in whichcase I omit the `:' (period) preceding ti.The parameter kinds include:� token for character strings� nat for natural numbers� level-expression for level expressions (level expressions are described inSection 2.1.5).These kinds are abbreviated respectively as t, n and l.Using the parameter mechanism, the number 3 is injected into the term lan-guage as the term natural{3:n}. Parameters are actually also used to injectvariables into the term language: the variable foo when considered as a term isrepresented by the term variable{foo:t}. To improve readability, I never showa variable term written out in this way. Likewise, I abbreviate natural-numberterms: I write 3 for the natural-number term 3.When writing terms, I sometimes omit the brackets around the parameter listif it is empty.2.2.3 Term Display and EntryThe visual appearance of each term constructor is governed by display form objectsin the Nuprl library. Display forms give one control over� The order in which binding variables, parameter values and subterms aredisplayed.� The text separating each binding variable, parameter and subterm.� Line-breaking and indentation� Parenthesization. Display forms can be set up to introduce parentheses basedon the relative precedences assigned to display forms and subterm slots ofdisplay forms.� Iteration of terms. Often it is desirable to use special notation when similarterms are nested inside one another.� Elision of subterms, binding variables and parameter values that are deemeduninteresting.



27Display forms greatly increase the readability of terms. For example, the term:all(int();i.all(int();j.exists(int();k.ge(k;multiply(i;j)))))is usually displayed as:8 i,j:Z. 9 k: Z. k � i * jIn this example, a special display form has been used for the nested all term con-structors. Currently, all displays are generated using characters from a �xed-widthASCII font, extended with roughly 60 graphics characters. At some stage in thenear future, it should be possible to use for example Display PostScript technologyto generate displays multiple sizes and kinds of fonts, and two dimensional layoutof formulae.All terms shown in this thesis have been automatically formatted by Nuprl'scurrent display routines.Terms are interactively edited and viewed exclusively using a structured editor.The structured editor supports a variety of tree editing operations on terms. Italso supports the editing of paragraphs of text within terms, with these paragraphsthemselves having term trees embedded within them. This feature is particularlyuseful for typing in ML text that often has terms from Nuprl's object languageembedded within it. Numerous examples can be seen of this throughout the thesis.The structured editor deliberately has no capabilities for parsing the displayedtext of a term back into the underlying term data-structure. This gives the usermuch greater freedom in designing notations and means that display forms can bechanged independently of one another; when designing a grammar to be parsed,careful attention has to be paid to the inter-relations between the grammar con-structs.It is common mathematical practice to try to use as concise notation as pos-sible. Conciseness enhances comprehension (and also speeds writing). Apparentambiguities are resolved by the reader's knowledge of the context the notation ispresented in, and of what does and doesn't make sense semantically.In several theorem proving projects (MIZAR [Rud92] and Isabelle [Pau90]), forexample), much e�ort has been expended on designing parsers so that reasonablyconcise notation can be typed using character-based text-editors 1. These parsersoften use type checking to resolve ambiguities and type inference to infer implicittype arguments. The automatic inference of implicit type information is commontoo in such systems as HOL [GM93] and Coq [DFH+91]. Still, such an approachlimits notation to being in one font without a full range of mathemtical symbols,subscripts and superscripts, and doesn't support two-dimensional notation. A1By character-based I mean editors such as emacs or vi in Unix systems wherethere is usually a one-one correspondence between the set of character byte-codes in�les that are edited, and the set of glyphs that are used to display those characters.



28partial solution is to separate notations for input and output, in which case fancierformatting can be used for output. This approach is now common in computeralgebra systems.The structured editor approach has the advantage that very concise notationscan be used for both input and output. With Nuprl's editor, short mnemonicalphanumeric key sequences are assigned to various constructs so entry is possibleboth by touch-typing and picking constructs from menus.Another advantage of the Nuprl editor is that it allows display forms to bechanged in the middle of a Nuprl session, with these changes taking immediatee�ect. This feature is frequently used when many display forms elide unimportantarguments of terms. When eliding display forms are de�ned, non-eliding backupdisplay forms are usually also de�ned. Users then in the middle of a session canask for the backup display forms to be used when they want to see what the elidedarguments are.This structured editing approach has several disadvantages. In theorem-provingthere are far fewer conventions for notation and users often invent new notation tohide formal detail. One user's concise notation frequently will be hard for anotherto read. When working interactively with Nuprl, it is possible to mouse-click onnotation and ask for it to be explained, but this option isn't available on paper. Itcan be impossible to �gure out in printouts of notation what precisely is meant;at least with machine-parseable notation, the reader knows that he or she shouldbe able (in principle) to �gure out what is going on.Another disadvantage is that it takes a lot of work to get the ergonomics ofa structured editor right. Currently, new users of Nuprl take some time gettingused to the editor. Hopefully, this situation will improve as both the editor andtutorials on it improve.2.2.4 AbstractionsTerms are either primitive or abstract. Primitive terms have �xed pre-de�nedmeanings. Abstract terms or abstractions are de�ned in abstraction objects asbeing equal to other terms. For example, here is an abstraction for the `divides'relation on the integers:b | a == 9c:Z. a = b * cI call the process of replacing an instance of the left-hand side of an abstractionby the right-hand side unfolding and the reverse process folding.Throughout this thesis, I often refer to abstractions as simply `de�nitions' orsometimes `notational abbreviations'. Abstractions are used not only for Nuprl'sobject language, but also for example in terms that occur in display-form def-initions and in ML code. The graph of the dependencies of abstractions on one



29another should always be acyclic. However, recursive de�nitions can be introducedas described in Section 2.2.5.2.2.5 Recursive De�nitionsRecursive de�nitions in Nuprl are coded using the Y combinator; since Nuprl'scomputation language is untyped, the standard �-calculus de�nition of the Y com-binator can be used:ycomb:Y == �f.(�x.f (x x)) (�x.f (x x))Previously, Nuprl had primitive recursion terms for each of the base types (integers,lists and `simple' recursive types) which were both awkward to use and unnecessary.In this thesis, I sometimes use the notation lhs==r rhs to introduce a recursivede�nition. For example, here is the de�nition of the Fibonacci function:fib(n) ==rif (n =z 0) _b (n =z 1)then 1else fib(n - 1) + fib(n - 2)fiThis lhs ==r rhs notation is a notational abbreviation for a call to an ML functioncalled add_rec_def with lhs and rhs as arguments. add_rec_def takes care ofsetting the actual abstraction objects for recursive de�nitions. The abstraction forthe fib(n) function looks like:fib:fib(n)== Y(�fib,n.if (n =z 0) _b (n =z 1)then 1else fib (n - 1) + fib (n - 2)fi )nNormally, in Nuprl theories, such abstractions are made invisible and the lhs ==r rhsML function calls are retained, both because they document the recursive de�ni-tions in a cleaner fashion, and because they inform de�nition folding and unfoldingtactics about the special nature the the de�nitions. Various tactics and rewriteconversions (see Chapter 4) unfold and fold instances of recursive de�nitions in asingle step so the user is normally never aware of the Y combinator representation.



30The introduction of recursive de�nitions using the Y combinator is only possiblein Nuprl because of a unusual feature of the induction rules that permits the proofof lemmas that characterize when a recursive de�nition de�nes a total function.This issue is discussed more in Section 3.5.2.2.6 TheoriesThe Nuprl V4.1 data-base of de�nitions and theorems is divided into theories. Icommonly present listings of parts of theories. Figure 2.1 shows a listing of partof a theory dealing with functions.A theory contains a sequence of library objects or objects for short. Objectdescriptions in theory listings often start with a symbolic character (usually *)and a capital letter. The symbolic character gives the status of the object. *means that the object is complete and has been veri�ed. Other status charactersinclude # for incomplete, and - for bad in some sense.The capital letter gives the kind of the object. Kinds of objects include:D for display form de�nitions.C for comments.M for ML code. ML code in theories is commonly used to introduce theory-speci�cML de�nitions for tactics and rewrite rules, and to provide extra informationabout de�nitions to the tactic system.T for a theorem object. A theorem object contains a proposition that has beenproven just when the status of the object is *.A for abstractions.Following the kind of an object is the object's name and the contents of anobject. For conciseness, the contents of theorem objects are abbreviated; only thestatement of the theorem is shown. Theorem objects also contain proof scriptsand extract terms. See Section 2.2.7 for details. Complete listings showing extractterms and proofs can also be generated.For the purposes of this thesis, it is not necessary to understand the formattingdirectives given in display form objects and usually I'll not show these. Whennecessary, I give informal accounts of notational conventions I have chosen to use.Nuprl sessions always have a library window which allows the user to viewsegments of the loaded library in a format similar to that described above.Currently over 30 theories have been de�ned in Nuprl V4.1. These These aresummarised in Section 2.3, and many parts of these theories are described in thisthesis..



31*C tidentity_comThe type argument of tidentity is never usedon the right-hand side of the definition,but it helps with type inference.*D tidentity_df Id{<T:T:*>}== tidentity{}(<T>)*A tidentity Id{T} == �x.x*T tidentity_wf 8A:U. Id{A} 2 A ! A*M tidentity_mllet tidentityC =SimpleMacroC `tidentityC`dId{T} xe dxe``tidentity identity`` ;;add_AbReduce_conv `tidentity` tidentityC ;;*D compose_df Prec(inop)::Parens ::<f:fun:L>{nn?} o <g:fun:L>== compose{}(<f>; <g>)*A compose f o g == �x.f (g x)*T compose_wf 8A,B,C:U. 8f:B ! C. 8g:A ! B. f o g 2 A ! C*M compose_ml let rem_composeC,add_composeC =DoubleMacroC `composeC`(SemiNormC ``compose``) d(f o g) xeIdC df (g x)e ;;add_AbReduce_conv `compose` rem_composeC;;*T comp_assoc 8A,B,C,D:U. 8f:A ! B. 8g:B ! C. 8h:C ! D.h o (g o f) = (h o g) o f 2 A ! D*T comp_id_l 8A,B:U. 8f:A ! B. Id{B} o f = f 2 A ! B*T comp_id_r 8A,B:U. 8f:A ! B. f o Id{A} = f 2 A ! BFigure 2.1: Partial Listing of Theory on Functions



322.2.7 Theorems and ProofsThe heart of the Nuprl system is a piece of code called the re�ner. Its responsibilityis to build proofs by iteratively applying primitive rules of inference from Nuprl'stype theory. The correctness of proofs relies almost exclusively on the correctnessof the re�ner and of the implementation of the primitive rules themselves.One rarely build proofs by selecting individual rules to use, one-by-one. Instead,one invokes programs written in ML(see Section 2.2.8) called tactics that automati-cally select and sequence appropriate rules. Tactics can be quite sophisticated, butstill the correctness of any proof doesn't depend on them, only on the underlyingre�ner. This tactic paradigm was introduced in the LCF system [GMW79] andhas also been adopted in theorem provers such as HOL [GM93] and LEGO [Pol90].Other interactive theorem provers such as IMPS [FGT92a], and PVS [ORS92] haveproof development languages that have many similarities with tactic languages.Ideally, all the rules the re�ner implements should be in some sense straightfor-ward and obviously correct. Most of Nuprl's rules have a fairly simple structure;they are speci�ed by rule objects in a preliminary theory that is always loadedin any Nuprl library. Each rule object contains a pattern for a rule that is in-stantiated to give rule instances. Nuprl also has some more sophisticated ruleswhich are implemented by Lisp and ML procedures rather than pattern matching.Theoretically, the reasoning accomplished by most of these procedures could alsoby accomplished by pattern-matching rules, but at a considerable loss of e�ciencyand convenience.I describe the tactic collection I created for Nuprl V4.1 in Chapter 3.A simple proof in Nuprl is that all functions in the type N !N are not enumer-able. Figure 2.2 shows a printout of this proof. Here, the function f is consideredto give a putative enumeration of all the functions. The theorem states that forany f, there will always a function g that f misses out. I generated this proof usingNuprl's proof editor by �rst entering the goal of the theorem:` 8f:N ! N ! N. 9g:N ! N. 8i:N. :(f i = g 2 N ! N)and then entering each of the tactics after the word BY. For brevity, this proofprintout only shows at each step of the proof the clauses of the sequent that havechanged.The proof editor generates a window that shows a sequent at some point of aproof, the tactic (if any) run on that sequent, and any subgoals generated. Forexample, one window onto the above proof is shown in Figure 2.3.One di�erence between Nuprl's re�ner and that of most other theorem proversis that Nuprl's maintains a proof-tree data-structure. Others just maintain thefringe of the proof tree. Maintaining whole proof trees makes interactive develop-ment of proofs considerably easier and makes it simple to go back and experimentwith di�erent proof strategies. Also, proof trees serve to document proofs; Nuprl



33` 8f:N ! N ! N. 9g:N ! N. 8i:N. :(f i = g 2 N ! N)BY (Unfold `not` 0THENM D 0THENM InstConcl ['�n.f n n + 1'] ...')?1. f: N ! N ! N2. i: N3. f i = (�n.f n n + 1) 2 N ! N` False?BY (With 'i' (EqHD 3) THENM Reduce 3 ...a)?3. f i i = f i i + 1 2 N?BY Auto Figure 2.2: Example Proof PrintoutEDIT THM cantor* top 11. f: N ! N ! N2. i: N3. f i = (�n.f n n + 1) 2 N ! N` FalseBY (With 'i' (EqHD 3) THENM Reduce 3 ...a)1* 3. f i i = f i i + 1 2 NFigure 2.3: Example Proof Window



34users frequently study proof techniques and learn tactic behavior by browsing ex-isting proof trees. This explanatory capability of tactics is much harder to takeadvantage of in theorem provers without proof trees, because there the tendencyis to store all the tactics that generate a proof as an unreadable monolithic block.To understand an existing proof in these systems, often the only option the userhas is to interactively replay the proof, line by line, and still, the replay will notmake the branching structure of proofs clear.Nuprl V4.1 has an option for maintaining proof-trees at the primitive rule levelas well at the tactic level. This is necessary for extraction purposes, althoughthis option is often disabled since the primitive rule trees can be very large. Aninteresting use of this feature is to maintain proof trees simultaneously at di�erentlevels of abstractions. Tactics can easily be set up to generate such multi-levelproofs. Then, when a user is trying to follow a proof, she can select the level ofexplanation as she wants.Tactics are always expressions in the ML language of type tactic, although itis often convenient to use notational abbreviations so that tactics do not alwaysappear to be in the ML syntax. For example, the `...' and `...a' notations at theend of tactics are generated by `tactic-wrapper' notational abbreviations. It is aNuprl convention that tactic wrappers with `...' indicate application of variantsof Nuprl's Auto tactic. These wrappers cause variants of the Auto tactic to carryout obvious steps of reasoning and solve trivial subgoals after the execution of thetactics contained in the wrapper. For example, one action of the `...'' wrapperaround the tactic:Unfold `not` 0THENM D 0THENM InstConcl ['�n.f n n + 1']is to prove that the function �n.f n n + 1 really has type N ! N (this is doneby using the SupInf tactics discussed in Section 3.9).Currently, proofs are stored in the form of proof scripts that contain the tacticsnecessary for regenerating the proofs. Occasionally, the regeneration of a proofbreaks because of minor changes to tactics between the regeneration time and thetime the proof was originally created. Usually, it is pretty easy to �x such proofs.2.2.8 The ML LanguageThe ML language used in Nuprl is a functional language closely-related to the MLof the Edinburgh LCF theorem proving system [GMW79] and is a predecessor ofML used in Cambridge LCF [Pau85] and the SML language [MTH91, Pau91]. Asin the LCF system, ML is used for writing all the tactics (ML originally stoodfor meta-language; it was designed for writing tactics). ML is also used as a top-level language for interacting with Nuprl: the user can load and save theories, andinvoke term and proof editors from an ML top-loop.



35It is assumed that the reader is familiar with some functional programminglanguage. For the purposes of this thesis, the main features of the ML languagethat the reader needs to know are:� It has a polymorphic type system. All terms are strongly typed. Typescan always be inferred and it is rare that code explicitly contains type an-notations. Occasionally, for clarity when documenting functions, I indicateexplicitly argument types. For example, I might write an argument as i:intindicating that argument i has the type int of integers.� The primitive types constructors include -> for functions, # for products, +for disjoint sums, and list for lists. Atomic types include bool, int andtok. tok is a type of tokens. A token is any string of characters, enclosed in``'s (back-quotes). Function application is denoted by juxtaposition, pairingby an in�x `,' (comma), and list consing by `.' (period). The notationfor lists uses [ and ] to delimit the list and ; to separate elements. Asequence of characters delimited by `` on each end is interpreted as a listof tokens. For example ``this is a token list`` is synonymous with[`this`,`is`,`a`,`token`,`list`].Nuprl also has a primitive type string of strings. These strings are delimitedby doublequotes (") on either side. Strings and tokens are implemented bydi�erent data structures in Lisp (strings and symbols respectively) that havedi�erent performance characteristics for their elementary operations.� A kind of abstract data types is supported. In an ML abstract-data-typede�nition, a representation type is speci�ed along with a set of functionsfor creating and operating on elements of the representation type. Outsidethe de�nition, the only way of manipulating elements of the abstract datatype are via the functions set up in the de�nition. Recursive abstract typescan be de�ned. The types term and proof are abstract types. Instancesof type term are either delimited by `''s (forward quotes) or by a d on theleft and a e on the right (half way through producing the thesis, I wantedmore distinctive tem delimiters so I changed the display form that producesthem). The use of the abstract type proof for proofs guarantees that onlythe re�ner can build new proofs.� Concrete type abbreviations are supported. Here, one gives a name for atype pattern and the name is then used for occurrences of the pattern. Forexample, the type tactic is an concrete type abbreviation for proof ->proof list # validation and validation is an abbreviation for prooflist -> proof.� User-de�ned binary functions can be declared to be in�x. Most in�x func-tions are easily recognized because their names use only capital letters. Nor-



36mal function application binds more strongly than in�x function application.The keywords let and letrec introduce respectively non-recursive and re-cursive declarations. Two semicolons (;;) always terminate declarations andexpressions to be evaluated.� Exceptions can be thrown and caught. This is essential for the behaviour oftacticals such as ORELSE and conversionals such as ORELSEC.� Comments are delimited by percent (%) characters.2.3 Summary of LibrariesHere is a summary of the main theories I had set up for Nuprl V4.1, by the timethat this thesis was completed. There is not space in this thesis to give full listingsfor all these theories. They should be all publically available in the Nuprl V4.1release sometime before the end of 1994 and also should be browseable on theWorld-Wide-Web [BCL+94]. Contact the author for details. Other developmentsin Nuprl V4.1 include theories on the semantics of an imperative programminglanguage [All94] and constructive real analysis [For93].� core 1: Display forms for primitive terms. De�nitions for propositions-as-types correspondence.� core 2: Intuitionistic propositional and predicate logic.� bool 1: The boolean type and boolean operators. Demorgan laws and sim-pli�cation theorems and tactics. Tactics for case splitting on the value ofboolean expressions, especially when they are arguments of if then elseterms.� fun 1: Identity function and function composition. Standard predicates onfunctions (injective, surjective, bijective) and theorems relating them.� well fnd: Basic theory of well-founded relations. De�nition of tactics forinduction on the rank of some expression.� int 1: De�nition of standard subsets of the integers. Theorems and tacticsfor linear and complete induction over subsets.� list 1: Common list functions that do not involve equality testing (forexample map, hd, tl, length).� num thy 1: Divisibility in Z. GCDs, coprimality, Chinese remainder theo-rem. Does not involve any iterated operations over integers.



37� rat 1: Rational numbers and arithmetic operations on rationals. This the-ory has been much extended by Forester in proving the Intermediate ValueTheorem.� gen algebra 1: Common algebraic predicates (for example, associativitycommutativity). Order and equivalence relations.� sets 1: Class of discrete types (a type is discrete when its equality relationis decidable) and types with decidable order relations.� groups 1: Classes for groups and monoids. Abelian and discrete variants.Iterated operations over a monoid. Homomorphisms. Normal subgroups andquotient groups.� rings 1: Classes of rings, integral domains and �elds. Ideals and quotientrings. Lifting of iterated operations to sum and product operations.� perms 1: The permutation group on any type. Permutations on a �nitetype. Building permutations from swaps. Invariance of iterated operationsover abelian monoids.� perms 2: The permutation relation on lists.� list 2: List functions over discrete sets and monoids (for example, member,reduce). Gives many monoid-related and permutation-related lemmas.� factor 1: Conditions for existence and uniqueness of factorizations in can-cellation monoids.� mset: Multisets built from lists using quotient type. Show that have a freeabelian monoid.� algebras 1: Classes of modules and algebras.� polynomials 1: Class de�nitions for free abelian monoid, free monoid alge-bra and polynomial algebra. Development of multivariate polynomial imple-mentation.The theories I have developed contain roughly 500 de�nitions (not countingthose that support ML and the editor), and 1300 theorems (not counting the pri-mary well-formedness theorem that nearly always accompanies each de�nition).When assessing these numbers, remember that what counts as a theorem or def-inition in formal mathematics is often much less than what counts in the normalpractice of mathematics. By studying this thesis, the reader should gain some ideaof the granularity of Nuprl theories and the level of detail.



Chapter 3Tactics3.1 IntroductionA variety of algorithms have been implemented in Nuprl's `meta-language' MLto automate parts of proof development. These algorithms are encapsulated intothese procedures that are called tactics which users select amongst and apply whenthey want to construct formal proofs in Nuprl.In this chapter, I survey the tactic collection that I have created for Nuprl V4.1and describe a few of the algorithms that underlie these tactics. Where appropriate,I point out the relationship between these tactics and those found in Nuprl V3,as well as in other theorem-proving systems. Note that the rewrite tactics aredescribed separately in Chapter 4. For more details on the tactics, consult theNuprl V4.1 Reference Manual [Jac94b].I have ordered the sections of this chapter roughly according the the complexityof the tactics that they describe. The last section of the chapter, Section 3.10,covers the matching routines that are used in several of the tactic families describedin this chapter, as well as extensively in the the rewrite tactics.In total, over 3000 functions have been de�ned in over 20,000 lines of ML code(not counting blank lines and comments). Fortunately, the average user need onlybe familiar with perhaps 20 or 30 of these functions in order to complete mostproofs.3.2 Well-formedness ReasoningIn practice, most well-formedness goals can be solved automatically by a set ofheuristics built into Nuprl's Auto tactic. The advantage of this approach over asyntactic one is that one can easily experiment with extensions to the type regimenthat one commonly works in. For example, we often work in Nuprl with terms38



39that have several alternative typings and Auto selects the appropriate typings indi�erent instances.A serious disadvantage with Nuprl's approach is that it is tremendously slowcompared to syntactic methods; frequently, 90% or more of tactic execution timeis spend in type checking. E�orts to streamline things with caching schemes havehad some success so far, but it's not clear whether one can ever approach thee�ciency of syntactic methods.Another disadvantage is that showing the initial well-formedness of new def-initions can be a signi�cant burden to the user. When proving well-formednesslemmas, one is severly restricted in what rewriting and chaining tactics one canmake use of. Part of the work I describe in Section 3.5 below has been in developingmethodologies for making the proof of these lemmas more straightforward.In presenting the behaviour of tactics in this chapter, I often suppress thewell-formedness subgoals generated. Auto is almost always run on well-formednesssubgoals created by tactics, so such goals are rarely seen in practice.3.3 DecompositionThe decomposition tactics provide access to the decomposition rules of Nuprl'slogic | the rules which as described in Section 2.1.4 correspond to the left andright introduction rules of a Gentzen L-style sequent calculus for predicate logic.The simplest decomposition tactic is the tactic D of type int -> tactic. The tacticD i decomposes the outermost constructor in clause i. For example, rememberingthat the conclusion is considered to be `clause 0', here is the D tactic decomposingan implication in the conclusion:: : : ` P ) QBY D 0main: : : : ; P ` QThis tactic example is read as indicating that if the tactic D 0 is run on a goal: : : ` P ) Q, then the subgoal : : : ; P ` Q is generated. The main indicatesa goal label on this subgoal. Some tactics generate labels on subgoals and othertactics discriminate on these labels. Goal labels are visible to the user when doinginteractive proof and often give hints as to where otherwise mysterious subgoalshave originated from. The D tactic above also generates a second well-formednesssubgoal with label wf, but as mentioned in Section 3.2, I'll frequently not showsuch goals.



40The D tactic works on the standard logical connectives and quanti�ers as wellas on hypothesis types. Sometimes, an additional argument needs to be speci�ed.For example:: : : ; j:8x:A:Px; : : : ` : : :BY With a (D j )main: : : : ; j:Pa; : : : ` : : :wf: : : : ; j:8x:A:Px; : : : ` a 2 AI use the j: here before the 8x:A:Px to indicate that this is the jth hypothesis.The D tactic usually does nothing more than select an appropriate primitiverule to do the decomposition and take care of perhaps unfolding an abstraction ortwo before applying the primitive rule. The user can specify extensions to D forcases when some other course of action would be most useful.Several decomposition tactics do repeated decomposition. For example, theRepD tactic repeatedly decomposes any 8 and) propositions in the conclusion and^ hypotheses. The GenExRepD tactic in addition decomposes 9 and _ hypothesesand ^ conclusions. The ProveProp tactic repeatedly and exhaustively applies theD tactic everywhere, backtracking when necessary. As the name implies, it is goodfor proving goals that involve just propositional reasoning. A variant on ProvePropallows alternative tactics to be run on the leaves of the search tree that ProvePropgenerates.3.4 Member and Equality DecompositionA family of decomposition tactics work on the arguments of membership (t 2 T )and equality (t = t0 2 T ) terms. MemCD works on the arguments of membershipterms in the conclusion. For example:: : : ` < a; b >2 x:A�BxBY MemCDsubterm1: : : : ` a 2 Asubterm2: : : : ` b 2 Bawf: : : : ; x:A ` Bx 2 UMemCD tries to use well-formedness lemmas or wf-lemmas for its reasoning. Forexample, a wf-lemma for rational plus function is:` 8a:Q: 8b:Q: a+q b 2 Q



41A more complicated wf-lemma is for an operator � for summing up an integer-indexed sequence of elements of a monoid g:` 8g:Monoid8m:Z8n:fm: : :g8E:fm: : :n� 1g ! jgj(�(g) m � k < n: E[k]) 2 jgjAn example use of this wf-lemma is:` (�(hZ;+; 0i) 1 � i < 10: i � i) 2 ZBY MemCDsubterm1: ` hZ;+; 0i 2 Monoidsubterm2: ` 1 2Zsubterm3: ` 10 2 f1 : : :gsubterm4: i:f1 : : : 10g ` i � i 2 jhZ;+; 0ijThis example illustrates a couple of subtleties of the operation of MemCD. Firstly,it handles smoothly operators with binding. Secondly, types often have to bejuggled to make them match up correctly. This is taken care of by the Inclusiontactic that MemCD invokes. Here, the Inclusion tactic recognizes that that the typeexpressions jhZ;+; 0ij andZare the same thing. MemCD is at the heart of the Nuprltactics such as Auto that are used to prove well-formedness subgoals.Closely related to MemCD is EqCD which used for congruence reasoning. It de-composes equalities in the conclusion of terms with the same outermost term con-structor into equalities between the corresponding subterms. For example:: : : ` p+q 1: = q +q 1: 2 QBY EqCDsubterm1: ` p = q 2 Qsubterm2: ` 1: = 1: 2 QWf-lemmas implicitly contain information about congruence properties of terms,and as in the above example, EqCD is able to use this information.Other decomposition tactics include MemHD and EqHD for decomposing terms inhypothesis memberships and equalities, and MemTypeCD and EqTypeHD for decom-posing just types in membership terms and equalities. The latter are applicable toset types, quotient types, recursive types and type abstractions built using thesetypes.



423.5 InductionInduction is commonly used over well-founded orders. I desgined theorems andtactics for showing that successively richer orders are well-founded and doing in-duction over these orders.One problem with Nuprl's type theory is that when proving well-formednesslemmas, it is very easy to generate well-formedness subgoals that are as hardto solve as the one being proved. This happens whenever one tries to use aninduction lemma as a step in a proof a well-formedness lemma. Fortunately, ifthe pattern of primitive rules used in proving the induction lemma and previouslemmas is duplicated, the induction can be done without creating these unwantedsubgoals. To simplify matters, I added in a proof analogy mechanism whereby atactic executes by copying a portion of an existing proof, but perhaps uses di�erentspeci�c parameters.An example of such a tactic is is the RankInd rank induction tactic. Figure 3.1illustrates its use in a proof of the well-formedness of a gcd (greatest-common-divisor) function. The invocation pattern for RankInd is RankInd � R Tac i,1. b: Z` 8a:Z. gcd(a;b) 2 Z|BY (OnVar `b' (RankInd '�i.|i|' 'N' CompNatInd)| THENM D 0 ...a)|2. 8b1:Z. |b1| < |b| ) (8a:Z. gcd(a;b1) 2 Z)3. a: Z` gcd(a;b) 2 ZFigure 3.1: Use of RankInd Induction Tacticwhere i indicates the hypothesis declaring the variable that the induction is over,� is the rank function, R is the range of the rank function, and Tac is a tactic forcomplete induction over the range type R. The OnVar `b' is a tactical for applyingtactics that apply to hypotheses. It allows reference to declarations by name ratherthan by number.3.6 ChainingForward and backward chaining involve treating a component of a universal for-mula as a derived rule of inference. I consider a universal formula to be one



43generated by the grammarP :: = 8x:A: P j Q) P j P ( Qj P ^ P j P () Pj Rwhere A is a type and R is a propositional term not of the above form. They aresometimes called positive de�nite formulae or horn clauses. I call the propositionR, a consequent and each Q, an antecedent. I call the formulae generated bythis grammar without the ^ and () connectives, simple universal formulae. Auniversal formula is logically equivalent to one or more simple universal formulae,one for each consequent. I consider these simple universal formulae to be thecomponents of a universal formulae.Universal formulae used for chaining appear either as a hypotheses in proofsone is working on or as previously proven lemmas in the Nuprl library.Backward chaining involves matching the conclusion of a sequent against theconsequent of a universal formula. The antecedents of the universal formula, in-stantiated using the substitution resulting from the match, then become new sub-goals. The tactics for 1-step backchaining are BackThruLemma and BackThruHyp,often abbreviated to BLemma and BHyp respectively. An example use of BLemma is:i:Z̀ 3 * i � 3 * (i + 1)BY BLemma `mul_preserves_le`main: ` i � (i + 1)where mul preserves le is the lemma:` 8a:Z. 8b:Z. 8n:N. a � b ) n * a � n * bThere are several tactics for repeating backchaining steps using lemmas andhypotheses. These tactics allow optionally for backtracking and so can be usedfor prolog-style proof search. They also have some basic loop detection built in toprevent some kinds of unbounded backchaining (for example, when backchainingthrough commutativity lemmas).Forward chaining involvesmatching hypotheses of a sequent against antecedentsof a universal formula. The consequent of the universal formula, instantiated us-ing the substitution resulting from the match, then becomes a new hypothesis.The tactics for 1 step forward chaining are FwdThruLemma and FwdThruHyp, oftenabbreviated to FLemma and FHyp respectively. An example use of FLemma is:1.i:Z, 2. 3 * i � 3 * (i + 1) `...BY FLemma `mul_cancel_in_le` [2]main: 3. i � i + 1 ` ...



44where mul_cancel_in_le is the lemma:` 8a:Z. 8b:Z. 8n:N+. n * a � n * b ) a � bThe forward chaining tactics take a list of numbers of hypotheses to try to matchagainst the lemma antecedents (the [2] in the example above).3.7 Constructive and Classical ReasoningI review here the mechanisms I've put in place for assisting constructive reasoning.In the last section, I discuss how one can reason classically.3.7.1 Constructive ReasoningThe intrinsic constructivity of Nuprl's logic manifests itself in three main wayswith the tactics:1. For any proposition P , the goal P _ :P is not in general provable.2. When applying the D tactic to a hypothesis that has a set term outermost,the predicate part of the set term becomes a hidden hypothesis. For example:: : : i:x:fy:T jPyg; : : : ` : : :BY D i: : : i:x:T; [i+ 1]:Px; : : : ` : : :Here, the [] surrounding the hypothesis number i + 1 indicate that this hy-pothesis is hidden. A hidden hypothesis is not immediately usable thoughthere are ways in which it might become usable later in a proof. The need forhiding is a consequence of the constructivity of Nuprl's type theory. Withouthiding, the rule invoked by the D tactic above would be unsound.3. To prove a conclusion C it is not in general legitimate to assume the negationof C and prove falsity; The goal : : : ` C cannot in general be re�ned to thegoal : : ::C ` False.Tactics to simplify dealing with these issues are described in the next threesections.



453.7.2 DecidabilityMany useful instances of P_:P are provable constructively and the ProveDecidabletactic is set up to construct these proofs in a systematic way. To discuss it, I �rstintroduce the decidable abstraction:Dec(P ) =def P _ :PIt turns out that the property Dec(P ) can be inferred for many P from knowingthat Dec(Q) for the immediate subterms Q of P . For example, if ` Dec(Qi) fori = 1; 2, then ` Dec(Q1 _ Q2) and ` Dec(Q1 () Q2). Decidability over producttypes can also be inferred from decidability over the component types. This canbe stated by the lemma:` 8A;B:U:(8a; a0:A: Dec(a = a0 2 A))) (8b; b0:B: Dec(b = b0 2 B))) (8c; c0:A�B: Dec(c = c0 2 A�B))ProveDecidable takes advantage of this property of decidability, and attemptsto prove goals of the form: : : ` Dec(P )by backchaining with a user-extensible set of decidability lemmas. ProveDecidableis usually invoked via the Decide tactic which is used to case-split on whether aproposition Q is true or false. It generates two main subgoals; one with the newassumption Q and the other with the new assumption :Q. It also generates asubgoal : : : ` Dec(Q) and runs the ProveDecidable tactic on this subgoal.3.7.3 Squash Stability and Hidden HypothesesSquash stability is de�ned in the Nuprl library as:SqStable(P ) =def #P ) PThe proposition #P (read `squash P') is considered true exactly when P is true.However, P 's computational content when true can be arbitrary whereas # P 'scomputational content when true can only be the trivial constant term � (read `it')that inhabits the unit type. (#P is de�ned as fx:UnitjPg where x does not occurfree in P .)Informally, a proposition is squash stable if it is possible to �gure out what itscomputational content is, given that it is known that some computational contentexists (in the classical sense). The computational content of a proposition is someterm that inhabits the proposition when it is considered as a type.



46Squash stability is a useful concept because it characterizes exactly when a hid-den hypothesis can be unhidden. Speci�cally, a hidden hypothesis P in a sequent� can be unhidden if one of two conditions are met:1. The proposition P is squash stable.2. The conclusion of � is squash stable.As with decidability, it turns out that the property SqStable(P ) can be inferredfor many P from knowing that SqStable(Q) for the immediate subterms Q of P .It is also true that Dec(P ) ) SqStable(P ) for any P . The tactic ProveSqStabletakes advantage of these facts and attempts to prove goals of the form: : : ` SqStable(P )by backchaining with a user-extensible list of lemmas about squash stability andalso resorting to checking whether P is decidable. Various tactic that unhidehypotheses create SqStable subgoals that are proven using the ProveSqStabletactic.3.7.4 Stability and Negating the ConclusionSquash stability is closely related to the stability predicate in constructive logic; aproposition P is stable if ::P ) P . As explained at the end of the next section,the two predicates can be considered equivalent.The re�nement step of proving a conclusion C by assuming the negation :Cand proving a contradiction is only constructively valid when C is stable. TheNegateConcl tactic carries out this step and checks the stability of C using theProveSqStable tactic.3.7.5 Classical ReasoningTo reason non-constructively, one needs to have as an explicit hypothesis the ex-cluded middle proposition8P :P: P _ :P(or at least some instances of it). The xmiddle abstraction provides an abbrevia-tion for this:xmiddle: XM =def 8P :P:Dec(P )The Decide, NegateConcl and hypothesis unhiding tactics all recognize wheneverthe xmiddle abstraction occurs as some hypothesis, and in this case never fail.A non-constructive theorem is stated by using xmiddle as a precondition of thetheorem. Such theorems are then usually of form ` XM) P .



47There are two common cases when in proving a part of a constructive theorem,classical reasoning becomes allowable:1. If the conclusion is the squashed exists term # 9x:T: Px and the existentialis about to be instantiated using the tactic With t (D 0). Squashed exists isde�ned as:sq exists: #9x:T: P [x] =def fx:T j P [x]gWhen the tactic AddXM is used �rst, the re�nement has form:: : : ` # 9x:T: PxBY AddXM 1 THEN With t (D 0)wf XM : : : ` t 2 Tmain XM : : : ` Ptwf XM : : : x:T ` Px 2 PAddXM 1 adds the hypothesis XM as a hidden hypothesis, so there are nosoundness problems here. XM becomes unhidden in the �rst and third sub-goals since here the conclusion is recognized as being trivially squash stable.XM becomes unhidden in the second subgoal since from here on, any compu-tational content in the proof cannot contribute to the computational contentof the original goal of the theorem.2. If the conclusion is squash stable. When AddXM 1 is run, the proposition XMis added as a hidden �rst hypothesis and one of the unhiding tactics unhidesit.The AddXM tactic assumes that the proposition`# (8P :P: P _ :P )is true; that is, the corresponding type is inhabited. This is not true according tothe set-theoretic semantics that Allen gave, but is true according to the model ofHowe in which the computation language is enriched with non-computable oracles.The outermost squash operator ensures that the oracular inhabitants of the aboveproposition never make their way into any other extracts of theorems and so upsetNuprl's constructivity. When # (8P :P: P _ :P ) is assumed true, stability andsquash stability are equivalent notions. The NegateConcl tactic described in theprevious section takes advantage of this fact.



483.8 Relational ReasoningFor the rewrite package described in Chapter 4, I established conventions for build-ing libraries so that tactics would have easy access to information about variouscharacteristics of binary relations (see Section 4.3).I took advantage of this accessibility in the design of a tactic RelRST 1 thatautomates solving goals that depend on these characteristics. The heart of thistactic is a routine that builds a directed graph based on the binary relations in asequent and �nds shortest paths in the graph. Extensions were made to this routineto allow it to handle strict order relations and relations with di�ering strengths.I ended up adding features to RelRST so that it also could take advantage ofantisymmetry, irreexivity and linearity properties of relations.RelRST generalizes the Eq tactic in previous versions of Nuprl that only handledsuch reasoning with the equality relation of Nuprl's type theory.Here are a couple of examples of RelRST's use from a theory of divisibility overthe integers:1. a: Z2. a': Z3. b: Z4. b': Z5. ...6. a' | a7. b | b'8. ...9. a | b` a' | b'|BY (RelRST ...)and1. a: Z2. b: Z3. y1: Z4. ...5. gcd(a;b) = y16. y2: Z7. ...8. gcd(b;a) = y29. ...10. y1 � y2` gcd(a;b) � gcd(b;a)1standing for Rel(ation) R(eexivity), S(ymmetry) and T(ransitivity)



49|BY (RelRST ...)Here, I have elided hypotheses that were not required by RelRST to solve the goals.The� relation is the associated relation and gcd(a;b) is a function that computesthe greatest common divisor of a and b. The second example illustrates how RelRSTis able to cope with relations of di�ering strengths.3.9 Arithmetic ReasoningThe integers and subsets of the integers such as the naturals are amongst the mostcommon data-types in theorem proving. Consequently, goals involving arithmeticreasoning come up frequently. These goals can be very tedious to solve by manualapplication of sets of lemmas derived from Peano-like axioms and recursive de�-nitions of the arithmetic functions, despite the fact that the goals are often veryobvious to the theorem prover user.There are several standard algorithms for solving some kinds of arithmeticproblems. For example, for deciding the satis�ability of conjunctions of inequalitiesover linear rational expressions, there is Fourier's technique of variable eliminationthat has been known for over a century [Chv83]. This problem can easily be re-phrased as a linear programming problem for which the commonly used methodin the operations research community is the simplex algorithm [Chv83].Nuprl inherited from the PL-CV system built at Cornell a procedure calledarith for solving arithmetic problems over the integers [CJE82, C+86]. Roughlyspeaking, arith tries to solve a goal by putting arithmetic expressions into a normalform and then applying congruence closure. It also has some basic capabilities forsolving inequalities.However, arith cannot solve general sets of linear inequalities over the inte-gers though such problems are abundant when for example doing array boundschecking. Solving linear inequalities over the integers is a strictly harder problem;polynomial time algorithms are known for the solving linear inequalities over therationals, but integer linear programming is NP complete. In practice in theoremproving, simple adaptations of methods over the rationals have worked well for theintegers.I chose to implement in Nuprl a tactic that uses the Sup-Inf method for solvinginteger inequalities [Ble75]. The basic algorithm considers a conjunction of inequal-ities 0 � e1 ^ : : : ^ 0 � ep where the ei are linear expressions over the rationalsin variables x1 : : : xn and determines whether or not there exists an assignment ofvalues to the xj that satis�es the conjunction. The algorithm works by determin-ing upper and lower bounds for each of the variables in turn | hence the name`sup-inf'. The bound calculations are always conservative, so that if some upperbound is strictly below some lower bound, then the conjunction is unsatis�able.



50Shostak [Sho77] showed that the calculated bounds are the best possible, andhence that the algorithm is complete for the rationals. He proposed a simplemodi�cation that made the algorithm return an explicit satisfying assignment whenthe conjunction is satis�able.When used over the integers, the Sup-Inf algorithm is sound, but not complete;if there is no satisfying assignment over the rationals, then there is also none overthe integers. However, there are cases when the algorithm �nds a rational-valuedsatisfying assignment even though none exists that is integer valued. There arestandard techniques for restoring completeness, but it has been both Shostak's andour experiences to date that examples for which the algorithm is incomplete arerare in practice.The procedure I implemented currently does the following:1. Takes a goal g and extracts a logical expression P built from the logicalconnectives ^;_;:, the order relations on the integers � and <, and theequality relation = on the integers, such that if :P is not satis�able, thenthe goal g is true. If the goal has the formx1; : : : xn:Z; r1; : : : rk ` r0where the ri are all instances of the �; <;= relations over the integers in-volving expressions over the integer variables x1; : : : ; xn, then :P has formr1 ^ : : : ^ rk ^ :r0:2. The expression :P is put into disjunctive normal form. Occurrences of = and< relations are eliminated in favour of �. Where possible, ='s are eliminatedby substitution rather than splitting into inequalities.3. The left-hand argument of each � is moved to right-hand side and the integerexpressions are put into a sum of products normal form. Each product hasany constant coe�cient brought out to the left of the product.4. Each distinct non-linear expression is generalized to a new rational variable.These non-linear expressions might involve � and �, as well as integer-valuedfunctions (for example, the list length function). The arithmetic expressionsare now all linear.5. Each disjunct is augmented with extra arithmetic information suitably nor-malized that comes from various sources including:(a) typing of variables and generalized non-linear expressions. If variable ihas type fj : : :g, then j � i can be added.



51(b) arithmetic property lemmas. An example is a lemma stating that thelength of two lists appended is the sum of the lengths of each list.This augmentation is in general a recursive procedure; the inferred arith-metic propositions can themselves contain variables and non-linear expres-sions about which further information can be inferred.6. The Sup-Inf algorithm is run on each disjunct. If none is satis�able, then theoriginal goal is true. If a satisfying assignment is found, then it is returnedto the user as a counter-example.7. When no disjunct is satis�able, the procedure creates several well-formednesssubgoals. Some of these check the well-formedness of the arithmetic expres-sions in the conclusion of the original goal g. Others check that the arithmeticproperty lemmas can be instantiated as the procedure assumed they couldbe.The inference of arithmetic properties from typing and from property lemmasgreatly increases the procedure's usefulness.Unlike most other tactics, but like the arith rule which SupInf largely su-percedes, SupInf's inferences are not re�ned down to primitive rule level, so Nuprl'ssoundness now depends on the soundness of a core part of SupInf's implementa-tion. E�orts are now underway to see if the functions used in the SupInf tacticcan be formally veri�ed in Nuprl.I give a couple of examples of uses of the SupInf tactic. It is able to prove thegoal:1. x: Z2. y: Z3. z: Z4. 2 * y + 3 � 5 * z5. z � x - y6. 3 * x � 5` 2 * y � 3but on:1. x: Z2. y: Z3. 3 * x � y4. y � 2` x + y > 3�nds the counterexample x= 1 and y= 2. Examples of arithmetic property lemmasare:



52` 8 i:Z. 8 j:Z. i � 0 ) j > 0 ) 0 � i rem j < jwhere rem is the remainder function and:` 8A:U. 8as:A list. 8n:N|as|. (|nth_tl(n;as)| = |as| - n)where nth tl(n;as) takes the nth tail of list as, |�| is the list length functionand N|as|. is an abbreviation for the integer segment f0...|as|-1g. The latterlemma is invoked when SupInf proves the goal:1. T: U2. as: T List3. m: N4. n: N5. |as| � m + n` |nth_tl(n;as)| � m3.10 Matching3.10.1 Second-Order Matching and SubstitutionMatching routines are at the heart of several tactics such as the rewriting tactics(see Chapter 4) and the chaining tactics (see Section 3.6).Nuprl V4.1's matching routine is based on a second-order restriction [HL78]of Huet's higher-order uni�cation algorithm [Hue75]. This second-order routinehandles patterns with bound variables, in contrast to Nuprl V3's �rst-order routinewhich did not. The advantage of using this second-order algorithm, rather than thefull higher-order algorithm, is that it is much more controlled; unique most-generalsubstitions (or uni�ers) exist with it. With Huet's full algorithm, a potentiallyin�nite lazy stream of uni�ers are generated, even though nearly always, all butthe �rst one are not needed. I have found that second-order matching is adequatenearly all the time so far, Miller reports similar positive experiences when workingin the system �-prolog with a similar second-order uni�cation algorithm that hecalls �0-uni�cation [Mil91], and I know that Paulson and Nipkow have had successwith something similar in Isabelle [Pau90].To discuss second-order matching, I �rst introduce the notions of second-orderterms and second-order substitutions. Second-order terms are a generalization ofterms. They can be thought of as `terms with holes', terms with zero or moresubtrees missing. It is both convenient to �ll the holes in a second-order term withdistinct variables, so forming a �rst-order term. The notation for a second-orderterm is then w1; : : : ; wn:t where the occurrences of the variables wi in t indicatethe holes.



53A second-order variable is a new kind of variable that in addition to a namehas a natural-number arity. A instance of second-order variable v of arity n hasform: v[a1; : : : ; an], where a1; : : : ; an are its arguments.A second-order substitution is a list of second-order bindings, pairs of second-order variables and the second-order terms they are bound to. The result of ap-plying the binding [v 7! w1; : : : ; wn:t] to the variable instance v[a1; : : : ; an], is theterm t[a1; : : : ; an=w1; : : : ; wn], where the notation �[�=�] denotes capture-avoiding�rst-order substitution.Second-order substitution is useful for instantiating pattern terms involvingbinding structure. For example the second-order substitution [P 7! i:i � 0] appliedto the pattern 8x:N: P [x] yields the instance 8x:N: x � 0.Second-order matching involves taking a pattern term p and an instance termi and determining whether there is a second-order substitution � such that �p = i.The matching algorithm implemented requires that least one occurrence of ev-ery second-order variable in the pattern have as arguments only variables and fur-ther that all these variables be bound in the pattern. The pattern term 8x:N: P [x]is an example that satis�es this restriction.Second-order variable instances are allowed in abstraction de�nitions, but notin theorems and their proofs. There, second-order variable instances are simulatedby applications of �rst-order variables, and second-order substitution is simulatedby a combination of �rst-order substitution and beta-reduction.3.10.2 Match ExtensionI used a match extension routine, much as described by Howe [How88a]; instanti-ating bindings for universally quanti�ed expressions cannot always be �gured outsolely from initial matches. in some cases one has to go through an iterative pro-cess of matching types of existing bindings against the types of the correspondingvariables in the universally quanti�ed expressions. This need for match exten-sion occurs frequently when reasoning with polymorphic functions. For example,consider this lemma about collapsing two map functions:` 8A,B,C:U8f:A ! B8g:B ! C8as:A List. map(g;map(f;as)) = map(g o f;as) 2 C ListIf this were used as a left-to-right rewrite rule, then Nuprl would try using itsmatching function to �nd expressions that matched the pattern map(g;map(f;as)).Assume a match is found and the matching routine generates bindings for g, f andas. The match extension process then �nds bindings for A,B and C as explainedabove.



543.10.3 Universe PolymorphismIt turned out to be non-trivial to modify the matching procedures to accomodatethe level expressions found in universe terms and abstractions involving universeterms. The problem was that I needed the matching routines to in general solvingsets of inequalities and that one couldn't begin to solve these inequalities until anymatch extension had been completed. The main matching routines had all to bemodi�ed to propagate and collect these inequalities.Solving the inequalities themselves was fairly straightforward; I came up withan algorithm that always �nds a match if there is one, and further which �nds anequality match if possible [Jac94c].



Chapter 4Rewriting4.1 IntroductionRewriting [DJ90], the process of using equations as transformational rules, is acommon technique in theorem-proving. In resolution theorem provers, rewriting isoften accomplished using the demodulation and paramodulation rules [WOEB84].Most interactive theorem provers have some kind of rewriting facility. For example,the NQTHM prover uses rewriting heavily for simpli�cation and for applicationof inductive hypotheses [BM88a]. Rewriting is also common in computer algebrasystems. For example, Mathematica [Wol91] allows users to phrase transformationand simpli�cation strategies as sets of rewrite rules.The repeated exhaustive application of a set of rewrite rules at all nodes of aterm tree can often be an ine�cient method for achieving simpli�cation, though itis a topic commonly studied in the rewriting literature. Often rewrite rules havestructure that can be taken advantage of. For example, a set of simplifying rewriterules might do all the work they might ever do in a single pass over a term treestarting from the leaves and ending at the root. Other problems with exhaustiveapplication include the di�culty of obtaining guarantees that a set of rules doesn'tcycle and of �guring out whether to turn equations into left-to-right rewrite rulesor or right-to-left rules. An example of the fruits of careful analysis of a rewritingproblem can be found in the work of Bundy and others; starting with a studyof the rewriting strategies used in inductive proofs by NQTHM, they developedan elegant family of strategies that they have called rippling strategies, since thechanges e�ected by rewrite rules propagate around term trees like ripples on apond [BvHH+89, BvHSI90].To provide systematic control of rewriting in the LCF proof development sys-tem, Paulson introduced a language of conversions and conversionals [Pau83a,Pau87], reminiscent of the language of tactics and tacticals, which allows the piec-ing together of rewrite strategies from sets of rewrite rules. Conversional languages55



56have been adopted in the HOL system [GM93], in Paulson's Isabelle system, inrewrite tactics written for Nuprl V3 [CH90, Bas89], and in the rewrite package thatI have developed for Nuprl V4.1. In Section 4.2, I introduce the notion of conver-sions and give examples of conversionals that I commonly use. Many examples ofthe use of this rewrite package can be found in later chapters.Features of this rewrite package include that it it uses second-order matchingfor rewrite rules( see Section 3.10.1), that it supports rewriting with respect to avariety of equivalence relations of varying strengths. It also assists in reasoningwith order relations, in which case it automatically checks monotonicity propertiesof term constructors.4.2 Conversions and ConversionalsTo convey the idea of conversions and conversionals in this section, I present asimpli�ed implementation of them. In later sections, I describe the actual conver-sions that I implemented. Note however that the conversionals introduced herehave the same names and same behaviours as those in Nuprl V4.1. I therefore donot survey the main conversionals I created for Nuprl V4.1 elsewhere.Let convn be an ML concrete type alias for the type of conversions. Later on, Idescribe the type that convn is an alias for in Nuprl V4.1. In this section, assumethat convn is an alias for the type term -> term, where term is a type of termsthat we want to rewrite. If c is of type convn, then we can use c to rewrite t oftype term by simply running the ML evaluator on the application c t.For the purposes of the section only, I introduce a basic conversion called RuleC: term -> convn. The conversion RuleC expects its term argument to be of forma = b where the free variables of b are a subset of those in a. If the conversionRuleC 'a = b' is applied to a term t, RuleC tries to �nd a substitution � suchthat �a = t. If it succeeds, it returns the term �b. If a substitution cannot befound, RuleC raises an exception. The conversion RuleC 'a = b' therefore rewritesinstances of a to corresponding instances of b. For example:RuleC 'x+ 0 = x'when applied to the term (2 � 3) + 0 yields the term 2 � 3.RuleC cannot by itself rewrite subterms of a term; ifRuleC 'x+ 0 = x'is applied to the term (1 + 0) � 3, it fails. There are a variety of higher-orderconversions that map a conversion such as RuleC over all subterms of a term. Anexample of a conversional is SweepUpC : convn -> convn. If c is a conversion, thenSweepUpC c is also a conversion. if SweepUpC c is applied to some term t, an attemptis made to apply c once to each subterm of t working from the leaves of term t upto its root. SweepUpC c only fails every every application of c fails. So if



57SweepUpC (RuleC 'x+ 0 = x')is applied to term (1 + 0) � 3, it succeeds and returns the term 1� 3.The basic conversion for sequencing conversions is ANDTHENC : convn -> convn-> convn. In Nuprl, we reserve all-capital names for in�x functions so a normalapplication of ANDTHENC to conversions c1 and c2 has form c1 ANDTHENC c2. Whenapplied to a term t, c1 ANDTHENC c2 �rst applies c1 to t. If c1 succeeds, returninga term t0, then c2 is applied to t0 and the result is returned. If either c1 or c2fails, then c1 ANDTHENC c2 also fails. By analogy with tacticals being higher-ordertactics, ANDTHENC is called a conversional.The ORELSEC : convn -> convn -> convn conversional is for combining alter-native conversions. When c1 ORELSEC c2 is applied to a term t, it �rst tries applyingc1 to t, and if this succeeds returns the result. If the application of c1 fails, then ittries applying c2 to t, failing if c2 fails.The de�nition for SweepUpC is:letrec SweepUpC c t = (SubC (SweepUpC c) ORTHENC c) tSubC : convn -> convn when applied to a conversion c and a term t, applies c toeach of the immediate subterms of t. It fails only when c fails on every immedi-ate subterm. Hence, it always fails when t is a leaf node and has no immediatesubterms. c1 ORTHENC c2 is similar to c1 ANDTHENC c2 in that it �rst tries c1 andthen c2. However ORTHENC only fails if both c1 and c2 fail. So, a call of SweepUpC con argument t �rst tries to apply SweepUpC c to the immediate subterms of t andthen then tries to apply c to t itself. Note that without the t argument on the leftand right sides of the de�nition, SweepUpC in ML's call-by-value evaluation schemewould recurse inde�nitely.The de�nition for ORTHENC is:let c1 ORTHENC c2 = (c1 ANDTHENC TryC c2) ORELSEC c2where TryC c is de�ned as c ORELSE IdC and IdC: convn, when applied to any t,always returns t.Other conversionals that are commonly used in the work described in this thesisare:� FirstC : convn list -> convn which is an n-ary version of ORELSEC,� RepeatC : convn -> convn which repeatedly tries applying a conversion tillno further progress is made,� HigherC : convn -> convn which applies a conversion to only nodes higherin a term tree. What I mean by `higher' is probably best understood bystudying the de�nition of HigherC:letrec HigherC c t = (c ORELSEC SubC (HigherC c)) t



58� SweepDnC : convn -> convn which sweeps a conversion down over a termtree from the root towards the leaves. Its de�nition is:letrec SweepDnC c t = (c ORTHENC SubC (SweepDnC c)) t� NthC int -> convn -> convn. NthC i c t tries c on each node in t in pre-order order, but only on the ith success of c does it go through with therewrite that c suggests. This is very useful during interactive proof when forexample you want to unfold one instance of a de�nition but not any others.4.3 RelationsThe rewrite package supports rewriting with respect to both primitive and user-de�ned equivalence relations. Some examples are:� �, the computational equality relation,� � = � 2 �, the primitive equality relation of the type theory,� (), if and only if,� � mod , equality on the integers, mod a positive natural,� =q, equality of rationals represented as pairs of integers,� �, the permutation relation on lists.The package also supports `rewriting' with respect to any relation that is tran-sitive but not necessarily symmetric or reexive. This needs a bit of explaining.Proofs involving transitive relations and monotonicity properties of terms can bemade very similar in structure to those involving equivalence relations and con-gruence properties.For example, consider the following proof step that came up Forester's devel-opment of real analysis in Nuprl [For93].i:N+j:N+f :N+ ! N+mono(f)1̀=fi +q 1=fj �q 1=i+q 1=jBY RWH (RevLemmaC `monotone le`) 01̀=i+q 1=j �q 1=i +q 1=j



59Here, the de�nition mono(f) is:mono(f) =def 8a; b:N+: a < b) f a < f band the theorem monotone_le is:` 8f :N+ ! N+: mono(f) ) 8n:N+: n � f nThe tactic RWH c i tries to apply the conversion c once to each subterm of clausei of the sequent and the conversion RevLemmaC name converts lemma name into aright-to-left rewrite rule. Other examples of monotone rewriting can be found inSection 10.7.1.It is interesting to note that logical implication ) can be treated a rewriterelation, since it is transitive. When it is, we have a generalization of forward andbackward chaining.For each user-de�ned relation, the user provides the rewrite package with lem-mas about transitivity, symmetry, reexivity and strength (a binary relation Rover a type T is stronger than a relation R0 over T if for all a and b in T , therelation a R b implies that a R0 b). These lemmas are used by the package for thejusti�cation of rewrites (see Section 4.4).The user also provides a declaration in an ML object that identi�es relationfamilies and extra properties of relations. For example, here is relation familydeclarations for the standard order relations on integers:lt_family:Relation Family<: i < j�: i � j�: i = j�: i � j>: i > jand here is the divides relation from the theory of cancellation monoids describedin Chapter 8:mdivides_order_fam:Relation Family<: a p| b in g�: a | b in g�: a �{g} b�: a |by b in g>: ?



604.4 Justi�cation of RewritesIn a theorem-proving setting, rewriting has to be rigorously justi�ed. Firstly,rewrite rules must be generated from previously proven lemmas or from hypothe-ses; a conversion such as RuleC described in the previous section is not allowed.Secondly, there must be reason to believe that congruence properties are respected.For example, if the conclusion of a sequent is C[t] where C[ ] is a context, and termt is rewritten to t0, then we might expect the sequent:t = t0 ` C[t]() C[t0]to be provable. Some logics guarantee that equal terms can always be substitutedfor one another in any context, so in these logics congruence properties need notbe explicitly checked during proof.Nuprl has a rich variety of equality and equivalence relations, some primitiveand some user de�ned. The strongest, a computational equality relation, has beenshown to be a congruence relation everywhere [How89]; it is always valid to replacesome term by a computationally equivalent one. However, many other relationsare only congruence relations in certain contexts.Rewriting with respect to the computational equality is justi�ed using direct-computation primitive rules. All other rewrites are justi�ed by tactics that con-struct congruence proofs. The direct computation rules are described in Sec-tion 4.4.1 and congruence proofs are described in Section 4.4.2.4.4.1 Direct ComputationThe main direct-computation rule enable one to select arbitrary redices in clausesof sequents and contract them. A redex is the left-hand side of some computationrule such as the � rule:(�x:bx) a �! ba. The right-hand-side of such a rule issometimes called the contractum and the process of replacing instances of the leftwith instances of the right contraction.Redices within a clause are identi�ed to the rule by giving the rule a copy ofthe clause with the selected redices tagged. Section 4.6 gives examples of taggedterms. A variant on the main rule allows a clause to be replaced with anothercomputationally-equal term with new redices. Here, one gives the rule the clausewith the new redices tagged, and the rule checks that reducing the tagged redicesgives the original clause.The direct-computation rules are extremely useful. Rewrites using direct com-putation are 10{100 times faster than similar rewrites using congruence proofs.The same tagging scheme is also used to select abstractions in clauses for foldingand unfolding.



614.4.2 Congruence ProofsAn example of a rewrite justi�ed by a congruence proof is as follows. This examplecomes from an auxiliary theorem that was used to prove the Chinese RemainderTheorem. Say we want to prove the goal:x; y; a; b:Z; m:N+; x � 1 mod m; y � 0 mod m ` a � x+ b � y � a mod mthen a �rst step might be to rewrite using the hypotheses to eliminate x and yfrom the conclusion, giving the new sequent:x; y; a; b:Z; m:N+; x � 1 mod m; y � 0 mod m ` a � 1 + b � 0 � a mod mThis can be justi�ed because �, + and � � � mod m all respect � � � mod m. However,if the conclusion were instead a�x+b�y = a 2Z, the rewrites could not be justi�ed,since � = � 2Zdoes not respect � � � mod m.Such rewrites are justi�ed by executing tactics that do top-down congruencereasoning. Part of the justi�cation for the above rewrite is shown in Figure 4.1.` a � x+ b � y � a mod m() a � 1 + b � 0 � a mod mBY functionality
-: : : ` a � x+ b � y � a � 1 + b � 0 mod mBY functionality
-: : : ` a � x � a � 1 mod mBY functionality
-: : : ` a � a mod mhcontinuedi
-: : : ` x � 1 mod mhcontinuedi
-: : : ` b � y � b � 0 mod mhcontinuedi
-: : : ` a � a mod mhcontinuedi
-: : : `m = m 2Zhcontinuedi Figure 4.1: Rewrite Justi�cationAt each BY, a functionality tactic is applied which reduces the goal of proving the



62equivalence of two terms with the same outermost term constructor to the provingof the equivalence of corresponding immediate subterms. These tactics draw onfunctionality information about terms from primitive rules and lemmas. Ignoringparameters that relations can have, (like the m above), a functionality lemma hasthe basic form:8x1; y1:T1; : : : ; xn; yn:Tn: x1 r1y1 ) : : :) xnrnyn) op(x1; : : : ;xn) R op(y1; :::; yn)Most commonly the relations R and ri are equivalence relations, but in generalthey needn't be. See Section 4.3 for details. Also, whenever subterm i of opis thought of as a parameter that never normally would get rewritten, then theantecedent involving ri can be dropped and xi can be used on both the left andright of the consequent of the formula.Other parts of justi�cations contain tactics that draw on transitivity informa-tion and information on the relative strengths of relations. Continuing the previousexample, suppose we included rewrite rules for arithmetic simpli�cation based onlemmas such as:` 8i:Z: i � 1 = i 2Zinto our rewrite. Part of the justi�cation might then look like as shown in Fig-ure 4.2. The transitivity step draws on the transitivity of � � � mod m and the` a � x � a mod mBY transitivity
-` a � x � a � 1 mod mBY functionality
-a � a mod mhcontinuedi
-x � 1 mod mBY hypothesis
-` a � 1 � a mod mBY strengthening
-` a � 1 = a 2ZBY lemmahcontinuediFigure 4.2: Justi�cation with Transitivity Stepstrengthening step draws on the fact that � = � 2 Z is a stronger relation than� � � mod m. Again, this information comes from both primitive rules and lemmas.



63Tactics that create justi�cation proofs are generated automatically by Nuprlconversions. Section 4.5 gives some basic details on how this is done.4.5 Operation of Nuprl ConversionsIn Nuprl the conversion type convn is an alias forenv -> term -> (term # reln # just)Here, env is an ML abstract type for environments, reln is an ML abstract typefor rewrite relations and just is an ML abstract type for justi�cations. I explainwhat each of these abstract types is below.If a conversion c of type convn is applied to an environment e and a term tobe rewritten t, it returns a triple ht0; r; ji. The environment e tells the conversionc about the context of the term t. This includes the types of all the variables thatmight be free in t, as well as propositions that the conversion can assume true.The term t0 is the rewritten version of the term t. The relation r speci�es therelationship between t and t0. The justi�cation j indicates how the relation t r t0may be proven.The functionRewrite : convn -> int -> tacticis the basic tactic for applying conversions.Rewrite c i applies conversion c to Qi, clause i of the sequent. Rewrite worksin two phases; �rstly it constructs an environment from the sequent and passes thatand Qi to the conversion. The conversion constructs a justi�cation j in a bottom-up fashion, starting from successful instances of rewrite rule applications, and alsoreturns the term Q0i and the relation r. Secondly, Rewrite executes justi�cation j.If j is of the direct computation kind, it is passed to a direct computation tacticto rewrite clause i. If j is a tactic justi�cation, then it is used to prove the goal` Qi r Q0i, and some simple logical reasoning allows clause i to be replaced by Q0i1.Using Rewrite, rewrite tactics are constructed that rewrite with respect to setsof lemmas, hypotheses and direct-computation rules (Section 4.6 and Section 4.7describe these rules).A single set of conversionals handles justi�cation of rewrites both by directcomputation and by tactic-driven congruence proofs. Where possible computationjusti�cations are used, but sometimes it is necessary to convert a computationjusti�cation to a tactic justi�cation.1occasionally, when one hypothesis is rewritten using another hypothesis as arewrite rule, Q0i contains free variables declared to the right of position i in thehypothesis list. In this case, Q0i is usually placed at the end of the hypothesis list.



644.6 Direct Computation ConversionsA justi�cation for a direct-computation conversion takes the form of a computesequence. A compute sequence is of type (tok # term) list, where each pair in asequence is of form op,t. The token op indicates a direct-computation operation.The possible values of op are NOP for a null operation, FWD for a forward computa-tion step, and REV for a reverse computation step. The term t is a possibly taggedterm. A compute sequence[op1; t1; op2; t2; : : : ; opn; tn]is a justi�cation for rewriting term ta to term tb if all the following hold:1. op1; t1 = NOP; ta2. opn; tn = NOP; tb3. if opi is FWD, then executing a forward computation step as indicated by thetags on term ti results in a term equal to term ti+1 with tags removed.4. if opi is REV, then executing a forward computation step as indicated by thetags on term ti results in a term equal to term ti�1 with tags removed.5. sequences of consecutive FWD and REV operations are separated from oneanother by NOP operations.An example of a compute sequence that justi�es the unrolling of a Y combinatoris:[NOP, Y F;FWD, Y F;FWD, (�f.(�x.f(xx)) (�x.f(xx))) F;FWD, (�x.F(xx)) (�x.F(xx));NOP, F ((�x.F(xx)) (�x.F(xx)));REV, F (�f.(�x.f(xx)) (�x.f(xx))) F;REV, F ( Y F);NOP, F (Y F)]Here, the 's indicate tags.Compute sequences have a couple of nice properties. Firstly, they can be spe-cialized; if a compute sequence justi�es rewriting term ta to term tb, then a computesequence that justi�es rewriting �ta to �tb for any substitution � can be formed



65by applying � to each term in the compute sequence. Secondly, they can be re-versed; a compute sequence justifying rewriting term ta to term tb can be easilytransformed into one that justi�es rewriting tb to ta.I exploited both these properties in de�ning a direct computation conversion:MacroC : convn !term !convn !term !convnMacroC ca ta cb tb creates a conversion for rewriting instances of ta to instances oftb, providing that applying the conversion ca to ta and cb to tb results in the sameterm.MacroC allows the easy construction of quite complicated yet well controlledconversions; often the conversions used for ca and cb can be much simpler thanif an equivalent conversion were built without MacroC. For example, consider thefollowing de�nitions in Nuprl V4.1's theory about the booleans:bool:B == Unit + Unitbfalse:ff == inr �ifthenelse:if b then t else f fi == case b of inl() => t | inr() => fband:p ^b q == if p then q else ff fiand the conversion de�nition:let SimpleMacroC t1 t2 names =MacroC (SemiNormC names) t1 (SemiNormC names) t2Here, SemiNormC names is a normalization conversion that unfolds abstractionsnamed in names and reduces all redices. A simpli�cation conversion for band withfalse left-hand-subterm could then be written:let band_ff_lC =SimpleMacroC 'ff ^b u' 'ff' [band;ifthenelse;bfalse] ;;Without MacroC this conversion would have to be written aslet band_ff_lC =UnfoldTopC `band`ANDTHENC UnfoldTopC `ifthenelse`ANDTHENC AddrC [1] (UnfoldTopC `bfalse`)ANDTHENC RedexC ;;



66Here, RedexC is the basic conversion for contracting primitive redices, AddrC appliesa conversion to an addressed subterm and UnfoldTopC unfolds a named abstraction.MacroC can be thought as providing a means of proving and then applyingdirect-computation `lemmas'. Unfortunately, the gain in e�ciency expected fromusing lemmas is not realized, because MacroC still has to replay all the primitiveintermediate steps of the direct-computation calculation that it encapsulates, everytime it is applied.I have constructed a variety of direct-computation conversions. Probably themost widely used is AbReduceC which reduces both primitive and abstract redices.By an abstract redex I mean some abstract term that unfolds to a primitive redex.For example, ff ^ x is an abstract redex which unfolds to the primitive redex caseinr � of inl() => x | inr() => ff. Each time a new non-canonical abstractionis introduced, the user can de�ne conversions for it like the band_ff_lC above.Whenever recursive function de�nitions are created (see Section 2.2.5), thesystem automatically uses MacroC to create a conversion for unrolling the de�nition.These conversions completely hide the underlying Y-combinator de�nition of therecursive functions.4.7 Tactic ConversionsThe basic tactic conversions are LemmaC and HypC which take lemmas and hypothe-ses respectively and convert them into rewrite rules. The lemmas and hypothesesusually have form:8x1:T1; : : : xn:Tn: A1 ) : : :) Am ) t r t0LemmaC and HypC convert such formulae into rules for rewriting instances of t toinstances of t0. There are variants on these conversions that allow for right-to-left rewriting, checking the assumptions Ai before allowing the rule to be applied,providing explicit bindings for one or more of the xj and handling formulae witha conjunction of rewrite relations instead of just one.The SubC : convn -> convn conversional is responsible for adding functionalitysteps to the justi�cation. If SubC c is applied to some term �(a1; : : : ; an), then cis applied to each of the ai. SubC succeeds if at least one application of c succeeds.let bi be the term that c rewrites ai to when c succeeds, and be ai otherwise. LetTi be the tactic that can justify the goal ` ai � bi and Fun(�) be a tactic thatincorporates functionality information about �. Then SubC c constructs a tacticFun(�) THENL [T1;: : :;Tn] as the justi�cation for �(a1; : : : ; an) � �(b1; : : : ; bn).In practice for a single term � there might be many di�erent relations thatsubterms of � are rewritten with respect to. For example, subterms of +Zmightbe rewritten with respect to <Z; �Z; =Z; �Z; >Zor � � � mod m. For each combi-nation of subterm relations, SubC has to come up with some appropriate tactic. It



67would be impractical to have a distinct tactic for each combination. Instead, SubCkeeps a small set of tactics for each term � and adapts these as and when nec-essary. If the subterms of � are rewritten with respect to relations r1 : : : rn, thenSubC picks a tactic that expects subterm relations si, where each si is no strongerthan ri. It then uses relation strengthening tactics when necessary to bridge thegap between each si and the ri. The strengthening step shown in Section 4.4.2 isgenerated by SubC in this manner. If there is a choice of tactics, SubC picks theone that expects the strongest relation between �(a1; : : : ; an) and �(b1; : : : ; bn). Ifthere is no unique strongest relation then currently, the �rst which occurs in theNuprl library is chosen. So far, this hasn't been a problemFor the +Zoperator, SubC currently uses tactics that can prove the followinggoals: x = y; x0 = y0 ` x+ x0 = y + y0x < y; x0 � y0 ` x+ x0 < y + y0x � y; x0 < y0 ` x+ x0 < y + y0x � y; x0 � y0 ` x+ x0 � y + y0x � y mod m; x0 � y0 mod m ` x+ x0 � y + y0 mod mWhen using order relations, SubC is able to invert relations when necessary tomatch the available tactics.The ANDTHENC : convn -> convn -> convn conversional adds transitivity stepsto justi�cations. In a similar way to SubC, the ANDTHENC conversion picks a suitabletransitivity tactic for each pair of relations it �nds that terms have been rewrittenwith respect to.4.8 Abbreviations and ExtensionsIn this thesis, I use several abbreviations for tactics that apply conversions. Hereare a few of them:� let RW = Rewrite ;;let RWH c = Rewrite (HigherC c) ;;let RWD c = Rewrite (SweepDnC c) ;;let RWU c = Rewrite (SweepUpC c) ;;� RWW string (standing for R(e)W(rite) W(ith)) is a rewrite tactic for using a setof rewrite rules named in string. There are conventions for selecting hypothe-ses, lemmas, de�nitions and direct-computation conversions as rewrite rulesto be repeatedly applied. Names can be annotated to indicate that equationsshould be turned into right-to-left rewrite rules rather than left-to-right rules.� RWO (standing for R(e)W(rite) O(nce)) is like RWW except that it uses HigherCto apply the named set of rules in a more restricted fashion.



68In Section 10.7.1 there are also several instances given of tacticals and con-versionals with the word Force in them; for example, ForceReduceC `5`. Here Iwas experimenting with assigning Nuprl terms di�ering strengths, strengths beingarranged into a partial order. Simpli�cation conversions could be passed a force asan extra parameter, and rewrite rules in the simpli�cation conversion would onlybe enabled when applied to terms with strength no greater than this force.4.9 DiscussionThis rewrite package has been invaluable for the work described in this thesis. Icreated conversions for my algebraic theories that put expressions over monoids,abelian monoids, groups, abelian groups, rings and commutative rings into normalform. I also experimented with conversions that worked well in conjunction withNthC for the precise and repeated application of certain rules (see the end of Sec-tion 4.2 for a description of this conversional and Section 10.7.1 for examples of itsuse). In the theories described in this thesis, roughly two-thirds of all tactic invo-cations involved some kind of rewriting. The most widely used rewrite tactic wasAbReduce, based on AbReduceC, that reduces both primitive and abstract redices.I give several examples later on of how I exploited features such as handling dif-fering strengths of rewrite relations, handling monotone reasoning, and using thesecond-order matching.This rewrite package has was also extensively used in Forester's implementationof constructive real analysis in Nuprl V4.1 [For93].This package di�ers from that developed by Basin for Nuprl V3 [Bas89] inthat he only implemented support for rewriting with respect to the � = � 2 �equality relation of Nuprl's type theory and the if and only if relation(). He alsodidn't implement any direct computation conversions. Howe also experimentedwith rewriting with respect to � = � 2 � and(), and in constructing simpli�cationconversions that grouped together sets of rewrite rules [CH90]. He did implementsome direct-computation conversions, but these were not integrated with the tactic-based conversions and were much more basic than those that I developed.To my knowledge, the issue of dealing with multiple strengths of rewrite rela-tions has not yet been addressed anywhere other than in Nuprl. Researchers inthe �eld of rewriting have begun to consider monotone rewriting [LA93, BG94]. Itwill be interesting to see whether these ideas can be adapted to work well in aninteractive theorem proving context.



Chapter 5Methodology for Algebra5.1 IntroductionI discuss in this chapter some of the issues involved in de�ning classes of algebraicobjects in Nuprl's type theory. I intend the phrase algebraic objects here to include:� groups, rings and modules; mathematical structures that have a carrier anda set of operations over the carrier.� Categories, topologies, orders.� ADT's: for example, stacks or parsers. A class corresponds to a speci�cationof an ADT and the objects in the class are implementations of the ADT.Closely related are the implementations of modules in languages such asSML.In general, a class de�nition can be considered to contain� A signature. This speci�es the types of the components of instances of theclass. Sometimes I call these instances objects of the class, or implementa-tions of the class. I include in the notion of component constants, relations,functions and sets. Sometimes I refer to the component of an object andthe corresponding type in its signature as a �eld of that object or signaturerespectively.� A predicate on instances of the signature that speci�es properties that com-ponents of instances should have.Classes can be parameterized, often by objects of other classes. For example, aclass for vector spaces could take a �eld as a parameter.In theory it should be quite straightforward to use Nuprl's dependent-producttype and set type to construct such classes. In practice, a number of issues haveto be carefully considered. 69



70One major one is the approach towards constructivity. Choices often have to bemade about how to deal with the computational content of classes. For example,classically, in the class of integral domains, a partial division function can alwaysbe de�ned. Constructively, we could set up de�nitions for two kinds of integraldomain: one requiring that a computable division function be supplied and onenot. In Nuprl's type theory there are a couple of options as to how we could designan integral domain class to require such a function:1. a type could be explicitly reserved in the class signature for the function.Perhaps the type T 2 ! (T + Unit)would be used. The class predicate might then include the following predicateon inhabitants of the type T 2 ! (T + Unit):�d:T 2 ! (T + Unit): 8x; y; z:T: x = z � y =) d hx; yi = inl(z)8x; y:T: :9z:T: x = z � y =) d hx; yi = inr(�)I sometimes refer to this as the explicitly constructive approach.2. A type considered as a proposition could be included in the signature. Theproposition might be8x; y:T: (9z:T: x = z � y _ :9z:T: x = z � y):The division function is then implicit in the computational content of thisproposition. This becomes clearer if the proposition is written out as thecorresponding type:x:T ! y:T ! ((z:T�x = z � y) + ((z:T:�x = z � y)! Void)):I sometimes refer to this as the implicitly constructive approach.The issue of computational content also comes up when considering the equal-ity relation on the carrier of algebraic objects and membership in subsets of thecarrier. I haven't seen this discussed in the literature on constructive algebra, butas I explain in Section 5.2 and Section 5.3 this content could be considered signi�-cant. These sections also discuss the decidability and stability of the equality andmembership relations.Section 5.4 explores how class design a�ects the subtyping relationship betweenclasses and Section 5.5 discusses the approach I adopted for the work in this thesis.



715.2 Equality Relations5.2.1 Computational ContentOne signi�cant issue when considering the design of classes for implicitly construc-tive mathematics is the importance of the computational content of the equalityrelation on the carriers of implementations of classes. A few examples of equalityrelations that have non-trivial computational content when true, and examples oftheir uses in implementations of classes are as follows:� the() relation on propositions, used when forming a Heyting algebra. Thecomputational content of A() B when true is a pair of functions of typesA! B and B ! A.� the permutation relation perm on lists, used when forming an abelian monoidof multisets using lists. The computational content of the propositionperm(as; bs)when true might be a bijective function f on f1 : : : ng ! f1 : : : ng, n beingthe length of both as and bs, that indicates how the bs are a permutation ofthe as.� the associate relation � in the factorization theory of cancellation monoids orintegral domains. The computational content of a � b might be consideredto be a pair hu; vi such that a� u = b and b� v = a.� the equality relation on a group quotiented by a normal subgroup wheremembership in the normal subgroup is computationally interesting. Let anormal subgroup of a group G be represented by a unary predicate H onthe group carrier jGj. We are then assuming that H a for a in jGj is ingeneral computationally interesting (see Section 5.3.6 for examples of suchrelations). The computational content of the relation a � b(mod H) is thenthe computational content of H (a� b).When an equality relation over an implementation carrier has non-trivial com-putational content, then the predicates stating that the relation is reexive, sym-metric and transitive all have computational content, as do predicates stating thatfunctions over the carrier respect the equality. It is easy to imagine that the com-putational content of such predicates might �nd its way into theorem extracts,especially when one is reasoning by rewriting with respect to such relations.An example of a predicate involving a computationally-interesting equality re-lation is the following, which says that the permutation relation on lists perm issymmetric:8a; b:T List: perm(a; b)) perm(b; a) :



72The computational content might be a function�a; b; p: inv(p);where inv is a function for inverting a bijective function. Note that a bijectivefunction is commonly represented constructively by a pair of functions that aremutual inverses of each other. With such a representation, the constructive imple-mentation of inv is trivial; it simply swaps elements of pairs.Another computationally-interesting predicate involving the perm relation isone stating the functionality of the list append operation @ with respect to theperm relation:8a; b; c; d:T List: perm(a; b)) perm(c; d)) perm(a @ c; b @ d):The computational content of this proposition might be the function�a; b; c; d; p; q: permappend(p; q);where permappend is a function for suitably combining the permutations p and q.For permappend to be properly constructive it usually will also take as argumentthe length of one of the lists a; b; c or d. I describe a development of permutationsin Nuprl in Chapter 7.The design strategy for classes in Nuprl's type theory is very di�erent depend-ing on whether or not one wants the capability of extracts accessing the computa-tional content of class predicates such as described above. The alternative designstrategies are explored in the next two sections.5.2.2 Ignoring Computational ContentIf the computational content of the carrier equalities is always to be ignored, thenthe equality relation can be taken to be the one that is naturally associated withthe carrier type by the type theory. One suitable de�nition for the class of abeliansemigroups is then:AbSGrp := G:U� f�:(G2 ! G) j 8a; b; c:G: (a � b) � c = a � (b � c) 2 G^ 8a; b:G: a � b = b � a 2 GgThere can never be a problem here using the set type for the associativity predicatesince the predicate is stable. The type theory guarantees that for any pair hG; �iin the AbSGrp class, the operation � respects the equality on G.One nice feature of this approach is that we can take advantage of Nuprl'squotient type when forming instances. For example, assume we wanted to showthat lists of integers under the uncurried append function formed an abelian group.We cannot prove that the pairhZList; appendi



73is an instance of AbSGrp, because append is not commutative when considered asa function over lists. However, it is commutative when considered as a function onmultisets, so if we de�ne a multiset type using Nuprl's quotient type:T MSet := x; y:T List==perm(x; y)then we could show that the pairhZMSet; appendiis an instance of the AbSGrp class.5.2.3 Maintaining Computational ContentHere we assume that the equality relation of instances of classes might sometimeshave signi�cant computational content. The equality relation associated with thecarrier type by the type theory is always free of computational content, so it cannotbe used in class de�nitions. Instead, the equality relation on the carrier instanceshas to supplied as an explicit part of instances. One suitable de�nition for theclass of abelian semigroups is then:SGroup := G:U� eq:(G2 ! P)� � :(G2 ! G)� 8a; a0b; b0:G: (a eq b)) (a0 eq b0)) (a � a0) eq (b � b0)� 8a; b; c:G: ((a � b) � c) eq (a � (b � c))� 8a; b:G: (a � b) eq (b � a)We need explicitly a predicate stating that � respects the equality eq. Both thisfunctionality predicate, the associativity predicate, and the commutativity pred-icate might have signi�cant computational content, so neither may be hidden inthe right-hand side of a set type.5.2.4 Stability ConsiderationsThe notion of stability in Nuprl is introduced in Section 3.7.3.If an equality relation on the carrier of an instance of a class is stable, then itwould be possible to set up rewrite tactics so that the class de�nition ignores thecomputational content of the equality relation, but also so that the computationalcontent is generated when rewriting in contexts in which it is needed for an extract.This generated extract might not be as e�cient to execute as when using classesthat maintain computational content.



74Stable equality relations that have interesting computational content are notuncommon. For example, the permutation relation on lists is stable when the listsare over a discrete type, and the associated relation is stable when there exists adivision function. Also, the () relation is stable when its arguments are stable.5.2.5 DiscretenessIt is standard practice in constructive mathematics to say that an equality relationis discrete when it is decidable. However, in constructive type theory, there aretwo clearly-de�ned distinct kinds of decidability.Let a predicate P on a variable x of type T be constructively decidable if theproposition 8x:T: Px_:Px is true, or, by the propositions-as-types correspondence,the type x:T ! (Px + (Px ! Void)) is inhabited. Let a predicate P be classicallydecidable if there is a function of type T ! B that returns tt on argument a whenthe type Pa is inhabited and � otherwise. It is trivial to show that a predicate isconstructively decidable just when it is classically decidable and it is stable.Computer algebra systems such as Axiom commonly require that instancesof algebraic classes come equipped with boolean-valued equality functions. Fromthe constructive type-theory point-of-view, such classes are therefore classicallydecidable, but not necessarily constructively stable.5.3 Subsets5.3.1 IntroductionHere I discuss how we might talk generally about the `subsets' of a type, thinkingin particular about subsets of the carrier type of implementations of classes, thoughmuch of this discussion is more general. Approaches to subsets should allow thestraightforward de�nition of� a power-type, a type of all subsets of a type.� common operations such as intersection, union and complement.� relations such as the subset relation between subsets.� families of subsets and operations such as intersection and union over thesefamilies.I consider several approaches in Section 5.3.4 to Section 5.3.5. For simplicity,these approaches all just consider de�ning subsets of a type whose equality is thenatural one associated with the type. However, the equality naturally associatedwith the power-type de�nition is almost always not subset equivalence, so these



75power-type de�nitions, as presented, cannot be applied to themselves to generatetypes of families of subsets. This point is returned to in Section 5.5.Some approaches consider the computational content of subset membership tobe important and some don't. In Section 5.3.6 I give several instances of subsetswhose membership could be considered to be computationally interesting.5.3.2 Using Type-Valued PredicatesHere we consider a subtype of some type T to be a type-valued predicate on T .The type of all subtypes of type T is then the function type T ! P. Membershipin a subtype is expressed simply by predicate application; An element x of typeT is in a subtype S, where S 2 T ! P, just when the type S(x) is inhabited. Ingeneral this inhabiting term could be computationally interesting.It is very straightforward to develop some basic `set theory' based on predicates,treating T as a `universal' type. For example, binary union and intersection areeasily de�ned, as are the membership relation and the subtype relation. Thesesets are not exactly like classical sets in that the complement of the complementof some set is in general a super-set of that set rather than equivalent to it. Huetobserved that such subsets can be thought of as topological open sets, in whichcase the double complement operation corresponds to set closure.It is slightly inconvenient that subtypes are now functions rather than types.To form the type corresponding to some subtype S, we have two options: if wedon't care about the computational information related to subtype membership,then we can use the set type constructor to form the type fx:T jS xg. Otherwise,we use the dependent product type to form the type x:T�S x.Another drawback of this representation of subtypes is that the equality relation� = � 2 T ! P provided by Nuprl's type theory on this subtype representationtype is much stronger than the desired extensional equality.5.3.3 Using Boolean-Valued PredicatesThis is the standard approach in classical type theories such as HOL. A subtypeof some type T is a boolean-valued predicate on T . The type of all subtypes of Tis then T ! B . The appeal of this approach is that if the built-in equality on T isthe one we care about, then the built-in equality on subtypes is then the desiredone.However, in Nuprl's constructive type theory, we are restricted as to whatinstances of such subtypes we can talk about. All instances have to be computablefunctions. We are prevented, for example, from using the quanti�ers of predicatelogic to de�ne instances whenever the domains of quanti�cation are not �nite. Thisis a severe restriction.



765.3.4 Using TypesUnlike set theory, Nuprl's type theory has no true 2-place membership predicate� 2 �, so there is no way to make the de�nition:PwT(T ) := fS:U j 8x:S: x 2 TgThe proposition in Nuprl displayed elsewhere in this thesis as t 2 T , is a notationalabbreviation for t = t 2 T . A consequence of this is that the proposition t 2 T inNuprl's type theory is only considered well-formed when it also happens to be true!Furthermore, there are serious problems trying to add a fully-edged membershippredicate. One is that there is no obvious way to work a type corresponding tothis predicate into the semantics for Nuprl given by Allen. Another is that even ifsuch a type could be introduced, the semantics of Nuprl's sequents would make itvery di�cult to formulate any rules about it.The current type theory provides no primitive power-type constructor that isthe analog of the power-set constructor in set theory. Perhaps one could be added.However, if a subtype relation type � were added to the type theory, we couldmake the de�nition:PwT(T ) := fS:U j S � TgThe type S � T would be inhabited by some trivial element just in case everyelement of type S were a member of type T and the equalities relations naturallyassociated with S and T were the same. Howe, Allen and Mendler [Men88] haveeach considered such an extension, and not thought it problematic.Unfortunately, because equality of set-types is intensional in Nuprl's currenttype theory, the natural equality associated with PwT(T ) would be stronger thandesired no matter what the equality associated with the the � relation is.Assume a � relation has been added and PwT(T ) has been de�ned as above.A 3 place membership predicate can be de�ned as follows:x 2T S := fy:T j y = x 2 Tg � SThis predicate would be well formed if some type T were given that x inhabits,but now there is no well-formedness constraint that x be a member of S.From a constructive point of view, the very notion of a power-type is not as use-ful as one might imagine. It is easy to give examples of families of subtypes whereeach member of a subtype has associated with it extra computational informationjustifying why it is in the subtype. See Section 5.3.6 for details.5.3.5 Using Domains of InjectionsFollowing Bishop, we could de�ne a subtype of a type T as a pair of a type V andan injective function of type V ! T . A de�nition of the power-type of T would



77then be:PwT(T ) := V :U�ff :V ! T j f is injectivegThe basic de�nitions are that of a subtype of T de�ned by a predicate P of typeT ! P:fx j P xgT := hy:T�P y; �x: x:1iand the predicate expressing membership of an element x of T in a subtype S:x 2T S := 9z:(S1): (S2) z =T xHere, the 1 and 2 post�x operators project out the �rst and second elements,respectively, of pairs. From these de�nitions it is straightforward to de�ne con-structive functions for intersection, union and complement, and to de�ne subsetand equivalent predicates. Again, as with the subtype-as-predicates approach, theset equivalence relation is weaker than the equality relation naturally associatedwith the PwT(T ) type.The advantage of this approach over predicates is that the subtype relationis now much more wide-ranging. For example, the integers are expressible as asubtype of the rationals and the rationals of the reals, even though the representingtypes are quite di�erent.5.3.6 Examples with Interesting Computational ContentSubset membership can be computationally interesting. For simplicity, let us as-sume here that a subsets-as-predicates approach is taken. Membership in subsets ofa type T , that are generated by �nite collections of elements of T , is almost alwayscomputationally interesting. Consider principal ideals in commutative ring theory.Using the `subtypes as type-valued predicates' approach, the natural de�nition ofthe principal ideal generated by the element a of some ring R is:PrincIdeal(a;R) := �b:9c:jRj: c �R a =R b:where jRj is notation for the carrier of ring R. If some element x 2 jRj is inthe principal ideal PrincIdeal(a;R), then there must be some c 2 jRj such thatc �R a =R x. The element c is part of the interesting computational contentassociated with x being in the ideal. The equality itself might also have interestingcomputational content.Another example of interesting computational content in subset membership isthat of membership in the image of a class morphism between two implementationsR and S of a class. A suitable de�nition of `image' is:Image of f from R to S := �s:9r:jRj: f r =S sAlso, membership in kernels of morphisms is computationally interesting if equalityis computationally interesting.



78If membership in a subset is computationally interesting, then so are many ofthe predicates on subsets. For example, consider the predicate stating that a subsetof a group carrier is a subgroup. Also, equality relations formed using subsets (suchas by the quotienting operation) are then computationally interesting.5.3.7 StabilityAgain, as with equality, it can often be the case that membership in a subset is notonly computationally interesting, but also stable. In these cases, the computationalcontent can be recovered as and when needed, and doesn't have to be carriedaround explicitly. For example, the computational content of membership in aprinciple ideal of a ring is stable when the ring has a division function and equalityis stable. However, as with equality, there might be e�ciency penalties for extracts.5.3.8 DetachabilityA subset is detachable if membership in it is decidable. Again, if we are careful,we need to distinguish between constructive and classical decidability.5.4 Class SubtypingIn algebra, natural subtyping relationships between algebraic classes are ubiqui-tous. Presentations of material from algebra are far more concise and readable,if it can be assumed that the reader understands the conventions about theserelationships.Similarly, in object-oriented programming and in programming languages withabstract data types, the exploitation of subtyping relationships leads to great econ-omy and increases in understandability of code. Similarly too, many theorem-proving environments exploit subtyping relationships to economize on theory de-velopments and increase the clarity and reusability of theories.Nuprl's type theory provides no built-in support for de�ning classes and forhandling subtyping, but there are several ways in which schemes for de�ning classescan be set up. Before discussing these, let me for convenience give names to threekinds of subtyping relationships between classes A and B:� A is a set-subtype of B just when every instance of A is also an instance ofB. I use the term set here, because in Nuprl, set-subtypes of a class can becreated by using its set type which provides a method for creating subtypesof a type analogous to set comprehension in set theory.� A is a signature-subtype of B just when A is a set-subtype of B and A andB share the same underlying signature. The reader might be thinking that



79this amounts to the same thing as set-subtyping, but as I explain below, inNuprl's type theory, this is sometimes a more restricted form of subtyping.� A is a forgetful subtype of B just when there is some functor f between thesignatures of A and B that maps every instance x of A into some instanceof B. I call it forgetful subtyping, because prime examples of the functorf are forgetful functors. Often, such as with groups and monoids, there isan obvious functor between classes. Other times, such as with rings andmonoids, there is more than one.The simplest approach to building class de�nitions, is to use the � type ofNuprl's type theory as illustrated earlier in this chapter. This de�ning of classesas sets of tuples is analogous to the usual practice in set theory. However, whenmechanizing formal algebra, it leads to a need for an abundance of forgetful func-tors. Every time one wants to add an extra component to a class, a new signaturehas to be created and a forgetful functor has to be created for mapping elements ofthis new class into the old class. These functors would quickly create tremendousclutter. Of course, the computer could come to the rescue too. Automatic `functorinference' could insert the functors and display technology could hide them. Still,it seems that they might still get in the way.With this approach, the only kind of subtyping that Nuprl's type theory pro-vides is signature subtyping. This can still be quite useful. For example, classes ofunique factorization domains, integral domains, commutative rings and rings canall share the same underlying signature. Note however, if we decide that the com-putational content of equalities should be maintained, then virtually every classwill have a distinct signature and there will be next-to-no subtyping provided bythe type theory.Some schemes of classes can be set up in Nuprl's type theory where set sub-typing relationships exist between classes with di�erent underlying signatures.The most straightforward of these assumes that there are no dependencies be-tween components of class signatures; a class signature with components labelleda1 : : : an and with component a having type Ta can be represented by the � type:x:fa1; : : : ; ang ! Tx. Any element of this signature is also an element of any othersignature gotten by removing one or more of the ai from the domain. Such signa-ture types are essentially equivalent to the record types found in languages such asPascal. Note that we are taking essential advantage here of the non-set-theoreticnature of functions in Nuprl.However, this approach breaks down when the types of some components ofa signature depend on those of others. What is needed is a `highly dependent'function type where the type of a function's value on some argument is dependenton its value at other arguments. To make such a type sensible, some well-foundedordering would need to be placed on the arguments. Perhaps such a type could beadded. Hickey has been looking into this possibility [Hic94].



80Alternatively, a combination of � types and record types could be used, sincethe degree of dependency in most class signatures is fairly small. In single sortedalgebras, if the the predicates are treated as computationally interesting types, thenthere are two levels of dependency: the operator types depend on the carrier andthe predicates depend on the carrier and operators. If an explicitly constructiveapproach is taken, then the predicates don't �gure in the signature at all. In thiscase any algebraic class would have the structure T :U�(x:fa1; : : : ; ang ! Tx)where each Tx would be dependent on T .5.5 Approach AdoptedThe implicit constructive agenda of doing mathematics constructively, but makingit look like classical mathematics seems frought with di�culties. As explainedabove, there is computational content oating around everywhere, and it's di�cultto say de�nitely which ought and ought not be ignored. To try preserving allcomputational content just in case it might be interesting seems too unwieldyan approach, and would be anyway an approach guaranteed to lead to ine�cientextracts of theorems.One way of managing the implicit computational content would be to developa theory of setoids that looks super�cially like a theory of sets but that keeps trackof the computational content of subset membership and equalities. Other featuresof setoids could include1. noting when the subset membership and equality predicates of setoids arestable and in those cases not tracking content,2. an optional function for deciding equality.Algebraic classes would then be de�ned over setoids rather than types. The ideaof setoids has been explored by members of the LEGO group including Pollack,Bailey and Barthe [Bar94, Bai93].For simplicity, I chose in the work described described in this thesis to take anexplicitly constructive approach as far as class de�nitions are concerned. This al-lowed me to always use the built-in equalities associated with types for the equalityrelations associated with the carrier component of algebraic class instances.Again for simplicity, I chose to use � types for building class signatures. Todecrease the frequency with which I would need forgetful functors between classes,I made an e�ort to minimize the number of distinct class signatures; for example,in my implementation of the monoid class, I use the group signature class ratherthan a monoid signature class. A drawback of this approach is having to supplydummy components in instances of classes; when specifying an inhabitant of themonoid class, I have to supply a dummy inverse function. However, as described in



81Section 6.3, I adopted a fairly abstract approach to de�ning class signatures, andde�ning sets of functions for projecting out components of instances. Therefore, Ianticipate that in the future it would be fairly straightforward to switch to somemore exible scheme.De�ning subsets of carrier types is still a problem, since as explained above,even those approaches that ignore computational content still all de�ne subsetswith stronger equalities than desired. I did experiment with using type-valuedpredicates to de�ne such notions as ideals of rings. However, I wasn't too satis�edwith this work because of this awkwardness with equality, even after I had madespecial de�nitions for subset and equality relations on subsets of carriers and hadset up appropriate lemmas to support rewriting with respect to these relations.This work on type-valued predicates is not reported in this thesis.



Chapter 6General Algebra6.1 IntroductionI present here the introductory theories I have used in my algebraic work. From amathematical point of view the de�nitions and theorems are all trivial, but they doserve to illustrate the approach I have taken and do identify some of the problemsinvolved in implementing algebra in Nuprl.I also describe in Section 6.12 general-purpose tactics and support functions Ihave written to support reasoning with classes.6.2 Algebraic Predicates6.2.1 Predicates on Class ComponentsHere are notational abbreviations I made for common algebraic properties.IsEqFun(T;eq) == 8x,y:T. "(x eq y) () x = y 2 TIdent(T;op;id)== 8x:T. x op id = x 2 T ^ id op x = x 2 TAssoc(T;op)== 8x,y,z:T. x op (y op z) = (x op y) op z 2 TComm(T;op) == 8x,y:T. x op y = y op x 2 TInverse(T;op;id;inv)== 8x:T. x op (inv x) = id 2 T ^ (inv x) op x = id 2 TBiLinear(T;pl;tm)== 8a,x,y:T.a tm (x pl y) = (a tm x) pl (a tm y) 2 T^ (x pl y) tm a = (x tm a) pl (y tm a) 2 T82



83IsBilinear(A;B;C;+a;+b;+c;f)== (8a1,a2:A. 8b:B.(a1 +a a2) f b = (a1 f b) +c (a2 f b) 2 C)^ (8a:A. 8b1,b2:B.a f (b1 +b b2) = (a f b1) +c (a f b2) 2 C)IsAction(A;x;e;S;f)== (8a,b:A. 8u:S. (a x b) f u = a f (b f u) 2 S)^ (8u:S. e f u = u 2 S)Dist1op2opLR(A;1op;2op)== 8u,v:A.1op (u 2op v) = (1op u) 2op v 2 A^ 1op (u 2op v) = u 2op (1op v) 2 AFunThru2op(A;B;opa;opb;f)== 8a1,a2:A. f (a1 opa a2) = (f a1) opb (f a2) 2 BCancel(T;S;op)== 8u,v:T. 8w:S. w op u = w op v 2 T ) u = v 2 TThe pre�x notation " is for a function that converts boolean-valued (B -valued)propositions to type-valued (P-valued) propositions. All these predicates are sta-ble, so there is no problem unhiding them as and when necessary.6.2.2 Binary relationsHere are the basic de�nitions I used for predicates on binary relations:Refl(T;x,y.E[x; y]) == 8a:T. E[a; a]Sym(T;x,y.E[x; y]) == 8a,b:T. E[a; b] ) E[b; a]Trans(T;x,y.E[x; y])== 8a,b,c:T. E[a; b] ) E[b; c] ) E[a; c]EquivRel(T;x,y.E[x; y])== Refl(T;x,y.E[x; y])^ Sym(T;x,y.E[x; y])^ Trans(T;x,y.E[x; y])AntiSym(T;x,y.R[x; y])== 8x,y:T. R[x; y] ) R[y; x] ) x = yStAntiSym(T;x,y.R[x; y])== 8x,y:T. :(R[x; y] ^ R[y; x])



84Connex(T;x,y.R[x; y])== 8x,y:T. R[x; y] _ R[y; x]Preorder(T;x,y.R[x; y])== Refl(T;x,y.R[x; y]) ^ Trans(T;x,y.R[x; y])Order(T;x,y.R[x; y])== Refl(T;x,y.R[x; y])^ Trans(T;x,y.R[x; y])^ AntiSym(T;x,y.R[x; y])Linorder(T;x,y.R[x; y])== Order(T;x,y.R[x; y]) ^ Connex(T;x,y.R[x; y])The name StAntiSym is short for strictly anti-symmetric. The other names shouldall be obvious. All the R[x; y] expressions are second-order variables with twoarguments. Second-order matching and substitution is used when unfolding thesede�nitions. For example, the instance of the Sym predicate:Sym(N;i,j.i = j 2 N)unfolds to8a,b:N. a = b 2 N ) b = a 2 NThe well-formedness lemmas for these de�nitions were all very straightforward.For example, the well-formedness lemma for EquivRel was:8T:U. 8E:T ! T ! P. (EquivRel(T;x,y.E[x;y]) 2 P)I also created an alternative set of de�nitions which treated relations as higherorder rather than �rst order objects; that is, as binary (curried) functions ratherthan terms with arguments supplied as subterms. For example,Sym(T;E) == Sym(T;x,y.E x y)Standard operations of taking the reexive closure, symmetric closure and strictpart of a relation were de�ned on these higher-order relations:E0{T} == �x,y.x = y 2 T _ E x yE
 == �x,y.E x y ^ E y xEn == �x,y.E x y ^ :(E y x)Commonly, I used a display form for the reexive closure that hid the type argu-ment; with this display form, E0{T} is instead displayed as simply E0.Various theorems were proven about these operators on relations, including:



85xxorder_split:8T:U. 8R:T ! T ! P.Order(T;R)) (8x,y:T. Dec((x = y 2 T)))) (8a,b:T. R a b () Rn a b _ a = b 2 T)xxtrans_imp_sp_trans:8T:U. 8R:T ! T ! P. Trans(T;R) ) Trans(T;Rn)refl_cl_is_order:8T:U. 8R:T ! T ! P.Irrefl(T;R) ) Trans(T;R) ) Order(T;R0)irrefl_trans_imp_sasym:8T:U. 8R:T ! T ! P.Irrefl(T;R) ) Trans(T;R) ) StAntiSym(T;R)xxconnex_iff_trichot:8T:U. 8R:T ! T ! P.(8a,b:T. Dec((R a b)))) (Connex(T;R) () {8a,b:T. Rn a b _ R
 a b _ Rn b a})xxconnex_iff_trichot_a:8T:U. 8R:T ! T ! P.Connex(T;R0) () (8a,b:T. R a b _ a = b 2 T _ R b a)The xx pre�x on some of the lemma names here was to distinguish these lemmasfrom similar ones that involved predicates treating binary relations as �rst order.While this higher order approach was mathematicallymore elegant and less ver-bose, it did have a few minor drawbacks: �rstly, when reasoning about equivalenceof relations, I had to de�ne and work with a new equivalence relation:binrel_eqv:E <�>{T} E' == 8x,y:T. E x y () E' x yThis wasn't a serious problem since I designed the rewrite package to easily copewith handling new relations. Secondly, the convention adopted in all previouslyexisting theories had been to de�ne equivalence relations in a �rst-order style, and itwas awkward to have to switch back and forth between styles. Thirdly, unfoldingof de�nitions of speci�c higher-order relations required extra �-reduction steps.Fourthly, I had less exibility with de�ning display forms for particular relations;the positions of a relation's arguments were determined by the display forms forbinary function application, rather than the display form for the relation. Withthe �rst-order approach, I could de�ne a display form so that an instance of amod relation would be displayed as a = b mod n, whereas with the higher orderapproach I would have had to settle for maybe a ={mod n} b.



866.3 Discrete and Ordered SetsI found it convenient to package a type with a boolean-valued equality functionand an optional boolean-valued inequality relation. I introduced a signature classof all such packaged types with the ML library object shown in Figure 6.1. Allcreate_poset_sig:% (p)artially (o)rdered (set) (sig)nature.Includes equality function for discrete sets.%Class Declaration for: p 2 PosetSigLong Name: poset_sigShort Name: setParameters:Fields:(|p|) car : U(=b p) eq : car ! car ! B(�b p) le : car ! car ! BUniverse: U'Figure 6.1: Declaration for PosetSig Classthe text here from the Class Declaration down is generated by a display formfor a call to an ML function. The �rst time this function is called in a givendeclaration, it creates de�nitions for a class signature and projection functions foreach component of class instances. In this case, the de�nitions created areposet_sig:PosetSig == car:U � eq:(car ! car ! B) � (car ! car ! B)set_car:|p| == p.1set_eq:=b p == p.2.1set_le:�b p == p.2.2



87Note that PosetSig has a level expression argument. I have set up display formsso that if this argument is not the level variable i, then it is explicitly displayed.For example, if it is j, then the class is displayed as PosetSig{j}. This conventionis an extension of that adopted for universe terms in Section 2.1.2. I have usedthis convention for the displays of all class de�nitions.Well-formedness lemmas are created automatically by class declarations. Inthis case, they were:poset_sig_wf:PosetSig 2 U'set_car_wf:8p:PosetSig. |p| 2 Uset_eq_wf:8p:PosetSig. =b p 2 |p| ! |p| ! Bset_le_wf:8p:PosetSig. �b p 2 |p| ! |p| ! BFinally, class declarations create conversions for reducing the projection functionswhen they are applied to tuples. These conversions are automatically added to theto the AbReduceC conversion described in Section 4.6. Class declarations are storedin ML objects in theories to document classes and to ensure that the appropriateconversions are created each time the theory is loaded. As indicated above, aClass declaration only creates the set of de�nitions and theorems for a class once.Afterwards, these de�nitions and theorems are dumped to �les and loaded from�les along with the rest of the theory that they reside in.The terms in parentheses at the start of the lines in the Fields section of aclass declaration show the display forms adopted for each �eld component. Forclarity in class de�nitions, the argument of every projection function is shown, butfrequently it is useful to hide this argument. These terms and the term to the rightof the Class Declaration heading e�ectively have the status of comments. Whenthe Class Declaration abstraction is expanded to reveal the call to the underlyingclass declaration ML function, these terms disappear. I happen to have put these`comments' in by hand, but it would be easy to have them added automatically.With some class declarations (see Section 10.3 for examples), the �eld termsdisplays are not shown as comments. In these cases, the displays for the projectionfunctions are the default displays. The default displays always consist of a post�xperiod, followed by the name of the �eld. For example, the default display for theeq �eld projection function applied to an instance p of the PosetSig class is p.eq.I created several subtypes of the PosetSig class.dset:DSet == {s:PosetSig| IsEqFun(|s|;=b s)}



88qoset:QOSet == {s:DSet| Preorder(|s|;a,b.a �s b)}poset:POSet == {s:QOSet| AntiSym(|s|;a,b.a �s b)}loset:LOSet == {s:POSet| Connex(|s|;x,y.x �s y)}The pre�xes to the class names stand for discrete, quasi-ordered, partially-ordered,and linearly-ordered.I introduced a de�nition for the strict order function corresponding to thereexive one provided by the PosetSig, and also found it convenient to de�nepropositional (type-valued) versions of both order relations.set_blt:a <b p b == (a �b p b) ^b :b (b �b p a)set_leq:a �p b == "(a �b p b)set_lt:a <p b == "(a <b p b)Here for clarity I show the parameter p to these de�nitions, but often I hide it.When it is hidden, its value can always be inferred by the reader by looking at thetypes of the relation arguments.I introduced lemmas about these relations such as:set_lt_transitivity_1:8s:QOSet. 8a,b,c:|s|. a �s b ) b <s c ) a <s closet_trichot:8s:LOSet. 8a,b:|s|. a <s b _ a = b 2 |s| _ b <s aset_leq_complement:8s:LOSet. 8a,b:|s|. :(a �s b) () b <s aThis need to sometimes have both boolean and propositional versions of pred-icates is an unavoidable feature of Nuprl's constructive type theory.For introducing instances of these classes, I added the de�nitionsmk_dset:mk_dset(T, eq) == <T, eq, eq>mk_oset:mk_oset(T, eq, leq) == <T, eq, leq>



89and created lemmas that characterized when they constructed instances of thevarious classes above. For instance, one lemma for mk_oset was:mk_oset_wf:8T:U. 8eq,leq:T ! T ! B.IsEqFun(T;eq)) Linorder(T;a,b."(a leq b))) mk_oset(T;eq;leq) 2 LOSetSuch de�nitions and lemmas are inessential, but with them, the internal imple-mentation details of class declarations are localized to the theory where they areintroduced.6.4 Monoids and GroupsI made monoids and groups share the same underlying signature, to avoid havingto create explicit coercion functions between them. The underlying class signatureGrpSig is introduced by the class declaration shown in Figure 6.2. With theClass Declaration for: g 2 GrpSigLong Name: grp_sigShort Name: grpParameters:Fields:(|g|) car : U(=b g) eq : car ! car ! B(�b g) le : car ! car ! B(*g) op : car ! car ! car(eg) id : car(�g) inv : car ! carUniverse: U'Figure 6.2: Declaration for GrpSig Classde�nitionsIsMonoid(T;op;id) == Assoc(T;op) ^ Ident(T;op;id)IsGroup(T;op;id;inv) == IsMonoid(T;op;id) ^ Inverse(T;op;id;inv)



90the de�nitions of subclasses of GrpSig are:IMonoid == {g:GrpSig| IsMonoid(|g|;*g;eg)}Mon == {g:GrpSig| IsMonoid(|g|;*g;eg) ^ IsEqFun(|g|;=b g)}IAbMonoid == {g:IMonoid| Comm(|g|;*g)}AbMon == {g:Mon| Comm(|g|;*g)}IGroup == {g:IMonoid| Inverse(|g|;*g;eg;�g)}Group == {g:Mon| Inverse(|g|;*g;eg;�g)}IAbGrp == {g:IGroup| Comm(|g|;*g)}AbGrp == {g:Group| Comm(|g|;*g)}The I pre�x stands for indiscrete, since instances of these classes don't have theireq components constrained to agree with the equality relation associated with thecarrier of the instances.Obvious theorems about groups include:grp_op_cancel_l:8g:IGroup. 8a,b,c:|g|. a * b = a * c ) b = cgrp_inv_id:8g:IGroup. � e = egrp_inv_inv:8g:IGroup. 8a:|g|. � (� a) = agrp_inv_id:8g:IGroup. � e = egrp_inv_inv:8g:IGroup. 8a:|g|. � (� a) = agrp_inv_assoc:8g:IGroup. 8a,b:|g|.a * ((� a) * b) = b ^ (� a) * (a * b) = bgrp_op_cancel_l:8g:IGroup. 8a,b,c:|g|. a * b = a * c ) b = cgrp_inv_diff:8g:IGroup. 8a,b:|g|. � (a * (� b)) = b * (� a)Note that here I have switched to suppressing the arguments of the group projectionfunctions and the equality propositions.A forgetful functor mapping from GrpSig to PosetSig isg#set == <|g|, =b g, �b g>



916.5 Ordered Monoids and GroupsIn the work described in Chapter 10, several de�nitions of ordered monoids andgroups were needed. Here are the class de�nitions:OMon == {g:AbMon| Linorder(|g|;x,y."(x �b g y))}OCMon== {g:AbMon|Linorder(|g|;x,y."(x �b g y))^ Cancel(|g|;|g|;*g)^ (8z:|g|. Monot(|g|;x,y."(x �b g y);�w.z *g w))}OGrp == {g:OCMon| Inverse(|g|;*g;eg;�g)}whereMonot(T;x,y.R[x; y];f)== 8x,y:T. R[x; y] ) R[(f x); (f y)]As with the set class, several order relation de�nitions were introduced:grp_blt:a <b g b == a <b g#oset bgrp_lt:a <g b == a <g#set bgrp_leq:a �g b == "(a �b g b)The de�nitions grp_lt and grp_blt were de�ned in terms of their set counterpartsto simplify the specialization of set theorems about order relations to correspondinggroup theorems. Section 6.12.2 discusses lemma specialization. The theoremgrp_lt_trichot:8g:OCMon. 8a,b:|g|. a <g b _ a = b 2 |g| _ b <g ais an example of the specialization of the set theorem set_lt_trichot given above.Theorems proven involving both the group operation and an order relationinclude:grp_lt_op_l:8g:OGrp. 8a,b,c:|g|. a < b () c * a < c * bgrp_op_polarity:8g:OGrp. 8a,b:|g|. e � a ) e � b ) e � a * b



926.6 Half GroupsThe notion of a half group of a linearly-ordered group turned out to be a usefulone in the work described in Chapter 10. The de�nitions arehgrp_car:|g|+ == {x:|g|| eg �g x}hgrp_of_ogrp:g#hgrp == <|g|+, =b g, �b g, *g, eg, �x.x>and typing lemmas arehgrp_car_wf:8g:GrpSig. |g|+ 2 Uhgrp_of_ogrp_wf2:8g:OGrp. g#hgrp 2 OCMonNote that in forming the half group, the group inverse operation � cannot be usedin the inverse slot of the half-group tuple, since it is not in general closed on thehalf-group domain.The non-negative integers under addition are the half group of the group ofintegers under addition. Similarly, the non-negative rationals under addition area half group.6.7 RingsThe signature class for rings is given in Figure 6.3. here, the notation ?A is anotational abbreviation for the type A + Unit.The de�nitions of the classes of discrete rings and discrete commutative ringsareIsRing(T;plus;zero;neg;times;one)== IsGroup(T;plus;zero;neg)^ IsMonoid(T;times;one)^ BiLinear(T;plus;times)Rng== {r:RngSig|IsRing(|r|;+r;0r;-r;*r;1r) ^ IsEqFun(|r|;=b r)}crng:CRng == {r:Rng| Comm(|r|;*r)}



93
Class Declaration for: r 2 RngSigLong Name: rng_sigShort Name: rngParameters:Fields:(|r|) car : U(=b r) eq : car ! car ! B(�b r) le : car ! car ! B(+r) plus : car ! car ! car(0r) zero : car(-r) minus : car ! car(*r) times : car ! car ! car(1r) one : car(�r) div : car ! car ! ?carUniverse: U'Figure 6.3: Declaration for RngSig Class



94Plenty of elementary theorems about rings were proven. It probably su�cesfor the reader to know that these exist. De�nitions of forgetful functors from theRngSig class to the GrpSig class are:mul_mon_of_rng:r#xmn == <|r|, =b r, �b r, *r, 1r, �z.z>add_grp_of_rng:r#+gp == <|r|, =b r, �b r, +r, 0r, -r>and example typing lemmas for these areadd_grp_of_rng_wf:8r:RngSig. r#+gp 2 GrpSigadd_grp_of_rng_wf_b:8r:Rng. r#+gp 2 AbGrpmul_mon_of_rng_wf:8r:RngSig. r#xmn 2 GrpSigmul_mon_of_rng_wf_a:8r:Rng. r#xmn 2 Monmul_mon_of_rng_wf_b:8r:CRng. r#xmn 2 AbMon6.8 Modules and AlgebrasThe signature class for modules and algebras is given in Figure 6.4.The de�nitions of module, algebra and commutative algebra classes are:A-Module== {m:AlgebraSig(|A|)|IsGroup(|m|;+m;0m;-m)^ Comm(|m|;+m)^ IsAction(|A|;*A;1A;|m|;�m)^ IsBilinear(|A|;|m|;|m|;+A;+m;+m;�m)^ IsEqFun(|m|;m.eq)}A-Algebra== {m:A-Module|IsMonoid(|m|;xm;1m)^ BiLinear(|m|;+m;xm)^ (8a:|A|. Dist1op2opLR(|m|;�m a;xm))}



95
Class Declaration for: a 2 AlgebraSig(A)Long Name: algebra_sigShort Name: algParameters:A : UFields:(|a|) car : U(a.eq) eq : car ! car ! B(a.le) le : car ! car ! B(+a) plus : car ! car ! car(0a) zero : car(-a) minus : car ! car(xa) times : car ! car ! car(1a) one : car(�a) div : car ! car ! ?car(�a) act : A ! car ! carUniverse: U'Figure 6.4: Declaration for AlgebraSig(A) Class



96calgebra:A-CAlgebra == {m:A-Algebra| Comm(|m|;xm)}and forgetful functors are:rng_of_alg:a#rg == <|a|, a.eq, a.le, +a, 0a, -a, xa, 1a, �a>grp_of_module:m#grp == m#rg#+gpExample typing lemmas for these are:grp_of_module_wf2:8a:RngSig. 8m:a-Module. m#grp 2 AbGrprng_of_alg_wf2:8a:CRng. 8m:a-Algebra. m#rg 2 RngThe de�nitions for module and algebra homomorphisms are:module_hom_p:8a:RngSig. 8m,n:AlgebraSig(|a|). 8f:|m| ! |n|.IsModuleHom{a,m,n}(f)= (FunThru2op(|m|;|n|;+m;+n;f)^ (8u:|a|. fun_thru_1op(|m|;|n|;�m u;�n u;f)))2 Pmodule_hom:8A:RngSig. 8M,N:AlgebraSig(|A|).A-ModuleHom(M;N)= {f:|M| ! |N|| IsModuleHom{A,M,N}(f)}2 Ualg_hom_p:8a:RngSig. 8m,n:AlgebraSig(|a|). 8f:|m| ! |n|.IsAlgHom{a,m,n}(f)= (IsModuleHom{a,m,n}(f)^ FunThru2op(|m|;|n|;xm;xn;f)^ f 1m = 1n 2 |n|)2 Palgebra_hom:8A:RngSig. 8M,N:AlgebraSig(|A|).A-AlgebraHom(M;N)= {f:A-ModuleHom(M;N)|FunThru2op(|M|;|N|;xM;xN;f) ^ f 1M = 1N 2 |N|}2 UAs explained in Section 10.2, these are typed de�nitions.



976.9 Common Instances of Algebraic ClassesTyping lemmas for standard class instances that were used elsewhere in this thesisincluded:band_mon_wf:<B,^b > 2 AbMon{1}bor_mon_wf:<B,_b > 2 AbMon{1}int_add_grp_wf2:<Z+> 2 OGrp{1}lapp_mon_wf:8s:DSet. <s List, @> 2 MonIn lapp_mon_wf, the @ symbol stands for the list append function. Its de�nitionwas:append:as @ bs==r case as of [] => bs | a::as' => a::(as' @ bs) esacThe de�nition of the equality function that made <s List, @> discrete was:eq_list_ml:as =b s bs==r case as of[] => null(bs)a::as' => case bs of[] => ffb::bs' => a =b s b ^b as' =b s bs'esacesac6.10 Iterated Operations on Integer Segments6.10.1 De�nitionsBeing able to iterate a binary operation over a �nite sequence of values is fun-damental in mathematics. This theory can be developed generally either overarbitrary monoids or over arbitrary semigroups. When over arbitrary semigroups,the �nite sequences must be non-empty. There is no such restriction with monoids.Since monoid structures were much more common than non-monoidal semigroupstructures in the data-types I wanted to consider, I chose to develop this theory�rst over monoids.



98Examples of monoid structures are abundant and include the booleans with ^band _b , the integers, rationals and reals, with + and *, and lists with the appendoperation.Examples of non-monoidal semigroup structures include the integers with bi-nary max and min functions, though the naturals with max do form a monoid.In this section I describe functions I set up for iterating over sequences indexedby ranges of integers. In Section 6.11, I describe similar functions for working onlists.Note that I use the terms `iterated operator', `product' and `sum' interchange-ably when discussing iterating a monoid operation on a �nite sequence. Sometimestoo I used the phrase `general sum' and `general product'. When dealing with ringsand modules and algebras, I use `sum' and `product' in their normal senses to referto iterating the `plus' and `times' operations.The mon_itop operation iterator takes the product of a sequence of elementsfrom a monoid. It was de�ned in two stages:�(op,id) lb � i < ub. E[i]==rif lb <z ubthen �(op,id) lb � i < ub - 1. E[i] op E[(ub - 1)]else idfi�(g) lb � i < ub. E[i] == �(*g,eg) lb � i < ub. E[i]The typing lemma for mon itop was8g:IMonoid. 8p,q:Z. 8E:{p..q�} ! |g|.�(g) p � i < q. E[i] 2 |g|where the notation {p..q�} was introduced by the de�nitionint_seg:{i..j�} == {k:Z| i � k < j}Note how {p..q�} was used for the domain of the indexed expression E. In typetheories of total functions without subtyping such as HOL's, such a function wouldhave to be de�ned over the whole of the naturals or integers, and often a defaultvalue would have to be supplied for E on indices that are out of some normal rangeof consideration.6.10.2 TheoremsA variety of simple useful lemmas were proven about these iterated operators. Forexample:



99mon_itop_unroll_base:8g:IMonoid. 8i,j:Z.i = j) (8E:{i..j�} ! |g|. �g i � k < j. E[k] = eg 2 |g|)mon_itop_unroll_unit:8g:IMonoid. 8i,j:Z.i + 1 = j) (8E:{i..j�} ! |g|. �g i � k < j. E[k] = E[i] 2 |g|)mon_itop_unroll_hi:8g:IMonoid. 8i,j:Z.i < j) (8E:{i..j�} ! |g|�g i � k < j. E[k]= (�g i � k < j - 1. E[k]) *g E[j - 1]2 |g|)mon_itop_unroll_lo:8g:IMonoid. 8i,j:Z.i < j) (8E:{i..j�} ! |g|�g i � k < j. E[k]= E[i] *g (�g i + 1 � k < j. E[k])2 |g|)mon_itop_shift:8g:IMonoid. 8a,b:Z.a � b) (8E:{a..b�} ! |g|. 8k:Z.�g a � j < b. E[j]= �g a + k � j < b + k. E[j - k]2 |g|)mon_itop_split:8g:IMonoid. 8a,b,c:Z.a � b) b � c) (8E:{a..c�} ! |g|�g a � j < c. E[j]= (�g a � j < b. E[j]) *g (�g b � j < c. E[j])2 |g|)



100mon_itop_split_el:8g:IMonoid. 8a,b,c:Z.a � b) b < c) (8E:{a..c�} ! |g|�g a � j < c. E[j]= (�g a � j < b. E[j])*g (E[b] *g (�g b + 1 � j < c. E[j]))2 |g|)mon_itop_op:8g:IAbMonoid. 8a,b:Z.a � b) (8E,F:{a..b�} ! |g|.�g a � i < b. E[i] *g F[i]= (�g a � i < b. E[i]) *g (�g a � i < b. F[i])2 |g|)When working in a mechanized formal environment, one dilemmawith choosinggroup notation is deciding whether to use additive or multiplicative notation. Thenotation that is presented in this thesis is not quite consistent; �elds of the groupclass are written multiplicatively, yet the natural action (see Section 6.10.3) iswritten as if groups were additive. A simple extension that will be made in thenear future to Nuprl's current display algorithm is one that will allow the user togroup display forms into named blocks and then enable or disable blocks all atonce. With this extension, it will be possible to switch notations in seconds andassign preferred notation blocks to theories. With notation blocks for additive andmultiplicative group notation, we should have a more acceptable solution to thisnotation problem for groups.6.10.3 Natural and Integer ActionsThe mon_itop operator was used to de�ne natural and integer action (or exponen-tiation) operators:nat_op:n x(op;id) a == �(op,id) 0 � i < n. amon_nat_op:n �g a == n x(*g;eg) aint_op:i x(op;id;inv) a== if 0 �z i then i x(op;id) a else inv -i x(op;id) a fi



101grp_int_op:i �g a == n x(*g;eg;�g) aTheorems proved about these operators includedmon_nat_op_op:8g:IAbMonoid. 8n:N. 8a,b:|g|.(n �g (a *g b)) = (n �g a) *g (n �g b) 2 |g|mon_nat_op_add:8g:IMonoid. 8e:|g|. 8a,b:N.((a + b) �g e) = (a �g e) *g (b �g e) 2 |g|mon_nat_op_mul:8g:IMonoid. 8m,n:N. 8e:|g|.(n �g (m �g e)) = ((n * m) �g e) 2 |g|mon_nat_op_hom_swap:8g,h:IMonoid. 8f:MonHom(g,h). 8n:N. 8u:|g|.(n �h (f u)) = f (n �g u) 2 |h|6.10.4 Binomial TheoremThe binomial theorem is an example of a theorem that used a summation operatoron rings, and natural actions over both the additive and multiplicative monoid ofrings. I proved it in Nuprl as a simple exercise. The statement of it wasbinomial:8r:CRng. 8a,b:|r|. 8n:N.(a + b) " n= � 0 � i < n + 1.choose(n;i) � ((a " i) * (b " (n - i)))Here, the � was the natural action the additive monoid of the ring r and " was thenatural action on the multiplicative monoid. The de�nition of choose waschoose(n;i)==r if (i =z 0) _b (i =z n)then 1else choose(n - 1;i - 1) + choose(n - 1;i)fi6.11 Iterated Operations on Lists6.11.1 De�nitions and Basic TheoremsSometimes, it was more convenient to work with �nite sequences represented usinglists rather than functions on ranges of integers. I �rst made the de�nitions:



102reduce:reduce(f;k;as)==r case as of [] => k | a::as' => f a reduce(f;k;as') esacmon_reduce:�(m) as == reduce(*m;em;as)with the corresponding typing lemmas:reduce_wf:8A,B:U. 8f:A ! B ! B. 8k:B. 8as:A List.reduce(f;k;as) 2 Bmon_reduce_wf:8g:IMonoid. 8as:|g| List. �(g) as 2 |g|Sometimes I suppressed the monoid argument to the mon_reduce operator whenthe monoid was obvious from context.As is done in NQTHM [BM88a], and similar in style to the product operationmon_itop de�ned in Section 6.10, I found it very useful to de�ne a For bindingproduct operation over lists.for:For{T,op,id} x 2 as. f[x]== reduce(op;id;map(�x:T. f[x];as))mon_for:For{T,g} x 2 as. f[x] == For{T,*g,eg} x 2 as. f[x]The typing lemmas for these arefor_wf:8A,B,C:U. 8f:B ! C ! C. 8k:C. 8as:A List. 8g:A ! B.(For{A,f,k} x 2 as. g[x]) 2 Cmon_for_wf:8g:IMonoid. 8A:U. 8as:A List. 8f:A ! |g|.(For{A,g} x 2 as. f[x]) 2 |g|I showed the views of summation presented in this and the previous chapter to beequivalentmon_reduce_eq_itop:8g:IMonoid. 8as:|g| List.�(g) as = �g 0 � i < ||as||. as[i] 2 |g|and proved basic lemmas about mon_reduce and mon_for, including



103mon_reduce_append:8g:IMonoid. 8as,bs:|g| List.�(g) as @ bs = �(g) as *g �(g) bs 2 |g|mon_for_append:8g:IMonoid. 8A:U. 8f:A ! |g|. 8as,as':A List.(For{A,g} x 2 as @ as'. f[x])= (For{A,g} x 2 as. f[x]) *g (For{A,g} x 2 as'. f[x])2 |g|6.11.2 Commutative OperationsCommonly, the binary operation used for the summing operation is commutative,and in this case, many more algebraic facts are true about For. For example, Iprovedmon_for_functionality_wrt_permr:8g:IAbMonoid. 8A:U. 8as,as':A List. 8f,f':A ! |g|.(as �(A) as')) (8x:A. mem_f(A;x;as) ) f[x] = f'[x] 2 |g|)) (For{A,g} x 2 as. f[x])= (For{A,g} x 2 as'. f'[x])2 |g|mon_for_map:8g:IAbMonoid. 8A,B:U. 8e:A ! B. 8f:B ! |g|. 8as:A List.(For{B,g} y 2 map(e;as). f[y])= (For{A,g} x 2 as. f[e x])2 |g|mon_for_of_op:8g:IAbMonoid. 8A:U. 8e,f:A ! |g|. 8as:A List.(For{A,g} x 2 as. e[x] *g f[x])= (For{A,g} x 2 as. e[x]) *g (For{A,g} x 2 as. f[x])2 |g|mon_for_of_id:8g:IAbMonoid. 8A:U. 8as:A List.(For{A,g} x 2 as. eg) = eg 2 |g|mon_for_swap:8g:IAbMonoid. 8A,B:U. 8f:A ! B ! |g|. 8as:A List.8bs:B List.(For{A,g} x 2 as. For{B,g} y 2 bs. f[x;y])= (For{B,g} y 2 bs. For{A,g} x 2 as. f[x;y])2 |g|



104The �(A) relation in the �rst theorem is the permutation relation on lists. It isdescribed in Section 7.3.1.6.11.3 Iterating over Heads and TailsA variant on For called HTFor was de�ned that gives the expression being summedaccess to both the head and tail of each position in the sequence being summedover, rather than just the head. Its de�nition and de�nitions of auxiliary functionswere:mapconsl:mapcons(f;as)==r case as of[] => []a::as' => (f a as')::mapcons(f;as')esacfor_hdtl:ForHdTl{A,f,k} h::t 2 as. g[h; t]== reduce(f;k;mapcons(�h,t.g[h; t];as))mon_htfor:HTFor{A,g} h::t 2 as. f[h; t]== ForHdTl{A,*,e} h::t 2 as. f[h; t]and the corresponding typing lemmas were:mapcons_wf:8A,B:U. 8f:A ! A List ! B. 8l:A List.mapcons(f;l) 2 B Listfor_hdtl_wf:8A,B,C:U. 8f:B ! C ! C. 8k:C. 8as:A List. 8g:A! A List! B.mon_htfor_wf:8g:IMonoid. 8A:U. 8as:A List. 8f:A ! A List ! |g|.(HTFor{A,g} h::t 2 as. f[h;t]) 2 |g|HTFor was used to de�ne predicates charactering lists as ordered and as havingdistinct elements.



1056.11.4 Conditional Iterated OperationsFrequently a binary operation is iterated over a sequence of elements subject tosome condition being true of the elements. Rather than introduce a separateversion of For to allow this, I took advantage of the fact that For summed overmonoids and de�ned a simple construct I called when. The de�nition wasmon_when:when{g} b . p == if b then p else eg fiand the typing lemma wasmon_when_wf:8g:IMonoid. 8b:B. 8p:|g|. when{g} b . p 2 |g|Basic lemmas proved about when included:mon_when_of_id:8g:IMonoid. 8b:B. when b. e = emon_when_thru_op:8g:IMonoid. 8b:B. 8p,q:|g|.when b. p * q = (when b. p) * (when b. q)mon_when_swap:8g:Mon. 8b,b':B. 8p:|g|.when b. when b'. p = when b'. when b. pmon_when_when:8g:Mon. 8b,b':B. 8p:|g|.when b. when b'. p = when b ^b b'. pLemmas about the interaction of when and For included:mon_for_when_swap:8g:Mon. 8A:U. 8as:A List. 8b:B. 8f:A ! |g|.(For{g} x 2 as. when b. f[x])= when b. (For{g} x 2 as. f[x])mon_for_when_none:8s:DSet. 8g:IMonoid. 8f:|s| ! |g|. 8b:|s| ! B.8as:|s| List.(8x:|s|. "(x 2b as) ) :"b[x])) (For{g} x 2 as. when b[x]. f[x]) = e



106mon_for_when_unique:8s:DSet. 8g:IMonoid. 8f:|s| ! |g|. 8b:|s| ! B. 8u:|s|."b[u]) (8as:|s| List"distinct{s}(as)) "(u 2b as)) (8v:|s|. "b[v] ) "(v 2b as) ) v = u)) (For{g} x 2 as. when b[x]. f[x]) = f[u])The theorem mon_for_when_unique described exactly when a For and a when cancel.The preconditions of this theorem essentially say that the sequence being summedover must contain all distinct elements and that the predicate b must be true atexactly one of those elements.The de�nition of distinct was:distinct:distinct{s}(ps)== HTFor{|s|,<B,^b >} q::qs 2 ps. 8b r(:|s|) 2 qs. :b (r =b q)The function HTFor is described in Section 6.11.3.6.11.5 SpecializationsSpecializations of the For operation to concrete domains included:ball:8b x(:A) 2 as. f[x] == For{A,<B,^b >} x 2 as. f[x]bexists:9b x(:A) 2 as. f[x] == For{A,<B,_b >} x 2 as. f[x]Specializations to summation operations on the ring and algebra classes was donefor the multiset version of For. Specializations to product operations would havebeen trivial, but were not needed for the work described in this thesis.6.11.6 Iterated Operations Indexed by MultisetsSince the order of elements being summed up by the For operator is irrelevantwhen summing with a commutative binary operation, it is as natural to think ofthe elements as coming from a multiset rather than a sequence. In the developmentof �nite multisets and sets (described in Chapter 9), I introduced a variant on ForI called msFor that drew indices from a multiset rather than from a list. Sincemultisets there were implemented as lists, msFor was nothing other than a retypingof the For operator. Its de�nition, typing lemma and proof of typing lemma are



107all given in Section 9.3.2, along with several basic theorems about it correspondingto theorems given above for For.This multiset summation operator and its specializations to summation op-erators over rings and modules were used extensively in the ADT case study onpolynomial arithmetic described in Chapter 10. Relevant lemmas about the mul-tiset summation operators can be found there.6.12 ML Support6.12.1 Simplifying Algebraic ExpressionsNormal forms can be described for expressions constructed from the operators of aclass instances and it is often straightforward to design normalization procedures.I created rewrite conversions for normalizing expressions over most of the classesdescribed above. These conversions were made generic by supplying conversionsfor basic rewrite rules as arguments. Several examples are as follows. The exampleshopefully illustrate the elegance of the notion of conversion.The functionRAssocC : convn -> convncreates conversions for right-associating trees built from binary associative opera-tors. Its de�nition is:let RAssocC AssocC = TryC (SweepDnC (RepeatC AssocC)) ;;where AssocC is assumed to have behaviorAssocC (a + b) + c �! a + (b + c) .RAssocC works top-down repeatedly applying the AssocC conversion at each leveluntil the left child is no longer an instance of the binary operator.The function BubbleSortCBubbleSortCEndSwapC : convnInsideSwapC : convndest_op : term -> (term # term)tm_lt : (term # term) -> bool=c : convnconstructs a conversion for normalizing expressions built from a associative com-mutative operator. The arguments EndSwapC and InsideSwapC are assumed tohave behaviours



108EndSwapC a + b �! b + aInsideSwapC a + (b + c) �! b + (a + c) ,dest op is assumed to be a destructor function for the binary operator and tm ltis assumed to be a total term order on terms. BubbleSortC assumes that theexpressions are already right associated. It maintains the right-associatedness andorders the fringe of the tree formed by the binary operator left-right accordingto the tm lt relation. As the name implies, the bubble-sort algorithm is used. Ichose bubblesort because it is the simplest algorithm to implement by rewriting.Rewriting strategies for others (such as merge-sort) could have been coded too witha bit more work, but bubblesort proved to be good enough for the cases where Ineeded it.6.12.2 Lemma SpecializationFrequently, a Lemma is proven about general instances of some class, and one thendesires versions of the lemma that are specialized to either a speci�c instance ofthe class or to general instances of a more speci�c class. For example, consider thelemma abmonoid ac 1:` 8g:IAbMonoid. 8a,b,c:|g|. a g.op (b g.op c) = b g.op (a g.op c)One instance of the IAbMonoid class is the additive monoid over the rationals. Theabove lemma, instantiated with this instance is:` 8a,b,c:Q. a +q (b +q c) = b +q (a +q c)Examples of the abmonoid ac 1 lemma about general instances over a more speci�cclasses are` 8r:IRng. 8a,b,c:|r|. a +r (b +r c) = b +r (a +r c)` 8r:ICRng. 8a,b,c:|r|. a *r (b *r c) = b *r (a *r c)Ideally, such instantiations would be computed on-the-y by a fancy matchingfunction. There is the issue here of how the matcher would guess appropriateinstantiations, and in practice, there probably would be some way for the user toprovide suitable hints to the matcher. The developers of the IMPS theorem proverhave experimented with such ideas [FGT92b] and it would be interesting to seewhether these could be adapted to Nuprl.For simplicity, I have not touched the matcher, but have written utility func-tions that automatically instantiate sets of similar lemmas. One use of these func-tions is in creating sets of lemmas as needed by the simpli�cation conversionsdescribed in the previous section.



Chapter 7Permutations7.1 IntroductionSection 7.2 presents a development of the basic theory of permutation functions,and Section 7.3 presents two approaches that were explored to de�ning a permu-tation relation on lists. One of these approaches involved de�ning a permutationrelation in terms of permutation functions. This work is presented in Section 7.3.1.The other approach involved de�ning the relation recursively, and is presented inSection 7.3.2.I developed �rst the de�nition in terms of permutation functions, because Iwas curious to explore the di�culties in pushing through an abstract development,close in style to that which might be found in an algebra textbook. Section 7.3.1together with Section 7.2 might serve as the beginning of an exposition on thetheory of (constructive) permutations.This de�nition was adequate for use in the factorization work described inChapter 8. Later however, in the development of the theory of �nite multisets andsets (see Chapter 9), I needed a computable de�nition, and resorted to recursivede�nition of the permutation relation on lists.Showing the two de�nitions equivalent was awkward, because I chose to char-acterize the auxiliary functions involved in the recursive de�nition in terms of thefunctional de�nition. This entailed proving many theorems about the propertiesof the list element select function on these auxiliary functions.In retrospect, it probably would have been more elegant to have shown theequivalence of the two de�nitions by going through a third characterization oftwo lists being a permutation of one-another when the counts of each possibleelement in each list are the same. This third characterization was very useful inmy development of the theory of �nite sets and multisets (see Chapter 9).109



1107.2 Permutation FunctionsClassically, a permutation on a set S is a bijection of type S ! S. Implicit in thede�nition of bijection f of type A! B is the existence of an inverse function g oftype B ! A. There is no way in general of computing g from f , even though gis a useful function, so constructively a bijection is commonly de�ned as a pair offunctions hf; gi that are mutual inverses.The de�nition for the type of permutations Perm(T) over type T was:Perm(T) == {p:PermSig(T)| InvFuns(T,T,p.f,p.b)}where the PermSig de�nitionPermSig(T) == (T ! T) � (T ! T)was introduced by the class declaration shown in Figure 7.1, and the de�nition ofClass Declaration for: PermSig(T)Long Name: perm_sigShort Name: permParameters:T : UFields:f : T ! Tb : T ! TUniverse: UFigure 7.1: Signature Class for Permutation FunctionsInvFuns wasInvFuns(A;B;f;g) == g o f = Id 2 A ! A ^ f o g = Id 2 B ! BDe�nitions for the components of the group of permutation functions on a typewere:Id == �x.xf o g == �x.f (g x)



111mk_perm(f;b) == <f,b>id_perm() == mk_perm(Id;Id)inv_perm(p) == mk_perm(p.b;p.f)p O q == mk_perm(p.f o q.f;q.b o p.b)perm_igrp(T) == mk_igrp(Perm(T);�p,q.p O q;id_perm();�p.inv_perm(p))and the theorem that perm igrp(T) was indeed a group was:`8T:U. perm_igrp(T) 2 IGroupNote that perm igrp(T) is in general an indiscrete group; there is no way ofdeciding the equality of functions when no deciding function is provided for theirrange or when the functions' domain is not �nite and enumerable 1.I then concentrated my e�orts on proving properties about Sym(n), the sym-metry group on n elements:N<j:nat>== {0..<j>�}Sym(n) == Perm(Nn)In particular, a result I wanted was showing that every permutation in Sym(n) isa composition of transpositions. I started with a de�nition of a swap functionswap(i;j)== �n.if (n =z i) then jif (n =z j) then ielse nfiwhich had typing lemma8n:N. 8i,j:Nn. swap(i;j) 2 Nn ! NnI proved such theorems as:swap_order_2:8n:N. 8i,j:Nn. swap(i;j) o swap(i;j) = Id 2 Nn ! Nnswap_sym:8n:N. 8i,j:Nn. swap(i;j) = swap(j;i) 2 Nn ! Nn1Not all constructive notions of �niteness imply enumerability, so this is not aredundant quali�er



112triple_swap:8n:N. 8i,j,k:Nn.:(i = j)) :(j = k)) swap(i;j)= swap(i;k) o (swap(j;k) o swap(i;k))2 Nn ! NnThe proof of the last theoremwas mademanageable by writing a tactic to automatecase-splits (over 50 case splits were involved). The swap de�nition was used tode�ne a transposition permutationtxpose_perm(i;j) == mk_perm(swap(i;j);swap(i;j))and corresponding theorems were proven. For example:8n:N. 8i,j:Nn.txpose_perm(i;j) O txpose_perm(i;j) = id_perm() 2 Sym(n)This tedious doubling of de�nitions and theorems, �rst over N!N, and thenover Sym(n), occurred throughout the development of permutations. The doublingwas needed so that a computable function for taking inverses of permutations couldbe de�ned; in keeping with the constructive approach of Nuprl's type theory, nomethods are provided for constructing non-computable functions. Note that Howeshowed that it is consistent to add such functions [How91a] to the type theory,and also, one can always prove theorems with an explicit hypothesis about theexistence say of an � Hilbert choice function [HB70]. I did not explore either ofthese approaches here.The theorem I proved about every element of Sym(n) being a composition ofswaps was:sym_grp_is_swaps:`8n:N8p:Sym(n)9abs:(Nn � Nn) list(p= �{(perm_igrp(Nn)} map(�ab.let a,b = ab in txpose_perm(a;b);abs)2 Sym(n))where the generalized-product function �{�} is introduced in Section 6.10 andmap(f;as) was the usual polymorphic function for mapping a function f over alist as.I proved this theorem by induction on n, using a number of auxiliary theoremsabout extending and restricting permutations such asextend_perm_over_id:8n:N. "{n}(id_perm()) = id_perm() 2 Sym(n + 1)



113extend_perm_over_comp:8n:N. 8p,q:Sym(n)."{n}(p O q) = "{n}(p) O "{n}(q) 2 Sym(n + 1)extend_perm_over_itcomp:8n:N. 8ps:Sym(n) List."{n}(�perm_igrp(Nn) ps)= �perm_igrp(N(n + 1)) map(�p."{n}(p);ps)2 Sym(n + 1)extend_perm_over_txpose:8n:N. 8i,j:Nn."{n}(txpose_perm(i;j)) = txpose_perm(i;j) 2 Sym(n + 1)extend_restrict_perm_cancel:8n:{1...}. 8p:Sym(n).p.f (n - 1) = n - 1 2 Nn) "{n - 1}(restrict_perm(p;n - 1)) = p 2 Sym(n)restrict_perm_using_txpose:8n:{1...}. 8p:Sym(n).9q:Sym(n - 1)9i,j:Nn. p = txpose_perm(i;j) O "{n - 1}(q) 2 Sym(n)whereextend_permf:extend_permf(pf;n) == �i.if (i =z n) then i else pf i fiextend_perm:"{n}(p) == mk_perm(extend_permf(p.f;n);extend_permf(p.b;n))restrict_perm:restrict_perm(p;n) == pThe extend_perm and restrict_perm de�nitions have the typing lemmasextend_perm_wf:8n:N. 8p:Sym(n). "{n}(p) 2 Sym(n + 1)restrict_perm_wf:8n:N. 8p:Sym(n + 1).p.f n = n 2 N(n + 1) ) restrict_perm(p;n) 2 Sym(n)From the sym grp is swaps theorem, I proved a couple of useful inductionlemmas for permutations. One of them was:



114perm_induction_a:` 8n:N8Q:Sym(n) ! PQ[id_perm()]) (8p:Sym(n). Q[p] ) (8i:{1..n�}. Q[txpose_perm(i;0) O p]))) {8p:Sym(n). Q[p]}I used this induction lemma to prove the invariance of the value of sums of elementsof abelian monoids under permutation of the order of the elements:mon_itop_perm_invar:8g:IAbMonoid. 8n:N. 8E:Nn ! |g|. 8p:Sym(n).�g 0 � j < n. E[p.f j] = �g 0 � j < n. E[j] 2 |g|7.3 Permutation Relations7.3.1 De�ned using Permutation FunctionsThe de�nition of the permutation relation permr on lists says that two lists as andbs are a permutation of each other if they are the same length and the forwardpermutation function permutes the bs into the as. The de�nition was:permr:as �(T) bs== (||as|| = ||bs||) c^ (9p:Sym(||as||)8i:N||as||. as[(p.f i)] = bs[i])where ||�|| is the length function for lists, and as[i] is the select function forselecting the ith element from list as (counting the head of as as the 0th element).The de�nitions of these functions werelength:||as||==r case as of [] => 0 | a::as' => ||as'|| + 1 esacnth_tl:nth_tl(n;as)==r if n �z 0 then as else nth_tl(n - 1;tl(as)) fiselect:l[i] == hd(nth_tl(i;l))The notation c^ is for a conditional and constructor. Its de�nition is the same asthe usual ^ of Nuprl's type theory. However it is type checked slightly di�erently.In particular, in order to prove P c^ Q well-formed, one has to prove P well-formed,and then only has to prove Q well-formed when P is assumed true. With P c^ Q,one has to prove Q well-formed irrespective of th truth of P. The `conditional and'



115is needed to guarantee that the index argument to the select functions are alwaysin range.The theorems stating that permr is an equivalence relation followed immedi-ately from the group properties of permutations.permr_weakening:8T:U. 8as,bs:T List. as = bs ) (as �(T) bs)permr_inversion:8T:U. 8as,bs:T List. (bs �(T) as) ) (as �(T) bs)permr_transitivity:8T:U. 8as,bs,cs:T List.(as �(T) bs) ) (bs �(T) cs) ) (as �(T) cs)Given the permr relation, I immediately was able to restate the permutationinvariance theorem given at the end of the last section in terms of lists and thegeneralized list product function �.mon_reduce_functionality_wrt_permr:8g:IAbMonoid. 8xs,ys:|g| List.(xs �(|g|) ys) ) � xs = � ysA theorem involving permr that I needed for the factorization work was:select_reject_permr:8T:U. 8as:T List. 8i:N||as||. ((as[i]::asn[i]) �(T) as)where asn[i] is the reject function for removing the ith element from the listas and :: is the list cons constructor. I could have proved this by �guring out thepermutation function, but instead I chose to prove it using induction over the listas and the lemmas:cons_functionality_wrt_permr:8T:U. 8a,b:T. 8as,bs:T List.a = b ) (as �(T) bs) ) ((a::as) �(T) (b::bs))hd_two_swap_permr:8T:U. 8as:T List. 8a,a':T. ((a::a'::as) �(T) (a'::a::as))The �rst of these theorems was a little more work than I expected because thepermutation extension function I de�ned before worked on the `hi end' of permu-tations rather than the `lo end': let p be the permutation that permutes a list bsinto the list as. Then, the permutation I used for permuting the list a::bs intothe list a::as wasconj{
p{|as| + 1}}("{|as|}(conj{
p{|as|}}(p)))



116where the conjugate permutation operator conj and the reverse permutation 
are de�ned as:rev_permf(n) == �i.(n - 1 - i)
p{n} == mk_perm(rev_permf(n);rev_permf(n))conj{p}(q) == p O q O inv_perm(p)With display forms that suppress parameters obvious from type-checking, thispermutation looks like:conj{
p}("(conj{
p}(p)))A generalization of permr that was useful in the work on factorization in Chap-ter 8 was permr upto:as � bs upto x,y.R[x; y]== (|as| = |bs|) c^ (9p:Sym(|as|). 8i:N|as|. R[as[(p.f i)]; bs[i]])where R[x; y] could be instantiated with some arbitrary equivalence relation. Inthe factorization work, I instantiated R with the `associate' relation in order tode�ne the relation `list as is a permutation of list bs up to associates'.7.3.2 De�ned RecursivelyThe recursive de�nition I used for the list permutation relation was:as �b bs==r case as of[] => null(bs)a::as' => a 2b bs ^b as' �b bs n aesacwith typing lemma:8s:DSet. 8as,bs:|s| List. (as �b bs) 2 BIn this de�nition, 2b was the list member function, and bs n a was a function forremoving one occurrence of a from the list bs, simply returning bs if a was not amember of bs. Their de�nitions were:mem:a 2b s as == 9b x(:|s|) 2 as. x =b s aremove1:as ns a==r case as of[] => []a'::as' => if a' =b s athen as'else a'::(as' ns a)fiesac



117Note that the de�nitions of �b , n, and 2b all take as an argument an elementof the discrete set class DSet, but that this argument is normally hidden by thedisplay forms I chose for these de�nitions. This argument supplies the computableequality function that these de�nitions need.Standard properties of the �b relation were proven by induction and the twode�nitions were shown equivalent.7.4 Technical DetailsThe de�nitions described in Section 7.2 exposed a couple of weaknesses of thecurrent Nuprl proof checking setup.1. The match completion algorithm relies on being able to complete matchesby inferring types of already found bindings. Occasionally matches failedbecause the algorithm couldn't infer T in the type Perm(T) of expressionssuch as:inv_perm(id_perm) O id_permthough T was inferable from the wider context in which such expressionsoccurred. I completed such steps by explicitly supplying a binding for T tothe matcher, though I don't consider this a solution. One solution would beto add a type tag to id perm, so that we would have the de�nition:id_perm(T) == mk_perm(Id;Id)and corresponding typing lemma:8T:U. (id_perm(T) 2 Perm(T))Subsequent to noting this example, I encountered several others of a similarnature. A better long term solution would be to improve type inference sothat it can look at surrounding contexts of matches in order to �nd typesor to explore doing some automatic type-inference at term input time, andhaving the system �ll in type tag slots of term. The display of some of theseslots could be suppressed, so things would look the same as they do now.2. Terms sometimes have well-formedness conditions that rely on predicatesbeing true that are not generally provable by the Auto tactic. For example,the well-formedness lemma for mk perm is:` 8T:U. 8f,b:T ! T. InvFuns(T,T,f,b) ) mk_perm(f;b) 2 Perm(T)



118The rewriter creates a functionality tactic for mk perm from this lemma thatinsists that the InvFuns predicate be checked every time the f or b argumentto mk perm is rewritten. I had examples where at stages before and aftera rewrite, it was trivial to check that mk perm well-formed because it wasburied inside another abstraction. However during rewrite, it was exposedso I got the well-formedness antecedent to prove. It would be much cleanerif issues of well-formedness were separated from rewriting when it's knownthat rewriting doesn't a�ect well-formedness. However, this isn't possible inNuprl's present type theory.



Chapter 8Divisibility TheoryDivisibility theory in algebra is commonly �rst presented abstractly in integral do-mains, though much of the theory is only concerned with the multiplicativemonoidof non-zero elements. For example, results concerning the existence and unique-ness of atomic factorizations and the properties of GCD's can �rst be developedover this multiplicative monoid.A cancellation monoid with the property that every non-unit can be factoredessentially uniquely into atoms is called a unique-factorization monoid (UFM).Essentially uniquely means up to permutations and associates. The monoid ofnon-zero elements of a unique-factorization domain (UFD) is an example of aUFM.I present in this chapter my development of a theorem that characterizes whena cancellation monoid is a UFM. I also show that the fundamental theorem ofarithmetic is an instance of this theorem.The development drew on several other theories, most notably the basic theoryof permutations developed in Chapter 7.8.1 Factorization in Monoids8.1.1 Basic De�nitionsThe basic de�nitions for divisibility theory over an abelian monoid g were all verystraightforward:b | a in g == 9c:|g|. a = b *g c 2 |g|g-unit(u) == u | eg in ga p| b in g == a | b in g ^ :(b | a in g )Symmetrize(x,y.R[x; y];a;b) == R[a; b] ^ R[b; a]119



120a �{g} b == Symmetrize(x,y.x | y in g ;a;b)Here, | is the divides relation, � is the associate relation and p| is the `properlydivides' relation. The notation � is potentially ambiguous, since it is also usedto denote the group inverse. However, factorization in groups is trivial (everyelement is a unit), so both uses of this symbol should never occur in one theorem.In particular, all occurrences of the � symbol in this chapter denote the associaterelation de�ned above.I showed that the divides relation is a preorder, and that the associate relationis an equivalence relation. I proved the latter fact as an instance of a theorem thatstated that any symmetrized preorder is an equivalence relation.All factorization theory over monoids is modulo associates; all the basic pred-icates and functions respect the associate relation � and predicates concerningequality lift to predicates concerning associates. For example, I showed that themonoid operation * respects the associate relation � and that cancellation withrespect to equality implies cancellation with respect to �:grp_op_ap2_functionality_wrt_massoc:8g:IAbMonoid. 8a,a',b,b':|g|.a � b ) a' � b' ) a * a' � b * b'massoc_cancel:8g:IAbMonoidCancel(|g|;|g|;*) ) (8a,b,c:|g|. a * b � a * c ) b � c)Other de�nitions I needed were for reducibility, atomicity (irreducibility) andprimeness. For convenience I de�ned both types and predicates for atomicity andprimeness.IsPrime{g}(a)== :g-unit(a)^ (8b,c:|g|.a | b *g c in g ) a | b in g _ a | c in g )Prime{g} == {x:|g|| IsPrime{g}(x)}Reducible{g}(a)== 9b,c:|g|. :g-unit(b) ^ :g-unit(c) ^ a = b *g c 2 |g|Atomic{g}(a) == :g-unit(a) ^ :Reducible{g}(a)Atom{g} == {a:|g|| Atomic{g}(a)}A choice in making these de�nitions concerned reducibility and atomicity. I �rstde�ned reducibility so that if an element of |g| were composite, then two properfactors would be witnessed. Then I de�ned atomicity in terms of compositeness.



121Note that whereas Atomic has no computational content and so can always beunhidden when it occurs in the Atom type, the Prime predicate does have signi�cantcomputational content.From these de�nitions I proved various facts such as that every prime is anatom in a cancellation monoid:mprime_imp_matomic:8g:IAbMonoidCancel(|g|;|g|;*g)) (8a:|g|. Prime{g}(a) ) Atomic{g}(a))The notions of of primeness and atomicity are equivalent in UFM's (the non-zero integers under multiplication, for example), but are not equivalent in general.For example, consider the set of complex numbers of form a+ bp�5 with a and bdrawn from the integers and both not equal to zero. This set forms a cancellationmonoid under normal multiplication. In this monoid, 9 has two factorizations:3 � 3 and (2 +p�5)(2�p�5). Each of the factors is atomic, but none are prime([Jac74], p136).8.1.2 Existence TheoremThe main existence theorem I proved stated that in any cancellation monoid, ifthe `properly divides' relation is well-founded and if reducibility is constructivelydecidable 1, then every non-unit factors into atomic elements. The statement ofthis theorem in Nuprl wasmfact_exists:8g:IAbMonoidCancel(|g|;|g|;*)) WellFnd(|g|;x,y.x p| y )) (8c:|g|. Dec(Reducible(c)))) (8b:|g|. :g-unit(b) ) (9as:Atom{g} List. b = � as))where the WellFnd predicate was de�ned as:WellFnd(A;x,y.R[x; y])== 8P:A ! P(8j:A. (8k:A. R[k; j] ) P[k]) ) P[j]) ) {8n:A. P[n]}In classical mathematics, this predicate is equivalent to the statements that thereare no in�nite descending chains, and that every subset has a minimal element.Constructively, all three statements are inequivalent; the one above is the strongest.It is not implied by either of the other two. The advantage of the one above is1I explain what I mean by constructively decidable in Section 5.2.5



122that provides a means of doing a constructive well-founded induction in the proofof the theorem.An abbreviated proof printout for the theorem is shown in Figure 8.1.The abbreviated proof is presented in a style very similar to that in whichNuprl proofs are normally presented:At BY, one or more inference steps are explained which re�ne the goal imme-diately above the BY into zero or more subgoals below the BY. For compactness,the proof only shows those parts of the sequent that have been changed by there�nement. The printout starts after a trivial initial step that uses the RepD tactic.I have described each re�nement in English, so hopefully the proof can be readwithout further explanation.The full proof when printed out is less than two pages long, but the formal tacticlanguage makes it less accessible. It can be found in Section A.1 of Appendix A.A trivial corollary did away with the restriction about non-units, providing thatbeing a unit was decidable.mfact_exists_a:8g:IAbMonoidCancel(|g|;|g|;*)) WellFnd(|g|;x,y.x p| y)) (8c:|g|. Dec(Reducible(c)))) (8c:|g|. Dec(g-unit(c)))) (8b:|g|. 9as:Atom{g} List. b � � as)The mfact_exists and mfact_exists_a theorems have the classic 89 structure oftheorems with interesting computational content; read constructively, the theo-rem claims that given a monoid that satis�es all the preconditions, and given anarbitrary element b of that monoid, a factorization into atomic elements can becomputed.8.1.3 Uniqueness TheoremThe main uniqueness theorem I proved stated that in any cancellation monoid, ifthe `divides' relation is constructively decidable, then every element of the monoidfactors into primes in an essentially unique way. The statement of this theorem inNuprl wasunique_mfact:8g:IAbMonoidCancel(|g|;|g|;*)) (8a,b:|g|. Dec(a | b))) (8ps,qs:Prime(g) List. � ps � � qs ) ps � qs upto �)



1231. g: IAbMonoid2. Cancel(|g|;|g|;*)3. WellFnd(|g|;x,y.x p| y)4. 8c:|g|. Dec(Reducible(c))5. b: |g|6. :(g-unit(b))` 9as:Atom{g} List. b = � as?BY Induction on b using hyp 3.?5. j: |g|6. 8k:|g|. k p| j ) :(g-unit(k)) ) (9as:Atom{g} List. k = � as)7. :(g-unit(j))` 9as:Atom{g} List. j = � asBY Decide if j is atomic or reducible.
-8. Reducible(j)?BY Hyp 8 implies that j has two proper divisors: b and c.?8. b: |g|9. c: |g|10. :(g-unit(b))11. :(g-unit(c))12. j = b * c13. b p| j14. c p| j?BY Apply hyp 6 to b and c?15. as1: Atom{g} List16. b = � as117. as2: Atom{g} List18. c = � as2?BY Use '(as1 @ as2)' for as in concl.Concl then follows by hyps 12, 16 and 18.
-8. :Reducible(j)?BY Use 'j::[]' for as in concl and then concl is obvious.Figure 8.1: Abbreviated Proof of Existence of Atomic Factorizations



124Here, the notation `ps � qs upto �' is for a `permutation and associates' relation.It can be read as saying \ps is equal to qs up to permutations and associates." Itstwo-stage de�nition was:permr_upto:as � bs upto x,y.R[x; y]== (||as|| = ||bs||) c^ (9p:Sym(||as||)8i:N||as||. R[as[(p.f i)]; bs[i]])permr_massoc:as � bs upto �{g} == as � bs upto x,y.x �{g} yAn abbreviated proof of the theorem is shown in Figure 8.2. The full proofprintout is less than 3 pages long and can be found in full in Section A.2 ofAppendix A.One of the more interesting steps in the full proof is reproduced in Figure 8.3.This corresponds to the penultimate step of the abbreviated proof. The lemmareferred to isselect_reject_permr:8T:U. 8as:T List. 8i:N||as||. ((as[i]::asn[i]) �(T) as)In order to rewrite the conclusion, the rewriter looked up a lemma, verifying thatthe � upto relation respected the permutation relation �(|g|). Also, in order torewrite the hypothesis that moved to the end of the hypothesis list, the rewriterchecked that the �(g) respected the permutation relation; speci�cally, it checkedthat g was abelian.8.1.4 Unique Factorization Monoid ExistenceI present here a summarizing theorem that I proved that gives conditions for whena cancellation monoid is a UFM. First, I give a few de�nitions. A uniquely satis�esup to predicate was de�ned asuni_sat_upto:a r !x:T. Q[x] == Q[a] ^ (8a':T. Q[a'] ) a' [r] a)Given a type T, an equivalence relation r on T, and an element a of type T, theexpression `a r !x:T. Q[x]' can be read as \upto r, a is the unique x of type Tsuch that Q[x] holds".An exists unique up to predicate was de�ned in terms of the `uniquely satis�esup to' predicate as:exists_uni_upto:(r)9!x:T. Q[x] == 9a:T. a r !x:T. Q[x]



1251. g: IAbMonoid2. Cancel(|g|;|g|;*)3. 8a,b:|g|. Dec(a | b)4. ps: Prime(g) List` 8qs:Prime(g) List. � ps � � qs ) ps � qs upto �?BY List induction on ps.
-5. qs: Prime(g) List6. e � � qs` [] � qs upto �BY hyp 6 says that � qs is a unit. This can only happen if q = []
-5. p: Prime(g)6. ps': Prime(g) List7. 8qs:Prime(g) List. � ps' � � qs ) ps' � qs upto �8. qs: Prime(g) List9. p * � ps' � � qs` p::ps' � qs upto �?BY Hyp 9 implies that p divides � qsSince p is prime, p divides an element i of qs.?10. i: N||qs||11. p | qs[i]?BY Since p non-unit and qs[i] atomic, hyp 11 can be strengthened.?11. p � qs[i]?BY Move hyp 9 to end of hyps to put in scope of i.Bring qs[i] to front of qs in moved hyp 9 and concl.?9. i: N||qs||10. p � qs[i]11. p * � ps' � qs[i] * � qsn[i]` p::ps' � qs[i]::qsn[i] upto �?BY Decompose :: in concl and apply cancellation hyp 2 to hyp 11.?11. � ps' � � qsn[i]` ps' � qsn[i] upto �?BY Concl follows from hyp 11 using induction hyp 7.Figure 8.2: Abbreviated proof of Uniqueness of Prime Factorizations



126
1. g: IAbMonoid2. Cancel(|g|;|g|;*)3. 8a,b:|g|. Dec(a | b)4. ps: Prime(g) List5. p: Prime(g)6. ps': Prime(g) List7. 8qs:Prime(g) List. �(g) ps' �{g} �(g) qs ) ps' � qs upto �{g}8. qs: Prime(g) List9. p *g �(g) ps' �{g} �(g) qs10. i: N||qs||11. p �{g} qs[i]` p::ps' � qs upto �{g}?BY MoveToEnd 9THEN (OnMCls [0;-1] (RWH (IfIsC dqse(RevLemmaWithC [`i',die] `select_reject_permr`))) ...a)THEN AbReduce (-1)?9. i: N||qs||10. p �{g} qs[i]11. p *g �(g) ps' �{g} qs[i] *g �(g) qsn[i]` p::ps' � qs[i]::qsn[i] upto �{g}Figure 8.3: Step in Proof of Uniqueness of Prime Factorizations



127Given a type T and an equivalence relation r on T, the expression (r)9!x:T. Q[x]can be read as \upto r, there exists a unique x of type T such that Q[x] holds".A UFM predicate was de�ned asIsUFM(g)== 8b:|g|. :(g-unit(b)) ) (��)9!as:Atom{g} List. (b = � as)Here, the �� notation denotes the `permutation and associates' relation on g. Sothis de�nition can be read as \g is a unique factorization monoid, just when everynon-unit can be factored uniquely (up to permutations and associates) into atomicelements".The previous two theorems about the existence and uniqueness of factorizationswere then combined into the single theorem:ufm_char:8g:IAbMonoidCancel(|g|;|g|;*g)) WellFnd(|g|;x,y.x p| y in g )) (8a:Atom{g}. IsPrime{g}(a))) (8a:|g|. Dec(Reducible{g}(a)))) (8a,b:|g|. Dec(a | b in g ))) IsUFM(g)8.1.5 The Fundamental Theorem of ArithmeticThe fundamental theorem of arithmetic essentially says that the monoid of thepositive integers under multiplication form a UFM. With the de�nition of themultiplicative monoid of positive integers:<Z+,*>== <N+, �x,y.(x =z y), �x,y.x �z y, �x,y.x * y, 1, �x.x>and a set of lemmas, verifying that <Z+,*> satis�ed all the preconditions of theufm_char lemma in the previous section, I established the theorem:IsUFM(<Z+,*>)



Chapter 9Finite Sets and Finite Multisets9.1 IntroductionThe work described in the this chapter was done with several aims in mind:1. To explore the view of algebraic class de�nitions as abstract-data-type (ADT)speci�cations, and of inhabitants of these classes as implementations of thespeci�cations. In particular, I wanted to explore the properties of free alge-braic class de�nitions.This work served as a foundation for the much larger case study on ADTspeci�cation and implementation described in Chapter 10.2. To investigate the abstracting properties of Nuprl's equality-quotienting type.3. To develop a library of de�nitions and theorems covering constructive �nitesets and multisets. By constructive here, I mean that all sets and multisetshave a concrete representation, and all the primary functions and predicatesare computable.This library was put to use in characterizing the ADT implementations de-veloped in Chapter 10. Note that this use was quite distinct from the usedescribed above.The particular algebraic class studied in this chapter as an ADT speci�cation,is that of free abelian monoids over a set. All elements of this class are isomorphic,and so in mathematics one usually talks of the free abelian monoid on some sets. However, instances of this class can be constructed in quite di�erent ways andhave di�erent computational characteristics. The implementation described here isbased on using lists of elements of s with the order of elements in the lists ignored.A second implementation was produced in the work on polynomials describedin Chapter 10. This implementation was based on association lists (a-lists) and128



129assumed that the set s was linearly ordered. It allowed multiset operations suchas union and intersection to be computed in O(n) time as oppose to in O(n2) timefor the list implementation here.9.2 De�nition of Free Abelian Monoid ClassThe abstract characterization of being a free abelian monoid says that a monoidM = hM; �; ei is a free abelian monoid over a set S if there is an mapping � of Sinto M , such that for any abelian monoidM0 and mapping � of S into M 0, thereis a unique abelian monoid homomorphism �̂ from M to M 0 which satis�es theequation � = �̂ � �. This equation can be stated pictorially by saying for eachM0and � there is a unique �̂ such that the following diagram commutes:S?� @@@@@@R�M -�̂ M 0 :This property of a free abelian monoid is a paradigmatic example of a universalproperty. Such properties are extensively studied in algebra, universal algebra andcategory theory.The class de�nition that I used for free abelian monoids is shown in Figure 9.1.This de�nition captures the requirement that there is an appropriate mappinginto any abelian monoid by insisting that a function be supplied that generatesthis mapping. Such a function is useful for building a variety of more speci�cfunctions.Auxiliary de�nitions used in the de�nition of FAbMon are:MonHom(M1,M2) == {f:(|M1| ! |M2|)| monoid_hom_p(M1;M2;f)}monoid_hom_p(M1;M2;f) == fun_thru_2op(|M1|;|M2|;M1.op;M2.op;f)^ ((f M1.id) = M2.id 2 |M2|){!x:T | P[x]} == {x:T| (P[x] ^ (8y:T. P[y] ) (y = x 2 T)))}FAbMon is an example of a class de�nition that is parameterized by an element ofanother class (DSet in this case).To exercise this de�nition, I proved the uniqueness of instances of this class upto isomorphism:` 8S:DSet8M,N:FAbMon(S)9f:MonHom(M.mon,N.mon).9g:MonHom(N.mon,M.mon). InvFuns(|M.mon|;|N.mon|;f;g)



130Class Declaration for: FAbMon(S)Long Name: free_abmonoidShort Name: free_abmonParameters:S : DSetFields:mon : AbMoninj : |S| ! |mon|umap : mon':AbMon! f':(|S| ! |mon'|)! {!g:MonHom(mon,mon') | g o inj= f'2 |S| ! |mon'|}Universe: U'Figure 9.1: Class of Free Abelian MonoidsNote the constructive content of this theorem; the content is a computable func-tion that given any free abelian monoids M and N, can come up with the monoidhomomorphisms that shows that the monoids are isomorphic. This theorem isonly provable constructively because the class de�nition for free abelian monoidsrequires this universal mapping function to be supplied.This theorem indicates the genericity of any implementation of the class; if afunction is de�nable on one implementation of the class, then the mapping func-tions can be used to construct an equivalent function on any other implementa-tion. In theory, this might be a very handy feature; some functions are much moreeasily de�ned on one implementation than another. In practice, the translationback-and-forth might not be too e�cient.9.3 Implementation of Free Abelian MonoidHere I show an implementation of the free abelian monoid class over a set S thatuses lists of elements of S as the monoid carrier. One of the main purposes of thisexample is to illustrate the usefulness of Nuprl's quotient type.As explained earlier, my approach to building classes in Nuprl hinges on beingable to use the quotient type to build carrier types with appropriate associated



131equality relations. I also discuss limitations of the current quotient type and di-rections in which it needs to be improved.Incidentally, this example also proves that free abelian monoids exist.9.3.1 Sketch of ImplementationIgnoring typing and veri�cation issues, the construction of an implementationbased on lists was rather straightforward. In order to have a computable equalityrelation on the carrier of the free abelian monoid be computable, I needed thegenerating set to be some element s of the DSet class rather than just a type inuniverseU. The monoid was formed using lists over |s| for the monoid carrier, listappend @ for the binary monoid operation, and the empty list [] for the monoidunit. For the boolean-valued function computing whether two lists were equalwhen considered as multisets, I used the bpermr function from the list 2 theory.bpermrfsg(as,bs) returns tt just when the list as is a permutation of the list bs.The injection of an element a of |s| into the monoid was the singleton lista::[]. Using the mon for summation function, the universal mapping functionwas de�ned as:�m,f,y.For{|s|,m} z 2 y. f z9.3.2 De�nitionsHere are the actual de�nitions, their typing lemmas, and comments on how relevantproperties about them were proved.The de�nition and well-formedness lemma for the multiset type were:*A mset MSet{s} == as,bs:(|s| List)//(as �(|s|) bs)*T mset_wf 8s:DSet. MSet{s} 2 UThe �(|s|) relation is the permr `are related by permutation' relation from theperms 2 theory and the // operation is Nuprl's type-quotienting operation.The very �rst issue I came across in using this type was how to deal with itsinclusion properties. I proved the lemma:*T mset_qinc 8s:DSet. (|s| List) � MSet{s}Here the di�erences between type theory and set theory really became apparent.In Nuprl's type theory, to prove A � B (de�ned as 8x:A. x 2 B) one must notonly show that every element of A is also an element of B, but also that if twoelements are equal elements of A they are also equal elements of B. The lemmamset_qinc is provable partly because two lists that are considered equal as lists,are also related by a permutation (the identity permutation).



132If and when proper subtyping predicates are added to Nuprl's type theory, itprobably make sense to introduce two: one for when the equalities are the samebut the elements might di�er and the other for when the elements are the same butthe equalities di�er. One interesting question is whether suitable rules in Nuprl'stype theory could be devised that cleanly make this distinction apparent. Havingequality reasoning `built-in' to the type theory might make things rather awkward.I set up the Inclusion tactic (and hence the Auto tactic) to automatically lookfor and apply quotient inclusion lemmas such as mset qinc above.Since the computation language of Nuprl is intrinsically untyped, I found myselfoften unsure in the middle of a proof whether I was thinking of some term as alist or a multiset. Conceptually, I found it helpful to think of the MSetfsg typeas more abstract than the |s| List type and where possible I introduced extrade�nitions that made this abstraction more explicit. As I explain in Section 9.3.5,I also introduced a set of rewrite lemmas for shifting around the position in a termwhere this abstraction is considered to be made.The �rst de�nition I introduced was a function injecting lists into multisets:*A mk_mset mk_mset(as) == as*T mk_mset_wf 8s:DSet. 8as:|s| List. mk_mset(as) 2 MSet{s}I considered this function an `encapsulation function'; it took lists, ordered se-quences of elements over some type as input, and returned as output multisets ofthese elements, collections in which the order of elements was e�ectively hidden.Note that in Nuprl's type theory, it is not always possible to type a function thatopens up multisets represented as lists, and returns the underlying lists. Nuprlrequires all functions to respect the equalities of their domain and range types.An `opening up' function would have to map lists thought of as equal multisets,to equal lists. Such a function could only be constructively de�ned if extra struc-ture were assumed of the type of elements of the lists. For example, if the typewere linearly ordered, then a sorting function would make a suitable `opening up'function.I used the mk_mset de�nition in de�ning the injection function from |s| intoDSet:*A mset_inj mset_inj{s}(x) == mk_mset(x::[])*T mset_inj_wf 8s:DSet. 8x:|s|. mset_inj{s}(x) 2 MSet{s}I gave the mset_inj abstraction an extra parameter s to indicate the type of themultiset being injected into. This made sure that the type of mset_injwas inferablewhen needed. Perhaps this wasn't strictly necessary since the type could have beeninferred from the type of x. However, there had been similar times in previousproofs when type inference had failed because the inferred type of x was sayZrather



133than |<Z,�x,y.x =z y>|. The type inference function didn't know enough toconvert a raw type into an appropriate element of the DSet class. To be consistent,I probably should have also given mk_mset an extra similar parameter.The null multiset, multiset sum and multiset equality were de�ned as:*A null_mset 0{s} == []*T null_mset_wf 8s:DSet. 0{s} 2 MSet{s}*A mset_sum a + b == a @ b*T mset_sum_wf 8s:DSet. 8a,b:MSet{s}. a + b 2 MSet{s}In Figure 9.2, I show the proof of mset_sum_wf because it illustrates the form ofsome the basic Nuprl rules for dealing with quotient types. The D 3 and D2 tactics invoke the decomposition rule for quotient types in the hypothesis list.This rule is rather specialized in comparison with other hypothesis decompositionrules in that it requires the conclusion to be of a certain form, namely that it is anequality term. The rule turned out to be adequate for this multiset theory. TheEqTypeCD tactic invokes the decomposition rule for the quotient type being the typeof an equality in the conclusion. RelArgCD is a generalization of the EqCD tactic;it re�nes a goal involving an equivalence relation in the conclusion over two termswith same outermost constructor, to relations between the immediate subterms ofthe equivalence relation. In this case, the relations between the subterms followimmediately from the hyps 4 and 7.I introduced a new variant on For for summing over multisets rather than lists:*A mset_for msFor{s,m} x 2 a. f[x] == For{|s|,m} x 2 a. f[x]*T mset_for_wf8s:DSet. 8g:IAbMonoid. 8f:|s| ! |g|. 8a:MSet{s}.msFor{s,g} x 2 a. f[x] 2 |g|The proof of the mset for wf lemma was straightforward and is shown in Fig-ure 9.3. Here as elsewhere, I had already done all the harder work of showingfunctionality of various operators with respect to permr, so things look perhapsdeceptively simple.An interesting feature of the mset_for_wf lemma is that it requires g to be anabelian monoid. This lemma is unprovable, if g is merely required to be an elementof the GrpSig class that IAbMonoid is derived from. This fact can easily be seen byconsidering the last step of the proof shown in Figure 9.3; the summation value isonly invariant under permutation of the list being summed over when g at leasthas the properties of an abelian monoid.



134` 8s:DSet. 8a,b:MSet{s}. a + b 2 MSet{s}?BY Unfold `mset_sum` 0THEN (UnivCD ...a)?1. s: DSet2. a: MSet{s}3. b: MSet{s}` a @ b 2 MSet{s}?BY Unfold `member` 0?̀a @ b = a @ b 2 MSet{s}?BY (New [`b1';`b2'] (D 3) ...a)?3. b1: |s| List4. b2: |s| List5. b1 �(|s|) b2` a @ b1 = a @ b2 2 MSet{s}?BY (New [`a1';`a2'] (D 2) ...a)?2. b1: |s| List3. b2: |s| List4. b1 �(|s|) b25. a1: |s| List6. a2: |s| List7. a1 �(|s|) a2` a1 @ b1 = a2 @ b2 2 MSet{s}?BY (EqTypeCD ...a)?̀(a1 @ b1) �(|s|) (a2 @ b2)?BY (RelArgCD ...)Figure 9.2: Proof of mset_sum_wf Lemma



135` 8s:DSet. 8g:IAbMonoid. 8f:|s| ! |g|. 8a:MSet{s}.msFor{s,g} x 2 a. f[x] 2 |g|?BY (UnivCD ...a)?1. s: DSet2. g: IAbMonoid3. f: |s| ! |g|4. a: MSet{s}` msFor{s,g} x 2 a. f[x] 2 |g|?BY Unfolds ``member mset_for`` 0THEN (D 4 ...a)?4. a1: |s| List5. a2: |s| List6. a1 �(|s|) a2` (For{|s|,g} x 2 a1. f[x]) = (For{|s|,g} x 2 a2. f[x]) 2 |g|?BY (RWH (HypC 6) 0 ...)Figure 9.3: Proof of mset_for_wf Lemma9.3.3 Constructing a monoid of multisetsI generated lemmas showing some of the expected properties of the multiset oper-ators:*T mset_sum_comm 8s:DSet. Comm(MSet{s};�a,b.a + b)*T mset_sum_assoc 8s:DSet. Assoc(MSet{s};�a,b.a + b)*T assert_of_eq_mset8s:DSet. 8a,b:MSet{s}. "eq_mset{s}(a,b) () a = b 2 MSet{s}and then gave the construction of the multiset monoid:*A mset_monmset_mon{s}== <MSet{s}, �x,y.eq_mset{s}(x,y), �x,y.tt, �x,y.x + y, 0{s}, �x.x>*T mset_mon_wf 8s:DSet. mset_mon{s} 2 AbMonoid



136The proof of mset mon wf was straightforward; I either referred back to one of theproperty lemmas as above or proved the property on the spot.9.3.4 Evaluating the multiset summation functionHere I describe a rewrite conversion I put together for symbolically evaluatingexpressions involving msFor when it is the domain of some multiset expression:speci�cally when it is either a sum of two multisets, a singleton multiset or thenull multiset. The lemmas involved were:*T mset_for_mset_sum8s:DSet. 8g:IAbMonoid. 8f:|s| ! |g|. 8a,b:MSet{s}.msFor{s,g} x 2 a + b. f[x]= (msFor{s,g} x 2 a. f[x]) *g (msFor{s,g} x 2 b. f[x])2 |g|*T mset_for_mset_inj8s:DSet. 8g:IAbMonoid. 8f:|s| ! |g|. 8u:|s|.msFor{s,g} x 2 mset_inj{s}(u). f[x] = f[u] 2 |g|Rewrite conversions for the null multiset and for normalizing expressions involvingmset_for were de�ned by the ML object:*M mset_for_evallet mset_for_null_msetC =MacroC `mset_for_null_msetC`(EvalC ``mset_for null_mset``)'msFor{s,g} x 2 0{s}. f[x]'IdC'g.id';;let mset_for_normC =TryC (SweepDnC(mset_for_null_msetCORELSEC LemmaC `mset_for_mset_sum`ORELSEC LemmaC `mset_for_mset_inj`));;It might help here to use some general mathematical notation to describe the rules.Assuming + is multiset sum, fug is a singleton multiset, ; is the empty multiset,and that msFor is summing over a multiplicative monoid, the mset for normCimplements the rewrite rules:Yx2; fx ! 1



137Yx2fug fx ! fuYx2a+b fx ! Yx2a fx � Yx2b fxExamples of the use of mset for normC can be found in the proof of themset fmon wf theorem given in Section 9.3.6.9.3.5 Multiset eliminationHere I describe a rewrite conversion I constructed for converting an expressionor proposition involving the MSet type and operators over multisets into one in-volving lists and the underlying list operations. The lemmas and MacroC atomicconversions involved are as follows:*T all_mset_elim8s:DSet. 8F:MSet{s} ! P.(8a:MSet{s}. SqStable(F[a]))) ((8a:MSet{s}. F[a]) () (8a:|s| List. F[mk_mset(a)]))*T equal_mset_elim8s:DSet. 8as,bs:|s| List.mk_mset(as) = mk_mset(bs) 2 MSet{s} () (as �(|s|) bs)*M mset_elim_1let null_mset_elimC = SimpleMacroC `null_mset_elimC`d0{s}e dmk_mset([])e ``null_mset mk_mset``;;let mset_inj_elimC = SimpleMacroC `mset_inj_elimC`dmset_inj{s}(x)e dmk_mset(x::[])e ``mset_inj mk_mset``;;let mset_sum_elimC = SimpleMacroC `mset_sum_elimC`dmk_mset(as) + mk_mset(bs)e dmk_mset(as @ bs)e``mset_sum mk_mset`` ;;*T mset_mon_for_elim8s:DSet. 8T:U. 8f:T ! |s| List. 8as:T List.(For{T,mset_mon{s}} x 2 as. mk_mset(f[x]))= mk_mset(For{T,lapp_mon(s)} x 2 as. f[x])2 MSet{s}



138*M mset_elim_2let mset_for_elimC = SimpleMacroC `mset_for_elimC`dmsFor{s,g} x 2 mk_mset(as). F[x]edFor{|s|,g} x 2 as. F[x]e ``mset_for mk_mset`` ;;let raise_mk_msetC =FirstC[null_mset_elimC;mset_inj_elimC;mset_sum_elimC;mset_for_elimC] ;;let mset_elimC =TryC (SweepDnC (LemmaC `all_mset_elim`))ANDTHENC TryC (SweepUpC raise_mk_msetC)ANDTHENC TryC (HigherC (LemmaC `mset_mon_for_elim`))ANDTHENC TryC (HigherC (LemmaC `equal_mset_elim`));;The lapp mon(s) monoid in mset mon for elim is the monoid of lists over |s|with the empty list [] as the unit and @ as the binary operator.Note the following pattern of behavior in the various atomic rewrite rules:1. the LemmaC `all_mset_elim`, null_mset_elimC and mset_inj_elimC intro-duce mk_mset terms,2. the mset_sum_elimC and LemmaC mset_mon_for_elim raise mk_mset terms up-wards in term trees,3. LemmaC `equal_mset_elim` and mset_for_elimC absorb mk_mset terms.This pattern motivates the order in which the rewrite rules were assembled intoone conversion.The mset_elimC conversion was used in the proof a couple of theorems:*T dist_hom_over_mset_for8s:DSet. 8m,n:IAbMonoid. 8f:MonHom(m,n). 8a:MSet{s}.8g:|s| ! |m|.f (msFor{s,m} x 2 a. g[x])= msFor{s,n} x 2 a. f g[x]2 |n|*T mset_fact8s:DSet. 8a:MSet{s}.a = msFor{s,mset_mon{s}} x 2 a. mset_inj{s}(x) 2 MSet{s}



139` 8s:DSet. 8m,n:IAbMonoid. 8f:MonHom(m,n). 8a:MSet{s}.8g:|s| ! |m|.f (msFor{s,m} x 2 a. g[x]) = msFor{s,n} x 2 a. f g[x] 2 |n|?BY (RepeatMFor 4 (D 0) ...a)?1. s: DSet2. m: IAbMonoid3. n: IAbMonoid4. f: MonHom(m,n)` 8a:MSet{s}. 8g:|s| ! |m|.f (msFor{s,m} x 2 a. g[x]) = msFor{s,n} x 2 a. f g[x] 2 |n|?BY (RW mset_elimC 0 ...a)?̀8a:|s| List. 8g:|s| ! |m|.f (For{|s|,m} x 2 a. g[x]) = (For{|s|,n} x 2 a. f g[x]) 2 |n|?BY (Backchain ``dist_hom_over_mon_for`` ...)Figure 9.4: Proof of dist_hom_over_mset_for Lemma` 8s:DSet. 8a:MSet{s}.a = msFor{s,mset_mon{s}} x 2 a. mset_inj{s}(x) 2 MSet{s}?BY (D 0 ...a)?1. s: DSet` 8a:MSet{s}a = msFor{s,mset_mon{s}} x 2 a. mset_inj{s}(x) 2 MSet{s}?BY (RW mset_elimC 0 ...a)?̀8a:|s| List. (a �(|s|) (For{|s|,lapp_mon(s)} x 2 a. (x::[])))?BY (D 0 ...a)THEN (StrengthenRel THENM BLemma `lapp_fact` ...)Figure 9.5: Proof of mset_fact Lemma



140The proofs of these theorems are given in Figure 9.4 and Figure 9.5. Theseproofs used the following lemmas from the list 2 theory:*T lapp_fact8s:DSet. 8as:|s| List.as = (For{|s|,lapp_mon(s)} x 2 as. (x::[])) 2 |s| List*T dist_hom_over_mon_for8T:U. 8m,n:IMonoid. 8f:MonHom(m,n). 8a:T List. 8g:T ! |m|.f (For{T,m} x 2 a. g[x]) = (For{T,n} x 2 a. f g[x]) 2 |n|9.3.6 The main theoremThe de�nition of the free abelian monoid tuple of multiset functions, and thetheorem that states that this tuple really is a free abelian monoid were*A mset_fmonmset_fmon(s)== <mset_mon{s}, �x.mset_inj{s}(x), �m,f,y.msFor{s,m} z 2 y. f z>*T mset_fmon_wf 8s:DSet. mset_fmon(s) 2 FAbMon(s)The proof of the mset mon wf theorem is shown in Figure 9.6 to Figure 9.9. Ihave included comments at most of the steps to explain what's going on.9.4 Finite MultisetsAs in the previous section, most of the functions here were �rst de�ned on lists,and then characterized as having a multiset type.The relevant list functions had the typed de�nitions:diff:8s:DSet. 8as,bs:|s| List.(as -s bs)= case bs of [] => as | b::bs' => (as ns b) -s bs' esac2 |s| Listlmax:8s:DSet. 8as,bs:|s| List.lmax(s;as;bs) = (as -s bs) @ bs 2 |s| Listlmin:8s:DSet. 8as,bs:|s| List.lmin(s;as;bs) = (as -s (as -s bs)) 2 |s| List



141` 8s:DSet. mset_fmon(s) 2 FAbMon(s)?BY % Open de�nitions and let Auto rip %(Unfolds ``mset_fmon free_abmonoid`` 0 ...)% Only non-trivial goals to check involve the umap %?1. s: DSet2. m: AbMonoid3. f: |s| ! |m|` (�y.msFor{s,m} z 2 y. f z) 2 {!g:MonHom(mset_mon{s},m) |g o (�x.mset_inj{s}(x))= f2 |s| ! |m|}?BY % Open up unique set concl type %(MemTypeCD ...)
-` (�y.msFor{s,m} z 2 y. f z) 2 MonHom(mset_mon{s},m)?BY % Check umap is a homomorphism %?� � �
-` (�y.msFor{s,m} z 2 y. f z) o (�x.mset_inj{s}(x)) = f 2 |s| ! |m|?BY % Check commutativity of umap triangle %?� � �
- 4. y: MonHom(mset_mon{s},m)5. y o (�x.mset_inj{s}(x)) = f 2 |s| ! |m|` y = (�y.msFor{s,m} z 2 y. f z) 2 MonHom(mset_mon{s},m)?BY % Check uniqueness of umap %?� � � Figure 9.6: Proof of mset fmon wf Theorem: Top Part



142� � �?̀(�y.msFor{s,m} z 2 y. f z) 2 MonHom(mset_mon{s},m)?BY % Check umap is a homomorphism %(MemTypeCD ...)THEN AbEval ``monoid_hom_p fun_thru_2op`` 0THEN (GenUnivCD ...a)
-4. a1: MSet{s}5. a2: MSet{s}` (msFor{s,m} z 2 a1 + a2. f z)= (msFor{s,m} z 2 a1. f z) m.op (msFor{s,m} z 2 a2. f z)2 |m|?BY (RW mset_for_normC 0 ...)
-` (msFor{s,m} z 2 0{s}. f z) = m.id 2 |m|?BY (RW mset_for_normC 0 ...)Figure 9.7: Proof of mset fmon wf Theorem: umap hom Part...?̀(�y.msFor{s,m} z 2 y. f z) o (�x.mset_inj{s}(x)) = f 2 |s| ! |m|?BY % Check commutativity of umap triangle %(Ext ...a) THEN AbReduce 0?4. x: |s|` (msFor{s,m} z 2 mset_inj{s}(x). f z) = f x 2 |m|?BY (RW mset_for_normC 0 ...)Figure 9.8: Proof of mset fmon wf Theorem: umap comm Part



143� � �?̀y = (�y.msFor{s,m} z 2 y. f z) 2 MonHom(mset_mon{s},m)?BY % Check uniqueness of umap %RenameVar `g' 4 % �x name to avoid confusion %?4. g: MonHom(mset_mon{s},m)5. g o (�x.mset_inj{s}(x)) = f 2 |s| ! |m|` g = (�y.msFor{s,m} z 2 y. f z) 2 MonHom(mset_mon{s},m)?BY % Open up MonHom type in concl %(EqTypeCD ...a)
-` g = (�y.msFor{s,m} z 2 y. f z) 2 |mset_mon{s}| ! |m|?BY % Show functions equal by using function extensionality rule %(New [`w'] Ext ...a) THEN AbReduce 0?6. w: |mset_mon{s}|` g w = (msFor{s,m} z 2 w. f z) 2 |m|?BY % Eliminate f in concl using hyp 5 %(RWH (RevHypC 5) 0 ...a) THEN AbReduce 0?̀g w = (msFor{s,m} z 2 w. g mset_inj{s}(z)) 2 |m|?BY % Pull g out past msFor and apply mset_fact lemma %(RWH (RevLemmaC `dist_hom_over_mset_for`) 0THENM RWH (RevLemmaC `mset_fact`) 0 ...)
-` monoid_hom_p(mset_mon{s};m;g)?BY % concl follows trivially from hyp 4(AddProperties 4 ...)Figure 9.9: Proof of mset fmon wf Theorem: umap unique Part



144bsublist:8s:DSet. 8as,bs:|s| List.bsublist(s;as;bs) = null(as -s bs)count:8s:DSet. 8a:|s|. 8bs:|s| List.a #2s bs = (For{|s|,<Z+>} x 2 bs. b2i(x =b s a))The count function provided the essential characterization of what the @, lmax,lmin and diff functions did when order was ignored. It provides the view of listsas `functions of �nite support' from the set s that the multisets are over into thenaturals. Finite support means in particular here, that the functions map all buta �nite number of elements in the domain to 0.Theorems proved included:count_append:8s:DSet. 8as,bs:|s| List. 8c:|s|.c #2s (as @ bs) = (c #2s as) + (c #2s bs)count_diff:8s:DSet. 8as,bs:|s| List. 8c:|s|.c #2s (as -s bs) = (c #2s as) -- (c #2s bs)count_lmax:8s:DSet. 8as,bs:|s| List. 8c:|s|.c #2s lmax(s;as;bs) = imax(c #2s as;c #2s bs)count_lmin:8s:DSet. 8as,bs:|s| List. 8c:|s|.c #2s lmin(s;as;bs) = imin(c #2s as;c #2s bs)count_bsublist_a:8s:DSet. 8as,bs:|s| List."bsublist(s;as;bs) () (8c:|s|. c #2s as � c #2s bs)Once I proved a characterization of the permr list permutation relation (seeSection 7.3) in terms of the count functionpermr_iff_eq_counts:8s:DSet. 8as,bs:|s| List.(as �(|s|) bs) () (8x:|s|. x #2s as = x #2s bs)it was straightforward to make new de�nitions for corresponding multiset opera-tionsmset_union:8s:DSet. 8a,b:MSet{s}. a [s b = lmax(s;a;b) 2 MSet{s}



145mset_inter:8s:DSet. 8a,b:MSet{s}. a \s b = lmin(s;a;b) 2 MSet{s}mset_diff:8s:DSet. 8a,b:MSet{s}. a -s b = (a -s b) 2 MSet{s}bsubmset:8s:DSet. 8a,b:MSet{s}. a �b s b = bsublist(s;a;b)and to make corresponding count theorems:mset_count_sum:8s:DSet. 8as,bs:MSet{s}. 8c:|s|.c #2 (as + bs) = (c #2 as) + (c #2 bs)mset_count_union:8s:DSet. 8as,bs:MSet{s}. 8c:|s|.c #2 (as [ bs) = imax(c #2 as;c #2 bs)mset_count_diff:8s:DSet. 8as,bs:MSet{s}. 8c:|s|.c #2 (as - bs) = (c #2 as) -- (c #2 bs)count_bsubmset:8s:DSet. 8a,b:MSet{s}."(a �b b) () (8x:|s|. x #2 a � x #2 b)Additional de�nitions introduced for multisets included:mset_map:8s,s':DSet. 8f:|s| ! |s'|. 8a:MSet{s}.msmap{s,s'}(f;a)= msFor{mset_mon{s'}} x 2 a. mset_inj{s'}(f x)With the count characterization, it was trivial to verify algebraic properties ofthe union and inter operations:mset_inter_assoc:8s:DSet. 8a,b,c:MSet{s}. a \s (b \s c) = (a \s b) \s cmset_inter_comm:8s:DSet. 8a,b:MSet{s}. a \s b = b \s amset_union_ident_l:8s:DSet. 8a:MSet{s}. 0{s} [ a = aWith such theorems, I showed that union operation formed an abelian monoid:mset_union_mon_wf:8s:DSet. <MSet{s},[,0> 2 AbMon



1469.5 Finite SetsFinite sets on some discrete set s were simply de�ned as a subset of the multisetson set s.fset:FSet{s} == {a:MSet{s}| 8x:|s|. x #2 a � 1}A function was de�ned to reduce any �nite multiset to the corresponding �niteset.fset_of_mset:8s:DSet. 8a:MSet{s}.fset_of_mset(s;a)= msFor{<MSet{s},[,0>} x 2 a. mset_inj{s}(x)With this, a mapping function for �nite sets was de�ned:fset_map:8s,s':DSet. 8f:|s| ! |s'|. 8a:MSet{s}.fs-map(f, a) = fset_of_mset(s';msmap{s,s'}(f;a))I proved alternative well-formedness lemmas for the multiset operations:null_mset_wf_f:8s:DSet. 0{s} 2 FSet{s}mset_union_wf_f:8s:DSet. 8a,b:FSet{s}. a [ b 2 FSet{s}mset_inter_wf_f:8s:DSet. 8a,b:FSet{s}. a \s b 2 FSet{s}mset_diff_wf_f:8s:DSet. 8a,b:FSet{s}. a - b 2 FSet{s}mset_inj_wf_f:8s:DSet. 8x:|s|. mset_inj{s}(x) 2 FSet{s}A multiset member function was introduced:mset_mem:8s:DSet. 8x:|s|. 8a:MSet{s}. x 2b a = x 2b awhere the 2b on the right denotes the mem function on lists.and the multiset operations were recharacterized in terms of it:mset_mem_sum:8s:DSet. 8a,b:MSet{s}. 8u:|s|.u 2b a + b = (u 2b a) _b (u 2b b)



147mset_mem_union:8s:DSet. 8as,bs:MSet{s}. 8c:|s|.c 2b as [ bs = (c 2b as) _b (c 2b bs)mset_mem_inter:8s:DSet. 8as,bs:MSet{s}. 8c:|s|.c 2b as \s bs = c 2b as ^b c 2b bsmset_mem_diff:8s:DSet. 8as:FSet{s}. 8bs:MSet{s}. 8c:|s|.c 2b as - bs = c 2b as ^b :b (c 2b bs)mem_bsubmset:8s:DSet. 8a:FSet{s}. 8b:MSet{s}."(a �b b) () (8x:|s|. "(x 2b a) ) "(x 2b b))



Chapter 10Polynomials10.1 IntroductionThe aim of this chapter is to present a case study in the veri�cation of an im-plementation of functions for multivariate polynomial arithmetic. The case studydemonstrates how one can mix inductive and algebraic styles of reasoning, and therich variety of symbolic manipulations possible in a theorem proving system.The implementation veri�ed is very similar to the basic sparse implementa-tion described in texts on the design of computer algebra systems such as Dav-enport,Siret, Tournier [DST93] and Zippel [Zip93a]. This kind of implementationis in common use in current computer algebra systems. It involves representinga monomial by an association list (a-list) with indeterminates as keys 1 and in-determinate exponents as values, and representing a polynomial by an a-list withmonomials as keys and monomial coe�cients as values.I based the ADT speci�cation on the standard abstract mathematical character-ization of multivariate polynomials found in say Lang [Lan84] or Bourbaki [Bou74].The characterization de�nes algebraic structures for the monomials and polyno-mials over a given set of indeterminates and commutative ring of coe�cients:1. monomials are a free abelian monoid on the indeterminates.2. polynomials are a free monoid algebra on the commutative ring of coe�cientsand the monoid of monomials.I present in this chapter how I demonstrated in Nuprl that implementationtypes and functions for monomials and polynomials have all the abstract propertiesone would expect from this characterization. More speci�cally, I constructed theclasses of all monomial and polynomial implementations and then proved that myimplementations inhabit these classes.1sometimes called indices 148



149Since a-lists are used for both the monomial and polynomial implementations,I chose to �rst develop a common core theory of a-lists over a set of keys andover an abelian monoid of values. I showed that, algebraically, these a-lists have amonoid copower structure.I then specialized this construction to get a free abelian monoid implementationand generalized it to get the free monoid algebra implementation.In reading this chapter, bear in mind that it draws heavily on de�nitions andtheorems introduced in Chapter 6 and Chapter 9.10.2 Conventions Adopted1. All typewriter font text presented in this chapter is taken verbatim fromNuprl library printouts. It is identical to what the user would see if interact-ing with Nuprl.2. To clearly distinguish the nullary unary and binary concrete operations ona-lists from abstract operations on arbitrary classes, I in most cases doubleup the principle character of the display form for the concrete operations.For example, a-list `addition' is denoted by ++.3. Many of the de�nitions here take parameters that I have chosen not to dis-play. This signi�cantly increases legibility of the Nuprl text. It should alwaysbe easy for the reader to infer what these parameters are from typing con-siderations. On occasion without speci�c mention, I have revealed certainparameters because their value is particularly informative.During proof, the user can switch the suppression of various parameters onand o� in a few seconds, so the parameter hiding rarely causes a problem.4. De�nitions in this chapter are presented as typed de�nitions. These haveform8x1:T1 ... 8xn:Tnlhs= rhs2 TSuch a de�nition de�nes the term lhs in terms of the term rhs. This formatcombines information presented separately in other chapters in abstractionde�nitions and well-formedness lemmas. Recursive de�nitions are also pre-sented as typed de�nitions. In these cases, there are one or more occurrencesof the lhs term inside the rhs term.



150The type parameter T of Nuprl's standard equality relation is displayed inthese type de�nitions though it usually isn't displayed elsewhere in this chap-ter.When a de�nition has more than one typing lemma, I have usually chosen tobase the typed de�nition on the lemma with a smaller type T; such lemmasin general provide more information about the de�nition (though often too,these lemmas place more restrictions on the de�nition's arguments).5. Both boolean and and propositional (type-valued) predicates are presentedin this case study. Most boolean-valued predicates have a `b ' subscript intheir display. The pre�x function `"' converts boolean values to propositionalvalues.10.3 Speci�cation10.3.1 Monoid CopowerA monoid copower is a specialization of the categorical coproduct construction inthe category of abelian monoids to the case when all the monoids that the productis being taken over are the same.The signature for the monoid copower class is introduced in Figure 10.1 andthe de�nition of the monoid class is given in Figure 10.2. The notation a =Class Declaration for: MCopowerSig(s;g)Long Name: mcopower_sigShort Name: mcopowerParameters:s : DSetg : AbMonFields:mon : AbMoninj : |s| ! |g| ! |mon|umap : h:AbMon ! (|s| ! |g| ! |h|) ! |mon| ! |h|Universe: U'Figure 10.1: Signature Class for Monoid Copowers



151mcopower:8s:DSet. 8g:AbMon.MCopower(s;g)= {c:MCopowerSig(s;g)|(8j:|s|. IsMonHom{g,c.mon}(c.inj j))^ (8h:AbMon. 8f:|s| ! MonHom(g,h).c.umap h f= !v:|c.mon| ! |h|.IsMonHom{c.mon,h}(v)^ (8j:|s|. f j = v o c.inj j 2 |g| ! |h|))}2 U' Figure 10.2: Class of Monoid Copowers!x:T. Q[x] can be read as \a is the unique x of type T such that Q[x] holds". Itsde�nition wasuni_sat:a = !x:T. Q[x] == Q[a] ^ (8a':T. Q[a'] ) a' = a)I chose to make the construction in two stages so that the veri�cation of im-plementations two could be split into two stages; one just involving basic type-checking of the implementation and the other involving checking all its algebraicproperties. In the free abelian monoid case study described in Chapter 9, I hadlumped everything into a single de�nition. Splitting things up didn't save anywork, and probably made the de�nition slightly more verbose, but it seemed anatural thing to do, and I think it might make for easier-to-read de�nitions.10.3.2 Free Abelian MonoidThe class de�nition for this was introduced in Section 9.2. The typed de�nitionfor the mapping from the class of monoid copowers into the class of free abelianmonoids was:fabmon_of_nat_mcp:8s:DSet. 8m:MCopower(s;<Z+>#hgrp).fabmon_of_nat_mcp(m)= <m.mon, �u.m.inj u zhgrp(1), �m',f.m.umap m' (�z,n.(nat(n) �m' (f z)))>2 FAbMon(s)



15210.3.3 Free Monoid AlgebraThe signature for the class of free monoid algebras is given in Figure 10.3 and theclass de�nition is given in Figure 10.4.Class Declaration for: FMASig(G;A)Long Name: fma_sigShort Name: fmaParameters:G : GrpSigA : RngSigFields:alg : AlgebraSig(|A|)inj : |G| ! |alg|umap : N:A-Algebra ! (|G| ! |N|) ! |alg| ! |N|Universe: U'Figure 10.3: Signature Class for Free Monoid Algebrasfmonalg:8g:AbMon. 8a:CRng.FMonAlg(g;a)= {m:FMASig(g;a)|IsMonHom{g,m.alg#rg#xmn}(m.inj)^ (8n:a-Algebra. 8f:MonHom(g,n#rg#xmn).m.umap n f= !f':|m.alg| ! |n|.IsAlgHom{a,m.alg,n}(f')^ f' o m.inj = f 2 |g| ! |n|)}2 U' Figure 10.4: Class of Free Monoid Algebras



15310.3.4 Polynomial AlgebraThe polynomial algebra class was introduced by the class declaration shown inFigure 10.5.Class Declaration for: PolynomAlg(S;A)Long Name: polynom_algShort Name: polyalgParameters:S : DSetA : CRngFields:mo : FAbMon(S) % the monomials %poly : FMonAlg(mo.mon;A) % the polynomials %Universe: U'Figure 10.5: Class of Polynomial Algebras10.4 Monoid Copower Construction10.4.1 Ordered A-List TypeThe basic type of a-lists with keys from a set a and values from an abelian monoidor group b is (|a| � |b|) List. There were extra restrictions I wanted to consideron the a-lists; that1. The set a would be linearly ordered and the keys in an a-list would be instrictly descending order,2. the values in an a-list would all be non-zero.These restrictions de�ne a canonical form on a-lists representing monomials orpolynomials. Two a-lists represent the same monomial or polynomial just whentheir canonical forms are equal as a-lists.The restriction of having the keys linearly ordered is a standard one in com-puter algebra; linear orders are commonly assumed on indeterminates and sets ofmonomials.



154This canonical form is preserved by all the functions on a-lists that I de�ned.Since I desired a constructive implementation of a-lists, I needed to explicitlygenerate an boolean-valued equality function for a-lists. The structure of thisfunction exactly mirrors the structure of the underlying type (|a| � |b|) List,so I designed a collection of `discrete set' constructors that paralleled the typeconstructors of Nuprl. Their typed de�nitions were:eq_pair:8s,t:DSet. 8a,b:|s| � |t|.a =b b = (a.1 =b b.1) ^b (a.2 =b b.2) 2 Bset_prod:8s,t:DSet. s � t = mk_dset(|s| � |t|;�a,b.a =b b) 2 DSeteq_list:8s:DSet. 8as,bs:|s| List.as =b bs= case as of[] => null(bs)a::as' => case bs of[] => ffb::bs' => (a =b b) ^b (as' =b bs')esacesac2 Bdset_list:8s:DSet. (s List) = mk_dset(|s| List;�x,y.x =b y) 2 DSetdset_set:8s:DSet. 8Q:|s| ! P.{x:s| Q[x]} = mk_dset({x:|s|| Q[x]} ;=b ) 2 DSetUsing these de�nitions, I de�ned the discrete set of ordered a-lists as:oalist:8a:LOSet. 8b:AbMon.oalist(a;b)= {ps:(a � b#set) List|"sd_ordered(map(�x.x.1;ps)) ^ :"mem(e,map(�x.x.2;ps))}2 DSet



155Here, mem is the list membership function and sd_ordered is a predicate on listsover an ordered type, stating that the elements of the list are in strictly descendingorder.mem:8s:DSet. 8a:|s|. 8bs:|s| List.mem(a,bs) = (For{<B,_b >} x 2 bs. x =b a) 2 Bsd_ordered:8s:DSet. 8as:|s| List.sd_ordered(as)= case as of[] => tta::bs => before(a;bs) ^b sd_ordered(bs)esac2 Bbefore:8a:DSet. 8ps:|a| List. 8u:|a|.before(u;ps) = null(ps) _b (hd(ps) <b u) 2 BI chose to make the mem function boolean-valued since it is a useful function tobe able to compute. The sd_ordered function could have equally well been apropositional-valued predicate. An extra awkwardness working in Nuprl's con-structive framework is that one constantly has to make choices as to whether torepresent predicates as propositional or boolean-valued, and often one ends updoing a lot of inter-converting.LOSet is a sub-class of DSet. It is the type of linearly-ordered discrete sets withcomputable inequality relations.10.4.2 Ordered A-List FunctionsThe primary functions I introduced that assume the a-list values are drawn froman abelian monoid, are described by the type de�nitions:oal_nil:8a:LOSet. 8b:AbMon. []a,b = [] 2 |oalist(a;b)|oal_inj:8a:LOSet. 8b:AbMon. 8k:|a|. 8v:|b|.inj(k,v)= if v =b e then [] else <k, v>::[] fi2 |oalist(a;b)|



156oal_merge:8a:LOSet. 8b:AbMon. 8ps,qs:|oalist(a;b)|.ps ++ qs= if null(ps) then qsif null(qs) then psif hd(qs).1 <b hd(ps).1 then hd(ps)::(tl(ps) ++ qs)if hd(ps).1 <b hd(qs).1 then hd(qs)::(ps ++ tl(qs))if (hd(ps).2 * hd(qs).2) =b e then tl(ps) ++ tl(qs)else <hd(ps).1, hd(ps).2 * hd(qs).2>::(tl(ps) ++ tl(qs))fi2 |oalist(a;b)|oal_lk:8s:LOSet. 8g:AbMon. 8ps:|oalist(s;g)|.:(ps = []s,g 2 |oalist(s;g)|) ) lk(ps) = hd(ps).1 2 |s|oal_lv:8s:LOSet. 8g:AbMon. 8ps:|oalist(s;g)|.:(ps = []s,g 2 |oalist(s;g)|) ) lv(ps) = hd(ps).2 2 |g|oal_null:8s:LOSet. 8g:AbMon. 8ps:|oalist(s;g)|.null(ps) = null(ps) 2 BNote that in the oal_null de�nition, the function displayed on the left as null isthe new de�nition and the function displayed on the right as null is a previouslyde�ned function. The di�erence is that the new de�nition has some extra unshownparameters that help with type-checking it.Function de�nitions I introduced that are suitable when the a-list values comefrom an abelian group are:oal_neg:8a:LOSet. 8b:AbMon. 8ps:|oalist(a;b)|.--ps = map(�kv.<kv.1, � kv.2>;ps) 2 |oalist(a;b)|oal_bpos:8s:LOSet. 8g:AbGrp. 8ps:|oalist(s;g)|.pos(ps) = :b null(ps) ^b (e <b lv(ps)) 2 Boal_blt:8s:LOSet. 8g:AbGrp. 8ps,qs:|oalist(s;g)|.ps <<b qs = pos(qs ++ --ps) 2 Boal_ble:8s:LOSet. 8g:AbGrp. 8ps,qs:|oalist(s;g)|.ps ��b qs = (ps =b qs) _b (ps <<b qs) 2 B



157The order relations introduced here de�ne a standard lexicographic ordering ona-lists.By waiting to de�ne the order function on the a-lists until I was assumingthat the values were drawn from a linearly ordered group rather than a linearlyordered monoid, I was able to de�ne the function in terms of a-list subtraction.Note that when the oalist type is specialized to that of monomials, the structureinstantiating the type of the a-list values, namely the naturals under addition, is amonoid and not a group. However, still I needed the order function over monomialsin order to just de�ne the type of polynomials (recall that when a-lists are usedfor polynomials, the monomials are the keys and the keys must be over an orderedset).Note that typings ascribed to functions are sometimes more permissive thanthe environments in which they are typically used. For example, all the abovefunctions, with values from a group, are only used when the < relation on thegroup is assumed to be linear order and the group operation is assumed to bemonotone.10.4.3 Basic Properties of FunctionsThe algebraic properties of a-lists are most clearly revealed when they are consid-ered to be functions of �nite support. In fact, the standard `concrete' constructionof monomials and polynomials in algebra text-books starts from this point. Thetwo functions that enable this view of a-lists are:oal_dom:8a:LOSet. 8b:AbMon. 8ps:|oalist(a;b)|.dom(ps) = mk_mset(map(�z.z.1;ps)) 2 FSet{a}lookup:8a:PosetSig. 8B:U. 8z:B. 8k:|a|. 8xs:(|a| � B) List.xs[k]{a,z}= case xs of[] => zb::bs => let <bk,bv> = binif bk =b a k then bv else bs[k]{a,z} fiesac2 BNote that the lookup function returns the default value z when the key being lookedup in an a-list doesn't match any of the keys in the list. The a-lists described in thischapter always have values drawn from either monoids or rings, and this defaultvalue is either the monoid identity or the ring zero respectively. The truth of manyof the theorems that are presented in this chapter relies on the default values being



158what they are. Since this default-value argument to the lookup function can beeasily inferred, I normally suppress it. I also suppress the domain set argument (ain the de�nition) since this too can be easily inferred.Trivially, since every a-list only has a �nite number of keys, the lookup functionmust be a function of �nite support.As is shown later, it was essential to be able to compute the exact support ofany a-list. The oal_dom function does this. Note that it returns a �nite set asde�ned in Section 9.5, not a list. In this chapter, all functions that make use of theresult of this domain function are typed to expect a �nite set, or more generally,a �nite multiset.The following lemmas spell out the relationship between a-lists and the lookupand domain functions.lookup_non_zero:8a:LOSet. 8b:AbMon. 8k:|a|. 8ps:|oalist(a;b)|.:(ps[k] = e 2 |b|) () "msMem(k,dom(ps))lookups_same_a:8a:LOSet. 8b:AbMon. 8ps,qs:|oalist(a;b)|.(8u:|a|. ps[u] = qs[u] 2 |b|) ) ps = qs 2 |oalist(a;b)|The lemma lookup_non_zero says that the lookup function is surjective onto theset of functions of �nite support. The lemma lookups_same_a says that lookupfunction is injective into the set of functions of �nite support. Therefore the lookupfunction is a bijection between the oalists and the functions of �nite support.The next step was to characterize the value of the lookup and oal_dom functionswhen applied to the a-list operations of merging, injection and negation. de�nedabove.oal_dom_merge:8a:LOSet. 8b:AbMon. 8ps,qs:|oalist(a;b)|."(dom(ps ++ qs) �b dom(ps) [ dom(qs))lookup_merge:8a:LOSet. 8b:AbMon. 8k:|a|. 8ps,qs:|oalist(a;b)|.(ps ++ qs)[k] = ps[k] * qs[k]oal_dom_inj:8a:LOSet. 8b:AbMon. 8k:|a|. 8v:|b|.dom(inj(k,v))= if v =b e then 0a else inj(k) fi2 FSet{a}lookup_oal_inj:8a:LOSet. 8b:AbMon. 8k,k':|a|. 8v:|b|.inj(k,v)[k'] = when k =b k' . v



159oal_dom_neg:8a:LOSet. 8b:AbGrp. 8ps:|oalist(a;b)|.dom(--ps) = dom(ps) 2 FSet{a}lookup_oal_neg:8a:DSet. 8b:IGroup. 8k:|a|. 8ps:(|a| � |b|) List.(--ps)[k] = � ps[k] 2 |b|Using these lemmas it was then trivial to show that the functions oal_nil,oal_merge and oal_neg de�ned an abelian group structure on oalists whenever thea-list values were over a group, and similarly how they de�ned an abelian monoidwhen the values were over a monoid.oal_mon:8a:LOSet. 8b:AbMon.oal_mon(a;b)= <|oalist(a;b)|, =b , =b , �x,y.x ++ y, []a,b, �x.x>2 AbMonoal_grp:8s:LOSet. 8g:AbGrp.oal_grp(s;g)= <|oalist(s;g)|, =b, �x,y.x ��b y, �x,y.x ++ y, []s,g, �x.--x>2 AbGrp10.4.4 Linear Monotonic Order on A-ListsThe oal_blt relation (<<b ) is a lexicographic order. When the a-lists are represent-ing monomials, it corresponds to the lexicographic monomial ordering, commonin computer algebra. For the purposes of this case-study, it was not necessary toshow that this order is well-founded; indeed in general here is it not, because Idon't adopt any assumption about the well-foundedness of a-list keys.To show that oal_blt is a lexicographic order, I created a standard de�nitionof a lexicographic orderoal_lt:8s:LOSet. 8g:OCMon. 8ps,qs:|oalist(s;g)|.(ps << qs)= (9k:|s|(8k':|s|. k <s k' ) ps[k'] = qs[k'])^ ps[k] < qs[k])2 P



160and proved that oal_blt was logically equivalent to this de�nition.assert_of_oal_blt:8s:LOSet. 8g:OCGrp. 8ps,qs:|oalist(s;g)|."(ps <<b qs) () ps << qsIt was straightforward to verify that oal_lt and hence oal_blt was irreexiveand transitive.oal_lt_irrefl:8s:LOSet. 8g:OCMon. Irrefl(|oal(s;g)|;ps,qs.ps << qs)oal_lt_trans:8s:LOSet. 8g:OCMon. Trans(|oal(s;g)|;ps,qs.ps << qs)To show that oal_blt was a linear order it was simplest to �rst prove a trichotomy-like property for the oal_bpos de�nition.oal_bpos_trichot:8s:LOSet. 8g:OCGrp. 8rs:|oalist(s;g)|."pos(rs) _ rs = []s,g 2 |oalist(s;g)| _ "pos(--rs)oal_lt_trichot:8s:LOSet. 8g:OCGrp. 8ps,qs:|oalist(s;g)|.ps <{s,g} qs _ ps = qs 2 |oalist(s;g)| _ qs <{s,g} psFor later veri�cation, I needed that the oal_merge function was monotonic withrespect to the oal_lt relation:oal_merge_preserves_lt:8s:LOSet. 8g:OCMon. 8ps,qs,rs:|oalist(s;g)|.qs << rs ) ps ++ qs << ps ++ rsIn retrospect, it probably would have been slightly easier to derive all the propertiesof oal_blt from equivalent properties of oal_bpos.All the above properties on the oal_blt relation induce corresponding proper-ties on oal_ble, its reexive closure. Once these properties, were veri�ed, I wasable to prove a second lemma for oal_grp:oal_grp_wf2:8s:LOSet. 8g:OGrp. oal_grp(s;g) 2 OGrpAs it stood, this lemma was too specialized to apply to monomials, since it requiredthe a-list values to be drawn from a group, whereas with monomials, the valuescome from a monoid. To �x this, I proved the following lemma, which simply saysthat any g:GrpSig that can be isomorphically embedded into an OCMon, is itself anOCMon.



161inj_into_ocmon:8g:GrpSig(9h:OCMon9f:|g| ! |h|IsMonHomInj(g;h;f)^ RelsIso(|g|;|h|;x,y."(x =b y);x,y."(x =b y);f)^ RelsIso(|g|;|h|;x,y."(x g.le y);x,y."(x h.le y);f))) g 2 OCMonwhere the typed de�nition for RelsIso isrels_iso:8T,T':U. 8R:T ! T ! P. 8R':T' ! T' ! P. 8f:T ! T'.RelsIso(T;T';x,y.R[x;y];x,y.R'[x;y];f)= (8x,y:T. R[x;y] () R'[f x;f y])2 PI then applied the half group construction described in Section 6.6 to thelinearly-ordered group of values of ordered a-lists to yield a corresponding con-struction on the a-lists themselves.oal_hgp:8s:LOSet. 8g:OGrp.oal_hgp(s;g)= <|oalist(s;g#hgrp)|, =b, �x,y.x ��b y, �x,y.x ++ y, []s,g#hgrp, �x.x>2 OCMonNow, since the naturals are a half group of the group of integers under addition,I could instantiate this theorem with the group of integers as the `extended' a-listvalues domain, and get that a-lists with the group of naturals under addition asvalues form an ordered cancellation monoid.10.4.5 Monoid Copower AssemblyThe universal mapping function is de�ned in terms of the multiset summationfunction msFor introduced in Section 9.3.2:oal_umap:8s:LOSet. 8g,h:AbMon. 8f:|s| ! |g| ! |h|.umap(h,f)= (�ps:|oalist(s;g)|. msFor{h} k 2 dom(ps). f k ps[k])2 |oalist(s;g)| ! |h|



162Once characterizing lemmas about the oal_inj and oal_umap de�nitions wereproven, assembly of the monoid copower was trivial.oal_inj_mon_hom:8a:LOSet. 8b:AbMon. 8k:|a|.IsMonHom{b,oal_mon(a;b)}(�v.inj(k,v))oal_umap_char_a:8s:LOSet. 8g,h:AbMon. 8f:|s| ! MonHom(g,h).umap(h,f)= !v:|oalist(s;g)| ! |h|.IsMonHom{oal_mon(s;g),h}(v)^ (8j:|s|. f j = v o (�w.inj(j,w)) 2 |g| ! |h|)oal_omcp:8s:LOSet. 8g:OGrp.oal_omcp{s,g}= <oal_hgp(s;g), �k,v.inj(k,v), �h,f.umap(h,f)>2 MCopower(s;g#hgrp)10.5 Free Monoid Algebra ConstructionHere, I assumed more structure on the a-list keys and values. Speci�cally, I as-sumed that the keys come from a monoid and the values from a commutative ring.Remember that from here on, the default value returned by the a-list functionlookup (as[k]) is the zero of the values ring of the a-lists.10.5.1 Lifting of De�nitions and TheoremsFor convenience, I �rst lifted many of the de�nitions and theorems from the theoryof a-lists developed previously. The convenience was chiey cosmetic; it enabledme to avoid having an abundance of forgetful functors oating around and savedon typing.The type-checking tactics can cope with these functors, though they can slowit down. An example de�nition that wasn't lifted was the lookup function.The lifting was very straightforward; I wrote a simple ML function that au-tomatically lifted all the necessary theorems and entering the new de�nitions wasvery quick. However, this exercise did indicate the desirability of a better handlingof class subtyping where forgetful functors, if needed at all, are always insertedautomatically.Here is a sampling of the lifted de�nitions with parameter suppression disabledso that the forgetful functors are visible.



163omralist:8g:OCMon. 8r:CRng.omralist(g;r) = oalist(g#set;r#+gp) 2 DSetomral_dom:8g:OCMon. 8r:CRng. 8ps:|omralist(g;r)|.dom{g,r}(ps) = dom{g#set,r#+gp}(ps) 2 FSet{g#set}omral_plus:8g:OCMon. 8r:CRng. 8ps,qs:|omralist(g;r)|.ps ++g,r qs = ps ++g#set,r#+gp qs 2 |omralist(g;r)|omral_zero:8g:OCMon. 8r:CRng.00g,r = []g#set,r#+gp 2 |omralist(g;r)|omral_minus:8g:OCMon. 8r:CRng. 8ps:|omralist(g;r)|.--g,r ps = --g#set,r#+gp ps 2 |omralist(g;r)|omral_inj:8g:OCMon. 8r:CRng. 8k:|g|. 8v:|r|.inj{g,r}(k,v) = inj{g#set,r#+gp}(k,v) 2 |omralist(g;r)|10.5.2 Multiplicative Functions on Ordered A-ListsThe multiplicative functions that I de�ned to create an algebra structure on a-listswere:omral_scale:8g:OCMon. 8r:CRng. 8k:|g|. 8v:|r|. 8ps:|omralist(g;r)|.<k,v>* ps= case ps of[] => []p::ps' => if (v * p.2) =b 0then <k,v>* ps'else <k * p.1, v * p.2>::(<k,v>* ps')fiesac2 |omralist(g;r)|omral_times:8g:OCMon. 8r:CRng. 8ps,qs:|omralist(g;r)|.ps ** qs= case ps of[] => []p::ps' => <p.1,p.2>* qs ++ (ps' ** qs)esac2 |omralist(g;r)|



164omral_one:8g:OCMon. 8r:CRng. 11g,r = inj(e,1r) 2 |omralist(g;r)|omral_action:8g:OCMon. 8r:CRng. 8v:|r|. 8ps:|omralist(g;r)|.v �� ps = <e,v>* ps 2 |omralist(g;r)|As before, the key to deriving these functions' algebraic properties was to con-sider the a-alists as functions of �nite support. The theorems I proved includedomral_dom_scale:8g:OCMon. 8r:CRng. 8k:|g|. 8v:|r|. 8ps:|omralist(g;r)|."(dom(<k,v>* ps) �b fs-map(�k'.k' * k, dom(ps)))lookup_omral_scale_d:8g:OCMon. 8r:CRng. 8z,k:|g|. 8v:|r|. 8ps:|omralist(g;r)|.(<k,v>* ps)[z]= (�r y 2 dom(ps). when (k * y) =b z. v * ps[y])2 |r|omral_times_dom:8g:OCMon. 8r:CRng. 8ps,qs:|omralist(g;r)|."(dom(ps ** qs) �b dom(ps) �g dom(qs))lookup_omral_times_a:8g:OCMon. 8r:CRng. 8ps,qs:|omralist(g;r)|. 8z:|g|.(ps ** qs)[z]= (�r x 2 dom(ps)�r y 2 dom(qs). when (x * y) =b z. ps[x] * qs[y])2 |r|omral_dom_action:8g:OCMon. 8r:CRng. 8v:|r|. 8ps:|omralist(g;r)|."(dom(v �� ps) �b dom(ps))lookup_omral_action:8g:OCMon. 8r:CRng. 8k:|g|. 8v:|r|. 8ps:|omralist(g;r)|.(v �� ps)[k] = v * ps[k] 2 |r|10.5.3 Properties of Multiplicative FunctionsUsing the above characterization I proved:omral_times_assoc_a:8g:OCMon. 8a:CRng. 8ps,qs,rs:|omralist(g;a)|.ps ** (qs ** rs) = (ps ** qs) ** rs



165omral_times_comm_a:8g:OCMon. 8a:CRng. 8ps,qs:|omralist(g;a)|.ps ** qs = qs ** psomral_bilinear_a:8g:OCMon. 8a:CRng. 8ps,qs,rs:|omral(g;a)|.ps ** (qs ++ rs) = (ps ** qs) ++ (ps ** rs)^ (qs ++ rs) ** ps = (qs ** ps) ++ (rs ** ps)omral_times_ident_l:8g:OCMon. 8r:CRng. 8ps:|omralist(g;r)|.11 ** ps = psomral_times_ident_r:8g:OCMon. 8r:CRng. 8ps:|omralist(g;r)|.ps ** 11 = psomral_action_one:8g:OCMon. 8r:CRng. 8ps:|omralist(g;r)|.1 �� ps = psomral_action_times:8g:OCMon. 8r:CRng. 8v,w:|r|. 8ps:|omralist(g;r)|.(v * w) �� ps = v �� (w �� ps)omral_action_times_r1:8g:OCMon. 8r:CRng. 8v:|r|. 8ps,qs:|omralist(g;r)|.v �� (ps ** qs) = (v �� ps) ** qsomral_action_times_r2:8g:OCMon. 8r:CRng. 8v:|r|. 8ps,qs:|omralist(g;r)|.v �� (ps ** qs) = ps ** (v �� qs)omral_action_plus_l:8g:OCMon. 8r:CRng. 8v,w:|r|. 8ps:|omralist(g;r)|.(v + w) �� ps = (v �� ps) ++ (w �� ps)omral_action_plus_r:8g:OCMon. 8r:CRng. 8v:|r|. 8ps,qs:|omralist(g;r)|.v �� (ps ++ qs) = (v �� ps) ++ (v �� qs)and hence was able to assemble the algebra structure:



166omral_alg:8g:OCMon. 8r:CRng.omral_alg(g;r)= <|omralist(g;r)|, =b, �x,y.tt, �x,y.x ++ y, 00, �x.--x, �x,y.x ** y, 11, �x,y.(inr � ), �a,x.a �� x>2 AlgebraSig(|r|)10.5.4 Assembly of Free Monoid AlgebraFor the free monoid algebra, I needed the de�nition for the universal mappingfunctionomral_alg_umap:8g:OCMon. 8a:CRng. 8n:a-Algebra. 8f:|g| ! |n|.alg_umap{g,a}(n,f)= (�ps:|omral(g;a)|. �{g#oset,n#rg} k 2 dom{g,a}(ps).ps[k]{g#oset,0a} �n (f k))2 |omral(g;a)| ! |n|and with several characterizing theorems about this and the omral_inj function:omral_action_inj:8g:OCMon. 8r:CRng. 8k:|g|. 8v,v':|r|.v �� inj(k,v') = inj(k,v * v') 2 |omralist(g;r)|omral_inj_mon_op:8g:OCMon. 8r:CRng. 8k,k':|g|.inj(k * k',1) = inj(k,1) ** inj(k',1) 2 |omralist(g;r)|omral_alg_umap_is_hom:8g:OCMon. 8a:CRng. 8n:a-Algebra. 8f:MonHom(g,n#rg#xmn).IsAlgHom{a,omral_alg(g;a),n}(alg_umap(n,f))omral_alg_umap_tri_comm:8g:OCMon. 8a:CRng. 8n:a-Algebra. 8f:|g| ! |n|.alg_umap(n,f) o (�k.inj(k,1)) = f



167omral_alg_umap_unique:8g:OCMon. 8a:CRng. 8n:a-Algebra. 8f:|g| ! |n|.8f':a-AlgebraHom(omral_alg(g;a);n).f' o (�k:|g|. inj(k,1)) = f ) f' = alg_umap(n,f)I demonstrated that a-lists over ordered monoids as keys and commutative ringsas values are a free monoid algebra.omral_fma:8g:OCMon. 8a:CRng.omral_fma(g;a)= <omral_alg(g;a), �k.inj(k,1), �n,f.alg_umap{g,a,n,f}>2 FMASig(g;a)10.6 Polynomial Algebra AssemblyThis was very straightforward, given all the previous work. Here are the typedde�nitions:oal_fabmon:8s:LOSetoal_fabmon(s)= fabmon_of_nat_mcp(oal_omcp{s,<Z+>})2 FAbMon(s)oal_polyalg:8s:LOSet. 8a:CRng.oal_polyalg(s;a)= <oal_fabmon(s), omral_fma(oal_fabmon(s).mon;a)>2 PolynomAlg(s;a)10.7 Proof ExamplesHere I have selected a few proof fragments to indicate the styles of reasoning usedin building this theory.10.7.1 Algebraic Manipulation of SumsThe theorem I am studying here isomral_times_assoc_a:8g:OCMon. 8a:CRng. 8ps,qs,rs:|omral(g;a)|.ps ** (qs ** rs) = (ps ** qs) ** rs



168In Figure 10.6, quanti�ers are stripped and attention is focussed on the valueof the product expressions at the a-list key u. The context in hypotheses 1-6remains unchanged for the rest of the proof, so I have elided it in subsequentdisplays. Also, to simplify the presentation I have elided the right-hand side ofthe conclusion equality and the tactics that a�ect it. However, since many tacticswork on both the left and right-hand sides simultaneously, the full proof involvesonly a third more tactic invocations than are shown here.?̀8g:OCMon. 8a:CRng. 8ps,qs,rs:|omral(g;a)|.ps ** (qs ** rs) = (ps ** qs) ** rs?BY (RepDTHENM BLemma `omral_lookups_same_a`THENM RepD ...a)?1. g: OCMon2. a: CRng3. ps: |omral(g;a)|4. qs: |omral(g;a)|5. rs: |omral(g;a)|6. u: |g|` (ps ** (qs ** rs))[u] = ((ps ** qs) ** rs)[u]? Figure 10.6: Focussing Attention at u.The goal of the proof is to put the left and right-hand sides in some com-mon form. Consider the left-hand side of the equality in omral_times_assoc_a,expanded using the lemma lookup_omral_times_a:�x 2 dom(ps).�y 2 dom(qs ** rs).when (x * y) =b u.ps[x]* (�x1 2 dom(qs).�y1 2 dom(rs). when (x1 * y1) =b y. qs[x1] * rs[y1])The strategy is to bring the summation over y and the expression when (x1 * y1)=b y together and then cancel them using the following lemma for summation overa single value:



169rng_fset_for_when_eq:8s:DSet. 8r:Ring. 8f:|s| ! |r|. 8e:|s|. 8as:FSet{s}."(e 2b as) ) (�x 2 as. when x =b e. f[x]) = f[e]Note the precondition of this lemma "(e 2b as). This precondition is not alwayssatis�ed because given x1 2 dom(qs) and y1 2 dom(rs), it is not always true thatx1 * y1 2 dom(qs ** rs) (cancellation may occur). Fortunately, the relationomral_times_dom:8g:OCMon. 8r:CRng. 8ps,qs:|omral(g;r)|."(dom(ps ** qs) �b dom(ps) � dom(qs))holds and the value of the summation over y doesn't change when the summationrange is widened from dom(qs ** rs) to dom(qs) � dom(qs), since its argumentis zero in the intervening range. This strategy was formalized as follows.In Figure 10.7, the lookup of the outer is expanded, but not the inner product.In Figure 10.8, the widening of the domain of summation of y is carried out.?̀(ps ** (qs ** rs))[u] = ...?BY (RWO "lookup_omral_times_a" 0 ...a)?̀(�x 2 dom(ps).�y 2 dom(qs ** rs).when (x * y) =b u. ps[x] * (qs ** rs)[y])= ...? Figure 10.7: Expanding Outer LookupNote that this is an example of mononicity reasoning being done by the rewritepackage. The �rst sub-goal is to check the condition that the summation valuereally is zero on the range being widened over. It is generated because the rewritepackage selected the functionality lemma for the summation termrng_mssum_functionality_wrt_bsubmset:8s:DSet. 8r:Ring. 8f,f':|s| ! |r|. 8p,q:MSet{s}.(8x:|s|. "(x 2b q - p) ) f'[x] = 0)) "(p �b q)) (8x:|s|. "(x 2b p) ) f[x] = f'[x])) (�x 2 p. f[x]) = (�x 2 q. f'[x])when justifying the rewrite. Note how the functionality lemma takes care of intro-ducing the necessary assumptions 7 and 9 in the subgoal.



170?̀(�x 2 dom(ps).�y 2 dom(qs ** rs).when (x * y) =b u. ps[x] * (qs ** rs)[y])= ...?BY (RWO "omral_times_dom" 0 ...a)
-7. x: |(g#set)|8. "(x 2b dom(ps))9. y: |(g#set)|10. "(y 2b (dom(qs) �g dom(rs)) - dom(qs ** rs))` when (x * y) =b u. ps[x] * (qs ** rs)[y] = 0
-` (�x 2 dom(ps).�y 2 dom(qs) �g dom(rs).when (x * y) =b u. ps[x] * (qs ** rs)[y])= ...? Figure 10.8: Expanding Domain of Summation over y?7. x: |(g#oset)|8. "(x 2b dom(ps))9. y: |(g#oset)|10. "(y 2b (dom(qs) �g dom(rs)) - dom(qs ** rs))` when (x * y) =b u. ps[x] * (qs ** rs)[y] = 0?BY (RWN 2 (LemmaC `lookup_omral_eq_zero`) 0THENM RW RngNormC 0THENM RWH (LemmaC `rng_when_of_zero`) 0 ...)?̀:"(y 2b dom(qs ** rs))?BY (RWH (LemmaC `mset_mem_diff`) 10THENM RW bool_to_propC 10 ...)? Figure 10.9: Proof of Summation Arg being 0 in Widening Range



171The proof of this subgoal is shown in Figure 10.9. In the �rst step, I notedthat the lookup on the a-list qs ** rs is 0, whereupon the whole expression onthe left-hand side of the equality simpli�es to 0. The resulting goal of 0 = 0 is notshown because it is trivially proved by the Auto tactic. The goal:"(y 2b dom(qs ** rs))was a side condition of the lookup_omral_eq_zero lemma; its statement and thestatement of the rng_when_of_zero lemma were:lookup_omral_eq_zero:8g:OCMon. 8r:CRng. 8k:|g|. 8ps:|omral(g;r)|.:"(k 2b dom(ps)) ) ps[k] = 0rng_when_of_zero:8r:Ring. 8b:B. when b. 0 = 0The latter lemma could easily have been folded into the ring normalization con-version RngNormC. The tactic RWN n c i applies conversion c to clause i, but onlydoes the conversion in the nth position in pre-order that c is enabled. Note thatthe lemma lookup_omral_eq_zero could not have been applied if back in the stepof the proof shown in Figure 10.7, the lemma lookup_omral_times_a had beenrepeatedly applied where-ever it could have made progress.The antecedent of the lookup_omral_eq_zero lemma was solved by applyingthe lemmamset_mem_diff:8s:DSet. 8as:FSet{s}. 8bs:MSet{s}. 8c:|s|.c 2b as - bs = (c 2b as) ^b :b (c 2b bs)and converting the boolean-valued hypothesis to a proposition using the conversionbool_to_propC.In Figure 10.10, the next 3 steps of the proof are shown. Here, the innermultiplication was expanded and the summation over y was brought adjacent tothe when expression containing y as one of subjects of the equality.The kind of rewriting required in the last step (with the HereDnC conversional)is tricky. The lemmas used are:rng_mssum_swap:8r:Ring. 8s,s':DSet. 8f:|s| ! |s'| ! |r|. 8a:MSet{s}.8b:MSet{s'}.(�x 2 a. �y 2 b. f[x;y]) = (�y 2 b. �x 2 a. f[x;y])rng_when_swap:8r:Ring. 8b,b':B. 8p:|r|.when b. when b'. p = when b'. when b. p



172?̀(�x 2 dom(ps).�y 2 dom(qs) �g dom(rs).when (x * y) =b u. ps[x] * (qs ** rs)[y])= ...?BY (RWW "lookup_omral_times_a" 0 ...a)?̀(�x 2 dom(ps).�y 2 dom(qs) �g dom(rs).when (x * y) =b u.ps[x]* (�x 2 dom(qs).�y1 2 dom(rs).when (x * y1) =b y. qs[x] * rs[y1]))= ...?BY % float up sigmas and whens %(RWW "rng_times_mssum_lrng_times_mssum_rrng_mssum_when_swap<rng_times_when_lrng_times_when_r" 0 ...a)?̀(�x 2 dom(ps).�y 2 dom(qs) �g dom(rs).�x1 2 dom(qs).�y1 2 dom(rs).when (x * y) =b u.when (x1 * y1) =b y. ps[x] * (qs[x1] * rs[y1]))= ...?BY (RWN 2 (HereDnC (PolyC "rng_mssum_swap rng_when_swap")) 0...a)?̀(�x 2 dom(ps).�x1 2 dom(qs).�y1 2 dom(rs).�y 2 dom(qs) �g dom(rs).when (x1 * y1) =b y.when (x * y) =b u. ps[x] * (qs[x1] * rs[y1]))= ...? Figure 10.10: Bringing � and when over y Together



173The �rst lemma needed to be applied repeatedly, but in a controlled way to havethe right e�ect. The conversion HereDnC c when applied to a term t, tries applyingc at the top of t. If it succeeds, it then tries applying c on all subterms of tby applying c once at each node of t and then at the children of that node. Itsde�nition in ML was:let HereDnC c = c ANDTHENC TryC (SubC (SweepDnC c)) ;;I only used this conversion a couple of times in this case study, but its ease ofde�nition demonstrates the versatility of the conversional approach to structuringrewrite rules. Of course, in the long run such rewriting should be directed byhigher level reasoning. For instance, one could envisage directing a rewrite tacticto `bring the � and when involving y together'. The tactic might then create asuitable cost function to direct the rewrite equations.The cancellation of the � and when is shown in Figure 10.11. Note again howa functionality lemma, in this case:rng_mssum_functionality_wrt_equal:8s:DSet. 8r:Ring. 8f,f':|s| ! |r|. 8a,a':MSet{s}.a = a') (8x:|s|. "(x 2b a) ) f[x] = f'[x])) (�x 2 a. f[x]) = (�x 2 a'. f'[x])takes care of introducing the necessary assumptions for the subgoal created by theantecedent of rng_fset_for_when_eq.The initial proof step in Figure 10.11 is necessary to set things up right fora match to be generated against the rng_fset_for_when_eq lemma. The e�ect ofthe grp_eq_sym lemma is clear, but the e�ect of the conversion dset_of_monC ishidden. The problem is that the expression(x1 * y1) =b yat the top of Figure 10.11 and the expressionx =b ein lemma rng_fset_for_when_eq really involve di�erent equalities. If hidden pa-rameters are made visible, giving respectively(x1 * y1) =b g ywhere g is an element of the OCMon class andx =b s ewhere s is an element of the DSet class, the di�erence is more apparent. One =is the equality function on the OCMon class and the other is the equality functionon the DSet class. The conversion dset_of_monC adds in an appropriate forgetfulfunctor from OCMon to DSet. More speci�cally, it rewrites:



174?̀(�x 2 dom(ps).�x1 2 dom(qs).�y1 2 dom(rs).�y 2 dom(qs) � dom(rs).when (x1 * y1) =b y.when (x * y) =b u. ps[x] * (qs[x1] * rs[y1]))= ...?BY (RWN 1 (LemmaC `grp_eq_sym`) 0THENM RWH dset_of_monC 0 ...a)?̀(�x 2 dom(ps).�x1 2 dom(qs).�y1 2 dom(rs).�y 2 dom(qs) � dom(rs).when y =b (x1 * y1).when (x * y) =b u. ps[x] * (qs[x1] * rs[y1]))= ...BY (RWO "rng_fset_for_when_eq" 0 ...a)
-7. x: |(g#set)|8. "(x 2b dom(ps))9. x1: |(g#set)|10. "(x1 2b dom(qs))11. y1: |(g#set)|12. "(y1 2b dom(rs))` "(x1 * y1 2b dom(qs) � dom(rs))?BY (BLemma `prod_in_mset_prod` ...)
-` (�x 2 dom(ps).�x1 2 dom(qs).�y1 2 dom(rs).when (x * (x1 * y1)) =b u.ps[x] * (qs[x1] * rs[y1]))= ...? Figure 10.11: Cancelling the � and when over y



175(x1 * y1) =b g yto(x1 * y1) =b (g#set) yThe �nal step part of the proof, now with the work on the right-hand sideincluded, is shown in Figure 10.12.` (�x 2 dom(ps).�x1 2 dom(qs).�y1 2 dom(rs).when (x * (x1 * y1)) =b u. ps[x] * (qs[x1] * rs[y1]))= (�y 2 dom(rs).�x1 2 dom(ps).�y1 2 dom(qs).when ((x1 * y1) * y) =b u.(ps[x1] * qs[y1]) * rs[y])?BY (RWN 3 (HereDnC (LemmaC `rng_mssum_swap`)) 0THENM RW MonNormC 0THENM RW RngNormC 0 ...)Figure 10.12: Making Both Sides Equal10.7.2 Exploiting Algebraic Properties of ConcreteFunctionsOnce it has been shown that a set of functions form some algebraic structure, itis then desirable to apply theorems about that algebraic structure to the set offunctions. One way in Nuprl of doing this is to instantiate blocks of theoremsabout the algebraic structure with the instance in hand. Another is to temporarilyrephrase the way in which the concrete functions are represented so that theiralgebraic structure is trivially recognized.An example of this latter way is shown in Figure 10.13 which is the core ofthe proof of the theorem oal_lt_trichot from the theorem oal_bpos_trichot.Here the conversion oal_grpC rephrases the instances of functions that make upthe oal_grp de�nition as projections from oal_grp. The group theoremsgrp_inv_diff:8g:IGroup. 8a,b:|g|. � (a * (� b)) = b * (� a) 2 |g|
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?1. s: LOSet2. g: OGrp3. ps: |oal(s;g)|4. qs: |oal(s;g)|` "pos(qs ++ --ps) _ ps = qs 2 |oal(s;g)| _ "pos(ps ++ --qs)?BY RWD oal_grpC 0?̀"pos(qs * (� ps))_ ps = qs 2 |oal_grp(s;g)|_ "pos(ps * (� qs))?BY (RWN 2 (PolyC "grp_inv_diff<") 0THENM RWO "grp_eq_shift_right" 0 ...a)?̀"pos(qs * (� ps))_ qs * (� ps) = e 2 |oal_grp(s;g)|_ "pos(� (qs * (� ps)))?BY RWD rem_oal_grpC 0?̀"pos(qs ++ --ps)_ 00 = qs ++ --ps 2 |oal(s;g)|_ "pos(--(qs ++ --ps))? Figure 10.13: Viewing Concrete Functions Algebraically



177grp_eq_shift_right:8g:IGroup. 8a,b:|g|. a = b 2 |g| () e = b * (� a) 2 |g|are applied in the central tactic and �nally rem_oal_grpC removes the abstractgroup. The oal_grpC and rem_oal_grpC conversions are simply de�ned using theMacroC direct-computation conversion.let oal_grpC,rem_oal_grpC =let cprs =map (nt,t'. DoubleMacroC `oal_grpC` IdC t (ForceReduceC `5`) t')[d|oalist(s;g)|e,d|oal_grp(s;g)|e;dps ++ qse,dps * qse;d-- pse,d� pse;dnil{s;g}e,dee]inFirstC (map fst cprs),FirstC (map snd cprs);;10.7.3 Monotonicity ReasoningA good example of monotonicity reasoning is shown in Figure 10.14. This proofstep is from the proof of theorem oal_times_dom. The lemma being explicitlyinvoked is:omral_plus_dom:8g:OCMon. 8r:CRng. 8ps,qs:|omral(g;r)|."(dom(ps ++ qs) �b dom(ps) [ dom(qs))and the monotonicity lemmas that are automatically applied by the rewrite packageinclude:mset_mem_functionality_wrt_bsubmset:8s:DSet. 8a:FSet{s}. 8b:MSet{s}. 8u:|s|."(a �b b) ) "((u 2b a) )b (u 2b b))assert_functionality_wrt_bimplies:8u,v:B. "(u )b v) ) {"u ) "v}
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?1. g: OCMon2. r: CRng3. qs: |omral(g;r)|4. x: |(g#set)|5. ps: |omral(g;r)|6. ...7. x1: |g|8. y: |r|9. ...10. ...11. "(x 2b dom(<x1,y>* qs ++ (ps ** qs)))` ...?BY (RWH (LemmaC `omral_plus_dom`) 11 ...a)?11. "(x 2b dom(<x1,y>* qs) [ dom(ps ** qs))? Figure 10.14: Monotonic Reasoning



Chapter 11Conclusions11.1 Summary of AchievementsThis thesis has presented work in building proof tools and developing formal the-ories that has transformed the Nuprl system into a substantially richer and moreergonomic environment for the production of formal mathematics. The case studyon polynomial arithmetic in Chapter 10 demonstrates this success of this transfor-mation.More speci�cally, that case study demonstrates Nuprl's new capabilities for rea-soning with abstract algebraic operations and for reasoning about concrete com-putations. Further, it shows how the capabilities can be intimately intertwinedand I think it stands as a paradigm for the ADT (abstract data type) approach toprogram speci�cation and implementation.11.2 Future DirectionsThere are several directions that I think are worthy of further exploration.� I myself am very keen to apply this work to formal reasoning about digi-tal hardware and software systems where signi�cant algebraic dexterity isrequired. For example, digital-signal-processing, fast-fourier-transform, andhybrid control systems. I see these applications as providing focussed andworthwhile challenges for theorem proving technology. This is an area ofinterest that I pursued earlier in my thesis research [Jac91, Jac92] and thatprovided the initial motivation for much of the work described in this thesis.� One of the most signi�cant problems with Nuprl is that of performance.The main cause of this problem is the highly redundant checking of well-formedness by proof. Proof-caching schemes have been experimented within Nuprl a little, and they have helped, but no-one has got close yet to the179



180optimal performance for such a scheme. By optimal, I am thinking hereof when the total of the sizes of all the terms type-checked in a proof isa small constant factor times the sum of the initial size of the propositionbeing proven, and the new term fragments that are added by proof steps.I'm sure too that the well-formedness problem is masking other performanceproblems. Performance improvement of is critical if users are going to beable push through larger examples than those discussed here without havingtheir patience exhausted.� I think promising work could be done in further exploring the use of Nuprlto support program development using the Abstract Data Type paradigm.Better mechanisms for inheritance of structure between class de�nitions andsubtyping between classes are de�nitely needed.As indicated in Section 5.4, there is still some room for progress to be madewithin Nuprl's current type theory, and Jason Hickey, a graduate student atCornell, has started on work looking at helpful extensions to the type theoryto better support inheritance and subtyping [Hic94].It would be interesting to see if this work could be tied in to current researchin type systems for object-oriented programming [GM94], where similar is-sues crop up.� The work described in this thesis has many connections with that going onin the implementation and use of computer algebra systems.{ As shown in this thesis, we are beginning to be able to formally verifythe correctness of the core code of a computer algebra system.{ Rich kinds of algebraic manipulations that are awkward to carry out incurrent computer algebra systems, are becoming straightforward in the-orem proving systems. For example, consider the rewrite rules demon-strated in Section 10.7 for rearranging sums. These rules have sideconditions requiring non-trivial proof to solve.{ Since the algebraic vocabulary of Nuprl is becoming more signi�cantand more similar to that found in some computer algebra systems, pos-sibilities are opening up of a theorem-proving environment providinguseful logical-inference services to a computer algebra system.{ A computer algebra system could be used to enhance a theorem provingenvironment by having the computer algebra system carry out compli-cated potentially-unsound computations that the prover then veri�es.As mentioned in Section 1.5.2, Harrison and Th�ery experimented withthis idea in HOL and Maple.



181{ The type systems adopted by theorem-proving systems such as Nuprland computer algebra systems such as Axiom [JS92] or Weyl [Zip93b]have a lot of similarities. Could a theorem-prover and a computer al-gebra system share a system of types? This clearly would simplifyinterfacing the two kinds of systems, since then they would be workingin the same mathematical language.In the short term, I am sure that some success is to be had in encouragingthe linking of existing theorem provers and computer algebra systems. Hereat Cornell, Zippel and I am currently engaged in investigating possibilitiesfor interactions between Nuprl and Weyl [Jac94a].In the long run, I see both technologies as developing so as to become morecompatible with one another. However, it may be unwise to try to constructsome monolithic hybrid system. Rather, it is probably best to create anenvironment in which these tools can interact in ways that are both rich andvaried, yet also completely formal. This topic is currently being pursued bythe Logic Group at Stanford [GK94], and there is considerable interest in itat Cornell.� As shown in this thesis, the Nuprl system can produce quite readable proofs.I think with a modest further increase in automation, possibly just achievedwith the existing tactics that I have developed, it should be possible toproduce both readable and completely formal expositions of small bodies ofmathematics or computer science; for example, of a chapter or two of a bookon number theory [HW78], `concrete mathematics' [GKP89] or functionalprogramming [AS85, Pau91].An interface between the World-Wide-Web [BCL+94] and Nuprl is currentlyundergoing test. It would be very exciting if say an undergraduate in math-ematics or computer science could access such formal expositions over theWeb and follow them if they had some familiarity with the topic, but littleor no prior preparation in languages or systems for formal proof.11.3 Dependence on Nuprl's Type TheoryNearly all the ideas behind the proof tools described in this thesis do not dependin any way on the fact that Nuprl's type theory is constructive, or indeed, onthat Nuprl uses a type theory at all. All the ideas in the rewrite package, therelational-reasoning tactic, or the arithmetic tactic, could just as easily be made towork in any interactive theorem prover. Of course, integrating decision proceduresinto theorem provers where proofs are mostly generated automatically is a much



182di�erent (and often much harder) problem, as is shown in Boyer and Moore's workin NQTHM [BM88b].Much of the work in abstract algebra did make heavy use of Nuprl's dependentfunction and dependent product types (� and� types), so I think it would bedi�cult to duplicate this work in say the present HOL system [GM93], which hasa much simpler type theory.On the other hand, in a classical set-theoretic framework such as Mizar's, theconcepts of a dependent function and a dependent product are de�ned rather thanprimitive notions (though the type system in Mizar does have these concepts builtinto it for convenience). Set-theoretic frameworks are known to be adequate forvirtually all of mathematics, so one rarely runs into problems in these frameworksof not knowing at all how to formalize some concept. Of course, there might bemuch debate about which method of formalization is best.When I was in the mode of creating and proving properties about functionalprograms, I did �nd it very elegant that Nuprl's constructive type theory forcedme to make the functions computable; if I was creating a sorting function, I wasforced into supplying the sorting function with a computable order function as anargument, as I would have had to in any other functional programming language.If one is de�ning such functions in a classical type theory such as HOL's, sucha discipline is only enforced by the user and not by the system. Indeed, when itcomes to passing functions for computing equality to other functions, a user of HOLmight �nd it convenient to ignore the fact that `real' functions in a programminglanguage require such an argument. Note that the insistence on functions beingcomputable is not just a practice found in constructive type theories. It also occursin simpler logics such as the `computational logic' of NQTHM [BM88a].Other times though, I found the computability restrictions of Nuprl petty. Forexample, the split between the type of propositions and the type of booleans lead to| from a classical point of view | much unaesthetic duplication of de�nitions andtheorems. Also in the work on permutation functions in Section 7.2, constructivityconsiderations forced me to make many de�nitions and prove many theorems twicethat only would have to be done once in a classical system. I felt that formalmathematics is tedious enough as it is, without all these extra distinctions thrownin. One solution to this dilemma involves building a theory of the semantics of aprogramming language in some classical framework. By default, functions are notnecessarily computable. Then, when one wants to establish the computability ofsome function, one has to explicitly give an expression in the programming lan-guage that has that function as its denotation in the semantics. The advantage ofthis approach is that it smoothly opens the door to reasoning about the compu-tational complexity of functions. Theories of programming languages have beendeveloped in several theorem provers such as HOL and NQTHM.Constructive type theory o�ers no features for proving theorems about com-



183plexity, unless one considers adding in some reection mechanism. A fair amountof work has been done in this direction in Nuprl [Kno87, How88a, ACHA90, CH90].However, reection in a constructive type theory requires constructing a theory ofnot only a functional programming language, but also a theory of sequents, rulesand proofs; this is a much more challenging task, especially in a type theory asstructurally complicated at Nuprl's.Another promising solution to this dilemma involves trying to combine settheory with a functional computation language [HS94]. Functions in this languageare computable just when they are constructed in certain well-de�ned ways.11.4 Appropriateness of Nuprl's Type TheoryIt is elegant to be working in a foundational theory where the objects you are oftenreasoning about are computable functions that you can actually execute. However,I think that Nuprl's present type theory is an inadequate foundation for abstractalgebra, be it classical or constructive; the discussion in Chapter 5 explains thedi�culties with adequatly formulating such basic notions as the collection of allsubtypes of a type.Part of the problems with Nuprl's type theory are certainly not intrinsic tothe idea of a constructive type theory; things would have been less awkward ifthe standard equality on types had been extensional rather than intensional, ifequality-respecting hadn't been so wrapped up in the semantics of Nuprl sequentsand if the type theory had included a subtyping predicate. Fortunately, I thinkthat much of the theory development and all the proof tool development wouldremain intact if a type theory were adopted with these or equivalent changes. Howehas put much thought into how such changes might be achieved [How93, HS94].However, part of the problems are inherent in the constructivist agenda of see-ing potential computational content in every logical proposition. The constructivistmakes many subtle distinctions that a classical mathematician ignores. Then, tomake the presentation of the mathematics readable, the constructive mathemati-cian hides a lot of these distinctions so they are implicit rather than explicit inthe notation. I didn't know how in Nuprl's type theory to systematically formalizethis hiding of detail for constructive algebra, but I did get the de�nite sense thatmechanical formalizations of constructive type theories can play an important rolein helping constructive mathematicians make their ideas precise.The approach I adopted to constructive algebra was predominantly an explicitone; that is, I assumed that constructions would always be made explicit and notbe assumed implicit in the computational content of propositions. This approachwas close in spirit to that taken in Scratchpad and Axiom [JS92, DT92, DGT92]. Ifinhabitants of algebraic classes were to have a decidable equality, then a functionwould be explicitly required to compute that equality in the signature. If in a



184group it was desired that that every element have a computable inverse, then aninverse function had to explicitly appear in the group signature.In a way, I was taking advantage of how Nuprl's type theory limited me. Thefact that Nuprl the boolean type and the type of propositions in are distinct, forcedme into giving an explicit treatment of equality in the algebraic classes I set up,and forced me into developing the beginnings of a theory of discrete types (I calledthem discrete sets or DSet's, see Section 6.3 and Section 10.4.1).Note that in Chapter 8, I did explore taking a n�aive view of a completely implicitconstructive approach; I was careful never to ignore the computational content ofany proposition. The results were that I had one theorem that from a constructivepoint-of-view, speci�ed a program for computing the rich computational content ofan equivalence relation `a is equal to b up to permutations and associates', wherea and b were lists of elements of a cancellation monoid(see Section 8.1.3). It wasquestionable whether anyone would care about this computational content. How-ever, another theorem I proved speci�ed a program for computing factorizationsin cancellation monoids, a more useful computation to want.



Appendix ADivisibility TheoryThis appendix reproduces in full the proofs abbreviated in Figure 8.1 and Figure 8.2of Chapter 8. The numbers interspersed in the vertical bars of the proof branchesserve to help trace branches when proof printouts such as these run over severalpages.A.1 Existence Theorem` 8g:IAbMonoidCancel(|g|;|g|;*)) WellFnd(|g|;x,y.x p| y)) (8c:|g|. Dec(Reducible(c)))) (8b:|g|. :(g-unit(b)) ) (9as:Atom{g} List. b = � as))?BY (UnivCD ...a)?1. g: IAbMonoid2. Cancel(|g|;|g|;*)3. WellFnd(|g|;x,y.x p| y)4. 8c:|g|. Dec(Reducible(c))5. b: |g|6. :(g-unit(b))` 9as:Atom{g} List. b = � as?BY (WFndHypInd 3 5 THENM D 0 ...a)?5. j: |g|6. 8k:|g|. k p| j ) :(g-unit(k)) ) (9as:Atom{g} List. k = � as)7. :(g-unit(j))` 9as:Atom{g} List. j = � as?BY (Decide dReducible(j)e ...a)
-8. Reducible(j) 185



186??1 BY UnfoldTopAb 8 THEN ExistHD 8?8. b: |g|9. c: |g|10. :(g-unit(b))11. :(g-unit(c))12. j = b * c??1 BY (SwapEquands 12THEN FLemma `non_munit_diff_imp_mpdivides` [12] ...a)?12. b * c = j13. b p| j??1 BY (RWH (LemmaC `abmonoid_comm`) 12THENM FLemma `non_munit_diff_imp_mpdivides` [12] ...a)?12. c * b = j14. c p| j??1 BY (FHyp 6 [13] THENM FHyp 6 [14] ...a)?15. 9as:Atom{g} List. b = � as16. 9as:Atom{g} List. c = � as??1 BY New [`as2'] (D 16) THEN New [`as1'] (D 15)?15. as1: Atom{g} List16. b = � as117. as2: Atom{g} List18. c = � as2??1 BY (With das1 @ as2e (D 0)THENM RewriteWith [] ``mon_reduce_append`` 0 ...a)?̀j = � as1 * � as2??1 BY (RWH (RevHypC 18 ORELSEC RevHypC 16) 0THENM RW AbMonNormC 12 ...)
-8. :Reducible(j)?BY (With dj::[]e (D 0) THENM AbReduce 0 ...a)
-` j 2 Atom{g}??1 BY (MemTypeCD ...)` Atomic(j)



187??1 BY (Unfold `matomic` 0 ...)
-` j = j * e?BY (RW MonNormC 0 ...)



188A.2 Uniqueness Theorem` 8g:IAbMonoidCancel(|g|;|g|;*)) (8a,b:|g|. Dec(a | b))) (8ps,qs:Prime(g) List. � ps � � qs ) ps � qs upto �)?BY (RepeatMFor 4 (D 0) ...a)?1. g: IAbMonoid2. Cancel(|g|;|g|;*)3. 8a,b:|g|. Dec(a | b)4. ps: Prime(g) List` 8qs:Prime(g) List. � ps � � qs ) ps � qs upto �?BY (New [`p';`psn''] (ListInd 4)THEN OnAll AbReduce ...)
-5. qs: Prime(g) List6. e � � qs` [] � qs upto �??1 BY D 6 THEN Thin 6 THEN FoldTop `munit` 6?6. g-unit(� qs)??1 BY MoveToConcl 6THEN New [`q';`qsn''] (D 5)THEN (D 0 ...a)THEN OnAll AbReduce
-6. g-unit(e)` [] � [] upto �???1 2 BY (StrengthenRel ...)
-6. q: Prime(g)7. qs': Prime(g) List8. g-unit(q * � qs')` [] � q::qs' upto �? ?1 BY Assert dFalsee THENM TrivialTHEN D 6 THEN D 7?6. q: |g|7. :(g-unit(q))8. 8b,c:|g|. q | b * c ) q | b _ q | c9. qs': Prime(g) List10. g-unit(q * � qs')



189` False? ?1 BY (FLemma `munit_of_op` [10] ...)
-5. p: Prime(g)6. ps': Prime(g) List7. 8qs:Prime(g) List. � ps' � � qs ) ps' � qs upto �8. qs: Prime(g) List9. p * � ps' � � qs` p::ps' � qs upto �?BY Assert dp | � qse
-` p | � qs??1 BY OnCls [9;9] D9. c: |g|10. � qs = (p * � ps') * c11. � qs | p * � ps'??1 BY (With d� ps' * ce (D 0)THENM RW MonNormC 10 ...)
-10. p | � qs?BY (FLemma `mprime_divs_list_el` [-1] ...a)THENM (Thin (-2) THEN D (-1))
-` IsPrime(p)??1 BY (D 5 THEN NoteConclSqStable ...)
-10. i: N||qs||11. p | qs[i]?BY Assert dp � qs[i]eTHENM Thin 11
- ` p � qs[i]??1 BY (Backchain ``mdivisor_of_atom_is_assocmprime_imp_matomic`` ...)
-` :(g-unit(p))???1 2 BY (D 5 THEN Unhide THENM D 6 ...)
-` IsPrime(qs[i])? ?



1901 BY (Assert dqs[i] 2 Prime(g)e THENM MemTypeHD (-1) ...a)?12. qs[i] = qs[i][13]. IsPrime(qs[i])? ?1 BY (NoteConclSqStable ...)
-11. p � qs[i]?BY MoveToEnd 9THEN (OnMCls [0;-1] (RWH(IfIsC dqse (RevLemmaWithC [`i',die] `select_reject_permr`))) ...a)THEN AbReduce (-1)?9. i: N||qs||10. p � qs[i]11. p * � ps' � qs[i] * � qsn[i]` p::ps' � qs[i]::qsn[i] upto �?BY (SeqOnM[RWH (HypC 10) 11;FLemma `massoc_cancel` [11];Thin (-2);RelArgCD] ...)?11. � ps' � � qsn[i]` ps' � qsn[i] upto �?BY (BHyp 7 ...)
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