
RTI interface between PC and DSP

Doug Rogers
(Edited by Peter Hancock)

Version 5 : 30th April 2002
Version 4 : 7th March 2002
Version 3 : 15th February 2002
Version 2 : 29th January 2002
Version 1 : 6th January 2002

Contents

1 High level description 3

2 General remarks 5

3 Remarks about errors 6

4 DSP Port 9

5 DSP Handler 12

6 DSP Socket 13

7 PC Port 14

8 PC PortArray 17

9 PC Device 20

10 PC DeviceList 23

11 PC Handler 24

12 PC Handler index 26

1

Version information, changes

From version 1 to version 2, the following changes were made:

• DSP handler kill processing was altered.

• Sections were added for:

– PC handler index

– PC handler

– PC port array

– PC device list

• The PC device section was simplified.

Handler removal is now completed in one call with the handler and ports dying back
automatically. The handler states have been much reduced. The matchmaker states have
now been incorporated into the PC port state and the PC device state1

From version 1 to version 2, the following changes were made:

• The document was ported from Wordperfect to LATEX. The grammar was touched
up here and there, in the interests of clarity.

• Certain parts of the content were revised to reflect a new, sketch version of the
core software (‘Hakit’) produced by Doug. It does not reflect any functioning stable
version of the code. Some parts are entirely speculative, and some are undoubtedly
sheer nonsense. The intention is to make a start on producing some documentation
of some help to introduce someone unfamiliar with the system to its design.

Apart from formatting, sections pertaining to the DSP were left as they were.
From version 2 to version 3, the following changes were made:

• (Forgotten, I’m afraid.)

From version 3 to version 4, the following changes were made:

• Doug’s new state tables added for pc port, dsp port, and pc device object.

From version 4 to version 5, the following changes were made:

• (To be filled in – lots of stuff to be deleted.)

1I lifted the previous three sentences from version 2 of the document, where they occurred under the
heading ‘Differences from DSPOS state machines’. They may or may not say the same as the preceding
list, which was produced by comparing the text of the two versions.

2

1 High level description

In general terms, ED’s software consists of a number of components and tools for config-
uring custom ED installations (wave makers/tanks, wave power generators, ..).

The customer’s interface to the system is a gui control-panel, configured system-by-
system using a couple of tools: select-and-plug and arrange-layout.

Hardware architecture. There are three levels of processor:

PC, host Runs the front end, gui or control panel. Co-ordinates ‘nodes’ in a graph
prepared using the ‘select and plug’ tool. The software is written in C++. It uses
Microsoft libraries for graphical display, access to the file system, etc.

DSP, hub Manages communication with control processors (aka devices, FPGAs), tracks
and controls their state (u/s, running happily, etc). Written in C++. Uses a ED-
written kernel/scheduler.

There are actually two versions of this device2. They do not have quite the same
interface.

FPGA, device, control processor Executes a short downloaded control program, writ-
ten using a proprietary assembly language, that reads input signals coming from
sensors (position, velocity, etc) and writes things to actuators.

Communications.

• The low-level communication interface between the PC and the DSP is the Link
mechanism, that works by exchanging blocks/stacks of messages with a buffer in the
DSP. (As mentioned above, the low-level mechanism depends on the version of the
DSP.)

• The low-level interface between the DSP and the FPGAs is the Disco protocol; this
is a synchronous message passing protocol designed by ED for real-time control.

Software architecture. The software is thought of as divided into a ‘core’, present in
every system, and other software which is more concerned with gui presentation, file system
access, logging, remote communications (as from a wave-power generator to the shore), and
so on.

The core of the system is thought of as a number of communicating state machines,
known collectively as ‘the state machine’. Some of these run on the PC, and some on the
DSP. The interface to the core of the system is represented by a single RTI object, residing
on the PC. The chief components of the RTI object are:

2Variously known as ‘Blacktip’ = dsp21k32, and ‘Sharc’ = dsp21ksf

3

• a DeviceList (section 10 on page 23), which is a list of Device objects (section 9 on
page 20). This object resides only on the PC.

• a PortArray (section 8 on page 17), which is an array of Port objects (section 7 on
page 14). All the port objects are built when the DSP and PC code is initialised.
They correspond to the individual physical devices (FPGAs) used in a particular
installation. Port objects track the state of the physical devices.

• a HandlerIndex (section 12 on page 26), which is an array of Handler indices (section
11 on page 24). as well as message queues (for data and commands), and low-level
link data structures. A handler index is a pointer to a handler object, together with
a state code.

Each handler on the PC has a array of device objects (section 11 on page 24, allocated
to it when the handler is built. Each device can tolerate a range of identifiers for
physical devices. The ranges tolerated by different devices are disjoint (or else the
system-image has been misconfigured).

On the DSP side, there are the following major components:

• a handler ID array, reflecting the PC’s HandlerIndex. Each DSP handler (section 5
on page 12) has an array of sockets (section 6 on page 13, corresponding to the array
of devices associated with a PC handler.

• a port array. A description of a DSP port is given in section 4 on page 9.

Much of the design of the system is focussed on the problem of connecting devices with
ports, bring them online and into communication with the system, and removing them
from communication when they disappear. This process begins with receipt of a DISCO
message received by the DSP via a particular socket, giving the identifier of the FPGA
device which is plugged into the physical socket on the DSP. This is communicated to
the PC. The initial matching of device and port is effected first on the PC. Then a build
message is sent to the DSP, allowing the DSP’s handler socket and port on the DSP to
link up.

The following remarks occur in version 2 of the document, and seem to be important.
I put them here for want of anywhere better.

Order of events for handler insertion into RTI

1. Lock handler ID array

2. Obtain an array entry and use its value as the handler ID.

3. Send build message to handler on DSP with build parameters
(sockets , type, datawidth, ID ,flag).

4. Set handler state to live (MUST be second to guarantee build message is first
always)

4

5. Release handler array lock

6. Configure the DSP handler

7. Create set of devices in handler array

8. Insert devices into device list (this automatically makes match check)

Order of events for removal of handler from RTI

1. Remove devices from device table (Must be first to prevent match during shut-
down)

2. Kill any ports matched to devices, delete device objects

3. Send kill message to DSP handler

4. Reset handler array value (no need to take lock)

5. Set handler state to dead

2 General remarks

State machines All state machine in the following sections are Mealy machines. That
is to say: each state and input event determines an output action and next state; there is
a distinguished initial state.

In the descriptions of state machine below:

• The states are partitioned into groups, identified by state-codes: for example Active,
Owned , Dead . Each state is identified by its state-code, together with the val-
ues of certain state-variables, depending on the state-code; for example StoreID ,
timeout count .

• The input events are partitioned into groups, identified by input-codes: for example
IDevent . Each input is identified by an input-code, together with certain arguments
that may depend on the input-code. The input events can also be qualified by
a (boolean) guard, that may depend on the state, input-code and arguments: for
example timeout count > 0.

In this document, events seem to fall into one of two classes: procedure calls (which
is to say the event of passing control to a procedure3), and receipt of a message
(which is to say the event of passing control to a procedure that handles messages of
a certain form).

• The output actions are similar to input events. They are however simpler, in that
there is nothing corresponding to a guard on the output side. Instead of entry to
a procedure with input values (arguments), actions model returns from a procedure
with result values. Instead of message receipt, actions model messages being sent.

3I am not sure whether this is true in all cases: it may be that in some cases execution of an entire
procedure constitutes an event.

5

• The format of the descriptions is something like this:

States

variables var 0

var 1

. . .

codes code0

code1

. . .

Stimulus

– inbound procedure call or message received. May be guarded by a predicate.
If P is a predicate P is its negation.

– . . .

Response

– outbound procedure call or message sent

– . . .

Transitions sorted by origin of transition

– state-code0

– state-code1

– . . .

• All input events not explicitly mentioned result in an error action. In this version of
the document, this has been left vague. The right thing to do probably depends on
the particular state machine.

Although the core software is referred to as ‘the state machine’, this is a slightly poetic
figure of speech. In fact there are many communicating state machines. Moreover, it
seems (having tried to force everything to fit it) that the model of Mealy machines isn’t
appropriate in the case of every component. In these cases, a less structured form of
description will be used. Still, on the assumption that the structure of components is
right, a component will in every case have a state-space spanned by a small number of
state variables, an initial state (that may depend on initialisation parameters), and undergo
transitions from state to state that depend on commands or input events.

3 Remarks about errors

In my opinion (PGH), it is worth distinguishing between different categories of ‘error’.

• bugs. There will always be bugs. They are mistakes in programming. Programming
is figuring out code, and that means reasoning. If you do not have a clear statement

6

of what it is that a piece of program is supposed to accomplish, at least in your head,
you are not programming, but just writing code.

Without going overboard about it, to have a solid basis for avoiding, detecting, and
dealing with bugs, it is essential that there are clear statements somewhere in the
vicinity of a given piece of code that say what it is supposed to do, and what it is
supposed not to do. If anyone other than the author, or a clairvoyant is to have a
solid basis for understanding the code, jargon terms should be avoided, or at least
clearly defined in a sacred document.

There are two ways to make such statements: in comments (where one can be as vague
as one considers safe), and in assertions which can in principle be executed (where one
may have to write a lot of extra code to fully express preconditions, postconditions
and invariants as boolean values). The second kind can be very valuable in debugging.

It is worth distinguishing assumptions which are required to be established by the
calling code from assertions which are to be ensured by the called code.

As bugs are inevitable, you should devote any brain power left from trying to avoid
them, to devising a minimally embarrasing and maximally informative way of dedect-
ing, reporting and/or recording them. My experience for what it is worth is that a
full-scale symbolic dump of major data-structures, together with a trace-buffer is
what one wants, provided both have been fully exercised, tuned in the light of expe-
rience, and ascertained to be completely bomb-proof.

• big-time, catastrophic bad things. The computer isn’t working right. There are
memory errors, electrical noise fouling something up, spurious interrupts, missed
interrupts, power loss, water in the wires, and so on and so on. You have to decide
which of these things you are going to try to detect, report, and/or (unlikely) recover
from.

• small-time, tiresome bad things. Misconfigurations. User errors, like clashing device
identifiers. Stuff that one anticipates happening, and needs to detect, report, and
(preferably) recover from, if only in ‘cripple-mode’.

• not-errors, but merely rare conditions. It may be that most of the time, you ex-
pect to find something on a list. Exceptionally, it will not be there. Perhaps for
performance reasons, or perhaps to unclutter the code, you’d like to employ some
special mechanism such as throwing and catching exceptions, rather than regular
code structures.

• hangs.

Then there are mechanisms that one may employ for dealing with errors, whether they
are bugs, catastrophes, annoyances, or not errors at all. I am speaking about exceptions.
Exceptions are not a policy for dealing with errors, they are a mechanism that one may
use for implementing a policy.

7

An example of a policy is to try to arrange things so that errors can be easily attributed
to specific components, and those components shut down, and possibly reinitialised and
restarted.

Exceptions are non-local jumps, and they are intrinsically hard to understand, which
is reflected by the fact that it is difficult to write down (correct) rules for reasoning about
code which uses exception passing. I don’t know much about the form of exception passing
used in C++, but I know enough to advocate that one confines one’s interest in language
features to a very vanilla, unexciting subset of what is available. Preferably, exceptions
should be handled only at ‘the top level’.

The use of exceptions is complicated by threading, as exceptions are propagated up
(down?) a thread’s stack, which may (for example) mean that some other mechanism may
to be employed to communicate ‘an exception’ to some other thread which is in a position
to handle it. If any data structures have to be locked to raise and/or handle an exception,
the risk of deadlock has to be carefully considered.

8

4 DSP Port

There is an array of ports, that corresponds to the physical ports on the DSP, except
that there is one special port –currently port[0] – that provides the time function, and
in some sense represents ‘the DSP itself’. Each port adds dynamic storage to provide
swinging buffers for (1) data transfer in and out (ie. from and to the FPGA). (2) outgoing
register read and write packets, (3) an event buffer (introduced as of the first version of
this document).

States Inactive
Available
Owned
Dead

State graph

Inactive
ID/New

""
Dead

@AGF ED
Build

��
CU

66

Available

Build
tt

Loss/ND
oo

Owned

Loss/ND

``

Start
State

End
State

stimulus response (to pc-port)

Inactive Available Id packet NewId
Available Owned Build from pc-port
Available Dead Loss ID or kill NowDead
Owned Dead Loss ID or kill NowDead
Dead Inactive Cleanup from pc-port
Dead Dead Build from pc-port

States

variables (integers)
handler
socket
StoreID
timeout count

codes
Inactive (initial)
Available
Owned
Dead

9

Build data handler
socket
inBuffSize
outBuffSize
regBuffSize
eventBuffSize

WARNING: the content of this section below has not been changed since version 2
of the document.

Inputs

• IDevent(ID): receipt of an ID event from a physical socket. The argument is
(one hopes...) the ID value physically configured on the FPGA device.

• Process(time): procedure called once per time slice: 32 times per second at
present. I don’t know what the argument represents.

• MesgBuild(data): message from the PC to set up the buffers for communication
with the FPGA.

• MesgCleanup(): message from the PC to release dynamic storage.

• Kill(): procedure called internally or from the handler to which the port is
linked.

Outputs

• handler :: Attach procedure call to socket on handler (as defined by build data)

• handler :: Unattach procedure call to socket on handler to break attachment

• MesgNewID(ID) Message sent to the PC port on new ID

• MesgDead() Message sent to the PC port on device disconect

Transitions Other state/event combinations than those below are erroneous.

• Inactive

– On IDevent(id) ,
send NewID(id) to PC port,
set StoreID to ID,
set timeout count to 3,
next state: Available.

• Available

– On receiving Build(data) from PC,
handler :: Attach(handler , socket , port),
Build(data),
next state : Owned .

10

– On IDevent(ID) when ID = StoreID ,
set timeout count to 3.
state unchanged.

– On IDevent(ID)when ID 6= StoreID),
send MesgWrongID(ID), (* Only a warning! *)
state unchanged.

– On Process(),
when time count 6= 0,
decrement time count by 1,
state otherwise unchanged.

– On time count = 0,
send NowDead ,
new state: Dead .

– On Kill,
send NowDead ,
set state to Dead .

• Owned

– On IDevent(ID), when ID = StoreID ,
set timeout count to 3,
state otherwise unchanged.

– On IDevent(ID), when ID 6= StoreID ,
send MesgWrongID(ID), (* Only a warning! *)
state unchanged.

– On Process(),
when time count 6= 0
then decrement timeout count by 1.
state otherwise unchanged.

– On Kill ,
handler :: UnAttach()
send NowDead
New state: Dead

– When time count = 0
call handler :: UnAttach(),
send NowDead ,
New state: Dead

• Dead

– On PcMesg(Cleanup)
New state: Inactive

– On PcMesg(build)
no change.

11

5 DSP Handler

WARNING: no changes (beyond formatting) since version 2 of the document.
The DSP handler has no state change except existence. Therefore state can be through

a NULL instead of the handler pointer. Configuration of the handler and attachment of
all the ports is handled separately as it does not affect the rest of the state machine.

States Array of sockets each with their own status.

Build data Build information

• handler type

• sockets

• kill flag

Inputs Kill actions

• Call to each attached port with kill (this causes the unattach)

• Remove entry from index

• Send free handler index message to PC

Outputs Functions called by the port for a socket and by the socket state machine:

• Attach(socket, port) : Passed to the relevant socket

• Unattach(socket) : See below - then passed to relevant socket

Transitions (Missing.)

If the kill flag is set, then on receiving an unattach message all the attached ports are
sent a kill message, and a message is sent to the handler.

12

6 DSP Socket

States

variables port (integer)

codes Unlinked (Initial)
Linked

Inputs (Not given.)

Outputs (Not given.)

Transitions

• Unlinked

– On handler :: Attach(handler , socket , port)
set storePort to port
Next state-code: Linked

• Linked

– On handler :: Unattach(handler , socket)
Next state-code: Unlinked

Note:- on unlink if handler has auto suicide then kill called for all linked ports
State machine - actions when not in specified states are fatal errors.
Usage of handler socket to port link: when the link is in place, the port will send all

events other than the ID event and DRET event to the attached handler socket.
The data input and output queue are accessed from the handler, thus allowing secure

data transfer between the DSP handler and the attached devices.
The event queue (new as of version 1?) will allow the handler to send event packets to

a device. This permits near real time data transfer between devices.

13

7 PC Port

State graph

Inactive

New
))

New
##

New/B

��

Duplicate

PR,M
{{

ND/CU

ii

PR,M

uu
Dead

ND/CU
��������

BB��������

Owned
Brkrr

ND/CU

SS

Available
M/Bqq

ND/CU

cc

Start
State

End
State

stimulus response

Inactive Duplicate NewId, port match
Inactive Available NewId, no device match
Inactive Owned NewId, device match Build
Duplicate Available Port release, no device match
Duplicate Owned Port release, device match Build
Duplicate Inactive NowDead Cleanup
Available Owned device match Build
Available Inactive NowDead Cleanup
Owned Dead Device match break
Owned Inactive NowDead Cleanup
Dead Inactive NowDead Cleanup

WARNING: The following needs revision, and maybe incorporation into the state
graph. Perhaps what remains should be incorporated into the description of the PortArray .
The functionality described in versions 1 and 2 of this document is more complex than the
version of the code on which version 3 is based. All state transitions of a port are handled
by calling a SetState procedure. This is an ‘arrow’ based description of the state-graph.
Each arrow is given a separate name.

REMARK: When defining state-tables, it is good to sort them first by the source state,
then by the destination state.

An arrow is written
s/r−→ where the stimulus may be a message or procedure call. It

may be guarded by a predicate. The response may be to send a message, or do nothing
(except change state).

States

codes Inactive (Initial)
Available
Duplicate
Owned
Dead

14

variables DevicePtr
Id

Inputs The following are arguments to SetState

• ToActive(id) – id a device identifier

• ToMatch(dev) – dev a device pointer

• ToDead

• ToDuplicate

• ToClean

Outputs None – unless an exception should be described as an output.

Transitions State machine - actions when not in specified states raise exceptions.

• Inactive - we get here from anywhere by a NowDead from DSP port.

– NewId(id),
when no port match, no device match
set Id to id, dev unchanged
Next code: Available

– NewID(id),
when port match,
set Id to id, dev unchanged
Next code: Duplicate

– NewId(i),
when device match for i,
set Id to id, dev unchanged
send Build to DSP port
Next code: Owned

• Duplicate

– when port release and no device match
set DevPtr to dev
Next state-code: Available

– when port release and device match ,
set DevPtr to dev
send Build to DSP port
Next state-code: Owned

– NowDead
trash DevPtr
send Cleanup to DSP port
Next state-code: Inactive

15

• Available

– when device match,
set DevPtr to dev
send Build to DSP port
Next state-code: Owned

– NowDead
when dev 6= NULL,
trash DevPtr
Next state-code: Inactive

• Owned

– device match break,
Id , dev unchanged
Next state-code: Dead

– NowDead ,
Id , dev unchanged
Next state-code: Inactive

• Dead

– NowDead ,
Id , dev unchanged
Next state-code: Inactive

16

8 PC PortArray

There is on the PC an array of ports that mirrors the ports on the DSP, and ultimately
the real ports of the hub. All operations on a port go through the PortArray interface.

Terminology

identifier An identifier has 3 parts: version number, type code and switch setting.

device identifier matching A device may be matched by a range of version numbers.
In essence a device will tolerate a range of identifiers.

similarity of identifiers Two identifiers are similar if they have the same type code and
switch setting. (The version does not matter.)

valid identifier An identifier is valid if it is the identifier of an active port.

active port A port is active if it is not inactive. Alternatively, if it is one of the states
Duplicate, Available, Owned or Dead.

non-duplicate A port is non-duplicate if it is active, but not Duplicate.

Invariants

1. If we partition the identifiers associated with non-inactive ports into groups with
similar identifiers (having the same type and switch number), then in any group
there is exactly one port which is non-duplicate (it is necessarily Available, Owned,
or Dead).

2. If p is an active port, and there is no active device which matches it in ID, the device
is either available or dead. (ie. nether duplicate nor owned.)

3. If d is an active device, and all active ports that match it in ID are duplicate, d’s
state is necessarily Available.

4. p is a non-duplicate port (ie available, owned or dead), and d is an active device
which matches it in ID, then EITHER p’s state is owned, and d’s state is configuring
or active OR p’s state is dead, and d’s state is available.

Note this implies that p’s state is not available; ie that we don’t have states in which
p is available and there’s some device which matches it in ID.

17

Other assertions

1. A port is owned only if there is a current device which matches it in ID.

2. If an active port does not match any current device, the port state is non-duplicate.

WARNING: The description below is based on an obsolete version of the code; it needs
revision and may well be wrong.

State A fixed-size array of port objects. An index into this array is called a port position.

Operations • MatchFind(device pointer) : returns either a port position at which the
port has has the state Inactive and in which the identifier matchs the identifier
of the given device, or the information that there is no such position.

• MatchMake(port position, device pointer) : on entry, the port at the given
port position must have the state Active. The state of the port is then changed
to Owned , and the device pointer is stored in the port.

• MatchBreak(port position) : on entry, the port at the given port position must
have one of the states Owned and Dead . On exit, the state of the port is Dead .

• OnControl(msg) : The message specifies a port by port position. Three and
only three forms of message are possible (else an exception is raised).

– commandActive
Precondition. The port must have the state Inactive. There must be no
device in the DeviceList with the same identifier, unless its state is Inactive.
If there is another port in the PortArray with a similar4 identifier, with
a state different from Active, then the state of the port identified in the
message is set to Duplicated . If on the other hand there is no such port,
then the state of the port identified in the message is set to Active. If there
is a device in the DeviceList with the same identifier, then the state of that
device is set to Active, and the port position in it is set to that specified in
the message; the device pointer is stored in the port specified in the message;
a commandBuild message is sent to the DSP. (There are some details to
be filled in here – building and sending this message is just sketched in the
code.) All of the above operations are performed while holding the lock
(matchLock) that serialises access to the matching data structures5.

– commandDead
Precondition. The port state must be other than Inactive6. If it is Owned ,

4This means that the version field of the identifier may be different
5It is not clear to me that this lock need not be taken during operations such as (for example) MatchFind .

If an exception is raised, then it is possible that the lock is released by some C++ voodoo, though the
system state may not be consistent with its invariant.

6As far as I can see from the code, in fact (by an accident) the state must be either Owned or Dead

18

then the state of the device which is linked from it must be other than
Inactive.
Should the port state be Owned , then “packets are deleted” – more detail
is needed here. A commandCleanup message is sent to the DSP. Should the
port state be Duplicate7, then “the first duplicate is revived”. The SetState
procedure appears to lack a suitable code path to revive duplicates.

– commandRegisterDone
Precondition. The port state must be one of Owned or Dead . The message
size must be 1.
If the port’s state is Owned , then “all in flight packets are time-stamped” –
I have not investigated in detail what this means. The idea appears to be
that one of the buffers associated with the device is put into a ‘shutting-
down’ state. On the other hand, if the port’s state is Dead , nothing is
done.

• OnRegPacket : The message specifies a port by port position. The state of the
port must be Owned or Dead , and the message must have size 1.

If the port’s state is Owned , then “the state of the register packet is changed
to finished, and a log message is written if no match is found in the map”. (I
have not investigated what this means.) On the other hand, if the port’s state
is Dead , nothing is done.

7Unless I am mistaken, this cannot arise.

19

9 PC Device

NEW(as of Mar 6 2002 10:25:43)

States Inactive
Available
Configuring
Active

State graph

Inactive
E1

$$
E/B2

��

Active

R9nnnnn

77nnnnn

Available

M/B3uu

R7

dd

BCEDND/CU6
GF��

Configuring

DC4OOOO

ggOOOOO ND/CU5

44R8

KK

Tabular form:

Transition
number

Start
State

End
State

stimulus response

1 Inactive Available Entry to device list, no matching available port
2 Inactive Configuring Entry to device list, matching available port Build
3 Available Configuring Matched port receives newID same id Build
6 Available Available Matched port receives nowDead CleanUp
7 Available Inactive Removal from device list
4 Configuring Active Device configuration complete
5 Configuring Available Matched port receives nowDead CleanUp
8 Configuring Inactive Removal from device list
9 Active Inactive Removal from device list

Terminology

current, active A device is current or active if it is in the device list. (It then has a
state-code different from Inactive.)

Invariants

1. If d and d’ are different devices in the device list, then their identifiers differ in
type-code or switch setting.

2. other invariants are in section 8 on page 17.

WARNING: I have omitted everything to do with ‘RegPkt ’. It would be good to
incorporate this. The important thing is that register reading and writing is done only
when you have a device in an owned state, under the control of a handler.

20

WARNING: What appears below is based on the code which I have been looking at
(Device.h, Device.cpp from Doug’s ‘Hakit’ edition). It bears little relation to the version
2 description. Moreover, it seems to contain some detritus that is apparently not used –
for example the state Configured . The code seems simplified with respect to the version 2
description.

It needs to be brought into line with the above table. (WARNING: It is wrong!)

States variables portNum
params
localID
(config) level

codes Inactive (Initial)
Active
Configured

Inputs

• MatchDevice(port) :

• Process() : Called on each lift of the message queue from the DSP

• Kill() : Called by owning handler on shutdown

Outputs

• MesgBuild(params) :

• Reset() :

• Configure(level) :

Transitions State machine - actions when not in specified states are fatal errors

• Inactive

– On MatchTest(ID) when ID = localID,
MesgBuild(params),
set level to 0
Next state: Active

• Active

– On Process()
Configure(level) ,
Next state-code: Configuring

– When Configure() is true, ??????
Next state-code: Configured

21

– On UnMatch() ,
Reset() ,
Next state-code: Inactive

– On Destroy() ,
port .UnMatch ,
Reset() ,
Next state-code: Inactive

• Configured

– On UnMatch() ,
Reset() ,
Inactive;

– On Destroy() ,
port .UnMatch ,
Reset() ,
Next state-code: Inactive

22

10 PC DeviceList

The device list is the set of current devices, both those that are and those that are not
available for linking.

Terminology A physical ID is the ID reported by a physical device. It comprises a type
code, a switch setting and a version number.

A device tolerates a range of physical ID’s – those with a given type-code and switch
setting, for which the firmware version number lies between certain limits.

Invariant The ID ranges tolerated by devices in the device list are disjoint. In other
words, it cannot be the case that there are two (distinct) devices which both tolerate
the same physical identifier. The devices must differ in at least one of type-code, and
switch-setting.

WARNING: What appear below needs revision.

States

variables matchLock Lock – can get calls from HandlerIndex and PortArray
ports array of ports
devices array of (pointers to?) devices

codes ???? uninitialised/initialised ????

Inputs

• Add(device) Check that the ranges of ID’s accepted by devices in the list would
be disjoint.

• Remove(device) Find the device in the list. ??? Can we assume its there??? If
the device state is Owned , break the Match (via port) associated with device,
Force the device into the unmatched?? state.

• MatchFind(ID) If there’s a device with the given ID on the list, which is
matched, return true (and I presume, return the device found). If there’s such a
device, but not matched, throw an exception. If there’s no device in the list with
that ID, return false. (second arg appears to be unused: probably an output
argument).

Outputs ?????? Code looks sketchy. Locking needs sorting out. Returns from
procedures, etc etc.

Transitions ????

23

11 PC Handler

WARNING: To be revised.
A handler ‘looks after’ a number of devices8; presumably devices of the same type.
A handler (I THINK) has its own thread. (Process .)
The following concerns only handlers-in-general. The Handler class is a base class

from which specific handlers are derived: for example an OPD ‘joint’ handler, or a modem
handler.

States Each handler has an array of pointers to devices.

variables index what is this ????
devices array of devices. Only state variable mentioned in generic code
build something to do with Share????

codes Actually, there don’t seem to be any codes though they are listed in the rough
document. What does this mean??? Guess made in transitions below.
Dead unbuilt?? (Initial)
Alive built ??

Inputs Commands to a handler

• Dead – ??? On successful Construct moves to Alive

• Alive

– Build(devno) – ?? stubbed out. Initialisation?

– Kill() – ?? stubbed out. ??? On successful Kill, moves to Dead????

– Get – returns number of devices under control of this handler. Read only.

– GetDevice(devno) – returns pointer to devno’ th device. Read only.

– OnData(mesg) – ???? Should be virtual

– OnTransfer(mesg) – ???? Should be virtual.

Outputs ??

Transitions

• Dead – does this mean un-built??

– Build(devno) : procedure
????

• Alive

– Kill() : procedure
????

8‘Device’ isn’t quite the right word; in the rest of this document, ‘device’ has the connotation of DSP
device. If I understand Doug’s plans correctly, one might have a PC handler for a radio modem.

24

– Get – returns number of devices under control of this handler.

– GetDevice(devno) – returns pointer to devno’ th device.

– OnData(mesg) – ???? Should be virtual

– OnTransfer(mesg) – ???? Should be virtual.

25

12 PC Handler index

WARNING: To be revised.
The handler index is a dynamic array of indices, which are slots for (pointers to)

handlers. The slots start off as Empty , become Active (through Add), and finish up as
Dead (through Remove). If no slot is free when one is required, then a new slot is allocated
and added to the end of the array. Either a handler is accessible through a slot or it isn’t.
Whenever a message is sent to a handler, the handler is identified by its position in the
array.

How to describe Process – resumes the thread associated with each handler in
the array

State

variables indices Dynamic array of indices
devices device list

codes ????
Dead unbuilt?? (Initial)
Alive built ??

Inputs

• Construct(device list) – initialise

• Add(handler pointer – add a new handler, returns slot number

• Remove(n) – remove n’th handler

• Message : A control message is used to release9 a handler index.
There are also Data and Transfer messages.

Outputs ??? later ...

Transitions

• Alive

– Add(handler pointer – add a new handler, returns slot number

– Remove(n) – remove n’th handler. Removes all devices; kills the handler ;
disables index. ??? Some sanity checking necessary. (Can it be called when
already removed?)

– On Control – used only to release handler index. Stubbed out ???

– On Data – check slot not empty (exception); if Dead, do nothing ; else pass
through to handler.

9What does release mean?

26

– On Transfer – ???

• Dead

– Construct(device list) – initialise devices , move to Alive.

27

