
CV : Peter G. Hancock

Personal data

address 7 Cluny Avenue, Edinburgh, EH10 4RN
phones (+44) 131-447-2555, (+44) 785-525-3381
email hancock@spamcop.net
DOB, nationality 20 December 1951, British
degrees Department of Computer Science,

University of Edinburgh, 1996-2000
Doctor of Philosophy (Oct. 2000)

Queens College Oxford, 1969-1972
Double Honours (2.1) Mathematics and Philosophy

Employment History

Nexwave Solutions,
R&D Cambridge
Jul 2002-Feb 2003

Senior Engineer
Component based operating systems
Last salary:£40,000 pa

Swansea University,
Computer Science.
Feb-July 2001

Fixed term Lecturer B.
Developed and gave an Msc course, entitled
‘Faults and Fault Tolerance’.
Last salary:£24,227 pa

Digital,
VMS Engineering.
1988-1995

Principal software engineer.
Transaction processing, design of a queue manager,
file system architecture, patent applications,
formal specification, liason with universities.
Last salary:£36,253 pa

Metier
Management
Systems Ltd.
1982-1988

Senior software engineer.
Design of a message passing kernel and other system software
for a database machine, board design, microcoding,
diagnostics, system debugging.

Instron Ltd.
1981-1982

Software engineer.
Signal processing, control engineering, systems programming.

Oxford University
1978-1981

Research assistant on psychology projects.
Statistics, general programming,
signal processing, systems programming.

1



Research, Publications

Edinburgh
1995-2000

PhD study, Laboratory for the Foundations of Computer
Science, Thesis ‘Ordinals and Interactive Programs’
accepted October 2000: concerns interactive programming
and proofs of well foundedness in constructive type theory.

Peter Hancock, Anton Setzer: Interactive programs in
dependent type theory. In: P. Clote, H. Schwichtenberg:
Computer Science Logic. 14th international workshop,
CSL 2000. Springer Lecture Notes in Computer Science,
Vol. 1862, pp. 317 - 331, 2000.

Oxford
1985-1986

Wolfson Industrial Fellow, Programming Research Group
Oxford University Computing Laboratory. (Secondment from
Metier.) Functional programming: a self booting compiler.

Chapters 8-9 of ‘The Implementation of Functional
Programming Languages’, Simon L. Peyton-Jones,
Prentice-Hall 1986.

Oxford,Uppsala
1972-1978

Research in mathematical logic.
Type theory for constructive mathematics.
Collaboration with Martin-L̈of. “Hancock’s conjecture”.
Visiting Lecturer 1976 Uppsala University
Philosophy Department. Thesis abandoned 1978.

Stockholm University Department of Mathematics preprint
No. 3 1975, ‘Syntax and Semantics of the Language of
Primitive Recursive Arithmetic’, with Martin-L̈of.

Teaching

Edinburgh
spring 2000

Tutorials and marking to support
the second year computer science course.

Swansea
Feb-July 2001

Msc course (CS-M1) ‘Faults and Fault Tolerance’,
devised by myself.

2



Other Activities

Seminars on interactive programming at Heriot Watt, Nottingham, Swansea. Par-
ticipated in workshop on formal topology, Gothenburg May 2003.

Participated in the Esprit Working Group APPSEM, giving the following talks

• “the Model of Computable Terms”, at the Workshop on Normalization by
Evaluation, G̈oteborg, 8-9 May 1998. (Abstract in BRICS-NS-98-1.)

• “Interactive Programs in Type Theory”, at the Workshop on Subtyping and
Dependent Types in Programming, Ponte de Lima, Portugal, 7 July 2000.
(In Proceedings DTP’00.)

Opponent for Veŕonica Gaspes’ PhD thesis at Chalmers in 1997, and for Hen-
rik Persson’s Licentiate thesis at Chalmers in 1996. External referee for Felix
Joachimski’s PhD thesis at Munich in 2001.

During Oct-Nov 2000 I visited the Mathematischen Institut der Ludwig-Maximilians-
Universiẗat München for 2 months, at the invitation of Prof. H. Schwichtenberg.
The visit was funded by the Graduiertenkolleg Logik in der Informatik. Here I
gave a short course on machine-checked well-ordering proofs, and various talks to
the “Types club” in the computer science department.

In the last few years, I have refereed contributions to a number of journals and
conference proceedings, and a review for Mathematics Reviews. Other reviewing
is ongoing.

3



Research Interests

I have worked as an engineer in real-time programming, low-level systems design,
and on large operating systems projects connected with transaction processing.
There is a tension between my experience as an engineer and my interests in logic.

My interests include the following.

• Models of interactive behaviour in constructive type theory.
Together with Anton Setzer, and Pierre Hyvernat I have worked on models
for interactive programs in dependent type theory. The approach is aligned
with the so-called ‘IO monad’ used in functional programming languages
such as Haskell. We published a paper about this in CSL 2000. Some exper-
imental implementations was carried out by Pierre Hyvernat in 2001.
I have worked out a model of command-response interfaces and components,
that captures a significant part of an important ingredient of one notion of
system component with some demonstrable practical interest. This model
provides a constructive reading of Back and von Wright’s refinement cal-
culus. There are close connections with ‘formal topology’ as developed by
Sambin, according to which a system is a weak counterpart of a topological
point.
Together with Anton Setzer, I have explored one approach to a foundation
for coinduction in constructive type theory. The approach is based on a weak
form of the second-order existential quantifier. This work was presented at a
meeting in Dagstuhl in 2001.

• I’ve had a long standing interest in mathematical logic, particularly ordinal-
theoretic proof theory. This subject concerns with the extent to which a
formal system can recognise well-foundedness of relations, termination of
computations, and related phenomena. The ‘extent’ can be measured by a
countable ordinal. My PhD thesis included a machine checked proof of part
of an old conjecture of mine concerning the ordinal of a certain weak form
of Martin-Löf’s type theory. The proof is essentially an algebraic study of
a certain kind of non-monotone predicate transformer, deeply involved in
Gentzen’s proof. It may be that this notion can be applied to some stronger
forms of type theory, simplifying existing work in proof theory.

• Having had ‘software engineer’ in my job title for about 15 years, I am pro-
fessionally interested in what good engineering practice is, in the mix of
skills, talents and qualities one needs to turn ideas into on-time successful
products. I’m not sure that software engineering amounts to a systematic
body of teachable objective knowledge. I am interested in what it means to
apply mathematics, particularly in engineering. Perhaps these are not for-
mally research interests.

4



Referees

(Not posted on web)

5


