
A category of interfaces and components

⇒ DRAFT ⇐
Peter G. Hancock

Updated Nov 8th:
concatenated with notes on predicate transformers.

Contents

1 Introduction 3

2 Preliminaries and notation 9

2.1 Two notions of subset . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Relations and abstract transition systems . . . . . . . . . . . . . 13

2.4 Concrete transition structures and systems . . . . . . . . . . . . 14

3 Objects: interfaces 16

4 Morphisms: components 21

5 Examples of interfaces 23

5.1 Conventions for interfaces . . . . . . . . . . . . . . . . . . . . . . 24

5.2 Partial functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3 Memory cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.4 Faulty memory cell . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.5 Array of memory cells . . . . . . . . . . . . . . . . . . . . . . . . 26

5.6 Atomic array of memory cells . . . . . . . . . . . . . . . . . . . . 26

5.7 Unix memory array . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Loose ends 27

7 syntax 31

8 predicates and families 33

1



9 grammar 34

10 types and definitions 35

10.1 State transformers . . . . . . . . . . . . . . . . . . . . . . . . . . 35

10.2 Category of relations and simulations . . . . . . . . . . . . . . . . 37

10.2.1 ObjRel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

10.2.2 MorphRel . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

10.3 Category of predicate transformers and simulations . . . . . . . . 44

10.3.1 MorphPT . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

10.3.2 MorphPT . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

11 laws 49

2



1 Introduction

The notion of ‘interface’ pervades the use and construction of many kinds of
artefact, particularly computer programs. A common form of interface is a
command-response or imperative interface. In such an interface the user issues
commands, to which the system responds, in strict alternation. In computer
software, issuing a command is realised by passing control to a procedure or
method, and a response by returning control when the procedure terminates.

Programmers rarely write self-standing programs. Typically, they rely on
resources of various kinds, such as libraries1, the primitives of an operating
system or language ‘runtime’, and low-level interfaces or APIs (Application
Programming Interfaces). They may even be writing libraries, or device
drivers rather than user-level executable programs. They usually collaborate
in teams with other programmers, each responsible for some piece of a large
system. Even when a single person writes software to run directly ‘on the
metal’, they divide the problem into brain-sized chunks. The boundaries of
these chunks are interfaces.

The product of a programmer’s effort is in reality always something partial, a
component of a larger system. Commonly this takes the form of a module,
exporting one ‘high-level’ interface (for example files and directory trees) by
making use of another ‘low-level’ interface (for example disk drives and
segments of magnetic media).

Sooner or later every programmer is bound to ask themselves “what is an
interface?”, and “what is a component?”. This paper offers an answer to these
questions in the form of a mathematical structure, namely an enriched
category in which the objects represent command-resource interfaces, and the
morphisms represent components that map (or reduce) one interface to
another. The hom-sets are partially ordered, and the order represents a
certain kind of refinement or improvement between components.

It is characteristic of a program component or partial construction that it has
two ‘poles’, like the poles of a magnet. The poles of a component are
interfaces – one that is imported, which the component requires or relies on,
and one that is exported, which it supplies, provides or implements (on ‘top’ of
the imported interface). There is, as it were, a conditional guarantee: the
exported interface will work properly provided that the imported one works
properly. One may perhaps think of the exported interface as the positive pole
(something valuable), and the imported interface as the negative (a cost).

In practice the imported and exported interfaces of a real component
commonly have a great deal of structure, and may be subdivided in various
ways, and combined with administrative data. In detail, problems may arise in
finding suitable components, wiring them up, organising their start-up. There
are no solutions to these problems in what follows2.

Setting many problems aside, a picture for the programmer’s task is this:
1Commonly shared, dynamically linked libraries.
2Subdivision of interfaces is I presume related to products and sums of interfaces.
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The task is to ‘fill the box’. In this picture the horizontal dimension shows
interfaces. The exported interface is at the left (the ‘outside’), and the
imported interface at the right (‘the inside’). The vertical dimension shows
communication events (calls to and returns from procedures), with data
flowing from top to bottom: c and r communicate data from the environment,
while r and c communicate data to the environment. The labels c and r
constitute events in the higher level interface, while c and r are at the lower
level. The pattern of communication is that first there is a call c, then some
number of repetitions of pairs cr, then finally a return r. One may think of the
c’s and the r’s as opening and closing brackets of two different kinds (e.g.
round and square brackets) in a language of balanced strings denoted by the
regular expression:

(c(cr)∗r)∗

This regular expression abstracts away the nature of the calls and returns, and
the way they depend on the previous history of interactions.

The picture this gives of the assembly of a complete system is that one has a
series of to-be-filled boxes, with input arrows linked to output arrows with
wiring reminiscent of the Greek letter χ or a cross-bar. This cross-bar stands
for composition, or putting together components to form a complete system.
It plays a similar role for interactive systems to the piping combinator for
Unix ‘filter’ programs that consume and produce streams.
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What is an interface? The notion of an interface pervades the use, design
and implementation of devices of all kinds.

The structure below, whose presentation needs to be better organised, is my
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best effort so far to define a mathematical structure which can serve as a
model (in the sense of applied mathematics) for a particular important
common ingredient in the notion of interface.

The word ‘interface’ is extremely broad, with many uses and shades of
meaning covering communication phenomena in the use of artifacts of all
kinds. It is inevitable that we have to restrict ourselves to a specific kind of
interface, while trying to retain enough generality to cover a significant
amount of some important ingredient of the unanalysed intuitive notion.
Many phenomena will be out of scope, and indeed some that are important in
practice, which we would like to analyse and understand. So be it.

The form of our answer The structure takes the form of a category (with
a partial order on the hom-sets), in which the objects model interfaces, and
the morphisms model software components, from which entire systems may be
built or configured.

What use is a category? Given a little infra-structure, and some syntax, a
category serves as the basis for a type-theory. Thus we should have a
type-theory in which the types (objects of the category) represent interfaces,
and the terms (morphisms between objects) represent components.

The hom-sets represent, so to speak, the design space for a component; they
are partially ordered, and have a rich structure in which the order represents
the relation of replacebility or refinement between components with the same
import and export interfaces. This structure may serve as the basis for a
refinement calculus, in which equations and inequations between components
are proved by algebraic calculation.

Procedural interfaces The notion of interface to be captured in our model
can be called a procedural, or imperative, or command-response interface. In
such an interface, there are two parties or agents, that have asymmetric or
dual rôles: one is the client (who has the initiative in all interactions), and one
is the server (who speaks only when spoken to). There is an exchange of a
pair of messages. The client starts by issuing an instruction (or command),
that the server then commits or performs, returning a response or
acknowledgement. Issuing an instruction is very often realised by passing
control to some procedure in a program module, and commiting the
instruction by returning control back to the calling program with output
variables set up. My habit is to use the terminology of commands and
responses for both the events by which these imperative interactions are
initiated or completed, and also for the values or messages that are exchanged.

Atomicity The model described here has a severe shortcoming3 with
respect to the requirements of practical component-based systems: the
interaction steps which we shall study are atomic. Although calls and returns
are different successive events in the evolution of an interface, yet the response
to a command must follow it without any intervening event in that interface,

3which one might hope to remove, or at least to clarify
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such as a recursively nested call of some kind, or a call from some other thread
of activity in the running program.

Behavioural substance, not syntax It should be emphasised that what
we are looking for here is not the syntactic ‘shape’ of a command-response
interface. That is in practice coded using an interface description language
such as IDL. The information encoded is what is needed for marshalling data
for possible remote transmission, for error propagation, etc.. This is a matter
of parsing and unparsing.

Rather we want to capture is input-output behaviour, abstracting from details
of how input arguments and results are encoded. By input output behaviour I
mean a contract on which the programmer of a component which imports the
interface may rely, and which the programmer of a component which exports
the interface must guarantee.

We choose to ignore the way in which messages are encoded in a state 4.

questions of constructivity and predicativity It may be of some interest
that the category can be defined in a constructive and predicative setting.

One reason for working in a constructive framework is that a model set up in
such a framework for program components is automatically a ‘working’ model,
which in a sense ‘goes’. A constructive proof is ipso facto a program. In
principle, one might write executable program components in constructive
type-theory, and exploit type-checking to ensure that they behave correctly.

In practice, one has to write programs in programming languages other than
constructive type theory. To propose otherwise would be Quixotic.

The contribution dependent type theory can make to the practice of software
engineering may lie more at the level of specification and high level design,
than at the level of implementation, code, or verification. Types play no real
role when a program is running.

It may be more important that one can document the interfaces between
which components are programmed (using C, C++ or Java perhaps as a
programming language) by exploiting the notion of dependent type as
analysed in constructive type theory, with its universes and inductively defined
families of sets.

As Goebbels might have said, to gain control over things, one must first gain
control of the language in which we specify them.

One can raise the question of equality only in a predicative framework. In such
a framework the power of a set need not be a set (over which we may quantify
in forming propositions) but can be a ‘large’ object, akin to a proper class. In
an impredicative framework, it is trivial to define singleton predicates, à la
Leibnitz. a ε {s} ⇐⇒ (∀U : P(S)) s ε U → a ε U

I regard it as an advantage of a predicative framework that one can isolate the
operation of forming singleton predicates as a separable logical ingredient of
the idea of an inductive definition.

4Perhaps this can be studied using simulations, or interface refinements.
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It is a disadvantage of a predicative framework that one loses access to the
formally straightforward impredicative foundation for both inductive
definitions with definition by well-founded recursion, and co-inductive
definitions with definition of potentially infinite objects (and relations with
which to compare them) by forms of non-wellfounded recursion.

7



Sources

– Hoare’s process calculus CSP[2]. This has a variable-binding constructor
‘choice’ that resembles the supremum operation of a W -type (apart from
well-foundedness). Hoare’s book sketches an implementation of certain
CSP programs (vending machines, etc) using a lazy functional language.
As they run, the user makes choices from successivelt presented menus.
The presentation of a menu, followed by selection within it is a pattern
of alternating communication

– dependent state machines. One can extend the usual notion of
(deterministic) state machine in an interesting direction, by allowing the
set of commands to depend on the current state, and the set of responses
to depend on the state and input command. If one thinks of the
transition function of a (Mealy) state machine as something of type

S × C → R× S

and then allows the set C of commands to depend on the initial state,
and the set R of responses to depend on both the initial state and the
input command, one arrives at the type

(s : S, c : C(s)) → R(s, c)× S

This is the type of functions which map a state and a command to a
response and new state. These play a key rôle in server programs, as
discussed below (somewhere). If one starts instead with Moore machines,
one obtains a type that plays an analogous rôle for client programs.

Another point of departure is the notion of non-deterministic state
machines, and its analysis with dependent types.

– the ‘tree-sets’ of Petersonn and Synek [5]. Their trees were introduced as
parse trees in certain formal grammar. They provide the right setup for
describing interaction structures, and associated notions. This setup can
represents a formal grammar in which a number of syntactical categories
are defined in terms of unions of sequential patterns:

S : Set syntactical categories
C : S → Set alternates, per category
R : (s : S) → C(s) → Set conjuncts, per cat/alt
n : (s : S, c : C(s)) → R(s, c) → S category of conjunct

They gave a description of the syntax trees induced by such a structure.
This is an a simultaneous inductive definition of a indexed family of sets
of trees, where the index set is fixed (= S). The definition they gave is
the ‘nub’ of the reflexive transitive closure operator ∗ on interaction
structures.

– several remarks by Thierry Coquand, particularly concerning the
importance and interest of simulation relations.

– formal topology as developed over more than a decade by Giovanni
Sambin, recently with several collaborators. Interaction structures
provide examples of Sambin’s ‘basic’-topologies (check!), giving yet more
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evidence of the interest of this notion. A ‘basic’ topology is a little wilder
than the ordinary kind of topology. Cite something.

Indicate something about Distributivity? Localisation?

– Back and von Wright’s refinement calculus [1]. This is a calculus for
reasoning about inclusion between predicate transformers (also relations
etc.). It has a highly algebraic flavour, and smooth ergonomical features
necessary for a working calculus.

Interaction structures are essentially predicate transformers, presented in
a concrete, computational form. Predicate transformers have been linked
with the semantics of programming languages since the earliest
investigations into program correctness. The key thing a prospective
client wants from a specification of an imperative interface is a predicate
transformer that lets the client work out what has to be established first,
in order to establish (bring about) a desired predicate in a single cycle or
operation of the interface.

I diverge from Back and von Wright’s notation in a number of respects,
primarily in using “angle brackets” 〈 〉 for angelic update. Back and von
Wright use { }, using angle brackets for functional updates.

– the insights and collaboration of Anton Setzer. Anton defined a notion of
‘redirection’ between interfaces that is close if not identical to the notion
of simulation defined here. He has studied the situation in which
state-dependency is absent. He has studied the question of justifying the
use of coinductively defined notions in dependent type theory.

– the insights and collaboration of Pierre Hyvernat. Pierre has connected
interaction structures with Sambin’s basic topologies: this suggested the
idea of coarsening the equivalence relation on simulations from
extensional equality to extensional equality of saturations. He has also
connected them with certain notions in Girard’s ludics, linear logic, and
game-theoretical approaches to program semantics. He has established
several properties of the category of interfaces and simulations, and
shown that this category provides (at least in an impredicative and
classical setting) a model for full linear logic.

2 Preliminaries and notation

The following is an incomplete collection of basic notions, notations and
terminology needed to present the category.

2.1 Two notions of subset

We distinguish two notions of subset, or more precisely two ways in which a
subset of a set can be given. To present them immediately, they are as follows.

{ s : S |P (s) }
{ si | i : I }
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The first picks out the subset’s elements, according to whether they satisfy a
predicate. The second runs through them all, as i various over I.

It is enlightening to present the distinction between these two notions as a
contrast between functors of different variance, called here F( ) and P( ).

In a predicative context, they are endofunctors on a ‘large’ category of types5

which has not only normal mathematical sets for its objects, but also the type
Set itself, and types built on top of it by dependent function and product
types. The morphisms between such objects are functions, that map a
domain-type into a codomain type.

Our two endofunctors are as follows.

– The propositional power P( ). Here one thinks of a subset of a set S as
a propositional function, predicate or criterion which distinguishes those
elements of S which are members of the subset from those which do not.
(Sheep and Goats.)

P( ) : Type → Type
P(S) ∆= S → Set
( typical form ) P = { s : S |P (s) } : P(S)

P( ) : (A,B : Type) → hom(A,B) → hom(P(B),P(A))
P(f : A→ B){ b : B |P (b) } ∆= { a : A |P (f(a)) }

Note that this functor is contravariant. Its operation on morphisms is
sometimes known as the inverse-image f−1 or precomposition (·f)
operator. In programming, it is a functional state update or assignment
s := f(s) . The axiom which corresponds to this notion of subset in ZF
set-theory is the separation schema, which guarantees that the subsets of
a set picked out by predicates over that set are themselves sets.

– The parametric power F( ). Here one thinks of a subset of a set or
type S as a morphism into S defined on some other ‘index’ set. Here
there is a parametric expression t(i) with a free variable i (the
parameter) varying over some index set I.

F( ) : Type → Type
F(S) ∆= the type of pairs 〈I, t〉 with I : Set, t : I → S
( typical form ) 〈I, t〉 = { t(i) | i : I } : F(S)

F( ) : (A,B : Type) → hom(A,B) → hom(F(A),F(B))
F(f : A→ B){ t(i) | i : I } ∆= { f(t(i)) | i : I }

Note that the functor F( ) is co-variant. Its operation on morphisms is
most often known as direct-image ∃f (U) = f(U) = { f(u) |u ε U }, or
postcomposition : (f ·). The axiom of ZF set-theory that is most relevant
to this notion of set is the replacement schema, which guarantees that
the images of sets under functional relations are themselves sets.

5It is necessary to use such a large category only because we want to allow that the powerset
of a set need not be a set. Something else we can do is localise things to a universe.
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2.2 Identity

The propositional and the parametric notions of subset of a set S are linked
via the relation of equality, or propositional identity between elements of the
set S. The relation associates with any element s of a set S the singleton
predicate {s} which holds of just that element.

The singleton predicate ‘behaves with respect to other predicates’ as follows:

{ s } ⊆ U
∆= U(s) ∆= { s } G U

One might also write this predicate using section notation: either (= s) or
(s =). In the same notation, the equality relation is written (=).

If we abstain from or confine the use of this operation to regions which are as
small as possible, the two forms of the notion of subset fall into relief.

To obtain a predicate from a family requires use of a relation such as equality.
To obtain a family from a predicate requires quantification over states.

There are different approaches to propositional identity.

– that it is a reflection of judgment-level equality. This is the approach
taken in so called extensional type-theory, in which a proof of an
propositional equation can be used to justify an equational judgement.

Adopting this approach raises problems for the mechanisation of
extensional type theory, as type-correctness is then undecidable.

– that if S is a set and if s is an element of S, then the singleton predicate
{s} is inductively definable as the strongest (least) predicate satisfied by
the value s. This is the approach taken in intensional type-theory.

This approach is not entirely satisfactory, as in many sets (for example
sets of functions) intensional equality makes dubious mathematical
sense. Moreover proofs of intensional equations have no computational
meaning: we have no interest in their canonical form, beyond in its mere
existence.

– that sets are intrinsically quotients. Depending on the set, one defines
ad lib an appropriate relation of equality between elements of that set
(e.g. equiconvergence between Cauchy sequences of rationals; or
whatever seems appropriate, so long as it yields an equivalence relation).
Of course, one has then to confine oneself to predicates and operators
which depend only on the equivalence class of a value, rather than on the
representing value itself.

In some sense, identity (or the operator which produces a singleton predicate)
is a source or locus of non-computational phenomena in type theory. I prefer
for methodological reasons to confine use of the general notion of singleton
predicate (beyond its use in connection with an explicit equivalence relation)
to regions which are as small as possible.

The distinction between subsets à la predicates and subsets à la families is
grammatical: a distinction between forms of expression. The grammatical
distinction reflects the different use to which predicate and family expressions
are put. We use the predicate form in connection with saying something
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(forming a proposition), whereas we use the latter in connection with doing
something (computing a chosen element in the subset).

In the examples given later (??), we make use of yet another notion of
‘singleton’. Given a set S and an equivalence relation = on S, one can form for
each s ∈ S the set of elements of S that are equivalent to s, written {s}= or
(= s). The elements of this set are pairs, consisting of an element s′ of S and a
proof of the equation s = s′. The set {s} can be defined using the existential
quantifier with its constructive interpretation as (∃x ∈ S) x = s, or (in terms
of the singleton predicate) as (∃x ∈ S) x ε {s}. Note that an element of a
singleton set is a value, together with a proof that it is in the appropriate
equivalence class.

If the equivalence is boolean-valued (decidable), the canonical form of the
proof of an equation can be of no interest: it will be ‘tick’, ‘ok’, the sole
element of the standard singleton set – a pure certificate.

The ‘interesting’ part, if not the whole of an element of a singleton set is the
value itself.

Notation for predicate application I sometimes use the symbol ε for
‘backwards’ application of predicates to values, so that if P is a propositional
subset of a set S, and s is an element of S, the proposition

s ε P

says that P holds of s. The elements of s ε P are just those of P (s).

Location of families with respect to predicates Even without use of
propositional identity, it is possible to state that a parametric subset
t = { t(i) | i : I } : F(S) is ‘located’ with respect to a propositional subset
P = { s : S |P (s) } : P(S) either by inclusion or overlapping:

t ⊆ P means (∀i : I)P (t(i))
t G P means (∃i : I)P (t(i))

The splendid notation A G B for overlapping (that hides an existential
quantifier in the same way as A ⊆ B hides a universal quantifier) is due to
Giovanni Sambin.

Predicates can freely be compared with predicates by ⊆ and G. Other forms of
comparision (for example between parametric subsets) require use of the
identity relation to replace a family in ‘operating position’ with a predicate.

Algebraic structure vs. computational content Predicates are closed
under union and intersection of indexed families, forming a distributive lattice,
having all set-indexed suprema and infima, notions of complement and
implication. On the other hand families are closed only under indexed union.

Predicates are connected with what we say, or specify: they support a rich
algebraic structure. Families are connected with what we do or compute: they
form an impoverished algebraic structure, which is the price we pay for having
something ‘computational’ (a family) – which in the case consumes an
externally selected index (or choice) and produces a value.
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2.3 Relations and abstract transition systems

By a relation I mean a binary propositional function, or a predicate ‘with a
parameter’. A relation between A and B is an element of the (proper) type

A→ P(B) ∼= P(A×B)

The isomorphism will be referred to below as ‘Currying’, as it is analogous to
replacing an ordered pair argument by two separate arguments for the first
and second coordinates. A relation is homogeneous if its two argument-places
have the same type; for example the equality relation on a set is homogeneous.

Roughly speaking, the algebraic structure of relations is that of predicates,
and then some. The additional ‘some’ is essentially:

sequential composition R1 ;R2, with its identity skip.

division R1/R2. Together with sequential composition, this satisfies the
following adjunction:

S ;R2 ⊆ R1 iff S ⊆ (R1/R2)

inversion R∼, which is an involution.

closure operations R?, R+, R∗, for (respectively) reflexive, transitive, and
reflexive-transitive closure of a homogeneous relation R.

graphs graphs6 of functions f : A→ B written

graph f : A→ P(B)

Note: As relations, the graphs of functions are both deterministic
(simple, at-most-one-valued, meaning R∼ ;R ⊆ 1), and total (entire,
at-least-one-valued, meaning 1 ⊆ R ;R∼). As predicate transformers
〈f〉 = [ f ] = (·f) = P(f). (Such a predicate transformer commutes with
all intersections and unions.)

tests A test is a relation in which the state does not change (and so the
relation must be a subset of the equality relation. Tests are written

testU

Note: restriction of a relation in the domain or codomain can be effected
by composing it with a test on one side or the other.

Spans. Any relation can be put into the form (graph f)∼ ;graph g, that is
of first the inverse of a function, then a function. Such a pair of functions
(essentially an element of F(A×B)) is called a span, and a partial order can
be defined between spans which reflects inclusion between relations.

A similar trick works at the next level: one can factor any predicate
transformer into one which commutes with unions, followed by one which
commutes with intersections.

6This needs the identity relation. A complete account of assignment involves taking states
to be records in which the fields correspond to assignable variables.
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Categories of relations The category rel whose objects are sets and whose
morphisms are relations has a rich structure on its homsets, particularly so
when the relations are homogeneous (i.e. endomorphisms).

It helps to think first of the category of ‘arrows’ over rel , which we might write
rel↓. The objects of this category are relations A→ P(B) for types A and B,
and the morphisms from α : A→ P(B) to β : C → P(D) are pairs of relations
Q1 : A→ P(C), Q2 : B → P(D) such that we have a subcommutative square

Q1
∼ ;α ⊆ β ;Q2

∼

Note that the subcommutativity condition can also be written as a simple
inclusion: Q1 ⊆ ((β ;Q2

∼)/α)∼. We call this the category of relations and
subcommutative squares between them.

When the domain and the codomain of a relation are the same, the relation is
said to be homogeneous. A homogeneous relation is the same thing as an
endomorphism in rel . These form a category of ‘cycles’ over rel , which we
might write rel�. The morphisms from α : A→ P(A) to β : B → P(B) are
relations Q : A→ P(C) such that

Q∼ ;α ⊆ β ;Q∼

We call this the category of homogeneous relations and elementary
simulations. The word ‘elementary’ is supposed to call to mind that a step
taken in the simulated homogeneous relation corresponds to a single step in
the simulating homogeneous relation.

We also need the notion of a pointed relation, or relation together with a
notion of ‘current’ or ‘initial’ state. 7

When the domain and the codomain are equal, and we additionally have a
distinguished initial state, the most natural course is to require that
simulations relate the initial states. We call this the category of abstract
transition systems.

‘Abstract’ because the transitions are not indexed by a set. An unlabelled
transition system is just a binary relation on a set, whereas a labelled
transition system is a family of relations indexed by labels. (An ‘axiom set’ in
Giovanni’s sense is the same as a function S → F(P(S)), which is a version of
labelled transition system in which one gives for each state s the set L(s) of
labels on transitions from that state. Each label l : L(s) determines a predicate
holding of states to which there is a transition from s: the transition itself is
perhaps the proof that the predicate determined by s and l has solutions.

2.4 Concrete transition structures and systems

Transition structures are the concrete, computational counterpart of relations,
and relations the abstract, specificational counterpart of transition structures.
Whereas a relation is something whose type has the form A→ P(B), a
transition structure is something whose type has the form A→ F(B).

7Another idea that may need a name is a relation together with a non-empty set of ‘start’
or initial sets.
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I shall use Greek letters φ, ψ, . . . to denote transition structures. A transition
structure φ : A→ F(B) is given by two pieces of data: a family of index sets
{Tφ(a) | a : A }, and a corresponding family of indexing functions

a 7→ { a[i]φ | i : Tφ(a) }

In a transition structure, a state is interpreted as a 1-dimensional array. (The
index set may depend on the state.) In an interaction structure it is
interpreted as a 2-dimensional entity, or generalised matrix. (The
generalisation is un-even-ness: that the index set for a row may depend on the
column.)

In comparision with relations, the algebraic structure of transition structures is
impoverished. They are closed under neither inversion nor intersection. They
are nevertheless closed under indexed union, sequential composition, and in the
homogeneous case under reflexive, transitive and reflexive-transitive closure.

Tangentially, transition structures support some arithmetic structure, much
the same as Cantor’s order types. There are natural definitions of zero,
ordered addition, successor, multiplication, and ordered sum that make one
and multiplication a monoid, and zero and addition a monoid commuting with
multiplication on the right. The operations preserve transitivity and
well-foundedness.

Not only can transition structures be combined with other transition
structures, they can also be combined with relations in interesting ways,
yielding relations. That is to say, a transition structure can be used as a
relation-transformer. Among these uses are the following; note that the
definition of these operators (pre-composition, post-division) does not require
any use of the identity predicate.

(φ ;R) (R/φ)

The definitions are as follows.

(φ ;R)a = { c |φ(a) G R∼(c) } = (〈φ〉 ·R∼)∼a
(R/φ)a = { b |φ(b) ⊆ R(a) } = ([φ ] ·R)a

In combination with inversion, these operators are sufficient to define directly
(i.e. without use of identity) the notion of (relational) simulation between
concrete transition structures. A simulation is a post-fixed point for a certain
operator on relations which can be defined using pre-composition and
post-division by the two transition structures.

Two transition structures φ : A→ F(B) and ψ : C → F(D) determine a
certain ‘backwards’ relation transformer from B → P(D) to A→ P(C), whose
value at a relation R is the relation which maps a : A to the predicate:

{ c : C | (∀i : Tφ(a))(∃j : Tψ(c))R(a[i]φ, c[j]ψ) }

The relation transformer can also be written R 7→ ((ψ ;R∼)/φ)∼, or even
((∼) · (/φ) · (ψ ;) · (∼)) where ‘·’ stands for composition of relation transformers.

An elementary simulation of transition structure φ : A→ F(A) by
ψ : B → F(B) is then a relation Q : A→ P(B) such that

Q∼ ;φ ⊆ ψ ;Q∼
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A concrete transition system consists of a set S, a transition structure
φ : S → F(S), and an initial state s0 : S. A elementary simulation between
transition systems is defined to be an elementary simulation of the transition
structure of one by the transition structure of the other, which relates the two
initial states. A (general) simulation (also called a refinement) is defined to be
an elementary simulation of one transition system by the reflexive and
transitive closure of the other.

Ref[τ1 → τ2] = Sim[τ1 → τ∗2 ]

One could perhaps use the terminology “linear” instead of “elementary”. Then
it is natural to call a morphism in Sim[τ1 → τ2

?] an “affine” simulation, and
Sim[τ1 → τ2

∗] a general simulation.

The terminology isn’t good.

3 Objects: interfaces

To recapitulate, we have two functors P( ) and F( ), and from these two
subtly different notions of relation: ‘true’ relations A→ P(B) and transition
maps A→ F(B).

Relations (of either kind) can be presented as objects in a category of ‘arrows’
over the category of sets and relations, in which the morphisms are
sub-commutative squares.

When A = B, the arrows are in fact cycles, and we have something that can
be iterated, or combined with identity (equality) in various ways. We say that
we have a structure. When we also have a designated initial state, we say we
have a system. Between systems (of either kind) we have a category in which
the morphisms are simulation relations that hold between the initial states.

A transition structure models a program whose progress from state s : A to
state s[t] : B requires choice of an index t : T (s) (as it were requires some
external agency to supply the t’s in a one-way form of interaction). A relation
(in the propositional sense) models a specification for a function f : A→ B,
and need not be executable or constructive in any sense.

So much for relations and transition structures, where there is one level of
choice; now we come to predicate transformers and interaction structures.
These introduce a second level (or dimension) of choice.

An interaction structure from a set S to a set S′ is an object of type

S → F(F(S′))

It is given by the following data:

– For each s : S a set C(s) of commands that may be issued in state s

– For each s : S and c : C(s) a set R(s, c) of responses to command c
issued in state s

– For each s : S, c : C(s) and r : R(s, c) a state n(s, c, r) : S′.
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For comparision, a predicate transformers from a set A to a set B is an object
of the type

A→ P(P(B))
∼= ( Curry )

P(A× P(B))
∼= ( flip arguments )

P(P(B)×A)
∼= ( Curry, in reverse )

P(B) → P(A)

Between predicate transformers8, we define a partial order, by lifting the
inclusion relation between predicates “pointwise”: F v G means
(∀X : P(B)) F (X) ⊆ G(X). Equality is then pointwise extensional equality.
Note that the definitions of inclusion and equality use quantification over
predicates X : P(B). In a predicative setting this raises some difficulties.

An interaction structure Φ : S → F(F(S)) determines two monotone predicate
transformers : P(S′) → P(S), which I call disjunctive and conjunctive normal
form respectively. Also angelic and demonic. Also SigmaPi and PiSigma.

Φ◦,Φ• : P(S′) → P(S)
Φ◦(U) ∆= { s : S | (∃ c : C(s)) { s[c/r] | r : R(s, c) } ⊆ U }
Φ•(U) ∆= { s : S | (∀ c : C(s)) { s[c/r] | r : R(s, c) } G U }

The former ( ◦, that is dnf) is more fundamental in the sense that latter ( •,
that is cnf) can be re-expressed in angelic form by applying the axiom of
choice. We mention • again only in connection with inversion.

We do not explicitly write the function which coerces an interaction structure
Φ to the predicate transformer Φ◦, where the ambiguity can be resolved by the
context.

Observation: interaction structures are morphisms of a category IS in which
the objects are sets, and the homsets are lattices, closed under indexed
suprema and infima.

Composition in the category is defined as follows.

CΦ;Ψ
∆= { s : S | (∃ c : CΦ(s)) (∀ r : RΦ(s, c)) CΨ(s[c/r]) }

= Φ(CΨ)
RΦ;Ψ(s, 〈c, f〉 : Φ(CΨ, s))

∆= (∃ r : RΦ(s, c)) RΨ(s[c/r]Φ, f(r))
s[〈c, f〉/〈r, r′〉]Φ;Ψ

∆= (s[c/r]Φ)[f(r)/r′]Ψ

The unit of composition we call skip, which maps a state s to the singleton
family of the singleton family of s. (The point is that we should have skip◦

the identity with respect to ;.)

Cskip(s) ∆= N1

Rskip(s, ) ∆= N1

s[ / ]skip
∆= s

8We are interested here in monotone predicate transformers only
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Suprema are defined as follows.

Cti∈IΦi

∆= { s : S | (∃ i ∈ I) Ci(s) }
=

⋃
i∈I Ci

Rti∈IΦi
(s, 〈i, c〉) ∆= Ri(s, c)

s[〈i, c〉/r]ti∈IΦi

∆= s[c/r]i

The supremum of the empty family is ‘abort’, which is the worst possible
program for the angel. Thought of as a contract one might make use of, it is
entirely useless. Nothing is guaranteed.

Infima are defined as follows.

Cui∈IΦi

∆= { s : S | (∀ i ∈ I) Ci(s) }
=

⋂
i∈I Ci

Rui∈IΦi(s, f) ∆= (∃ i ∈ I) Ri(s, f(i))
s[f/〈i, r〉]ui∈IΦi

∆= s[f(i)/r]i

The empty infimum is sometimes called ‘magic’, or ‘miracle’. Such a resource
could be used to accomplish the impossible. (Pierre calls it ‘stop’ .. check.)

When the codomain and the domain of an IS are the same (ie. it is
homogeneous, an endomorphism), there is a lot of further structure: closure
operations: ? (reflexive closure), ∗ (transitive and reflexive closure), +

(transitive closure). These jointly satisfy

Φ? = skip t Φ
Φ∗ = (Φ+)?

Φ+ = Φ ; Φ∗

They can be constructed entirely at the level of C’s and R’s. The following
comprises an inductive definition of the S-indexed family of sets

CΦ∗ : P(S)

This is followed by a definition of a function of type (∀ s : S) C(s) → F(S) by
(well-founded) recursion on the second argument c. Note that strictly
speaking, we presuppose a universe of sets which contains N1 and is closed
under (∃ . . .) .

CΦ∗
∆= (µU : S → Set) (∀ s : S) N1 + Φ(U, s) ⊆ U(s)

= Φ∗(True)
RΦ∗(s, i 1) ∆= N1

RΦ∗(s, j 〈c, f〉)
∆= (∃ r : RΦ(s, c)) RΦ∗(s[c/r]Φ, f(r))

s[i 1/1]Φ∗
∆= s

s[j 〈c, f〉/〈r, r′〉]Φ∗
∆= (s[c/r]Φ)[f(r)/r′]Φ∗

For each state s, the elements of CΦ∗(s) can be seen as ‘client’-programs. An
agent running it issues a sequence of commands. After each command, it waits
for a response The program then tells the agent what to do next depending on
the response. This is the behaviour of a client. Eventually, there are no more
commands to be issued, there is an exit from the program and the run
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terminates. (This the behaviour of a client which terminates.) Given such a
program c, the elements of RΦ∗(s, c) can be seen as traces, logs are histories of
responses to the program c with the property that they lead to an exit point of
the program. They are witnesses to the fact that there are ‘holes’ or exits in
the program. (A ‘hole’ should not be thought of as a defect; in fact ‘exit’ is the
same as successful completion.) Each such trace r determines a state s[c/r]Φ∗ ,
which is the state of the interface when the program exits.

angelic and demonic update Relations (of either the propositional or
computational variety) lift to predicate transformers – in two ways. If Q is a
relation of type A→ P(B), then we define two predicate transformers, for
which we adapt the notation of Back and von Wright.

〈 〉, [ ] : P(B) → P(A)
〈Q〉(U : P(B)) ∆= { a : A |Q(a) G U } ( angelic update, assertion )

[Q ](U : P(B)) ∆= { a : A |Q(a) ⊆ U } ( demonic update, assumption )

C〈Q〉
∆= 〈Q〉(True)

R〈Q〉(s, 〈s′, 〉)
∆= N1

s[〈s′, 〉/ ]〈Q〉
∆= s′

C[Q ](s)
∆= N1

R[Q ](s, ) ∆= s ε 〈Q〉(True)
s[ /〈s′, 〉][Q ]

∆= s′

Note that 〈φ〉 and [φ ] make perfectly good sense where φ is a transition
structure. These operations can be defined without use of singleton predicates.

C〈φ〉
∆= Tφ

R〈φ〉(s, t)
∆= N1

s[t/ ]〈φ〉
∆= s[t]φ

C[φ ](s)
∆= N1

R[φ ](s, ) ∆= Tφ(s)
s[ /t][φ ]

∆= s[t]φ

The notation ‘〈 〉’ is used instead of Back and von Wright’s brace notation
{ }, which collides with our use of set theoretic use of braces. The notations
〈 〉 and [ ] are intended to be reminiscent of modal operators.

Assertions and assumptions of predicates An assertion of a predicate U
is an angelic update9 where the relation does not change the state. (A
‘stuttering’ step, in Lamport’s terminology.) The relation which constrains the
angel’s choice is the reflexive relation (U �eq). The angel has therefore merely
to establish that U holds – there is no choice for the next state. Dual to
assertions of predicates, we also have assumptions, where the burden of
establishing the predicate is instead on the demon. The generalisation of
assertion and assumption from predicates to general relations is clear.

9The angel is anyone on the test team, who has to ensure that a step takes place which is
described by the relation.
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Commuting with . . . Angelic update, being ‘existential’, commutes with
arbitrary unions (is strict and defined by its action on singletons). (This is a
kind of degeneracy.) On the other hand demonic update, being ‘universal’,
commutes with arbitrary intersections. (Also degenerate.)

Interestingly, although demonic update does not in general commute with
unions, it is continuous (i.e. commutes with unions of directed families) under
the restriction that the relation is total and image-finite (finite but non-empty
range per element).

Continuity is an interesting property of predicate transformers, which seems
be close to the idea of implementability for interactive programs. Back and
von Wright.

To restrict ourselves to continuous predicate transformers, we have only to
restrict demonic updates to such relations, and abstain from infinite u.

Accessibility and its dual The following fundamental properties of
predicates with respect to a relation can be defined as pre-fixed or post-fixed
points of these update commands.

U is φ-progressive [φ ]U ⊆ U
U is φ-invariant U ⊆ 〈φ〉U

The predicate transformer that assigns to a predicate U the least (i.e.
strongest) φ-progressive predicate A(U) that includes U, which is of course a
closure operator, is called here the accessibility transformer. When U is empty,
the accessible elements are also called well-founded. Dually, the predicate
transformer that assigns to a predicate U the greatest (i.e. weakest)
φ-invariant predicate I(U) that is still contained in U , which is of course an
interior operator is (here) called the safety transformer. It picks out from a set
of states those elements from which there is an infinite stream of φ-transitions
entirely in that set. When U is the trivial predicate which holds universally,
the safe states are non-wellfounded, in a ‘positive’ sense.

Relational composition and division obtained from updates
Sequential composition and division are closely connected to angelic and
demonic update respectively, via inversion:

(R1 ;R2) = (〈R1〉 · (R2
∼))∼

(R1 ;R2)a = 〈R2
∼〉(R1a)

(R1/R2)a = [R2 ](R1a)
(R1 \R2) = ([R1

∼ ] · (R2
∼))∼

In pointfree form:
(R1 ;) = (∼) · (〈R1〉·) · (∼)
(;R2) = (〈R2

∼〉·)
(/R2) = ([R2 ]·)
(R1\) = (∼) · ([R1

∼ ]·) · (∼)

Verification of the equations involving angelic update is straightforward,
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starting from the following equations.

(R1 ;R2)a = { c |R2
∼(c) G R1(a) }

= 〈R2
∼〉(R1a)

(R1 ;R2)
∼
c = { a |R1(a) G R2

∼(c) }
= 〈R1〉(R2

∼c)

The match-up with Giovanni’s10 notations seems to be as follows:

Giovanni Back and von Wright

r− ( existential anti-image ) 〈r〉 ( angelic update, assertion )

r∗ ( universal anti-image ) [ r ] ( demonic update, assumption )

r ( existential image ) 〈r∼〉
r−

∗
( universal image ) [ r∼ ]

The two notation styles do not harmonize nicely11. (It does however seem to
be safe to steal from Giovanni and write just R(U) for 〈R∼〉U , and hence
R∼(U) for 〈R〉U ; and this is a large part of the charm of Giovanni’s notation:
the overloading of the notation for application to suit the common case.)

Our category has for its objects triples:

〈S,Φ : S → F(F(S)), s0 : S〉

which we call interaction systems, or (tendentiously) interfaces.

Next we turn to its morphisms.

4 Morphisms: components

What is the appropriate notion of morphism between interaction systems? It
should be a “partial” implementation of its exported interface, that can make
use of an implementation of its imported interface. We analyse this notion as
follows:

– first we define an elementary simulation to be a relation between states
equipped with a certain “back and forth” mapping which translates
export-commands to import commands and import responses to export
responses in such a way that the illusion of an implementation of the
domain interface can be perpetually maintained. Elementary simulations
also relate the initial states.

– It turns out that the operation of transitive and reflexive closure is
(among other interesting operations) a monad in the category of
interaction systems and elementary simulations.

– It may be that a command in the upper-level interface requires zero, one
or more interactions with the lower-level interface before a high-level

10beastly, horrid, . . .
11To put it mildly. The discord between of ∗ and the usual notation for reflexive and

transitive closure is ear-splitting.
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response is ready. We model this by moving to the Kleisli category for
the monad ∗. This is our ‘real’ category. A (general) simulation12 of
interface A by interface 〈B,Φ : B → F(F(B)), b0〉 is an elementary
simulation of A by the interaction system 〈B,Φ∗, b0〉

– we define a poset structure between simulations. This again makes use of
the transitive and reflexive closure, this time to close the set of low-level
states that can simulate a high-level state inductively – this closure
operation is called saturation. We treat each simulation as equal to its
saturation. We place on simulations the associated partial order, i.e.
extensional inclusion of saturations). This order is coarser than
extensional inclusion. Simulations form a complete lattice with respect
to this partial order.

Definition Let Φ : A→ F(F(A)) and Ψ : B → F(F(B)) be two interaction
structures. An elementary simulation of Φ by Ψ is a relation Q : A→ P(B)
which satisfies

Q(a) ⊆
⋂

c:CΦ(a)

Ψ(
⋃

r:RΦ(a,c)

Q(a[c/r]Φ))

We now tease apart what this says. The relation Q should be such that for all
a and b,

Q(a, b) →
(∀ c : CΦ(a))
(∃ c′ : CΨ(b))
(∀ r′ : RΨ(b, c′))
(∃ r : RΦ(b, r′))

Q(a[c/r]Φ, b[c′/r′]Ψ)

This can, by using the axiom of choice, be pulled into a yet more
“computational” form: there should exist, for all pairs of states a : A and b : B
such that Q(a, b), functions

γ : CΦ(a) → CΨ(b)
δ : (c : CΦ(a)) → RΨ(a, γ(c)) → RΦ(b, c)

such that

(∀ c : CΦ(a), r : RΨ(γ(c))) Q(a[c/δ(c, r)]Φ, b[γ(c)/r]Ψ)

If we have a simulation relation, then the proof that it is a simulation can be
used as a program to translate Φ-commands to Ψ-commands, and to translate
the Ψ-responses so evoked to Φ-responses to the original command.

Properties of simulation There are a number of key properties of this
notion of simulation. The following shows that a simulation enjoys a
“sub-commutativity” property (Lamport has the terminology ‘right-moving’)
in analogy with the notion of simulation between relations.

〈Q∼〉 ; Φ v Ψ ;〈Q∼〉
12This was called a refinement in my notes with Pierre.
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The following (which amounts to the same thing) states that a simulation
preserves the covering structure of an interface.

U ⊆ Φ(V ) → 〈Q∼〉(U) ⊆ Ψ(〈Q∼〉(V ))
( which looks better in Giovanni-speak: )

U CΦ V → Q(U) CΨ Q(V )

We compare elementary simulations by relational inclusion and extensional
equality.

Monads for elementary simulation It then follows that the operations of
reflexive and transitive closure ∗, reflexive closure ?, and transitive closure
+ are all monads in the category of interaction structions and elementary

simulations. These correspond to different kinds of “flexibility” we can add to
elementary simulations.

General simulations So much for elementary-simulations between
interaction structures (from and to the same state-space). We now define a
simulation between interaction systems (with an initial state) to be an
elementary simulation of the exported interface by the reflexive and transitive
closure of the imported interface (allowing zero, one or more calls to the
imported interface). We should also have Q(a0, b0).

That is, we take for our monad the reflexive and transitive closure, which
offers maximum flexibity. Furthermore, since we are dealing with structures
with designated initial states that we require to be related, we do not have
empty simulations.

Their ordering However the partial order we put on simulations is weaker
(more coarse) than relational inclusion. We define Q v Q′ (between
simulations by a saturated interface Ψ = Ψ∗) to mean

(∀ a : A) Ψ∗(Q(a)) ⊆ Ψ∗(Q′(a))

In Giovanni’s terminology, we replace relations by their saturations. We use
the monad to define the partial order.

5 Examples of interfaces

The following sketched examples concern memory interfaces. These are in a
sense the simplest non-trivial (history sensitive) interfaces. They are extremely
well-behaved. They can be ‘idempotent’ in a certain sense: meaning that
repetition of writes (or replaying sequences of writes) is harmless. Memory
interfaces are ‘universal’, in the sense that an arbitrary state machine can be
implemented by storing its state in a memory.

Sketch of :

– a simple memory cell.

– a memory cell with ‘bad’ writes.
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– an addressible array of (simple) memory cells.

– an addressible array of memory cells with atomic update.

– a ‘unix’ memory array, with interruptible operations on sets of memory
cells.

Coming attractions (maybe): memory cells with write timestamps; to make a
change from memory cells, an arbitrary (Mealy) state machine. There are
some interesting examples of cached memory in in [4]. They are presented in a
form not too far from the below.

Although there are examples of interfaces, there ought also to be examples of
simulations.

5.1 Conventions for interfaces

My habit is to use constructors to represent ‘opcodes’ of a command set. The
operands are the input arguments for that opcode. If C is an opcode, then I
use C as a constructor for replies to an instruction with opcode C. (This is a
slight notational gesticulation towards CCS.)

In certain cases, one of the components of the input or output operands is a
proof, typically of a decidable (i.e. boolean) statement. We may suppose that
no computational use is made of such an operand: it is a sheer ‘certificate’,
that can be quoted in the preparation of other such certificates. We know
perfectly well what the form of a proof of a boolean statement is.

5.2 Partial functions

Many examples require some machinery for partial functions. Partial functions
are relations which are single-valued on their domain.

When there are several memory cells, it may be that one has access to certains
sets of addresses simultaneously. We usually have a total order on the
addresses and may have access to all addresses in the union of certain sets of
disjoint intervals simultaneously.

We have not only a set A of addresses but also a family I of (decidable)
subsets of A. I should be closed under intersection and symmetric ??
difference13. If a set of addresses is in I, then the locations with those
addresses can be accessed simultaneously.

In the following I write A+→V for some implementation of the partial
functions from A into V , where the domain of the partial function is in I.
Equality on V is written ∼).

One may for example define A+→V to be A→ V +, where V + is the set

{Unknown } ∪ {Known v | v : V }

Each such function p : A+→V has a domain dom(p) which is a decidable subset
of A. Between partial functions p, q : A+→V we have an operation of

13i.e. I should be a ring of subsets of A.
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overwriting defined by

(p overwritten by q) ∆= [a ε dom(p)∪dom(q) 7→ if a ε dom(q) then q[a] else p[a]]

I shall use ∼ for equality between partial functions.

5.3 Memory cell

First we give an example of a simple memory cell. The part that says that we
have a memory cell is the singleton output set for a read command (defined
here to have the stored value as its only element).

states: s : V . V is the set of storable values. Let ∼V denote equality on V . It
is reasonable to take this to be decidable.

commands: The set of commands is the same in every state

C(s) = {Read } ∪ {Write v | v : V }

responses to Read: In any state, there are the following (correct) responses

R(s,Read) = {Read v x | v : V, x : v ∼V s }
s[Read/ ] = s

responses to (Write v): There is only one reply:

R(s,Write v) = {Write }
s[Write v/ ] = v

5.4 Faulty memory cell

First we give an example of a faulty memory cell. A bad write can ‘trash’ the
stored value.

states: {Bad } ∪ {Ok v | v : V }.

commands: The set of commands is the same in every state

C(s) = {Read } ∪ {Write v | v : V }

Note that a read is always legal.

responses to Read: In any state, there is at most one (correct) response

R(s,Read) = {Read v x | v : V, x : s ∼V Ok v }
s[Read/ ] = s

Note that read can return only if the last write was good; otherwise a
read may hang.

responses to (Write v): There are two possible replies.

R(s,Write v) = {Write } ∪ {BadWrite }
s[Write v/Write] = Ok v
s[Write v/BadWrite] = Bad
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5.5 Array of memory cells

Next we consider an array of memory cells which can be individually read or
written. (Basically we use u here.)

Let A be the set of addresses: it too should have decidable equality.

states: s : A→ V

commands: The set of commands is the same in every state

C(s) = {Read a | a : A } ∪ {Write a v | a : A, v : V }

responses to (Read a): In any state, there is only one (correct) response

R(s,Read a) = {Read v x | v : V, x : s(a) ∼V v }
s[Read a/ ] = s

responses to (Write a v): There is only one reply:

R(s,Write a v) = {Write }
s[Write a v/ ] = (a := v)s

Here a := v stands for the operation which overwrites a memory-state
(whose domain must be equipped with a decidable equality ∼A) with a
new value v at a given argument a.

5.6 Atomic array of memory cells

Next we consider an array of memory cells that can be simultaneously
(atomically) read and written. For example, we can write a cell and return its
immediately prior value.

Let I be a family (a ring) of decidable subsets of A, closed under finite unions
and relative complement (for example finite sets of disjoint intervals in a linear
order). We intend that if a set of addresses is in I, the corresponding locations
may be accessed simultaneously.

states: s : A→ V .

commands: The set of commands is the same in every state

C(s) = {RW w p |w : I, p : A+→V }

responses to (RW w p):

R(s,RW w p) = {RW p′ x | p′ : A+→V, x : dom(p′) = w∧w � s ∼V p′ }
s[RW w p/ ] = s overwritten by p
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5.7 Unix memory array

This example is an abstraction of the unix system calls ‘read’ and ‘write’ to
read and write portions of files. These are interruptible, and so may terminate
‘incompletely’ or abnormally, having read or written only part of what was
asked for. Several cells can (with luck) be simultaneously read, or
simultaneously written. If they are incomplete, writes “trash” the area of
uncertainty, so that we are not even allowed to ask to read a trashed cell until
it has been satisfactorily re-written. (Unix does not have such an extreme
notion of ‘trashing’: trashed cells may safely be read, though the values are
constrained only to be sequences of bytes.)

states: A+→V

commands: The set of commands is the same in every state

C(s) = {Read w |w : I } ∪ {Write p | p : A+→V }

responses to (Read w):

R(s,Read w) = {Read p x | p : A+→V, x : dom(p) ⊆ w∧(dom(p) � s) ∼ p }
s[Read w/ ] = s

Note: unknown cells must be written before being read.

responses to (Write p):

R(s,Write p) = {Write w |w ⊆ dom(p) }
s[Write p/Write w] = ((dom(s) \ dom(p)) � s) overwritten by (w � p)

Note that it is perfectly legitimate for an implementation (the demon) to
trash any write request. To rule this out, we might give a fairness
guarantee, e.g. that persistent requests to write any specific cell will
eventually succeed.

6 Loose ends

Saturation and hiding Undiscussed: the point of passing to the saturation.

Finitely many ‘silent’ interactions may occur in the lower-level interface, and
they are in a sense ‘hidden’ in a single response. We want to allow this kind of
‘silencing’.

Saturation and universal properties Connected with simulation: since
the equality induced with ∗ is coarser than extensional equality, we should
have more universal objects, more ‘uniqueness’ modulo saturation.

Unresolved: is skip initial? Weakly initial? There may be many simulations,
but are any distinguished in some way? What is the appropriate notion of
universality in an enriched category? Generally, what limits and colimits do
we have? We have a supremum operation for saturated simulations.
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Pierre Hyvernat has established that predicate transformers and simulations
provide a model for full linear logic, in which a linear formula is interpreted by
a predicate transformer, and a proof of it by a post-fixed point. The linear
implication is in effect the relation transformer whose post-fixed points are
simulation relations. Investigations are continuing.

Continuity of ;? Unresolved: we know that simulations are closed under
sequential composition, which is monotone in both arguments (with respect to
extensional inclusion).

What is known about sequential composition and the lattice structure appears
to be this:

(ui:IΦi) ;Ψ = ui:I(Φi ; Ψ)
(ti:IΦi) ;Ψ = ti:I(Φi ; Ψ)
Φ ;(ui:IΨi) v ui:I(Φ ;Ψi)
Φ ;(ti:IΨi) w ti:I(Φ ;Ψi)

The last two inequations (which are just expressions of monotonicity) can be
strengthened to equalities for certain classes of Φ.

But does sequential composition, perhaps, commute (in the right-hand
argument) with suprema in the saturation order? Suprema in the saturation
order are not unions, but closures of unions.

In general the role of saturated simulations needs to be clarified. It may have
something to do with continuity: commuting with suprema of directed families.

According to Back and von Wright sequential composition preserves continuity
in both arguments.

Wipe out all differences below skip The topic here is (perhaps) an
embarrassment. Where abort is the predicate transformer than maps all
predicates to the empty predicate (and magic is the predicate transformer that
maps all predicates to the trivial predicate) we have that abort is isomorphic
to skip. (This is because they have the same reflexive and transitive closure,
namely skip.) We abstract from the difference, because as an import interface,
both abort and skip are equally useful (i.e. entirely useless).

Division Unresolved: is there a division operator for interaction structures
analogous to that for relations?

Inversion Undiscussed: inversion - this concerns switching imported and
exported interfaces. Servers and clients exchange roles. This involves ◦ and
•. There is certainly an operator Φ− : A→ F(F(B)) for Φ : A→ F(F(B))

(note: there is no contravariance, in contrast with relational inversion) such
that Φ• = Φ−◦.

C−(s) ∆= (∀ c : C(s)) R(s, c)
R−(s, f) ∆= C(s)
s[f/c]− ∆= s[c/f(c)]
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This inversion does not seem to be an involution. The result of iterating it
twice is:

C−−(s) ∆= C−(s) → C(s)
R−−(s, ) ∆= C−(s)
s[F/f ]−− ∆= s[F (f)/f(F (f))]

There is a more subtle kind of inversion, which uses a kind of 4-way handshake
to invert the direction of commands and responses. This is found in practice.

The situation is that any interaction map Φ : A→ F(F(B)) can be expressed
in the form 〈φ〉; [ψ ] where φ : A→ F(A′), ψ : A′ → F(B).

A′
∆= (∃ s : S) C(s)

Tφ(s)
∆= C(s)

s[c] ∆= 〈s, c〉
Tψ〈s, c〉

∆= R(s, c)
〈s, c〉[r] ∆= s[c/r]

We have Φ− = [φ ]; 〈ψ〉. The 4-way inversion opens this up, forming 〈ψ〉 ;[φ ]
with some suitable initialisation and finalisation. (A proper description is
lacking.)

Fish and foul Undiscussed: there are actually two dual closure operators
(or 3 dual pairs if we consider analogues of + and ?):

Φ∗ = (µΨ : S → F(F(S))) skip t (Φ ;Ψ)
Φ∞ = (νΨ : S → F(F(S))) skip u (Φ− ; Ψ)

The operator ∞14 is directly related to Giovanni’s ‘fish’ relation n.

G-notation H-notation
snΦ U means s ε Φ∞(U).
sCΦ U means s ε Φ∗(U).
s εΦ U means s ε Φ(U).

We have
Φ∗(P : P(S)) =

⋂
{Q : P(S) | P ∪ Φ(Q) ⊆ Q }

Φ∞(P : P(S)) =
⋃
{Q : P(S) | Q ⊆ P ∩ Φ−(Q) }

Here we have an ambiguity in the adjective ‘complete’ in ‘complete lattice’.
We mean: complete for set indexed families – not necessarily for predicates.
The expressions above use a second order predicate (a quantifier) in the body
of the comprehension term to pick out the sets in the intersection or union. By
allowing ourselves the operator ∗, we commit ourselves to saying that the
second order property (being a pre-fixedpoint of a certain operator, or a
post-fixedpoint of another) can be in some sense set-indexed.

By appeal to transfinite induction, we turn the impredicative intersection into
a union of a transfinitely indexed sequence of progressively weaker predicates.
One can think of the indexing elements as predecessors of a certain ordinal

14The ν binding needs a general analysis of greatest fixed points and corecursion.
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(the closure ordinal), and hence as of the indexing as having for its domain a
genuine set.

By allowing ourselves the operator ∞, we seem to turn the impredicative
union into an intersection of an ω-sequence of progressively stronger
predicates. The contrast between a transfinitely ordered union in the inductive
case, and the ω-ordered intersection in the coinductive case is very striking.

win and sin The two operators fish (n ) (aka ∞) and (what else?) fowl
(C ) (aka ∗) appear to be closely connected with the predicate transformers
win, and sin introduced by Lamport[3] which give the weakest respectively
strongest invariant15 stronger than respectively weaker than a given predicate.
These predicate transformers have been used to analyse concurrent algorithms
such as the ‘bakery’ algorithm that do not require a given grain of atomicity
for access to shared variables. The exact relationships need to be clarified.

Lamport’s win and sin operators take relations to predicate transformers. For
fixed relation φ, we have the following.

winφ = 〈φ〉∞ (1)
sinφ = [φ ]∗ (2)

The operators ∗ and ∞ seem to generalise Lamport’s operators from
relations to predicate transformers. The novelty here is the use of inversion in
the definition of Φ∞.

Points Undiscussed: the counterpart of topological points. The interactive
counterpart of the notion of a point seems to be that of an inhabited predicate
α which is indefinitely extensible, sustainable, or refinable in a certain sense.
We can express this impredicatively, quantifying over predicates U . It is a
closure property on α.

α is inhabited, and forall U , α G (CU) → α G U

Note that in formal topology, one usually has a relation ≤ on the states (which
must be a self-simulation16 with respect to the interaction structure), and a
point is further required to be a filter with respect to this relation. For
example any inhabited predicate of the form (nV ) (a closed set according to
Giovanni, formally an open set) has this closure property.

Such an α ought (perhaps) to be (roughly) the same thing as a simulation of
the interface by skip (or equivalently, abort). A bit tendentiously, we call a
simulation of an interface by skip an implementation of the interface. This
amounts to a predicate α over the interface states which satisfies the above
closure property.

The proof that α is inhabited is the ‘active ingredient’. It can be used as a
deadlock free or non-stop server program (a perpetuum mobile).

15One can take an invariant to be a predicate which is true initially and stable (i.e. preserved
under interaction).

16Is this true? Palmgren has the extra properties in the form (CU) ∩ (CV ) ⊆ U≤ ∩ V≤
(where U≤ is the ≤-downward closure of U), and (≤ b) ⊆ (C{ b }).
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Specifications, client-server contracts Undiscussed: There are two kinds
of specification: a server program satisfies a specification17 of the form

(∃ s0 : S) Init(s0) ∧ s0 n Inv
i.e. Init G (nInv) written Init n Inv

whereas a client program (which terminates accomplishing a goal predicate –
an atomic transaction) satisfies a specification18 of the form

(∀ s : S) Init(s) → sC Goal
i.e. Init ⊆ (CGoal) written Init C Goal

The logic of the interaction between clients and servers is contained in the
following rule.

Init C Goal Init n Inv

Goal n Inv
Giovanni will have a name: compatibility?

A proof of the left hand premise is a program for a client. A proof of the right
hand premise is a program for a server. The proof that we get of the
conclusion (having run the client program against the server program, or
having ‘made the inference’) is a new server program, after the goal of the
client program has been accomplished. (It has the same invariant, but a new
initial predicate equal to the client’s goal.) (The client program is all used up.)
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7 syntax

The usual setting for Back and von Wright’s refinement calculus is higher
order classical logic, with quantification over predicate variables, and a

17As it were, written on the box or packaging in which the server program comes
18Which tells you when you can use it, and what you can use it to bring about
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complement operator. Here instead we define certain of these constructions in
predicative type theory in which quantification over predicates is not allowed
in propositions.

The basic judgements in which we are interested are (primarily) U ⊆ V and
(secondarily, the dual judgement) U G V which says that U and V are
compatible. It is necessary to have a separate judgement form such as U G V
in the absence of the complement operator. Here U and V are predicate
expressions that may contain variables of various sorts: states,
state-predicates, and relations. The variables are implicitly universally
quantified. If the predicate expressions depend on a single predicate variable
X, we have a (pointwise) relation between predicate transformers. If the
predicate expressions depend on a state variable s, we have the inclusion
relation between relations. In combination with predicate transformers Φ and
iterated form, the basic relations give rise to relations of interest in
client-server programming such as the following

U CΦ V = U ⊆ Φ∗(V )
U nΦ V = U G Φ∞(V )

As for predicativity, all reasoning should be essentially ‘point-free’, or
algebraic. That is to say, proofs should be algebraic manipulations in which
free subset variables never officially appear.

In the general case we may have beside predicates also relations with various
arities, and beside unary transformers of unary predicates also transformers
with arity of the form 〈n1, .., nk〉 → n

Two base types (for the two kinds of variables): S (states – s, s′, s1, . . . ) )
and P (predicates – P ). We have one binary relation s ε P , meaning that state
s satisfies predicate P . This gives rise to 3 kinds of statement:

s ε U
s ε Q(s′) Q a relation
s ε F (U) F a predicate transformer

The following higher types:

f, g, . . . : S → S state transformer f = g
R,Q, . . . : S → P state relations R ⊆ Q
F,G, . . . : P → P predicate transformers F v G

The first kind of comparison is equality between state expressions that may
have free state-variables. Might want apartness.

The second kind of comparison is equivalence and implication between
statements that may have free state-variables. Might want overlap.

The third kind of comparison is equivalence and implication between
statements that have free occurences of both state-variables and
predicate-variables. Again, might want overlap.
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8 predicates and families

Predicates over a set form a distributive lattice: closed under sup (empty,
binary, set-indexed) and inf (empty, binary, set-indexed). By distributivity I
mean that binary sups distribute over binary infs and vice-versa. We also have
implication, forms of relative complement etc. Binary infs distribute over
arbitrary sups. We also have singleton predicates.

Families on the other-hand are merely a sup-lattice with singletons. .

An obscure point to be explained: the link between families and predicates (or
transition structures and relations) involves not just equality (which gets us
one way), but also existential quantification over states, which gets us a family
from a predicate, in which the function is first projection. There is a question
of size here: S may be ‘large’ compared to the universe of sets we are working
in.
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9 grammar

states s, s′ :::= f(s)

state transformers f, g :::= id | f · g

families α, β :::= { s } | ti αi | φ(s)

predicates U, V :::= α |
⋃
i Ui |

⋂
i Ui | Φ(U) | R(s)

transition structures φ, ψ :::= graph f
| U ⇀ φ
| ti φi
| φ ;ψ | skip
| φ∗ | φ+ | φ?

relations Q,R :::= φ
| U ⇀ Q
|

⋃
iQi |

⋂
iQi

| R ;Q | skip | Q/R
| φ ;Q | Q/φ
| Φ ·Q
| Q∗ | Q+ | Q?

| Q∼

interaction structures Φ,Ψ :::= | 〈φ〉 | [φ ]
| ti Φi | ui Φi
| Φ ;Ψ | skip
| assign f
| Φ∗ | Φ+ | Φ?

| Φ∞

| Φ⊥

predicate transformers F,G :::= Φ
| 〈R〉 | [R ]
| ti Fi | ui Fi
| F ;G | skip
| assign f
| F ∗ | F+ | F ?

| F∞
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10 types and definitions

10.1 State transformers

1. composition of state transformers
f : A→ B g : B → C

g · f : A→ C

(f.g)(s) ∆= f(g(s)).

2. identity of state transformers: skip : A→ A

skip(a) ∆= a.

3. base state transformers

Often, the state space is a product S = Πv:V Sv, where V is a set of
variable-names (with decidable equality) and Sv is a factor of the state
space corresponding to variable v: the type of v. Then a state is a
function which assigns to a variable-name v a value of the type Sv
appropriate to v. This can also be thought of as a record with
field-names or coordinates V , with field v : V having type Sv.

If e is an expression built up from variable-names using function
constants, we define by recursion on its build up the value |e|s of e in the
start state s – in the obvious way (see below). We then define the
update function (v := e) : S → S.

(v := e) : S → S

(v := e)(s) ∆= (λ v′ : V ) if v′ = v then |e|s else s(v)

Thus an assignment statement can be interpreted as a state transformer.

We may obviously extend the definition to simultaneous assignment,
where we have a finite partial map from variable names to expressions.
We can represent this in the usual way with a vector ~v of distinct
variables, and a vector ~e the same length, giving for each variable the
corresponding expression.

x1, . . . , xn := e1, . . . , en

Example : x, y := y, x – atomically swap contents of variables x and y.

The syntax of an assignment statement is essentially a function from
names of assignable variables to expressions built over those and other
‘read-only’ variables. The semantics of an assignment statement is a
state-transformer. To define the semantics of an assignment statement,
all that seems to be necessary is that the domain of the syntax-function
should be decidable.

Tangentially, if we are interested in (statically) typed variables, then one
can represent the type system in the form of an interaction structure – a
set of sorts or types, and for each sort σ a family of families of sorts:

{ {σ[c/r] | r : R(σ, c) } | c : C(σ) }
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Here C(σ) describes the constructors that can be used to form an
expression of a given sort σ, and for each such constructor c : C(σ)z an
element r of R(σ, c) selects the location of an immediate subexpression.
The sort of the subexpression must equal σ[c/r].

An expression of sort σ is now a well-founded tree, in which there are
‘leaves’ labelled by state variables. (If there are none, the expression is
closed – the tree has finished growing.) We might use some notation
such as σ C γ for the set of expressions which have sort σ with respect to
type assignment γ : V → S.

We can define the value of an expression e : σ C γ by wellfounded
recursion on the structure of e. (Assumes a meaning is given to the
constructors.)

An assignment statement is well-typed with respect to a type-assignment
γ if the sort assigned to a variable on the left hand side of the ‘:=’ equals
the sort assigned to the corresponding expression on the right.

We can now define the state transformer corresponding to a well-typed
assignment statement.
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10.2 Category of relations and simulations

Predicates have one parameter – what the predicate is about. Similarly
families have one parameter – the index of the general term. By considering a
further state-parameter, we pass from predicates to relations, and from
families to transition structures. We thereby add to the lattice operations a
‘sequencing’ monoid. The unit of sequential composition is the identity
relation, or in other words the graph of the identity function.

Survey: Closure properties. Other notes.

– graphs of functions are transition structures.

– transition structures are closed under restriction by predicates
(guarding).

– transition structures are closed under sup.

– transition structures are closed under composition, eq etc..

– in the homogeneous case, we have the usual closure operators (reflexive,
transitive, etc).

– transition functions are not closed under converse, nor intersection, nor
division. (That is, without specific use of the equality relation.)

Transition structures are ‘regular’ – form a sup-lattice (with set-indexed sups),
and have an iteration star operation. (We get back the infs with interaction
structures, and two notions of iteration.)

Transition structures form a Kleene (regular) algebra in the following sense. It
has an associative and commutative binary sup ∪ with unit 0 (the empty
transition structure); associative binary sequencing with unit skip,
distributing over sup. 0 is absorbing. An iteration operator star, satisfying φ∗

is a solution of the equations skip ∪ (φ ;x) ⊆ x and skip ∪ (x ;φ) ⊆ x; and if
φ ;x ⊆ x or x ;φ ⊆ x, then φ∗ ;x ⊆ x or x ;φ∗ ⊆ x respectively. Transition
structures also include ‘tests’ somewhat in Kozen’s sense, except that they
needn’t form a Boolean algebra (but a Heyting algebra).

Each transition structure determines two relation transformers (φ ;) and (/φ).
The definition of these does not use equality. These are closely related to the
predicate transformers 〈φ〉 and [φ ]. We have (φ ;) = (∼) · (〈φ〉·) · (∼) and
(/φ) = ([φ ]·).

10.2.1 Relations and transition structures

1. st ’s as rel ’s
f : A→ B

graph f : A→ P(B)

b ε (graph f)a ∆= b = f(a) (3)

2. st ’s as ts’s
f : A→ B

graph f : A→ F(B)
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T (a) ∆= N1 ; s[ ] ∆= f(s) (4)

3. predicates as rel ’s
U : P(A)

testU : A→ P(A)

b ε (testU)a ∆= a ε U ∧ b = a (5)

4. predicates as ts’s
U : P(A)

testU : A→ F(A)

T
∆= U ; s[ ] ∆= s (6)

5. domain restriction of rel ’s
Q : A→ P(B) U : P(A)

U ⇀ Q : A→ P(B)

b ε (U ⇀ Q)a ∆= a ε U ∧ b ε Q(a) (7)

Note: some redundancy. U ⇀ R = testU ;R.

6. domain restriction of ts’s
φ : A→ F(B) U : P(A)

U ⇀ φ : A→ F(B)

T
∆= U ∩ Tφ ; s[〈 , t〉] ∆= s[t]φ (8)

7. mapping rel ’s by a st
R : A→ P(B) f : C → B

P(f) ·R : A→ P(C)

c ε (P(f) ·R)a ∆= f(c) ε R(a) (9)

8. mapping ts’s by a st
φ : A→ F(B) f : B → C

F(f) · φ : A→ F(C)

T (a) ∆= Tφ(a) ; a[t] ∆= f(a[t]φ) (10)

Note: redundant. F(f) · φ = φ ;graph f .

9. union, and intersection of rel ’s

Qi : A→ P(B)

(∪iQi), (∩iQi) : A→ P(B)
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(∩iQi)(a)
∆= ∩i(Qi(a)) (11)

(∪iQi)(a)
∆= ∪i(Qi(a)) (12)

Note, no counterpart to intersection on ts’s.

10. union of ts’s
φi : A→ F(B)

(tiφi) : A→ F(B)

T (a) ∆= (∃ ) iTφi
(a) ; a[〈i, t〉] ∆= a[t]i (13)

Note, no counterpart of intersection.

11. argument swapping

Q : A→ P(B)

Q∼ : B → P(A)

a ε Q∼(b) ∆= b ε Q(a) (14)

Notes

– no counterpart operation on ts’s
– prime example of a relation transformer. Contravariant functor on

the category of sets and relations. An involution. Called converse,
inverse, reverse, interchange, twist, flip, swap, and so on.

– determines a notion of (∼)-duality for relation transformers. The
(∼)-dual of a relation transformer Φ is (∼) · Φ · (∼). For example,
the division (Q\) is (∼)-dual to (/(Q∼)).
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12. rel ’s closed under sequential composition

R : A→ P(B) Q : B → P(C)

(R ;Q) : A→ P(C)

c ε (R ;Q)(a) ∆= R(a) G Q∼(c) (15)

13. identity rel : skip = graph skip : A→ P(A)

a ε skip(a′) ∆= a = a′ (16)

14. ts’s closed under sequential composition

φ : A→ F(B) ψ : B → F(C)

(φ ;ψ) : A→ F(C)

T (a) ∆= (∃ ) t1 : Tφ(a)Tψ(a[t1]φ) ; a[〈t1, t2〉]
∆= (a[t1]φ)[t2]ψ (17)

15. identity ts: skip = graph skip : A→ F(A)

T ( ) ∆= N1 ; a[ ] ∆= a (18)
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16. closures of rel ’s
R : A→ P(A)

R?, R+, R∗ : A→ P(A)

R∗
∆= ∩{T : A→ P(A) | (skip ∪ (R ;T )) ⊆ T } (19)
= ∪{ (R ;)nskip |n = 0, 1, . . . }

R? ∆= R ∪ skip, R+ ∆= R ;R∗.

17. closures of ts’s
φ : A→ F(A)

φ∗, φ?, φ+ : A→ F(A)

φ∗:

T
∆= (µ X : A→ Set)

(∀ a : A)
{nil }

∪{ cons(t0, t′) | t0 : Tφ(a), t′ : X(a[t0]φ) }
⊆ X(a)

(20)

a[nil] ∆= a

a[cons(t0, t′)]
∆= (a[t0]φ)[t′]

φ? ∆= φ t skip, φ+ ∆= φ ;φ∗.
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18. rel ’s closed under post-division

Q : A→ P(B) R : C → P(B)

(Q/R) : A→ P(C)

c ε (Q/R)(a) ∆= R(c) ⊆ Q(a) (21)

19. pre-composition of ts’s to rel ’s

φ : A→ F(B) Q : B → P(C)

(φ ;Q) : A→ P(C)

c ε (φ ;Q)(a) ∆= φ(a) G Q∼(c) (22)

(φ ;Q)(a) = ∪{Q(a[t]φ) | t : Tφ(a) }
Note that this lets us lift a ts φ to the rel (φ ; skip).

20. post-division of rel ’s by ts’s

Q : A→ P(B) ψ : C → F(B)

(Q/ψ) : A→ P(C)

c ε (Q/ψ)(a) ∆= ψ(c) ⊆ Q(a) (23)

Note that this gives us a ‘reciprocal’ lift of ts φ to rel (skip/φ). The
reciprocal of a relation is completely different from its converse. For
what relations are the converse and reciprocal the same?

21. pt ’s as operations on rel ’s
Φ : P(A) → P(B) Q : C → P(A)

(Φ ·Q) : C → P(B)

b ε (Φ ·R)(c) ∆= b ε Φ(R(c)) (24)

10.2.2 Morphisms between relations and transition structures

Consider the Kleisli category for the monadic functor F( ). The arrows in this
category (diagrams of shape A→ F(B), which we picture as vertical arrows)
are called transition structures. A morphism between two such arrows
φ : A→ F(B) and ψ : C → F(D) is a pair of horizontal relations
Q1 : A→ P(C) and Q2 : B → P(D) which form a “sub-commuting” square:

Q1
∼ ;φ ⊆ ψ;Q2

∼
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This is equivalent to
Q1

∼ ⊆ (ψ;Q2
∼)/φ

or even
Q1 ⊆ (∼) · (/φ) · (ψ; ) · (∼) Q2

= (∼) · ([φ ]·) · ((∼) · (〈ψ〉·) · (∼)) · (∼) Q2

= (∼) · ([φ ]·) · (∼) · (〈ψ〉·) Q2

One composes morphisms between arrows “horizontally”, as relations. (Pairs
of relations are compared pointwise, for inclusion and equality.)

If instead of arrows we restrict ourselves to cycles (i.e. homogeneous transition
structures, i.e. endomorphisms in the Kleisli category, the appropriate notion
of morphism is a simulation.
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10.3 Category of predicate transformers and simulations

Mumble mumble.

10.3.1 Predicate transformers (and interaction structures)

1. Relational update, lifting rel ’s to pt ’s.

R : A→ P(B)

〈R〉, [R ] : P(B) → P(A)

a ε 〈R〉(U) ∆= R(a) G U (25)

a ε [R ](U) ∆= R(a) ⊆ U (26)

2. angelic and demonic lifting of a ts to an is

φ : A→ F(B)

〈φ〉, [φ ] : A→ F((F(B)))

angel 〈φ〉

C
∆= Tφ (27)

R( , ) ∆= N1

a[t/ ] ∆= a[t]φ

demon [φ ]

C( ) ∆= N1 (28)

R(a, ) ∆= Tφ(a)

a[ /t] ∆= a[t]φ

3. is’s as pt ’s
Φ : A→ F(F(B))

Φ : P(B) → P(A)

a ε Φ(U) ∆= (∃ c : CΦ(a)) { a[c/r]Φ | r : RΦ(a, c) } ⊆ U (29)

Note: Φ : A→ F(F(B)) can always be written 〈φ〉 ;[ψ ] for certain
φ : A→ A′, ψ : A′ → F(B), as follows. Write Φpre,Φpost for φ,ψ .

A′ = {pending(a, c) | a : A, c : CΦ(a) }
φ(a) = {pending(a, c) | c : CΦ(a) }

ψ(pending(a, c)) = { a[c/r]Φ | r : RΦ(a, c) }
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4. infima, suprema of pt ’s
Fi : P(A) → P(B)

(uiFi), (tiFi) : P(A) → P(B)

(uiFi)(U) ∆= ∩i(Fi(U)) (30)

(tiFi)(U) ∆= ∪i(Fi(U)) (31)

5. infima, suprema of is’s
Φi : A→ F(F(B))

(uiΦi), (tiΦi) : A→ F(F(B))

angelic t:

C
∆= ∪iCi (32)

R(s, 〈i, c〉) ∆= Ri(s, c)

s[〈i, c〉/r] ∆= s[c/r]i

demonic u:

C
∆= ∩iCi (33)

R(s, f) ∆= (∃ i) Ri(s, f(i))

s[f/〈i, r〉] ∆= s[f(i)/r]i

6. sequential composition of pt ’s

F : P(A) → P(B) G : P(B) → P(C)

(F ;G) : P(A) → P(C)

(F ;G)(U) ∆= F (G(U)) (34)

7. sequential composition of is’s

Φ : A→ F(F(B)) Ψ : B → F(F(C))

(Φ ;Ψ) : A→ F(F(C))

C
∆= Φ(CΨ) (35)
= { a : A | (∃ c : CΦ(s))(∀ r : RΦ(a, c)) CΨ(a[c/r]Φ) }

R(a, 〈c, f〉) ∆= (∃ r : RΦ(a, c)) RΨ(a[c/r]Φ, f(r))

a[〈c, f〉/〈r0, r′〉]
∆= (s[c/r0]Φ)[f(r0)/r′]Ψ
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8. identity pt : skip = 〈skip〉 = [ skip ] : P(A) → P(A)

b ε skip(U) ∆= b ε U (36)

9. identity is: skip = 〈skip〉 = [ skip ] : A→ F(F(A))

C( ) ∆= N1 (37)

R( , ) ∆= N1

a[ / ] ∆= a

10. dual of an is

Φ : A→ F((F(B)))

Φ⊥ : A→ F((F(B)))

C(a) ∆= (∀ c : CΦ(a))RΦ(a, c) (38)

R(a, ) ∆= CΦ(a)

a[f/c] ∆= a[c/f(c)]Φ

Note: this doesn’t have very good properties constructively. One can
however calculate duals formally, by changing suprema to infima, angels
by demons, etc..
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11. closures of pt’s:

F : P(A) → P(A)

F ?, F+, F ∗, F∞ : P(A) → P(A)

F ∗ ∆= ∩{T : P(A) → P(A) | (skip ∪ (F ;T )) ⊆ T } (39)
= U 7→ { a : A | (∀ V : P(A)) ((U ∪ F (V )) ⊆ V ) → V (a) }
= ∪α(F ;)α(skip)

F∞ ∆= ∪{T : P(A) → P(A) |T ⊆ (skip ∩ (F⊥ ;T )) } (40)
= U 7→ { a : A | (∃ V : P(A)) V ⊆ (U ∩ (F⊥(V )) ∧ V (a) }
= ∩n{Fn |F0 = skip;Fn+1 = Fn ∩ (F⊥ ;Fn) }

12. closures of is’s
Φ : A→ F(F(A))

Φ∗,Φ?,Φ+,Φ∞ : A→ F(F(A))

Φ∗

C
∆= (µ X : A→ Set)

(∀ a : A)
{ exit }

∪{ call(c, f) | c : CΦ(a), f : (∀ r : R(a, c)) X(a[c/r]Φ) }
⊆ X(a)

(41)

R(a, exit) ∆= {nil }
R(a, call(c, f)) ∆= { cons(r0, r′) | r0 : RΦ(a, c), r′ : R(a[c/r0], f(r0)) }

a[exit/nil] ∆= a

a[call(c, f)/cons(r0, r′)]
∆= (a[c/r0]Φ)[f(r0)/r′]

Φ? ∆= Φ t skip, Φ+ ∆= Φ ; Φ∗.

Φ∞

C
∆= (ν X : A→ Set)

(∀ a : A)
X(a) ⊆ { srv(f, g) | f : (∀ c : CΦ(a))RΦ(a, c),

g : (∀ c : CΦ(a))X(a[c/f(c)]Φ) }

(42)

R(a, srv(f, g)) ∆= {nil }
∪{ cons(c0, c′) | c0 : CΦ(a), c′ : R(a[c0/f(c0)], g(c0)) }

a[srv(f, g)/nil] ∆= a

a[srv(f, g)/cons(c0, c′)]
∆= (a[c0/f(c0)]Φ)[g(c0)/c′]
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13. functional assignment as a pt
f : A→ B

assign f : P(B) → P(A)

s ε (assign f)(P ) ∆= f(s) ε P

Note: assign f = (·f) = f−1 = P(f).

Note: assign f ;assign g = assign g · f .

Redundant.
assign f = 〈graph f〉 = [graph f ]

14. functional assignment as an is
f : A→ B

assign f : A→ F(F(B))

C( ) ∆= N1

R( , ) ∆= N1

a[ / ] ∆= f(a)

10.3.2 Morphisms between predicate transformers

In analogy with transition structures, we could define a morphism between
interaction structures to be a pair of predicate transformers that satisfy the
appropriate sub-commutativity property. However, in this case we insist that
the predicate transformer is angelic, that is commutes with all disjunctions,
that is is determined by its value at singletons, that is is an angelic relational
update.

Give definition.

Give it for interaction structures. Note: really between an is and a pt.
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11 laws

Laws for (inferring inclusion and equality between) relations.

1. Predicate transformers determine relation transformers. However, the
effect of certain predicate transformers can sometimes be expressed
merely from sequential composition, and division. The following are
equations between relation transformers.

(Q ;) = (∼) · (〈Q〉·) · (∼)
(;Q) = (〈Q∼〉·)

(/Q) = ([Q ]·)
(\Q) = (∼) · ([Q∼ ]·) · (∼)

(43)

To a certain extent, we are interested in representing relations with
transition structures – we may represent a relation as a transition
structure, or as the converse of a transition structure, or as the
reciprocal of a transition structure (and so on and on).

2. I might have introduced binary operators for relative complement and
implication. Then the adjunctions for relations are:

(R1 ;R2) ⊆ Q ⇐⇒ R1 ⊆ (Q/R2) (44)
(R1 −R2) ⊆ Q ⇐⇒ R1 ⊆ (R2 ∪Q) (45)
(R1 ∩R2) ⊆ Q ⇐⇒ R1 ⊆ (R2 ⇒ Q) (46)

Some laws (need to check):

Q− (R1 ∪R2) = (Q−R1) ∩ (Q−R2) = ((Q−R1)−R2) (47)
Q− (R1 ∩R2) ⊇ (Q−R1) ∪ (Q−R2) (48)

(R1 ∪R2) ⇒ Q = (R1 ⇒ Q) ∩ (R2 ⇒ Q) (49)
(R1 ∩R2) ⇒ Q = R1 ⇒ (R2 ⇒ Q) (50)

Non-binary sups and infs?

3. laws for sups and infs.

(∪Ri) ⊆ Q⇐⇒ (∀ i) Ri ⊆ Q (51)
Q ⊆ (∩Ri) ⇐⇒ (∀ i) Q ⊆ Ri (52)

For relations, sequential composition commutes with union (on both
sides).

4. The laws for relational converse ∼. This commutes with infima and
suprema (and closures), is monotone, and

Q∼∼ = Q (53)
(graph f)∼ ;(graph f) ⊆ skip; skip ⊆ (graph f) ; (graph f)∼(54)
skip∼ = skip (55)
(Q ;R)∼ = R∼ ;Q∼ (56)
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5. What are right laws for domain restriction?

testU = U ⇀ skip (57)
U ⇀ R = testU ;R (58)
testU ; testV = test (U ∩ V ) (59)
R1 ⊆ R2 ⇒ (U ⇀ R1) ⊆ (U ⇀ R2) (60)
U ⊆ V ⇒ (U ⇀ R) ⊆ (V ⇀ R) (61)

6. Dedekind’s law (modular law). This is what governs sequential
composition, converse and intersection.

(Q ;R) ∩ S ⊆ Q ;(R ∩ (Q∼ ;S)) (62)

This law is used to prove that if Q is a partial function (‘deterministic’
relations) then Q ;(R1 ∩R2) = (Q ;R1) ∩ (Q ;R2). In other words (Q ;) is
conjunctive (it is always disjunctive).

7. Intersection of relations.

testU ∩ testV = testU ∩ V (63)
(Q1 ∩Q2) ∩Q3 = Q1 ∩ (Q2 ∩Q3) (64)

Q ∩ void = void (65)
Q ∩ chaos = Q (66)
Q1 ∩Q2 = Q2 ∩Q1 (67)
Q ∩Q = Q (68)

Q ∩ (Q ∪R) = Q (69)
Q ∩ (∪iRi) = ∪i(Q ∩Ri) (70)
Q ∩ (∩iRi) = ∩i(Q ∩Ri) (71)

Q ∩ (R1 ;R2) ⊆ R1 ;(R2 ∩ (R1
∼ ;Q)) (72)

Q ∩R∼ = (Q∼ ∩R)∼ (73)

8. Union of relations.

testU ∪ testV = testU ∪ V (74)
(Q1 ∪Q2) ∪Q3 = Q1 ∪ (Q2 ∪Q3) (75)

Q ∪ void = Q (76)
Q ∪ chaos = chaos (77)
Q1 ∩Q2 = Q2 ∩Q1 (78)
Q ∪Q = Q (79)

Q ∪ (Q ∩R) = Q (80)
Q ∪ (∪iRi) = ∪i(Q ∪Ri) (81)
Q ∪ (∩iRi) ⊆ ∩i(Q ∪Ri) (82)

Q ∪ (R1 ∩R2) = (Q ∪R1) ∩ (Q ∪R2) (83)
Q ∪ (R1 ;R2) . . . (84)
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9. Sequential composition of relations.

(Q1 ;Q2) ;Q3 = Q1 ;(Q2 ;Q3) (85)
skip ;Q = Q (86)
Q ; skip = Q (87)

Q ;(∩iRi) ⊆ ∩i(Q ;Ri) (88)
(∩iQi) ;R ⊆ ∩i(Qi ;R) (89)
Q ;(∪iRi) = ∪i(Q ;Ri) (90)
(∪iQi) ;R = ∪i(Qi ;R) (91)
Q ; void = void (92)
void ;Q = void (93)

testU ; testV = test (U ∩ V ) (94)
skip = test chaos (95)

graph f ;graph g = graph (g · f) (96)
skip = graph skip (97)

Laws for (inferring inclusion and equality between) predicate transformers.

1. For predicate transformers, sequential composition commutes with sups
and infs in its left-hand argument.(Unlike the case of relations, where we
don’t commute with inf’s, but commute with sups on both sides.)

(F1 ;F2) ;F3 = F1 ;(F2 ;F3) (98)
skip ;F = F

F ; skip = F

(∪iFi) ;G = ∪i(Fi ;G)
(∩iFi) ;G = ∩i(Fi ;G)
F ;(∪iGi) ⊇ ∪i(F ;Gi)
F ;(∩iGi) ⊆ ∩i(F ;Gi)

The last 2 semi-equations are just by monotonicity.

They can be strengthened to equality for certain F .

〈φ〉 ;(∪iGi) = ∪i(〈φ〉 ;Gi)
[φ ] ;(∩iGi) = ∩i([φ ] ;Gi)

2. Special cases of sequential composition. Should be associative with unit
skip.

〈Q〉 ;〈R〉 = 〈Q ;R〉 (99)
[Q ] ;[R ] = [Q ;R ]

skip = assign skip

assign f = 〈graph f〉 = [graph f ]
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3. Are these true?

F ; 〈Q〉 = 〈F ·Q〉 (100)
F ; [Q ] = [F ·Q ] (101)

An interaction structure is something of the form 〈φ〉 ;[ψ ].
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