
Sun Performance Tuning Overview

Part No.: 801-4872-07
Revision B, December 1993

Sun Microsystems Computer Corporation
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

A structured approach to improving application performance based
upon insight into the intricacies of SPARC and Solaris.

SMCC Technical Marketing

December 1993

Please
Recycle

 1991,1992,1993 Sun Microsystems, Inc.—Printed in the United States of America.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.

The products described in this paper may be protected by one or more U.S. patents,
foreign patents, or pending applications.

TRADEMARKS
Sun, Sun Microsystems, the Sun logo, are trademarks or registered trademarks of Sun
Microsystems, Inc. UNIX and OPEN LOOK are registered trademarks of UNIX System
Laboratories, Inc. All other product names mentioned herein are the trademarks of their
respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered
trademarks of SPARC International, Inc. SPARCstation, SPARCserver, SPARCengine,
SPARCworks, and SPARCompiler are licensed exclusively to Sun Microsystems, Inc.
Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun
Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of
Xerox in researching and developing the concept of visual or graphical user interfaces for
the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox
Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

X Window System is a trademark and product of the Massachusetts Institute of
Technology.

iii

Contents

Preface. xiii

1. Introduction . 15

Performance Measurement. 16

Quick Reference for Common Tuning Tips 17

The First 10 Tuning Steps . 17

2. Source Code . 19

Algorithms . 19

Algorithmic Classification . 19

An Example Problem . 20

Space Versus Time . 20

Programming Model . 21

Choice Of Language To Express The Algorithm Or Model 21

Debug And Test Tools . 23

Compiler And Optimisations . 24

Automatic Parallelization . 24

iv Sun Performance Tuning Overview—December 1993

Effective Use Of Provided System Functions 25

Mapped files. 25

Asynchronous I/O. 25

Memory Allocation Tuning . 26

Linking, Localisation Of Reference And Libraries. 26

Tuning Shared Libraries . 27

3. Executable . 29

Customising The Execution Environment 29

Limits . 29

Tracing In SunOS 4.X. 30

Tracing In Solaris 2 . 32

Timing . 33

The Effects Of Underlying Filesystem Type 33

UFS . 34

Tmpfs . 34

NFS . 35

Cachefs . 35

Tuning Filesystems . 36

Tunefs . 36

Eagle DiskPak . 36

4. Databases & Configurable Systems. 37

Examples. 37

Hire An Expert! . 37

Use Sun’s Database Excelerator Product with SunOS 4.X 37

Contents v

Basic Tuning Ideas . 38

Increasing Buffer Sizes . 38

Using Raw Disk Rather Than Filesystems 38

Balance The Load Over All The Disks 39

Which Disk Partition To Use . 39

The Effect Of Indices . 40

5. Kernel . 41

Buffer Sizes And Tuning Variables . 41

Solaris 2 Performance Tuning Manual 42

Maxusers In SunOS 4.X. 42

Using /etc/system To Modify Kernel Variables In Solaris 2 42

Maxusers In Solaris 2 . 43

Using Pstat In SunOS 4.X To Examine Table Sizes 44

Using Sar In Solaris 2 To Examine Table Sizes And Kernel
Memory Allocation . 45

Directory Name Lookup Cache (dnlc) 45

Inode Cache . 46

Buffer Cache . 46

Setting Default Limits . 48

Solaris 2 Performance Improvements 49

Using Sar Effectively In Solaris 2 . 50

MMU Algorithms And PMEGS . 50

The Sun-4 MMU - sun4, sun4c, sun4e Kernel Architectures 50

Contexts . 52

vi Sun Performance Tuning Overview—December 1993

The SPARC Reference MMU - sun4m Kernel Architecture 53

The SPARC Reference MMU Table Walk Operation 54

The Paging Algorithm and How To Tune It 56

Understanding Vmstat Output . 56

 The Paging Algorithm In SunOS 4.X 58

Kernel Variables To Control Paging In SunOS 4.X 59

Swapping Out And How To Get Back In (SunOS 4.X) 62

The Paging Algorithm In Solaris 2 . 63

Swapping Out And How To Get Back In (Solaris 2) 67

Sensible Tweaking . 67

Configuring Devices . 72

Kernel Configuration In SunOS 4.X. 72

Kernel Configuration In Solaris 2 . 72

Mapping Device Nicknames To Full Names In Solaris 2 . . 72

Kernel Profiling Using Kgmon In Solaris 2. 74

Monitoring The System With Proctool . 76

References . 77

6. Memory. 79

Cache Tutorial . 79

Why Have A Cache? . 79

Cache Line And Size Effects . 80

A Problem With Linked Lists . 82

Cache Miss Cost And Hit Rates For Different Machines 84

Virtual Write Through Caches . 84

Contents vii

Virtual Write Back Caches . 85

Physical Write Back Caches . 86

On-Chip Caches . 87

The SuperSPARC Two Level Cache Architecture 88

I/O Caches . 90

Kernel Block Copy . 90

Software Page Copies . 91

The Classic Cache Aligned Block Copy Problem. 91

Kernel Bcopy Acceleration Hardware. 92

7. Windows and Graphics . 93

8. Disk . 95

The Disk Tuning Performed For SunOS 4.1.1. 95

Throughput Of Various Common Disks 95

Understanding The Specification. 95

Sequential Versus Random Access . 99

Effect Of Disk Controller, SCSI, SMD, IPI 99

SCSI Controllers. 99

SMD Controllers . 101

IPI Controllers . 101

Load Monitoring And Balancing . 102

Iostat In SunOS 4.X . 102

Iostat In Solaris 2 . 103

How To Decide That A Disk Is Overloaded 104

Multiple Disks On One Controller. 106

viii Sun Performance Tuning Overview—December 1993

Mirrored Disks . 106

Tuning Options For Mirrors . 107

9. CPU . 109

Architecture And Implementation. 109

Instruction Set Architecture (ISA) . 109

SPARC Implementation . 110

System Architecture . 110

Kernel Architecture . 110

The Effect Of Register Windows And Different SPARC CPUs. 110

The Effect Of Context Switches And Interrupts. 112

Comparing Instruction Cycle Times On Different SPARC CPUs 113

The Weitek SPARC PowerUP Upgrade. 115

Superscalar Operations . 115

Low Cost Implementations . 116

Floating Point Performance Comparisons 116

Integer Performance Comparisons . 118

10. Multiprocessors. 119

Basic Multiprocessor Theory . 119

Why Bother With More Than One CPU? 119

Multiprocessor Classifications . 119

Unix On Shared Memory Multiprocessors 122

Critical Regions . 122

The Spin Lock Or Mutex. 122

Code Locking And SunOS 4.1.X . 123

Contents ix

Data Locking And Solaris 2.0 . 123

SPARC Based Multiprocessor Hardware 124

Bus Architectures. 124

MP Cache Issues . 126

Memory System Interleave On The SPARCcenter 2000 . . . 127

Measuring And Tuning A Multiprocessor With SunOS 4.1.2 and
4.1.3 . 128

Understanding Vmstat On A Multiprocessor 128

Measuring And Tuning A Multiprocessor With Solaris 2. 130

CPU Control Commands - psrinfo and psradm 130

Cache Affinity Algorithms . 130

Programming A Multiprocessor . 131

Mp Programming With SunOS 4.1.2 And 4.1.3 131

MP Programming With Solaris 2.0 And 2.1 131

MP Programming With Solaris 2.2 . 131

MP programming With Solaris 2.3 . 131

Deciding How Many CPU’s To Configure 132

Vmstat Run Queue Differences In Solaris 2 132

Interrupt Distribution Tuning . 134

11. Network . 135

The Network Throughput Tuning Performed For SunOS 4.1 . 135

Different Ethernet Interfaces And How They Compare 135

SBus Interface - le . 135

Built-in Interface - le0 . 136

x Sun Performance Tuning Overview—December 1993

Built-in Interface - ie0 . 136

VMEbus Interface - ie . 136

Multibus Interface - ie . 136

VMEbus Interphase NC400 - ne. 137

Routing Throughput . 137

FDDI Interfaces . 137

VMEbus FDDI/DX . 138

SBus FDDI/S . 138

Using NFS Effectively . 139

How Many nfsds? . 139

A. References . 141

xi

Tables

Table 1 System Broken Down Into Tuning Layers. 15

Table 2 Resource Limits . 29

Table 3 Trace Output with Comments. 31

Table 4 Tuning SunOS Releases . 41

Table 5 Maxusers Settings In Solaris 2.2 . 43

Table 6 Default Settings for Kernel Parameters 44

Table 7 Sun-4 MMU Characteristics . 51

Table 8 SPARC Reference MMU Characteristics 53

Table 9 Vmstat fields explained . 57

Table 10 Application speed changes as hit rate varies with a 25 cycle miss
cost . 81

Table 11 Virtual Write Through Cache Details. 85

Table 12 Virtual Write Back Cache Details . 85

Table 13 Physical Write Back Cache Details . 86

Table 14 On-Chip Cache Details . 88

Table 15 Disk Specifications. 97

Table 16 1.3GB IPI ZBR Disk Zone Map . 98

xii Sun Performance Tuning Overview—December 1993

Table 17 Which SPARC IU and FPU does your system have? 113

Table 18 Floating point Cycles per Instruction . 117

Table 19 Number of Register Windows and Integer Cycles per Instruction
118

Table 20 MP Bus Characteristics . 126

Table 21 Disabling Processors In SunOS 4.1.X . 130

Table 22 Ethernet Routing Performance . 137

xiii

Preface

This paper was originally written for a Sun UK User Group conference in
September 1991, it was extensively updated for a second Sun UK User Group
conference in January 1993. Both issues of the paper were widely circulated.
The first two issues were not officially sanctioned documents and did not have
a Sun documentation part number. The author now works for Sun
Microsystems Computer Corporation’s Technical Marketing group; this
document has had many updates and corrections, and it is now an official
SMCC white paper with a Sun part number.

The content of this paper is basically a brain dump of everything I have
learned over the years about performance tuning. It includes a structured
approach to the subject, opinions, heuristics and every reference I could find to
the subject.

With competitive pressures and the importance of time to market, functionality
and bugfixes get priority over designed in performance in many cases. This
paper is aimed both at developers who want to design for performance and
need to understand Sun’s better, and also at end users who have an application
and want it to run faster.

This document is intended to be read sequentially as it follows a set structure.
Each chapter is largely self contained however, so it can be used as a reference
manual if required. The contents pages have been made more detailed in this
release, to compensate for the lack of an index!

xiv Sun Performance Tuning Overview—December 1993

There are several good texts on system1 and network2 tuning aimed at the
system administrator of a network of machines or a timesharing system. This
paper takes a different approach and is written primarily from an application
developers point of view, although there is much common ground. The author
is working with SunSoft press and Prentice Hall to produce a book based upon
this white paper for publication in mid 1994.

The information presented in this paper has largely been gleaned from
published sources and it does not contain any proprietary information. It is
intended to be available for reference by Sun users everywhere.

Since the initial public release of this paper in September 1991 I have had a lot
of feedback from readers. Particular thanks for support, detailed comments
and contributions go to Mike Briggs, Brian Wong, Keith Bierman, Hal Stern,
Gordon Irlam, Morgan Herrington and Dave Rosenthal.

Any comments, corrections or contributions should be made to the address
below.

Adrian Cockcroft
SMCC Technical Marketing
Mailstop UPAL1-431
2550 Garcia Avenue
Mountainview
CA 94043
USA

Email: adrian.cockcroft@corp.sun.com

1. “System Performance Tuning, Mike Loukides, O’Reilly”

2. “Managing NFS and NIS, Hal Stern”

15

Introduction 1

There have been many white papers on performance tuning and related topics
for Suns. This one attempts to gather together references, provide an overview,
bring some information up to date and plug some gaps. A cookbook approach
is taken where possible and I have attempted to stick my neck out and provide
firm recommendations based upon my own experience. The rate at which the
operating system and underlying hardware changes is a major challenge to
anyone trying to work with computers so older software and hardware is
mentioned where appropriate to show how the base level of tuning has
improved with time.

The performance characteristics of a system can be viewed in a layered manner
with a number of variables affecting the performance of each layer. The layers
that I have identified for the purposes of this paper are listed below together
with some example variables for each layer. The chapters of this paper look at
each layer in turn and the appendix has details of the references.

Table 1 System Broken Down Into Tuning Layers

Layers Variables

Source code Algorithm, Language, Programming model, Compiler

Executable Environment, Filesystem Type

Database Buffer Sizes, Indexing

Kernel Buffer Sizes, Paging, Tuning, Configuring

Memory Cache Type, Line Size And Miss Cost

Disk Driver Algorithms, Disk Type, Load Balance

Windows & Graphics Window System, Graphics Library, Accelerators

CPU Processor Implementation

Multiprocessors Load Balancing, Concurrency, Bus Throughput

Network Protocol, Hardware, Usage Pattern

16 Introduction—December 1993

Performance Measurement
In many cases it is obvious that there is a performance problem, and when it is
fixed there may be a noticeable improvement. The performance tuner may then
wrap up a job well done.

Problems can arise when it is necessary to quantify the changes, or to measure
minor performance changes in complex systems. If the aim of the work is to
improve the performance in a well defined benchmark such as one of the SPEC
or TPC measures then the measurement can be well defined. In real life it may
be necessary to design a controlled set of experiments to measure performance
on the system being worked upon. To distinguish between two sets of results
there are statistical tests that can tell you whether the results are significantly
different at a particular confidence level.

Experimental design and analysis is beyond the scope of this paper, a recent
book on the subject is highly recommended instead. “The Art of Computer
Systems Performance Analysis, by Raj Jain” provides comprehensive coverage
of techniques for experimental design, measurement, simulation and
performance modelling. If you are embarking on a large project that involves a
lot of measurement and analysis you can save a great deal of effort and get
much better results by using the right techniques.

Quick Reference for Common Tuning Tips 17

Quick Reference for Common Tuning Tips
There is too much detail in this paper to be quickly absorbed by the reader.
Based upon my own experience there are a few recurring situations and
frequently answered questions that I will list here, with references into the rest
of the paper for in-depth detail. This common situation focuses primarily on
servers running Solaris 2.

The First 10 Tuning Steps

1. The system will usually have a disk bottleneck
In nearly every case the most serious bottleneck is an overloaded or slow
disk. Use iostat -x 30 to look for disks that are more than 30% busy and
have service times of more than 50 ms. The service time is the key, this is the
time between a user process issuing a read and the read completing for
example so it is often in the critical path for response time. If many other
processes are also accessing that disk a queue can form, and service times of
over 1000 ms (not a misprint, over one second!) can easily occur as you wait
to get to the front of the queue. See “Load Monitoring And Balancing” on
page 102 for more details. Increasing the directory name lookup cache size
can help reduce the number of disk I/Os required to manage a filesystem,
see “Directory Name Lookup Cache (dnlc)” on page 45.

2. You will be told that the system is not I/O bound
If you are unfamiliar with the system and are being briefed by its sysadmin
you are very likely to be told that the system is not disk bound. Ignore this
advice and insist on seeing iostat -x 30 output for the period where the
system is running sluggishly. See Step 1.

3. After first pass tuning the system will still have a disk bottleneck!
Keep checking iostat -x 30 as tuning progresses. When a bottleneck is
removed the system may start to run faster, and as more work is done some
other disk will overload. At some point you may need to stripe filesystems
and tablespaces over multiple disks. See Step 1 again. (Hopefully you are
getting the idea now).

4. Poor NFS response times are hard to pin down
Waiting for a network mounted filesystem to respond is not counted in the
same way as waiting for a local disk. The system will appear to be idle
when it is really in an I/O wait state. If you know which NFS server is likely
to be the problem go to it and start at Step 1 again. You should look at the

18 Introduction—December 1993

NFS operation mix with nfsstat on both the client and server and if writes
are common or the servers disk is too busy configure a PrestoServe or
NVSIMM in the server. See that the ethernet is not overloaded by checking
that the collision rate is below one or two percent.

5. Avoid the common memory usage misconceptions
When you look at vmstat don’t waste time worrying about where all the
RAM has gone. After a while the free list will stabilize around one sixteenth
of the total memory configured. The system stops bothering to reclaim
memory above this level, even when you aren’t running anything. See
“Understanding Vmstat Output” on page 56.

6. Don’t panic when you see page-ins and page-outs in vmstat
These are normal since all filesystem I/O is done using the paging process.
Hundreds or thousands of KB paged in and paged out are not a cause for
concern, just a sign that the system is working hard.

7. Look for page scanner activity
When you really are short of memory the scanner will be running
continuously at a high rate (several hundred pages/second). If it runs in
separated high level bursts you should try patching slowscan to 100 so that
the bursts are made longer and slower. See “The Paging Algorithm In
Solaris 2” on page 63.

8. Look for a long run queue (vmstat procs r)
If the run queue is more than 10 then a lot of processes are waiting for some
CPU time. This waiting increases the interactive response time seen by
users. Add more CPU power to the system and see “Understanding Vmstat
On A Multiprocessor” on page 128.

9. Look for processes blocked waiting for I/O (vmstat procs b)
This is a sign of a disk bottleneck. If the number of processes blocked
approaches or exceeds the number in the run queue see Step 1 again.

10. Look for CPU system time dominating user time
If there is more system time than there is user time and the machine is not
an NFS server you may have a problem. Try to find out the source of system
calls and interrupts. See “Tracing In Solaris 2” on page 32, “Monitoring The
System With Proctool” on page 76 and “Kernel Profiling Using Kgmon In
Solaris 2” on page 74.

19

Source Code 2

This chapter is concerned with the aspects of a system that programmers
specifying and writing the software can control to affect its performance.

Algorithms
Many algorithms are invented while writing a program and are as simple to
code as possible. More efficient algorithms are often much more complex to
implement and may need to be retrofitted to an application that is being tuned.
A good book of algorithms1 and a feel for which parts of the program are
likely to be hot spots can make more difference to performance than all other
tuning tweaks put together. There are some general classes of algorithms with
behaviors as shown below.

Algorithmic Classification
Figure 1 Time taken to run vs. dataset size for different classes of algorithms

1. Algorithms by Sedgewick is one to check out.

Large Dataset

Time
O N2() O N()

O N()

Small Dataset

to Run

20 Source Code—December 1993

The notation O(N) means that as the amount of data increases by a factor of N
the time taken increases by the same order of magnitude. A higher order
increase, for example where the time taken increases by the order of N
squared, needs to be avoided. Lower order increases are what the textbook
algorithms are trying to achieve.

As long as a program is being used with a small data-set the difference
between the different classes of algorithms is minor. This is often the case
during testing or in the early lifetime of a product.

An Example Problem

One example could be a CAD system that keeps each object in a drawing on a
linked list and performs a linear search through the list whenever it needs to
find an object. This works for small drawings and it is not too bad if the time
taken to perform other operations dominates the execution time. If the CAD
system is ported from a Sun3/60 to a SPARCstation 2 then many parts of the
code speed up by a factor of perhaps 10 times. The users now expect to run
drawings with 10 times the complexity at the same speed as a Sun3/60.

Unfortunately for some operations the time taken to search through the linked
list now dominates and the linked list code doesn’t see a 10 times speedup due
to caching effects (the Sun3/60 has no data cache, see “A Problem With Linked
Lists” on page 82) so there is a performance problem and the algorithm needs
to be improved. The solution in this case is to move from a linear search to a
more complex search based on hash tables or tree structures. Another approach
is to incrementally sort the linked list so that commonly accessed entries are at
the beginning.

Space Versus Time

Another issue to consider is space versus time optimization. There’s no sense
in making an algorithm that’s O(N2) run in O(N) time if doing so requires
going from O(N) to O(N2) space. The increase in storage will probably make
the application miss the cache more often or page, and the cache or disk
accesses can outweigh any improvement in CPU run time. It is possible to
make an algorithm efficient only to use so much space that it doesn’t run at the
full CPU speed.

Programming Model 21

Programming Model
There is often a conceptual framework underlying an application which can be
thought of in terms of a programming model. Some example models are:

• Hierarchical, structured programming via Jackson Diagrams

• Object Oriented

• Dataflow, the Yourdon/DeMarco method

• State Machines

• Numerical Algorithms

• AI based, rules or knowledge based design

• Forms and records

• Entity relations

Sometimes the model that a programmer or system designer prefers is chosen
regardless of the type of system being written. An inappropriate match
between the programming model and the problem to be solved is a remarkably
common cause of performance problems.

Choice Of Language To Express The Algorithm Or Model

The programmer may decide to choose a language that is familiar to him or
may have a language imposed on him. Often the language ends up dictating
the programming model, irrespective of the needs of the application, but
sometimes languages are forced to implement programming models that are
inappropriate. Real examples include a database system written in APL, a real-
time control system written in Prolog and a very large message passing object
oriented system written in C.

If there is a good match of problem to programming model to language then
there is a good chance that the system overall will respond well to tuning.
Poorly matched systems sometimes contain so much unnecessary complexity
that brute force increases in CPU and I/O throughput are the only thing that
have a significant effect.

The moral is that if you come across an application like this and first attempts
at tuning have little effect you may as well put your money into buying a faster
Sun and your time and effort into redesigning the system from scratch.

22 Source Code—December 1993

It comes down to using the right tool for the job. Most people know what
languages to use for particular jobs but some non-obvious points are listed
below1.

Fortran
Fortran is usually the fastest language for anything that is numerically
intensive. For an equivalent level of compiler technology it will always be
faster than C. This is because it has a simple structure that compilers can
handle more easily than C and it doesn’t have pointers so there is less chance
of side effects during expression evaluation. The key to optimization is code
motion and this can be performed more safely in Fortran than in C. A second
reason is that Fortran defaults to passing floating point variables to
subroutines by reference (i.e. passing an address rather than the number itself).
This is more efficient, especially on processors like SPARC that have separate
integer and floating point registers, and pass variables in integer registers.

Assembler
In theory assembler is the fastest language possible. In practice programmers
get so bogged down in the huge volume of code and the difficulty in
debugging it that they tend to implement simple, inefficient algorithms in
poorly structured code. It is hard to find out where the hot spots in the system
are so the wrong parts of the system get optimised. When you discover a small
routine that dominates the execution time, look at the assembler generated by
the compiler and tweak the sourcecode. As a last resort consider rewriting it in
assembler.

It is often very helpful to understand what sort of code is generated by your
compiler. I have found that writing clean simple high level language code can
help the compiler to understand the code better and that this can improve the
optimisation of the generated assembler. Just think of assembler as read-only
code. Read it and understand it but don’t try to write it.

1. “High Performance Computing, Keith Dowd” covers these issues very well.

Programming Model 23

C and C++
It seems that just about everything is written in C nowadays. Its biggest
weakness is that hardly anyone seems to use lint to check their code as a
standard part of their compilation makefiles. Wading through the heaps of
complaints that lint produces for most systems written in C gives a pretty good
insight into the sloppy nature of much C coding. Many problems with
optimisers breaking C code can be avoided by getting the code to lint cleanly
first! ANSI C is an improvement but not a substitute for lint.

C++ should be used whenever an object oriented design is called for. In most
cases C could be used; but sloppy coding and programmers who take shortcuts
make the resulting systems very hard to debug, and give optimisers a hard
time. Writing C++ like code in C makes the code very hard to understand, it is
much easier to use a C++ preprocessor, with a debugger and performance
analyser that understand the language.

Debug And Test Tools

Lint has just been mentioned, build it into your default makefiles and use it
regularly. There is a little known utility called tcov1 that performs test coverage
analysis and produces an annotated listing showing how many times each
block of code has been executed and a percentage coverage figure.

The execution profile of a program can be obtained using the prof or gprof
tools provided with the system. One problem with these tools is that they
measure the total execution from start to finish, which is less useful for
window system tools that have a large start-up time. The SunPro SPARCworks
Collector and Analyzer can be used on Solaris 2 to obtain this type of profile
information for specific parts of a program.

There is a product called Purify2 that can be used to debug subtle errors in C
and C++ programs such as used-before-set data, memory allocation errors and
array bounds violations. It works by modifying object files to instrument
memory references so it can find errors in library routines and it slows down
execution by no more than a factor of three. Sentinel produce a similar product.

1. See the tcov manual page.

2. From Pure Software Inc., and described in a paper presented at Usenix, Winter 92.

24 Source Code—December 1993

Compiler And Optimisations
Having chosen a language, there is a choice of compilers for the language.
There are typically several compilers for each major language on SPARC. The
SPARCompilers from SunPro tend to have the largest user base and the best
robustness on large programs. The Apogee C and Fortran compilers seem to
have a performance advantage of 10-20% over the commonly used SunPro
SPARCompilers for programs (like SPEC benchmarks) that can use maximum
optimization. Some preliminary results for SPARCompilers 3.0 and Apogee 2.2
releases show substantial performance improvements for both vendors.
Competition between SunPro, Apogee and others will fuel a drive to better
compilers. Using compilers effectively to tune code is not covered in this paper
since it has been addressed in great depth in previous publications1234. To
summarize in a sentence: clean C code with lint, turn up the optimizer most of
the way, profile to find hot spots and turn up the optimizer to maximum for
those parts only. Look at the code in the hot spots to see if the algorithm is
efficient.

Automatic Parallelization

With the introduction and shipment of a large number of multiprocessor
machines it becomes cost-effective to recompile applications to utilize several
processors on a single unix process. SunPro have an automatic parallelizing
optimizer under development as an option for SPARCompilers 3.0. Its first
release will support Fortran77, with support for Fortran 90 and C++ in later
releases. Apogee ship the Kuck and Associates KAP preprocessor as an
optional part of their product. This can also be used to parallelize code,
although it uses Unix processes as its unit of concurrency, whereas the SunPro
optimizer uses lightweight processes (Solaris 2 LWP’s) in a single Unix context.

1. “Performance Tuning an Application”, supplied with SunPro C and Fortran.

2. “You and Your Compiler, by Keith Bierman”.

3. “SPARC Compiler Optimisation Technology Technical White Paper”.

4. “High Performance Computing, Keith Dowd”.

Effective Use Of Provided System Functions 25

Applications vary, and some parallelize better than others. One source of
examples is the individual SPECfp92 benchmarks and the recently proposed
PAR93 parallel benchmark suite. See the “SPARCserver and SPARCcenter
Performance Brief” and “SPARCstation 10 Product Line Technical White
Paper”.

Effective Use Of Provided System Functions
This is a general call to avoid re-inventing the wheel. The SunOS libraries
contain many high level functions that have been debugged tuned and
documented for you to use. If your system hot-spot turns out to be in a library
routine then it may be worth looking at re-coding it in some streamlined way,
but the next release of SunOS or the next generation of hardware may obsolete
your homegrown version. As an example, the common string handling
routines provided in the standard SunOS 4.X C library are simple compiled C
code. In Solaris 2 these routines are written in optimised assembler.

There are some very powerful library routines that seem to be under-used and
I provide some pointers to my favorites below.

Mapped files

SunOS 4.X, Solaris 2.X and all versions of Unix System V Release 4 (SVR4)
include a full implementation of the mmap system call. This allows a process to
map a file directly into its address space without the overhead of copying to
and from a user buffer. It also allows shared files so that more efficient use of
memory is possible and inter-process communication can be performed1. The
shared library system used for dynamic linking uses mmap as its basis.

Asynchronous I/O

This is an extension to the normal blocking read and write calls to allow the
process to issue non-blocking reads and writes2.

1. SunOS 4.1 Performance Tuning

2. aioread, aiowrite manual pages

26 Source Code—December 1993

Memory Allocation Tuning

The standard version of malloc in the Sun supplied libc is optimised for good
space utilisation rather than fast execution time. A version of malloc that
optimises for speed rather than space uses the ‘BSD malloc’ algorithm and is
provided in /usr/lib/libbsdmalloc.a. Link with the -lbsdmalloc option.

There are some useful options in the standard version of malloc1.

• mallocmap() prints a map of the heap to the standard output.

• mallinfo() provides statistics on malloc.

Note – The small block allocation system controlled by mallopt is not actually
implemented in the code of the default version of malloc or the BSD malloc,
the interface is part of SVID but the implementation is vendor dependent.

 In Solaris 2 there are three versions of malloc, System V.4 malloc, SunOS 4
malloc for backwards compatibility and BSD malloc. When linking with third
party libraries that use malloc take care not to mix implementations. Attempts
to malloc a zero sized section of memory are handled differently by each
version.

Linking, Localisation Of Reference And Libraries
There are two basic ways to link to a library in SunOS and SVR4, static linking
is the traditional method used by other systems and dynamic linking is a run-
time link process. With dynamic linking the library exists as a complete unit
that is mapped into the address space of every process that uses it. This saves
a lot of RAM, particularly with window system libraries at over a megabyte
each. It has several implications for performance tuning however.

Each process that uses a shared library shares the physical pages of RAM
occupied by the library, but uses a different virtual address mapping. This
implies that the library may end up in being cached differently from one run of
a program to the next and this can cause interactions that increase the variance
of benchmark results. The library must also be compiled using position
independent code which is a little less efficient than normal code and has an
indirect table jump to go through for every call that is a little less efficient than
a direct call. Static linking is a good thing to use when benchmarking systems

1. malloc manual page

Linking, Localisation Of Reference And Libraries 27

since the performance may be better and the results will have less variance.
Production code should normally dynamically link to save memory,
particularly to the system interface library libc. A mixture can be used, for
example in the following compilation the fortran library is statically linked but
libc is dynamically linked.

% f77 -fast -o fred fred.f -Bstatic -lF77 -lV77 -lm -Bdynamic -lc

This dynamically links in the libc library and makes everything else static.
The order of the arguments is important. If you are shipping products written
in Fortran to customers who do not have Fortran installed on their systems you
will need to use this trick.

Tuning Shared Libraries

When using static linking the library is accessed as an archive of separate
object files and only the files needed to resolve references in the code are linked
in. This means that the position of each object module in memory is hard to
control or predict. For dynamic linking the entire library is available at run
time regardless of which routines are used. In fact, the library is demand paged
into memory as it is needed. Since the object modules making up the library
are always laid out in memory the same way a library can be tuned when it is
built by reordering it so that modules that call each other often are in the same
memory page. In this way the working set of the library can be dramatically
reduced. The window system libraries for sunview and OpenWindows are
tuned in this way since there is a lot of inter-calling between routines in the
library. Tools to do this automatically on entire programs or libraries are
provided as part of the SPARCworks 2.0 Analyser using some functionality
that is only provided in the Solaris 2 debug interface (/proc), linker and object
file format. The main difference is that the a.out format used in BSD Unix and
SunOS 4 only allows entire object modules to be reordered. The ELF format
used in Unix System V.4 and Solaris 2 allows each function and data item in a
single object module to be independently relocated.

28 Source Code—December 1993

29

Executable 3

This section is concerned with things that the user running a program on a Sun
can control on a program by program basis.

Customising The Execution Environment

Limits

The execution environment is largely controlled by the shell. There is a
command which can be used to constrain a program that is hogging too many
resources. For csh the command is limit, for sh and ksh the command is
ulimit . A default set of Solaris 2 resource limits are shown in Table 2, the
SunOS 4 limits are similar.

Users can increase limits up to the hard system limit. The system wide default
limits can only be changed by patching the kernel directly with adb . See
“Setting Default Limits” on page 48 for details.

Table 2 Resource Limits

Resource name Soft User Limit Hard System Limit

cputime unlimited unlimited

filesize unlimited unlimited

datasize 524280 Kbytes 524280 Kbytes

stacksize 8192 Kbytes 261120 Kbytes

coredumpsize unlimited unlimited

descriptors 64 1024

memorysize unlimited unlimited

30 Executable—December 1993

The most useful changes to the defaults are to prevent core dumps from
happening when they aren’t wanted:

To run programs that use vast amounts of stack space:

To run programs that want to open more than 64 files at a time:

The maximum number of descriptors in SunOS 4.X is 256. This was increased
to 1024 in Solaris 2, although the standard I/O package still only handles 256.
The standards compliant definition of FILE in /usr/include/stdio.h only
has a single byte to record the underlying file descriptor index.

If a process exceeds its memory usage limit then it is more likely to have pages
taken from it when the system runs short of memory, and may be swapped out
earlier than processes that are within their limits. The memoryuse limit does not
actually prevent a process from exceeding the limit.

Tracing In SunOS 4.X

When tuning or debugging a program it is often useful to know what system
calls are being made and what parameters are being passed. This is done by
setting a special bit in the process mask via the trace command. Trace then
prints out the information which is reported by the kernel’s system call
interface routines. Trace can be used for an entire run or it can be attached to
a running process at any time. No special compiler options are required. In
Solaris 2 trace has been renamed truss and has more functionality.

% limit coredumpsize 0

% limit stacksize unlimited

% limit descriptors 256

Customising The Execution Environment 31

Here’s some trace output with commentary added to sort the wheat from the
chaff. It also indicates how cp uses the mmap calls and how the shared libraries
start up.

Table 3 Trace Output with Comments

Trace Output Comments
% trace cp NewDocument Tuning Use trace on a cp command
open (“/usr/lib/ld.so”, 0, 04000000021) = 3 Get the shared library loader
read (3, ““.., 32) = 32 Read a.out header to see if dynamically linked
mmap (0, 40960, 0x5, 0x80000002, 3, 0) = 0xf77e0000 Map in code to memory
mmap (0xf77e8000, 8192, 0x7, 0x80000012, 3, 32768) = 0xf77e8000 Map in data to memory
open (“/dev/zero”, 0, 07) = 4 Get a supply of zeroed pages
getrlimit (3, 0xf7fff8b0) = 0 Read the limit information
mmap (0xf7800000, 8192, 0x3, 0x80000012, 4, 0) = 0xf7800000 Map /dev/zero to the bss?
close (3) = 0 Close ld.so
getuid () = 1434 Get user id
getgid () = 10 Get group id
open (“/etc/ld.so.cache”, 0, 05000000021) = 3 Open the shared library cache
fstat (3, 0xf7fff750) = 0 See if cache is up to date
mmap (0, 4096, 0x1, 0x80000001, 3, 0) = 0xf77c0000 Map it in to read it
close (3) = 0 Close it
open (“/usr/openwin/lib”, 0, 01010525) = 3 LD_LIBRARY_PATH contains /usr/openwin/lib
fstat (3, 0xf7fff750) = 0 so look there first
mmap (0xf7802000, 8192, 0x3, 0x80000012, 4, 0) = 0xf7802000
getdents (3, 0xf78000d8, 8192) = 1488 Get some directory entries looking for the right
getdents (3, 0xf78000d8, 8192) = 0 version of the library
close (3) = 0 Close /usr/openwin/lib
open (“/usr/lib/libc.so.1.6”, 0, 032724) = 3 Get the shared libc
read (3, ““.., 32) = 32 Check its OK
mmap (0, 458764, 0x5, 0x80000002, 3, 0) = 0xf7730000 Map in the code
mmap (0xf779c000, 16384, 0x7, 0x80000012, 3, 442368) = 0xf779c000 Map in the data
close (3) = 0 Close libc
close (4) = 0 Close /dev/zero
open (“NewDocument”, 0, 03) = 3 Finally! open input file
fstat (3, 0xf7fff970) = 0 Stat its size
stat (“Tuning”, 0xf7fff930) = -1 ENOENT (No such file or directory) Try to stat output file
stat (“Tuning”, 0xf7fff930) = -1 ENOENT (No such file or directory) But it’s not there
creat (“Tuning”, 0644) = 4 Create output file
mmap (0, 82, 0x1, 0x80000001, 3, 0) = 0xf7710000 Map input file
mctl (0xf7710000, 82, 4, 0x2) = 0 Madvise sequential access
write (4, “This is a test file for my paper”.., 82) = 82 Write out to new file
munmap (0xf7710000, 82) = 0 Unmap input file
close (3) = 0 Close input file
close (4) = 0 Close output file
close (0) = 0 Close stdin

32 Executable—December 1993

Tracing In Solaris 2

The truss command has many useful features not found in the SunOS 4
trace command. It can trace child processes and it can count and time system
calls and signals. Other options allow named system calls to be excluded or
focussed on, and data structures can be printed out in full. Here is an excerpt
showing a fragment of truss output with the -v option to set verbose mode
for data structures, and an example of truss -c showing the system call
counts.

close (1) = 0 Close stdout
close (2) = 0 Close stderr
exit (0) = ? Exit program
%

% truss -v all cp NewDocument Tuning
execve(“/usr/bin/cp”, 0xEFFFFB28, 0xEFFFFB38) argc = 3
open(“/usr/lib/libintl.so.1”, O_RDONLY, 035737561304) = 3
mmap(0x00000000, 4096, PROT_READ, MAP_SHARED, 3, 0) = 0xEF7B0000
fstat(3, 0xEFFFF768)= 0
 d=0x0080001E i=29585 m=0100755 l=1 u=2 g=2 sz=14512

at = Apr 27 11:30:14 PDT 1993 [735935414]
mt = Mar 12 18:35:36 PST 1993 [731990136]
ct = Mar 29 11:49:11 PST 1993 [733434551]

 bsz=8192 blks=30 fs=ufs
....

% truss -c cp NewDocument Tuning
syscall seconds calls errors
_exit .00 1
write .00 1
open .00 10 4
close .01 7
creat .01 1
chmod .01 1
stat .02 2 1
lseek .00 1
fstat .00 4
execve .00 1

Table 3 Trace Output with Comments

Trace Output Comments

The Effects Of Underlying Filesystem Type 33

Timing

The C shell has a built-in time command that is used when benchmarking or
tuning to see how a particular process is running.

In this case 0.1 seconds of user CPU and 0.5 seconds of system CPU were used
in 3 seconds elapsed time which accounted for 21% of the CPU1. The growth in
size of the process, the amount of i/o performed and the number of page faults
and page writes are recorded. Apart from the times, the number of page faults
is the most useful figure. In this case everything was already in memory from
a previous use of the command. Solaris 2 has a timex command which
provides much extended functionality. See the manual pages for more details.

The Effects Of Underlying Filesystem Type
Some programs are predominantly I/O intensive or may open and close many
temporary files. SunOS has a wide range of filesystem types and the directory
used by the program could be placed onto one of the following types.

1. CPU percentages account for all the processors in an system so 100% represents every processor totally
busy.

mmap .01 18
munmap .00 9
memcntl .01 1
 ---- --- ---
sys totals: .07 57 5
usr time: .02
elapsed: .43

% time man madvise
...
0.1u 0.5s 0:03 21% 0+168k 0+0io 0pf+0w
%

% truss -c cp NewDocument Tuning

34 Executable—December 1993

UFS

The standard filesystem on disk drives is the Unix File System, which in
SunOS 4.1 and on is the Berkeley Fat Fast Filesystem1. If your files have more
than a temporary existence then this will be fastest. Files that are read will stay
in RAM until a RAM shortage reuses the pages for something else. Files that
are written get sent out to disk but the file will stay in RAM until the pages are
reused for something else. There is no special buffer cache allocation, unlike
other Berkeley derived versions of Unix. SunOS and SVR4 both use the whole
of memory to cache pages of code, data or I/O and the more RAM there is the
better the effective I/O throughput will be. See the disk chapter for more info.

Tmpfs

This is a RAM disk filesystem type. Files that are written never get put out to
disk as long as there is some RAM available to keep them in. If there is a RAM
shortage then the pages end up being stored in the swap space. The most
common way to use this in SunOS 4.X is to uncomment the line in
/etc/rc.local for mount /tmp. Some operations, such as file locking, are
not supported in early versions of the tmpfs filesystem so applications that
lock files in /tmp will misbehave. This is fixed in SunOS 4.1.2 and tmpfs is on
by default in Solaris 2.

One side effect of this is that the free swap space can be seen using df . The
tmpfs filesystem limits itself to prevent using up all of the swap space on a
system.

1. The fat fast filesystem supports more inodes per filesystem then the regular BSD FFS.

The following will mount /tmp if set up in /etc/fstab.
If you want to use
the anonymous memory based file system,
have an fstab entry of the form:
swap /tmp tmp rw 0 0
Make sure that option TMPFS is configured in the kernel
(consult the System and Network Administration Manual).
#
mount /tmp

% df /tmp
Filesystem kbytes used avail capacity Mounted on
swap 15044 808 14236 5% /tmp

The Effects Of Underlying Filesystem Type 35

NFS

This is a networked filesystem coming from a disk on a remote machine. It
tends to have reasonable read performance but can be poor for writes and is
slow for file locking. Some programs that do a lot of locking are unusable on
NFS mounted filesystems. See the networking chapter for more information on
tuning NFS performance.

Cachefs

New in Solaris 2.3 is the cachefs filesystem type. It uses a fast filesystem to
overlay accesses to a slower filesystem. The most useful way to use cachefs is
to mount NFS filesystems that are mostly read only via a local UFS disk cache.
The first time a file is accessed it is copied to the local UFS disk. Subsequent
accesses check the NFS attributes to see if the file has changed, and if not the
local disk is used. Any writes to the cachefs filesystem are written through to
the underlying files by default, although there are several options that can be
used in special cases for better performance.

When there is a central server that holds application binaries these can be
cached on demand at client workstations. This reduces the server and network
load and improves response times. See the cfsadmin manual page for more
details. There are no monitoring tools or ways to report cache hit rate measures
in this first release, but it seems to work well.

Caution – Cachefs should not be used to cache shared NFS mounted mail
directories, and can slow down access to write intensive home directories.!

36 Executable—December 1993

Tuning Filesystems

Tunefs

The filesystem layout parameters can be modified using tunefs 1. By default
these parameters are set to provide maximum overall throughput for all
combinations of read, write and update operations in both random and
sequential access patterns.

Eagle DiskPak

A product from Eagle Software Inc. (phone 913-823-7257 in the USA) called
DiskPak has some novel features that can improve throughput for heavily used
filesystems. The product reorganizes the layout of data blocks for each file on
the disk to make all files sequential and contiguous, and to optimize the
placement of the UFS partial block fragments that occur at the end of files. It
also has a filesystem browser utility that gives a visual representation of the
block layout and free space distribution of a filesystem. The most useful
capability of this product is that it can sort files based upon several criteria, to
minimize disk seek time. The main criteria are access time, modification time
and size. If a subset of the files are accessed most often then it helps to group
them together on the disk. Sorting by size helps get a few large files separated
from more commonly accessed small files. According to the vendor speedups
of 20% have been measured for a mixed workload. DiskPak is available for
both SunOS 4.X and Solaris 2.X.

1. See the manual page and “The Design And Implementation Of The 4.3BSD UNIX Operating System, Leffler,
McKusick, Karels and Quarterman” for details of the filesystem implementation.

37

Databases & Configurable Systems 4

This chapter is concerned with tuning programs, such as databases, that the
user is relying on in order to run his own application. The main characteristic
is that these programs may provide a service to the system being tuned and
they have sophisticated control or configuration languages.

Examples
Examples include relational databases such as Oracle, Ingres, Informix and
Sybase which have large numbers of configuration parameters and an SQL
based configuration language; CAD systems such as Autocad and Medusa; and
Geographical Information Systems systems such as Smallworld GIS which
have sophisticated configuration and extension languages. This chapter
concentrates on databases in particular.

Hire An Expert!
For serious tuning you either need to read all the manuals cover to cover and
attend training courses or hire an expert for the day. The black box mentality of
using the system exactly the way it came off the tape with all parameters set to
default values will get you going but there is no point tuning the rest of the
system if it spends 90% of its time inside a poorly configured database.

Use Sun’s Database Excelerator Product with SunOS 4.X
Sun has a version of SunOS tuned for use on systems with large amounts of
memory running databases. It is called DBE - Database Excelerator and there
are versions for each recent release of SunOS 4; DBE 1.2 for SunOS 4.1.2 and
DBE 1.3 for SunOS 4.1.3. It is sold at a very low cost for media, manual and site
licence, and it can dramatically improves the performance of databases,
particularly with large numbers of concurrent users. If used on a system with

38 Databases & Configurable Systems—December 1993

less than 16 Mb of RAM it is likely to run more slowly than the standard
SunOS since several algorithms have been changed to improve speed at the
expense of more memory usage so 16 Mb is the minimum configuration.

Basic Tuning Ideas
Several times I have discovered untuned Oracle installations so some basic
recommendations on the first things to try may be useful. They apply to other
database systems in principle.

Increasing Buffer Sizes

Oracle uses an area of shared memory to cache data from the database so that
all oracle processes can access the cache. It defaults to about 400Kbytes but it
can be increased to be bigger than the entire data set if needed. I would
increase it to at least 20% of the total RAM in the machine as a first try. There
are ways of looking at the cache hit rate within Oracle so increase the size until
the hit rate stops improving or the rest of the system starts showing signs of
memory shortage. Avoiding unnecessary random disk I/O is one of the keys to
database tuning. Both DBE 1.3 and Solaris 21 implement a feature called
intimate shared memory where the virtual address mappings are shared as well
as the physical memory pages. ISM makes virtual memory operations and
context switching more efficient when very large shared memory areas are
used. In Solaris 2 ISM is enabled by the application when it attaches to the
shared memory region. Oracle 7 and Sybase System 10 both enable ISM by
setting the SHM_SHARE_MMU flag in the shmat(2) call.

Using Raw Disk Rather Than Filesystems

You should reserve at least three empty disk partitions, spread across as many
different disks and controllers as possible (but avoiding the a or c partition)
when installing SunOS. You can then change the raw devices to be owned by
Oracle and when installing Oracle specify the raw devices rather than files in
the usual filesystem as the standard data, log1 and log2 files. Filesystems incur
more CPU overhead than raw devices and can be much slower for writes due
to inode and indirect block updates. Two or three blocks in widely spaced

1. Implemented in Solaris 2.2 and later releases.

Basic Tuning Ideas 39

parts of the disk must be written to maintain the filesystem, while only one
block needs to be written on a raw partition. Improvements in the range 10-
25% or more in database performance, and reductions in RAM requirements,
have been reported when moving from filesystems to raw partitions. The
prestoserve synchronous write accelerator (usually used with NFS servers) can
be used with databases that have to use the filesystem and can be used as a
database log file accelerator.

Database backups can be performed on small databases by copying the data
from the raw partition to a filesystem. Often it is important to have a short
downtime for database backups, and a disk to disk transfer is much faster than
a backup to tape. Compressing the data as it is copied can save on disk space
but is very CPU intensive, I would recommend compressing the data if you
have a high end multiprocessor machine. E.g.

Balance The Load Over All The Disks

 The log files should be on a separate disk from the data if possible. This is
particularly important for databases that have a lot of update activity. It will
also help to put indexes and temporary tablespace on their own disks or to
split the database tables over as many disks as possible. The system disk is
often lightly used and on a two disk system I would put the log files on the
system disk and put the rest on its own disk. One approach that can be used to
balance I/O over a larger number is disks is to stripe them together using
Online: DiskSuite. Also see “Load Monitoring And Balancing” on page 102.

Which Disk Partition To Use

If you use the first partition on a disk as a raw oracle partition then you will
lose the disk’s label. This can be recovered using an option of the format
command if you are lucky but you should make a filesystem, swap space or
small unused partition at the start of the disk.

On Sun’s 424MB, 535MB, 1.05GB, 1.3GB and 2.1GB disks the first part of the
disk is the fastest so a tiny first partition followed by a database partition
covering the first half of the disk is r ecommended for best performance. See
“ZBR Drives” on page 98 for more details and an explanation.

dd if=/dev/rsd1d bs=56k | compress > /home/data/dump_rsd1d.Z

40 Databases & Configurable Systems—December 1993

The Effect Of Indices

When you look up an item in a database it must match your request against all
the entries in a (potentially large) table. Without an index a full table scan must
be performed and the database will read the entire table from disk in order to
search every entry. If there is an index on the table the database will lookup the
request in the index and it will know which entries in the table need to be read
from disk. Some well chosen indexes can dramatically reduce the amount of
disk I/O and CPU time required to perform a query. Poorly designed or
untuned databases are often under-indexed.

41

Kernel 5

This chapter is concerned with variables that can be changed by a system
administrator building or tuning a kernel. In SunOS 4.X the kernel must be
recompiled after tweaking a parameter file to increase table sizes but in Solaris
2 there is no need to recompile the kernel, it is modified by changing
/etc/system and re-booting. The kernel algorithms have changed in many
places between SunOS 4.X and Solaris 2. The differences are noted as SVR4
changes if they are generic and as Solaris 2 where Solaris 2 is different from
generic SVR4.

Later releases of SunOS 4.X have Solaris 1.X names which I have avoided for
clarity. The kernel part of Solaris 2.X is known as SunOS 5.X but this name is
not often used.

Buffer Sizes And Tuning Variables
The number of fixed size tables in the kernel has been reduced in each release
of SunOS. Most are now dynamically sized or are linked to the maxusers
calculation. The tuning recommended for each release varies as shown below.

Table 4 Tuning SunOS Releases

Release Extra Tuning Required (apart from maxusers)

SunOS 4.1/Solaris 1.0 Add PMEGS patch tape or DBE-1.0, set handspread

SunOS 4.1.1/Solaris 1.0.1 Add DBE-1.1, increase buffer cache

SunOS 4.1.2/Solaris 1.0.2 Add DBE-1.2, add I/O patch 100575-02, tune pager

SunOS 4.1.3/Solaris 1.1 Add DBE-1.3, Increase maxslp, tune pager

SunOS 5.0/Solaris 2.0 Tune pager, check /etc/TIMEZONE, upgrade to 2.3!

SunOS 5.1/Solaris 2.1 Tune pager

SunOS 5.2/Solaris 2.2 Tune pager, no need to tune maxusers on small machines.

SunOS 5.3/Solaris 2.3 Tune pager, no need to tune maxusers

42 Kernel—December 1993

Solaris 2 Performance Tuning Manual

There is a manual section called “Administering Security, Performance and
Accounting in Solaris 2.2”. Read it, but beware that it contains a few typos and
errors. The manual was written for Solaris 2.0 and some changes in the Solaris
2.2 and 2.3 kernel have obsoleted parts of the manual.

Maxusers In SunOS 4.X

The maxusers parameter is set in the kernel configuration file and a
replacement kernel is compiled and linked using the new value. Many
parameters and kernel tables are derived from maxusers. It is intended to be
derived from the number of users on the system but this usually results in too
small a value. It defaults to 16 for the sun4m architecture, but for other
architectures it defaults to 8 for a GENERIC kernel and 4 for a
GENERIC_SMALL. These values are suitable for single user workstations that
are short of RAM but in most cases a substantial increase in maxusers is called
for. A safe upper limit is documented in the SunOS 4.1.2 (about 100) and 4.1.3
(225) manuals and a very rough guideline would be to set to the number of
Megabytes of RAM in the system for a workstation and twice that for an NFS
server. Due to a shortage of kernel memory in SunOS 4.1.2 the safe upper limit
is reduced to about 100 for systems that have large amounts of RAM since
kernel memory is used to keep track of RAM as well as to allocate tables. The
kernel base address was changed in 4.1.3 to allow a safe limit of 225 for any
system.

Using /etc/system To Modify Kernel Variables In Solaris 2

/etc/system is read by the kernel at start-up. It configures the search path
for loadable kernel modules and allows kernel variables to be set. See the
manual page for system(4) for the full syntax.

Be very careful with set commands in /etc/system , they basically cause
automatic adb patches of the kernel so there is plenty of opportunity to break
your system. If your machine will not boot and you suspect a problem with
/etc/system the boot -a option can be used. With this option the system
prompts (with defaults) for its boot parameters. One of these is the
configuration file /etc/system . Either enter the name of a backup copy of the
original /etc/system file or enter /dev/null . The file should be fixed and
the machine should be rebooted immediately to check that it is OK.

Buffer Sizes And Tuning Variables 43

Maxusers In Solaris 2

The effect of maxusers has not changed but it now defaults to 8 in Solaris 2.0
and 2.1, and it is dynamically sized in Solaris 2.2 and 2.3 based upon the
amount of RAM configured in the system. It is modified by placing a
command in /etc/system e.g.

Solaris 2.2
The automatic configuration of maxusers in Solaris 2.2 is based upon the value
of physmem which is the amount of memory (in pages) after the kernel has
allocated its own code and initial data space of around two MB. The automatic
scaling stops when memory exceeds 128MB. For systems with 256MB or more
of memory either set maxusers to the generic safe maximum of 225, or leave it
and set the individual kernel resources directly. The actual safe maximum level
is hardware dependent, and varies depending upon the kernel architecture.

Solaris 2.3
The maxusers setting in Solaris 2.3 is automatically set equal to the number of
MB of RAM configured into the system (actually it is based upon physmem
which does not include the two MB or so that the kernel uses at boot time). The
minimum limit is 8 and the maximum automatic limit is 1024, corresponding
to systems with 1GB or more of RAM. It can still be set manually in
/etc/system but the manual setting is checked and limited to a maximum of
2048. This is a safe level on all kernel architectures, but uses a large amount of
kernel memory.

set maxusers = 200

Table 5 Maxusers Settings In Solaris 2.2

RAM Configuration Maxusers Processes Name Cache

Up to and including 16 MB 8 138 226

Up to and including 32 MB 32 522 634

Up to and including 64 MB 40 650 770

Up to and including 128MB 64 1034 1178

Over 128 MB 128 2058 2266

44 Kernel—December 1993

Derived Parameters

These calculations are the same in both SunOS 4 and Solaris 2. The inode and
name cache variables are described in more detail later in this chapter. The
other variables are not performance related.

Using Pstat In SunOS 4.X To Examine Table Sizes

The occupancy and size of some of the tables can be seen using the pstat -T
command. This is for a SPARCstation 1 running SunOS 4.1.1 with maxusers set
to 8.

The pstat command only shows a few of the tables. Before SunOS 4.1 it showed
another entry, confusingly also labelled files, which was in fact the number of
streams. From SunOS 4.1 on the number of streams is increased dynamically
on demand so this entry was removed.

1. ncallout no longer exists in Solaris 2.2 and later releases. The callout queue is now dynamically sized as
required.

Table 6 Default Settings for Kernel Parameters

Kernel Resource Variable Default Setting

Callout ncallout 16 + max_nprocs1

Inode ufs_ninode max_nprocs + 16 + maxusers + 64

Name Cache ncsize max_nprocs + 16 + maxusers + 64

Process max_nprocs 10 + 16 * maxusers

Quota Table ndquot (maxusers * NMOUNT)/4 + max_nprocs

User Process maxuprc max_nprocs - 5

% pstat -T
217/582 files The system wide open file table
166/320 inodes The inode cache
 48/138 processes The system wide process table
13948/31756 swap Kilobytes of swap used out of

the total

Buffer Sizes And Tuning Variables 45

Using Sar In Solaris 2 To Examine Table Sizes And Kernel Memory Allocation

Sar likes to average sizes over time, so sar -v 1 tells sar to make one measure
over a one second period. The proc-sz, inod-sz and file-sz fields are reporting
the same thing as pstat -T. The file table is no longer a fixed size data structure
in Solaris 2 so its size is given as zero.

The kernel dynamically allocates memory from the global free list as it needs it.
Allocations of 256 bytes or less are made from a small block pool, allocations of
512 bytes to 2KB are made from a large block pool (allocations are rounded up
to a power of 2). The total pool sizes never decrease, although the amount
allocated will fluctuate. Oversize allocations of 4KB or more are made by
allocating pages directly, and these are freed back for general use when no
longer required. On high end MP machines with a lot of processes hardware
and RAM to keep track of it is not unusual for the kernel to use several 10s of
MB. Solaris 2.3 seems to use less than 2.2.

Directory Name Lookup Cache (dnlc)

This is sized using maxusers and a large cache size (ncsize above) significantly
helps NFS servers which have lots of clients1. The command vmstat -s shows
the DNLC hit rate. Directory names less than 14 characters long are cached and
names that are too long to be cached are reported as well. A cache miss means
that a disk I/O may be needed to read the directory when traversing the

1. See “Networks and File Servers: A Performance Tuning Guide”

% sar -v 1

SunOS hostname 5.2 Generic sun4c 08/05/93

00:17:08 proc-sz ov inod-sz ov file-sz ov lock-sz
00:17:09 44/522 0 676/634 0 292/0 0 2/0

% sar -k 1

SunOS hostname 5.2 Generic sun4c 08/05/93

00:35:00 sml_mem alloc fail lg_mem alloc fail ovsz_alloc fail
00:35:01 476672 467696 0 1146880 1102848 0 3641344 0

46 Kernel—December 1993

pathname components to get to a file. A hit rate of much less than 90% will
need attention. The inode cache should be at least as big as the DNLC cache.
The only limit to the size of the DNLC cache is available kernel memory. For
NFS server benchmarks it has been set as high as 16000 and for maxusers =
2048 it would be set at 34906.

Inode Cache

A memory resident inode is used whenever an operation is performed on an
entity in the filesystem. The inode read from disk is cached in case it is needed
again and the maximum number of active and inactive inodes that the system
will cache is set by ufs_ninode. The inodes are kept on a linked list, rather than
a fixed size table. It is entirely possible that the number of open files in the
system can cause the number of active inodes to exceed the limit, raising the
limit allows inactive inodes to be cached in case they are needed again. Every
entry in the DNLC cache points to an entry in the inode cache so both caches
should be sized together. Since it is just a limit, ufs_ninode can be tweaked with
adb on a running system with immediate effect. The only upper limit is the
amount of kernel memory used by the inodes. The tested upper limit
corresponds to maxusers = 2048 which is the same as ncsize at 34906. Use
sar -k to report the size of the kernel memory allocation, each inode uses 512
bytes of kernel memory from the lg_mem pool.

One customer written IO benchmark which opened and closed a large number
of files could be tuned by increasing the size of the inode cache such that it
produced results showing a slow SCSI disk performing at an apparent rate of
over 10 Mbytes per second on a SPARCstation 1. Since the benchmark was
claimed to be representative of common disk usage patterns this shows that a
large inode cache can help file intensive programs significantly.

Buffer Cache

The buffer cache is used to cache all UFS disk I/O in SunOS 3 and BSD Unix.
In SunOS 4 and SVR4 it is used to cache inode, indirect block and cylinder
group related disk I/O only.

% vmstat -s
... lines omitted
 79062 total name lookups (cache hits 94%)
 16 toolong

Buffer Sizes And Tuning Variables 47

In Solaris 2 nbuf is used to keep track of how many page sized buffers have
been allocated, and a new variable called p_nbuf (100) defines how many new
buffers are allocated in one go. A variable called bufhwm controls the
maximum amount of memory allocated to the buffer and is specified in KB. By
default up to 2% of system memory is used, this can be increased up to 20%,
and it will usually need to be increased to 10% for a dedicated NFS file server.

In Solaris 2 the buffer cache can be monitored using sar -b , this reports a
read and a write hit rate for the buffer cache. According to “Administering
Security, Performance and Accounting in Solaris 2.2” the buffer cache size
(bufhwm) should be increased if there is a significant (say more than 50)
number of reads and writes per second and the read hit rate falls below 90% or
the write hit rate falls below 65%.

An alternative look at the buffer cache hit rate can be calculated from part of
the output of netstat -k .

Comparing buffer cache hits with lookups 9285/9705 = 96% hit rate since
reboot which seems OK.

sar -b 5 10

SunOS hostname 5.2 Generic sun4c 08/06/93

23:43:39 bread/s lread/s %rcache bwrit/s lwrit/s %wcache pread/s pwrit/s
...
Average 0 25 100 3 22 88 0 0

% netstat -k
...
biostats:
buffer cache lookups 9705 buffer cache hits 9285 new buffer
requests 0
waits for buffer allocs 0 buffers locked by someone 3 duplicate
buffers found 0

Warning – netstat -k is an undocumented and unsupported option. The output
is an almost raw dump of the undocumented kernel statistics interface which
changes in each release of Solaris 2. Do not depend upon it.

48 Kernel—December 1993

Setting Default Limits

There is often a need to change the default hard and soft limit values.
Sometimes the maximums need to be reduced to keep processes from hogging
the system and sometimes the default number of files needs to be increased.
Rather than setting limits in every user login script the global default limits in
the kernel can be changed. In generic Unix System V Release 4 this is
performed by setting some symbolic variables and rebuilding the kernel. In
Solaris 2 the /etc/system method cannot be used since there are no variables
corresponding to the individual limits, just a single rlimit s data structure.
The kernel must be patched using adb . The elements are laid out as shown by
the sysdef -i command, which shows the values in hexadecimal.

To increase the default number of file descriptors per process rlimits+28 must
be patched with adb as shown below.

The commands shown below permanently patch the default number of file
descriptors to 128 (0x80) in the /kernel/unix file using “?” and also patch the
current copy in memory using “/”.

 Soft:Hard Resource byte offset in hex
Infinity:Infinity cpu time 0: 4
Infinity:Infinity file size 8: c
1fefe000:1fefe000 heap size 10:14
 800000: ff00000 stack size 18:1c
Infinity:Infinity core file size 20:24
 40: 400 file descriptors 28:2c
Infinity:Infinity mapped memory 30:34

cp /kernel/unix /kernel/unix.orig
adb -k -w /kernel/unix /dev/mem
rlimits,e?X
rlimits:
rlimits: 7fffffff 7fffffff 7fffffff 7fffffff
 1fefe000 1fefe000 800000 ff00000
 7fffffff 7fffffff 40 400
 7fffffff 7fffffff

Warning – using adb to patch the kernel directly is a potentially dangerous
operation. Mistyping a command could crash the system or render it
unbootable. Save an unpatched kernel copy. Do not increase the hard limits.

Buffer Sizes And Tuning Variables 49

Solaris 2 Performance Improvements

The initial developers release of Solaris 2.0 is slower than SunOS 4.1.3 on most
measures. Solaris 2.1 performance improved substantially, particularly for
interactive desktop use. Solaris 2.2 had further improvements, with an
emphasis on database performance, I/O throughput and multiprocessor
scalability. Solaris 2.3 benefits from another six months of performance tuning
and bug fixes, with an emphasis on network throughput, multiuser
performance and high end multiprocessor scalability. Very high SPEC LADDIS
NFS performance numbers have been released using Solaris 2.3.

Some of the changes that improve performance on the latest processor types
and improve high end multiprocessor scalability can cause a slight reduction in
performance on earlier processor types and on uniprocessors. Trade-offs like
this are carefully assessed and in most cases when part of the system is tuned
an improvement must be demonstrated on all configurations.

The Solaris 2 kernel is on a diet, it will get slimmer and quicker in subsequent
releases for better performance on everything from the 16MB SPARCclassic to
the 20 CPU SPARCcenter 2000.

In general Solaris 2 requires more memory than SunOS 4.1.3. On small memory
systems (16MB) SunOS 4.1.3 will be faster because it will be paging less1. On
larger memory systems Solaris 2 is faster than SunOS 4.1.3 for some things and
slower for others. A personal impression based upon upgrading a
SPARCstation 1GX with 40MB of RAM from SunOS 4.1.2 to Solaris 2.2 is that
Solaris 2.2 feels noticeably faster running OpenWindows and using Frame
Maker to edit this white paper!

1. See “Solaris 2 “Standard” Tweaks” on page 71 for a way to free up some memory and help performance

rlimits+28?W80
rlimits+28/W80
rlimits,e?X
rlimits:
rlimits: 7fffffff 7fffffff 7fffffff 7fffffff
 1fefe000 1fefe000 800000 ff00000
 7fffffff 7fffffff 80 400
 7fffffff 7fffffff

50 Kernel—December 1993

Using Sar Effectively In Solaris 2

This utility has a huge number of options and some very powerful capabilities.
One of its best features is that you can log its full output in date-stamped
binary form to a file. You can even look at a few selected measures
interactively then go back to look at all the other measures if you need to. Sar
generates average values automatically and can be used to produce averages
between specified start and end times from a binary file. It is described in full
in “Administering Security, Performance and Accounting in Solaris 2.2” and in
“System Performance Tuning, Mike Loukides, O’Reilly”.

One particularly useful facility is that the system is already set up to capture
binary sar records at 20 minute intervals, and to maintain one month of past
records in /var/adm/sa. This can easily be enabled by uncommenting three
lines in the “sys” crontab file /var/spool/cron/crontabs/sys, and making sure
that /etc/rc2.d/S21perf is enabled (the default). You will then be collecting a
complete historical system load profile, so when the system is behaving
“badly” the records can be compared with some previous time when the
system was behaving “well”. Ideally the records should be saved elsewhere for
posterity on a monthly basis.

MMU Algorithms And PMEGS
A fundamental part of the kernel functionality is concerned with managing
virtual and physical memory. It is useful to understand the differences between
various machines in the way that virtual to physical memory translations are
performed.

The Sun-4 MMU - sun4, sun4c, sun4e Kernel Architectures

Older Sun machines use a “Sun-4” hardware memory management unit which
acts as a large cache for memory translations. It is much larger than the MMU
translation cache found on more recent systems but the entries in the cache,
known as PMEGs are larger and take longer to load. A PMEG is a Page Map
Entry Group, a contiguous chunk of virtual memory made up of 32 or 64
physical 8Kb or 4Kb page translations. A SPARCstation 1 has a cache
containing 128 PMEGS so a total of 32Mb of virtual memory can be cached.

MMU Algorithms And PMEGS 51

Note that a program can still use a 500MB or more of virtual memory on these
machines, it is the size of the translation cache, which affects performance, that
varies. The number of PMEGS on each type of Sun is shown in Table 7.

In SunOS 4.0.3 and SunOS 4.1 there were two independent problems which
only came to light when Sun started to ship 4Mbit DRAM parts and the
maximum memory on a SPARCstation 1 went up from 16 Mb to 64Mb.
Memory prices also dropped and many more people loaded up their
SPARCstation 1,1+, SLC or IPC with extra RAM. When the problem was
discovered a patch was made for SunOS 4.0.3 and SunOS 4.1. The patch is
incorporated into DBE 1.0 and later and SunOS 4.1.1 and later as standard.

If you run within the limits of the MMU’s 128 PMEG entries the processor runs
flat out; faster than other MMU architectures in fact. When you run outside the
limits of the MMU the problems occur.

PMEG reload time problem
When a new PMEG was needed the kernel had to get information from a
number of data structures and process it to produce the values needed for the
PMEG entry. This took too long and one of the symptoms of PMEG thrashing
was that the system CPU time is very high, often over 50% for no apparent
reason. The cure is to provide a secondary, software cache for the completed
PMEG entries which can be resized if required. If a PMEG entry is already in

Table 7 Sun-4 MMU Characteristics

Processor type Page Size Pages/PMEG PMEGS Total VM Contexts

SS1(+), SLC, IPC 4 Kb 64 128 32 Mb 8

ELC 4 Kb 64 128 32 Mb 8

SPARCengine 1E 8 Kb 32 256 64 Mb 8

IPX 4 Kb 64 256 64 Mb 8

SS2 4 Kb 64 256 64 Mb 16

Sun 4/110, 150 8 Kb 32 256 64 Mb 16

Sun 4/260, 280 8 Kb 32 512 128 Mb 16

SPARCsystem 300 8 Kb 32 256 64 Mb 16

SPARCsystem 400 8 Kb 32 1024 256 Mb 64

52 Kernel—December 1993

the software cache then it is block copied into place. The effect is that the
reload time is greatly reduced and the amount of system CPU used drops back
to more reasonable levels.

PMEG Stealing
In order to load a new PMEG the kernel had to decide which existing entry to
overwrite. The original algorithm used made the problem much worse since it
often stole a PMEG from an active process, which would then steal it back
again, causing a thrashing effect. When a PMEG was stolen its pages were put
onto the free list. If every PMEG was stolen from a process then every page
would be on the free list and the system would decide to swap out the process.
This gave rise to another symptom of PMEG thrashing, a large amount of free
memory reported by vmstat and a lot of swapping reported by vmstat -S
even though there was no disk I/O going on. The cure is to use a much better
algorithm for deciding which PMEG to reuse and to stop putting pages on the
free list when a PMEG is stolen.

Problem Solved
There are some performance graphs in the “SPARCstation 2 Performance Brief”
which show the difference between SunOS 4.1 and SunOS 4.1.1 using a worst
case test program. For a SPARCstation IPC the knee in the curve which
indicates the onset of PMEG thrashing is at 16 Mb for SunOS 4.1 and around 60
Mb for SunOS 4.1.1. Beyond that point SunOS 4.1 hits a brick wall at 24 Mb
while the IPC is degrading gracefully beyond 80 Mb with SunOS 4.1.1.

The SPARCstation 2, which has twice as many PMEGs, is flat beyond 80 Mb
with no degradation.

If you are called upon to tune a system that seems to have the symptoms
described above, is running SunOS 4.0.3 or SunOS 4.1 and you cannot upgrade
to SunOS 4.1.1, then you should contact the Sun Answer Center to get hold of
the PMEGS patch.

Contexts

Table 7 on page 51 shows the number of hardware contexts built into each
machine. A hardware context can be thought of as a tag on each PMEG entry
in the MMU which indicates which process that translation is valid for. This
allows the MMU to keep track of the mappings for 8, 16 or 64 processes in the

MMU Algorithms And PMEGS 53

MMU, depending upon the machine. When a context switch occurs, if the new
process is already assigned to one of the hardware contexts, then some of its
mappings may still be in the MMU and a very fast context switch can take
place. For up to the number of hardware contexts available this scheme is more
efficient than a more conventional TLB based MMU. When the number of
processes trying to run exceeds the number of hardware contexts the kernel
has to choose one of the hardware contexts to be reused and has to invalidate
all the PMEGS for that context and load some PMEGS for the new context. The
context switch time starts to degrade gradually and probably becomes worse
than a TLB based system when there are more than twice as many active
processes as contexts. This is one reason why a SPARCserver 490 can handle
many more users in a timesharing environment than the (apparently faster)
SPARCstation 2, which would spend more time in the kernel shuffling the
PMEGS in and out of its MMU. There is also a difference in the hardware
interface used to control the MMU and cache, with more work needing to be
done in software to flush a context on a SPARCstation 1 and higher level
hardware support on a SPARCstation 2 or SPARCserver 400. The number of
various flushes can be monitored using vmstat -c.

No new machines are being designed to use this type of MMU, but it
represents a large part of the installed base.

The SPARC Reference MMU - sun4m Kernel Architecture

Recently Sun’s have started to use the SPARC Reference MMU which has an
architecture that is similar to many other MMU’s in the rest of the industry.

Table 8 SPARC Reference MMU Characteristics

Processor Types Page Sizes TLB Contexts Total VM

Cypress SPARC/MBus chipsets e.g.
SPARCserver 600 -120 and -140 &
Tadpole SPARCbook

4 Kb
256Kb
16Mb

64
64
64

4096
4096
4096

256Kb
16Mb

1024Mb

54 Kernel—December 1993

A detailed description of the hardware involved can be found in
“Multiprocessor System Architectures, Ben Catazaro, SunSoft Press”.

There are four current implementations, the Cypress uniprocessor 604 and
multiprocessor 605 MMU chips, the MMU that is integrated into the
SuperSPARC chip, the Fujitsu SPARClite and the highly integrated
MicroSPARC.

Unlike the sun4 MMU there is a small fully associative cache for address
translations (a Translation Lookaside Buffer or TLB) which typically has 64
entries that map one contiguous area of virtual memory each. These areas are
usually a single 4Kb page but future releases of Solaris 2 are being optimized
to use the 256Kb or 16Mb pages in certain cases, for mapping frame buffers (in
Solaris 2.3) and parts of the kernel. This requires contiguous and aligned
physical memory for each mapping, which is hard to allocate except for special
cases. Each of the 64 entries has a tag that indicates what context it belongs to.
This means that the MMU does not have to be flushed on a context switch. The
tag is 12 bits on the Cypress/Ross MMU and 16 bits on the SuperSPARC
MMU, giving rise to a much larger number of hardware contexts than the Sun-
4 MMU so that MMU performance is not a problem when very large numbers
of users or processes are present.

The SPARC Reference MMU Table Walk Operation

The primary difference from the Sun-4 MMU is that TLB entries are loaded
automatically by table walking hardware in the MMU. The CPU stalls for a few
cycles waiting for the MMU but unlike many other TLB based MMU’s or the
Sun-4 MMU the CPU does not take a trap to reload the entries itself using

Texas Instruments SuperSPARC e.g.
SPARCserver 600 -41, -52 and -54 &
SPARCstation 10 -30, -41, -52,and -54

4 Kb
256Kb
16Mb

64
64
64

65536
65536
65536

256Kb
16Mb

1024Mb

Fujitsu SPARClite embedded CPU 4 Kb
256Kb
16Mb

32
32
32

256
256
256

128Kb
8Mb

512Mb

Texas Instruments MicroSPARC e.g.
SPARCclassic and SPARCstation LX

4Kb
256Kb
16Mb

32
32
32

64
64
64

128Kb
8Mb

512Mb

Table 8 SPARC Reference MMU Characteristics

Processor Types Page Sizes TLB Contexts Total VM

MMU Algorithms And PMEGS 55

software. The kernel builds a table in memory that contains all the valid virtual
memory mappings and loads the address of the table into the MMU once at
boot time. The MMU then does a table walk by indexing and following linked
lists to find the right page translation to load into the TLB. This is shown in
Figure 1. The table walk is optimized by the MMU hardware, which keeps the
last accessed context, region and segment values in registers so that the only
operation needed is to index into the page table with the address supplied and
load a page table entry. For the larger page sizes the table walk stops with a
special PTE at the region or segment level. The size of the page translation
table is large enough for most purposes but a system with a large amount of
active virtual memory can cause a shortage of page table entries with similar
effects to a PMEGS shortage. The solution is simply to increase the amount of
kernel memory allocated to this purpose. The kernel variable npts controls
how many are allocated. It is calculated depending upon the amount of
physical memory in the system but can be set explicitly by patching npts . On
a 64Mb SPARCserver 600 running a GENERIC 4.1.2 kernel npts is set to 1065
which seems on the low side. Both DBE 1.2 and SunOS 4.1.3 set npts much
higher and it does not normally need to be tweaked.

Figure 1 SPARC Reference MMU Table Walk

The Sun4-MMU based systems can cache sufficient virtual memory
translations to run programs many Mb in size with no MMU reloads. When the
MMU limits are exceeded there is a large overhead. The SPARC Reference
MMU only caches 64 pages of 4Kb at a time in normal use for a total of 256KB

MMU base register

context

Context
Table

Region
Table

Segment
Table

Page
Table

page table entry
4GB
Address
Context

16MB
Address
Region

256KB
Address
Segment 4KB Page

number
index

56 Kernel—December 1993

of simultaneously mapped virtual memory. The SRMMU is reloading
continuously as the CPU uses more than this small set of pages but it has an
exceptionally fast reload so there is a low overhead.

The Paging Algorithm and How To Tune It
The paging algorithm is used to manage and allocate physical memory pages
to hold the active parts of the virtual address space of processes running on the
system. First the monitoring statistics are explained; then the algorithm is
explained; and finally recommended changes in the tuning parameters for
different circumstances are made.

Understanding Vmstat Output

The paging activity on a Sun can be monitored using vmstat or sar. Sar is better
for logging the information, but vmstat is more concise and crams more
information into each line of text for interactive use. SunOS 4.X output is
shown here. Solaris 2.0 uses the old avm field to show free swap space.

% vmstat 5
 procs memory page disk faults cpu
 r b w avm fre re at pi po fr de sr s0 s1 d2 s3 in sy cs us sy id
 0 0 0 0 1072 0 2 4 1 3 0 1 1 0 0 0 43 217 15 7 4 89
 1 0 0 0 996 0 4 0 0 0 0 0 4 0 0 0 112 573 25 11 6 83
 0 0 0 0 920 0 0 0 0 0 0 0 0 0 0 0 178 586 43 25 9 67
 0 0 0 0 900 0 0 0 0 0 0 0 3 0 0 0 127 741 30 13 6 81
 0 0 0 0 832 0 0 4 0 0 0 0 0 0 0 0 171 362 44 7 6 87
 0 0 0 0 780 0 0 72 0 0 0 0 13 0 5 0 158 166 45 3 8 89
 0 3 0 0 452 0 0 100 0 76 0 47 20 0 3 0 200 128 79 6 11 83
 0 0 0 0 308 0 2 28 0 20 0 15 2 0 1 0 69 50 28 3 4 93
 0 0 0 0 260 0 3 8 0 24 0 12 0 0 1 0 44 102 25 5 4 91
 0 0 0 0 260 0 0 0 0 0 16 3 3 0 1 0 42 68 12 3 5 92

The Paging Algorithm and How To Tune It 57

Unfortunately the vmstat manual page does not explain how to interpret the
information so clarification of some fields is in order.

Looking at the above log of vmstat it can be seen that some CPU activity in the
first few entries was entirely memory resident. This was followed by some
paging and as the free memory dropped below 256K the scanning algorithm
woke up and started to look for pages that could be reused to keep the free list
above its 256K minimum. The five second average shows that the result of this
is a free list at around 300K. This is typical for a SunOS 4 desktop machine that
has been running for a while and is not idle.

1. See “Vmstat Run Queue Differences In Solaris 2” on page 132

Table 9 Vmstat fields explained

Field Explanation

procs r Processes in run queue, different semantics in SunOS4.X and Solaris 21

procs b Processes blocked for resources, paging, I/O etc

procs w Processes runnable but swapped out

avm or
swap

Active virtual memory is a historical measure that is always set to zero.
swap shows the free virtual memory in Kbytes for Solaris 2

fre Free list memory in Kbytes, the pages of RAM that are ready to be reused

Page Report information about page faults and paging activity. The
information on each of the following activities is averaged each five
seconds, and given in units per second.

re pages reclaimed from the free list, avoiding I/O (previously discarded)

at attaches to pages already in use by other processes (ref count incremented)

pi kilobytes per second paged in causing disk or network reads

po kilobytes per second paged out due to memory shortage or sync/fsflush

fr kilobytes freed per second by the scanner

de artificial memory deficit set at swap out to prevent immediate swapin

sr pages scanned by clock algorithm, per-second

58 Kernel—December 1993

 The Paging Algorithm In SunOS 4.X

When new pages are allocated from the free list there comes a point when the
system decides that there is no longer enough free memory (less than
lotsfree) and it goes to look for some pages that haven’t been used recently
to add to the free list. At this point the pagedaemon is woken up. The system
also checks the size of the free list four times per second and may wake up the
pagedaemon. After a wakeup the pagedaemon is scheduled to run as a process
inside the kernel and assumes that it runs four times per second so it calculates
a scan rate then divides by four to get the number of pages to scan before it
goes back to sleep.

The pagedaemon’s scanning algorithm works by regarding all the pagable
RAM in order of its physical address as if it was arranged in a circle. Two
pointers are used like the hands of a clock and the distance between the two
hands is controlled by handspread . When there is a shortage of free pages
(less than lotsfree) the hands start to move round the clock at a slow rate
(slowscan) which increases linearly to a faster rate (fastscan) as free
memory tends to zero. If the pages for each hand are not locked into memory,
on the free list or otherwise busy then a flag which is set every time the pages
are referenced is examined and if they have not been referenced the pages can
be freed. The first hand then clears the referenced flag for its page so that when
the second hand gets round to the page it will be freed unless it has been
referenced since the first hand got there. If the freed page contained modified
data it is paged out to disk. If there is a lot of memory in the system then the
chances of an individual page being referenced by a CPU in a given time span
are reduced so the speed of the hands must be increased to compensate.

If the shortage of memory gets worse (less than desfree), there are two or
more processes in the run queue, and it stays at that level for more than 30
seconds then swapping will begin. If it gets to a minimum level (minfree)
swapping starts immediately. If after going twice through the whole of
memory there is still a shortage, the swapper is invoked to swap out entire
processes. The algorithm limits the number of pages scheduled to be paged out
to 40 per second (maxpgio) since this is a good figure for 66% of the number of
random I/Os per second on a single disk. If you have swap spread across
several disks then increasing maxpgio may improve paging performance and
delay the onset of swapping. Note that vmstat po reports the number of
kilobytes per second paged out which can be compared to maxpgio *
pagesize .

The Paging Algorithm and How To Tune It 59

Kernel Variables To Control Paging In SunOS 4.X

The default values change in each OS release, and vary for each kernel
architecture for the same release of SunOS 4.X.

Physmem
This is set to the number of pages of usable physical memory. Some other
variables are based on physmem. Pages are 4Kbytes on most SPARC
machines1. Adb prints out physmem in hexadecimal when it is used to patch a
live system.

minfree
This is the absolute minimum memory level that can be tolerated by the
system. If (freemem - deficit) is less than minfree the system will immediately
swap processes out rather than paging. It is usually set to 8 pages and clamped
at desfree/2. The SunOS 4 sun4m kernel sets it to 128 pages.

1. See Table 7 on page 51 for a full list.

Fastscan

Slowscan

Minfree Desfree Lotsfree
Free Memory

Pages/Second

Parameters To Control Page Scanning Rate

Zero

And Onset Of Swapping

60 Kernel—December 1993

desfree
This represents a desperation level, if free memory stays below this level for
more than 30 seconds then paging is abandoned and swapping begins. It is
usually set to 25 pages and is clamped to (physmem/16). The SunOS 4 sun4m
kernel sets the value to 256 pages.

lotsfree
This is the memory limit that triggers the page daemon to start working if free
memory drops below it. It is usually set to 64 pages and is clamped at
(physmem/8). The SunOS 4 sun4m kernel sets it to 512 pages.

fastscan
This is the number of pages scanned per second by the algorithm when there is
minfree available and it is usually set to 1000. There is a linear ramp up from
slowscan to fastscan as free memory goes from lotsfree to zero. The
SunOS 4 sun4m kernel sets it to (physmem/2).

slowscan
This is the number of pages scanned per second by the algorithm when there is
just under lotsfree available and it is usually set to (fastscan /10). There is
a linear ramp up from slowscan to fastscan as free memory goes from
lotsfree to zero.

 maxpgio
This is the maximum number of page out I/O operations per second that the
system will schedule. The default is 40 pages per second, which is set to avoid
saturating random access to a single 3600 rpm (60 rps) disk at two-thirds of the
peak rate. It can be increased if more or faster disks are being used for the
swap space. Many systems now have 5400 rpm (90 rps) disks, see Table 15 on
page 97 for disk specifications.

handspread
Handspread is set to (physmem*pagesize/4), but is increased during
initialization to be at least as large as fastscan which makes it
(physmem*pagesize/2) on sun4m machines.

The Paging Algorithm and How To Tune It 61

Unfortunately, in the old days of Berkeley Unix, when an 8 Mb VAX 750 was a
big machine, the code that set up handspread clamped it to a maximum of 2
Mb. This code was fixed in SunOS 4.1.1 so handspread needs to be patched on
any machine that has much more than 8 Mb of RAM and is running SunOS 4.1
or before.

The default value in /vmunix is 0 which makes the code calculate its own
value. In this case, just under 4 Mb since this machine has 16Mb of RAM and is
running SunOS 4.1.1.

If the default value is patched using adb then that value is used rather than
worked out from the available RAM. This is how it can be fixed in releases of
SunOS prior to 4.1.1, using handspread?W0x3e8000 to patch the value into
/vmunix and handspread/W0x3e8000 to patch the value in memory.

The effect of the problem is that pages that are actively being used are more
likely to be put on the free list if handspread is too small, causing extra work
for the kernel. If the system has a lot of memory installed a stop/go effect can
occur where the scanning algorithm will be triggered by a shortage of memory
and it will free almost every page it finds until there is a lot of free memory
then it will go to sleep again. On a properly configured system it should be
trickling around continuously at a slow rate tidying up the pages that haven’t
been referenced for a while.

cp /vmunix /vmunix.orig
adb -k -w /vmunix /dev/mem
physmem ff3
handspread?X
_handspread:
_handspread: 0
handspread/X
_handspread:
_handspread: 3e8000

Warning – using adb to patch the kernel directly is a potentially dangerous
operation. Mistyping a command could crash the system or render it
unbootable. Save an unpatched kernel copy.

62 Kernel—December 1993

Swapping Out And How To Get Back In (SunOS 4.X)

Sleep Time Based Swap Outs
If a process has been sleeping for more than 20 seconds then it is very likely to
be swapped out even if there is a lot of free memory available. This means that
the update process, which sync’s the disks every 30 seconds is continually
being swapped in and out since it tends to sleep for 30 seconds. It also means
that clock icons swap in every minute to update the time. This concept seems
to generate more overhead than it saves and it can be disabled by setting
maxslp to 128. The kernel only keeps track of process sleep time in a single
byte and it stops counting at 127 seconds. (The concept of maxslp has gone
away in Solaris 2). Large timesharing MP servers running SunOS 4.1.2 or 4.1.3
can be helped significantly due to a reduction in unnecessary system time
overhead. The current values for all processes can be seen using pstat -p (in the
SLP column) and information on a single process can be seen using pstat -u
PID (where PID is the process ID). The pstat man page is helpful but intimate
knowledge of kernel internals is assumed in too many cases. These operations
are also known as soft swaps and are not included in the swapouts reported by
vmstat -S. In practice only the private pages for the process are swapped out,
and these pages are put on the free list. When the swapin occurs the pages may
still be on the free list so can be reclaimed without any disk reads.

Memory Shortage Based Swap Outs
The SunOS 4 kernel keeps track of the ten biggest processes according to their
resident set size (RSS). When there is a memory shortage (see the description of
minfree and desfree above) it selects the four largest and swaps out the oldest
or a process that has been sleeping longer than maxslp . The deficit (vmstat
de) is increased to prevent the process from swapping back in immediately.
This is also known as a hard swap and is reported by vmstat -S as “so” in
swapouts per second. It is very rare for memory to become scarce enough for
this type of swap out to occur.

The Paging Algorithm and How To Tune It 63

Swap Ins
The first processes to be swapped back in are the smallest ones that have been
asleep for longest and are not running at low priority. A process will be
swapped back in when half of the number of pages it freed on swapout are
available, although only the basic few pages are swapped in in one go and the
rest are paged in as needed.

The Paging Algorithm In Solaris 2

The basic algorithm is similar to SunOS 4.X, but the details have changed
sufficiently for the tuning parameters to have different meanings in some cases
(although they have the same names). This part of Solaris 2 has some tuning
variables derived from System V, and some from BSD4.3 via SunOS 4, but the
algorithm now uses Solaris 2 kernel threads and works alongside the
scheduler. Swapping is now a scheduler function, and Solaris 2.1 and 2.2
machines do not perform any swapping in normal operation. Solaris 2.3 swaps
in some circumstances. Pageouts are now queued and clustered so that the
random pageouts are reorganized into large sequential writes. This removes
one of the primary reasons why swapping was needed in SunOS 4.X.

Swap Space
One other change is that swap space on disk is no longer required to backup
physical RAM. The total allocatable memory in SunOS 4.X is equal to the swap
space, and large memory machines require an even larger swap space to
backup the RAM. In Solaris 2 if you have enough RAM you do not need to
configure any swap space at all, so pageouts cannot occur! If you ran on SunOS
4.X with 30-40MB of swap space, then you could configure Solaris 2 with 48MB
of RAM and no swap disk. The page scanning algorithm still needs to find
unused pages to put on the free list, but it cannot cause pageouts.

Tuning Parameters
The tuning parameters are described below.

Caution – The kernel algorithms are subject to change and the algorithms
described are only valid for Solaris 2.1, 2.2 and 2.3. Solaris 2.4 is very likely to
have changes to both the algorithms and the default values.!

64 Kernel—December 1993

Physmem
This is set to the number of pages of usable physical memory. As previously
mentioned, the maxusers calculation is based upon physmem in Solaris 2.2 and
2.3. If you are investigating system performance and want to run tests with
reduced memory on a system, you can set physmem in /etc/system and
reboot to prevent a machine from using all its RAM. The unused memory still
uses some kernel resources, and the page scanner still scans it, so if the
reduced memory system does a lot of paging the effect may not be the same as
physically removing the RAM.

minfree
Minfree is set to (physmem/64). The kernel uses minfree for the following
purposes:

• When exec’ing a small program (under 280K which is set by pgthresh), the
entire program is loaded in one go rather than being paged in piecemeal as
long as doing so would not reduce freemem below minfree.

• During a copy-on-write operation, the original page may be stolen to
provide the copy if freemem is less than minfree.

• I/O Readahead clustering is disabled if freemem is less then minfree.

• The scheduler will not swap in processes while there is less than minfree +
tune_t_gpgslo available. This is a very rare condition.

desfree
Desfree is set to (physmem/32). The kernel uses desfree for the following
purposes:

• At the point where pages are taken from the free list, if freemem is less than
desfree an immediate wakeup call is sent to the pageout daemon, rather
than waiting for pagedaemon to wake up on its own (which happens four
times per second). This is similar to SunOS 4.

• The number of entries in the queue of pending pageout I/Os is set to
desfree (which is sized in pages).

The Paging Algorithm and How To Tune It 65

lotsfree
Lotsfree is set to (physmem/16). The kernel uses lotsfree for the following
purposes:

• During the 100Hz clock routine a test is made four times a second to see if
freemem is less than lotsfree. If so a wakeup is sent to the pageout daemon.

• Lotsfree is the baseline for the scan rate interpolation. When freemem is the
same as lotsfree then the scan rate is set to slowscan.

• If freemem is less than lotsfree the kernel tries to free some transitory page
sized buffers rather than holding onto them for future use.

fastscan
Fastscan is set to (physmem/2). It is used in the scan rate interpolation as the
notional scan rate when freemem is zero.

slowscan
This is the number of pages scanned per second by the algorithm when there is
exactly lotsfree available and it is set to (fastscan/10). There is a linear
ramp up from slowscan to fastscan as free memory goes from lotsfree to
zero.

 maxpgio
This is the maximum number of page out I/O operations per second that the
system will schedule. The default is 40 pages per second, which is set to avoid
saturating random access to a single 3600 rpm (60 rps) disk at two-thirds of the
rotation rate. It can be increased if more or faster disks are being used for the
swap space. Many systems now have 5400 rpm (90 rps) disks, see Table 15 on
page 97 for disk specifications. The value is divided by four during system
initialization since the pageout daemon runs four times per second and the
resulting value is the limit on the number of pageouts that the pageout
daemon will add to the pageout queue in each invocation. Note that in
addition to the clock based invocations, an additional invocation will occur
whenever more memory is allocated and freemem is less than desfree, so more
than maxpgio pages will be queued per second when a lot of memory is
allocated repeatedly

66 Kernel—December 1993

Note – Changes to maxpgio only take effect after a reboot, so it cannot be
tweaked on a running system.

handspread
Handspread is set to (physmem*pagesize/4), but is increased during
initialization to be at least as big as fastscan which makes it
(physmem*pagesize/2).

tune_t_ gpgslo
This variable is a Unix System V.3 derived feature. In Solaris 2 it defaults to 25
pages and is the threshold used by the scheduler to decide whether to begin
swapping out processes. It is almost impossible to get the free list down below
25 pages so this is a very rare condition.

autoup and tune_t_fsflushr
Unlike SunOS 4.X where the update process does a full sync of memory to disk
every 30 seconds, Solaris 2 uses the fsflush daemon to spread the sync
workload out. Autoup is set to 30 seconds by default, and this is the maximum
age of any memory resident filesystem pages that have been modified. Unlike
update, fsflush wakes up every 5 seconds (set by tune_t_fsflushr) and checks a
portion of memory on each invocation (5/30= one sixth of total RAM by
default). The pages are queued on the same list that the pageout daemon uses
and are formed into clustered sequential writes. The system counts these
writes as pageouts.

max_page_get
This variable is set to half the number of pages in the system and limits the
maximum number of pages that can be allocated in a single operation. In some
circumstances a machine may be sized to run a single very large program that
has a data area or single malloc space of more than half the total RAM. It will
be necessary to increase max_page_get in that circumstance.

The Paging Algorithm and How To Tune It 67

Swapping Out And How To Get Back In (Solaris 2)

Under extreme artificially induced conditions a Solaris 2.2 system was made so
short of memory that it was observed to swap out a process, but for all
practical purposes swapping can be ignored in Solaris 2.1 or 2.2. The time
based soft swapouts that occur in SunOS 4.X are no longer implemented.
Vmstat -s will report total numbers of swapins and swapouts, which are
always zero. In Solaris 2.3 the code was changed so that prolonged memory
shortages can trigger swapouts of inactive processes.

Sensible Tweaking

The default settings for SunOS 4.X were derived from the BSD4.3 values
designed to handle machines with at most 8 Mbytes of RAM and around one
MIP performance. These settings were tinkered with for the SPARCserver
600MP (the initial sun4m machine) and were overhauled for Solaris 2.1 where
they were optimized for good overall window system performance with 16MB.
No changes were made to the defaults for Solaris 2.2 or 2.3. Changes are
expected for Solaris 2.4.

Note – The suggestions below are a mixture of theory, informed guesswork
and trial and error testing,. There are no right answers, as the ideal parameters
depend upon the application workload. The default parameters do not scale
ideally for use on very large memory systems.

Increasing Lotsfree
An interactive timesharing system will often be continuously starting new
processes; interactive window system users will keep opening new windows.
This type of system can benefit from an increase in the size of the free list to
cope with frequent and large memory allocation demands. A pure database

Warning – If max_page_get is increased too far and reaches total_pages (a
little less than physmem) then deadlock can occur and the system will hang
trying to allocate more pages than exist.

68 Kernel—December 1993

server, compute server or single application document publishing or CAD
workstation may start-up then stay very stable, with a long time between
process start-ups. This type of system can use a reduced size free list, as the
pages are better utilized by the application rather than sitting idly in the free
list.

Taking a window system example: When a new process starts it consumes free
memory very rapidly before reaching a steady state so that the user can begin
to use the new window. If the process requires more than the current free
memory pool then it will get part way through its start-up then the paging
algorithm will take over the CPU and look for more memory at up to
fastscan rates. When the memory has been found the process continues and
the situation can repeat several times. These interruptions in process start-up
time are very apparent to the user as poor interactive response. To improve the
interactive response lotsfree can be increased so that there is a large enough
pool of free memory for most processes to start-up without running out. If
slowscan is decreased then after they have started up the page daemon will
gently weed out some more free memory at slowscan rates until it reaches
lotsfree again.

In the past the SunOS 4.X default free pool of 64 8Kb pages provided 512Kb,
when the page size went to 4Kb for the desktop sun4c kernel architecture the
free pool went to 256Kb. On the sun4m kernel architecture it is set to 512 pages
or 2048Kb. The problems occur on the sun4c machines since the move from
SunView to OpenWindows/X11 seemed to coincide with an increase in start-
up memory requirements to more than 256Kb for most applications. Solaris 2
sets lotsfree to (physmem/16) which results in an improvement in start-up
times, but a large increase in paging rates when 16MB machine is upgraded
from SunOS 4. I recommend setting the lotsfree parameter to
(physmem)/32 on all machines as a compromise. Desfree is usually set to
half of lotsfree, so I recommend (physmem/64). You can try out tweaks by
timing a process start-up in one window1, monitoring vmstat in another
window and tweaking lotsfree with adb in a third window.

If you are running a large stable workload and are short of memory, it is a bad
idea to increase lotsfree because more pages will be stolen from your
applications and put on the free list. You want to have a small free list so that
all the pages can be used by your applications.

1. For OpenWindows applications, “time toolwait application” will show the elapsed start-up time.

The Paging Algorithm and How To Tune It 69

Changing Fastscan and Slowscan
The fastscan parameter is set to 1000 pages per second in SunOS 4.X
machines apart from the sun4m architecture where it is set to (physmem/2)
pages. (e.g. about 4000 on a 32Mb machine and about 125000 on a 1Gb
machine). Slowscan is set to 100 or on sun4m, fastscan /10 (e.g. about 400
on a 32Mb machine and about 12500 on a 1Gb machine). Solaris 2.0 used fixed
scan rates, but Solaris 2.1, 2.2 and 2.3 use the same scaled rates described above
for all machines. These very high scaled scan rates do not allow enough
memory references to occur, so all but the most active pages will be put on the
free list, and unnecessary pageouts may occur. The pageout daemon may also
consume excessive system CPU time. Slowscan should be set quite low at a
fixed, unscaled level of perhaps 100 pages/second so that the number of pages
scanned at the slowest rate doesn’t immediately cause a paging I/O overload.
Fastscan should be halved to (physmem/4), which will automatically
remove the override that currently forces the handspread value up from 90˚ to
180˚. The ramp up from slowscan to fastscan as free memory drops will be
steep so there is no need to increase slowscan as memory is added.

SunOS 4.X “Standard” Tweaks For 32Mb Sun4c
The following will change the current operating copy and permanently patch
/vmunix for the next reboot. If you don’t notice any improvement you should
return to the default values. The right hand column is commentary only and I
have omitted some of adb’s output. When adb starts it prints out the value of
physmem in hex, which is the total number of pages of physical memory. A few
pages that are used by the boot prom are not included and the kernel memory
should really be subtracted from physmem to get the total amount of pagable
memory. Control-D exits adb.

70 Kernel—December 1993

The settings are based on disabling maxslp , setting lotsfree to (total
memory)/32, increasing maxpgio to 2/3 of a single 4500 rpm, 75rps (424Mb)
swap disk, and increasing fastscan to physmem/4.

SunOS 4.1.X “Standard” Tweaks for 128Mb Sun4m
In this case the scan rate variables need to be modified to reduce slowscan to
about 100 and to halve fastscan . Twin 5400 rpm, 90 rps swap disks are
assumed so maxpgio can be set to 2*(90*2/3) = 120.

cp /vmunix /vmunix.notpatched
adb -k -w /vmunix /dev/mem
physmem 1ffd physmem is the total number of physical memory

pages in hex
maxslp?W0x80 disable maxslp in /vmunix
maxslp/W0x80 disable current operating maxslp
lotsfree?W0x100 set lotsfree to 256 pages - 1 Mbyte in /vmunix
lotsfree/W0x100 set current lotsfree to 1 Mbyte
maxpgio?W0x32 set maxpgio to 50 pages/sec in /vmunix (current

value cannot be tweaked)
fastscan?W0x800 set fastscan to 2048 pages/sec in /vmunix
fastscan/W0x800 set current fastscan to 2048 pages/sec

cp /vmunix /vmunix.notpatched
adb -k -w /vmunix /dev/mem
physmem 3ffd physmem is the total number of physical memory

pages in hex
maxslp?W0x80 disable maxslp in /vmunix
maxslp/W0x80 disable current operating maxslp
lotsfree?W0x400 set lotsfree to 1024 pages - 4 Mbyte in

/vmunix
lotsfree/W0x400 set current lotsfree to 4 Mbyte
maxpgio?W0x78 set maxpgio to 120 pages/sec in /vmunix
fastscan?W0x2000 set fastscan to 8192 pages/sec in /vmunix
fastscan/W0x2000 set current fastscan to 8192 pages/sec
slowscan?W0x64 set slowscan to 100 pages/sec in /vmunix
slowscan/W0x64 set current slowscan to 100 pages/sec

Warning – These values should be scaled according to the configuration of the
machine being tuned. Save an unpatched copy of the kernel and be very
careful when using adb . Errors can crash the system or render it unbootable.

The Paging Algorithm and How To Tune It 71

Solaris 2 “Standard” Tweaks

These numbers are for a 16MB machine with a relatively constant workload.

The following commands should be placed at the end of /etc/system and they
will be automatically applied at the next reboot.

At the other end of the scale, on a 1 GB machine with four swap disks, and a
very active workload (compiles or batch streams of small jobs), slowscan
should be set to 100, fastscan should be halved, and lotsfree, desfree and
minfree should be left at their defaults. Maxusers needs to be set higher
explicitly if required and maxpgio should be set to 4 x 60.

adb -k -w /dev/ksyms /dev/mem
physmem ffd physmem is the total number of physical memory

pages in hex
slowscan/W0x64 set slow scan rate to 100 pages/second
fastscan/W0x400 set fast scan rate to 1024 pages/second
minfree/W0x10 set minfree to 64 Kbytes
desfree/W0x40 set desfree to 256 Kbytes
lotsfree/W0x80 set current lotsfree to 512 Kbytes

Settings for 16MB of RAM
set slowscan = 100 # set slow scan rate to 100 pages/second
set fastscan = 0x400 # set fast scan rate to 2048 pages/second
set lotsfree = 0x80 # set current lotsfree to 128 pages, 512KB
set maxpgio = 0x32 # set maxpgio to 50 pages/sec

set maxusers = 500 # increase kernel table sizes
set fastscan = 0x10000 # set fastscan rate to 65536 pages/sec
set slowscan = 100 # fix initial scan rate at 100
set maxpgio = 240 # set maxpgio to 60 pages/sec for each

of four 90 rps disks

Warning – The following will change the current operating copy only, this is
useful for experimenting but be careful that you keep lotsfree > desfree >
minfree at all times!

72 Kernel—December 1993

To decide whether the system is active, does a lot of process creation, and
needs a large free list, use sar -c to monitor the number of fork and exec system
calls. If there is a lot less than 1 per second averaged over a 20 minute period
then the free list can be reduced in size.

Configuring Devices

Kernel Configuration In SunOS 4.X

This is one of the most obvious tuning operations for systems that are running
very short of memory. It is particularly important to configure 8Mb diskless
SPARCstation ELC’s to have as much free RAM as possible since it will be used
to cache the NFS accesses. A diskless machine can have many filesystem types
and devices removed (including the nonexistent floppy on the ELC) which can
free up over 500Kbytes. The DL60 configuration file with all framebuffer types
except mono removed and with TMPFS added and enabled in /etc/rc.local
makes a good DL25 kernel for the ELC.

Kernel Configuration In Solaris 2

There is no need to configure the kernel in Solaris 2 since it is dynamically
linked at run time. All the pieces of the kernel are stored in a /kernel directory
and the first time a device or filesystem type is used it is loaded into memory.
The kernel can unload some of the devices if they are not being used.

Mapping Device Nicknames To Full Names In Solaris 2

Note – This is very powerful and flexible, but is not documented well in the
manuals. A useful command script that does the mapping is listed below.

The boot sequence builds a tree in memory of the hardware devices present in
the system, which is passed to the kernel and can be viewed with the prtconf
command. This is mirrored in the /devices and /dev directories and after
hardware changes are made to the system these directories must be
reconfigured using boot -r . See also the drvconfig tapes and disks
commands that allow you to configure a system manually. The file
/etc/path_to_inst maps hardware addresses to symbolic device names and an

Configuring Devices 73

extract from a simple configuration with the symbolic names added is shown
below. When a large number of disks are configured it is important to know
this mapping so that iostat and related commands can be related to the output
from df. The sbus@1 part tells you which SBus is used (an SC2000 can have up
to 10 separate SBuses) the esp@0 part tells you which SBus slot the “esp”
(SCSI) controller is in. The sd@0 part tells you that this is SCSI target address 0.
The /dev/dsk/c0t0d0s2 device name indicates SCSI target 0 on SCSI controller
0 and is a symbolic link to a similar hardware specification to that found in
/etc/path_to_inst. The extra “:c” at the end of the name in /devices
corresponds to the “s2” at the end of the name in /dev. Slice s0 is partition :a,
s1 is :b, s2 is :c etc.

1. /dev/fd is a file descriptor filesystem type, nothing to do with floppy disks!

% more /etc/path_to_inst
...
“/fd@1,f7200000” 0 fd0
“/sbus@1,f8000000/esp@0,800000/sd@3,0” 3 sd3
“/sbus@1,f8000000/esp@0,800000/sd@0,0” 0 sd0
“/sbus@1,f8000000/esp@0,800000/sd@1,0” 1 sd1

% iostat -x 5
 extended disk statistics
disk r/s w/s Kr/s Kw/s wait actv svc_t %w %b
fd0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0
sd0 0.1 0.1 0.4 0.8 0.0 0.0 49.3 0 1
sd1 0.1 0.0 0.8 0.1 0.0 0.0 49.0 0 0
sd3 0.1 0.1 0.6 0.8 0.0 0.0 75.7 0 1

% df -k
Filesystem kbytes used avail capacity Mounted on
/dev/dsk/c0t3d0s0 19107 13753 3444 80% / sd3
/dev/dsk/c0t3d0s6 56431 46491 4300 92% /usr sd3
/proc 0 0 0 0% /proc
fd 0 0 0 0% /dev/fd 1

swap 2140 32 2108 1% /tmp
/dev/dsk/c0t3d0s5 19737 17643 124 99% /opt sd3
/dev/dsk/c0t1d0s6 95421 71221 14660 83% /usr/openwin sd1
/dev/dsk/c0t0d0s2 308619 276235 1524 99% /export sd0

% ls -l /dev/dsk/c0t0d0s2
lrwxrwxrwx 1 root 51 Jun 6 15:59 /dev/dsk/c0t0d0s2 ->
../../devices/sbus@1,f8000000/esp@0,800000/sd@0,0:c

74 Kernel—December 1993

The following csh/nawk script can be used to print out the device to nickname
mappings.

Figure 2 whatdev - device to nickname mapping script

An example of its use.

Kernel Profiling Using Kgmon In Solaris 2
The kernel can be profiled in the same way that user programs can be profiled
using special compiler options and gprof. The standard kernel has clock
sample profiling enabled, for SunSoft’s own in-house performance tuning
work the kernel can be recompiled to include call graph profiling as well.

The profile is collected using the “kgmon” utility. It allocates some profiling
buffers, collects the profile and dumps the results to be processed by gprof. It
must be run as root. An example sequence of commands is shown below

#!/bin/csh
print out the drive name - st0 or sd0 - given the /dev entry
first get something like “/iommu/.../.../sd@0,0”
set dev = ‘/bin/ls -l $1 | nawk ‘{ n = split($11, a, “/”); \
split(a[n],b,”:”); for(i = 4; i < n; i++) printf(“/%s”,a[i]); \
printf(“/%s\n”, b[1]) }’‘
if ($dev == ““) exit
then get the instance number and concatenate with the “sd”
nawk -v dev=$dev ‘$1 ~ dev { n = split(dev, a, “/”); split(a[n], \
b, “@”); printf(“%s%s\n”, b[1], $2) }’ /etc/path_to_inst

% df /
Filesystem kbytes used avail capacity Mounted on
/dev/dsk/c0t3d0s0 388998 284625 65483 81% /
% whatdev /dev/dsk/c0t3d0s0
sd3

Warning – kernel profiling is an unsupported and undocumented capability.
The interface and capabilities may change in each release of Solaris 2 and if the
system misbehaves or crashes while profiling is enabled you are on your own.

Kernel Profiling Using Kgmon In Solaris 2 75

There is no manual page, use kgmon -- to show the options.

Run the workload at this point.

Since call graph profiling is not enabled the first part of the output file is not
very interesting. The “flat” profile at the end is the most useful part and it is
shown below. In this case the profile was collected for about 30 seconds on a
SPARCstation 1 that was mostly idle and user CPU bound, with some I/O

kgmon --
Usage: kgmon [-i -b -h -r -p -s -d]

-i = initialize profiling buffers
-b = begin profiling
-h = halt profiling
-r = reset the profiling buffers
-p = dump the profiling buffers
-s = snap shot the profiling data
-d = deallocate profiling buffers

kgmon -i
one moment
NOTICE: Profiling kernel, textsize = 626692 [f0004000..f009d004]
NOTICE: Profiling modules, size = 5267000 [ff011000..ff516e38]
(954282 used)
NOTICE: need 139600 bytes per cpu for clock sampling
profiling has been initialized
WARNING: call graph profiling is not compiled into this kernel
WARNING: only clock sample profiling is available
kgmon -b
kernel profiling is running

kgmon -h
kernel profiling is off
kgmon -p
dumping cpu 0 - one moment
a.out symbols for the kernel and modules have been dumped to
gmon.syms
profiling data has been dumped to gmon[n].out
kgmon -d
profiling buffers have been deallocated
/usr/ccs/bin/gprof gmon.syms gmon.out >kgmon.gprof

76 Kernel—December 1993

activity. On multiprocessor machines the idle loop also calls disp_getwork,
which means that the idle CPU is checking the cache affinity algorithm to see if
a process should be migrated off the despatch queue of a busy CPU.

The kernel routine names are fairly descriptive, but access to kernel sourcecode
or a Solaris System Internals course is needed to make good use of this
information.

Monitoring The System With Proctool
Proctool is a freely available tool developed by Walter Nielsen and Morgan
Herrington of Sun. It can be obtained via anonymous ftp on Usenet from the
machine opcom.sun.ca in the directory /pub/binaries/proctool_2.2. Proctool
uses features only found in Solaris 2 and it is release specific. Proctool 2.2 only
works with Solaris 2.2, Proctool 2.3 for Solaris 2.3 is under development.

granularity: each sample hit covers 4 byte(s) for 0.03% of 32.83
seconds
 % cumulative self self total
time seconds seconds calls ms/call ms/call name
66.3 21.77 21.77 idle [1]
 1.8 22.37 0.60 vac_usrflush [2]
 1.6 22.90 0.53 bcopy [3]
 1.6 23.43 0.53 sunm_pmgswapptes [4]
 1.3 23.86 0.43 _level10 [5]
 1.2 24.25 0.39 mutex_enter [6]
 0.9 24.54 0.29 mutex_exit [7]
 0.8 24.79 0.25 syscall [8]
 0.6 24.99 0.20 sunm_pmgload [9]
 0.5 25.17 0.18 .syscall [10]
 0.5 25.34 0.17 sunm_ptesync [11]
 0.5 25.50 0.16 blkclr [12]
 0.5 25.65 0.15 clock [13]
 0.5 25.80 0.15 hmetopmg [14]
 0.4 25.94 0.14 pgcopy [15]
 0.4 26.07 0.13 poll [16]
 0.4 26.19 0.12 _interrupt [18]
 0.4 26.31 0.12 fsflush [17]
 0.3 26.42 0.11 .div [19]
 0.3 26.53 0.11 resume [20]
 0.3 26.64 0.11 rw [21]
 0.3 26.75 0.11 strpoll [22]
.... and so on

References 77

Proctool monitors and controls processes on a system, providing an OpenLook
GUI interface to ps(1) and providing more flexibility than the public domain
top utility. It extracts a huge amount of information from the data structures
maintained in /proc for each process and can plot a lot of data graphically on
a per system or a per process basis.

References
• “Administering Security, Performance and Accounting in Solaris 2.2”

• “Building and Debugging SunOS Kernels, by Hal Stern”

• “SPARCstation 2 Performance Brief”

• “The Design And Implementation Of The 4.3BSD UNIX Operating System,
Leffler, McKusick, Karels and Quarterman”

• “SunOS System Internals Course Notes”

• “System Performance Tuning, Mike Loukides, O’Reilly”

78 Kernel—December 1993

79

Memory 6

Performance can vary even between machines that have the same CPU and
clock rate if they have different memory systems. The interaction between
caches and algorithms can cause performance problems and an algorithm
change may be called for to work around the problem. This chapter provides
information on the various SPARC platforms so that application developers
can understand the implications of differing memory systems1. This section
may also be useful to compiler writers.

Cache Tutorial

Why Have A Cache?

Historically the memory systems on Sun machines provided equal access times
for all memory locations. This was true on the Sun2 and was true for data
accesses on the Sun3/50 and Sun3/60.

It was achieved by running the entire memory system as fast as the processor
could access it. On Motorola 68010 and 68020 processors four clock cycles were
required for each memory access. On a 10MHz Sun2 the memory ran at a 400ns
cycle time and on a 20MHz Sun3/60 it ran at a 200ns cycle time.

Unfortunately, although main memory (known as DRAM) has increased in
size, its speed has only increased a little. SPARC processors rated at over ten
times the speed of a Sun3/60 run at a higher clock rate and access memory in
a single cycle. The 40MHz SPARCstation 2 requires 25ns cycle times to keep
running at full speed. The DRAM used is rated at 80ns access time which is less
than a full single cycle of maybe 140ns. The DRAM manufacturers have added
special modes that allow fast access to a block of consecutive locations after an

1. “High Performance Computing, Keith Dowd” covers this subject very well.

80 Memory—December 1993

initial address has been loaded. These page mode DRAM chips provide a block
of data at the 50ns rate required for an SBus block transfer into cache on the
SPARCstation 2, after an initial delay to load up an address.

The CPU cache is an area of fast memory made from static RAM or SRAM.
This is too expensive and would require too many chips to be used for the
entire memory system so it is used in a small block of perhaps 64Kb. It can
operate at the full speed of the CPU (25ns @ 40MHz) in single cycle reads and
writes and it transfers data from main DRAM memory using page mode in a
block of typically 16 or 32 bytes at a time. Hardware is provided to keep track
of the data in the cache and to copy it into the cache when required.

More advanced caches can have multiple levels and can be split so that
instructions and data use separate caches. The SuperSPARC with SuperCache
chipset used in the SPARCstation 10 model 51 has a 20Kbyte instruction cache
with 16 Kbyte data cache and these are loaded from a second level 1Mbyte
combined cache that loads from the memory system. Simple caches will be
examined first before we look at the implications of more advanced
configurations.

Cache Line And Size Effects
A SPARCstation 2 has its 64Kb of cache organized as 2048 blocks of 32 bytes
each. When the CPU accesses an address the cache controller checks to see if
the right data is in the cache, if it is then the CPU loads it without stalling. If
the data needs to be fetched from main memory then the CPU clock is
effectively stopped for 24 or 25 cycles while the cache block is loaded. The
implications for performance tuning are obvious. If your application is
accessing memory very widely and its accesses are missing the cache rather
than hitting the cache then the CPU may spend a lot of its time stopped. By
changing the application you may be able to improve the hit rate and get a
worthwhile performance gain. The 25 cycle delay is known as the miss cost and
the effective performance of an application is reduced by a large miss cost and
a low hit rate. The effect of context switches is to further reduce the cache hit
rate as after a context switch the contents of the cache will need to be replaced
with instructions and data for the new process.

Applications are accessing memory on almost every cycle since most
instructions take a single cycle to execute and the instructions must be read
from memory, data accesses typically occur on 20-30% of the cycles. The effect

Cache Line And Size Effects 81

of changes in hit rate for a 25 cycle miss cost are shown below. in both tabular
and graphical forms. A 25 cycle miss cost implies that a hit takes one cycle and
a miss takes 26 cycles.

Figure 1 Application speed changes as hit rate varies with a 25 cycle miss cost

There is a dramatic increase in execution time as the hit rate drops. Although a
96% hit rate sounds quite high you can see that the program will be running at
half speed. Many small benchmarks like Dhrystone run at 100% hit rate. The
SPEC92 benchmark suite runs at a 99% hit rate given a 1Mbyte cache1. It isn’t
that difficult to do things that are bad for the cache however so it is a common
cause of performance problems.

1. “The SuperSPARC Microprocessor Technical White Paper”

Table 10 Application speed changes as hit rate varies with a 25 cycle miss cost

Hit Rate Hit Time Miss Time Total Time Performance

100% 100% 0% 100% 100%

99% 99% 26% 125% 80%

98% 98% 52% 150% 66%

96% 96% 104% 200% 50%

100%

75%

50%

25%

0%
100% 99% 98% 97% 96% 95% 94% Hit Rate

Speed

82 Memory—December 1993

A Problem With Linked Lists

In “Algorithms” on page 19 I mentioned a CAD application that traversed a
large linked list. Lets look at this in more detail and assume that the list has
5000 entries1. Each block on the list contains some data and a link to the next
block. If we assume that the link is located at the start of the block and that the
data is in the middle of a 100 byte block then the effect on the memory system
of chaining down the list can be deduced.

Figure 2 Linked List Example

The code to perform the search is a tight loop shown in Figure 3. This code fits
in seven words, one or two cache lines at worst, so the cache is working well
for code accesses. Data accesses occur when the link and data locations are
read. If the code is simply looking for a particular data value then these data
accesses will be happening every few cycles. They will never be in the same
cache line so every data access will cause a 25 cycle miss which will read in 32
bytes of data when only 4 bytes were wanted. Also there are only 2048 cache
lines available so after 1024 blocks have been read in the cache lines must be
reused. This means that a second attempt to search the list will find that the
start of the list is no longer in the cache.

The only solution to this problem is an algorithmic change. The problem will
occur on any of the current generation of high performance computer systems.
In fact the problem gets worse as the processor gets faster since the miss cost
will tend to increase due to the difference in speed between the CPU and cache
clock rate and the main memory speed.

1. See also “The Classic Cache Aligned Block Copy Problem” on page 91 for another example.

data data data data

link link link link

Cache Line And Size Effects 83

Figure 3 Linked List Search Code in C

The while loop compiles to just seven instructions, including two loads, two
tests, two branches and a no-op. Note that the instruction after a branch is
always executed on a SPARC processor. This executes in 9 cycles on a
SPARCstation 2 if it hits the cache, and 59 cycles if both loads miss.

Figure 4 Linked List Search Loop in Assembler

struct block {
 struct block *link; /* link to next block */
 int pad1[11];
 int data; /* data item to check for */
 int pad2[12];
 } blocks[5000];

struct block *find(pb,value)
 struct block *pb;
 int value;
 {
 while(pb) /* check for end of linked list */
 {
 if (pb->data == value) /* check for value match */
 return pb; /* return matching block */
 pb = pb->link; /* follow link to next block */
 }
 return (struct block *)0; /* return null if no match */
 }

LY1: /* loop setup code omitted */
 cmp %o2,%o1 /* see if data == value */
 be L77016 /* and exit loop if matched */
 nop /* pad branch delay slot */
 ld [%o0],%o0 /* follow link to next block */
 tst %o0 /* check for end of linked list */
 bne,a LY1 /* branch back to start of loop */
 ld [%o0+48],%o2 /* load data in branch delay slot */

84 Memory—December 1993

Cache Miss Cost And Hit Rates For Different Machines
Since the hardware details vary from one machine implementation to another
and the details are sometimes hard to obtain, the cache architectures of some
common machines are described below, divided into four main groups.
Virtually and physically addressed caches with write back algorithms, virtual
write through caches and on-chip caches. Discussion of multiprocessor cache
issues is left to “Multiprocessors” on page 119”

Virtual Write Through Caches

Example Machines
Most older desktop SPARCstation’s from Sun and the deskside SPARCsystem
300 series use this cache type.

How It Works
The cache works using virtual addresses to decide which location in the cache
has the required data in it. This avoids having to perform an MMU address
translation except when there is a cache miss.

Data is read into the cache a block at a time but writes go through the cache
into main memory as individual words. This avoids the problem of data in the
cache being different from data in main memory but may be slower since
single word writes are less efficient than block writes would be. An
optimisation is for a buffer to be provided so that the word can be put into the
buffer then the CPU can continue immediately while the buffer is written to
memory. The depth (one or two words) and width (32 or 64 bits) of the write
buffer vary. If a number of words are written back-to-back then the write buffer
may fill up and the processor will stall until the slow memory cycle has
completed. A doubleword write on a SPARCstation 1 (and similar machines)
will always cause a write buffer overflow stall that takes 4 cycles.

On the machines tabled below the processor waits until the entire cache block
has been loaded before continuing.

The SBus used for memory accesses on the SS2, IPX and ELC machines runs at
half the CPU clock rate and this may give rise to an extra cycle on the miss cost
to synchronize the two buses which will occur half of the time on average.

Cache Miss Cost And Hit Rates For Different Machines 85

Virtual Write Back Caches

The larger desk-side SPARCserver’s from Sun use this cache type.

The cache uses virtual addresses as described above. The difference is that data
written to the cache is not written through to main memory. This reduces
memory traffic and allows efficient back-to-back writes to occur. The penalty is
that a cache line must be written back to main memory before it can be reused
so there may be an increase in the miss cost. The line is written efficiently as a
block transfer, then the new line is loaded as a block transfer. Most systems
have a buffer which is used to store the outgoing cache line while the incoming
cache line is loaded, then the outgoing line is passed to memory while the CPU
continues. The SPARCsystem 400 backplane is 64 bits wide and runs at 33MHz,
synchronised with the CPU. The SPARCsystem 600 uses a 64 bit MBus and

takes data from the MBus at full speed into a buffer but the cache itself is 32
bits wide and it takes extra cycles to pass data from the buffer in the cache
controller to the cache itself. The cache coherency mechanisms required for a
multiprocessor machine also introduce extra cycles. There is a difference

Table 11 Virtual Write Through Cache Details

Machine Clock Size Line Read Miss WB size WB Full Cost

SS1, SLC 20MHz 64Kb 16 b 12 cycles 1 word 2 cycles (4 dbl)

SS1+, IPC 25MHz 64Kb 16 b 13 cycles 1 word 2 cycles (4 dbl)

SS330,370,390 25MHz 128Kb 16 b 18 cycles 1 double 2 cycles

ELC 33MHz 64Kb 32 b 24-25 cycles 2 doubles 4-5 cycles

SS2, IPX 40MHz 64Kb 32 b 24-25 cycles 2 doubles 4-5 cycles

Table 12 Virtual Write Back Cache Details

Machine Size Line Miss Cost CPU Clock Rate

Sun4/200 series 128Kb 16 bytes 7 cycles 16 MHz

SPARCserver 400 128Kb 32 bytes 12 cycles 33 MHz

SPARCserver 600 model 120 64Kb 32 bytes 30 cycles 40 MHz

86 Memory—December 1993

between the number of MBus cycles taken for a cache miss (the bus occupancy)
and the number of cycles that the CPU stalls for. A lower bus occupancy means
that more CPU’s can be used on the bus.

Physical Write Back Caches

The SPARCserver 600 and SPARCstation 10 with SuperCache, and the
SPARCserver 1000 and SPARCcenter 2000 use this cache type for their second
level cache. The first level cache is described later, in the section on on-chip
caches.

The MMU translations occur on every CPU access before the address reaches
the cache logic. The cache uses the physical address of the data in main
memory to determine where in the cache it should be located. In other respects
this type is the same as the Virtual Write Back Cache described above.

The SuperCache controller implements sub-blocking in its 1 Mb cache. The
cache line is actually 128 bytes but it is loaded as four separate contiguous 32
byte lines. This cuts the number of cache tags required at the expense of
needing an extra three valid bits in each tag. In XDBus mode for the
SPARCserver 1000 the same chipset switches to two 64 byte blocks. The
SPARCcenter 2000 takes advantage of this to use four 64 byte blocks per 256
byte line, for a total of 2MB of cache on a special module.

In Xbus mode the cache request and response are handled as separate
transactions on the bus, and other bus traffic can interleave for better
throughput but delayed response. The larger cache line takes longer to transfer,
but the memory system is in multiple independent banks, accessed over two
interleaved buses on the SPARCcenter 2000. When many CPUs access memory
at once the single MBus memory system clogs up faster than the XDbus.

Table 13 Physical Write Back Cache Details

Machine Size Line (block) Miss Cost CPU Clock Rate

SPARCserver 600 model 41 1024Kb 128 (32) bytes 40+ cycles 40MHz

SPARCstation 10 model 51 1024Kb 128 (32) bytes 40+ cycles 50MHz

SPARCserver 1000 1024Kb 128 (64) bytes Variable 50MHz

SPARCcenter 2000 2048Kb 256 (64) bytes Variable 50MHz

Cache Miss Cost And Hit Rates For Different Machines 87

On-Chip Caches

Example Machines
Highly integrated SPARC chipsets like the Texas Instruments SuperSPARC
(Viking) used in the SPARCstation 10, MicroSPARC (Tsunami) used in the
SPARCstation LX and SPARCclassic and the Fujitsu MB86930 (SPARClite) use
this cache type. The Ross HyperSPARC uses a hybrid on-chip instruction cache
with off chip unified cache. The latest SPARC design is the MicroSPARC II,
which has four times the cache size of the original MicroSPARC and has other
performance improvements. It is made by Fujitsu, who also recently bought
Ross from Cypress. One other recent development is the Weitek PowerUP,
which is a plug in replacement for the SS2 and IPX CPU chip that adds on-chip
caches and doubles the clock rate.

How It Works
Since the entire cache is on-chip, complete with its control logic, a different set
of trade-offs apply to cache design. The size of the cache is limited but the
complexity of the cache control logic can be enhanced more easily. On-chip
caches may be associative in that a line can exist in the cache in several possible
locations. If there are four possible locations for a line then the cache is known
as a four way set associative cache. It is hard to build off chip caches that are
associative so they tend to be direct mapped, where each memory location maps
directly to a single cache line.

On-Chip caches also tend to be split into separate instruction and data caches
since this allows both caches to transfer during a single clock cycle which
speeds up load and store instructions. This is not done with off-chip caches
because the chip would need an extra set of pins and more chips on the circuit
board.

More intelligent cache controllers can reduce the miss cost by passing the
memory location that missed as the first word in the cache block, rather than
starting with the first word of the cache line. The processor can then be
allowed to continue as soon as this word arrives, before the rest of the cache
line has been loaded. If the miss occurred in a data cache and the processor can
continue to fetch instructions from a separate instruction cache then this will
reduce the miss cost. On a combined instruction and data cache the cache load

88 Memory—December 1993

operation keeps the cache busy until it has finished so the processor cannot
fetch another instruction anyway. SuperSPARC and MicroSPARC both
implement this optimisation.

MicroSPARC uses page mode DRAM to reduce its miss cost. The first miss to a
1Kb region takes 9 cycles for a data miss, consecutive accesses to the same
region avoid some DRAM setup time and complete in 4 cycles.

The SuperSPARC processor implements sub-blocking in its instruction cache.
The cache line is actually 64 bytes but it is loaded as two separate contiguous
32 byte lines. If the on-chip cache is connected directly to main memory it has
a 10 cycle effective miss cost, if it is used with a SuperCache it can transfer data
from the SuperCache to the on-chip cache with a 5 cycle cost.

The SuperSPARC Two Level Cache Architecture

External Cache
As described above the SuperSPARC processor has two sophisticated and
relatively large on-chip caches and an optional 1 Mbyte external cache1. It can
be used without the external cache, and the on-chip caches work in write-back
mode for transfers directly over the MBus. For multiprocessor snooping to
work correctly and efficiently the on-chip caches work in write through mode
when the external cache is used. This guarantees that the on-chip caches

1. This is a combined external instruction and data cache.

1. “The SuperSPARC Microprocessor Technical White Paper”

Table 14 On-Chip Cache Details

Processor I-Size I-line I-Assoc D-Size D-line D-Assoc D-Miss

MB86930 2KB 16 2 2KB 16 2 ?

MicroSPARC 4KB 32 1 2KB 16 1 4-9cycles

MicroSPARC II 16KB 32 1 8KB 16 1 ?

PowerUP 16KB 32 1 8KB 32 1 ?

HyperSPARC 8KB 32 1 256KB1 32 1 ?

SuperSPARC 20KB 64 (32) 5 16KB 32 4 5-10cycles

Cache Miss Cost And Hit Rates For Different Machines 89

contain a subset of the external cache so that snooping is only required on the
external cache. There is an 8 doubleword (64byte) write buffer that flushes
through to the external cache.

Multiple Miss Handling
A very advanced feature of the external cache controller is that one read miss
and one write miss can be handled at any given time. When a processor read
access incurs a miss the controller can still allow the processor to access the
external cache for writes (such as write buffer flushes) until a write miss
occurs. Conversely when a write miss occurs the processor can continue to
access the cache for reads (such as instruction prefetches) until a read miss
occurs. There is a mode bit to control this, and due to bugs in early versions of
SuperSPARC it is disabled in Solaris 2.2 by default. It will be switchable or
automatically configured in a future release.

Cache Block Prefetch
A mode bit can be toggled in the SuperCache which causes cache blocks to be
fetched during idle-time on the MBus. If a cache line has invalid sub-blocks,
but a valid address tag, then the missing sub-blocks will be prefetched. This
mode is turned on by default in Solaris 2.2. It will be switchable in a future
release since some workloads run better without it.

Asynchronous MBus Interface
The external cache controller provides an asynchronous interface to the MBus
that allows the processor and both sets of caches to run at a higher clock rate
than the MBus. This means that the miss cost is variable, depending on the
presence or not of the external cache and the relative clock rate of the cache
and MBus.

Efficient Register Window Overflow Handling
One common case in SPARC systems is a register window overflow trap. This
involves 8 consecutive doubleword writes to save the registers. All 8 writes can
fit in the write buffer and they can be written to the second level cache in a
burst transfer.

90 Memory—December 1993

I/O Caches
If an I/O device is performing a DVMA transfer, e.g. a disk controller is
writing data into memory, the CPU can continue other operations while the
data is transferred. Care must be taken to ensure that the data written to by the
I/O device is not also in the cache, otherwise inconsistencies can occur. On
older Sun systems, and the 4/260 and SPARCsystem 300, every word of I/O is
passed through the cache1. When a lot of I/O is happening this slows down
the CPU since it cannot access the cache for a cycle. The SPARCsystem 400 has
an I/O cache which holds 128 lines of 32 bytes and checks its validity with the
CPU cache once for each line. The interruption to the CPU is reduced from
once every 4 bytes to once every 32 bytes. The other benefit is that single cycle
VMEbus transfers are converted by the I/O cache into cache line sized block
transfers to main memory which is much more efficient2. The SPARCserver 600
has a similar I/O cache on its VMEbus to SBus interface3 but it has 1024 lines
rather than 128. The SBus to MBus interface can use block transfers for all I/O
so does not need an I/O cache but it does have its own I/O MMU and I/O is
performed in a cache coherent manner on the MBus in the SPARCserver 10 and
SPARCserver 600 machines, and on the XDBus in the SPARCserver 1000 and
SPARCcenter 2000 machines.

Kernel Block Copy
The kernel spends a large proportion of its time copying or zeroing blocks of
data. These may be internal buffers or data structures but a common operation
involves zeroing or copying a page of memory, which is 4Kb or 8Kb. The data
is not often used again immediately so it does not need to be cached. In fact the
data being copied or zeroed will normally remove useful data from the cache.
The standard C library routine for this is called “bcopy” and it handles
arbitrary alignments and lengths of copies. If you know that the data is aligned
and a multiple of the cache block size then a simpler and faster copy routine
can be used.

1. “Sun Systems and their Caches, by Sales Tactical Engineering June 1990.”

2. “A Cached System Architecture Dedicated for the System IO Activity on a CPU Board, by Hseih, Wei and
Loo.

3. “SPARCserver 10 and SPARCserver 600 White Paper”

Kernel Block Copy 91

Software Page Copies

The most efficient way to copy a page on a system with a write back cache is to
read a cache line then write it as a block, using two bus transactions. The
sequence of operations for a software copy loop is actually:

• load the first word of the source causing a cache miss

• fetch the entire cache line from the source

• write the first word to the destination causing a cache miss

• fetch the entire cache line from the destination (the system cannot tell that
you are going to overwrite all the old values in the line)

• copy the rest of the source cache line to the destination cache line

• at some later stage the destination cache line will be written back to memory
when the line is reused by another read

• go back to the first stage in the sequence, using the next cache line for the
source and destination

The above sequence is fairly efficient but actually involves three bus
transactions since the source data is read, the destination data is read un-
necessarily and the destination data is written. There is also a delay between
the bus transactions while the cache line is copied.

The Classic Cache Aligned Block Copy Problem

A well known cache-busting problem can occur with direct mapped caches
when the buffers are aligned with the source and destination addresses an
exact multiple of the cache size apart. Both the source and destination use the
same cache line and a software loop doing 4 byte loads and stores with a 32
byte cache line would cause 8 read misses and 8 write misses for each cache
line copied, instead of two read misses and one write miss. This is desperately
inefficient and can be caused by simple coding.

#define BUFSIZE 0x10000/* 64Kbytes matches SS2 cache size */
char source[BUFSIZE], destination[BUFSIZE];
for(i=0; i < BUFSIZE; i++)

destination[i] = source[i];

92 Memory—December 1993

The compiler will allocate both arrays adjacently in memory so they will be
aligned and the copy will run very slowly. The library bcopy routine unrolls
the loop to read for one cache line then write, which avoids the problem.

Kernel Bcopy Acceleration Hardware

The SPARCserver 400 series machines and the SuperCache controller
implement hardware bcopy acceleration. It is controlled by sending commands
to special cache controller circuitry. The commands use privileged instructions
(Address Space Identifier or ASI loads and stores) that cannot be used by
normal programs but are used by the kernel to control the memory
management unit and cache controller in all SPARC machines. The
SPARCserver 400 and SuperCache have extra hardware that uses a special
cache line buffer within the cache controller and use special ASI load and store
addresses to control the buffer. A single ASI load causes a complete line load
into the buffer from memory and a single ASI write causes a write of the buffer
to memory. The data never enters the main cache so none of the existing
cached data is overwritten and the ideal pair of bus transactions occur back to
back with minimal delays in-between and use all the available memory
bandwidth. An extra ASI store is defined that writes values into the buffer so
that block zero can be implemented by writing zero to the buffer and
performing block writes of zero at full memory speed without also filling the
cache with zeroes. Physical addresses are used so the kernel has to look up the
virtual to physical address translation before it uses the ASI commands. The
size of the block transfer is examined to see if the setup overhead is worth it,
and small copies are done in software.

93

Windows and Graphics 7

This subject is too big to address here but references are included to some
existing papers that cover performance issues for the subject of windows and
graphics. One point to note is that the XGL product comes with a collection of
benchmark demo programs which have many parameters that can be set
interactively to determine the performance of a system under your own
conditions.

• “SunPHIGS / SunGKS Technical White Paper”

• “XGL Graphics Library Technical White Paper”

• “SPARCserver 1000 Performance Brief”

• “SPARCclassic X Performance Brief”

• “SPARCserver Sizing Guide for X terminals”

• “TurboGXplus Graphics Technology, A White Paper”

• “SPARCstation 10SX Graphics Technology, A White Paper”

• “SPARCstation 10ZX and SPARCstation ZX Graphics Technology, A White
Paper”

• “SPARCstation ZX, SPARCstation 10ZX and SPARCstation 10 TurboGXplus
Graphics Performance Brief”

• “Solaris XIL 1.0 Imaging Library White Paper”

94 Windows and Graphics—December 1993

95

Disk 8

Disk usage can be tuned to some extent, but understanding the effect that a
different type of disk or controller may make to your system is an important
part of performance tuning. Hopefully this chapter will enable you to
understand how to interpret the specifications often quoted for disks, and to
work out whether you are getting the throughput you should be!

The Disk Tuning Performed For SunOS 4.1.1
As ever, more recent versions of SunOS are the best tuned. In particular the
UFS file system code was extensively tuned for SunOS 4.1.1 with the
introduction of an I/O clustering algorithm, which groups successive reads or
writes into a single large command to transfer up to 56KB rather than lots of
8KB transfers. The change allows the filesystem layout to be tuned to avoid
sector interleaving and allows filesystem I/O on sequential files to get close to
its theoretical maximum1.

If a disk is moved from a machine running an earlier release of SunOS to one
running SunOS 4.1.1 then its sectors will be interleaved and the full benefit will
not be realised. It is advisable to backup the disk, rerun newfs on it and restore
the data2.

Throughput Of Various Common Disks

Understanding The Specification

Disk specifications are commonly reported using the “best case” approach
which is disk format independent. Lets try to make some sense of them.

1. “Extent-like Performance from a Unix File System, L. McVoy and S. Kleiman”

2. See also the manual page for tunefs(8).

96 Disk—December 1993

What the Makers Specify
The disk manufacturers specify certain parameters for a drive. These can be
misinterpreted since they are sometimes better than you can get in practice.

• Rotational speed in revolutions per minute (rpm)

• The number of tracks or cylinders on the disk

• The number of heads or surfaces in each cylinder

• The rate at which data is read and written (Millions of bytes/s)

• The disk controller interface used (ST506, ESDI, IDE,SCSI, SMD, IPI)

• The unformatted capacity of the drive (Millions of bytes)

• The average and single track seek time of the disk

What the System Vendors Specify
The system vendors need to deal with the disk in terms of sectors, typically
containing 512 bytes of data each and many bytes of header, preamble and
inter-sector gap each. Spare sectors and spare cylinders are also allocated so
that bad sectors can be substituted. This reduces the unformatted capacity to
what is known as the formatted capacity. For example a 760MB drive reduces to
a 669MB drive when the format is taken into account. The format command
is used to write the sectors to the disk. The file /etc/format.dat contains
information about each type of disk and how it should be formatted. The
formatted capacity of the drive is measured in 106 MBytes (1000000) while RAM
sizes are measured in 220 MBytes (1048576). Confused? You will be!

What You have to Work Out for Yourself
You can work out, using information from /etc/format.dat , the real peak
throughput and size in kilobytes (1024) of your disk. The entry for a typical
disk is shown in Figure 1.

Figure 1 /etc/format.dat entry for Sun 669MB disk

disk_type= “SUN0669” \
 : ctlr= MD21: fmt_time= 4 \
 : trks_zone= 15: asect= 5: atrks= 30 \
 : ncyl= 1614: acyl= 2: pcyl= 1632: nhead= 15: nsect= 54 \
 : rpm= 3600 : bpt= 31410

Throughput Of Various Common Disks 97

The values to note are:

• rpm = 3600, so the disk spins at 3600 rpm

• nsect = 54, so there are 54 sectors of 512 bytes per track

• nhead = 15, so there are 15 tracks per cylinder

• ncyl = 1614, so there are 1614 cylinders per disk

Since we know that there are 512 bytes per sector, 54 sectors per track and that
a track will pass by the head 3600 times per minute we can work out the peak
sustained data rate and size of the disk.

data rate (bytes/sec) = (nsect * 512 * rpm) / 60 = 1658880 bytes/sec

size (bytes) = nsect * 512 * nhead * ncyl = 669358080 bytes

If we assume that 1 KByte is 1024 bytes then the data rate is 1620 KBytes/sec.

The manufacturer (and Sun) rate this disk at 1.8 MBytes/s, which is the data
rate during a single sector. This is in line with industry practice, but it is
impossible to get better than 1620 kilobytes/sec for the typical transfer size of
between 2 and 56KB. Sequential reads on this type of disk tend to run at just
over 1500 kilobytes/sec which confirms the calculated result. Some common
Sun disks are listed in table 8-1 with kilobytes of 210 = 1024. The data rate for
ZBR drives cannot be calculated since the format.dat nsect entry is fudged.

Table 15 Disk Specifications

Disk Type Capacity Peak MB/s Data Rate RPM Seek

Sun 0207 SCSI 203148 KB 1.6 1080 KB/s 3600 16ms

Sun 0424 ZBR SCSI 414360 KB 2.5-3.0 variable 4400 14ms

Sun 0535 ZBR SCSI 522480 KB 2.9-5.1 variable 5400 11ms

Sun 0669 SCSI 653670 KB 1.8 1620 KB/s 3600 16ms

Sun 1.3G ZBR SCSI 1336200 KB 3.25-4.5 variable 5400 11ms

Sun 1.3G ZBR IPI 1255059 KB 3.25-4.5 2610-3510 KB/s 5400 11ms

Hitachi 892M SMD 871838 KB 2.4 2010 KB/s 3600 15ms

Sun 1.05G ZBR FSCSI 1026144 KB 2.9-5.1 variable 5400 11ms

CDC 911M IPI 889980 KB 6.0 4680 KB/s 3600 15ms

Sun 2.1G ZBR DFSCSI 2077080 KB 3.8-5.0 variable 5400 11ms

98 Disk—December 1993

ZBR Drives
These drives vary depending upon which cylinder is accessed. The disk is
divided into zones with different bit rates (ZBR) and the outer part of the drive
is faster and has more sectors per track than the inner part of the drive. This
allows the data to be recorded with a constant linear density along the track
(bits per inch). In other drives the peak number of bits per inch that can be
made to work reliably is set up for the innermost track but density is too low
on the outermost track. In a ZBR drive more data is stored on the outer tracks
so greater capacity and higher data rates are possible. The 1.3GB drive zones
mean that peak performance is obtained from the first third of the disk up to
cylinder 700.

Note that the format.dat entry assumes constant geometry so it has a fixed idea
about sectors per track and the number of cylinders in format.dat is reduced to
compensate. The number of sectors per track is set to make sure partitions start

Table 16 1.3GB IPI ZBR Disk Zone Map

Zone Start Cylinder Sectors per Track Data Rate in KBytes/s

0 0 78 3510

1 626 78 3510

2 701 76 3420

3 801 74 3330

4 926 72 3240

5 1051 72 3240

6 1176 70 3150

7 1301 68 3060

8 1401 66 2970

9 1501 64 2880

10 1601 62 2790

11 1801 60 2700

12 1901 58 2610

13 2001 58 2610

Sequential Versus Random Access 99

on multiples of 16 blocks, and does not accurately reflect the geometry of the
outer zone. The 1.3GB IPI drive outer zone happens to match format.dat but
the other ZBR drives have more sectors than format.dat states.

Sequential Versus Random Access
Some people are surprised when they read that a disk is capable of several
megabytes per second but they see a disk at 100% capacity providing only a
few hundred kilobytes per second for their application. Most disks used on
NFS or database servers spend their time serving the needs of many users and
the access patterns are essentially random. The time taken to service a disk
access is taken up by seeking to the correct cylinder and waiting for the disk to
go round. In sequential access the disk can be read at full speed for a complete
cylinder but in random access the average seek time quoted for the disk should
be allowed for between each disk access. The random data rate is thus very
dependent on how much data is read on each random access. For filesystems
8KBytes is a common block size but for databases on raw disk partitions
2KBytes is a common block size. The 1.3GB disk takes 11ms for a random seek
and takes about 0.5ms for a 2KB transfer and 2ms for an 8KB transfer. The data
rate is thus:

data rate = transfersize / (seektime + (transfersize / datarate))

2KB data rate = 173KB/s = 2 / (0.011 + (2 / 3510))

8KB data rate = 602KB/s = 8 / (0.011 + (8 / 3510))

56KB data rate = 2078KB/s = 56 / (0.011 + (56 / 3510))

Anything that can be done to turn random access into sequential access or to
increase the transfer size will have a significant effect on the performance of a
system. This is one of the most profitable areas for performance tuning.

Effect Of Disk Controller, SCSI, SMD, IPI

SCSI Controllers

SCSI Controllers can be divided into four generic classes. The oldest only
support Asynchronous SCSI, more recent controllers support Synchronous SCSI,
the latest support Fast Synchronous SCSI, and Differential Fast Synchronous SCSI.

100 Disk—December 1993

Working out which type you have on your Sun is not that simple. The main
differences between them is in the number of disks that can be supported on a
SCSI bus before the bus becomes saturated and the maximum effective cable
length allowed.

Fast SCSI increases the maximum data rate from 5 MBytes/s to 10 MBytes/s
and halves the cable length from 6 meters to 3 meters. Differential Fast SCSI
increases the cable length to 25 meters but uses incompatible electrical signals
and a different connector so can only be used with devices that are purpose
built.

Most of the SCSI disks shown above transfer data at a much slower rate. They
do however have a buffer built into the SCSI drive which collects data at the
slower rate and can then pass data over the bus at a higher rate. With
Asynchronous SCSI the data is transferred using a handshake protocol which
slows down as the SCSI bus gets longer. For fast devices on a very short bus it
can achieve full speed but as devices are added and the bus length and
capacitance increases the transfers slow down. For Synchronous SCSI the
devices on the bus negotiate a transfer rate which will slow down if the bus is
long but by avoiding the need to send handshakes more data can be sent in its
place and throughput is less dependent on the bus length. The transfer rate is
printed out by the device driver as a system boots1 and is usually 3.5 to 5.0
MB/s but could be up to 10.0 MB/s for a fast SCSI device on a fast SCSI
controller.

The original SPARCstation 1 and the VME hosted SCSI controller used by the
SPARCserver 470 do not support Synchronous SCSI. In the case of the
SPARCstation 1 it is due to SCSI bus noise problems that were solved for the
SPARCstation 1+ and subsequent machines. If noise occurs during a
Synchronous SCSI transfer a SCSI reset happens and, while disks will retry,
tapes will abort. In versions of SunOS before SunOS 4.1.1 the SPARCstation 1+,
IPC, SLC have Synchronous SCSI disabled as well. The VME SCSI controller
supports a maximum of 1.2MBytes/s while the original SBus SCSI supports 2.5
MBytes/s because it shares its DMA controller bandwidth with the ethernet.

1. With SunOS 4.1.1 and subsequent releases of SunOS 4.X.

Effect Of Disk Controller, SCSI, SMD, IPI 101

The SPARCstation 2, IPX and ELC use a higher performance SBus DMA chip
than the SPARCstation 1, 1+, SLC and IPC and they can drive sustained SCSI
bus transfers at 5.0 MB/s. The SBus SCSI add-on cards1 and the SPARCstation
330 are also capable of this speed.

The SPARCstation 10 introduced the first fast SCSI implementation from Sun,
together with a combined fast SCSI/Ethernet SBus card. A 1.0Gbyte 3.5” fast
SCSI drive with similar performance to the older 1.3Gb drive was also
announced in the high end models. More recently a differential version of the
fast SCSI controller has been introduced, together with a 2.1Gb differential fast
SCSI drive that has a new tagged command queueing interface on-board. TCQ
provides optimisations similar to those implemented on IPI controllers
described later in this chapter, but the buffer and optimisation occurs in each
drive rather than in the controller for a string of disks.

SMD Controllers

There are two generations of SMD controllers used by Sun. The Xylogics 451
(xy) controller is a major bottleneck since it is saturated by a single slow disk
and you are doing well to get better than 500KB/s through it. They should be
upgraded if at all possible to the more recent SMD-4 (Xylogics 7053, xd)
controller, which will provide several times the throughput. SMD Disks are no
longer sold by Sun, but the later model 688 and 892 MB disks provided peak
bandwidth of 2.4 MB/s and a real throughput of around 1.8MB/s. The benefits
of upgrading a xy451 with an 892 MB drive are obvious!

IPI Controllers

The I/O performance of a multiuser system depends upon how well it
supports randomly distributed disk I/O accesses. The ISP-80 disk controller
was developed by Sun Microsystems to address this need. It provides much
higher performance than SMD based disk subsystems. The key to its
performance is the inclusion of a 68020 based real time seek optimizer which is
fed with rotational position sensing (RPS) information so that it knows which
sector is under the drives head. It has a 1 MByte disk cache organized as 128 -
8 kilobyte disc block buffers and can queue up to 128 read/write requests. As
requests are added to the queue the requests are reordered into the most
efficient disk access sequence. The result is that when a heavy load is placed on
the system and a large number of requests are queued the performance is
1. The X1055 SCSI controller and the X1054 SBE/S SCSI/Ethernet card.

102 Disk—December 1993

much better than competing systems. When the system is lightly loaded the
controller performs speculative pre-fetching of disk blocks to try and anticipate
future requests. This controller turns random accesses into sequential accesses
and significantly reduces the average seek time for a disk by seeking to the
nearest piece of data in its command queue rather than performing the next
command immediately. The 1.3Gb IPI ZBR disk has its zone map stored in the
ROM on the ISP-80 controller so that the variable geometry can be allowed for.

Load Monitoring And Balancing
If a system is under a heavy I/O load then the load should be spread across as
many disks and disk controllers as possible. To see what the load looks like the
iostat command can be used.

Iostat In SunOS 4.X

This produces output in two forms, one looks at the total throughput of each
disk in KB/s and the average seek time and number of transfers per second,
the other form looks at the number of read and write transfers separately and
gives a percentage utilization for each disk. Both forms also show the amount
of terminal I/O and the CPU loading.

% iostat 5
 tty sd0 sd1 sd3 cpu
 tin tout bps tps msps bps tps msps bps tps msps us ni sy id
 0 0 1 0 0.0 0 0 0.0 0 0 0.0 15 39 23 23
 0 13 17 2 0.0 0 0 0.0 0 0 0.0 4 0 6 90
 0 13 128 24 0.0 0 0 0.0 13 3 0.0 7 0 9 84
 0 13 88 18 0.0 0 0 0.0 48 10 0.0 11 0 11 78
 0 13 131 24 0.0 0 0 0.0 15 3 0.0 21 0 20 59
 0 13 85 17 0.0 0 0 0.0 13 3 0.0 17 0 11 72

 % iostat -tDc 5
 tty sd0 sd1 sd3 cpu
 tin tout rps wps util rps wps util rps wps util us ni sy id
 0 0 0 0 0.6 0 0 0.0 0 0 0.1 15 39 23 23
 0 13 0 2 4.9 0 0 0.0 0 0 0.0 12 0 8 79
 0 13 1 0 4.0 0 0 0.0 0 0 0.0 35 0 11 54
 0 13 7 0 23.1 0 0 0.0 2 0 7.6 21 0 11 68
 0 13 6 4 33.5 0 0 0.0 2 1 7.7 6 0 6 89
 0 13 11 1 32.3 0 0 0.0 0 0 0.8 12 0 11 77

Load Monitoring And Balancing 103

The second form of iostat -D was introduced in SunOS 4.1 and continues
unchanged in Solaris 2. The above output shows paging activity on a
SPARCstation 1 with Quantum 104MB disks, the SCSI device driver does not
collect seek information so the msps field is always zero. It can be used with
SMD and IPI disks to see whether the disk activity is largely sequential (less
than the rated seek time) or largely random (equal or greater than the rated
seek time). The first line of output shows the average activity since the last
reboot, like vmstat.

The %util field is the most useful. The device driver issues commands to the
drive and measures how long it takes to respond and how much time the disk
is idle between commands to produce a %util figure. A 100% busy disk is one
that has no idle time before the next command is issued. Disks that peak at
over 50% busy during a 5 second interval are probably causing performance
problems.

Iostat In Solaris 2

Solaris 2 has three forms of iostat output, one is the same “-D” option
described above for SunOS 4.X, the other two are described below. The default
output with no options has changed to show some new values in a similar
layout. For each disk the same values as before are reported for KB per second
(now labelled Kps rather than bps), and transfers per second. A new value of
service time in milliseconds is also reported. The service time is the average
time taken to service a complete I/O request, including time spent waiting for
preceding requests in the I/O queue to finish. The current measurement
method tends to overestimate the actual service time, so the results are not
very dependable. Nice CPU has been dropped in favor of time spent blocked
waiting for I/O. Unlike SunOS 4.X floppy disk activity is reported in Solaris 2.

% iostat 5
 tty fd0 sd0 sd1 sd3 cpu
 tin tout Kps tps serv Kps tps serv Kps tps serv Kps tps serv us sy wt id
 0 1 0 0 0 3 0 50 2 0 51 2 0 63 18 7 2 73
 0 16 0 0 0 23 4 43 0 0 0 0 0 0 19 9 13 60
 0 15 0 0 0 99 16 38 0 0 0 0 0 0 32 17 49 2
 0 16 0 0 0 93 15 37 0 0 0 0 0 0 43 17 40 0
 0 16 0 0 0 111 17 40 0 0 0 0 0 0 41 17 41 1
 0 16 0 0 0 117 17 36 0 0 0 0 0 0 40 22 37 1
 0 16 0 0 0 103 18 50 0 0 0 0 0 0 29 18 51 2
 0 16 0 0 0 6 1 85 0 0 0 8 1 116 20 7 0 73

104 Disk—December 1993

The new variant “iostat -x” provides extended statistics, and is easier to read
when a large number of disks are being reported since each disk is
summarized on a separate line. The values reported are the number of
transfers and KB per second, with read and write shown separately; the
average number of commands waiting in the queue; the average number of
commands actively being processed by the drive1; the service time described
above; and the percentage of the time that there were commands waiting in the
queue, and commands active on the drive.

How To Decide That A Disk Is Overloaded

The key value to watch is the service time (svc_t). This is the time taken to
service an I/O request to this drive, including time spent waiting in the queue
because other requests were being processed. At very light loads spurious
large service times are seen, so a threshold load level is also important. From
various sources, particularly the NFS server LADDIS benchmark, it is generally
recognized that I/O service times of more than 50ms are considered too slow.
Disks that are over 30% busy averaged over a 30 second period should have
their service times checked. A script that can be used to monitor either the
local machine or a remote server is shown in Figure 2 on page 105. It runs
iostat -x 30 on the machine being monitored, and a nawk script on the local

1. This will be less than 1.0 unless the drive uses the IPI controller or is a SCSI drive with tagged command
queueing support.

% iostat -txc 5
 extended disk statistics tty cpu
disk r/s w/s Kr/s Kw/s wait actv svc_t %w %b tin tout us sy wt id
fd0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 77 42 9 9 39
sd0 0.0 3.5 0.0 21.2 0.0 0.1 41.6 0 14
sd1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0
sd3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0
 extended disk statistics tty cpu
disk r/s w/s Kr/s Kw/s wait actv svc_t %w %b tin tout us sy wt id
fd0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 82 38 17 44 2
sd0 0.0 14.8 0.0 90.9 0.0 0.6 38.6 0 56
sd1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0
sd3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0
 extended disk statistics tty cpu
disk r/s w/s Kr/s Kw/s wait actv svc_t %w %b tin tout us sy wt id
fd0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 84 37 17 45 1
sd0 0.0 16.8 0.0 102.4 0.0 0.7 43.1 2 61
sd1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0
sd3 0.0 1.0 0.0 8.0 0.0 0.1 114.3 2 4

Load Monitoring And Balancing 105

machine. When started it goes into the background and when it sees a busy
disk it prints a warning message to the console and plays an audio file to
attract the users attention (by default the sound indicates that “performance
just went down the toilet”).

Figure 2 iomon - disk monitoring script for Solaris 2

The output doesn’t include the iostat header line, but it is easy to get a
reminder if it is needed. Here is an example of starting and testing iomon.

#!/bin/csh
Adrian.Cockcroft@corp.sun.com 4th Nov 1993
requires Solaris 2 specific version of iostat
warn the operator that a disk is overloaded
cmdline argument is optional server name for remote monitoring
#
hardwired arguments:
30 second monitoring interval for iostat
monitor disks that contain sd in the name to avoid floppies
look for disks over 30% busy with more than 50.0ms service time
play an appropriate sound to indicate performance just went down
the toilet, /usr/demo/SOUND/sounds/flush.au needs SUNWaudmo pkg
print out message to the local system console
#
if ($1 == ““) then

set CMD=”iostat -x 30”
set HOST=‘hostname‘

else
set CMD=”rsh $1 exec iostat -x 30”
set HOST=$1

endif
disk %b svc_t
exec $CMD | nawk -v host=$HOST ‘$1 ~ “sd” {if ($10 > 30 && $8 \
> 50.0) { printf(“%s: “, host); print; system(“audioplay \
/usr/demo/SOUND/sounds/flush.au”); }}’ >/dev/console &

% iomon
[2] 18220 18221
% mkfile 50M /var/tmp/JUNK; rm /var/tmp/JUNK
hostname: sd3 1.9 25.8 9.4 1195.3 4.8 2.9 280.8 95 100
% iostat -x 1 1
 extended disk statistics
disk r/s w/s Kr/s Kw/s wait actv svc_t %w %b
...

106 Disk—December 1993

Multiple Disks On One Controller
If the controller is busy talking to one disk then another disk has to wait and
the resulting contention increases the latency for all the disks on that controller.
Tests have shown that with the 424MB and 1.3Gb disks on a 5MB/s SCSI bus
there should be at most two heavily loaded disks per bus for peak
performance. IPI controllers can support at most three heavily loaded disks. As
the data rate of one disk approaches the bus bandwidth the number of disks is
reduced. The 10MB/s fast SCSI buses with disks that transfer over the bus at
10MB/s and sustain about 4MB/s data rate can support about three to four
heavily loaded disks per bus.

For sequential accesses there is an obvious limit on the aggregate bandwidth
that can be sustained by a number of disks. For random accesses the
bandwidth of the SCSI bus is much greater than the aggregate bandwidth of
the transfers, but queueing effects increase the latency of each access as more
disks are added to each SCSI bus. Database applications need low latencies so
for best performance three or four active disks per SCSI bus is the
recommended maximum.

Mirrored Disks
Sun’s Online: DiskSuite product includes a software driver for disk mirroring.
When a write occurs the data must be written to both disks together and this
can cause a bottleneck for I/O. The two mirrored disks should be on
completely separate IPI disk controllers or SCSI buses so that the write can
proceed in parallel. If this advice is not followed the writes happen in sequence
and the disk write throughput is halved. Putting the drives on separate
controllers will also improve the system’s availability since disk controller and
cabling failures will not prevent access to both disks.

Mirrored Disks 107

Tuning Options For Mirrors

Filesystem Tuning Fix
The Online: DiskSuite 1.0 product was developed at about the time filesystem
clustering1 was implemented and it doesn’t set up the tuning parameters
correctly for best performance. After creating a filesystem but before mounting
it you should run the following command on each metapartition.

The -a option controls the maxcontig parameter. This specifies the maximum
number of blocks, belonging to the same file, that will be allocated
contiguously before inserting a rotational delay.

The -d option controls the rotdelay parameter. This specifies the expected
time (in milliseconds) to service a transfer completion interrupt and initiate a
new transfer on the same disk. It is used to decide how much rotational
spacing to place between successive blocks in a file. For drives with track
buffers a rotdelay of 0 is usually the best choice.

Note – Online: DiskSuite 2.0 runs on Solaris 2 and does not need this fix.

Metadisk Options
There are several options that can be used in the metadisk configuration file to
control how mirroring operates.

Writes always go to both disks so the only option is whether to issue two write
requests then wait for them both to finish or to issue them sequentially. The
default is simultaneous issue which is what is wanted in most cases.

Reads can come from either disk and there are four options.

• The first is to issue reads to each disk simultaneously and when one
completes to cancel the second one, this aims to provide the fastest response
but generates extra work and will not work well in a heavily loaded system.

1. See “The Disk Tuning Performed For SunOS 4.1.1” on page 95, and the tunefs manual page.

tunefs -a 7 -d 0 /dev/mdXX

108 Disk—December 1993

• Reads can be made alternately from one disk then the other, balancing the
load but not taking advantage of any sequential prefetching that disks may
do.

• Reads can be made to come from one disk only (except on failure), which
can be useful if there are two separate read intensive mirrored partitions
sharing the same disk. Each partition can be read from a different disk.

• The last option is to geometrically divide the partition into two and to use
the first disk to service reads from the first half of the partition and the
second disk to service reads from the second half. For a read intensive load
the heads will only have to seek half as far so this reduces the effective
average seek time and provides better performance for random accesses.

109

CPU 9

This chapter looks at some SPARC implementations to see how the differences
affect performance. A lot of hard-to-find details are documented. See also the
recent book “Multiprocessor System Architectures, Ben Catazaro, SunSoft
Press”.

Architecture And Implementation
The SPARC architecture defines everything that is required to ensure
application level portability across varying SPARC implementations. It
intentionally avoids defining some things, like how many cycles an instruction
takes, to allow maximum freedom within the architecture to vary
implementation details. This is the basis of SPARC’s scalability from very low
cost to very high performance systems. Implementation differences are
handled by kernel code only, so that the instruction set and system call
interface are the same on all SPARC systems. The SPARC Compliance
Definition specifies this interface and it is controlled by the independent
SPARC International organization. Within this standard there is no
specification of the performance of a compliant system, only its correctness.
The performance depends on the chip set used (i.e. the implementation) and
the clock rate that the chip set runs at. To avoid confusion some terms need to
be defined.

Instruction Set Architecture (ISA)

The ISA is defined by the SPARC Architecture Manual, SPARC International
has published Version 7, Version 8 and Version 9, the IEEE have a draft
standard based on Version 8, IEEE P1754. Version 9 defines major extensions
including 64 bit addressing in an upwards compatible manner for user mode
programs. Version 9 based systems are expect to appear during 1994 and 1995.

110 CPU—December 1993

SPARC Implementation

A chip level specification, it will define how many cycles each instruction takes
and other details. Some chip sets only define the integer unit (IU) and floating
point unit (FPU), others define the MMU and cache design and may include
the whole lot on a single chip.

System Architecture

This is more of a board level specification of everything the kernel has to deal
with on a particular machine. It includes internal and I/O bus types, address
space uses and built-in I/O functions. This level of information is documented
in the SPARCengine User Guide1 that is produced for the bare board versions
of Sun’s workstation products. The information needed to port a real-time
operating system to the board and physically mount the board for an
embedded application is provided.

Kernel Architecture

A number of similar systems may be parameterized so that a single GENERIC
kernel image can be run on them. This grouping is known as a kernel
architecture and Sun has one for VME based SPARC machines (Sun4), one for
SBus based SPARC machines (Sun4c), one for the VME and SBus combined 6U
eurocard machines (sun4e), one for MBus based machines and machines that
use the SPARC reference MMU (Sun4m), and one for XDbus based machines
(Sun4d), these are listed in Table 17 on page 113.

The Effect Of Register Windows And Different SPARC CPUs
SPARC defines an instruction set that uses 32 integer registers in a
conventional way but has many sets of these registers arranged in overlapping
register windows. A single instruction is used to switch in a new set of registers
very quickly. The overlap means that 8 of the registers from the previous
window are part of the new window, and these are used for fast parameter
passing between subroutines. A further 8 global registers are always the same

1. See the “SPARCengine IPX User Guide”, “SPARCengine 2 User Guide” and “SPARCengine 10 User Guide”.

The Effect Of Register Windows And Different SPARC CPUs 111

so, of the 24 that make up a register window, 8 are passed in from the previous
window, 8 are local and 8 will be passed out to the next window. This is
described further in the following references.

• “The SPARC Architecture Manual Version 8”

• “SPARC Strategy and Technology, March 1991”

Some SPARC implementations have 7 overlapping sets of register windows
and some have 8. One window is always reserved for taking traps or
interrupts, since these will need a new set of registers, the others can be
thought of as a stack cache for 6 or 7 levels of procedure calls with up to 6
parameters per call passed in registers. The other two registers are used to hold
the return address and the old stack frame pointer. If there are more than 6
parameters to a call then the extra ones are passed on the external stack as in a
conventional architecture. It can be seen that the register windows architecture
allows much faster subroutine call and return and faster interrupt handling
than conventional architectures which copy parameters out to a stack, make
the call, then copy the parameters back into registers. Programs typically spend
most of their time calling up and down a few levels of subroutines but when
the register windows have all been used a special trap takes place and one
window (16 registers) is copied to the stack in main memory. On average
register windows seem to cut down the number of loads and stores required by
10-30% and provide a speed up of 5-15%. Care must be taken to avoid writing
code that makes a large number of recursive or deeply nested calls, and keeps
returning to the top level. If very little work is done at each level and very few
parameters are being passed the program may generate a large number of save
and restore traps. The SunPro SPARC compiler optimizer performs tail
recursion elimination and leaf routine optimization to reduce the depth of the
calls.

If an application performs a certain number of procedure calls and causes a
certain number window traps the benefit of reducing the number of loads and
stores must be balanced against the cost of the traps. The overflow trap cost is
very dependent upon the time taken to store 8 double-words to memory. On
systems with write through caches and small write buffers like the
SPARCstation 1 a large number of write stalls occur and the cost is relatively
high. The SPARCstation 2 has a larger write buffer of two double-words which
is still not enough. The SuperSPARC chip in write through mode has an 8
double-word write buffer so will not stall and other systems with write back
caches will not stall (unless a cache line needs to be updated).

112 CPU—December 1993

The SPARC V9 architecture supports a new multiple level trap architecture.
This greatly reduces the administrative overhead of register window traps,
since the main trap handler no longer has to check for page faults. This is
expected to increase the relative performance boost of register windows by
reducing the trap time.

The Effect Of Context Switches And Interrupts

When a program is running on a SPARC chip the register windows act as a
stack cache and provide a performance boost. Subroutine calls tend to occur
every few microseconds on average in integer code but may be infrequent in
vectorizable floating point code. Whenever a context switch occurs the register
windows are flushed to memory and the stack cache starts again in the new
context. Context switches tend to occur every few milliseconds on average and
a ratio of several hundred subroutine calls per context switch is a good one
since there is time to take advantage of the register windows before they are
flushed again. When the new context starts up it loads in the register windows
one at a time, so programs that do not make many subroutine calls do not load
registers that they will not need. Note that a special trap is provided that can
be called to flush the register windows, this is needed if you wish to switch to
a different stack as part of a user written coroutine or threads library. When
running SunOS a context switch rate of 1000 per second is considered fast so
there are rarely any problems. There may be more concern about this ratio
when running real time operating systems on SPARC machines, but there are
alternative ways of configuring the register windows that are more suitable for
real time systems1. These systems often run entirely in kernel mode and can
perform special tricks to control the register windows.

The register window context switch time is a small fraction of the total SunOS
context switch time. On machines with virtual write-back caches a cache flush
is also required on a context switch. Systems have varying amounts of support
for fast cache flush in hardware. The original SunOS 4.0 release mapped the
kernel U-area at the same address for all processes and the U-area flush gave
the Sun4/260 with SunOS 4.0 (the first SPARC machine) a bad reputation for
poor context switch performance that was mistakenly blamed on the register
windows by some people.

1. “SPARC Technology Conference notes - 3 Intense Days of Sun” - Alternative Register Window Schemes. The
Alewife Project at MIT has implemented one of these schemes for fast context switching.

Comparing Instruction Cycle Times On Different SPARC CPUs 113

Comparing Instruction Cycle Times On Different SPARC CPUs
Most SPARC Instructions execute in a single cycle. The main exceptions are
floating point operations, loads, stores and a few specialized instructions. The
time taken to complete each floating point operation in cycles is shown in
Table 18 on page 117.

Table 17 Which SPARC IU and FPU does your system have?

System (Kernel Architecture) Clock Integer Unit Floating Point Unit

Sun4/110 and Sun4/150 (sun4) 14MHz Fujitsu #1 FPC+Weitek 1164/5

Sun4/260 and Sun4/280 (sun4) 16.6MHz Fujitsu #1 FPC+Weitek 1164/5

Sun4/260 and Sun4/280 FPU2 (sun4) 16.6MHz Fujitsu #1 FPC2+TI 8847

SPARCsystem 300 series (sun4) 25MHz Cypress 601 FPC2+TI 8847

SPARCserver 400 series (sun4) 33MHz Cypress 601 FPC2+TI 8847

SPARCstation 1 and SLC (sun4c) 20MHz LSI/Fujisu #2 Weitek 3170

SPARCstation 1+ and IPC (sun4c) 25MHz LSI/Fujitsu#2 Weitek 3170

Tadpole SPARCbook 1 (sun4m) 25MHz Cypress 601 Weitek 3171

SPARCstation ELC (sun4c) 33MHz Fujitsu #3 Weitek 3171 on chip

SPARCstation IPX (sun4c) 40MHz Fujitsu #3 Weitek 3171 on chip

SPARCstation 2 (sun4c) 40MHz Cypress 601 TI 602

SPARCserver 600 model 120/140 (sun4m) 40MHz Cypress 601 Weitek 3171

SPARCsystem 10 model 20 (sun4m) 33MHz SuperSPARC SuperSPARC

SPARCsystem 10 model 30 (sun4m) 36MHz SuperSPARC SuperSPARC

SPARCsystem 10 model 40 (sun4m) 40MHz SuperSPARC SuperSPARC

SPARCsystem 10 & 600 model 41 (sun4m) 40MHz SuperSPARC SuperSPARC

SPARCsystem 10 & 600 model 51 (sun4m) 50MHz SuperSPARC SuperSPARC

SPARCclassic & SPARCstation LX (sun4m) 50MHz MicroSPARC MicroSPARC

SPARCcenter 1000 & 2000 (sun4d) 50MHz SuperSPARC SuperSPARC

Cray S-MP & FPS 500EA (sun4) 66MHz BIT B5000 BIT B5010

MicroSPARC II 70+MHz

SPARC PowerUP (sun4c) 80MHz Weitek Weitek on-chip

114 CPU—December 1993

Sun engineering teams designed many of the above integer units which are
listed by the vendor that manufactured and sold the parts. Sun has often dual
sourced designs and several designs have been cross licenced by several
vendors. The basic designs listed in Table 17 are:

• The original gate array IU design sold by Fujitsu (#1) as the MB86901 used
a Weitek 1164 and 1165 based FPU initially with a floating point controller
(FPC) ASIC but later moved to the Texas Instruments 8847 with a new FPC
design.

• A tidied up semi-custom gate array version for higher clock rates is sold by
Fujitsu and LSI Logic (#2) as the L64911. It takes two cycles to issue
operations to the companion single chip Weitek 3170 FPU.

• A full-custom CMOS version with minor improvements and higher clock
rates sold by Cypress as the CY7C601 which was licenced by Fujitsu (#3)
and combined with a Weitek 3171 FPU into a single chip sold by both
Fujitsu and Weitek as the MB86903. FPU operations are issued in one cycle
to either a Texas Instruments 602 or a Weitek 3171 FPU.

• A high clock rate ECL implementation with an improved pipeline sold by
BIT as the B5000. It has its own matching FPU design based on a custom
ECL FPC and a standard BIT multiplier and accumulator.

• A second generation superscalar BICMOS implementation known as
SuperSPARC with its own on-chip FPU sold by Texas Instruments as the
TMS390Z50. The companion SuperCache controller chip is the TMS390Z55.

• A highly integrated, very low cost custom CMOS implementation known as
MicroSPARC with an on-chip FPU derived from a design by Meiko Ltd. is
sold by Texas Instruments as the TMS390S10.

• A new MicroSPARC II design with higher performance and even higher
integration than MicroSPARC has just been announced by Fujitsu.

There are several SPARC chips designed independently of Sun, including the
Fujitsu MB86930 SPARClite embedded controller, the Matsushita MN10501
used by Solbourne and the Cypress HyperSPARC. The Ross division of
Cypress (which produced all the SPARC parts) was recently bought by Fujitsu.

Comparing Instruction Cycle Times On Different SPARC CPUs 115

The Weitek SPARC PowerUP Upgrade

Weitek have taken the basic design used in the MB86903 and modified it to
double the internal clock rate and provide 24KB of on-chip caches. This is sold
as a chip level upgrade for SPARCstation 2 and IPX machines, and its 80MHz
operation runs some programs between 1.5 and 2 times faster than the basic
40MHz SPARCstation 2 or IPX.

Superscalar Operations

The main superscalar SPARC chips are the Texas Instruments SuperSPARC and
the Cypress/Ross HyperSPARC. These can both issue multiple instructions in
a single cycle.

SuperSPARC
The SuperSPARC can issue three instructions in one clock cycle and just about
the only instructions that cannot be issued continuously are integer multiply
and divide, and floating point divide and square root as shown in Table 18.
There are a set of rules that control how many instructions are grouped for
issue in each cycle. The main ones are that instructions are executed strictly in
order and subject to the following conditions1:

• three instructions in a group

• one load or store anywhere in a group

• a control transfer (branch or call) ends a group at that point

• one floating point operation anywhere in a group

• two integer word results or one double word result (inc. loads) per group

• one shift can cascade into another operation but not vice versa

Dependant compare and branch is allowed and simple ALU cascades are
allowed (a + b + c). Floating point load and a dependant operation is allowed
but dependant integer operations have to wait for the next cycle after a load.

1. See “The SuperSPARC Microprocessor Technical White Paper”

116 CPU—December 1993

SuperSPARC is shipping at 33, 36, 40 and 50MHz, and has been announced at
60MHz by Texas Instruments. A derived SuperSPARC II design is part of the
SPARC futures roadmap for higher performance.

Cypress/Fujitsu Ross HyperSPARC
The HyperSPARC design can issue two instructions in one clock cycle. The
combinations allowed are more restrictive than SuperSPARC but the simpler
design allows a higher clock rate to compensate. HyperSPARC has just started
shipping at 55MHz and is targeting 66MHz and 80MHz. The performance of a
66MHz HyperSPARC is comparable to a 50MHz SuperSPARC. Fujitsu recently
bought Ross from Cypress.

UltraSPARC
Sun recently announced a SPARC roadmap for the next five years. Apart from
higher clock rates the next major development will be the superscalar
UltraSPARC, which implements the 64bit SPARC V9 architecture and will run
at well over 100MHz.

Low Cost Implementations

The main low cost SPARC chips are the Fujitsu SPARClite, a development
aimed at the embedded control marketplace; and the Texas Instruments
MicroSPARC, a highly integrated “workstation on a chip”. The MicroSPARC
integer unit is based on the old BIT B5000 pipeline design although it has a
new low cost FPU based upon a design by Meiko. The chip integrates IU, FPU,
caches, MMU, SBus interface and a direct DRAM memory interface controller.

Floating Point Performance Comparisons

The following table indicates why some programs that use divide or square
root intensively may run better on a SPARCstation 2 than a SPARCstation IPX
for example. The old Weitek 1164/5 did not implement square root in
hardware and there were bugs in some early versions. The SunPro code
generator avoids the bugs and the square root instruction in -cg87 mode but
goes faster in -cg89 (optimized for the SPARCstation 2) or -cg92 (optimized for
the SuperSPARC) mode if you know you do not have to run on the oldest type
of machine. Solaris 2 disables the Weitek 1164/5 CPU so that -cg89 can be used
as the default but this means that some old machines will revert to software

Comparing Instruction Cycle Times On Different SPARC CPUs 117

FPU emulation. SunPro provide a command called “fpversion” that reports
what you have in your machine.MicroSPARC has an iterative FPU that is data
dependent and minimum, typical and maximum times are given.

Table 18 Floating point Cycles per Instruction

Instruction FPC &
TI 8847

Weitek
3170 & 3171

Texas
602

BIT
B5000

MicroSPARC
 min typ max

Super
SPARC

fitos 8 10 4 2 5 6 13 1
fitod 8 5 4 2 4 6 13 1
fstoir, fstoi 8 5 4 2 6 6 13 1
fdtoir, fdtoi 8 5 4 2 7 7 14 1
fstod 8 5 4 2 2 2 14 1
fdtos 8 5 4 2 3 3 16 1
fmovs 8 3 4 2 2 2 2 1
fnegs 8 3 4 2 2 2 2 1
fabss 8 3 4 2 2 2 2 1
fsqrts 15 60 22 24 6 37 51 6
fsqrtd 22 118 32 45 6 65 80 10
fadds, fsubs 8 5 4 2 4 4 17 1
faddd, fsubd 8 5 4 2 4 4 17 1
fmuls 8 5 4 3 5 5 25 1
fmuld 9 8 6 4 7 9 32 1
fdivs 13 38 16 14 6 20 38 4
fdivd 18 66 26 24 6 35 56 7
fcmps, fcmpes 8 3 4 2 4 4 15 1
fcmpd, fcmped 8 3 4 2 4 4 15 1

118 CPU—December 1993

Integer Performance Comparisons

The main points of note in this table are that MicroSPARC is similar to the
B5000 since they share the same basic pipeline design but FP loads and stores
are faster on the B5000, and that SuperSPARC can issue up to three instructions
in a clock cycle according to grouping rules mentioned previously. SPARClite
does not include an FPU.

Table 19 Number of Register Windows and Integer Cycles per Instruction

Instruction Fujitsu/LSI
#1, #2

Cypress/
Fujitsu #3

MicroSPARC
(&B5000)

Fujitsu
SPARClite

Super
SPARC

(register windows) 7 8 7 8 8

ld (32 bit integer) 2 2 1 1 1

ldd (64 bit integer) 3 3 2 2 1

ld (32 bit float) 2 2 1 1 1

ldd (64 bit double) 3 3 2 (1) 2 1

st (32 bit integer) 3 3 2 1 1

std (64 bit integer) 4 4 3 2 1

st (32 bit float) 3 3 2 (1) 1 1

std (64 bit double) 4 4 3 (2) 2 1

taken branches 1 1 1 1 1

untaken branches 2 1 1 1 1

jmpl and rett 2 2 2 2 1

integer multiply N/A N/A 19 ? 4

integer divide N/A N/A 39 ? 18

issue FP operation 2 1 1 N/A 1

119

Multiprocessors 10

Multiprocessor machines introduce yet another dimension to performance
tuning. Sun has been shipping multiprocessor servers for some time but the
introduction of Solaris 2 and the desktop multiprocessor SPARCstation 10 is
bringing multiprocessing into the mainstream both for end users and
application developers. This chapter provides a brief description of how
multiprocessor machines work and explains how to measure the utilization of
multiple processors to see if the existing processors are working effectively and
to see if adding more processors would provide a worthwhile improvement.

Basic Multiprocessor Theory

Why Bother With More Than One CPU?

At any point in time there are CPU designs that represent the best performance
that can be obtained with current technology at a reasonable price. The cost
and technical difficulty of pushing the technology further means that the most
cost effective way of increasing computer power is to use several processors.
There have been very many attempts to harness multiple CPUs and, today,
there are many different machines on the market. Software has been the
problem for these machines. It is hard to design software that will be portable
across a large range of machines and few of these machines sell in large
numbers so there is a small and fragmented market for multiprocessor
software.

Multiprocessor Classifications

There are two classes of multiprocessor machines that have some possibility of
software compatibility and both have had SPARC based implementations.

120 Multiprocessors—December 1993

Distributed Memory Multiprocessors
Figure 1 Typical Distributed Memory Multiprocessor With Mesh Network

These can be thought of as a network of uniprocessors packaged into a box.
Each processor has its own memory and data must be explicitly copied over
the network to another processor before it can be used. The benefit of this is
that there is no contention for memory bandwidth to limit the number of
processors and if the network is made up of point to point links the network
throughput increases as the number of processor increases. There is no
theoretical limit to the number of processors that can be used in a system of
this type but there are problems finding algorithms that scale with the number
of processors which limits their usefulness for general purpose computing.

The most common examples of this architecture are the Meiko Compute
Surface, which has Transputer, Intel 860 or SPARC processors; and Meiko CS2
which has SuperSPARC processors running Solaris 2 on each node; the Intel
iPSC Hypercube which has Intel 386, 486 or 860 processors; a myriad of other
Transputer based machines and the Thinking Machines CM-5 which has
SPARC processors. Most of the above have vector units to provide very high
peak floating point performance for running specially written numerical
programs very fast. Some have also been used to run databases, in particular
the Oracle Parallel Server product. There is no software compatibility across
these machines and there is no dominant operating system for this type of
computer (although there is a trend towards providing various forms of Unix
compatibility). They are often interfaced to a front end Sun workstation that
provides a user interface, development environment, disk storage and network
interface for the machine.

CPU+RAM CPU+RAM CPU+RAM

CPU+RAM CPU+RAM CPU+RAM

CPU+RAM CPU+RAM CPU+RAM
Front End Workstation

Basic Multiprocessor Theory 121

Shared Memory Multiprocessors
Figure 2 Typical Small Scale Shared Memory Multiprocessor

A shared memory multiprocessor is much more tightly integrated and consists
of a fairly conventional starting point of CPU, memory and I/O subsystem
with extra CPUs added onto the central bus. This multiplies the load on the
memory system by the number of processors and the shared bus becomes a
bottleneck. To reduce the load caches are always used and very fast memory
systems and buses are built. If more and faster processors are added to the
design the cache size needs to increase, the memory system needs to be
improved and the bus needs to be speeded up. Most small scale MP machines
support up to four processors. Larger ones support a few tens of processors.
With some workloads the bus or memory system will saturate before the
maximum number of processors has been configured.

Special circuitry is used to snoop activity on the bus at all times so that all the
caches can be kept coherent. If the current copy of some data is in more than
one of the caches then it will be marked as being shared. If it is updated in one
cache then the copies in the other caches are either invalidated or updated
automatically. From a software point of view there is never any need to
explicitly copy data from one processor to another and shared memory
locations are used to communicate values between CPUs. The cache to cache
transfers still occur when two CPUs use data in the same cache line so they
must be considered from a performance point of view, but the software does
not have to worry about it.

There are many examples of shared memory mainframes and minicomputers.
Some examples of SPARC based Unix multiprocessors include four processor
Sun SPARCserver 600 and SPARCstation 10 models and ICL DRS6000s, eight

CPU+CacheCPU+Cache CPU+Cache CPU+Cache

I/O System Memory

Central Bus

122 Multiprocessors—December 1993

processor SPARC machines from Solbourne and Cray (the old SPARC based
FPS 500EA is sold as the Cray S-MP), the 8 processor SPARCserver 1000 and
the 20 processor SPARCcenter 2000.

The high end machines often have multiple I/O subsystems and multiple
memory subsystems connected to the central bus. This allows more CPUs to be
configured without causing bottlenecks in the I/O and memory systems. The
SPARCcenter 2000 takes this further by having dual buses with a 256 byte
interleave.

Unix On Shared Memory Multiprocessors

Critical Regions

The Unix kernel has many critical regions, or sections of code where a data
structure is being created or updated. These regions must not be interrupted by
a higher priority interrupt service routine. The uniprocessor Unix kernel
manages these regions by setting the interrupt mask to a high value during the
region. On a multiprocessor there are other processors with their own interrupt
masks so a different technique must be used to manage critical regions.

The Spin Lock Or Mutex

One key capability in shared memory multiprocessor systems is the ability to
perform interprocessor synchronization using atomic load/store or swap
instructions. In all SPARC chips there is an instruction called LDSTUB, which
means load-store-unsigned-byte. It reads a byte from memory into a register
then writes 0xFF into memory in a single indivisible operation. The value in
the register can then be examined to see if it was already 0xFF, which means
that another processor got there first, or if it was 0x00, which means that this
processor is in charge. This is used to make mutual exclusion locks (known as
mutexes) which make sure that only one processor at a time can hold the lock.
The lock is acquired using LDSTUB and cleared by storing 0x00 back to
memory. If a processor does not get the lock then it may decide to spin by
sitting in a loop, testing the lock, until it becomes available. By checking with a
normal load instruction in a loop before issuing a LDSTUB the spin is
performed within the cache and the bus snooping logic watches for the lock
being cleared. In this way spinning causes no bus traffic so processors that are

Unix On Shared Memory Multiprocessors 123

waiting do not slow down those that are working. A spin lock is appropriate
when the wait is expected to be short. If a long wait is expected the process
should sleep for a while so that a different job can be scheduled onto the CPU.

Code Locking And SunOS 4.1.X

The simplest way to convert a Unix kernel that is using interrupt levels to
control critical regions for use with multiprocessors is to replace the call that
sets interrupt levels high with a call to acquire a mutex lock. At the point
where the interrupt level was lowered the lock is cleared. In this way the same
regions of code are locked for exclusive access. This method has been used to a
greater or lesser extent by most MP Unix implementations including SunOS
4.1.2 and SunOS 4.1.3 on the SPARCserver 600MP machines1, ICL’s DRS/NX
and Solbourne’s OS/MP. The amount of actual concurrency that can take place
in the kernel is controlled by the number and position of the locks.

In SunOS 4.1.2 and SunOS 4.1.3 there is effectively a single lock around the
entire kernel. The reason for using a single lock is to make these MP systems
totally compatible with user programs and device drivers written for
uniprocessor systems. User programs can take advantage of the extra CPUs but
only one of the CPUs can be executing kernel code at a time.

When code locking is used there are a fixed number of locks in the system and
this number can be used to characterize how much concurrency is available.
On a very busy, highly configured system the code locks are likely to become
bottlenecks so that adding extra processors will not help performance and may
actually reduce performance.

Data Locking And Solaris 2.0

The problem with code locks is that different processors often want to use the
same code to work on different data. To allow this to happen locks must be
placed in data structures rather than code. Unfortunately this requires an
extensive rewrite of the kernel which is one reason why Solaris 2 took several
years to create2. The result is that the kernel has a lot of concurrency available
and can be tuned to scale well with large numbers of processors. The same

1. The multiprocessor features are described in “New Technology For Flexibility, Performance And Growth,
The SPARCserver 600 Series”.

124 Multiprocessors—December 1993

kernel is used on uniprocessors and multiprocessors so all device drivers and
user programs must be written to work in the same environment and there is
no need to constrain concurrency for compatibility with uniprocessor systems.
The locks are still needed in a uniprocessor since the kernel can switch
between kernel threads at any time to service an interrupt.

When data locking is used there is a lock for each instance of a data structure.
Since table sizes vary dynamically the total number of locks grows as the tables
grow and the amount of concurrency that is available to exploit is greater on a
very busy, highly configured system. Adding extra processors to such a system
is likely to be beneficial. Solaris 2 has about 150 different data locks and
multiplied by the number of instances of the data there will typically be several
thousand locks in existence on a running system. As Solaris 2 is tuned for more
concurrency some of the remaining code locks are turned into data locks, and
“large” locks are broken down into finder grained locks. Tools exist to monitor
the lock contention in the kernel, but access to kernel source code is required to
make sense of the results. If mutex access routines appear right at the top of
the list of a kernel profile then contention may be occurring1. There is a trade-
off between having lots of mutexes for good MP scalability, and few mutexes
for reduced CPU overhead on uniprocessors.

SPARC Based Multiprocessor Hardware

Bus Architectures

There are two things to consider about bus performance. The peak data rate is
easily quoted but the ability of the devices on the bus to source or sink data at
that rate for more than a few cycles is the real limit to performance. The second
thing to consider is whether the bus protocol includes cycles that do not
transfer data which reduces the sustained data throughput.

Older buses like VMEbus usually transfer one word at a time so that each bus
cycle includes the overhead of deciding which device will access the bus next
(arbitration) as well as setting up the address and transferring the data. This is
rather inefficient so more recent buses like SBus and MBus transfer data in

2. See “Solaris 2.0 Multithread Architecture White Paper” and “Realtime Scheduling In SunOS 5.0, Sandeep
Khanna, Michael Sebrée, John Zolnowsky”.

1. See “Kernel Profiling Using Kgmon In Solaris 2” on page 74.

SPARC Based Multiprocessor Hardware 125

blocks. Arbitration can take place once per block then a single address is set up
and multiple cycles of data are transferred. The protocol gives better
throughput if more data is transferred in each bus transaction. For example
SPARCserver 600MP systems are optimized for a standard transaction size of
32 bytes by providing 32 byte buffers in all the devices that access the bus and
using a 32 byte cache line1. The SPARCcenter 2000 is optimized for 64 byte
transactions2.

Circuit Switched Bus Protocols
One class of bus protocols effectively opens a circuit between the source and
destination of the transaction and holds on to the bus until the transaction has
finished and the circuit is closed. This is simple to implement but when a
transfer from a slow device like main memory to a fast device like a CPU cache
(a cache read) occurs there must be a number of wait states to let the main
memory DRAM access complete in between sending the address to memory
and the data returning. These wait states reduce cache read throughput and
nothing else can happen while the circuit is open. The faster the CPU clock rate
the more clock cycles are wasted. On a uniprocessor this adds to the cache miss
time which is annoying but on a multiprocessor the number of CPUs that a bus
can handle is drastically reduced by the wait time. Note that a fast device like
a cache can write data with no delays to the memory system write buffer.
MBus uses this type of protocol and is suitable for up to four CPUs.

Packet Switched Bus Protocols
To make use of the wait time a bus transaction must be split into a request
packet and a response packet. This is much harder to implement because the
response must contain some identification and a device on the bus such as the
memory system may have to queue up additional requests coming in while it
is trying to respond to the first one. There is a protocol extension to the basic
MBus interface called XBus that implements a packet switched protocol in the
SuperCache controller chip used with SuperSPARC. This provides more than
twice the throughput of MBus and it is designed to be used in larger
multiprocessor machines that have more than four CPUs on the bus. The
SPARCcenter 2000 uses XBus within each CPU board and multiple interleaved

1. See the “SPARCserver 10 and SPARCserver 600 White Paper” for details of the buffers used.

2. See “The SPARCcenter 2000 Architecture and Implementation White Paper”.

126 Multiprocessors—December 1993

XBuses on its inter-board backplane. The backplane bus is called XDbus. On
the SPARCserver 1000 there is a single XDBus and on the SPARCcenter 2000
there is a twin XDbus (one, two or four can be implemented with different
board sizes using the same chipset).

MP Cache Issues

In systems that have more than one cache on the bus a problem arises when
the same data is stored in more than one cache and the data is modified. A
cache coherency protocol and special cache tag information is needed to keep
track of the data. The basic solution is for all the caches to include logic that
watches the transactions on the bus (known as snooping the bus) and look for
transactions that use data that is being held by that cache1. The I/O subsystem
on Sun’s multiprocessor machines has its own MMU and cache so that full bus
snooping support is provided for DVMA2 I/O transfers. The coherency
protocol that MBus defines uses invalidate transactions that are sent from the
cache that owns the data when the data is modified. This invalidates any other
copies of that data in the rest of the system. When a cache tries to read some
data the data is provided by the owner of that data, which may not be the
memory system, so cache to cache transfers occur. An MBus option which is
implemented in Sun’s MBus based system is that the memory system grabs a
copy of the data as it goes from cache to cache and updates itself3.

1. This is described very well in “SPARCserver 10 and SPARCserver 600 White Paper”.

2. DVMA stands for Direct Virtual Memory Access and it is used by intelligent I/O devices that write data
directly into memory using virtual addresses e.g. the disk and network interfaces.

Table 20 MP Bus Characteristics

Bus Name Peak Bandwidth Read Throughput Write Throughput

Solbourne KBus 128Mbytes/s 66Mbytes/s 90Mbytes/s

ICL HSPBus 128Mbytes/s 66Mbytes/s 90Mbytes/s

MBus 320Mbytes/s 90Mbytes/s 200Mbytes/s

XBus 320Mbytes/s 250Mbytes/s 250Mbytes/s

Single XDBus 320Mbytes/s 250Mbytes/s 250Mbytes/s

Dual XDbus 640Mbytes/s 500Mbytes/s 500Mbytes/s

Quad XDbus 1280Mbytes/s 1000Mbytes/s 1000Mbytes/s

SPARC Based Multiprocessor Hardware 127

The cache coherency protocol slows down the bus throughput slightly
compared to a uniprocessor system with a simple uncached I/O architecture
which is reflected in extra cycles for cache miss processing. This is a particular
problem with the Ross CPU module used in the first generation SPARCserver
600 systems. The cache is organized as a 32 bit wide bank of memory while the
MBus transfers 64bit wide data at the full cache clock rate. A 32 byte buffer in
the 7C605 cache controller takes the data from the MBus then passes it onto the
cache. This extra level of buffering increases cache miss cost but makes sure
that the Mbus is freed early to start the next transaction. This also makes cache
to cache transfers take longer. The SuperSPARC with SuperCache module has a
64bit wide cache organization so the intermediate buffer is not needed. This
extra efficiency helps the existing bus and memory system cope with the extra
load generated by CPUs that are two to three times faster than the original
Ross CPUs and future SuperSPARC modules that may double performance
again.

Memory System Interleave On The SPARCcenter 2000

The SC2000 has up to ten system boards with two memory banks on each
board. Each bank is connected to one of the XDBuses. At boot time the system
configures its physical memory mappings so that the memory systems on each
XDBus are interleaved together on 64 byte boundaries as well as the 256 byte
interleave of the dual XDBus itself. The maximum combined interleave occurs
when eight memory banks are configured, with four on each XDBus. This is a
minimum of 512 Mb of RAM and higher performance can be obtained using
eight 64Mb banks rather than two 256Mb banks. The effect of the interleave
can be considered for the common operation of a 4 Kb page being zeroed. The
first four 64 byte cache lines are passed over the first XDBus to four different
memory banks, the next four 64 byte cache lines are passed over the second
XDBus to four more independent memory banks. After the first 512 bytes has
been written the next write goes to the first memory bank again, which has had
plenty of time to store the data into one of the special SIMMs. On average the
access pattern of all the CPUs and I/O subsystems will be distributed
randomly across all of the (up to twenty) memory banks, the interleave
prevents a block sequential access from one device from hogging all the
bandwidth in any one memory bank.

3. This is known as reflective memory.

128 Multiprocessors—December 1993

In summary, use more system boards with 64Mb memory options on the
SC2000 to give better performance than fewer 256Mb memory options and
install the memory banks evenly across the two XDBuses as far as possible.

The system configuration can be seen on SPARCserver1000 and
SPARCcenter2000 machines with the /usr/kvm/prtdiag command.

Measuring And Tuning A Multiprocessor With SunOS 4.1.2 and 4.1.3
There are two “MP aware” commands provided. /usr/kvm/mpstat breaks
down the CPU loading for each processor and a total. /usr/kvm/mps is the
same as ps (1), in that it lists the processes running on the machine except that
it includes a column to say which CPU each process was last scheduled onto.

Understanding Vmstat On A Multiprocessor

Vmstat provides the best summary of performance on an MP system. If there
are two processors then a CPU load of 50% means that one processor is
completely busy. If there are four processors then a CPU load of 25% means
that one processor is completely busy.

The first column of output is the average number of runnable processes. To
actually use two or four processors effectively this number must average more
than two or four. On a multiuser timesharing or database server this figure can
be quite large. If you currently have a uniprocessor or dual processor system
and are trying to decide whether an upgrade to two or four processors would
be effective this is the first thing you should measure. If you have a compute
server that only runs one job then it may use 100% of the CPU on a
uniprocessor but it will only show one runnable process. On a dual processor
this workload would only show 50% CPU busy. If there are several jobs
running then it may still show 100% CPU busy but the average number of
runnable processes will be shown and you can decide how many CPUs you
should get for that workload.

The number of context switches is reduced on a multiprocessor as you increase
the number of CPUs. For some workloads this can increase the overall
efficiency of the machine. One case when the context switch rate will not be
reduced can be illustrated by considering a single Oracle database batch job. In
this case an application process is issuing a continuous stream of database
queries to its Oracle back-end process via a socket connection between the two.
There are two processes running flat out and context switch rates can be very

Measuring And Tuning A Multiprocessor With SunOS 4.1.2 and 4.1.3 129

high on a uniprocessor. If a dual processor is tried it will not help. The two
processes never try to run at the same time, one is always waiting for the other
one, so on every front-end to back-end query there will be a context switch
regardless. The only benefit of two processors is that each process may end up
being cached on a separate processor for an improved cache hit rate. This is
very hard to measure directly.

The number of interrupts, system calls and the system CPU time are the most
important measures from a tuning point of view. When a heavy load is placed
on a SPARCserver600MP the kernel may bottleneck on system CPU time of
50% on a two processor or 25% on a four processor. The number of interrupts
and system calls and the time taken to process those calls must be reduced to
improve the throughput. Some kernel tweaks to try are increasing maxslp to
prevent swap outs and reducing slowscan and fastscan rates. If you can reduce
the usage of system call intensive programs like find or move a database file
from a filesystem to a raw partition it will also help. There is a patch for 4.1.2
(100575) which reduces spinning by making disk I/O more efficient (reducing
the system time) and allows some kernel block copies to occur outside the
mutex lock so that more than one CPU can be productive (fixed in 4.1.3).

It is hard to see how much time each CPU spends spinning waiting for the
kernel lock but the total productive system CPU time will never exceed one
processors worth so any excess CPU time will be due to spinning. E.g. on a
four processor machine reporting a sustained 75% system CPU time 25% is
productive (one CPUs worth) and 50% is spent waiting for the kernel lock (two
CPUs worth that might as well not be configured). Conversely a two processor
machine that often has system CPU time over 50% will not benefit from adding
two more processors and may actually slow down. It is possible to patch a
kernel so that it will ignore one or more CPUs at boot time. This allows testing
on variable numbers of processors without having to physically remove the
module. The okprocset kernel variable needs to be patched in a copy of

130 Multiprocessors—December 1993

vmunix using adb then the system must be rebooted using the patched kernel.
These values assume that CPU #1 is in control and okprocset controls which
additional CPUs will be started. Check how many you have with mpstat .

Measuring And Tuning A Multiprocessor With Solaris 2
Solaris 2.0 only runs on uniprocessor machines (Sun4c kernels). Solaris 2.1 was
tested and tuned for machines with up to four CPUs and Solaris 2.2 was tested
and tuned for up to 8 CPUs. Solaris 2.3 will support the full SPARCcenter 2000
configuration after extended testing, shortly after the regular Solaris 2.3 ships.

CPU Control Commands - psrinfo and psradm

Some new commands were implemented in Solaris 2.2. Psrinfo tells you which
CPUs are in use, and when they were last enabled or disabled. Psradm actually
controls the CPUs. Note that clock interrupts always go to CPU 01, even if it is
disabled. Solaris 2.3 reintroduces a more useful version of mpstat.

Cache Affinity Algorithms

When a system that has multiple caches is in use a process may run on a CPU
and load part of itself into that cache then stop running for a while. When it
resumes the Unix scheduler must decide which CPU to run it on. To reduce
cache traffic the process must preferentially be allocated to its original CPU,
but that CPU may be in use or the cache may have been cleaned out by another
process in the meantime. The cost of migrating a process to a new CPU

1. On sun4d machines the system CPU defaults to CPU 0 but can be configured. See which board has the
console connected to it.

Table 21 Disabling Processors In SunOS 4.1.X

Number Of CPU’s adb -w /vmunix.Ncpu

1 okprocset?W0x1

2 okprocset?W0x3

3 okprocset?W0x7

4 okprocset?W0xf

Programming A Multiprocessor 131

depends upon the time since it last ran, the size of the cache and the speed of
the central bus. A very delicate balance must be struck and a general purpose
algorithm that adapts to all kinds of workloads has been developed. In the case
of the SPARCcenter 2000 this algorithm is managing up to 20Mbytes of cache
and has a significant effect on performance. The algorithm works by moving
jobs from the central run queue to a private run queue for each CPU. The job
stays on a CPU’s run queue unless another CPU becomes idle, looks at all the
queues, finds a job that hasn’t run for a while on another queue and migrates
the job to its own run queue.

Programming A Multiprocessor

Mp Programming With SunOS 4.1.2 And 4.1.3

There is no supported programmer interface to the multiple processors.
Multiple Unix processes must be used.

MP Programming With Solaris 2.0 And 2.1

The programmers libraries are not present in these releases.

MP Programming With Solaris 2.2

A multithreaded programmer interface is included in this release, and several
system libraries have been made reentrant, or MT-safe.

MP programming With Solaris 2.3

Unix International (SVR4 ES/MP) and a POSIX standards committee (1003.4a)
are defining API’s for multithreaded programming. Solaris 2.3 includes a
conforming implementation of the POSIX threads standard and has many
more MT-safe system libraries.

SunPro has made available an early access release of their multithreaded
debugger and automatic parallelizing Fortran compiler to some customers1.

1. See the “SPARCserver and SPARCcenter Performance Brief” for some parallelized benchmark results.

132 Multiprocessors—December 1993

Deciding How Many CPU’s To Configure
If you have an existing machine running a representative workload then you
can look at the vmstat output to come up with an approximate guess for the
number of CPU’s that could be usefully employed by the workload.
Interpreting vmstat depends upon the number of CPU’s configured in the
existing machine and whether it is running SunOS 4.X or Solaris 2.X. The first
line of vmstat output should be ignored and some feel for the typical values of
CPU system time percentage and the number of processes in the run queue
should be used as the basis for estimation. A flow chart is provided below to
guide you through this process. The results should be used as input into a
decision and should not be taken too seriously. The end result is an estimate of
the amount of process level concurrency in the workload.

Vmstat Run Queue Differences In Solaris 2

It is important to note that vmstat in SunOS 4.X reports the number of jobs in
the run queue including the jobs that are actually running. Solaris 2 only
reports the jobs that are waiting to run. The difference is equal to the number
of CPUs in the system. A busy 4 CPU system might show six jobs in the run
queue on SunOS 4.1.3 and only two jobs on Solaris 2 even though the two
systems are behaving identically. If vmstat reports zero jobs in Solaris 2 then
there may be one, two, three or four jobs running and you have to work it out
for yourself from the CPU percentages.

Note – If you use a Solaris 2 measured workload with the flowchart below
then you need to add the number of CPUs in the system to r if r is nonzero, or
work out r from the CPU times if it is zero.

Deciding How Many CPU’s To Configure 133

Measure vmstat procs r
sustained during
typical workload

No need for MP
Only one job at a time
trying to run

Measure vmstat cpu sy
sustained during
typical workload

How many CPUs are
there in the system
being measured?

Maximum Number Of CPU’s For A Measured SunOS 4.X Workload

r <= 1

r > 1

spin = sy - (100/CPUs)
SunOS 4.1.X required?

SunOS 4.1.X required?

Uniprocessor

sy

CPUs

If sy > 25% CPUs=2
If r <= 2 CPUs = 2
otherwise CPUs = 4

CPUs <= r

If spin > 0% CPUs = 2
If sy > 25% CPUs = 2
If r > 2 CPUs = 4

4.1.X

Solaris 2

4.1.X

CPUs = 1

If spin >= 50% CPUs = 1 If sy > 50% CPUs = 1

% vmstat 5
 procs memory page disk faults cpu
 r b w avm fre re at pi po fr de sr s0 s0 s1 s2 in sy cs us sy id
 0 1 0 0 21992 0 3 3 0 0 0 0 0 1 0 0 25 100 15 7 3 91
 2 0 0 0 21928 0 0 0 0 0 0 0 0 7 0 0 176 222 40 29 9 62

This is a pretty crude
estimate!

134 Multiprocessors—December 1993

Interrupt Distribution Tuning
On the SPARCserver 1000 and SPARCcenter 2000 there are up to 10
independent SBuses, and there is hardware support for steering the interrupts
from each SBus to a specific processor.

The algorithm used in Solaris 2.2 is that the clock interrupt is permanently
assigned to CPU 0, to obtain good cache hit rates in a single cache. The clock
presents a relatively light and fixed load at 100Hz so this does not significantly
unbalance the system. To balance the load across all the other CPUs a round
robin system is used, whereby all interrupts are directed to one CPU at a time.
When it takes the first interrupt, it sends a special broadcast command over the
XDBus to all the SBus controllers to direct the next interrupt to the next CPU.
This balances out the load but when there is a heavy interrupt load from a
particular device it is less efficient from the point of view of cache hit rate.

The algorithm can be switched to a static interrupt distribution, whereby each
SBus device is assigned to a different CPU. For some I/O intensive workloads
this has given better performance, and it is the default in Solaris 2.3.

The kernel variable that controls this is called do_robin, and it defaults to 1 in
the sun4d kernel architecture of Solaris 2.2 If it is set to 0 in /etc/system then
the static interrupt distribution algorithm is used.

135

Network 11

This topic has been extensively covered in other white papers. An overview of
the references is provided at the end of this chapter.

The Network Throughput Tuning Performed For SunOS 4.1
There were two major changes in SunOS 4.1, the internal buffer allocation code
was changed to handle FDDI packets (4.5Kb) more effectively and the TCP/IP
and ethernet device driver code was tuned. The tuning followed suggestions
made by Van Jacobson1.

When routing packets from one ethernet to another a SPARCstation 1 running
SunOS 4.0.3 could route up to 1815 packets/second from one ethernet interface
to another. After tuning this increased to 6000 packets/second using SunOS
4.1. The SPARCstation 2 running SunOS 4.1.1 can route 12000 packets/second.
These are all 64 byte minimum sized packets, where the overhead is greatest.

Different Ethernet Interfaces And How They Compare
There are two main types of ethernet interface used on Sun machines, the Intel
(ie) and AMD LANCE (le) chips. This is further complicated by the way that
the ethernet chip is interfaced to the CPU, it may be built into the CPU board
or interfaced via SBus, VMEbus or Multibus. The routing performance of
various combinations has been measured and is shown in table 10-1.

SBus Interface - le

This interface is used on all SPARC desktop machines. The built-in ethernet
interface shares its DMA connection to the SBus with the SCSI interface but has
higher priority so heavy ethernet activity can reduce disk throughput. This can

1. “An Analysis of TCP Processing Overhead, by David Clark, Van Jacobson, John Romkey, Howard Salwen,
June 1989, IEEE Communications

136 Network—December 1993

be a problem with the original DMA controller used in the SPARCstation 1, 1+,
SLC and IPC but subsequent machines have enough DMA bandwidth to
support both. The add-on SBus ethernet card uses exactly the same interface as
the built-in ethernet, but it has an SBus DMA controller to itself. The more
recent buffered ethernet interfaces used in the SPARCserver 600, the SBE/S, the
FSBE/S and the DSBE/S, have a 256Kbyte buffer to provide a low latency
source and sink for the ethernet. This cuts down on dropped packets,
especially when many ethernets are configured in a system that also has
multiple CPU’s consuming the memory bandwidth.

Built-in Interface - le0

This interface is built into the CPU board on the SPARCsystem 300 range and
provides similar throughput to the SBus interface.

Built-in Interface - ie0

This interface is built into the CPU board on the Sun4/110, Sun4/200 range
and SPARCsystem 400 range. It provides reasonable throughput but is
generally slower than the “le” interface.

VMEbus Interface - ie

This is the usual board provided on SPARCsystem 400 series machines to
provide a second, third or fourth ethernet as ie2, ie3 and ie4. It has some local
buffer space and is accessed over the VMEbus. It is not as fast as the on-board
“ie” interface but it does use 32 bit VMEbus transfers. The SPARCserver 400
series has a much faster VMEbus interface than other Sun’s which helps this
board perform better.

Multibus Interface - ie

This is an older board which uses a Multibus to VME adapter so all VME
transfers happen at half speed as 16 bit transfers and it is rather slow. It tends
to be configured as ie1 but it should be avoided if a lot of traffic is needed on
that interface.

FDDI Interfaces 137

VMEbus Interphase NC400 - ne

This is an intelligent board which performs ethernet packet processing up to
the NFS level. It can support about twice as many NFS operations per second
as the built-in “ie0” interface on a SPARCserver 490. It actually supports fewer
NFS operations per second than “le” interfaces but off-loads the main CPU so
that more networks can be configured. There are no performance figures for
routing throughput. It only accelerates the UDP protocol used by NFS and TCP
is still handled by the main CPU. This board is not needed on Solaris 2, since
the NFS code is multithreaded, and better NFS server performance is obtained
by using a multiprocessor SPARC machine.

Routing Throughput

The table below shows throughput between various interfaces on
SPARCstation 1 and Sun4 /260 machines. The Sun4/260 figures are taken from
an internal Sun document. The SPARCstation figures are in the SPARCstation 2
Performance Brief.

FDDI Interfaces
There are two FDDI interfaces that have been produced by Sun, and several
third party VMEbus and SBus options as well. FDDI runs at 100Mbits/s so has
ten times the bandwidth of ethernet. When running an NFS client over FDDI to
a server it is a good idea to increase the number of “biod” daemons in SunOS
4.X and to increase the number of NFS asynchronous kernel threads in Solaris
2 from the default of 4 to 16. This allows more outstanding requests to be sent
to the server, and provides better throughput.

Table 22 Ethernet Routing Performance

Machine From To 64 byte packets/sec

Sun4/260 On-board ie0 Multibus ie1 1813

Sun4/260 Multibus ie1 On-board ie0 2219

Sun4/260 On-board ie0 VMEbus ie2 2150

Sun4/260 VMEbus ie2 On-board ie0 2435

SPARCstation1 On-board le0 SBus le1 6000

SPARCstation 2 On-board le0 SBus le1 12000

138 Network—December 1993

VMEbus FDDI/DX

This is the original Sun FDDI board, and was one of the first available in the
industry in 1989. It is bottlenecked by both the VMEbus interface and the on-
board 68020 that runs the station management protocol. A peak throughput of
about 30Mbits/s can be expected. The FDDI/DX has a class A dual attach
interface, which connects directly into the FDDI rings.

SBus FDDI/S

This is the current Sun FDDI board. On low end machines it is limited by the
host CPU performance, but on SuperSPARC based machines a full 100Mbits/s
is possible under certain conditions. The device driver for the card can be
tuned to improve performance by changing buffer allocations.

FDDI performance in Solaris 2.2 is not well tuned with the default parameters,
but substantial improvements have been made for 2.3. Sun has published
results for the SPEC NFS benchmark “LADDIS” using FDDI and an alpha
release of Solaris 2.3, including the following settings in /etc/system, which
are applicable to Solaris 2.2 as well.

For the NFS clients the number of threads defaults to eight, which works well
with ethernet, but for FDDI the optimal number is 16.

set nfs:nfs_asynch_threads = 16

For the FDDI device itself set the number of receive buffers as shown below.

set bf:bf_nrmds1 = 32 (max 256)

set bf:bf_nbufs = 64 (must be > bf_nrmds1)

Do a netstat -k and look under bf0. If rx_notavail count is high, set bf_nrmds1
high. Adjust bf_nbufs as well (see restrictions under bf_nbufs above). If
tx_notavail is high, set bf_nbufs high.

Note – The NFS protocol itself limits throughput to about 3MB/s because it
has limited pre-fetch and small block sizes. The upcoming NFS version 3
protocol allows larger block sizes and other changes to improve performance
on high speed networks. Lower level protocols like ftp can use larger TCP/IP
transmit and receive windows to run at full speed over FDDI.

Using NFS Effectively 139

Using NFS Effectively
• “Managing NFS and NIS, Hal Stern”, essential reading!

• “Networks and File Servers: A Performance Tuning Guide”

• “SPARCclassic X Performance Brief”

• “Tuning the SPARCserver 490 for Optimal NFS Performance, February
1991”

• “SunOS 4.1 Performance Tuning, by Hal Stern”.

• “SMCC NFS Server Configuration and Performance Tuning Guide”

This last document is part of the Solaris 2.3 SMCC hardware specific manual
set. It contains a good overview of how to size an NFS server configuration,
but its tuning recommendations should be considered a first draft, as there are
many errors and inconsistencies. It actually covers SunOS 4.1.3/Solaris 1.1 NFS
server tuning as well as Solaris 2.

How Many nfsds?

The NFS daemon nfsd is used to service requests from the network and a
number of them are started so that a number of outstanding requests can be
processed in parallel. Each nfsd takes one request off the network and passes
it onto the I/O subsystem, to cope with bursts of NFS traffic a large number of
nfsds should be configured, even on low end machines. All the nfsds run in
the kernel and do not context switch in the same way as user level processes so
the number of hardware contexts is not a limiting factor (despite folklore to the
contrary!). On a dedicated NFS server about 30 nfsds should be configured
per ethernet on both SunOS 4 and Solaris 2. If you want to “throttle back” the
NFS load on a server so that it can do other things this number could be
reduced. If you configure too many nfsds some may not be used, but it is
unlikely that there will be any adverse side effects as long as you don’t run out
of process table entries. Some high end LADDIS results use over 300 nfsds.

140 Network—December 1993

141

References A

2.1Gb 5.25-inch Fast Differential SCSI-2 Disk Products

Sun’s 2.1Gb disk drive introduces several new technologies that are described
by this paper. Fast SCSI at 10Mb/s, differential drive to provide 25 meter cable
lengths, and tagged command queueing to optimise multiple commands inside
the drive are discussed in detail.

Administering Security, Performance and Accounting in Solaris 2.2

This is the basic reference on Solaris 2 which is part of the manual set or
AnswerBook CD. It describes the tweakable parameters that can be set in
/etc/system and provides a tutorial on how to use the performance analysis
tools such as sar and vmstat.

An Analysis of TCP Processing Overhead, by David Clark, Van Jacobson,
John Romkey, Howard Salwen, June 1989, IEEE Communications

This paper describes the things that can be tuned to improve TCP/IP and
ethernet throughput.

142 Sun Performance Tuning Overview—December 1993

A

The Art of Computer Systems Performance Analysis, by Raj Jain

This recent book is a comprehensive and very readable reference work
covering techniques for experimental design, measurement, simulation and
modelling. Published by Wiley, ISBN 0-471-50336-3.

Building and Debugging SunOS Kernels, by Hal Stern

This Sun white paper provides an in-depth explanation of how kernel
configuration works in SunOS 4.X, with some performance tips.

A Cached System Architecture Dedicated for the System IO Activity on a
CPU Board, by Hseih, Wei and Loo.

This is published in the proceedings of the 1989 International Conference on
Computer Design, October 2 1989. It describes the patented Sun I/O cache
architecture used in the SPARCserver 490 and subsequent server designs.

Computer Architecture - A Quantitative Approach, Hennessy and Patterson

The definitive reference book on modern computer architecture.

The Design And Implementation Of The 4.3BSD UNIX Operating System,
Leffler, McKusick, Karels and Quarterman

This book describes the internal design and algorithms used in the kernel of a
very closely related operating system. SunOS 3.X was almost a pure BSD4.3,
SunOS 4 redesigned the virtual memory system, and UNIX System V Release 4
is about 80% based on SunOS 4 with about 20% UNIX System V.3. Solaris 2 has
been further rewritten to support multiple processors. Despite the
modifications over time this is a definitive work, and there are few other
sources for insight into the kernel algorithms. ISBN 0-201-06196-1.

Extent-like Performance from a Unix File System, L. McVoy and S. Kleiman

This paper was presented at Usenix in Winter 1991. It describes the file system
clustering optimisation that was introduced in SunOS 4.1.1.

References 143

A

Graphics Performance Technical White Paper, January 1990

This provides extensive performance figures for PHIGS and GKS running a
wide variety of benchmarks on various hardware platforms. It is becoming a
little out of date as new versions of PHIGS, GKS and hardware have
superseded those tested but is still very useful.

High Performance Computing, Keith Dowd

This is a very recent book that covers the architecture of current high
performance workstations, compute servers and parallel machines. It is full of
examples of the coding techniques required to get the best performance from
the new architectures, and contrasts vector machines with the latest
microprocessor based technologies. The importance of coding with caches in
mind is emphasized. The book is essential reading for Fortran programmers
trying to make numerical codes run faster, and is highly recommended for all
programmers. Published by O’Reilly ISBN1-56592-032-5.

Managing NFS and NIS, Hal Stern

Network administration and tuning is covered in depth. An essential reference
published by O’Reilly ISBN0-937175-75-7.

Multiprocessor System Architectures, Ben Catazaro, SunSoft Press

This book is a great reference to all the details of SPARC based system
hardware. It describes all the chip sets and system board designs, including the
latest multiprocessor systems.

Networks and File Servers: A Performance Tuning Guide

This is the best of the network tuning white papers. It is starting to get a little
out of date

144 Sun Performance Tuning Overview—December 1993

A

New Technology For Flexibility, Performance And Growth, The
SPARCserver 600 Series

This white paper, despite its overblown title, provides a very good technical
overview of the architecture of the hardware and how SunOS 4.1.2 works on a
multiprocessor system. It also describes the SPARC reference MMU in some
detail in an appendix. A new version called “SPARCserver 10 and
SPARCserver 600 White Paper” is also available.

Optimisation in the SPARCompilers, Steven Muchnick

The definitive description of the SPARC compilers and how they work. There
is a Sun white paper and several conference proceedings on this subject.

Performance Tuning an Application

Part of the SPARCworks online answerbook with the compiler products and
the Teamware manuals. Defined are new tools that may be unfamiliar to many
users doing software development.

Realtime Scheduling In SunOS 5.0, Sandeep Khanna, Michael Sebrée, John
Zolnowsky

This paper was presented at Usenix Winter ‘92 and describes the
implementation of the kernel in Solaris 2.0. It covers how kernel threads work,
how real-time scheduling is performed and the novel priority inheritance
system.

SBus Specification Rev B

This is the latest version of the SBus specification, including 64bit extensions. It
is available free from Sun sales offices and from the IEEE as standard IEEE
1496. An SBus developers kit is available from Sun, that contains the SBus
specification, example drivers, lots of related documentation a Forth tokenizer
program and some sample mechanical parts.

References 145

A

A Scalable Server Architecture for Department to Enterprise - The
SPARCserver 1000 and the SPARCcenter 2000

The architecture white paper for the SS1000 and SC2000. The paper progresses
logically into greater and greater amounts of detail, so start at the beginning
and read until you’ve had enough. May 1993.

SCSI-2 Terms, Concepts, and Implications Technical Brief

There is much confusion and misuse of terms in the area of SCSI buses and
standards. This paper clears up the confusion.

SCSI And IPI Disk Interface Directions

After many years when IPI has been the highest performance disk technology
the time has come where SCSI disks are not only less expensive but are also
higher performance and SCSI disks with on-disk buffers and controllers are
beginning to include the optimisations previously only found in IPI controllers.

SMCC NFS Server Configuration and Performance Tuning Guide

This is part of the Solaris 2.3 SMCC hardware specific manual set. It contains a
good overview of how to size an NFS server configuration, but its tuning
recommendations should be considered a first draft, as there are many errors
and inconsistencies. It actually covers SunOS 4.1.3/Solaris 1.1 NFS server
tuning as well as Solaris 2.

Solaris 2.0 Multithread Architecture White Paper

The overall multiprocessor architecture of Solaris 2.0 is described. In particular
the user level thread model is explained in detail. This paper has also appeared
as “SunOS Multithread Architecture” at Usenix Winter ‘91 and has been
superceded by the SunOS 5.2 Guide to Multithread Programming which is part
of the Solaris 2.2 manual set.

146 Sun Performance Tuning Overview—December 1993

A

Solaris XIL 1.0 Imaging Library White Paper

Describes the XIL Imaging Library functions and how specific applications
may require XIL functions. Includes glossary of imaging and video
terminology. Feb. 1993.

The SPARC Architecture Manual Version 8

This is available as a book from Prentice Hall. It is also available from the IEEE
P1754 working group. Version 9 of the SPARC Architecture has been published
by SPARC International and includes upwards compatible 64bit extensions and
a revised kernel level interface.

The SPARCcenter 2000 Architecture and Implementation White Paper

This paper contains an immense amount of detail on this elegant but
sophisticated large scale multiprocessor server. A good understanding of
computer architecture is assumed.

SPARC Compiler Optimisation Technology Technical White Paper

This describes the optimisations performed by Sun’s compilers. If you know
what the compiler is looking for it can help to guide your coding style.

SPARCengine IPX User Guide

This can be ordered from Sun using the product code SEIPX-HW-DOC. It
provides the full programmers model of the SPARCstation IPX CPU board
including internal registers and address spaces and a full hardware description
of the board functions.

SPARCengine 2 User Guide

This can be ordered from Sun using the product code SE2-HW-DOC. It
provides the full programmers model of the SPARCstation 2 CPU board
including internal registers and address spaces and a full hardware description
of the board functions.

References 147

A

SPARCengine 10 User Guide

This can be ordered from Sun’s SPARC Technology Business Unit. It provides
the full programmers model of the SPARCstation 10 CPU board including
internal registers and address spaces and a full hardware description of the
board functions.

SPARC Strategy and Technology, March 1991

This contains an excellent introduction to the SPARC architecture, as well as
the features of SunOS 4.1.1, the migration to SVR4 and the SPARC cloning
strategy. It is available from Sun sales offices that are not out of stock.

SPARC Technology Conference notes - 3 Intense Days of Sun

The SPARC Technology Conference toured the world during 1991 and 1992. It
was particularly aimed at SPARC hardware and real time system developers.
You needed to go along to get the notes!

SPARCclassic X Performance Brief

Xmarks, X11perf v1.2, and Xbench numbers for the SPARCclassic X Terminal.
Descriptions of the benchmarks and product highlights are included. July 1993.

SPARCserver 490 NFS File Server Performance Brief, February 1991

This white paper compares performance of the SS490 with Prestoserve and
Interphase NC400 ethernet interfaces against the Auspex NS5000 dedicated
NFS server.

SPARCserver 10 and SPARCserver 600 White Paper

This is an update of “New Technology For Flexibility, Performance And
Growth, The SPARCserver 600 Series” to include the SPARCserver 10.

148 Sun Performance Tuning Overview—December 1993

A

SPARCserver Performance Brief

This provides benchmark results for multi-user, database and file-server
operations on SPARCserver 2 and SPARCserver 400 series machines running
SunOS 4.1.1.

SPARCserver 10 and SPARCserver 600 Performance Brief

The standard benchmark performance numbers for SuperSPARC based
SPARCserver 10 and SPARCserver 600 systems running SunOS 4.1.3 are
published in this document.

 SPARCserver 1000 Compute White Paper

This paper covers the requirements of a compute server, a hardware overview,
Solaris features, and developing applications for multi-threading and multi-
processing. May 1993.

SPARCserver 1000 Performance Brief

SPECint92, SPECfp92, SPECrate_int92, SPECrate_fp92, Linpack1000, AIM3,
097.LADDIS (SFS), and TPC-A information for the SS1000. Solaris 2.2, May
1993.

SPARCserver and SPARCcenter Performance Brief

The performance of the SPARCcenter 2000 is measured with varying numbers
of processors and is compared to the SPARCserver 10 and SPARCclassic server
running parallelized SPEC92, SPECthroughput, AIM III and parallelized
Linpack benchmarks using the Solaris 2.1 operating system.

 SPARCserver Sizing Guide for X terminals

This guide answers the question, “How many SPARCclassic X based Frame or
Wabi users should be configured on a SPARCserver 10 or 1000 with 2 or 4
CPU’s and from 64 to 256MB of RAM”. Aug 1993.

References 149

A

SPARCstation 2GS / SPARCstation 2GT Technical White Paper

This describes two of the 3D graphics accelerators available from Sun.

SPARCstation 2 Performance Brief

This provides benchmark results for the SPARCstation 2 running SunOS 4.1.1,
comparing it against other Sun’s and some competitors. January 1991.

SPARCstation 10 Performance Brief

Contains SPECint92, SPECfp92, Dhrystone V1.1, Linpack DP 1000,
SPECrate_int92, SPECrate_fp92 benchmark information for the SS10 30LC,40,
41, 51, 402, 512, and 54. Solaris 2.2, April 1993.

SPARCstation 10 Product Line Technical White Paper

This paper explains the differences between various uniprocessor and
multiprocessor SPARCstation 10 models and provides results of many
application and benchmark tests on each model. It also contains a simplified
architectural overview of the machine. June 1993.

SPARCstation 10 System Architecture - White Paper

A comprehensive overview of the SPARCstation 10.

SPARCstation 10SX Graphics Technology, A White Paper

This is a very hot product and the white paper does it justice. It does a nice job
of discussing why the SX is a good fit for various markets, with the right
number of buzz-words and right amount of detail. It then goes into the
architecture and software implications. July 1993.

150 Sun Performance Tuning Overview—December 1993

A

SPARCstation 10ZX and SPARCstation ZX Graphics Technology, A White
Paper

The paper is broken down into features, architecture, and SW. The paper is
chock full of clearly presented information. You do need to be a graphics
person to fully appreciate it. July 1993.

SPARCstation LX and SPARCclassic Performance Brief

This is the complete SPARCstation LX and SPARCclassic Performance Brief, it
is based upon Solaris 2.1 and is dated November 1992. There have been
significant performance improvements in some areas since then.

SPARCstation ZX, SPARCstation 10ZX and SPARCstation 10
TurboGXplus Graphics Performance Brief

GPC, X11perf, and primitive test benchmarks for the products listed in the title.
Descriptions of the benchmarks and product highlights are included. July 1993.

Sun Systems and their Caches, by Sales Tactical Engineering June 1990.

This explains Sun caches in great detail, including the I/O cache used in high
end servers. It does not include miss cost timings however.

SunOS 4.1 Performance Tuning, by Hal Stern

This white paper introduces many of the new features that were introduced in
SunOS 4.1. It complements this overview document as I have tried to avoid
duplicating detailed information so it is essential reading although it is getting
out of date now.

SunOS System Internals Course Notes

These notes cover the main kernel algorithms using pseudo-code and
flowcharts, to avoid source code licencing issues. The notes are from a 5 day
course which is run occasionally by Sun.

References 151

A

SunPHIGS / SunGKS Technical White Paper

There is little explicit performance information in this paper but it is a very
useful overview of the architecture of these two graphics standards and should
help developers choose an appropriate library to fit their problems.

The SuperSPARC Microprocessor Technical White Paper

This paper provides an overview to the architecture, internal operation and
capabilities of the SuperSPARC microprocessor used in the SPARCstation 10,
SPARCserver 600 and SPARCcenter 2000 machines.

System Performance Tuning, Mike Loukides, O’Reilly

This is an excellent reference book that covers tuning issues for SunOS 4, BSD,
System V.3 and System V.4 versions of Unix. It concentrates on tuning the
operating system as a whole, particularly for multi-user loads and contains a
lot of information on how to manage a system, how to tell which part of the
system may be overloaded, and what to tweak to fix it. ISBN 0-937175-60-9.

tmpfs: A Virtual Memory File System, by Peter Snyder

The design goals and implementation details are covered by this Sun white
paper.

Tuning the SPARCserver 490 for Optimal NFS Performance, February 1991

This paper describes the results of some NFS performance testing and provides
details of scripts to modify and monitor the buffer cache.

TurboGXplus Graphics Technology, A White Paper

Lots of good information, including features, architecture, and software.
Clearly written, a good solid description of the TGX. July 1993.

152 Sun Performance Tuning Overview—December 1993

A

Virtual Swap Space in SunOS by Howard Chartock, Peter Snyder

The concept of swap space in SunOS 5 has been extended by the abstraction of
a virtual swap file system, which allows the system to treat main memory as if
it were backing store. Further, this abstraction allows for more intelligent
choices to be made about swap space allocation on the current system. This
paper contrasts the existing mechanisms and their limitations with the
modifications made to implement virtual swap space. May 1992.

XGL Graphics Library Technical White Paper

A standard Sun white paper describing the highest performance graphics
library available on Sun systems.

You and Your Compiler, by Keith Bierman

This is the definitive guide to using the compilers effectively for benchmarking
or performance tuning. It has been incorporated into the manual set for Fortran
1.4 and later in a modified form as a performance tuning chapter.

Revision History

A part number was assigned to the -05 revision after it was distributed
externally. A new front page was added to the -05 document for Sun internal
duplication and distribution. The part number and revision was not set up
correctly until the -07 revision A release, which accounts for the inconsistencies
shown above.

Part Number Revision Date Comments

-01 July 1991 First complete draft for review

-02 August 1991 Cache details corrected

-03 September 1991 More corrections, presented at Sun User ‘91, distributed

-04 September 1992 Update to 4.1.3, S600MP and SS10, draft issued internally

801-4872-01 -05 December 1992 Update to Solaris 2.1, SC2000, LX and Classic, distributed

801-4872-01 -06 August 1993 Update to include Solaris 2.2, SS1000, SS10 models. Major
update, draft issued internally.

801-4872-07 A October 1993 Update to include Solaris 2.2, 2.3, SS1000, SS10 models.
Minor corrections, reissued as offcial SMCC White Paper

801-4872-07 B December 1993 Table widths corrected, minor updates and fixes.

10/93

For U.S. Sales Office locations, call: 800 821-4643
In California: 800 821-4642

New Zealand: (04) 499 2344
Nordic Countries: +46 (0) 8 623 90 00
PRC: 861-831-5568
Singapore: 224 3388
Spain: (91) 5551648
Switzerland: (01) 825 71 11

Taiwan: 2-514-0567
UK: 0276 20444
Elsewhere in the world, call
Corporate Headquarters:
415 960-1300
Intercontinental Sales:
415 688-9000

Hong Kong: 852 802 4188
Italy: 039 60551
Japan: (03) 3221-7021
Korea: 822-563-8700
Latin America: 415 688-9464
The Netherlands: 033 501234

Australia: (02) 413 2666
Belgium: +32 2 759 38 11
Canada: 416 477-6745
Finland: +358-0-502 27 00
France: (1) 30 67 50 00
Germany: (0) 89-46 00 8-0

Printed in USA

