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1 Introduction

Recent decades have seen a gradual move from
low-level programming languages such as assem-
bler, Basic, and COBOL to high-level languages
such as C++, Haskell, Java, and ML. High-level
languages provide abstraction layers and power-
ful programming idioms, making it much eas-
ier to implement and analyse complicated algo-
rithms. At the beginning, lack of efficiency pre-
vented the use of these languages in real-life ap-
plications, but nowadays powerful hardware and
efficient compilers make high-level programming
languages the method of choice for most appli-
cations. Nonetheless, efficiency concerns are still
paramount when computing resources are limited,
such as in embedded and real-time systems, or for
applications to be run across the internet.

For embedded and real-time systems, program-
mers use assembler code (or assembler-close frag-
ments of ‘C’) to ensure a close control over re-
source consumption. For internet applications,
high-level languages such as Java are used, but
since it is a new application area, malfunction due
to violation of resource bounds is accepted as nor-
mal. This is one reason why computation over the
web is currently limited to applications where re-
liability is not important. With more serious appli-
cations, resource awareness will become a crucial
asset.

Even for more general application areas, certi-
fied efficiency may still be locally important, of
course, when dealing with very large amounts of
data or very time-consuming calculations.

Therefore it is an important challenge for pro-
gramming language researchers to develop high-
level languages that express efficiency notions.
One way to do this is with an enhanced type system
for the programming language, so that assertions
about the resource usage of functions or expres-
sions are made manifest in their types.

Indeed, the challenge has been taken up in the
last few years and there is now a rapidly emerging
field of type systems for resource-aware compu-
tation, with several international players, includ-
ing one of us (Hofmann). The ultimate aim of our
work is to enhance new and existing programming
languages with our type systems, and to integrate
them with production-quality compilers.
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State of the art

Some of the work so far has focused on establish-
ing complexity bounds by, in essence, bookkeep-
ing of resources such as clock ticks [7] or memory
cells [21]. We feel, however, that such low-level
approaches run against the spirit of high-level pro-
gramming. Rather than analysing each program
or component from scratch, it is useful to identify
common patterns which are known to fulfil partic-
ular resource bounds.

Consider linear tree recursion with a size-
bounded step function. That is to say, a pattern
of the form:

f(leaf) =g
f(node(l,r)) = h(f(1), f(r))

Suppose that: (1) the size, in some suitable sense,
of h(z,y) is a constant ¢ plus the sizes of z and y
together; (2) h is polynomial time computable, and
(3) h(z,y) uses z,y at most once (this final point
only plays a role if z,y are of functional type).
Then f is polynomial time computable and the
size of f(t) is linear in the size of ¢. From explic-
itly given polynomials for the runtime and space
usage of h we can reconstruct explicit (not merely
asymptotic) bounds for h.

It is the thesis of this proposal that a type sys-
tem is the best means of describing and enforcing
conditions such as (1), (2), and (3) above, and their
generalisations for extra parameters. In a system
based on formalised bookkeeping such as [7], such
analysis has to be carried out each time anew.

Advances in our direction (albeit with rather
different motivation) have come from researchers
who study logical systems and computation for-
malisms with inherent complexity bounds, such
as bounded arithmetic [2], polynomial time sub-
sytems of Godel’s T [6, 1], and systems for other
complexity classes [4].

In our own work [14, 13, 18, 17, 16] we sub-
stantially extended these systems to encompass
higher-order functions and datatypes such as lists
and trees. The key idea is not to try and define
notions of complexity for higher-order computa-
tion per se (as has been done e.g., in [29, 27, 5]),
but rather to study the impact of higher-order con-
cepts on complexity in the first-order fragment,
where the usual notions and complexity classes
apply. This ties in with the familiar auxiliary use



of higher-order concepts like functionals or exact
real numbers, which appear as subterms of eventu-
ally first-order functions.

There is growing evidence that these results can
be used in programming languages for resource
sensitive applications. For example, in [19] we
have shown how a slight variation of the type sys-
tem from [16] can be employed to write functional
programs operating on lists and trees guaranteed
to run in linearly bounded heap space and thus ad-
mit a compilation into the malloc-free fragment of
’C’ while still adhering to the intuitive applicative
semantics which enables, e.g., proof by induction
and equational reasoning.

Another piece of evidence is the use by Mitchell,
Mitchell, and Scedrov of an extension of Hof-
mann’s type system from [14] in the context of ver-
ification of cryptographic protocols [23].

The time is now right to pursue the advance and
application of this technology.

2 Programme & methodology

The overall aim of this project is to design lan-
guages and tools to aid resource-aware computa-
tion in high-level programming. While the empha-
sis is on programming language design, we also
expect feedback towards the mathematical-logical
foundations from which the work started.

Our specific objectives are as follows:

1. To design new type systems encompassing al-
gorithms and uses of data structures which
fall into desirable feasible complexity classes,
but which are prohibited by current systems.

2. To extract explicit resource bounds and certifi-
cates from typing derivations. It should be
possible to independently verify certificates,
to integrate with the proof-carrying code proto-
col [24].

3. To investigate applications of the new type
systems for compiler technology. The idea
is to show that particular optimisations are
guaranteed to apply to all well-typed pro-
grams, to enforce better resource bounds.

4. To integrate the new type systems with those
of full-scale functional programming lan-
guages such as ML or Haskell. We aim for
a smooth transition between the systems go-
ing beyond mere juxtaposition. This topic in-
cludes pragmatic aspects such as type infer-
ence and pattern matching.

INote that this possibility of intuitive extensional reasoning
is lost in approaches based on finite model theory such as [12]
where the language is not sound for the usual semantics but
only for a finite one in which, e.g., all numbers are smaller than
a certain maximum (and so the successor function cuts off to
prevent boundary violation).

5. To explore applications to non-functional pro-
gramming, e.g., OOP.

6. To investigate and implement type-checking,
compilation, and certification algorithms
for these systems, ultimately within a
production-quality compiler such as OCaml.

Each objective is described in detail below.

2.1 New type systems

The goal here is twofold. On the one hand, we
want type systems capable of accepting and prop-
erly analysing more and more obviously feasible
algorithms, as opposed to extensional functions.
On the other hand, we need to encompass new
data and control structures, to get as close as pos-
sible to a full size functional language.

2.1.1 More algorithms

At present we have two rather independent type
systems for resource control. The first one, called
SLR and described in [14, 18], captures exactly the
class PTIME of polynomial time computable func-
tions by imposing linearity and modality restric-
tions on structural recursion. The basic idea is that
a recursive definition can make only one recursive
call and that the result of this recursive call can be
processed only by “tame functions” which do not
feed it into another recursive definition.

While SLR allows all polynomial time functions
to be expressed, its rather drastic discipline rules
out many naturally occurring polynomial-time al-
gorithms such as the usual sorting algorithms on
lists or trees. To repair this problem we have in
[16] introduced another system, called ICFP, which
keeps the linearity restriction but allows for arbi-
trary nesting of recursive definitions. This is done
by maintaining the additional invariant that defin-
able functions are non size-increasing. This system
therefore does not cover all of PTIME, but a differ-
ent and more refined syntax-free characterisation
is possible. Moreover, we have shown in [19] that
the same system enriched with general recursion
and restricted to first-order recursion captures ex-
actly linear space and allows for a natural compi-
lation into the malloc-free fragment of ‘C’.

What is needed now is a smooth integration of
these two systems in the sense of [26] which would
for example allow variables stemming from the
richer system SLR to appear in ICFP terms as long
as this happens within the guard of a conditional
or similar.

Another avenue worth investigating in this con-
text would be a (perhaps dependently-typed) vari-
ation and extension of bounded linear logic [11].

For the described applications, control of space
complexity is more essential than ensuring run-
time bounds. The first step towards controlling
space made in [19] is promising but more work



is needed, for example, we need a system akin
to SLR capturing, say, polynomial or linear space
and hence capable of generating corresponding re-
source bounds. Such a system would presumably
provide general recursion instead of structural re-
cursion along datatypes.

Also, we would like a system which relaxes the
modality restrictions in SLR while maintaining the
same expressive power on the level of functions.
What we need to do is to shrink the gap between
the semantic invariant (a certain limit on growth
rate) needed to guarantee the desired resource
bound and what the type system actually ensures
(not only limit on growth but also limit on syntac-
tic complexity). The type system ensures limited
growth rate of step functions in recursive defini-
tions by stipulating that these inspect their argu-
ments only up to a fixed depth. It ought to be pos-
sible to allow arbitrary-depth inspection as long as
this does not lead to non-constant growth. In gen-
eral, of course, determining this is undecidable.
But it could be done statically in some cases: for in-
stance, under the additional assumption that argu-
ment inspection occurs within a subterm of finite-
size type. We believe that ideas from O’Hearn-
Reddy’s active / passive type system [25] could be
useful here.

An example of this situation would be the fol-
lowing recursive definition of a function which re-
moves duplicate elements from a list:

rem([]) = []
rem(y :: [) = if member(y, rem(l))
then rem(!) else y :: rem(l)

Presently, SLR would reject this clearly polynomial
definition. In fact the ICFP system would accept
this (with some extra annotation) because rem is
non size-increasing; however it would reject a sim-
ilarly defined function which returns a list contain-
ing every element of the input list exactly twice.

2.1.2 New data structures

Another improvement is to add new data struc-
tures to our type systems. Take for example bi-
nary trees. In a linear setting we have two kinds of
trees, one corresponding to trees laid out in full in
memory (®-trees), the other corresponding more
to an object-oriented representation (x-trees) un-
der which a tree can be sent messages asking it
to return the outermost constructor or to evolve
into one of its subtrees. In ordinary functional pro-
gramming these two are extensionally equivalent;
in the presence of linearity constraints they differ
considerably. The ®-trees allow for rich elimina-
tion rules encompassing e.g., computing the list
of leaf labellings, whereas access to the x-trees is
restricted to essentially search operations. Con-
versely, @-trees are more difficult to construct; we
must ensure that their overall size is polynomially

bounded which precludes in particular the defini-
tion of a function which constructs the full binary
tree of depth n. This can be done for x-trees.

The novelty here is that we reflect in the type
system the kind of choices that a programmer
would normally make in selecting the best data
representation for a purpose.

Some preliminary ideas concerning these dif-
ferent data representations exist in [17]. We
need to generalise them to arbitrary inductive
datatypes and include dag-like representations,
which should be more efficient than the closures
used in loc. cit. Recent unpublished work by
Jean-Yves Marion (presented at ICC’99 in Trento)
should be useful here. The dichotomy between ®-
and x-trees should also be considered in the con-
text of the ICFP system.

We also propose to investigate in the context
of resource certification linear functional front-
ends to traditionally imperative data structures
such as queues, graphs, storage variables, and ar-
rays. A first attempt has been made in the full
version of [19] (see www.dcs.ed.ac.uk/home/
mxh/papers/malloc.ps.gz ) where a linear
ADT formulation of queues is compiled into ‘C’
linked lists with a pointer to their tail.

The methodology for achieving these goals will
be as before: analyse the common patterns of
representative case studies, identify appropriate
invariants, cast them into an abstract (usually
category-theoretic) model, and finally describe the
model by a type system.

2.2 Explicit resource bounds

The aim here is to extract explicit resource infor-
mation from well-typed programs. One use for
this would be to provide the user with estimates
for time or space usage for a given first-order func-
tion or concrete computation. Perhaps more inter-
estingly, another use is to endow programs with
independently verifiable certificates on their re-
source consumption.

A general framework for managing programs
equipped with certificates of safety properties has
recently been put forward in [24] under the name
of the proof carrying code (PCC) protocol. In a nut-
shell the idea is as follows. A certifying compiler
generates mobile code with special annotations,
e.g., loop invariants. These annotations enable in-
dependent verification of the alleged correctness
property by a small and trusted piece of software,
the proof checker, which may be run by a potential
recipient.

This provides security against failures in im-
plementation and, indeed, in our proofs of type
soundness. (In fact, we could even opt for a “par-
tially sound” type system if the logic or the im-
plementation becomes overly complex.) It has the
added benefit that a recipient of code generated
from well typed programs will not need to read



and understand our research papers in order to be
satisified that the resource bounds are valid!

The soundness proofs for the existing systems
state that every well-typed function of first-order
type is extensionally equal to a polynomial time
or linear space computable function. Each proof is
constructive, so in principle it provides a method
for both compiling programs and generating re-
source bounds. However, the proofs have not
been carried out with this application in mind
and provide rather generous bounds. To obtain
more accurate bounds, we need to strengthen the
proofs or even use entirely new techniques, for
example proofs based on normalisation and sub-
ject reduction rather than abstract interpretation.
An attempt in this direction has been made in
H. Schwichtenberg’s group (personal communica-
tion) by providing a syntactic soundness proof for
Hofmann’s system from [16].

A benchmark here would be a reconstruction
in our context of systems for automatic derivation
of complexity bounds of first-order recursive pro-
grams and term rewriting like [3, 10].

Integration with PCC requires the design of a
suitable target language in the form of annotated
assembler code or bytecode. Perhaps existing
typed assembly languages [9] can be reused for
this purpose. Once this has been done we need
a compiler which translates programs in our type
systems into annotated machine code, and a proof
checker. We will content ourselves with the formal
foundations and experimental implementations of
this framework.

2.3 Compilation

We anticipate that well-typed programs will be
guaranteed to allow certain optimisation tech-
niques to apply successfully.

For example, the type sytem in [19] ensures that
dynamic memory allocation, hence garbage collec-
tion, is not needed during evaluation of well-typed
functions. This is because these functions can be
evaluated within the heap space occupied by their
argument. The run-time systems of existing com-
pilers also realise similar space efficiencies, by the
use of sophisticated caching during garbage col-
lection. However, to absolutely guarantee good
space performance as would be required for em-
bedded systems programming, such reliance on
runtime systems is not enough. We need to be
explicit about the circumstances under which and
how the optimisation occurs.

Other examples of optimisations include gener-
alisations of tail recursion and layout of partial re-
sults in the heap rather than the call stack. Con-
sider for example the naive recursive definition of
list concatenation with copying;:

append([],r) =r
append(a :: I,r) = a :: append(l,r)

Although it is not prima facie tail recursive we can
implement it iteratively in a stack-free manner if
we place the partial result into the heap position
it belongs at rather than keeping it on the stack.
We want to investigate if similar reasoning applies
to a well-circumscribed subclass of the recursive
definitions allowed by our type systems.

We emphasize that the type system needs to be
rather explicit about such possible optimisations
so that it is possible to statically guarantee their ap-
plicability and the resulting effect on certified re-
source bounds. Preliminary experiments with the
existing linear type system and the particular se-
mantic interpretation described in [15] are promis-
ing. We also plan to systematically study existing
optimising compilers (such as Ocamlopt [22]) to
identify more instances of this.

2.4 Full-scale type systems

Integrating our type systems and their implemen-
tations with those of a full-scale programming
language is an engineering problem outside the
scope of this project. Before it can be undertaken,
however, there are some research-level problems
which need to be addressed. We need to consider
how to combine our type systems with features
such as polymorphism, modules, pattern match-
ing, and type inference. We propose to look at
these problems.

The existing type systems rely on explicit an-
notations of functional abstractions and can only
infer the “aspect” of a function, i.e., whether it
is linear and whether it recurses on its argument.
Clearly, some sort of type inference mechanism is
needed to make the system usable in practice. Ide-
ally, one might want to aim for full-blown Damas-
Milner style type inference [8] which requires no
type annotations at all in programs. A step in
this direction for a purely linear type system has
been undertaken in [30]. We plan to investigate
to what extent these results can be extended to the
present case. Alternatively, we might follow Pierce
and Turner [28] who have argued convincingly
that type annotations in definitions might be ac-
ceptable and even desirable as they provide some
documentation. Based on these extra assumptions
they were able to give a much simplified inference
algorithm for ML.

Another pragmatic aspect is that at present SLR
is based on System 7T-style recursion operators.
These are somewhat awkward to use in practice
and should be replaced by pattern matching.

We have to merge our type systems with the ex-
isting ML type system in such a way that SLR-
typable programs receive a certain type and non
SLR-typable terms receive their usual ML type.
Once this has been achieved it becomes possible to
integrate the type system and algorithms for com-
pilation and complexity bound derivation with an
existing ML compiler. This task, however, goes be-



yond the scope of our project and will be left for
future work.

Even though our project is of a foundational na-
ture a satisfactory treatment of these pragmatic is-
sues is of great importance because it allows for
larger examples which in turn will suggest new
theoretical questions.

2.5 Non-functional languages

Strong-typing disciplines have a traditional con-
nection with functional programming languages,
but their influence has spread to languages of
other paradigms, including imperative languages
like MODULA-2 and object-oriented languages
such as Java.

We believe that our type systems should be
adaptable to these too. In the final stage of the
project we intend to carry out exploratory research
towards this goal. We expect that purely func-
tional OOP could be accommodated by redoing
one of the existing functional encodings of OOP
[20] in our setting. More challenging would be
to account for imperative aspects bringing in is-
sues of aliasing and sharing of heap allocated data
structures.

2.6 Implementation

We plan to implement the various software de-
liverables such as type checkers, compilers and
evaluators, resource bound generators and certi-
fiers, and possibly proof checkers. To begin with,
we will build prototypes (with the help of student
projects) to demonstrate feasibilty of our approach
and to enable experiments. Ultimately, perhaps in
a successor project, we would like to make these
tools part of an Open Source production-quality
compiler such as Ocaml.

In fact, we have some experience of writing such
prototype implementations, and we have some
skeletons for type checkers and compilers which
can quickly be adapted to new situations. A fourth
year student is currently working on an imple-
mentation of the ICFP system and its translation
into malloc-free ‘C’".

3 Beneficiaries

In the long to medium term this research will be
beneficial to programmers and users of resource-
sensitive applications as outlined in the introduc-
tion. We expect that after sufficient maturation
the results of this research will become part of the
common knowledge of this field.

To achieve this goal we rely on the means of dis-
semination described below. When the founda-
tional questions are largely settled and assuming
the expected progress we might in a possible sec-

ond round of this project seek involvement of an
industrial partner.

In the short term the research results will be
profitable for researchers in the same and related
areas such as complexity theory at higher types
and application of related type systems such as
[23] and [25].

Finally, the research will also have educational
benefit. We will involve students with interest-
ing final-year projects, helping to implement pro-
totypes of our systems. This will provide them
with invaluable experience of formal foundations,
which is important with the growing industrial
need for formal specification and verification.

4 Dissemination

We will disseminate our research results in the
usual scholarly ways, presenting partial results
at international conferences and workshops and
publicizing mature material as journal articles.

We will make software prototypes available for
others to test, via the Internet. As has been done
with the system from [14] we will provide “live”
web pages which make the software prototypes
available for testing without installation, through
CGI scripts. This encourages other workers to
quickly try out the systems.

5 Justification of resources

Staff We request one RA AR1 post (pt 9) for
Dr. Aspinall, employed as a post doctoral re-
search associate to work full-time on the project for
two years. Depending on progress, we will then
consider application for another two years. As-
pinall’s experience with compiler technology, type
systems, and large-scale software projects makes
him an ideal candidate to undertake the proposed
research. Hofmann will devote an average of
9hrs/week to the project.

Travel To present partial results and keep abreast
of the latest developments we seek support for
attendance of five international conferences or
workshops (Hofmann: 3, Aspinall: 2), e.g.,
CSL, Dagstuhl, ETAPS, ICALP, ICC, LICS, POPL,
TLCA. In order to maintain and extend our na-
tional and international contacts we request travel
and subsistence support for four one-week visits
to European universities, e.g. Aarhus, Darmstadt,
Gothenburg, Marseille, Munich, Paris, Sophia An-
tipolis, one 10-14 day visit (Hofmann) to a US uni-
versity, e.g. U. Pennsylvania (Pierce, Scedrov) or
Carnegie Mellon (Reynolds, Pfenning) and four 2-
3 day visits to UK universities (e.g. Cambridge,
Leeds, QMW).



Equipment A workstation (Aspinall) and a
portable computer (Hofmann) maintained over
the project period, are requested to support imple-
mentation of type checkers and compilers, as well
as for publishing. We also request an appropriate
contribution to consumables, shared networking,
and server provision (filesystem, printing, com-

puting).
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