Name: Tain S. Patterson

Project Title: Online Teaching Aid for Computer Architecture:
DLX Simjava Simulation

Supervisor: Prof. R.N.Ibbett

Second Marker: Dr. N.P.Topham

Session Chair: Dr. Rob Pooley

Date and Time: 8th September 1996, 11:00

Venue: JCMB, Room 2509

Extended Abstract

1 Principle Aims

The aim of the project was to develop an on-line teaching aid for computer
architecture utilising the SIMJAVA simulation package. This is in an attempt
to address the difficulty of teaching modern high performance architectures
with their increased utilisation of concurrency techniques and instruction
level parallelism. The simulation would then be accessible to world wide web
users with a suitable JAVA compatible browser.

The project focused upon the DIx architecture devised and presented by
Hennessy and Patterson in their book, Computer Architecture: A Quantit-
ative Approach. This architecture combines concurrent techniques such as
pipelining, parallel functional units and a scoreboarding mechanism of con-
trol. These features are implemented in a reduced instruction set computer
load store architecture. (RISC)

Principally the project hoped to abstract the architectural representation
from that of the logical data flow level to a higher level data flow repres-
entation. This was then implemented as a working applet with animated
simulation and various user defined elements to further enhance the simula-
tion.

2 Introduction

2.1 DLX Architecture
e Load store RISC architecture

Easily decoded instruction set

Pipelined instruction execution

e 32 General purpose registers

32 Single precision floating point registers

Word length of 32 bits

3 instruction formats

2.2 Java Language

The JAVA language tackles the key ideal of distributed programming cap-
abilities in that it can transmit dynamic objects, i.e. dynamic self executing
programs. JAVA benefits from being simple, secure, portable, object-oriented,
robust, multi-threaded, architecture neutral and interpreted. For the pur-
pose of this project the key stregth of JAVA was undoubtedly its ability to
be incorporated into a working web applet with the potential for animated
output.

2.3 Simjava

The SIMIAVA simulation package forms the basis for the program devel-
opment as used in the project. It is a discrete event simulation tool capable
of producing both stand alone simulations and animated applet simulations.
These simulations are based around the following concepts.

e Collection of Sim_entities with defined behaviour
e Entities communicate by passing Sim_event objects

e Simulations can be animated extending Sim_anim using user defined
icons and passing of events

[S]

3 System Design and Implementation Issues

In line with the objective of providing a high level abstraction of the Dlx
architecture the following components were selected to be shown in the sim-
ulation. See Figure 1

ulkiplier
|_|l|it

Figure 1: Simulation Entity Diagram

The instruction fetch unit controls the fetching of instructions, and the
detection of branch and jump instructions. Once retrieved from memory the
instruction is passed onto the instruction issue stage where a number of checks
are performed. Structural and write after write (WAW) hazards are detected
and relevant updates to the controlling scoreboard tables are made. Once
issued the instruction is passed to the read operands stage of the pipeline.
Here checks are performed which detect read after write hazards (RAW), and
assuming that the instruction encounters no problems, the relevant operands
are read and the instruction passses onto the appropriate functional unit.

The functional units are effectively in parallel and their operation is under
the control of the scoreboard. There is provision for the option of changing

the time necessary for execution of each unit though each has a default set-
ting. In addition to performing calculation on the instruction the functional
units must pass on the arithmetic output to the memory access stage without
resource conflict. Priorities were assigned to the four units and forwarding
of data is dependent upon this. The result then passes into the memory ac-
cess stage which specifically acts upon load and store memory transfers and
simply passes other instructions on to the write back unit. The write back
unit then writes the value of the arithmetic operation back into the register
file for future use.

The key differences between this layout and much of the documented lit-
erature occur in part due to the abstraction of the behaviour. Whilst at the
logic level the memory access and write back are both fed from the output
of the arithmetic unit, this becomes less feasible for implementation and un-
derstanding at the new level of representation. Similarly the inclusion of the
instruction issue stage is in addition to the traditional five stage pipeline.
However, this provides for clearer representation of the activities of the in-
struction decode and reading of the operands.

The system contains a novel approach to the representation of the clocked
nature of the architecture. Rather than simply describe the individual entity
behaviour in standard simulation time, the system incorporates a controlling
clocking mechanism which acts to provide the animation with synchronous
and clearly defined movement of information. This is a two phase mechanism
with execute and forward phases and permits the expansion of the model to
incorporate dead-reckoning for the system and its timing mechanism.

An additional feature of the system is the ability to change the memory
access time. This then permits the user to view the impact that a slow
memory might have on program execution as instruction fetch, load and store
instructions request access. It also provides for more realistic simulation and
potentially the future inclusion of a faster caching memory system. However,
this was outwith the scope of the given projects aims.

An important area of consideration related to the understanding of the key
concepts of the model. The student requires obvious visual keys to promote
learning and these were centred around the use of text strings of assembly

code. Hence the student is able to follow the relevant instruction without the
continual need to refer to textual descriptions of the system. This highlights
the concepts of structural and control flow hazards as they are encountered
in the pipeline.

To further promote learning and visual clarity of the model, it was decided
to focus the development of the system around the ability for user input of
assembly code. This was tackled by adding a JAVA TextArea class and laying
this within the SiMJAVA applet. However, this required the modification
of the existing SIM_ANIM class and also the introduction of a new layout
manager for the animation. In a similar fashion text was used to depict the
various registers and their contents over the period of the simulation. These
features can be seen in Figure 2 below.

Applet viewer: DIx.class M=l E3
Applet

Options Window | Read Mew Cods | Reset Sinulation |

Memory Idle Registers Idle

1 LU RL 19GRE - - - -
B L R e %:g %:g g:g %:g
B3 LU R2 2B(RD) = = = =
B4 LW R3 19¢RE) R4=0 RB5=0 F4=0 Es=0
BS LF FB 22¢R1) Ri=0 R7 =0 F6=0 F=0
0E FIDF F4 FOF2 Bi=0 R9=0 =0 B9 =0
a7 SF 221 F4 RI0-0 El1=0 Fl0=0 Fl1=0
e s b1t Fiz-0 Ei3-0 MFiz-0 F3-0
18 LF F& 18(RZ) Ri4-0 PRI5=0 Fl4-0 Fl15=0
11 LF FZ 13(R3) RI6=0 RI7=0 Flé=0 FI7=0
ig EIIIIG;FFI;S ES Eg RI8-0 RI19=0 Flg8=-0 FI9=0
1% AIIF F& F& F14 %gfg géfg %gfg géfg
15 RDDF F18 FE F2 = = = =
16 HULTF FB F& Fd B24=0 R25=0 Fa4=0 F25=0
1T SUBF F@ Fg F1@ R26=0 Fz7=0 MF6=0 FIr=0
1% RDDI 1 RZ 8 R28-0 RE0-0 BER-0 EFE9-0
12 TRAP @ RID=0 B3 =0 Fa=0 Fil=0

Hazerd Detection:
WAW -
RAW -
WAR -

Tonk Point
Unit:

Program Counter = 0
Clock cycles =0

Inidalising

Layout ‘ Fun

Speed: 18 ‘ 11

Applet started.

Figure 2: Simulation Web Page

4 Conclusions and Further Work

The user is provided with a clear model of the running of a piece of assembly
code. This code, displayed as part of the simulation, also acts as a point
of reference for the user to deduce the states of the program over time.
The user input to the system provides increased direct involvement with the
system and in this way attempts to improve the understanding gained by
the user. However, not all desirable properties could be modelled in the
available time frame. Extensions to the project would involve adding to the
working instruction set, implementing further branch control policies, the
impact of a cache memory system and also the ability to hierarchically view
the simulation.

The working model incorporated a barrier synchronisation scheme to the
simulation which permits the user to view more clearly the actions of the sys-
tem and more importantly its changing state over time. This two phase two
tiered system added to the complexity of the model and at times hampered
the implementation of component behaviour. However, the representation
provided by the clock control feature adds considerably to the understanding
of the entire system.

As the development of the model progressed the difficulties associated with
the debugging of a relatively complicated applet became evident. The activit-
ies of the threads posed a few problems given their concurrent nature. With
the complicated logic being modeled, certain thread patterns at run time
provided the system with subtle differences in the interpretation of the byte
code. These were difficult to detect and reproduce, making the development
slower than was initialy forecast.

The system is novel and provides a unique view of the architectural beha-
viour of the DIx processor. While some of the original goals were not met,
through pressures of time, the system does meet with the aim of providing a
high level abstract model for the processing of assembly code in a web based
applet. Indeed with additional improvements in the development tools for
JAVA the simulation of such complex systems should become a most powerful
mechanism for the teaching of computer architecture.

