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ABSTRACT
Design patterns are widely used by designers and developers
for building complex systems in object-oriented program-
ming languages such as Java. However, systems evolve over
time, increasing the chance that the pattern in its original
form will be broken.

To verify that a design pattern has not been broken re-
quires specifying the original intent of the design pattern.
Whilst informal descriptions of design patterns exist, no for-
mal specifications are available due to differences in imple-
mentations between programming languages.

We present a pattern specification language, Spine, that
allows patterns to be defined in terms of constraints on their
implementation in Java. We also present some examples of
patterns defined in Spine and show how they are processed
using a proof engine called Hedgehog.

The conclusion discusses the type of patterns that are
amenable to defining in Spine, and highlights some repeated
mini-patterns discovered in the formalisation of these design
patterns.

1. INTRODUCTION
Design patterns are a way of implementing a common

solution to a common problem in object-oriented software.
Many informal catalogues exist [16, 31, 4, 6] explaining how
they are used and implemented. However, for all the infor-
mal descriptions of design patterns, there is still no stan-
dardised way of formally defining what a design pattern
consists of, or how it can be automatically processed with
verification or developer tools.

This paper presents a way in which design patterns may
be represented as constraints on their implementation in the
Java language [17]. This allows a proof tool Hedgehog
to determine whether the pattern is correctly implemented.
The paper follows on from an earlier short paper [3] which
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presented an outline of the approach and tentative results;
in this paper, the Spine language is presented along with a
more detailed analysis of the results from [2].

2. REPRESENTING DESIGN PATTERNS
Although design patterns may be used in any object-

oriented programming language, the implementation of the
design pattern in each language will be different. In some
cases, these differences will be minor; but the implementa-
tion of some patterns may take advantages of certain language-
specific features that are not available in others. For ex-
ample, implementing a Proxy pattern in Objective-C or
Smalltalk can take advantage of dynamic faulting, which
languages such as C++ and Java do not have.

A formal design pattern definition can therefore be at two
levels:

1. The pattern definitions can focus solely on the object-
oriented features of the pattern, and avoid language-
specific issues

2. The pattern definitions can be targeted towards a sin-
gle language and take advantage of language-specific
features

The advantage of a higher-level definition focussing on
object-oriented features alone means that it will be appli-
cable to more target languages. Approaches such as [8, 9,
22, 18] provide pattern languages that focus on the object-
oriented features of design patterns.

The advantage of a lower-level definition is that as well as
object structure playing a part in the definition of the design
pattern, it is possible to use knowledge of the language in
order to perform extra checking on the implementation of
the design pattern.

As well as deciding what level to focus on, there are three
different ways of encoding patterns, depending on the use of
the tool dealing with them. For example, a tool that deals
with manipulation of patterns may have a different set of
requirements than one that is used for verification.

2.1 Behavioural definition
One way of specifying a design pattern is to define its

behaviour. It would then be possible to use this definition
for automated verification purposes, provided that a suitable
proof tool is available.



Design by contract [24] uses this approach to ensure the
correct implementation of code. Each method has a pre-
and post-condition that can be used to constrain the correct
behaviour of the methods, as well as a class invariant that
ensures that the instance’s key properties are not violated.
Tools such as iContract [20] provide this behaviour checking
in Java, and Eiffel [23] provides this as part of the base
language. Other tools, such as [7, 21, 28] allow arbitrary
constraints to be checked against implementations of code.

However, this approach does not work well for pattern
definition. Partially this is because patterns are often above
the method layer, dealing with how classes are related, but
mainly because behaviour alone is not enough to capture
the essence of a design pattern. Indeed, refactoring existing
code to introduce design patterns [25, 30] is an active area,
and since refactoring, by definition, [26] does not change
the existing behaviour, a pattern definition based solely on
semantics would not be able to tell the difference between
the code prior to the refactoring or the code afterwards.

2.2 Metaprogramming definition
Another approach to defining design patterns is to repre-

sent them as metaprograms [25, 10, 30]. In these cases, a
design pattern is represented as a metaprogram that, when
executed, will instantiate or transform existing code into one
that exhibits a pattern.

Clearly, this approach is well suited for a tool that needs
to instantiate new patterns in code, or alternatively refactor
the code so that a pattern evolves out of the existing struc-
ture. However, care must be taken when using a metapro-
gramming approach if the pattern application is re-applied;
a simple metaprogram for instantiating the Singleton pat-
tern may repeatedly add instances to its target class, for
example, thus accidentally violating one of the principles of
the Singleton pattern that only a single instance exists.

By definition, the pattern is encoded within the metapro-
gram, which makes it potentially difficult to relate the def-
inition to the resultant pattern instance. As well as the
pattern itself, a certain amount of error-handling code may
be present in the metaprogram as well, which can hide fur-
ther the specification of the pattern. This method tends
to be coupled tightly with the implementation of the met-
alanguage being used to implement the transformations; so
examples in Smalltalk are common, because the Smalltalk
environment allows classes to be changed dynamically at
run-time.

Lastly, the metaprogram normally has some kind of de-
fault method names or fields to instantiate, which works fine
for a green-field implementation of the pattern; but for exist-
ing patterns that are being verified or modified can present
a problem.

2.3 Declarative constraints
The last way of representing a design pattern is to define

a set of declarative constraints on the implementation of
the pattern itself. These constraints can be used to define
both static (inheritance) and dynamic (method invocation)
behaviours of the class (or classes) involved in the design
pattern.

The ability to represent design patterns as constraints has
been considered previously [1, 3] and is used in some tools
[22] to define design patterns. The benefit of using an ex-
ternal declarative language to define design patterns allows

the specification and the tool that processes the specifica-
tion to be separate. As a result, different tools can be cre-
ated to process the same specification, but have different
results – such as an automated verification tool or a repair-
ing/refactoring tool.

Since this approach works for the verification of design
patterns, and the other two are less well suited for verifica-
tion, Hedgehog uses this form of pattern representation.

3. THE SPINE LANGUAGE
Patterns can be defined in a Prolog-like language called

Spine that allows patterns to be defined in terms of built-
in functions and predicates. It supports simple existen-
tial qualifiers and allows iteration over both class structure
(classes, interfaces, methods) and method implementations
(determining if a method instantiates a class, or writes a
field definition etc.). This allows a pattern to be defined
both in terms of its structure and also its behaviour in the
same specification.

Terms in Spine are either variables (which begin with
capital letters such as ‘F’), lists (enclosed with ‘[’ and ‘]’) or
compound terms (which begin with a lower case letter such
as ‘and(A,B)’). Rules define compound terms as a comma
separated list of terms, which is interpreted by Hedgehog
as a logical conjunction. In addition, built-in terms such as
‘and’ and ‘or’ allow arbitrary lists of terms to be combined,
and the terms ‘true’ and ‘false’ can be used.

The special-case quantifiers ‘forAll’ and ‘exists’ oper-
ate on a list of terms, and are equivalent to a conjunc-
tion and disjunction respectively of generated terms. As
an example, ‘forAll([1,2],X.F(X))’ is logically expanded
to ‘and([F(1),F(2)])’. These are only used over finite lists,
and so are decidable.

Figure 1: Spine definition of Immutable

realises(‘Immutable’,[C]) :-

forAll(fieldsOf(C),

F.or([

isStatic(F),

isFinal(F),

and([

hasModifier(F,private),

forAll(methodsOf(C),

M.not(modifies(M,F)))

])

])

)

Figure 1 shows a Spine definition of the Immutable pat-
tern. This pattern requires that there are no modifiable
instance fields in the given class. This can be easily verified
provided that every field is either static (in which case, it
is not an instance field) or final (which by definition can-
not change). Additionally, any non-private fields would
be open to changes by external objects, so non-static and
non-final fields must be private. But as well as requiring
that the fields are private, it is necessary to ensure that
no methods defined in the class can modify the field. The
meanings of the terms ‘fieldsOf’ and ‘modifies’ are cov-
ered in Section 4.



Figure 2 shows a Spine definition and Figure 3 shows a
Java example for the Singleton pattern:

Figure 2: Spine definition of public Singleton

realises(‘PublicSingleton’,[C]) :-

exists(constructorsOf(C),true),

forAll(constructorsOf(C),

Cn.isPrivate(Cn)),

exists(fieldsOf(C),F.and([

isStatic(F),

isPublic(F),

isFinal(F),

typeOf(F,C),

nonNull(F)

]))

Figure 3: Java example of public Singleton

public class PublicSingeton {
public static final PublicSingleton

instance = new PublicSingleton();

}

The two-argument predicate ‘realises’ specifies a pat-
tern definition (in this case, ‘PublicSingleton’) that can be
matched against any class ‘C’. The function ‘constructorsOf’
can be evaluated to produce a result of constructors, which
can then be used in the remainder of the definition. Simi-
larly, ‘fieldsOf’ produces a list of fields defined in the given
class. The ‘forAll’ and ‘exists’ predicates operate over
these lists, binding each value to the variable in the expres-
sion.

In this case, the Spine definition says that a class is a true
Singleton iff:

• There is at least one constructor

• All constructors are private

• There is a field that is static, public, final, is the
type of the enclosing class, and is non-null

Of course, this is a valid definition for only a single vari-
ant of Singleton; it is not the only way that it can be im-
plemented. For example, the singleton instance could be
instantiated through lazy instantiation, or there could be a
method that accesses a private static instance instead.

3.1 Variants
Although the intent of patterns remains the same, there

are several different ways to implement them. These may
differ in small ways (such as whether a variable is initialised
in the constructor or as a default value) or large ways (by us-
ing a completely different variety of the same pattern). Cat-
alogues such as [16] often have a number of implementation
notes regarding each pattern that allow the same pattern to
evolve in slightly different ways.

Sometimes these differences just deal with the way that
object instances are created: for example, whether they are
instantiated at load-time or at request-time. Or there might
be different sorts of data structure (lists, hashtables), that

might give different performance, based on how the pattern
is intended to be used.

We can capture these variants by defining additional rules
for matching these patterns, as in Figure 4:

Figure 4: Spine definition of lazy Singleton

realises(‘LazySingleton’,[C]) :-

exists(constructorsOf(C),true),

forAll(constructorsOf(C),

Cn.isPrivate(Cn)),

exists(fieldsOf(C),F.and([

isStatic(F),

isPrivate(F),

typeOf(F,C),

exists(methodsOf(C),M.and([

isStatic(M),

isPublic(M),

lazyInstantiates(M,F)

]))

]))

Figure 5: Java example of lazy Singleton

public class LazySingeton {
private static LazySingleton

instance;

public static LazySingleton

getInstance() {
if (instance == null) {
instance = new LazySingleton();

}
return instance;

}
}

Figure 5 shows an alternative Singleton realisation, this
time using lazy instantiation to set up a static instance vari-
able. Much of the pattern is the same as before, but in-
stead of requiring a public instance field, we have a public

method that instantiates the field on demand and then re-
turns it. The predicate ‘lazyInstantiates’ is covered be-
low.

In order to tie these two variants into the same pattern,
we can define rules that express the fact that a Singleton
is either a PublicSingleton or a LazySingleton, as shown in
Figure 6:

Figure 6: Combining the Singleton variants

realises(‘Singleton’,[C]) :-

or([

realises(‘PublicSingleton’,[C]),

realises(‘LazySingleton’,[C])

])

This allows code to be checked against a group of variants
at the same time. Instead of having to use a specific variant
(e.g. ‘realises(‘PublicSingleton’,[‘C’])’ a group name



may be used (e.g. ‘realises(‘Singleton’,[‘C’])’. It is
even possible to group separate patterns together that have
a similar intent; for example, both Singleton and Utility have
a similar intent, and so could be grouped into a SingleAccess
group.

4. THE HEDGEHOG PROOF ENGINE
The Hedgehog proof engine reads the Spine definitions,

along with Java source code, and attempts to automatically
prove whether or not the class correctly realises the design
pattern. The proof is entirely automated; the user simply
asks whether or not a class meets a specific design pattern,
and the answer is automatically returned. The functionality
has been built into Eclipse giving a menu of design patterns
that allows the user to determine if the currently selected
Java class meets the design pattern selected.

The automated proof system reads in the goal to prove,
such as ‘realises(‘Singleton’,[‘ExampleSingleton’])’,
and constructs a goal for it. It then repeatedly applies rules
from the Spine patterns library, to build up a proof tree for
the class. Built-in predicates, such as ‘constructorsOf()’,
derive the information from an internal Java parser, which
caches the class for efficiency of later use.

By the end of the proof, the system has either been suc-
cessful (in which case, it prints out that the class does re-
alise the given pattern), or unsuccessful (that the class does
not meet the pattern). A post-processing mechanism then
translates the failed proof tree into an understandable error
message.

4.1 Static semantics
Since one of the key parts in a design pattern is its re-

lationship with other classes, it is necessary to be able to
define predicates and functions that will allow Hedgehog
to interrogate Java classes. These static semantics can be
derived directly from the object-oriented structure of the
Java code:

exists(List,X.P (X)) at least one X in List, then P (X)
holds; if List is empty, then fail

forAll(List,X.P (X)) for every X in List, then P (X) holds;
if List is empty, then succeed

hasModifier(X,M) X has modifier M

implements(C,I) class C implements interface I

implies(A,B) the logical equivalent of or(not(A),B)

isAbstract(X) X is a field, method, or type that is abstract
– uses hasModifer

isClass(T ) T is a class

isConstant(E) E does not change value

isFinal(X) X is final – uses hasModifer

isFriendly(X) X is friendly – uses hasModifer

isInterface(T ) T is an interface

isLiteral(E) E is a literal Java expression

isPrivate(X) X is private – uses hasModifer

isProtected(X) X is protected – uses hasModifer

isPublic(X) X is public – uses hasModifer

isStatic(X) X is static – uses hasModifer

isSideEffectFree(E) E does not change the object’s state

prefix(M ,name) method M begins with the prefix name

sameSignature(M1,M2) method M1 has the same signa-
ture as method M2

subtypeOf(X,T ) X is a sub-type of T (or equal to T )

typeOf(F ,T ) F is a field of type T

typeOf(M ,T ) M is a method that has a declared return
type of T

Since these these predicates over a finite lists (e.g. a Java
class has only a finite number of constructors) the logic is
essentially propositional and thus decidable.

4.2 Weak semantics
As well as requiring a pattern to have the correct collab-

orators (supertypes, additional classes and so forth), it is
also necessary that the methods have the correct behaviour:
they must be defined with knowledge of the semantics of the
Java class.

Although a full Java semantics would be able to prove
certain properties about the class in question, it turns out
that it is not necessary to have a full semantics. In much
the same way that ESC/Java[21] can perform static analy-
sis of code, so too can the implementation of Hedgehog.
Although neither can prove everything, they can produce
useful results. Two key points from [13] are just as applica-
ble to Hedgehog:

1. Although program proofs are undecidable in general,
“the kinds of programs that occur in undecidability
proofs rarely occur in practice.” Whilst recursion (and
determine whether a program will terminate) are hard
mathematical problems, these kind of issues do not
appear in design patterns.

2. Although it is desirable for an ideal automated system
to be both sound and complete, it is not an absolute
requirement. “The competing technologies (manual
code reviews and testing) are neither sound nor com-
plete ... if the checker finds enough errors to repay
the cost of running and studying its output, then the
checker will be cost-effective and a success.”

The following weak semantic predicates are built-in to
Hedgehog:

adds(M ,Type,Collection) the method M adds an instance
of Type to Collection

instantiates(M ,T ) method M creates an instance of T
and returns it, although the method may have a de-
clared return type of T or one of its super-types

invokes(Method,Delegate) code in Method invokes the method
called Delegate



invokes(Method,Delegate,Field) code in Method invokes
Delegate on Field

lazyInstantiates(M ,F ) M lazily instantiates F and re-
turns it

modifies(M ,F ) method M modifies the value of field F

navigable(C1,C2) it is possible to navigate between C1 and
C2

nonNull(F ) the field F is non-null (i.e. it has been as-
signed an instance, either in the default field initiali-
sation or in the constructor)

removes(M ,Type,Collection) method M removes an in-
stance of Type from Collection

returns(M ,F ) method M returns the value of field F

So how are these weak semantic predicates proved by
Hedgehog? The answer lies in the contents of the Java
methods. It is worth noting that Hedgehog is neither
sound nor complete; it does not perform loop unbundling
or determine which branch of a conditional to process, but
rather assumes all possible call paths throughout a method.
In other words, in a loop statement it assumes that the loop
executes once, and that in an if statement, both the true
and false branches are executed. This allows Hedgehog to
determine potential reachability of expressions and meth-
ods, and uses these to determine whether a predicate can be
satisfied or not. A more advanced static analysis tool may
yield more accurate results at the code level; but this would
be unnecessary for most Spine pattern definitions.

As an example, the ‘nonNull’ predicate is defined to re-
turn true if the field F has been assigned a non-null value.
It does this by ensuring one of the following:

1. The field F is initialised with an in-line initialiser with
a non-null expression

2. There is at least one constructor, and all constructors
ensure that field F is assigned a non-null expression

3. The field F is assigned the value of a parameter in the
constructor, and the value is guarded with an if test
that throws an exception if the parameter is null

A non-null expression is one of the following:

1. A call to new Type()

2. A call to a method that returns a new Type()

3. A reference to a field or local variable that has been
initialised with a non-null value

Although this is very conservative, it is possible to use
these definitions to match most of the instances where the
‘nonNull’ predicate is used. The important factor is that
the whole process is decidable, and only uses the static Java
code as its basis.

A similar argument holds for the ‘modifies’ predicate.
This checks to see whether a method can potentially change
the value of a field in the current class. In the case of a
conditional, the proof system assumes that both parts are
called; in other words, it traces out the potential call paths

through a method and condenses them into one possibil-
ity. This means the process is not sound; for example, we
can imagine a code statement such as ‘if (true == false)

{f=a;}’ which would clearly never happen, but the proof
system assumes that the value of ‘f’ may have been modi-
fied. This may result in some false negatives being raised.
However, such code does not tend to exist in programs.

In the case of the ‘modifies’ predicate, the proof process
iterates through the abstract syntax tree of the method in
question determining whether there are any assignments in
the tree. If there are assignments, it resolves them to either
a local variable or a field; and in the case of a field, compares
it to see if it is the same field as the ‘modifies’ predicate is
looking for.

This process recurses through called methods; if m1 calls
m2, and the proof system is trying to prove modifies(m1, f)
then it will also try to prove modifies(m2, f).

Any code wrapped in a conditional block (if or switch) is
assumed to potentially happen; similarly, looping operators
(for and while) are assumed to happen at least once.

5. RESULTS
The Hedgehog proof engine has been tested with sam-

ples obtained from the Java language source code, as well
as using [16] to provide a list of candidate patterns for rep-
resentation in Spine.

Of the 24 patterns defined in [16], a total of 7 of them
could not be represented suitably in Spine definitions. These
were: Builder, Façade, Chain of responsibility, Command,
Interpreter, Mediator and Memento.

5.1 Unrepresentable patterns
The main reason for not being able to represent these pat-

terns in Spine is that a suitably abstract definition could
not be found. A definition for one of these patterns would
either be too narrow (and thus produce a number of false
negatives) or too vague (and thus produce a number of false
positives). For example, the Command pattern is one of the
more common patterns, but does not have a suitable Spine
definition. The main problem is that the Command pattern
is very simple; there is an abstract class, with an abstract

method, and a number of subclasses. This results in ei-
ther a very vague pattern definition (matching almost any
abstract class) or a very specific pattern definition (where
the class name is constrained to be ‘Command’). Neither case
works well for verification purposes; although the more spe-
cific may work for a pattern instantiation tool.

Others are difficult to define because they do not have a
clear realisation; for example, the Memento pattern is very
difficult to determine whether it is present or not. The dif-
ficulty in representing a pattern is inversely proportional to
the number of identifying artefacts the pattern has. In the
case of the Memento, a class with a simple data structure
such as a Map may be sufficient; but that does not mean that
all classes that hold a Map are realisations of the Memento
pattern.

What all Spine pattern specifications fail to do is cap-
ture the intent of the pattern; how (and where) it is used.
The Proxy, Adapter and Decorator patterns are examples
of how important the intent of a pattern is; all of them are
superficially similar to one another, and often have a single
collaborating instance to which they forward one (or more)
messages. However, the intent of the Proxy pattern is to



forward the requests through some protocol (such as over
a network); the Adapter and Decorator intercept methods
between the caller and the delegation class and “work to-
gether” [16, page 139]. However, “work together” is neither
well defined, nor definable. This point is explicitly raised in
[16, pages 219–220] when comparing Adapter and Bridge:
“the key difference between the patterns lies in their intents.
Adapter focuses on resolving incompatibilities between two
interfaces; Bridge bridges an abstraction and its (potentially
numerous) implementations.”

5.2 Results table
Pattern examples were taken from four sources: Applied

Java Patterns [27]; the Eclipse Pattern Box[11]; and the Java
language source code, versions 1.1 and 1.2. The sources were
manually scanned to find instances of the design patterns,
and then Hedgehog was asked to declare whether the pat-
tern was present or not. The results are shown in Table 1.

Table 1: Results

Pattern AJP PB Java
[27] Eclipse 1.1 1.2

Creational
Abstract Factory

√
+

√
+

√
+

√
+

Factory Method
√

+
√

+
√

+
√

+
Prototype ×- ×- ∅ ∅
Singleton

√
+

√
+

√
+

√
+

Structural
Adapter

√
+

√
+

√
+

√
+

Bridge
√

+ ∅
√

+
√

-
Composite

√
+

√
+

√
+

√
+

Decorator
√

+ ∅ ×- ×-
Flyweight

√
+

√
+

√
+

√
+

Proxy
√

+ ∅ ∅ ×-
Behavioural

Immutable
√

+
√

+
√

+
√

+
Iterator

√
+ ×-

√
+

√
+

Observer
√

+
√

+
√

+
√

+
State ×-

√
+ ∅ ∅

Strategy
√

+ ×- ∅ ∅
Template Method

√
+

√
+

√
+

√
+

Visitor
√

+ ∅ ∅ ∅

√
+ True positive; the pattern was found and correctly iden-

tified

×+ False positive; the pattern was found where no pattern
exists

√
- True negative; the pattern was not found where no pat-

tern exists

×- False negative; the pattern was not correctly identified
where the pattern existed

∅ Unfound; no pattern definition could be found from the
sample set to test against

The results are summarised in Table 2. Of the 24 pattern
types, 7 could not be defined in Spine. That leaves 17 pat-
terns, of which there were 4 examples each (less 13 examples
which could not be found in the samples) which gives a to-
tal of 55 pattern instances to be verified. Of these, 47 were

correctly classified (46 true positives and 1 true negative),
whilst 8 were incorrectly classified as not realising the design
pattern (false negative). There were no false positives.

Table 2: Summary of results

True False Others
(
√

) (×)
Positive (+) 46 0 Unfound 13
Negative (-) 1 8 Unrepresentable 7

Total 47 8 20

5.3 Analysis
A brief analysis of the results follows, with a commentary

on each type of failure and the kinds of problems or successes
that are associated with each. A more detailed account is
presented in [2].

5.3.1 True positives
The true positives (

√
+) are the success of Hedgehog

giving the correct answer. Most of the design pattern ex-
amples that could be found from the 16 that had pattern
definitions could be matched with real uses of the patterns
in the source examples. Out of the 55 pattern examples, 46
of them resulted in true positives – a success rate of 83%.

5.3.2 False positives
There were no false positives (×+) found in the results.

This can be attributed to the fact that only suspected pat-
terns were tried, rather than randomly trying to match any
pattern against any implementation. However, note that not
finding a false positive does not mean that they do not exist;
there may be patterns that Hedgehog reports as being a
realisation of a design pattern, but in fact are not.

Partially, the reluctance to implement vague pattern spec-
ifications (such as Command, as discussed earlier) has lim-
ited the number of false positives that could be recorded.
Had vaguely defined patterns such as Command been pro-
vided, then the false positive rate might have been much
higher.

5.3.3 True negatives
Hedgehog only found one true negative (

√
-); that of

the Bridge pattern in Java’s AWT. In Java 1.1, the Java
AWT Component types had a one-to-one mapping with a
ComponentPeer class. This was broken in the migration to
Java 1.2, when Swing ‘lightweight’ components were cre-
ated that had no corresponding peer class. In this instance,
Hedgehog correctly reports that the pattern is broken in
1.2. Had this gone unnoticed, it might have caused prob-
lems. As it happens, it was a design decision to break the
pattern, so not something to be worried about, although it
does highlight Hedgehog’s benefits as a pattern verification
tool. Indeed, this is a success not only because Hedgehog
correctly identified the result, but also that this validates
the purpose of Hedgehog in identifying broken patterns
over time.

5.3.4 False negatives
A false negative (×-) is one where Hedgehog could not

correctly verify a design pattern that was actually present
in a piece of code. Of the 55 examples, 8 were reported as
false negatives.



Given that Hedgehog’s use as a pattern verification tool
that helps highlight pattern violations, a false negative is
much less of a problem than a false positive. If Hedgehog
is unable to prove that a pattern exists, it does not mean
that it is not present; only that Hedgehog is not capable
of deciding this.

One likely source of false negatives comes from patterns
that are implemented by unknown variants. The approach
taken in representing design patterns as constraints on their
implementation is likely to capture some, but not all, vari-
ants of a particular design pattern. As such, Hedgehog
does not aim to be complete, but provides extensible mech-
anisms to allow user-defined variants to be added at a later
time. As Hedgehog’s pattern library grows, this source of
false negatives should diminish over time.

The other likely source of false negatives is to do with
Hedgehog’s proof system not being able to determine as-
pects, particularly to do with the weak semantics. For ex-
ample, the LazySingleton pattern must ensure that when a
method is called a non-null instance is returned. If that in-
stance were to be obtained from deserialising an object, then
the built-in predicate would not be able to deduce that the
returned value is a non-null value. It is highly unlikely, but
not impossible, that a Singleton may be implemented in this
fashion, which means that Hedgehog would not be able to
identify this as a correct implementation of a Singleton.

The examples of false negatives found in these results are
due to the patterns being implemented with a different vari-
ant to the one defined in Spine. For example, the Pro-
totype pattern definition specified that the Java interface
Cloneable is implemented by classes that are Prototype in-
stances; however, the examples used a similar but distinct
interface for representing the cloneable method. It could
be argued that it is an incorrect implementation of the pat-
tern; but more realistically, it is just a different variant of
the Prototype pattern that is not encoded in Spine.

6. RELATED WORK
A number of other projects focus on the formalisation of

design patterns. A number of these are specifically focussed
on the editing or instantiation of design patterns in existing
code, either by creating them from an empty class, or by
refactoring existing code into a design pattern.

Marco Meijers’ Fragment Tool [22] provides a mechanism
for representing design patterns such that they could be
modified by a development tool. Its purpose was to facil-
itate the use of design patterns as elements that could be
used for design and implementation, rather than focussing
on the lower-level classes, methods and fields. Patterns are
represented as fragments, which are associated with classes
in the fragment browser.

When a new pattern is instantiated, a template set of frag-
ments are associated with the given class. It is then up to the
user to select which fragment roles are filled by which other
classes/methods/fields; and gradually, the collaborators in
the pattern are assembled into an interconnected set of frag-
ments. Should the pattern require changing at any time, it
is possible to edit the fragments directly, which then changes
the underlying code. This approach used a combination of
the metaprogramming and declarative specification for de-
sign patterns; and because the fragments have to exist prior
to their use in the tool, existing code has to be appropriately
marked up prior to its use.

The fragment tool was continued with a slightly different
slant in [18] to provide a framework for working with de-
sign patterns. It also used metaprogramming to represent
the design patterns, so that they could be instantiated by
executing the metaprogramming code. It also attached han-
dlers to the frameworks, so that if another user modified the
code (say, by adding a subclass to a visitor pattern) then ap-
propriate changes could be made to the code (say, by adding
a method to the visitors). It also investigated the possibility
of having an intermediate language to deal with language-
agnostic design patterns; but concluded that it would be
necessary to have at least 3 different target languages for
such an intermediary language to make sense.

LePUS [9] proposes a different mechanism for specifying
design patterns; by using a graphical representation called
“LanguagE for Patterns’ Uniform Specification”. The graph-
ical language allows relationships between patterns to be
represented graphically, and includes similar basic primi-
tives to that encoded in Spine. For example, classes can be
related with inheritance, and methods (or sets of methods)
can be defined with call sequences between them. It is some-
what similar to UML [15] except that the latter is normally
used for expressing only relationships between classes and
method call sequences; and not specifically pattern specifi-
cations.

While LePUS is a useful tool for describing design pat-
terns, it still has two features that limit its usefulness to
verification of design patterns:

• LePUS is intended to be used without a specific target
language in mind. As such, it cannot take advantage
of any implementation tricks or techniques, nor verify
the correct implementation of individual methods.

• The graphical language that defines LePUS does not
lend itself well to representation in an automated proof
system.

Other work on introducing design patterns to existing
code took the metaprogramming approach for representing
patterns [25, 29, 30]. These approaches aimed to convert
existing code that had a specific behaviour into code that
kept the same behaviour, but by using a design pattern.

The concept of refactoring [26, 14] is not specific to de-
sign patterns, but rather introduces a set of techniques for
translating code from one implementation to another whilst
preserving behaviour. Often, refactorings can be as simple
as renaming a variable, but they can be as complicated as
changing an algorithm (for example, changing a binary sort
into a quick sort). In neither case is the behaviour of the
code changed; but the newly refactored code may have other
benefits (it runs faster; it is easier to maintain; it is easier to
extend). This highlights why it is not possible to represent
patterns based on their externally observed behaviour; both
ugly and beautiful implementations may have exactly the
same behaviour, but the pattern may only be considered to
be present in the beautiful one.

Refactoring existing code into a design pattern is more
difficult than instantiating a pattern from a template. Apart
from anything else, the pattern application tool needs to
know whether it is valid to try to convert a set of classes into
a design pattern. The approach taken by [25] is to determine
a precursor to the pattern; something which closely, but not
completely, represents the design pattern. It can then be



incrementally improved until it meets the specification of
the design pattern. It is expected that the user will drive
the tool; and if there are names that need to be decided
for method or fields that are being created, the user can be
prompted to make a decision.

Other works concentrate on specifying the semantics of
the Java language; tools such as ESC/Java [21, 13, 12] and
iContract [20] allow statements to be made about existing
Java code, and then checked for correctness. These are used
in modelling languages such as JML [19, 5] which attempts
to model the constraints of code implemented in the Java
language. This is similar to the purpose of Spine and its
weak semantic constraints; a more extensible mechanism for
defining additional weak semantic constraints may be able
to benefit from such modelling tools in the future.

7. FURTHER WORK AND CONCLUSIONS
The results show that it is possible to specify patterns

in terms of declarative constraints on their implementation,
and that they can be used to verify the implementation of
code examples from real systems. However, the results could
be improved by focussing on the following areas:

• Provide new pattern specifications. Some of the false
negatives are due to the fact that a different variant
was used than the one specified in Spine. Although
it would be possible to fix these problems by defin-
ing a pattern variant for each false negative, this was
not done in order to obtain an impartial set of results
for this test. However, the purpose of any extensible
design patterns library is to increase the size of the
library, so it is possible to build up the Spine library
with other variants to capture these false negatives.

• Extend the capabilities of the weak semantics. Although
there are relatively few patterns that specifically re-
quire a weak semantic predicate, it is necessary to be
able to extend Hedgehog’s capability over time. One
way this might be achieved is to provide an extension
point that would allow weak semantic predicates to
be defined externally to the Hedgehog proof engine.
Alternatively, other proof systems such as ESC/Java
[21] could be used to provide invariant and assertion
checking that is currently done internally in Hedge-
hog.

• Provide template definitions for specific patterns. Pat-
terns such as Command and Adapter could be defined
to expect use specific implementation names such as
Command and Adapter. Although this may not be much
use for pattern verification, it might provide a way in
which these patterns could be recognised from existing
systems.

There are also other uses for the Spine pattern definitions
that are not currently used by Hedgehog. For example, a
pattern verification tool can be used as a pattern detection
tool by brute-force searching of existing code bases. Al-
though this would be an inefficient use of Hedgehog at
present, the use of the Spine patterns may help to provide
hints as to where to start looking.

Hedgehog does not currently offer any automated reso-
lutions when a pattern is not correctly realised, other than
an error message to help guide the user. Given the detail of

the pattern that is currently present, it should be possible to
use the Spine definitions to try to automatically repair (or
suggest repairs to) the problems whilst preserving semantics.
Taken to its extreme, a pattern system that could automati-
cally repair a failed pattern could also be used to instantiate
a pattern from scratch; although this would probably be an
inefficient use of a verification tool. Furthermore, when the
pattern requires the existence of a specific method (such as
the accessor method in the LazySingleton) it would need to
either use a pre-defined method name or be able to prompt
the user for such a name.

Another possibility for extension is to migrate Hedgehog
to use different target languages, instead of Java. It is ex-
pected that the Spine pattern definitions will be mostly sim-
ilar if a new target language is chosen, though it will require
the re-implementation of Hedgehog’s language parsing and
implementation of the built-in predicates. However, there is
no reason why this approach would not work on other target
languages.

These results show that it is possible to define patterns as
a set of constraints on their implementation, and that with
a sufficient library of design patterns and their variations,
be used to automatically verify the existence of patterns in
code.
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