Appears inLISP and Symbolic Computatid®(1):77-107, February 19‘?6

Categorical Models for Local Names

lan Stark
University of Cambridge Computer Laboratory
lan.Stark@cl.cam.ac.uk

July 1994

Abstract

This paper describes the construction of categorical models fonthealculus a language

that combines higher-order functions with dynamically creatathes Names are created

with local scope, they can be compared with each other and passed around through function
application, but that is all.

The intent behind this language is to examine one aspect of the imperative character
of Standard ML: the use of local state by dynamic creation of references. The nu-calculus
is equivalent to a certain fragment of ML, omitting side effects, exceptions, datatypes and
recursion. Even without all these features, the interaction of name creation with higher-order
functions can be complex and subtle; it is particularly difficult to characteriselibervable
behaviour of expressions.

Categorical monads, in the style of Moggi, are used to build denotational models for
the nu-calculus. An intermediate stage is the use of a computational metalanguage, which
distinguishes in the type system between values and computations.

The general requirements for a categorical model are presented, and two specific exam-
ples described in detail. These provide a sound denotational semantics for the nu-calculus,
and can be used to reason about observable equivalence in the language. In particular a
model using logical relations is fully abstract for first-order expressions.

1 Introduction

Programming languages that combine higher-order functions and state create certain diffi-
culties for traditional methods of semantics and reasoning about programs. For operational
semantics, the presence of state means that simple methods for analysing observational
equivalence in purely functional languages break down. For example Milner's ‘Context
Lemma’ [15] becomes invalid and the technique of applicative bisimulation [1] is no longer
complete. For denotational semantics, there are difficulties of abstraction. Models may give

*Supported by UK SERC studentship 91307943 and CEC SCIENCE project PL910296.

1

2 IAN STARK

different denotations to expressions that abservationally equivalenthat is, they can re-
place each other in a program without affecting its result. This happens even in the absence
of non-termination, which is well known to cause similar problems.

Our particular concern is to strengthen methods for reasoning about the programming
language Standard ML [16]. This is a typed language with higher-order functions as first-class
values and a call-by-value semantics. Among other features, expressions can dynamically
create typedeferenceswhich are private mutable storage cells. The use of call-by-value
semantics means that a reference may be shared by several functions, or by successive
invocations of the same function (as with ‘own’ variables in Algol).

We want to highlight the effects that arise purely from locality of state, ignoring other
features such as side effects, exceptions and non-termination due to recursion. To do this we
work with a language called theu-calculus This is a typed call-by-value lambda-calculus
extended with the notion of @me names can be created, passed around and compared with
each other. They correspond to values in ML of typet ref, cells that can only contain
the value(). Higher-order functions and booleans are also available, but functions cannot
be defined recursively. The nu-calculus is described in Section 2. We give an operational
semantics taken from that of Standard ML [16] and derive a suitable notion of observational
equivalence, together with several examples.

It might reasonably be expected that a language as bare as the nu-calculus would easily
admit fully-abstract models and simple, complete reasoning methods. As has been shown
elsewhere, in [27] and [28], this is not the case. The particular interaction of dynamically
generated names with a call-by-value semantics leads to some subtle behaviour, so that the
scope and visibility of names is not easily tracked by traditional techniques. In this earlier
work there is an operational method for proving observational equivalence, using a variant
of logical relations. Here we look at denotational methods through categorical models,
expanding on the brief sketch in Section 4 of [28].

We follow Moggi [19] in using categoricahonadgo encapsulate a notion of computation
appropriate to the nu-calculus. Section 3 introducesomputational metalanguagor
the nu-calculus, which distinguishes in its type system between the denotations of values
and of computations. An associated equational logic permits some simple reasoning about
observational equivalence. Using this logic we can state conditions for a sound and adequate
interpretation of the nu-calculus (Figure 4). In Section 4 we turn these into requirements for
a categorical model, and describe how the nu-calculus can be interpreted in any category that
satisfies them. This two stage technique of

nu-calculus— computational metalanguage— category with strong monad

makes the construction simpler and allows us to build more than one categorical model on
the same foundations. Both parts are significant: the metalanguage serves as the internal
language of the category, while the existence of categorical models proves the consistency of
the metalanguage. This method is also extensible; if we wish to replace the nu-calculus with
a larger fragment of ML, then we need only adjust the notion of ‘computation’. Of course,
finding the correct adjustment, and models that satisfy it, is not trivial. But the framework
remains the same.

CATEGORICAL MODELS FOR LOCAL NAMES 3

Sections 5 and 6 present two examples of categories that model the nu-calculus. The first
is a functor categorySet’ which captures the basic properties of dynamic name creation.
The second refines this, using categories with relations, to give a model that is fully abstract
for ground and first-order types (Theorem 4).

2 The Nu-Calculus

The nu-calculusis a simple language providing higher-order functions and the dynamic
creation of names. It was identified by Pitts as a sensible subset of ML, and is close to
Stoughton’sdentity calculus This section describes the syntax, type system and operational
semantics of the language. We then define a notion of observational equivalence, and give a
collection of sample equivalences and inequivalences of increasing sophistication.

2.1 Syntax

The syntax of the nu-calculus extends a simply-typed lambda-calculus. Fyaessbuilt up
from ground types of booleansand v of namesby formation offunction typess — o'.
Expressions have the form

M = =z variable
| n name
| true | false truth values
| if M then M else M conditional
| M=M compare names
| vn.M create new name in expression\/
| Az M function abstraction
| MM function application

There are separate infinite supplies of typed variables and names. Function abstraction
Ax:0.M binds the variabler of type o, and name creationn.M binds the name:.. We
implicitly identify expressions which only differ in their choice of bound variables and names
(a-conversion). A useful abbreviation isew for vn.n.
We denote byM[M'/x] (respectivelyM [M'/n]) the result of substituting the expression
M’ for free occurrences of the variable(respectively, the name) in the expression\/.
The substitution icapture avoidingthe free names and variables &f should be disjoint
from the bound names and variablesMdf This can always be arranged byconvertingM .
Expressions are given types according to the rules in Figure 1. The type assertion

s, I'-M:o

says that in the presence @fl', the expressio/ has types. Heres is a finite set of names,
I' is a finite set of typed variables, and is an expression with free names srand free
variables inl". The symbol® represents disjoint union, as in® {n} andl' ¢ [z : o].

4 IAN STARK

(x:0€l) (n€s) (b = true, false)

s,I'Fx:0o s,I'tn:v s,I'Fb:o

s,I'FB:o s,I'FM:o s,I'FM:0o
s, '+ if Bthen M else M' : o

s,'FN:v s, 'FN:v s {n},'FM:0o
s, 'F(N=N'):o s,'vn.M:o
s, I'®[r:0lbM:o s, THFF:0—0o s, T'FM:o
s, I'FXx:o. M :0— o s,I'-FM : o’

Figure 1: Rules for assigning types to expressions of the nu-calculus

An expression is ircanonical formif it is either a name, a variable, one of the boolean
constantstrue or false, or a function abstraction. These are to be #aduesof the nu-
calculus, and correspond to weak head normal form in the lambda-calculus. An expression
is closedif it has no free variables; a closed expression may still have free names.

It is immediate that ifs,I" = M : ¢ holds then the type is unique. We define the sets

Exp,(s) = {M|s,0FM:0}
Can,(s) = {C|C € Exp,(s), C canonica}

of closed expressions and closed canonical expressions respectively, at amy aggdefor
any finite sets of names.

2.2 Operational Semantics

The operational semantics of the nu-calculus is specified by the inductively defined evaluation
relation given in Figure 2. Elements of the relation take the form

st M, (sC

wheres and s’ are disjoint finite sets of names/ € Exp,(s) andC € Can,(s @ s'). This
means that in the presence of nameshe expression\/ of type o evaluates to canonical
form C and creates fresh name's

The definition of Standard ML would suggest a relation of the farmM |, so, C,
meaning that in state,, expressionV/ evaluates to valu€’ in states,. We choose instead
the form above to highlight the fact that the only possible change of ‘state’ is the creation of
additional names.

The form of the rules shows the left to right order of evaluation. For example, with the
expressionV = N’, the rules (EQ1) and (EQ2) both evaluafebefore N’. The call-by-value
nature of the nu-calculus is captured by the choice of a strict (APP) rule; here the argument
M is evaluated to canonical fordl before being substituted in the body of the abstraction
Ax:o.M'.

CATEGORICAL MODELS FOR LOCAL NAMES

(CAN) sEC |, C

sk B, (s1)true s@s1 My (s2)C
(COND1) st if Bthen M else M' |}, (s1 @ s2)C
(COND2) st B, (s1)false s@ s EM |, (s2)C"

s if Bthen M else M' |, (s1 @ s9)C"

SFN“U’V (Sl)n S@SIFNI U’V (82)n
(EQD) st (N =N') U, (s1 D s9)true nes

sEN |, (s1)n s@si E N, (s9)n/

(EQ2) TF (V= N 1, (51 @) false n, n' distinct
s®{n} kM, (s1)C
(LOCAL) stFvn.M |, ({n}®s)C nés
sk F oo (s1)\v:0. M’ s@s1 My (s2)C
(APP) s®s1 B so - M[C/x] Yo (s3)C"

st FM Uy (516 82 s3)C"

Figure 2: Rules for evaluating expressions of the nu-calculus

6 IAN STARK

Occasionally, in applying these rules it is necessary to relabel bound names. For example,
to evaluate(vn.n = vn.n) we do not usé- vn.n = vn.n |, (n,n)true because it is not
well formed; new names have to be distinct, and this is enforced by the disjoint @nion
the (LOCAL) rule. Instead we relabel one of th& in order to obtairnt- vn.n = vn’.n’ |,
(n,n')false. As we have previously identified expressions uptoonversion, this is quite
legitimate, but perhaps surprising. The phenomenon is identical to the reduction of a term
such ag \y.Az.yz)z in the traditional lambda-calculus, where the bound occurreneehals
to be relabelled to allow

(A\yAzyz)r — Az.xz.

In principle, these difficulties can be resolved by using de Bruijn indices, but at the cost of
a considerably loss of clarity. In practice we simply avoid the problem wherever we can by
choosing sensible bindings to begin with.

The abbreviatiomew for vn.n was introduced earlier. This has the derived evaluation
rule:

(NEW)

st new ll, ({n})n nes

The rules (LOCAL) and (NEW) are entirely equivalent, and we could formulate the nu-

calculus withnew as primitive andvn.)M an abbreviation fo(An:v.M)new. Unfortunately

both of the formsvn.M and (An:v.M)new can blur the distinctions between a name, a

label bound to a name, and a variable of typeRather than resort to heavy meta-syntactic

machinery for a solution, we simply choose whichevenei# andvn.M seems appropriate.
Evaluation of nu-calculus expressions always terminates, and is deterministic up to choice

of new names (see [28], Lemma 2.1 and Theorem 3.3).

2.3 Observational Equivalence

The operational semantics gives rise to a notion of equivalence between nu-calculus expres-
sions, based on their behaviour when used in larger expressions. Informally, two expressions
are equivalent if they can be freely exchanged; there is no way in the language itself to
distinguish between them.

Define aprogramto be a closed expression of boolean type. All that we can observe
of a program is whether it evaluates toue or false; the creation of new names is not
directly observable. Aprogram contextP[—| is a program with zero or more occurrences
of a hole[—|. If M is some closed expression thétj)/] is the program obtained by
substituting) for every occurrence of this hole.

Definition (Observational equivalencdjor M, M, € Exp, (s), the assertion
skt M, ~, M,
means that for all program context§—| andb € {true, false},
dsy. (st P[Mi] o (s1)b) <= dsa.(st P[Ms] |, (s2)b).
When this holds, we say that/; and M, areobservationally equivalent

CATEGORICAL MODELS FOR LOCAL NAMES 7

In fact it is not necessary to consider all possible contéXts]; we need only pass
expressions to a booledest functionof the form (\z:0.B). This is Lemma 2.3 from [28],
and is a weak form of Milner's ‘Context Lemma’:

Theorem 1 (Context Lemma) Two closed expressions are observationally equivalent
st My =, M, if and only if for all b € {true, false} and all \z:0.B € Can,_,(s):

ds1.(sF (Ax:a.B)M; 4, (51)b) <= Fsy. (st (Ax:0.B)Ms |}, (s2)b).

Similar results have been found for other calculi. Gordon in his thesis shows that experimental
order coincides with contextual order for the languagé/ L [5, Section 4.4]. Mason and
Talcott [12] consider an untyped lambda-calculus extended with storage cells and show that
to establish operational equivalence it is enough to consider all ‘closed instantiations of use’
(ciu) of an expression.

Examples.

1. Observational equivalence is a congruence:Hf M, ~, M, and
s@®s [r:olFM 0 thens® s’ = M'[M;/x] =, M'[My/z].

2. If M € Exp,(s) andn ¢ s thens - vn.M ~, M.

3. If M eExp,(s®{n,n'})thenst vnwvn' .M ~, vn'.vn.M.

4. If s MY, (ny,...,ng)C thenst M =~, vny ...vn;.C.

5 [Ifs[z:0lF M:0o" andC € Can,(s) thens - (Az:0.M)C ~, M|[C/z].

The first of these follows from the definition of observational equivalence, and the remainder
from Theorem 1. The last is Plotkin’s call-by-valgg-equivalence [29]; the nu-calculus does
not satisfy generab-equivalence, for example:

6. F (Aziv.x = x)new %, (new = new). The left hand side reduces toue and the right
hand side tdfalse.

Local name declaration and function abstraction do not in general commute, as is shown by:

7. Fuvn.Azon %,., Ax:o.vn.n. These can be distinguished by the test function
Af:0 — v.(ftrue = ftrue).

Some more sophisticated examples of observational equivalence are:
8. Fuvnzw.(x =n)~,_, \r:w.false.

9. Fvnwn/ Afw —o.(fn=fn) Ru_o)—o Afiv — o.true.

8 IAN STARK

In this last example the boolean te/st = fn’ is an abbreviation for
if fnthen fn' else (if fn' then false else true).

The idea in (8) is that no external context can supply the private nansemilarly in (9) no
externally produced function can distinguish the private namesdn’.

It is however extraordinarily hard to make precise this notion of privacy, particularly
where higher-order functions are involved. The next case shows two expressions which at
first sight look to be observationally equivalent for the same reason as those in (9):

10. Fvn A fiv — own/ . (fn = fn') Zu_o)y—o A — o.true
These are distinguished byF:(v — 0) — o. F(A\x:v.F(Ay:v.x = y)).

The problem here is that although the name bound:teemains private, the function
Az:v. F(Ay:w.x = y) is able to distinguist from the fresh names successively bound:to

Another tricky example shows that it may be necessary to apply functions repeatedly in
order to distinguish them, without any private names being revealed.

11. - vnwn' Nf:v—o.if fn= fn
then (Ax:v.if © = n then true
else if x = n' then false
else fx)
else (A\z:v.true)
E—o)—(—o) N[1V — 0. f
These are distinguished by

AF:(v — 0) — (v — 0).F(F(A\zr:v.false))new.

What is happening here is that the two functions differ noticeably only on arguments of type
(v — o) that can distinguisl: from »n’. As both names are private, we cannot construct
such a function directly. However when we pass the first expression an argument that we
can construct, such dsz:v.false), we get back one that does distinguislirom »/, in this
case(\z:v.z = n). Although this is externally no different from what we started with (see
equivalence (8) above), it is a suitable argument to separate the two original expressions.

Up to observational equivalence, the only closed expressions obtgpetrue and false,
and the only closed expressions of typeare the names in the name context ando.
Higher types are more complicated; there are infinitely many operationally distinct closed
expressions of typér — v), as demonstrated by Example 2.5 of [28].

3 A Computational Metalanguage

As a first step towards a denotational semantics for the nu-calculus, we interpret it in a
typed metalanguage based on ttmmputational lambda-calculusf Moggi [17, 19, 26].

CATEGORICAL MODELS FOR LOCAL NAMES 9

The most important feature of this is that it distinguishes between values and computations;
for the nu-calculus, a computation will create some names and then return a value. This
separation makes explicit the order of computation, which in the operational semantics was
only implicit. It also allows equational reasoning, with the reintroductio @nd» axioms

at function types.

When we construct categorical models, the computational metalanguage will be their
internal language. Much of our calculation is done in this, rather than with commuting
diagrams.

Over the metalanguage we use an equational Horn clause logic. This matches the internal
logic of categorical models, and more abstract models validate more equalities. Alternatively,
we could use a variety of evaluation logic as described by Pitts in [26].

The interpretation of the nu-calculus in this metalanguage is both correct and adequate.
This means that it is suitable for reasoning about observational equivalence; indeed it is
complete at ground types.

3.1 Syntax of the Metalanguage

The types of the metalanguage mirror those of the nu-calculus:

A = Bool booleans
| Name names
| A— A functions
| TA computations

There is a unary type constructdy, if A is a type, then elements @fA are computations
of type A. In this particular metalanguage, the difference between values and computations
is that computations may generate new names before returning a value.

The term-forming operations of the metalanguage are

a = x variable
| | ff truth values
| cond(a,a,a) conditional
| eq(a,a) compare names
| new generate a new name
| A€ Aa function abstraction
| aa function application
| [a] value as trivial computation
|

let x<=ain a sequential computation

Function abstractionz:A.a binds the variabler in the terma, and sequential computation

let x<ein ¢’ binds the variabler within the terme’. We implicitly identify terms up tox-
conversion, which allows us to require substitutign’ /x| to be capture avoiding. A term is
closedif it has no free variables; there is no possibility of free names. As in the nu-calculus,
the only operation provided oName is the equality testg.

10 IAN STARK

—— (x:AeTl
FI—x:A(x) I' = new : TName I' = tt : Bool ' ff : Bool
I'En,n' : Name I'Eb: Bool 'ka,d:A
I'F eq(n,n') : Bool I'F cond(b,a,a’) : A
'Fa:A e:AFb: B
['Fla]: TA 'FXx:Ab:A— B
'ke:TA Mx:Abe A r-f:A—B I'Fa:A
['Fletx<=eine : TA 'k fa:B

Figure 3: Rules for assigning types to terms of the metalanguage

There are three forms of term involving computation. alis a value, therja] is the
trivial computation which simply returng. The sequential formiet x<ein e’ carries out
the computatiore, binds the result tac and then computeg’. These are both standard
constructions of the computational lambda-calculus. We have also the comstanbf
type T'Name which denotes the computation that generates a fresh name.

Type judgements of the metalanguage take the form

I'kFa: A

which asserts that in the presencelgfterma has typeA. Herel is a finite set of typed
variables; unlike the nu-calculus, there is no set of free names. The rules for forming
valid type judgements are given in Figure 3. We writer : A for the disjoint union

'@ [z : A], and the abbreviatioh' - a4,...,a, : A indicates that all of the judgements
I'ta;:A,...,I'a,: Ahold.

3.2 A Logic for the Metalanguage

We reason about terms of the metalanguage with an equational logic of Horn clauses. This
could be extended to a fuélvaluation logicwith modalities, but we shall manage without
this sophistication. If the type judgemeniis- a : A andI' - a' : A are valid then

F'a=d
is anequation in contexi’. A sequenis
IoF ¢

wherel is a finite set of typed variable$, is a finite set of equations in contektand ¢ is

a single equation in context. We derive sequents using the rules in Figure 4 together with
the usual rules for Horn clauses and equational logic, congruence rules for all term-forming
operations and, n axioms for functions.

CATEGORICAL MODELS FOR LOCAL NAMES 11

Computations:

Fe:TA F'Fa,ad: A
MONO 7
I'Fletz<=ein[z] =e () I'Fal =[d]tFa=d

'Fa:A I'x:AbFe:TB
'k let x<=[a] in e = e[a/x]

I'Fe:TA De:AkFe :TA Do Ake . TA”
I'F let o'<(let x<=eine') ine" = let x<=ein (let x'<=e’ ine")

Booleans:
T:db=tth¢ T:0,b=fFo D:dFtt = ff
T:®F o T:®F o
I'ka,ad:A F'Faa: A
L'k cond(tt,a,a') = a ['F cond(ff,a,a’) = a

Testing names:

I' - n: Name I'=n,n' : Name
['Feq(n,n) =tt [ieq(n,n')=ttkEn=n'
Generating names:
'kFe: TA

DROP : N r

() I'ke=letn<snewine (n ame ¢ T
(SWAP) | Lyn,n': Name Fe:TA | |

I'F let n<=new in let n’<=new in e = let n’<=new in let n<=new in e

(FRESH) I' -n: Name I,n': Name; @, eq(n,n') =ffFe=¢

[® F let n'<=new ine = let n’<=new in e’

Figure 4: Rules for reasoning in the metalanguage

12 IAN STARK

The rules in Figure 4 for computations are those described by Moggi for any computa-
tional lambda-calculus, and include the (MONO) rule, that the operétiotaking values to
computations is an inclusion. The rules for boolean values and the comparison of names are
straightforward; a derived property is that(—, —) is an equivalence relation.

The final three rules describe the behaviour of the computattan asserting that unused
names are ignored, the order of generating names is irrelevant, and new names are distinct
from all others. The choice of these particular rules is radgehog in their favour, we
argue that they are sufficient to carry through the interpretation of the nu-calculus, and there
are models to validate them. Stronger versions of the first two are

I'e: TA ke :TA
I'Fe=letz<=e ine
I'Fe:TA ke :TA Do :TA x :TA e : TA”

I'F let x<=ein let /<€’ ine” = let /<€’ in let x<=eine”

(DROP')

(x: A ¢T)

(SWAP)

These are not essential to model the nu-calculus, and would be false in a metalanguage
extended to handle store or exceptions, for example. Nevertheless, all the categorical models
to follow satisfy them.

An equivalent formulation of the last rule (FRESH) is

I',b: Bool,n' : Namete:TA I'=n: Name

FRESH .
() I'F let n’<=new in eleq(n,n’)/b] = let n'<=new in e[ff /b

The alternative candidate

I' =n: Name
I' F let n’<=new in [eq(n,n’)] = let n'<=new in [ff]

can be derived, but appears to be strictly weaker. In particular it is not strong enough
to complete the proof of Proposition 1, that the metalanguage correctly interprets the nu-
calculus.

3.3 Interpretation of the Nu-Calculus

We extend Moggi’'s interpretation of the simply-typed call-by-value lambda-calculus in the
computational lambda-calculus [17]. Translation of types is:

[o] = Bool
[v] = Name
[o =0l = o] = Tlo]

Function types use the constructy the application of a function may result in a computa-
tion, that is, the generation of new names.

There are two mutually defined schemes that translate nu-calculus expressions into terms
of the metalanguage. Figure 5 descriljeg for general expressions;-| for expressions in
canonical form, and—] for name and variable contexts. The interpretation respects types:

CATEGORICAL MODELS FOR LOCAL NAMES 13

Canonical forms:

x| = z
In| =
true| = tt

|truel

Expressions:

[CT = lic]]
[if B then M else M'] = let b<=[B] in cond(b, [M], [M'])
[N =N'] = letn<[N]inletn'<<[N']in[eq(n,n’)]
[vn.M] = let n<=new in [M]
[FM] = let f<[F]inlet m<[M]in fm
Contexts:
[s,T] = ny,...,ng: Name, 1 : [o1], ...,z : [oi]
wheres = {ng,...,n;}
' = [z1:00,...,2: 0

Figure 5: Interpretation of the nu-calculus in the computational metalanguage

14 IAN STARK

Lemma 1 For any nu-calculus expressiall, or expressiorC' in canonical form:

s,TFM:0 <= [s]F[M]:T[o]
s, 'FC:0 < [s,T]F|C]|:]o]

Proof By induction over the structure of the type judgement in the nu-calculus, using unique-
ness of types in the metalanguage. O

The translation isorrect with respect to the operational semantics of the nu-calculus: if
sk M |, (s')C then the termg] and [vs'.C] can be proved equal in the metalanguage,
under the assumption that all the names iare distinct. We first define the abbreviations

(#s) = {eg(niny) =f[1<i<j<k}
let '<=newine = letnj<newin...letn)<new ine

wheres = {ny,...,n;} ands’ = {n}, ..., n;}. The ordering of names from and s’ does
not matter, up to provable equality in the metalanguage. We can now state:

Proposition 1 (Correctness)If s = M |, (s')C is a valid evaluation judgement, then
[s]; (#s) = [M] = let s'<=new in [C]
is provable in the metalanguage.

Proof Proceeds by induction over the structure of the derivation of the evaluation judgement
sk M |, (s)C. We need to confirm that every rule in Figure 2 translates into a derivation
that is provable in the metalanguage. The details are routine and are omitted. O

3.4 Reasoning in the Metalanguage

The interpretation of the nu-calculus in the metalanguagadsquate which means that
we can use it to reason about observational equivalence. It is strong enough to validate
equivalences (2)—(5) of Section 2.3, and is complete at ground types. However, it is less
useful at higher types, and fails to confirm examples (8) or (9).

These results rely on the metalanguage being consistent: the eqguatios ff is not
provable. This is justified by the categorical models of Sections 5 and 6 wharel ff are
distinct.

To show that the metalanguage is adequate for reasoning about observational equivalence,
we use the characterisation given by Theorem 1, and the fact that evaluation in the nu-calculus
is deterministic and terminating.

Proposition 2 (Adequacy) Suppose that\/;, M, € Exp,(s) are expressions of the nu-
calculus and that we can derive

[s]; (#s) = [Mi] = [Ms]

in the metalanguage. Then the expressions are observationally equivateit; ~, M.

CATEGORICAL MODELS FOR LOCAL NAMES 15

Proof Suppose thatz:0.B € Can,_,(s) is some test function. Then there are evaluation
judgements
st (Az:0.B)M; |, (s;)b; i=1,2

for some name sets, s, and boolean$,, b,. By Proposition 1 and the compositionality of
the translatiorf—], we can reason
[s]; (#£s) F [|b1]] = let s1<new in [|61]]
= [(Az:0.B)M]
= [(Az:0.B)M,]
= let sy<=new in [|by]
= [[b2].

By the (MONO) rule
F|b1| = |be| = Bool

from which b, = b, and hences - M; =, M, as required. O

For closed boolean and name expressions the converse also holds; any observational
equivalence can be proved in the metalanguage:

Theorem 2 (Completeness at Ground Types)f ¢ is one of the ground type®, v} of the
nu-calculus and\V/,, M, € Exp,(s) are two expressions, then

sk M ~, My = [s];(#s)F [M] = [M].

Proof We take each type in turn. Suppose that= o, then there must be sonie
{true, false} such that
Sl_MZ ‘U’O (Sl)b 2:1,2

for suitable sets, s, of names. By Proposition 1, and repeated use of the (DROP) rule, we
can reason

[s]; (#£s) = [Mi] = let si<=new in [|b]]

= [lo]
= let sy<=new in [|b]]
= [M]

which gives the desired equality.
If o = v then there are two possibilities:

e There is some name € s such that
st M; |, (si))n i=1,2

for suitable sets, s, of names. The reasoning is then exactly as in the boolean case.

16 IAN STARK

e There is some name ¢ s and name sets,, s, such that
st M; I, ({n} @ s)n i=1,2.
Using Proposition 1 and (DROP) we derive

[s]; (#s) F [Mi] = let n<=new in let s,<=new in [n]
= let n<=new in [n]

= let n<=new in let sy<=new in [n]

= [Ms].

In all cases, observational equivalence implies provable equality in the metalanguage.

4 Modelling the Nu-Calculus Categorically

It is standard that the simply-typed lambda-calculus can be modelled in any cartesian closed
category, with objects for types and morphisms for terms [9]. Moggi extends this to a model
of the computational lambda-calculus in any cartesian closed category equipped with a strong
monad7 [19]. We specialise to the particular case of the computational metalanguage for
the nu-calculus, using the technique outlined in Section 4 of [28].

The method is that if a catego€ysatisfies certain requirements theniiternal language
will include the metalanguage, and so provide a model of the nu-calculus which is sound
with respect to the operational semanticsC Ifis not degenerate then the translation is also
adequate, and the category can be used to reason about observational equivalence. This
will be at least as powerful as the basic metalanguage; in particular reasoning i@ $sich
complete for observational equivalence at ground types. Of course the intention is that a
suitable choice of category might prove more than the metalanguage alone.

This is themonadicapproach to denotational semantics. Like the computational meta-
language, its chief advantage is the separation of values from computations. The Thonad
encapsulates the notion of computation; in the case of the nu-calculus, this is the action of
generating new names. The remainder of the model can then be constructed without special
regard to the nature of computation. In particular, the usual products and exponentials are
sufficient to model contexts and functions respectively.

4.1 Requirements for a Categorical Model

A categoryC is suitable to model the metalanguage of Section 3 if the following conditions
are satisfied:

e It is cartesian closed. This gives products for contexts and exponentials for function
types.

CATEGORICAL MODELS FOR LOCAL NAMES 17

e It has astrong monadl’, used to interpret the computation types. This can be described
as a endofunctof’ : C — C together with aunit natural transformatiom : 1 — 7" and
a lift operation taking a morphisrfi: A x B — TC to f*: Ax TB — C. The lift
operation must be natural and satisfy

(nposndap)” = sndargs
f*o(ida x np) f
g olfstarg, f7) = (g5o{fstap f))

wheneverf : Ax B — TC andg : A x C — TD. These correspond precisely

to the computation rules folet in Figure 4. The lift operation for a strong monad

is a generalisation of that for a Kleisli triple, a particular presentation of an ordinary
categorical monad. The generalisation is necessary to carry around contexts of let-
expressions, as Moggi explains in [19, Remark 3.1].

A strong monad can also be presented as a moiiag, 1) together with natural maps
tap:AxTB — T(Ax B). Heren : 1 — T andp : T? — T are the usual natural
transformations for a monad, and thigengtht 4 5 must satisfy certain equations. Moggi
gives a detailed explanation of this, and further comments on the characterisation of
strong monads in [19, Definition 3& seq].

e The monadl satisfies thanono requirementthat alln, : A — T A are monic. This
corresponds to the (MONO) rule of Figure 4.

e The coproductl + 1 of the terminal objectl with itself exists and iglisjoint, meaning
that the square

1

0
s
1

m 1+1

is a pullback. Heret andff are the left and right inclusion maps. This is used to model
the type of booleans; given thétis cartesian closed, we can define for each ohjeet
morphism

condy = evalo ([curry(fsty 4), curry(snda a)] X idaxa)
1+1)x(AxA) — A

to interpret the conditional.

e There is a distinguished objeéf, used to interpret the type of names. This must be

18 IAN STARK

decidable which requires a morphisrey : N x N — 1+ 1 such that

N-A.NxN

€q

is a pullback square, wherd is the diagonal map. The morphisag interprets the
equality test on names. In the internal languagé,ahe pullback condition corresponds
to the rules for testing names in Figure 4.

e There is a distinguished morphismew : 1 — T'N such that for any morphisms: A —
TB,g: AxNxN—TBandh: Ax(1+1)x N x N — TB the following equations
in the internal language af are satisfied:

a:A F letn<snewin f(a) = f(a)
a:A F letn<newin (let n'<new in g(a,n,n’))
= let n'<=new in (let n<=new in g(a,n,n’))
a:An:N F letn'<newinh(a,eq(n,n’),n,n')
= let n’<=new in h(a, ff,n,n’)
It is clear that these are simply the rules for generating names of Figure 4, with the
alternate form (FRESH We could express them by commutative diagrams asserting the

equality of certain morphisms i, but their essence becomes lost in a mass of variable
manipulation.

The first two of these equations hold automatically if the moihad respectivelyaffine
and commutativethese are notions due to Kock [7, 8]. A strong monad is affine if

for all objects A, B; equivalently, ifn; : 1 — T'1 is an isomorphism. It is commutative
if the two natural maps fromi’A x TB to T(A x B) are equal:

(Maxp © twrp,.a)® o twrare = ((Naxp © twp,.a)* © twra,p)”.

Heretwxy : X xY — Y x X is the twist map. These stronger conditions correspond
to the rules (DROP) and (SWAP) for the metalanguage.

4.2 Construction of a Categorical Model

Suppose that we have a cartesian closed categowith a disjoint coproductl + 1, a
strong monad” satisfying the (MONO) condition, a distinguished decidable objéand a
distinguished morphismew : 1 — T'N satisfying the necessary equalities. Interpreting the
metalanguage, and hence the nu-calculug, is quite standard.

CATEGORICAL MODELS FOR LOCAL NAMES 19

Types of the metalanguage are interpreted by objects of the cate@ory:by 1 + 1,
Name by N, function types by exponentials, and computations using the strong nidnad
A contextI’ = {z; € Ay,...,x, € A,} is interpreted by the produét= A; x --- x A,. A
term in context is interpreted by a morphism:

'Fa:A +— a:1 — A.

The derivation of such a morphism uses the rules on the right of Figure 6, which match those
on the left for terms of the metalanguage. An equation in context is interpreted by equality
of morphisms:

'Yra=d:A — a=d:T— A

The sequent
liay=a): Ay,...;ap=0a,: A, Fa=d: A

is interpreted by equality of the morphisms

FE = r A aoe=a oe

al

wheree : F — T’ is the simultaneous equalizer of all the equations on the left hand side:

Ay

S
Q
s~

Under this embedding the conditions Grcorrespond exactly to the rules of Figure 4 for
reasoning in the metalanguage; so any equation provable in the metalanguage will ®old in
As a result, any non-degenerate model demonstrates that the metalanguage is consistent.

Combining the two translations, we obtain a modelCirof the nu-calculus. For each
valid typing assertio, I' = M : o this gives a morphism

[M] Nlsl % [l'] — T[e] where [I'] = H [o:].

zio, €l

For an expressiod' in canonical form this morphism factors through [o] — T[¢] and
there is

IC|: Nl x [I] — [¢] with [C] = et © |C.

Here N*l is the object of|s|-tuples of names. We define the subobjégts) — NI of

20

'Fz: A

T — A

IAN STARK

(x:Ael)

'+ new : T Name

I'F ¢t : Bool

r 1" 7N

r——1-%141

'+ ff : Bool

I'En,n': Name

F—!>1i>1+1
n:I' = N

I'F eq(n,n') : Bool

I' b : Bool F'Fa,a: A

n: T —= N
T N N4 141

b: ' —=1+1 a:I'—=A o :T— A

['F cond(b,a,a’) : A

T2 (14 1) x Ax A% A

'Fa:A a:T'— A
['kla: TA I % A2 74
I'Fe:TA Ie:AkFe A e:I' - TA e :T'xA—-TA
' letx<=eine : TA FMFXTAQTA/
I'zx:AFb: B b:I'xA— B

I'FXx:Ab: A— B

'-f:A—B 'Fa:A

't fa:B

Figure 6: Rules for constructing morphisms to interpret terms of the metalanguage

curry(b) : I' — BA
f:T — BA a:I' - A
(f,a)

F—>BA><A1M>B

CATEGORICAL MODELS FOR LOCAL NAMES 21

distinct |s|-tuples as the simultaneous equaliser of all the pairs

eq © (mi, ;)
Nl 1+l 1<i<j<]s).
ffo!

In the internal language, this corresponds to the conjunction

1 N,ox NE N (e, z;) = ff).

1<i<j<|s|

We then define the composite morphisms:

[M]

(Ml = ((#5) = N ELTI]) 0 € Bxp ()
Clas = ((#9) = N D [o]) Cecan(s).

The results of Section 3 now carry over to this categorical model:

Proposition 3 (Correctness)If s = M |, (s")C is a valid evaluation judgement then
[M] 25 = [vs".Clss.
Proof Follows from Proposition 1. O

Proposition 4 (Adequacy) Suppose that the catego6y is non-degeneraten that 0 2 1.
Then for all M;, M, € Exp,(s):

[Mi)zs = [Ma]zs = s, T'F M ~, M.
Proof Exactly as for Proposition 2. O
Theorem 3 (Completeness at Ground Types)f o € {o,v} and M, M, € EXp,(s) then
sEM ~, My = [M]zs = [M:]ss.
Proof Follows from Theorem 2. O

So a non-degenerate categorical model can be used to prove observational equivalences
of the nu-calculus. The more that can be shown, the natistracta model is. It isfully
abstractif the result of Theorem 3 holds at all types More modestly, a model may be
fully abstract for some restricted set of types or expressions. Any adequate categorical model
will validate at least the equivalences (2)—(5) of Section 2.3.

In the case of languages like PCF, the difficulties in finding fully abstract models are
to do with characterising sequentiality, and arise through ingenious use of non-termination.
Because evaluation in the nu-calculus always terminates, the same problems do not occur.
Full abstraction is still a hard problem, but in different ways, to do with the privacy of names.

22 IAN STARK

5 The Functor Category Set”

In this section we describe our first example of a category suitable to model the nu-calculus.
Although it is not particularly abstract, the existence of the category does prove that the
metalanguage is consistent, and justifies using it to reason about contextual equivalence
(Proposition 2 above). The construction is based on Moggi’'s model of dynamic allocation
from [18, §4.1.4], and is also related to thmossible worldsmodels of Reynolds, Oles,
Tennent and O’Hearn.

We take the categorget” of functors and natural transformations betwðe category
of finite sets and injections, arktt, the category of sets and functions. Objectg oépresent
stages of computatigrihat is, what names have been declared. We shalk us®l variants
to stand for objects af, and the symbol+’ for their coproduct. For a functod : 7 — Set,
the setAs is composed of values defined over the names. ilMorphisms inZ and their
images inSet correspond to name substitutions.

It is standard that this category is cartesian closed. Finite limits and colimits are taken
pointwise; for example, the object of booleans 1 is the constant functor to a two-element
set. If A, B : 7T — Set are functors then their exponent is defined:

BAs = Set’(I(s,—)x A, B) s, s, el
BAfps"(i,a")y = ps"{io f,a") f:s—s pecBls
i:s—s" d'eAs.

As well as this standard construction of exponentials, the particular choice of index cafegory
means that there is an equivalent and simpler way to compute the object part of the functor:

Bs = Set*(A(s +), B(s +).

So a function fromA to B defined at stage includes data on how it behaves at all later
stages. Naturality places some bounds on what this behaviour can be.

The monad is a colimit of shage. We use the coproduct functer : 7 x Z — 7 and
takeT to be the composition

~ lim

+ p— —_—
Set SetT*L —— (SetI)I Sett.

Set?
Explicitly, on objects it is the quotient
TAs = {(s',d) | s €Z,d € A(s+ ')}/ ~

where(s;,a;) ~ (s, as) if and only if for somes, there are injective functiong : s; — s
and f, : sy — so With A(id, + f1)ay = A(id, + fo)as in A(s + s0). We write [¢/,d] to
represent the equivalence class(gf a’). This element is the computation ‘create the new
namess’ and return value:””, and quotienting by the relation~” ensures that the (DROP)
and (SWAP) rules for names hold true.

CATEGORICAL MODELS FOR LOCAL NAMES 23

The remaining parts of the monad are as follows.fIf s — s” in Z then the map
TAf:TAs — TAs" is
TAf[s',ad'] = [¢, A(f + idy)d] a e A(s+).

If p: A — B is a morphism inSet?, thenTp : TA — T B is the natural transformation with
mapsT'ps : TAs — T Bs given by

Tps[s',a'] = [s,p(s+ s')d].

The unit of the monad, : A — T'A has componentg,s : As — T As for eachs € 7 given
by
nasa = [0, a a € As.

A morphismqg : A x B — TC has lift¢* : A x TB — TC whose component maps
q*s: As x TBs — T(C's are

q*sla,[s',b]) = [§ + 5", Ve B(s+ s
where
s, "] = q(s+ §')(A(inls¢)a,b) eC(s+s+45").

Finally, the natural transformatiqn: 72 — T and strength maps, 5 : AxTB — T(Ax B)
are described by

/,I/ASI:SI’ I:S//’a///]] — [Sl _|_ S//7 a///:l a// E A(S + S/ + S//)
taps(a, [sV]) = [¢ (A(inlsy)a,b)].

These are all well defined regardless of choice of representative, and satisfy the appropriate
equalities. In addition the monad is both affine and commutative.

We take the object of name¥ to be the inclusion functofZ — Set. The morphism
eq: N x N — 1+ 1 is simple equality at all stages. New names are generated by

news = [1,inrs1] € TNs
which satisfies the necessary equations.
Thus the categonget” fulfils all the conditions of the previous section, and the interpre-

tation described there gives morphisms:

(Ml (£5) = Tlo] M € Exp,(s)
Cla: (#5) = Io] CeCany(s)

It happens that the objectts) in Set” is isomorphic toZ(s, —), and we may apply the

24 IAN STARK

Yoneda Lemma to obtain elements:
[M].s € T[o]s and |Clx € [o]s.

These are generally easier to work with, and the results of Section 4.2 still hold when stated
in terms of elements rather than morphisms. Regarding the examples of Section 2.3, this
model confirms the basic equivalences (2)—(5), but not (8) or (9) which use private names.

6 A Model using Logical Relations

The papers [27] and [28] describe an operational method for proving observational equiv-
alence using binary relations similar to logical relations. We now construct a denotational
equivalent, using a notion of categories with relations based on that in [24]. This model is
more abstract than the one $t?, and is fully abstract for ground and first order types.

6.1 Categories with Relations

A category with relationg24] is a category with certain additional structure. As well as
objects and morphisms, it has a collection of binaglations between pairs of objects,
represented? : A — B, andparametric squaresf the form

f

A A

R R

/
B—5—B
whereR, R’ are relations andf, g are morphisms. Relations, like morphisms, are simply ab-
stract data; they need not stand for set-based relations, though that is obviously the motivating
example.

Parametric squares should compose horizontally with identity

and there should be a distinguished identity relation : A < A for each object.

Suppose thaf andD are categories with relations. parametric functorF : C — D is
a functor on the underlying categories together with a map on relation®.: I < B is a
relation inC then 'R : FFA «— F'B should be a relation irD, with Flidy = idps, and F
must take parametric squares to parametric squares.

CATEGORICAL MODELS FOR LOCAL NAMES 25

Suppose that',G : C — D are two parametric functors. parametric natural transfor-
mationt : F' — G is a natural transformation on the underlying categories such that for any
relationR : A — B of C the square

tA

FA GA

FR GR
FB W GB

IS parametric.

6.2 The Parametric Functor CategoryP

We can now rebuild the modedet” in a parametric setting. We take the index category
7 of finite sets and injections as before. A relati@n: s; < sy on Z consists of a finite
set R and a pair of injections; «+— R — s,. This is sometimes called spanor a partial
bijection The coproduct+’ on Z extends to relations: iR : s; <> sy and R’ : s} < s, then
R+ R : 51+ 8] < sy + s,. A square inZ is parametric

s f1 s, Sf — ST’l

R R’ if and only if both squares in R — R’ are pullbacks.
A Lo
2 S2 — Sy

This is a stronger condition than just requiring it to commute as a square of relations. For
the ground category we takeet with ordinary binary relations and squares parametric

f

A A

/ if and only if
R R Vac Abe B.(a,b)e R = (fa,gb) € R.

!/
B—3—B
We then take the ordinary categoR of parametric functors and parametric natural trans-
formations fromZ to Set. As before objects of represent stages of computation, and if
AT — Set is a parametric functor then elementsA$ are values defined over the names
in s.

The categoryP is cartesian closed. Finite limits and colimits are taken pointwise: the
object of booleans is the constant parametric functor to the two-elementtsettaking all

relations toid,,;. Thanks to a relational version of the Yoneda Lemma, exponentials are

26 IAN STARK
defined by
Bs = Set’(I(s,—)x A,B) s,s',s"eT
BAfps"(i,a”y = ps"{iof,d") f:s—s peBis
i:8 —s" d e As”
(p1,p2) € BAR <= 51,89 €L p € B4s,

for all parametric squares

R381<—>82 pQEBASQ

and elements) € As!, a, € Asj itis true that
(a1, a3) € AR = (p151(f1,01), p255(f2, a5)) € BR'.

As with the model inSet”, there is a simpler form for the object part of the exponential:
BAs=P(A(s+.),B(s+.)).
We define the monad explicitly. On objects it is the quotient
TAs = {(s',d') | s €Z,d € A(s+ ')}/ ~

where (s1,a1) ~ (s2,as) if and only if there is someR : s; <« s, such that(ay,as) €
A(ids + R). The relation~ is not necessarily transitive. We tak€, '] to represent the
equivalence class d¥’, a’); as before, this denotes the computation ‘create the new ngmes
and return value,”.

The remaining details of the monad are specified exactly as fofdtfemodel. The only
addition is that ifR : s; <« s in Z then the relatioiV’ AR : T As; « T As, is given by

(e1,e0) ETAR <= dR :s| < sy, a) € A(s1+s)),ah € A(sy + s5) .
e1 = [s), 0] & €3 = [s5, a5] & (a, a5) € A(R+ R)

wheree; € TAs; ande, € T'As,. Again the resulting strong mondd is both affine and
commutative.

The object of name#/ is the parametric inclusion funct@r — Set, andeq : N x N —
1+ 1 is equality at all stages. Fresh names are produced by

news = [1,inrs] € TNs.

As with the model in the functor categor§et’, we can interpret closed expressions
M € Exp,(s) andC € Can,(s) either by morphisms

[M]ss: (#s) = Tlo] and [Cle : (#s) — [o]

or elements

[M] s € T[o]s and |Cly € [o]s

CATEGORICAL MODELS FOR LOCAL NAMES 27

using a version of the Yoneda Lemma adapted for categories with relations.

Although many of the details above are given precisely as for the modgt#h the
relational structure makes an important difference. Function spaces are smaller, and more
computations are identified i As, with the consequence that more observational equiva-
lences of the nu-calculus can be proved.

6.3 Properties of the model inP

The model of the nu-calculus in the categ@ys adequate and validates equivalences (2)—(5)
and (8), but not (9), of Section 2.3. It is fully abstract for types up to first order:

Theorem 4 (Full Abstraction at First Order Types) If o is a ground or first order type
and M, M, € Exp, (s) then:

st M =, My = [M]s = [Ms] .

Proof Exactly as for Theorem 22 of [27]. Alternatively, we can show a correspondence
between the operational relation of [27] and the relational structuf@, efith this result as
a corollary. O

So the model ir? can be used to validate all observational equivalences involving types up
to first order. As a demonstration we consider example (8) of Section 2.3 which concerns
the equivalence

Fuvndxv.(x =n) x,_, \r:v.false.

The two expressions are interpretedAnby

[vndzv.(z=n)] = [{n}, \e:N.[eq(z,n)]]

[Ax:v.false] = [0, Az:N.[false]] } €T(N —T(1+1))0.

If R:{n} < 0 isthe empty relation then
(Ax:N.[eq(z,n)], \x:N.[false]) € (N - T(1+1))R
and so
[vn Az (x =n)] = [Avw.false] € T(N — T(1+1))0
which gives the desired observational equivalence.

7 Related Work

There has been considerable study of ‘Algol-like’ languages which combine local variables
and block structure with higher-order functions in a call-by-name semantics. Meyer and
Sieber [14] describe a selection of the difficulties that arise. These differ from the nu-
calculus examples of Section 2.3, chiefly because of the contrast between call-by-value and
call-by-name styles of parameter passing. For example, a call-by-name nu-calculus would

28 IAN STARK

only need name abstraction at ground types. However, some of the techniques used do
carry across: in particular, the use of functor categories comes from the ‘possible worlds’
model originated by Reynolds [31] and followed up in [25], [23] and [10]. Categories with
relations were used for Algol-like languages by O’'Hearn and Tennent [24], and Sieber’s
(non-categorical) models, in [32] and most recently [33], also use relations.

Mason and Talcott have developed operational methods for reasoning about LISP pro-
grams, in [12], [13] and, with Honsell and Smith, in [6]. They consider an untyped language
with call-by-value semantics and dynamically generated mutable cells. There are substantial
example proofs of program equivalences in [11], though the techniques described are gen-
erally restricted to the language without higher order functions. Mason’s notictrarig
isomorphismcompares with equational reasoning in the metalanguage of Section 3 above.

Felleisen and others have added variable assignment to the call-by-value lambda-calculus,
in [3] and [4]. They present a syntactic, equational theory for the lambda-calculus, and show
that it can be extended with certain axioms for reasoning about state.

Odersky has developed a theoky that extends the lambda-calculus with a binding
construct for local names [20], and proves that the theory of observable equivalexcésin
a conservative extension of that for the lambda-calculus. Syntactically this language appears
similar to the nu-calculus; differences are thatis untyped and has a call-by-name reduction
strategy, with the possibility of ‘stuck’ terms. So, taking example (6) of Section 2.3y in
the expressio{Az.x == z)(vn.n) reduces first tarn.n == vn.n and is then stuck; the
equivalent nu-calculus expression evaluateg-te. Odersky works around the limited scope
of names by using a continuation-passing style of programming. Despite these differences, it
seems likely that a typed version d# could be interpreted in the metalanguage of Section 3,
usingo — o] = T'|o] — T'[0’] to capture the call-by-name behaviour at function types.

8 Conclusions and Further Work

Categorical monads can be used to construct sound and adequate models for the nu-calculus,
a language that extends the simply-typed lambda-calculus with dynamically generated names.
The use of a computational metalanguage as an intermediary helps to separate the general
mechanism of constructing a model from the particular difficulties of the nu-calculus.

The model described in Section 5 provides a denotational semantics for the nu-calculus
and validates reasoning in the metalanguage. The cat@yofySection 6.2, using categories
with relations, gives a more abstract denotational model.

A fully-abstract denotational semantics for the nu-calculus still seems a reasonable aim;
after all, there are no difficulties with non-termination. O’Hearn and Riecke [22] have been
able to use logical relations of varying arity to build a fully-abstract model of PCF, and it
may be possible to extend this to the nu-calculus.

A related issue is whether the theory of the metalanguage can be made complete for
reasoning about observational equivalence. One route to this would be the construction of
a categorical model from the syntax of the nu-calculus itself, in the style of [15]. However
there are difficulties, most notably the need for equalizers in the category, and the matter is

CATEGORICAL MODELS FOR LOCAL NAMES 29

not yet settled.

The requirements of Section 4, for a category to model the nu-calculus, say nothing about
which features are forced by the others. For example, it may be that given a cafegdty
a strong monad’, the object of name®/ and morphismnew can be characterised by some
universal property. This would be similar to a natural numbers object for a category, which
if present is unique up to isomorphism [9]. No such description is known yet.

The definition of the monad’ for the parametric functor categof of Section 6.2 is
strikingly similar to the proof rule of [30] for existential types in System F. Indeed they
do have a common origin in Reynolds’ notion of ‘relational parametricity’, but a closer
connection is given by a direct interpretation of the nu-calculus in System F. Details will
appear elsewhere; the method is similar to the translation into a computational metalanguage,
with certain existential types replacing the constru@toiThis is independent of the work of
O’Hearn and Riecke [21], who use polymorphism to interpret similar behaviour in Algol-like
languages; nevertheless, it seems likely that some correspondence can be made.

Another direction for future work is to extend the nu-calculus to a ‘store calculus’
allowing the dynamic creation of typed storage cells. This would more fully describe the use
of references in Standard ML. The same scheme of a computational metalanguage might be
used, and the existing categorical models could be suitably enhanced.

Acknowledgements

Andy Pitts and Eugenio Moggi gave much advice on the methods used here, and Bob Tennent
explained how they relate to his models of Algol-like languages. The anonymous referees
prompted several adjustments to make the explanations clearer.

References

1. S. Abramsky. The lazy lambda calculus. In D. Turner, ediR@search Topics in Functional Program-
ming, pages 65-117. Addison Wesley, 1990.

2. H.-J. Boehm.A Logic for the Russell Programming LanguagehD thesis, Cornell University, Ithaca,
New York, February 1984. Also published as Technical Report 84-593.

3. M. Felleisen and D. P. Friedman. A syntactic theory of sequential stéeoretical Computer Science
69:243-287, 1989.

4. M. Felleisen and R. Hieb. The revised report on the syntactic theories of sequential control and state.
Theoretical Computer Scienc&03:235-271, 1992.

5. A. D. Gordon.Functional Programming and Input/OutpuPhD thesis, University of Cambridge, August
1992. Also published as Technical Report 285, University of Cambridge Computer Laboratory.

6. F. Honsell, I. A. Mason, S. Smith, and C. Talcott. A variable typed logic of effects. Submitted to
Information and Computatignl993.

7. A. Kock. Monads on symmetric monoidal closed categorfgshiv der MathematikXXI:1-10, 1970.
8. A. Kock. Bilinearity and cartesian closed monadiéathematica Scandinavic®29:161-174, 1971.

9. J. Lambek and P. J. Scotintroduction to Higher Order Categorical Logic Cambridge Studies in
Advanced Mathematics 7. Cambridge University Press, 1986.

30

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

IAN STARK

A. F. Lent. The category of functors from state shapes to bottomless CPOs is adequate for block
structure. InSIPL '93 [34], pages 101-119.

I. A. Mason.The Semantics of Destructive LigphD thesis, Stanford University, 1986. Also published as
CSLI Lecture Notes Number 5, Center for the Study of Language and Information, Stanford University.
I. A. Mason and C. Talcott. Equivalence in functional languages with effelttarnal of Functional
Programming 1(3):297-327, July 1991.

I. A. Mason and C. Talcott. Inferring the equivalence of functional programs that mutatel lataetical
Computer Scien¢el05:167-215, 1992.

A. R. Meyer and K. Sieber. Towards fully abstract semantics for local variables: Preliminary report. In
Conference Record of the Fifteenth Annual ACM Symposium on Principles of Programming Languages
pages 191-203. ACM Press, 1988.

R. Milner. Fully abstract models of typedcalculi. Theoretical Computer Sciencé:1-22, 1977.

R. Milner, M. Tofte, and R. HarpeiThe Definition of Standard MLMIT press, 1990.

E. Moggi. Computational lambda-calculus and monads.Prioceedings of the Fourth Annual IEEE
Symposium on Logic in Computer Scienpages 14—-23. IEEE Computer Society Press, 1989.

E. Moggi. An abstract view of programming languages. Technical Report ECS-LFCS-90-113, Laboratory
for Foundations of Computer Science, University of Edinburgh, April 1990.

E. Moggi. Notions of computation and monadistormation and Computatigr93(1):55-92, July 1991.

M. Odersky. A syntactic theory of local names. Research Report YALEU/DCS/RR-965, Yale University,
May 1993.

P. W. O'Hearn and J. G. Riecke. Fully abstract translations and parametric polymorphiBnogtam-

ming Languages and Systems — ESOP, 'Bdcture Notes in Computer Science 788, pages 454-468.
Springer-Verlag, 1994.

P. W. O’'Hearn and J. G. Riecke. Kripke logical relations and PCF. Submittédfdomation and
Computation June 1994.

P. W. O'Hearn and R. D. Tennent. Semantics of local variablesAgdplications of Categories in
Computer SciengeLondon Mathematical Society Lecture Note Series 177, pages 217-238. Cambridge
University Press, 1992,

P. W. O'Hearn and R. D. Tennent. Relational parametricity and local variables (preliminary report). In
Conference Record of the Twentieth Annual ACM Symposium on Principles of Programming Languages
pages 171-184. ACM Press, 1993.

F. J. Oles. Type algebras, functor categories and block structure. In M. Nivat and J. Reynolds, editors,
Algebraic Methods in Semanticpages 543-573. Cambridge University Press, 1985.

A. M. Pitts. Evaluation logic. InVth Higher Order Workshop, Banff 199@0Vorkshops in Computing,
pages 162-189. Springer-Verlag, 1991. Also published as Technical Report 198, University of Cambridge
Computer Laboratory.

A. M. Pitts and |. Stark. Observable properties of higher order functions that dynamically create local
names, or: What'siew? In Mathematical Foundations of Computer Scigncecture Notes in Computer
Science 711, pages 122-141. Springer-Verlag, 1993.

A. M. Pitts and I. Stark. On the observable properties of higher order functions that dynamically create
local names (preliminary report). ISIPL '93 [34], pages 31-45.

G. Plotkin. Call-by-name, call-by-value and thecalculus. Theoretical Computer Sciencé:125-159,

1975.

G. Plotkin and M. Abadi. A logic for parametric polymorphism. Typed Lambda Calculi and
Applications Lecture Notes in Computer Science 664, pages 361-375. Springer-Verlag, 1993.

J. C. Reynolds. The essence of Algol. Afgorithmic Languagespages 345-372. North Holland,
Amsterdam, 1981.

K. Sieber. New steps towards full abstraction for local variablesSIRL '93 [34], pages 88-100.

CATEGORICAL MODELS FOR LOCAL NAMES 31

33. K. Sieber. Full abstraction for the second order subset of an Algol-like language (preliminary report).
Technical Report A 01/94, Univerait des Saarlandes, Saartken, January 1994.

34. Proceedings of the ACM SIGPLAN Workshop on State in Programming Languages, Copenhagen, Den-
mark, June 12, 1993Research Report YALEU/DCS/RR-968, Yale University Department of Computer

Science, 1993.

