
Appears inLISP and Symbolic Computation9(1):77–107, February 1996

Categorical Models for Local Names

Ian Stark∗

University of Cambridge Computer Laboratory
Ian.Stark@cl.cam.ac.uk

July 1994

Abstract

This paper describes the construction of categorical models for thenu-calculus, a language
that combines higher-order functions with dynamically creatednames. Names are created
with local scope, they can be compared with each other and passed around through function
application, but that is all.

The intent behind this language is to examine one aspect of the imperative character
of Standard ML: the use of local state by dynamic creation of references. The nu-calculus
is equivalent to a certain fragment of ML, omitting side effects, exceptions, datatypes and
recursion. Even without all these features, the interaction of name creation with higher-order
functions can be complex and subtle; it is particularly difficult to characterise theobservable
behaviour of expressions.

Categorical monads, in the style of Moggi, are used to build denotational models for
the nu-calculus. An intermediate stage is the use of a computational metalanguage, which
distinguishes in the type system between values and computations.

The general requirements for a categorical model are presented, and two specific exam-
ples described in detail. These provide a sound denotational semantics for the nu-calculus,
and can be used to reason about observable equivalence in the language. In particular a
model using logical relations is fully abstract for first-order expressions.

1 Introduction

Programming languages that combine higher-order functions and state create certain diffi-
culties for traditional methods of semantics and reasoning about programs. For operational
semantics, the presence of state means that simple methods for analysing observational
equivalence in purely functional languages break down. For example Milner’s ‘Context
Lemma’ [15] becomes invalid and the technique of applicative bisimulation [1] is no longer
complete. For denotational semantics, there are difficulties of abstraction. Models may give

∗Supported by UK SERC studentship 91307943 and CEC SCIENCE project PL910296.

1

2 IAN STARK

different denotations to expressions that areobservationally equivalent; that is, they can re-
place each other in a program without affecting its result. This happens even in the absence
of non-termination, which is well known to cause similar problems.

Our particular concern is to strengthen methods for reasoning about the programming
language Standard ML [16]. This is a typed language with higher-order functions as first-class
values and a call-by-value semantics. Among other features, expressions can dynamically
create typedreferences, which are private mutable storage cells. The use of call-by-value
semantics means that a reference may be shared by several functions, or by successive
invocations of the same function (as with ‘own’ variables in Algol).

We want to highlight the effects that arise purely from locality of state, ignoring other
features such as side effects, exceptions and non-termination due to recursion. To do this we
work with a language called thenu-calculus. This is a typed call-by-value lambda-calculus
extended with the notion of aname; names can be created, passed around and compared with
each other. They correspond to values in ML of typeunit ref, cells that can only contain
the value(). Higher-order functions and booleans are also available, but functions cannot
be defined recursively. The nu-calculus is described in Section 2. We give an operational
semantics taken from that of Standard ML [16] and derive a suitable notion of observational
equivalence, together with several examples.

It might reasonably be expected that a language as bare as the nu-calculus would easily
admit fully-abstract models and simple, complete reasoning methods. As has been shown
elsewhere, in [27] and [28], this is not the case. The particular interaction of dynamically
generated names with a call-by-value semantics leads to some subtle behaviour, so that the
scope and visibility of names is not easily tracked by traditional techniques. In this earlier
work there is an operational method for proving observational equivalence, using a variant
of logical relations. Here we look at denotational methods through categorical models,
expanding on the brief sketch in Section 4 of [28].

We follow Moggi [19] in using categoricalmonadsto encapsulate a notion of computation
appropriate to the nu-calculus. Section 3 introduces acomputational metalanguagefor
the nu-calculus, which distinguishes in its type system between the denotations of values
and of computations. An associated equational logic permits some simple reasoning about
observational equivalence. Using this logic we can state conditions for a sound and adequate
interpretation of the nu-calculus (Figure 4). In Section 4 we turn these into requirements for
a categorical model, and describe how the nu-calculus can be interpreted in any category that
satisfies them. This two stage technique of

nu-calculus−→ computational metalanguage−→ category with strong monad

makes the construction simpler and allows us to build more than one categorical model on
the same foundations. Both parts are significant: the metalanguage serves as the internal
language of the category, while the existence of categorical models proves the consistency of
the metalanguage. This method is also extensible; if we wish to replace the nu-calculus with
a larger fragment of ML, then we need only adjust the notion of ‘computation’. Of course,
finding the correct adjustment, and models that satisfy it, is not trivial. But the framework
remains the same.

CATEGORICAL MODELS FOR LOCAL NAMES 3

Sections 5 and 6 present two examples of categories that model the nu-calculus. The first
is a functor categorySetI, which captures the basic properties of dynamic name creation.
The second refines this, using categories with relations, to give a model that is fully abstract
for ground and first-order types (Theorem 4).

2 The Nu-Calculus

The nu-calculus is a simple language providing higher-order functions and the dynamic
creation of names. It was identified by Pitts as a sensible subset of ML, and is close to
Stoughton’sidentity calculus. This section describes the syntax, type system and operational
semantics of the language. We then define a notion of observational equivalence, and give a
collection of sample equivalences and inequivalences of increasing sophistication.

2.1 Syntax

The syntax of the nu-calculus extends a simply-typed lambda-calculus. Typesσ are built up
from ground typeso of booleansand ν of namesby formation of function typesσ → σ′.
Expressions have the form

M :: = x variable
| n name
| true | false truth values
| if M then M else M conditional
| M = M compare names
| νn.M create new namen in expressionM
| λx:σ.M function abstraction
| MM function application

There are separate infinite supplies of typed variables and names. Function abstraction
λx:σ.M binds the variablex of type σ, and name creationνn.M binds the namen. We
implicitly identify expressions which only differ in their choice of bound variables and names
(α-conversion). A useful abbreviation isnew for νn.n.

We denote byM [M ′/x] (respectivelyM [M ′/n]) the result of substituting the expression
M ′ for free occurrences of the variablex (respectively, the namen) in the expressionM .
The substitution iscapture avoiding; the free names and variables ofM ′ should be disjoint
from the bound names and variables ofM . This can always be arranged byα-convertingM .

Expressions are given types according to the rules in Figure 1. The type assertion

s, Γ `M : σ

says that in the presence ofs, Γ, the expressionM has typeσ. Heres is a finite set of names,
Γ is a finite set of typed variables, andM is an expression with free names ins and free
variables inΓ. The symbol⊕ represents disjoint union, as ins⊕ {n} andΓ⊕ [x : σ].

4 IAN STARK

s, Γ ` x : σ
(x : σ ∈ Γ)

s, Γ ` n : ν
(n ∈ s)

s, Γ ` b : o
(b = true, false)

s, Γ ` B : o s, Γ `M : σ s, Γ `M ′ : σ

s, Γ ` if B then M else M ′ : σ

s, Γ ` N : ν s, Γ ` N ′ : ν

s, Γ ` (N = N ′) : o

s⊕ {n}, Γ `M : σ

s, Γ ` νn.M : σ

s, Γ⊕ [x : σ] `M : σ′

s, Γ ` λx:σ.M : σ → σ′
s, Γ ` F : σ → σ′ s, Γ `M : σ

s, Γ ` FM : σ′

Figure 1: Rules for assigning types to expressions of the nu-calculus

An expression is incanonical formif it is either a name, a variable, one of the boolean
constantstrue or false, or a function abstraction. These are to be thevaluesof the nu-
calculus, and correspond to weak head normal form in the lambda-calculus. An expression
is closedif it has no free variables; a closed expression may still have free names.

It is immediate that ifs, Γ `M : σ holds then the typeσ is unique. We define the sets

Expσ(s) = {M | s, ∅ `M : σ}
Canσ(s) = {C | C ∈ Expσ(s), C canonical}

of closed expressions and closed canonical expressions respectively, at any typeσ and for
any finite sets of names.

2.2 Operational Semantics

The operational semantics of the nu-calculus is specified by the inductively defined evaluation
relation given in Figure 2. Elements of the relation take the form

s `M ⇓σ (s′)C

wheres ands′ are disjoint finite sets of names,M ∈ Expσ(s) andC ∈ Canσ(s ⊕ s′). This
means that in the presence of namess, the expressionM of type σ evaluates to canonical
form C and creates fresh namess′.

The definition of Standard ML would suggest a relation of the forms1, M ⇓σ s2, C,
meaning that in states1, expressionM evaluates to valueC in states2. We choose instead
the form above to highlight the fact that the only possible change of ‘state’ is the creation of
additional names.

The form of the rules shows the left to right order of evaluation. For example, with the
expressionN = N ′, the rules (EQ1) and (EQ2) both evaluateN beforeN ′. The call-by-value
nature of the nu-calculus is captured by the choice of a strict (APP) rule; here the argument
M is evaluated to canonical formC before being substituted in the body of the abstraction
λx:σ.M ′.

CATEGORICAL MODELS FOR LOCAL NAMES 5

(CAN)
s ` C ⇓σ C

(COND1)
s ` B ⇓o (s1)true s⊕ s1 `M ⇓σ (s2)C

s ` if B then M else M ′ ⇓σ (s1 ⊕ s2)C

(COND2)
s ` B ⇓o (s1)false s⊕ s1 `M ′ ⇓σ (s2)C

′

s ` if B then M else M ′ ⇓σ (s1 ⊕ s2)C ′

(EQ1)
s ` N ⇓ν (s1)n s⊕ s1 ` N ′ ⇓ν (s2)n

s ` (N = N ′) ⇓o (s1 ⊕ s2)true
n ∈ s

(EQ2)
s ` N ⇓ν (s1)n s⊕ s1 ` N ′ ⇓ν (s2)n

′

s ` (N = N ′) ⇓o (s1 ⊕ s2)false
n, n′ distinct

(LOCAL)
s⊕ {n} `M ⇓σ (s1)C

s ` νn.M ⇓σ ({n} ⊕ s1)C
n /∈ s

(APP)

s ` F ⇓σ→σ′ (s1)λx:σ.M ′ s⊕ s1 `M ⇓σ (s2)C

s⊕ s1 ⊕ s2 `M ′[C/x] ⇓σ′ (s3)C
′

s ` FM ⇓σ′ (s1 ⊕ s2 ⊕ s3)C ′

Figure 2: Rules for evaluating expressions of the nu-calculus

6 IAN STARK

Occasionally, in applying these rules it is necessary to relabel bound names. For example,
to evaluate(νn.n = νn.n) we do not usè νn.n = νn.n ⇓o (n, n)true because it is not
well formed; new names have to be distinct, and this is enforced by the disjoint union⊕ in
the (LOCAL) rule. Instead we relabel one of then’s in order to obtaiǹ νn.n = νn′.n′ ⇓o

(n, n′)false. As we have previously identified expressions up toα-conversion, this is quite
legitimate, but perhaps surprising. The phenomenon is identical to the reduction of a term
such as(λy.λx.yx)x in the traditional lambda-calculus, where the bound occurrence ofx has
to be relabelled to allow

(λy.λz.yz)x −→ λz.xz.

In principle, these difficulties can be resolved by using de Bruijn indices, but at the cost of
a considerably loss of clarity. In practice we simply avoid the problem wherever we can by
choosing sensible bindings to begin with.

The abbreviationnew for νn.n was introduced earlier. This has the derived evaluation
rule:

(NEW)
s ` new ⇓ν ({n})n

n /∈ s

The rules (LOCAL) and (NEW) are entirely equivalent, and we could formulate the nu-
calculus withnew as primitive andνn.M an abbreviation for(λn:ν.M)new . Unfortunately
both of the formsνn.M and (λn:ν.M)new can blur the distinctions between a name, a
label bound to a name, and a variable of typeν. Rather than resort to heavy meta-syntactic
machinery for a solution, we simply choose whichever ofnew andνn.M seems appropriate.

Evaluation of nu-calculus expressions always terminates, and is deterministic up to choice
of new names (see [28], Lemma 2.1 and Theorem 3.3).

2.3 Observational Equivalence

The operational semantics gives rise to a notion of equivalence between nu-calculus expres-
sions, based on their behaviour when used in larger expressions. Informally, two expressions
are equivalent if they can be freely exchanged; there is no way in the language itself to
distinguish between them.

Define aprogram to be a closed expression of boolean type. All that we can observe
of a program is whether it evaluates totrue or false; the creation of new names is not
directly observable. Aprogram contextP [−] is a program with zero or more occurrences
of a hole [−]. If M is some closed expression thenP [M] is the program obtained by
substitutingM for every occurrence of this hole.

Definition (Observational equivalence).For M1, M2 ∈ Expσ(s), the assertion

s `M1 ≈σ M2

means that for all program contextsP [−] andb ∈ {true, false},

∃s1 . (s ` P [M1] ⇓o (s1)b) ⇐⇒ ∃s2 . (s ` P [M2] ⇓o (s2)b).

When this holds, we say thatM1 andM2 areobservationally equivalent.

CATEGORICAL MODELS FOR LOCAL NAMES 7

In fact it is not necessary to consider all possible contextsP [−]; we need only pass
expressions to a booleantest functionof the form (λx:σ.B). This is Lemma 2.3 from [28],
and is a weak form of Milner’s ‘Context Lemma’:

Theorem 1 (Context Lemma) Two closed expressions are observationally equivalent
s `M1 ≈σ M2 if and only if for all b ∈ {true, false} and all λx:σ.B ∈ Canσ→o(s):

∃s1 . (s ` (λx:σ.B)M1 ⇓o (s1)b) ⇐⇒ ∃s2 . (s ` (λx:σ.B)M2 ⇓o (s2)b).

Similar results have been found for other calculi. Gordon in his thesis shows that experimental
order coincides with contextual order for the languageµνML [5, Section 4.4]. Mason and
Talcott [12] consider an untyped lambda-calculus extended with storage cells and show that
to establish operational equivalence it is enough to consider all ‘closed instantiations of use’
(ciu) of an expression.

Examples.

1. Observational equivalence is a congruence: ifs `M1 ≈σ M2 and
s⊕ s′, [x : σ] `M ′ : σ′ thens⊕ s′ `M ′[M1/x] ≈σ′ M ′[M2/x].

2. If M ∈ Expσ(s) andn /∈ s thens ` νn.M ≈σ M .

3. If M ∈ Expσ(s⊕ {n, n′}) thens ` νn.νn′.M ≈σ νn′.νn.M .

4. If s `M ⇓σ (n1, . . . , nk)C thens `M ≈σ νn1 . . . νnk.C.

5. If s, [x : σ] `M : σ′ andC ∈ Canσ(s) thens ` (λx:σ.M)C ≈σ′ M [C/x].

The first of these follows from the definition of observational equivalence, and the remainder
from Theorem 1. The last is Plotkin’s call-by-valueβv-equivalence [29]; the nu-calculus does
not satisfy generalβ-equivalence, for example:

6. ` (λx:ν.x = x)new 6≈o (new = new). The left hand side reduces totrue and the right
hand side tofalse.

Local name declaration and function abstraction do not in general commute, as is shown by:

7. ` νn.λx:o.n 6≈o→ν λx:o.νn.n. These can be distinguished by the test function
λf :o→ ν.(f true = f true).

Some more sophisticated examples of observational equivalence are:

8. ` νn.λx:ν.(x = n) ≈ν→o λx:ν.false.

9. ` νn.νn′.λf :ν → o.(fn = fn′) ≈(ν→o)→o λf :ν → o.true.

8 IAN STARK

In this last example the boolean testfn = fn′ is an abbreviation for

if fn then fn′ else (if fn′ then false else true).

The idea in (8) is that no external context can supply the private namen. Similarly in (9) no
externally produced function can distinguish the private namesn andn′.

It is however extraordinarily hard to make precise this notion of privacy, particularly
where higher-order functions are involved. The next case shows two expressions which at
first sight look to be observationally equivalent for the same reason as those in (9):

10. ` νn.λf :ν → o.νn′.(fn = fn′) 6≈(ν→o)→o λf :ν → o.true

These are distinguished byλF :(ν → o)→ o.F (λx:ν.F (λy:ν.x = y)).

The problem here is that although the name bound ton remains private, the function
λx:ν.F (λy:ν.x = y) is able to distinguishn from the fresh names successively bound ton′.

Another tricky example shows that it may be necessary to apply functions repeatedly in
order to distinguish them, without any private names being revealed.

11. ` νn.νn′.λf : ν → o . if fn = fn′

then (λx:ν. if x = n then true
else if x = n′ then false
else fx)

else (λx:ν.true)
6≈(ν→o)→(ν→o) λf : ν → o . f

These are distinguished by

λF :(ν → o)→ (ν → o).F (F (λx:ν.false))new .

What is happening here is that the two functions differ noticeably only on arguments of type
(ν → o) that can distinguishn from n′. As both names are private, we cannot construct
such a function directly. However when we pass the first expression an argument that we
can construct, such as(λx:ν.false), we get back one that does distinguishn from n′, in this
case(λx:ν.x = n). Although this is externally no different from what we started with (see
equivalence (8) above), it is a suitable argument to separate the two original expressions.

Up to observational equivalence, the only closed expressions of typeo aretrue andfalse,
and the only closed expressions of typeν are the names in the name context andnew .
Higher types are more complicated; there are infinitely many operationally distinct closed
expressions of type(ν → ν), as demonstrated by Example 2.5 of [28].

3 A Computational Metalanguage

As a first step towards a denotational semantics for the nu-calculus, we interpret it in a
typed metalanguage based on thecomputational lambda-calculusof Moggi [17, 19, 26].

CATEGORICAL MODELS FOR LOCAL NAMES 9

The most important feature of this is that it distinguishes between values and computations;
for the nu-calculus, a computation will create some names and then return a value. This
separation makes explicit the order of computation, which in the operational semantics was
only implicit. It also allows equational reasoning, with the reintroduction ofβ andη axioms
at function types.

When we construct categorical models, the computational metalanguage will be their
internal language. Much of our calculation is done in this, rather than with commuting
diagrams.

Over the metalanguage we use an equational Horn clause logic. This matches the internal
logic of categorical models, and more abstract models validate more equalities. Alternatively,
we could use a variety of evaluation logic as described by Pitts in [26].

The interpretation of the nu-calculus in this metalanguage is both correct and adequate.
This means that it is suitable for reasoning about observational equivalence; indeed it is
complete at ground types.

3.1 Syntax of the Metalanguage

The types of the metalanguage mirror those of the nu-calculus:

A :: = Bool booleans
| Name names
| A→ A functions
| TA computations

There is a unary type constructorT ; if A is a type, then elements ofTA arecomputations
of type A. In this particular metalanguage, the difference between values and computations
is that computations may generate new names before returning a value.

The term-forming operations of the metalanguage are

a :: = x variable
| tt | ff truth values
| cond(a, a, a) conditional
| eq(a, a) compare names
| new generate a new name
| λx ∈ A.a function abstraction
| aa function application
| [a] value as trivial computation
| let x⇐a in a sequential computation

Function abstractionλx:A.a binds the variablex in the terma, and sequential computation
let x⇐e in e′ binds the variablex within the terme′. We implicitly identify terms up toα-
conversion, which allows us to require substitutiona[a′/x] to be capture avoiding. A term is
closedif it has no free variables; there is no possibility of free names. As in the nu-calculus,
the only operation provided onName is the equality testeq .

10 IAN STARK

Γ ` x : A
(x : A ∈ Γ)

Γ ` new : TName Γ ` tt : Bool Γ ` ff : Bool

Γ ` n, n′ : Name

Γ ` eq(n, n′) : Bool

Γ ` b : Bool Γ ` a, a′ : A

Γ ` cond(b, a, a′) : A

Γ ` a : A

Γ ` [a] : TA

Γ, x : A ` b : B

Γ ` λx:A.b : A→ B

Γ ` e : TA Γ, x : A ` e′ : A′

Γ ` let x⇐e in e′ : TA′
Γ ` f : A→ B Γ ` a : A

Γ ` fa : B

Figure 3: Rules for assigning types to terms of the metalanguage

There are three forms of term involving computation. Ifa is a value, then[a] is the
trivial computation which simply returnsa. The sequential formlet x⇐e in e′ carries out
the computatione, binds the result tox and then computese′. These are both standard
constructions of the computational lambda-calculus. We have also the constantnew of
type TName which denotes the computation that generates a fresh name.

Type judgements of the metalanguage take the form

Γ ` a : A

which asserts that in the presence ofΓ, term a has typeA. HereΓ is a finite set of typed
variables; unlike the nu-calculus, there is no set of free names. The rules for forming
valid type judgements are given in Figure 3. We writeΓ, x : A for the disjoint union
Γ ⊕ [x : A], and the abbreviationΓ ` a1, . . . , an : A indicates that all of the judgements
Γ ` a1 : A, . . . , Γ ` an : A hold.

3.2 A Logic for the Metalanguage

We reason about terms of the metalanguage with an equational logic of Horn clauses. This
could be extended to a fullevaluation logicwith modalities, but we shall manage without
this sophistication. If the type judgementsΓ ` a : A andΓ ` a′ : A are valid then

Γ ` a = a′

is anequation in contextΓ. A sequentis

Γ; Φ ` φ

whereΓ is a finite set of typed variables,Φ is a finite set of equations in contextΓ andφ is
a single equation in contextΓ. We derive sequents using the rules in Figure 4 together with
the usual rules for Horn clauses and equational logic, congruence rules for all term-forming
operations andβ, η axioms for functions.

CATEGORICAL MODELS FOR LOCAL NAMES 11

Computations:

Γ ` e : TA

Γ ` let x⇐e in [x] = e
(MONO)

Γ ` a, a′ : A

Γ `; [a] = [a′] ` a = a′

Γ ` a : A Γ, x : A ` e : TB

Γ ` let x⇐[a] in e = e[a/x]

Γ ` e : TA Γ, x : A ` e′ : TA′ Γ, x′ : A′ ` e′′ : TA′′

Γ ` let x′⇐(let x⇐e in e′) in e′′ = let x⇐e in (let x′⇐e′ in e′′)

Booleans:

Γ; Φ, b = tt ` φ Γ; Φ, b = ff ` φ

Γ; Φ ` φ

Γ; Φ ` tt = ff

Γ; Φ ` φ

Γ ` a, a′ : A

Γ ` cond(tt , a, a′) = a

Γ ` a, a′ : A

Γ ` cond(ff , a, a′) = a′

Testing names:

Γ ` n : Name

Γ ` eq(n, n) = tt

Γ ` n, n′ : Name

Γ; eq(n, n′) = tt ` n = n′

Generating names:

(DROP)
Γ ` e : TA

Γ ` e = let n⇐new in e
(n : Name /∈ Γ)

(SWAP)
Γ, n, n′ : Name ` e : TA

Γ ` let n⇐new in let n′⇐new in e = let n′⇐new in let n⇐new in e

(FRESH)
Γ ` n : Name Γ, n′ : Name; Φ, eq(n, n′) = ff ` e = e′

Γ; Φ ` let n′⇐new in e = let n′⇐new in e′

Figure 4: Rules for reasoning in the metalanguage

12 IAN STARK

The rules in Figure 4 for computations are those described by Moggi for any computa-
tional lambda-calculus, and include the (MONO) rule, that the operation[−] taking values to
computations is an inclusion. The rules for boolean values and the comparison of names are
straightforward; a derived property is thateq(−,−) is an equivalence relation.

The final three rules describe the behaviour of the computationnew ; asserting that unused
names are ignored, the order of generating names is irrelevant, and new names are distinct
from all others. The choice of these particular rules is ratherad hoc; in their favour, we
argue that they are sufficient to carry through the interpretation of the nu-calculus, and there
are models to validate them. Stronger versions of the first two are

(DROP+)
Γ ` e : TA Γ ` e′ : TA′

Γ ` e = let x⇐e′ in e
(x : A′ /∈ Γ)

(SWAP+)
Γ ` e : TA Γ ` e′ : TA′ Γ, x : TA, x′ : TA′ ` e′′ : TA′′

Γ ` let x⇐e in let x′⇐e′ in e′′ = let x′⇐e′ in let x⇐e in e′′
.

These are not essential to model the nu-calculus, and would be false in a metalanguage
extended to handle store or exceptions, for example. Nevertheless, all the categorical models
to follow satisfy them.

An equivalent formulation of the last rule (FRESH) is

(FRESH′)
Γ, b : Bool , n′ : Name ` e : TA Γ ` n : Name

Γ ` let n′⇐new in e[eq(n, n′)/b] = let n′⇐new in e[ff /b]
.

The alternative candidate

Γ ` n : Name

Γ ` let n′⇐new in [eq(n, n′)] = let n′⇐new in [ff]

can be derived, but appears to be strictly weaker. In particular it is not strong enough
to complete the proof of Proposition 1, that the metalanguage correctly interprets the nu-
calculus.

3.3 Interpretation of the Nu-Calculus

We extend Moggi’s interpretation of the simply-typed call-by-value lambda-calculus in the
computational lambda-calculus [17]. Translation of types is:

[[o]] = Bool
[[ν]] = Name

[[σ → σ′]] = [[σ]]→ T [[σ′]]

Function types use the constructorT ; the application of a function may result in a computa-
tion, that is, the generation of new names.

There are two mutually defined schemes that translate nu-calculus expressions into terms
of the metalanguage. Figure 5 describes[[−]] for general expressions,|−| for expressions in
canonical form, and[[−]] for name and variable contexts. The interpretation respects types:

CATEGORICAL MODELS FOR LOCAL NAMES 13

Canonical forms:

|x| = x
|n| = n

|true| = tt
|false| = ff

|λx:σ.M | = λx:[[σ]].[[M]]

Expressions:

[[C]] = [|C|]
[[if B then M else M ′]] = let b⇐[[B]] in cond(b, [[M]], [[M ′]])

[[N = N ′]] = let n⇐[[N]] in let n′⇐[[N ′]] in [eq(n, n′)]
[[νn.M]] = let n⇐new in [[M]]
[[FM]] = let f⇐[[F]] in let m⇐[[M]] in fm

Contexts:

[[s, Γ]] = n1, . . . , nk : Name, x1 : [[σ1]], . . . , xl : [[σl]]
wheres = {n1, . . . , nk}

Γ = [x1 : σ1, . . . , xl : σl]

Figure 5: Interpretation of the nu-calculus in the computational metalanguage

14 IAN STARK

Lemma 1 For any nu-calculus expressionM , or expressionC in canonical form:

s, Γ `M : σ ⇐⇒ [[s, Γ]] ` [[M]] : T [[σ]]

s, Γ ` C : σ ⇐⇒ [[s, Γ]] ` |C| : [[σ]]

Proof By induction over the structure of the type judgement in the nu-calculus, using unique-
ness of types in the metalanguage.

The translation iscorrect with respect to the operational semantics of the nu-calculus: if
s ` M ⇓σ (s′)C then the terms[[M]] and [[νs′.C]] can be proved equal in the metalanguage,
under the assumption that all the names ins are distinct. We first define the abbreviations

(6=s) = {eq(ni, nj) = ff | 1 ≤ i < j ≤ k}
let s′⇐ −→

new in e = let n′1⇐new in . . . let n′`⇐new in e

wheres = {n1, . . . , nk} and s′ = {n′1, . . . , n′`}. The ordering of names froms and s′ does
not matter, up to provable equality in the metalanguage. We can now state:

Proposition 1 (Correctness) If s `M ⇓σ (s′)C is a valid evaluation judgement, then

[[s]]; (6=s) ` [[M]] = let s′⇐ −→
new in [[C]]

is provable in the metalanguage.

Proof Proceeds by induction over the structure of the derivation of the evaluation judgement
s ` M ⇓σ (s′)C. We need to confirm that every rule in Figure 2 translates into a derivation
that is provable in the metalanguage. The details are routine and are omitted.

3.4 Reasoning in the Metalanguage

The interpretation of the nu-calculus in the metalanguage isadequate, which means that
we can use it to reason about observational equivalence. It is strong enough to validate
equivalences (2)–(5) of Section 2.3, and is complete at ground types. However, it is less
useful at higher types, and fails to confirm examples (8) or (9).

These results rely on the metalanguage being consistent: the equation` tt = ff is not
provable. This is justified by the categorical models of Sections 5 and 6 wherett andff are
distinct.

To show that the metalanguage is adequate for reasoning about observational equivalence,
we use the characterisation given by Theorem 1, and the fact that evaluation in the nu-calculus
is deterministic and terminating.

Proposition 2 (Adequacy) Suppose thatM1, M2 ∈ Expσ(s) are expressions of the nu-
calculus and that we can derive

[[s]]; (6=s) ` [[M1]] = [[M2]]

in the metalanguage. Then the expressions are observationally equivalents `M1 ≈σ M2.

CATEGORICAL MODELS FOR LOCAL NAMES 15

Proof Suppose thatλx:σ.B ∈ Canσ→o(s) is some test function. Then there are evaluation
judgements

s ` (λx:σ.B)Mi ⇓σ (si)bi i = 1, 2

for some name setss1, s2 and booleansb1, b2. By Proposition 1 and the compositionality of
the translation[[−]], we can reason

[[s]]; (6=s) ` [|b1|] = let s1⇐
−→
new in [|b1|]

= [[(λx:σ.B)M1]]

= [[(λx:σ.B)M2]]

= let s2⇐
−→
new in [|b2|]

= [|b2|].

By the (MONO) rule
` |b1| = |b2| : Bool

from which b1 = b2 and hences `M1 ≈σ M2 as required.

For closed boolean and name expressions the converse also holds; any observational
equivalence can be proved in the metalanguage:

Theorem 2 (Completeness at Ground Types)If σ is one of the ground types{o, ν} of the
nu-calculus andM1, M2 ∈ Expσ(s) are two expressions, then

s `M1 ≈σ M2 =⇒ [[s]]; (6=s) ` [[M1]] = [[M2]].

Proof We take each type in turn. Suppose thatσ = o, then there must be someb ∈
{true, false} such that

s `Mi ⇓o (si)b i = 1, 2

for suitable setss1, s2 of names. By Proposition 1, and repeated use of the (DROP) rule, we
can reason

[[s]]; (6=s) ` [[M1]] = let s1⇐
−→
new in [|b|]

= [|b|]
= let s2⇐

−→
new in [|b|]

= [[M2]]

which gives the desired equality.
If σ = ν then there are two possibilities:

• There is some namen ∈ s such that

s `Mi ⇓ν (si)n i = 1, 2

for suitable setss1, s2 of names. The reasoning is then exactly as in the boolean case.

16 IAN STARK

• There is some namen /∈ s and name setss1, s2 such that

s `Mi ⇓ν ({n} ⊕ si)n i = 1, 2.

Using Proposition 1 and (DROP) we derive

[[s]]; (6=s) ` [[M1]] = let n⇐new in let s1⇐
−→
new in [n]

= let n⇐new in [n]

= let n⇐new in let s2⇐
−→
new in [n]

= [[M2]].

In all cases, observational equivalence implies provable equality in the metalanguage.

4 Modelling the Nu-Calculus Categorically

It is standard that the simply-typed lambda-calculus can be modelled in any cartesian closed
category, with objects for types and morphisms for terms [9]. Moggi extends this to a model
of the computational lambda-calculus in any cartesian closed category equipped with a strong
monadT [19]. We specialise to the particular case of the computational metalanguage for
the nu-calculus, using the technique outlined in Section 4 of [28].

The method is that if a categoryC satisfies certain requirements then itsinternal language
will include the metalanguage, and so provide a model of the nu-calculus which is sound
with respect to the operational semantics. IfC is not degenerate then the translation is also
adequate, and the category can be used to reason about observational equivalence. This
will be at least as powerful as the basic metalanguage; in particular reasoning in suchC is
complete for observational equivalence at ground types. Of course the intention is that a
suitable choice of category might prove more than the metalanguage alone.

This is themonadicapproach to denotational semantics. Like the computational meta-
language, its chief advantage is the separation of values from computations. The monadT
encapsulates the notion of computation; in the case of the nu-calculus, this is the action of
generating new names. The remainder of the model can then be constructed without special
regard to the nature of computation. In particular, the usual products and exponentials are
sufficient to model contexts and functions respectively.

4.1 Requirements for a Categorical Model

A categoryC is suitable to model the metalanguage of Section 3 if the following conditions
are satisfied:

• It is cartesian closed. This gives products for contexts and exponentials for function
types.

CATEGORICAL MODELS FOR LOCAL NAMES 17

• It has astrong monadT , used to interpret the computation types. This can be described
as a endofunctorT : C → C together with aunit natural transformationη : 1 → T and
a lift operation taking a morphismf : A × B → TC to f ∗ : A × TB → C. The lift
operation must be natural and satisfy

(ηB ◦ sndA,B)∗ = sndA,TB

f ∗ ◦ (idA × ηB) = f

g∗ ◦ 〈fstA,TB, f∗〉 = (g∗ ◦ 〈fstA,B, f〉)∗

wheneverf : A × B → TC and g : A × C → TD. These correspond precisely
to the computation rules forlet in Figure 4. The lift operation for a strong monad
is a generalisation of that for a Kleisli triple, a particular presentation of an ordinary
categorical monad. The generalisation is necessary to carry around contexts of let-
expressions, as Moggi explains in [19, Remark 3.1].

A strong monad can also be presented as a monad(T, η, µ) together with natural maps
tA,B : A × TB → T (A × B). Hereη : 1 → T and µ : T 2 → T are the usual natural
transformations for a monad, and thestrengthtA,B must satisfy certain equations. Moggi
gives a detailed explanation of this, and further comments on the characterisation of
strong monads in [19, Definition 3.2et seq.].

• The monadT satisfies themono requirement, that all ηA : A → TA are monic. This
corresponds to the (MONO) rule of Figure 4.

• The coproduct1 + 1 of the terminal object1 with itself exists and isdisjoint, meaning
that the square

1 1 + 1-
tt

0 1-

? ?

ff

is a pullback. Herett andff are the left and right inclusion maps. This is used to model
the type of booleans; given thatC is cartesian closed, we can define for each objectA a
morphism

condA = eval ◦ ([curry(fstA,A), curry(sndA,A)]× idA×A)

: (1 + 1)× (A× A) −→ A

to interpret the conditional.

• There is a distinguished objectN , used to interpret the type of names. This must be

18 IAN STARK

decidable, which requires a morphismeq : N ×N → 1 + 1 such that

1 1 + 1-
tt

N N ×N-∆

? ?

eq

is a pullback square, where∆ is the diagonal map. The morphismeq interprets the
equality test on names. In the internal language ofC, the pullback condition corresponds
to the rules for testing names in Figure 4.

• There is a distinguished morphismnew : 1→ TN such that for any morphismsf : A→
TB, g : A×N ×N → TB andh : A× (1+1)×N ×N → TB the following equations
in the internal language ofC are satisfied:

a : A ` let n⇐new in f(a) = f(a)

a : A ` let n⇐new in (let n′⇐new in g(a, n, n′))
= let n′⇐new in (let n⇐new in g(a, n, n′))

a : A, n : N ` let n′⇐new in h(a, eq(n, n′), n, n′)
= let n′⇐new in h(a,ff , n, n′)

It is clear that these are simply the rules for generating names of Figure 4, with the
alternate form (FRESH′). We could express them by commutative diagrams asserting the
equality of certain morphisms inC, but their essence becomes lost in a mass of variable
manipulation.

The first two of these equations hold automatically if the monadT is respectivelyaffine
andcommutative; these are notions due to Kock [7, 8]. A strong monad is affine if

fstTA,TB = fst∗TA,B : TA× TB → TA

for all objectsA, B; equivalently, ifη1 : 1 → T1 is an isomorphism. It is commutative
if the two natural maps fromTA× TB to T (A×B) are equal:

(η∗A×B ◦ twTB,A)∗ ◦ twTA,TB = ((ηA×B ◦ twB,A)∗ ◦ twTA,B)∗.

Here twX,Y : X × Y → Y ×X is the twist map. These stronger conditions correspond
to the rules (DROP+) and (SWAP+) for the metalanguage.

4.2 Construction of a Categorical Model

Suppose that we have a cartesian closed categoryC with a disjoint coproduct1 + 1, a
strong monadT satisfying the (MONO) condition, a distinguished decidable objectN and a
distinguished morphismnew : 1 → TN satisfying the necessary equalities. Interpreting the
metalanguage, and hence the nu-calculus, inC is quite standard.

CATEGORICAL MODELS FOR LOCAL NAMES 19

Types of the metalanguage are interpreted by objects of the category:Bool by 1 + 1,
Name by N , function types by exponentials, and computations using the strong monadT .
A contextΓ = {x1 ∈ A1, . . . , xn ∈ An} is interpreted by the productΓ = A1 × · · · × An. A
term in context is interpreted by a morphism:

Γ ` a : A 7−→ a : Γ→ A.

The derivation of such a morphism uses the rules on the right of Figure 6, which match those
on the left for terms of the metalanguage. An equation in context is interpreted by equality
of morphisms:

Γ ` a = a′ : A 7−→ a = a′ : Γ→ A.

The sequent

Γ; a1 = a′1 : A1, . . . , an = a′n : An ` a = a′ : A

is interpreted by equality of the morphisms

E -e
Γ A

-a
-

a′
a ◦ e = a′ ◦ e

wheree : E → Γ is the simultaneous equalizer of all the equations on the left hand side:

E Γ-e

a1

�
�

�
�>

A1

a′1
�

�
�

�>

a′n
Z

Z
Z

Z~

An

a′n
Z

Z
Z

Z~

...

Under this embedding the conditions onC correspond exactly to the rules of Figure 4 for
reasoning in the metalanguage; so any equation provable in the metalanguage will hold inC.
As a result, any non-degenerate model demonstrates that the metalanguage is consistent.

Combining the two translations, we obtain a model inC of the nu-calculus. For each
valid typing assertions, Γ `M : σ this gives a morphism

[[M]] : N |s| × [[Γ]]→ T [[σ]] where [[Γ]] =
∏

xi:σi∈Γ

[[σi]].

For an expressionC in canonical form this morphism factors throughη : [[σ]] → T [[σ]] and
there is

|C| : N |s| × [[Γ]]→ [[σ]] with [[C]] = η[[σ]] ◦ |C|.

Here N |s| is the object of|s|-tuples of names. We define the subobject(6=s) → N |s| of

20 IAN STARK

Γ ` x : A
7−→

πx : Γ→ A
(x : A ∈ Γ)

Γ ` new : TName
7−→

Γ
!−→ 1

new−→ TN

Γ ` tt : Bool
7−→

Γ
!−→ 1

tt−→ 1 + 1

Γ ` ff : Bool
7−→

Γ
!−→ 1

ff−→ 1 + 1

Γ ` n, n′ : Name

Γ ` eq(n, n′) : Bool
7−→ n : Γ→ N n′ : Γ→ N

Γ
〈n,n′〉−→ N ×N

eq−→ 1 + 1

Γ ` b : Bool Γ ` a, a′ : A

Γ ` cond(b, a, a′) : A
7−→ b : Γ→ 1 + 1 a : Γ→ A a′ : Γ→ A

Γ
〈b,a,a′〉−→ (1 + 1)× A× A

condA−→ A

Γ ` a : A

Γ ` [a] : TA
7−→ a : Γ→ A

Γ
a−→ A

ηA−→ TA

Γ ` e : TA Γ, x : A ` e′ : A′

Γ ` let x⇐e in e′ : TA′ 7−→ e : Γ→ TA e′ : Γ× A→ TA′

Γ
〈1,e〉−→ Γ× TA

(e′)∗−→ TA′

Γ, x : A ` b : B

Γ ` λx:A.b : A→ B
7−→ b : Γ× A→ B

curry(b) : Γ→ BA

Γ ` f : A→ B Γ ` a : A

Γ ` fa : B
7−→ f : Γ→ BA a : Γ→ A

Γ
〈f,a〉−→ BA × A

eval−→ B

Figure 6: Rules for constructing morphisms to interpret terms of the metalanguage

CATEGORICAL MODELS FOR LOCAL NAMES 21

distinct |s|-tuples as the simultaneous equaliser of all the pairs

N |s| 1 + 1 1 ≤ i < j ≤ |s|.-
eq ◦ 〈πi, πj〉

-
ff ◦ !

In the internal language, this corresponds to the conjunction

x1 : N, . . . , x|s| : N `
∧

1≤i<j≤|s|
(eq(xi, xj) = ff).

We then define the composite morphisms:

[[M]] 6=s =
(
(6=s)→ N |s| [[M]]−→ T [[σ]]

)
M ∈ Expσ(s)

|C|6=s =
(
(6=s)→ N |s| |C|−→ [[σ]]

)
C ∈ Canσ(s).

The results of Section 3 now carry over to this categorical model:

Proposition 3 (Correctness) If s `M ⇓σ (s′)C is a valid evaluation judgement then

[[M]] 6=s = [[νs′.C]] 6=s.

Proof Follows from Proposition 1.

Proposition 4 (Adequacy) Suppose that the categoryC is non-degenerate, in that 0 6∼= 1.
Then for allM1, M2 ∈ Expσ(s):

[[M1]] 6=s = [[M2]] 6=s =⇒ s, Γ `M1 ≈σ M2.

Proof Exactly as for Proposition 2.

Theorem 3 (Completeness at Ground Types)If σ ∈ {o, ν} and M1, M2 ∈ Expσ(s) then

s `M1 ≈σ M2 =⇒ [[M1]] 6=s = [[M2]] 6=s.

Proof Follows from Theorem 2.

So a non-degenerate categorical model can be used to prove observational equivalences
of the nu-calculus. The more that can be shown, the moreabstracta model is. It isfully
abstract if the result of Theorem 3 holds at all typesσ. More modestly, a model may be
fully abstract for some restricted set of types or expressions. Any adequate categorical model
will validate at least the equivalences (2)–(5) of Section 2.3.

In the case of languages like PCF, the difficulties in finding fully abstract models are
to do with characterising sequentiality, and arise through ingenious use of non-termination.
Because evaluation in the nu-calculus always terminates, the same problems do not occur.
Full abstraction is still a hard problem, but in different ways, to do with the privacy of names.

22 IAN STARK

5 The Functor CategorySetI

In this section we describe our first example of a category suitable to model the nu-calculus.
Although it is not particularly abstract, the existence of the category does prove that the
metalanguage is consistent, and justifies using it to reason about contextual equivalence
(Proposition 2 above). The construction is based on Moggi’s model of dynamic allocation
from [18, §4.1.4], and is also related to thepossible worldsmodels of Reynolds, Oles,
Tennent and O’Hearn.

We take the categorySetI of functors and natural transformations betweenI, the category
of finite sets and injections, andSet , the category of sets and functions. Objects ofI represent
stages of computation, that is, what names have been declared. We shall uses and variants
to stand for objects ofI, and the symbol ‘+’ for their coproduct. For a functorA : I → Set ,
the setAs is composed of values defined over the names ins. Morphisms inI and their
images inSet correspond to name substitutions.

It is standard that this category is cartesian closed. Finite limits and colimits are taken
pointwise; for example, the object of booleans1 + 1 is the constant functor to a two-element
set. If A, B : I → Set are functors then their exponent is defined:

BAs = SetI(I(s,−)× A, B) s, s′, s′′ ∈ I
BAfps′′〈i, a′′〉 = ps′′〈i ◦ f, a′′〉 f : s→ s′ p ∈ BAs

i : s′ → s′′ a′′ ∈ As′′.

As well as this standard construction of exponentials, the particular choice of index categoryI
means that there is an equivalent and simpler way to compute the object part of the functor:

BAs = SetI(A(s +), B(s +)).

So a function fromA to B defined at stages includes data on how it behaves at all later
stages. Naturality places some bounds on what this behaviour can be.

The monad is a colimit of shapeI. We use the coproduct functor+ : I × I → I and
takeT to be the composition

SetI SetI×I-Set+ (
SetI

)I-
∼=

SetI .-
lim
−→

Explicitly, on objects it is the quotient

TAs = {〈s′, a′〉 | s′ ∈ I, a′ ∈ A(s + s′)}/ ∼

where〈s1, a1〉 ∼ 〈s2, a2〉 if and only if for somes0 there are injective functionsf1 : s1 → s0

and f2 : s2 → s0 with A(id s + f1)a1 = A(ids + f2)a2 in A(s + s0). We write [s′, a′] to
represent the equivalence class of〈s′, a′〉. This element is the computation ‘create the new
namess′ and return valuea′’, and quotienting by the relation ‘∼’ ensures that the (DROP)
and (SWAP) rules for names hold true.

CATEGORICAL MODELS FOR LOCAL NAMES 23

The remaining parts of the monad are as follows. Iff : s → s′′ in I then the map
TAf : TAs→ TAs′′ is

TAf [s′, a′] = [s′, A(f + id s′)a
′] a′ ∈ A(s + s′).

If p : A→ B is a morphism inSetI , thenTp : TA→ TB is the natural transformation with
mapsTps : TAs→ TBs given by

Tps[s′, a′] = [s, p(s + s′)a′].

The unit of the monadηA : A→ TA has componentsηAs : As→ TAs for eachs ∈ I given
by

ηAsa = [0, a] a ∈ As.

A morphism q : A × B → TC has lift q∗ : A × TB → TC whose component maps
q∗s : As× TBs→ TCs are

q∗s〈a, [s′, b′]〉 = [s′ + s′′, c′′] b′ ∈ B(s + s′)

where

[s′′, c′′] = q(s + s′)〈A(inl s,s′)a, b′〉 c′′ ∈ C(s + s′ + s′′).

Finally, the natural transformationµ : T 2 → T and strength mapstA,B : A×TB → T (A×B)
are described by

µAs[s′, [s′′, a′′]] = [s′ + s′′, a′′] a′′ ∈ A(s + s′ + s′′)

tA,Bs〈a, [s′, b′]〉 = [s′, 〈A(inl s,s′)a, b′〉].

These are all well defined regardless of choice of representative, and satisfy the appropriate
equalities. In addition the monadT is both affine and commutative.

We take the object of namesN to be the inclusion functorI ↪→ Set . The morphism
eq : N ×N → 1 + 1 is simple equality at all stages. New names are generated by

new s = [1, inr s,1] ∈ TNs

which satisfies the necessary equations.
Thus the categorySetI fulfils all the conditions of the previous section, and the interpre-

tation described there gives morphisms:

[[M]] 6=s : (6=s)→ T [[σ]] M ∈ Expσ(s)

|C|6=s : (6=s)→ [[σ]] C ∈ Canσ(s)

It happens that the object(6=s) in SetI is isomorphic toI(s,−), and we may apply the

24 IAN STARK

Yoneda Lemma to obtain elements:

[[M]] 6=s ∈ T [[σ]]s and |C|6=s ∈ [[σ]]s.

These are generally easier to work with, and the results of Section 4.2 still hold when stated
in terms of elements rather than morphisms. Regarding the examples of Section 2.3, this
model confirms the basic equivalences (2)–(5), but not (8) or (9) which use private names.

6 A Model using Logical Relations

The papers [27] and [28] describe an operational method for proving observational equiv-
alence using binary relations similar to logical relations. We now construct a denotational
equivalent, using a notion of categories with relations based on that in [24]. This model is
more abstract than the one inSetI , and is fully abstract for ground and first order types.

6.1 Categories with Relations

A category with relations[24] is a category with certain additional structure. As well as
objects and morphisms, it has a collection of binaryrelations between pairs of objects,
representedR : A↔ B, andparametric squaresof the form

B B′-
g

A A′-f

?

R

?

R′
6 6

whereR,R′ are relations andf, g are morphisms. Relations, like morphisms, are simply ab-
stract data; they need not stand for set-based relations, though that is obviously the motivating
example.

Parametric squares should compose horizontally with identity

B B-
idA

A A-idA

?

R

?

R

6 6

and there should be a distinguished identity relationidA : A↔ A for each object.
Suppose thatC andD are categories with relations. Aparametric functorF : C → D is

a functor on the underlying categories together with a map on relations. IfR : A ↔ B is a
relation inC then FR : FA ↔ FB should be a relation inD, with F idA = idFA, andF
must take parametric squares to parametric squares.

CATEGORICAL MODELS FOR LOCAL NAMES 25

Suppose thatF, G : C → D are two parametric functors. Aparametric natural transfor-
mationt : F → G is a natural transformation on the underlying categories such that for any
relationR : A↔ B of C the square

FB GB-
tB

FA GA-tA

?

FR

?

GR

6 6

is parametric.

6.2 The Parametric Functor CategoryP

We can now rebuild the modelSetI in a parametric setting. We take the index category
I of finite sets and injections as before. A relationR : s1 ↔ s2 on I consists of a finite
setR and a pair of injectionss1 ← R → s2. This is sometimes called aspanor a partial
bijection. The coproduct ‘+’ on I extends to relations: ifR : s1 ↔ s2 andR′ : s′1 ↔ s′2 then
R + R′ : s1 + s′1 ↔ s2 + s′2. A square inI is parametric

s2 s′2-
f2

s1 s′1-f1

?

R

?

R′
6 6

if and only if both squares in R R′-

s1 s′1-

6 6

s2 s′2-
? ?

are pullbacks.

This is a stronger condition than just requiring it to commute as a square of relations. For
the ground category we takeSet with ordinary binary relations and squares parametric

B B′-
g

A A′-f

?

R

?

R′
6 6 if and only if

∀a ∈ A, b ∈ B.(a, b) ∈ R =⇒ (fa, gb) ∈ R′.

We then take the ordinary categoryP of parametric functors and parametric natural trans-
formations fromI to Set . As before objects ofI represent stages of computation, and if
A : I → Set is a parametric functor then elements ofAs are values defined over the names
in s.

The categoryP is cartesian closed. Finite limits and colimits are taken pointwise: the
object of booleans is the constant parametric functor to the two-element set1 + 1, taking all
relations toid1+1. Thanks to a relational version of the Yoneda Lemma, exponentials are

26 IAN STARK

defined by

BAs = SetI(I(s,−)× A, B) s, s′, s′′ ∈ I
BAfps′′〈i, a′′〉 = ps′′〈i ◦ f, a′′〉 f : s→ s′ p ∈ BAs

i : s′ → s′′ a′′ ∈ As′′

(p1, p2) ∈ BAR ⇐⇒ s1, s2 ∈ I p1 ∈ BAs1

for all parametric squares

s2 s′2-
f2

s1 s′1-f1

?
R

?R
′6 6

and elementsa′1 ∈ As′1, a′2 ∈ As′2 it is true that
(a′1, a

′
2) ∈ AR′ =⇒ (p1s

′
1〈f1, a

′
1〉, p2s

′
2〈f2, a

′
2〉) ∈ BR′.

R : s1 ↔ s2 p2 ∈ BAs2

As with the model inSetI , there is a simpler form for the object part of the exponential:

BAs = P(A(s +), B(s +)).

We define the monad explicitly. On objects it is the quotient

TAs = {〈s′, a′〉 | s′ ∈ I, a′ ∈ A(s + s′)}/ ∼

where 〈s1, a1〉 ∼ 〈s2, a2〉 if and only if there is someR : s1 ↔ s2 such that(a1, a2) ∈
A(id s + R). The relation∼ is not necessarily transitive. We take[s′, a′] to represent the
equivalence class of〈s′, a′〉; as before, this denotes the computation ‘create the new namess′

and return valuea′’.
The remaining details of the monad are specified exactly as for theSetI model. The only

addition is that ifR : s1 ↔ s2 in I then the relationTAR : TAs1 ↔ TAs2 is given by

(e1, e2) ∈ TAR ⇐⇒ ∃R′ : s′1 ↔ s′2 , a′1 ∈ A(s1 + s′1), a
′
2 ∈ A(s2 + s′2) .

e1 = [s′1, a
′
1] & e2 = [s′2, a

′
2] & (a′1, a

′
2) ∈ A(R + R′)

wheree1 ∈ TAs1 and e2 ∈ TAs2. Again the resulting strong monadT is both affine and
commutative.

The object of namesN is the parametric inclusion functorI ↪→ Set , andeq : N ×N →
1 + 1 is equality at all stages. Fresh names are produced by

new s = [1, inr s,1] ∈ TNs.

As with the model in the functor categorySetI , we can interpret closed expressions
M ∈ Expσ(s) andC ∈ Canσ(s) either by morphisms

[[M]] 6=s : (6=s)→ T [[σ]] and |C|6=s : (6=s)→ [[σ]]

or elements
[[M]] 6=s ∈ T [[σ]]s and |C|6=s ∈ [[σ]]s

CATEGORICAL MODELS FOR LOCAL NAMES 27

using a version of the Yoneda Lemma adapted for categories with relations.
Although many of the details above are given precisely as for the model inSetI , the

relational structure makes an important difference. Function spaces are smaller, and more
computations are identified inTAs, with the consequence that more observational equiva-
lences of the nu-calculus can be proved.

6.3 Properties of the model inP

The model of the nu-calculus in the categoryP is adequate and validates equivalences (2)–(5)
and (8), but not (9), of Section 2.3. It is fully abstract for types up to first order:

Theorem 4 (Full Abstraction at First Order Types) If σ is a ground or first order type
and M1, M2 ∈ Expσ(s) then:

s `M1 ≈σ M2 =⇒ [[M1]] 6=s = [[M2]] 6=s.

Proof Exactly as for Theorem 22 of [27]. Alternatively, we can show a correspondence
between the operational relation of [27] and the relational structure ofP, with this result as
a corollary.

So the model inP can be used to validate all observational equivalences involving types up
to first order. As a demonstration we consider example (8) of Section 2.3 which concerns
the equivalence

` νn.λx:ν.(x = n) ≈ν→o λx:ν.false.

The two expressions are interpreted inP by

[[νn.λx:ν.(x = n)]] = [{n}, λx:N.[eq(x, n)]]
[[λx:ν.false]] = [∅, λx:N.[false]]

}
∈ T (N → T (1 + 1))∅.

If R : {n} ↔ ∅ is the empty relation then

(λx:N.[eq(x, n)], λx:N.[false]) ∈ (N → T (1 + 1))R

and so
[[νn.λx:ν.(x = n)]] = [[λx:ν.false]] ∈ T (N → T (1 + 1))∅

which gives the desired observational equivalence.

7 Related Work

There has been considerable study of ‘Algol-like’ languages which combine local variables
and block structure with higher-order functions in a call-by-name semantics. Meyer and
Sieber [14] describe a selection of the difficulties that arise. These differ from the nu-
calculus examples of Section 2.3, chiefly because of the contrast between call-by-value and
call-by-name styles of parameter passing. For example, a call-by-name nu-calculus would

28 IAN STARK

only need name abstraction at ground types. However, some of the techniques used do
carry across: in particular, the use of functor categories comes from the ‘possible worlds’
model originated by Reynolds [31] and followed up in [25], [23] and [10]. Categories with
relations were used for Algol-like languages by O’Hearn and Tennent [24], and Sieber’s
(non-categorical) models, in [32] and most recently [33], also use relations.

Mason and Talcott have developed operational methods for reasoning about LISP pro-
grams, in [12], [13] and, with Honsell and Smith, in [6]. They consider an untyped language
with call-by-value semantics and dynamically generated mutable cells. There are substantial
example proofs of program equivalences in [11], though the techniques described are gen-
erally restricted to the language without higher order functions. Mason’s notion ofstrong
isomorphismcompares with equational reasoning in the metalanguage of Section 3 above.

Felleisen and others have added variable assignment to the call-by-value lambda-calculus,
in [3] and [4]. They present a syntactic, equational theory for the lambda-calculus, and show
that it can be extended with certain axioms for reasoning about state.

Odersky has developed a theoryλν that extends the lambda-calculus with a binding
construct for local names [20], and proves that the theory of observable equivalence inλν is
a conservative extension of that for the lambda-calculus. Syntactically this language appears
similar to the nu-calculus; differences are thatλν is untyped and has a call-by-name reduction
strategy, with the possibility of ‘stuck’ terms. So, taking example (6) of Section 2.3, inλν
the expression(λx.x == x)(νn.n) reduces first toνn.n == νn.n and is then stuck; the
equivalent nu-calculus expression evaluates totrue. Odersky works around the limited scope
of names by using a continuation-passing style of programming. Despite these differences, it
seems likely that a typed version ofλν could be interpreted in the metalanguage of Section 3,
using [[σ → σ′]] = T [[σ]]→ T [[σ′]] to capture the call-by-name behaviour at function types.

8 Conclusions and Further Work

Categorical monads can be used to construct sound and adequate models for the nu-calculus,
a language that extends the simply-typed lambda-calculus with dynamically generated names.
The use of a computational metalanguage as an intermediary helps to separate the general
mechanism of constructing a model from the particular difficulties of the nu-calculus.

The model described in Section 5 provides a denotational semantics for the nu-calculus
and validates reasoning in the metalanguage. The categoryP of Section 6.2, using categories
with relations, gives a more abstract denotational model.

A fully-abstract denotational semantics for the nu-calculus still seems a reasonable aim;
after all, there are no difficulties with non-termination. O’Hearn and Riecke [22] have been
able to use logical relations of varying arity to build a fully-abstract model of PCF, and it
may be possible to extend this to the nu-calculus.

A related issue is whether the theory of the metalanguage can be made complete for
reasoning about observational equivalence. One route to this would be the construction of
a categorical model from the syntax of the nu-calculus itself, in the style of [15]. However
there are difficulties, most notably the need for equalizers in the category, and the matter is

CATEGORICAL MODELS FOR LOCAL NAMES 29

not yet settled.
The requirements of Section 4, for a category to model the nu-calculus, say nothing about

which features are forced by the others. For example, it may be that given a categoryC with
a strong monadT , the object of namesN and morphismnew can be characterised by some
universal property. This would be similar to a natural numbers object for a category, which
if present is unique up to isomorphism [9]. No such description is known yet.

The definition of the monadT for the parametric functor categoryP of Section 6.2 is
strikingly similar to the proof rule of [30] for existential types in System F. Indeed they
do have a common origin in Reynolds’ notion of ‘relational parametricity’, but a closer
connection is given by a direct interpretation of the nu-calculus in System F. Details will
appear elsewhere; the method is similar to the translation into a computational metalanguage,
with certain existential types replacing the constructorT . This is independent of the work of
O’Hearn and Riecke [21], who use polymorphism to interpret similar behaviour in Algol-like
languages; nevertheless, it seems likely that some correspondence can be made.

Another direction for future work is to extend the nu-calculus to a ‘store calculus’
allowing the dynamic creation of typed storage cells. This would more fully describe the use
of references in Standard ML. The same scheme of a computational metalanguage might be
used, and the existing categorical models could be suitably enhanced.

Acknowledgements

Andy Pitts and Eugenio Moggi gave much advice on the methods used here, and Bob Tennent
explained how they relate to his models of Algol-like languages. The anonymous referees
prompted several adjustments to make the explanations clearer.

References

1. S. Abramsky. The lazy lambda calculus. In D. Turner, editor,Research Topics in Functional Program-
ming, pages 65–117. Addison Wesley, 1990.

2. H.-J. Boehm.A Logic for the Russell Programming Language. PhD thesis, Cornell University, Ithaca,
New York, February 1984. Also published as Technical Report 84-593.

3. M. Felleisen and D. P. Friedman. A syntactic theory of sequential state.Theoretical Computer Science,
69:243–287, 1989.

4. M. Felleisen and R. Hieb. The revised report on the syntactic theories of sequential control and state.
Theoretical Computer Science, 103:235–271, 1992.

5. A. D. Gordon.Functional Programming and Input/Output. PhD thesis, University of Cambridge, August
1992. Also published as Technical Report 285, University of Cambridge Computer Laboratory.

6. F. Honsell, I. A. Mason, S. Smith, and C. Talcott. A variable typed logic of effects. Submitted to
Information and Computation, 1993.

7. A. Kock. Monads on symmetric monoidal closed categories.Archiv der Mathematik, XXI:1–10, 1970.

8. A. Kock. Bilinearity and cartesian closed monads.Mathematica Scandinavica, 29:161–174, 1971.

9. J. Lambek and P. J. Scott.Introduction to Higher Order Categorical Logic. Cambridge Studies in
Advanced Mathematics 7. Cambridge University Press, 1986.

30 IAN STARK

10. A. F. Lent. The category of functors from state shapes to bottomless CPOs is adequate for block
structure. InSIPL ’93 [34], pages 101–119.

11. I. A. Mason.The Semantics of Destructive Lisp. PhD thesis, Stanford University, 1986. Also published as
CSLI Lecture Notes Number 5, Center for the Study of Language and Information, Stanford University.

12. I. A. Mason and C. Talcott. Equivalence in functional languages with effects.Journal of Functional
Programming, 1(3):297–327, July 1991.

13. I. A. Mason and C. Talcott. Inferring the equivalence of functional programs that mutate data.Theoretical
Computer Science, 105:167–215, 1992.

14. A. R. Meyer and K. Sieber. Towards fully abstract semantics for local variables: Preliminary report. In
Conference Record of the Fifteenth Annual ACM Symposium on Principles of Programming Languages,
pages 191–203. ACM Press, 1988.

15. R. Milner. Fully abstract models of typedλ-calculi. Theoretical Computer Science, 4:1–22, 1977.

16. R. Milner, M. Tofte, and R. Harper.The Definition of Standard ML. MIT press, 1990.

17. E. Moggi. Computational lambda-calculus and monads. InProceedings of the Fourth Annual IEEE
Symposium on Logic in Computer Science, pages 14–23. IEEE Computer Society Press, 1989.

18. E. Moggi. An abstract view of programming languages. Technical Report ECS-LFCS-90-113, Laboratory
for Foundations of Computer Science, University of Edinburgh, April 1990.

19. E. Moggi. Notions of computation and monads.Information and Computation, 93(1):55–92, July 1991.

20. M. Odersky. A syntactic theory of local names. Research Report YALEU/DCS/RR-965, Yale University,
May 1993.

21. P. W. O’Hearn and J. G. Riecke. Fully abstract translations and parametric polymorphism. InProgram-
ming Languages and Systems – ESOP ’94, Lecture Notes in Computer Science 788, pages 454–468.
Springer-Verlag, 1994.

22. P. W. O’Hearn and J. G. Riecke. Kripke logical relations and PCF. Submitted toInformation and
Computation, June 1994.

23. P. W. O’Hearn and R. D. Tennent. Semantics of local variables. InApplications of Categories in
Computer Science, London Mathematical Society Lecture Note Series 177, pages 217–238. Cambridge
University Press, 1992.

24. P. W. O’Hearn and R. D. Tennent. Relational parametricity and local variables (preliminary report). In
Conference Record of the Twentieth Annual ACM Symposium on Principles of Programming Languages,
pages 171–184. ACM Press, 1993.

25. F. J. Oles. Type algebras, functor categories and block structure. In M. Nivat and J. Reynolds, editors,
Algebraic Methods in Semantics, pages 543–573. Cambridge University Press, 1985.

26. A. M. Pitts. Evaluation logic. InIVth Higher Order Workshop, Banff 1990, Workshops in Computing,
pages 162–189. Springer-Verlag, 1991. Also published as Technical Report 198, University of Cambridge
Computer Laboratory.

27. A. M. Pitts and I. Stark. Observable properties of higher order functions that dynamically create local
names, or: What’snew? In Mathematical Foundations of Computer Science, Lecture Notes in Computer
Science 711, pages 122–141. Springer-Verlag, 1993.

28. A. M. Pitts and I. Stark. On the observable properties of higher order functions that dynamically create
local names (preliminary report). InSIPL ’93 [34], pages 31–45.

29. G. Plotkin. Call-by-name, call-by-value and theλ-calculus. Theoretical Computer Science, 1:125–159,
1975.

30. G. Plotkin and M. Abadi. A logic for parametric polymorphism. InTyped Lambda Calculi and
Applications, Lecture Notes in Computer Science 664, pages 361–375. Springer-Verlag, 1993.

31. J. C. Reynolds. The essence of Algol. InAlgorithmic Languages, pages 345–372. North Holland,
Amsterdam, 1981.

32. K. Sieber. New steps towards full abstraction for local variables. InSIPL ’93 [34], pages 88–100.

CATEGORICAL MODELS FOR LOCAL NAMES 31

33. K. Sieber. Full abstraction for the second order subset of an Algol-like language (preliminary report).
Technical Report A 01/94, Universität des Saarlandes, Saarbrücken, January 1994.

34. Proceedings of the ACM SIGPLAN Workshop on State in Programming Languages, Copenhagen, Den-
mark, June 12, 1993. Research Report YALEU/DCS/RR-968, Yale University Department of Computer
Science, 1993.

