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Abstract. We introduce the continuous π-calculus, a process algebra for mod-
elling behaviour and variation in molecular systems. Key features of the language
are: its expressive succinctness; support for diverse interaction between agents via
a flexible network of molecular affinities; and operational semantics for a continu-
ous space of processes. This compositional semantics also gives a modular way to
generate conventional differential equations for system behaviour over time. We
illustrate these features with a model of an existing biological system, a simple
oscillatory pathway in cyanobacteria. We then discuss future research directions,
in particular routes to applying the calculus in the study of evolutionary properties
of biochemical pathways.

1 Introduction

This research aims to develop computational methods for studying the Darwinian
evolution of biochemical pathways. We work in the framework introduced by Regev
et al. [1,2,3], who identified the π-calculus process algebra as a promising formalism
for biological modelling. We modify it in a way that allows us to mention quantitative
parameters explicitly, and makes the interaction network of the agents more flexible
(see §1.1 below). To take advantage of this quantitative information, we develop a
novel operational semantics through a compositional description of continuous system
behaviour in terms of real vector spaces (§2.2). We illustrate these concepts with an
example of a concrete biological system, a simple oscillatory pathway in cyanobacteria
(§7). Finally, we discuss the possibilities of answering questions related to the evolution
of pathways using process-algebraic techniques such as model checking and behavioural
equivalences (§4).

Reliable models and simulations of evolution on the molecular level would have
wide applications, from pure evolutionary theory to drug design. Our particular in-
terest is in the ubiquitous phenomenon of mutational robustness, which has recently
received attention as a cross-level organisational principle of biological systems [4,5].
Its understanding, especially on the level of gene regulation and cellular signalling, is
an important challenge; and, moreover, one where a computational approach may give
essential assistance in tackling the complexity of the systems involved.

We motivate the use of process algebras in this context as follows: firstly, they
have already been successfully used to model biochemical networks (see §1.2 below).
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Secondly, much of the genetic variation results in qualitative or quantitative changes in
the interaction network; process-algebraic descriptions of networks enable us to express
this variability easily, in syntactic terms. Finally, to model evolution we need means to
express fitness and related concepts such as neutrality [6,5]; to this end we plan to
use well-developed process-algebraic techniques like model checking and behavioural
equivalences (§4).

The main contribution of this paper is the continuous π-calculus (cπ), a process al-
gebra designed specifically to model biomolecular systems in an evolutionary context,
with an original semantics in terms of real vector spaces. It also offers a fully modular
and compositional method of generating a set of ordinary differential equations (ODEs)
governing a given system. Moreover, we give a process-algebraic model of a biomolec-
ular system of considerable interest — a primitive bacterial circadian clock recently
recreated in vitro [7].

In the remainder of this section we introduce cπ by means of small examples (§1.1)
and then very briefly recall related work in the fields of computational and theoretical
biology (§1.2). Section 2 is a formal presentation of the calculus, while §3 contains the
cπ model of the KaiC circadian clock [8], with graphs showing its oscillatory behaviour.
In the final section we present and discuss the future directions of our research.

1.1 Key Features

The classic π-calculus is well-described in existing texts [9,10,11]. Here we focus on
the key distinguishing features of our continuous π, and follow with two small examples
to illustrate them.

1. Every cπ process is a parallel (‖) combination of species. Species are very similar
to classic π-processes. Every species in a given process is equipped with a real
number, to be thought of as the concentration of the substance described by the
species. Thus, every cπ process represents a complete molecular system at a certain
point in time.

2. As usual in the π-calculus, communication is through named channels. However,
in contrast to most π derivatives, there are no co-names. Instead, any name can
in principle communicate with any other — potentially more than one — and
for any two names it is specified whether they can communicate and at what
rate. Biologically, names are intended to model distinctive reaction sites, with the
communication rate between two names corresponding to the rate constant of the
biochemical reaction between sites. The relevant technical device to manage this
information is an affinity network. One consequence of this approach is that every
new name must come with the information about its communication potential.
Also, whenever we consider a particular process P , we assume some given affinity
network on the free names of P .
The reason for this approach is two-fold. First, it makes sense in an evolutionary
context to abandon the strict correspondence of sites and co-sites, and hence the
symmetry of names and co-names. Second, the affinity networks give a convenient
collection of parameters for varying the model: in particular, those important for
questions of evolvability and robustness.
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3. All cπ reactions have at most two substrates and are governed by the Law of
Mass Action (following, for example, the observations of [12, p.298]). It is worth
stressing, however, that more complex kinetic behaviour can emerge as we build
up larger processes from smaller ones. Nonetheless, the system dynamics remains
purely deterministic: for every process P we derive a term dP

dt , denoting the speed
and direction of the temporal evolution of P .

4. To model spontaneous monomolecular reactions, such as degradation, or confor-
mation changes, we use silent actions labelled with real numbers denoting reaction
rate constants.

5. Molecular complexes are represented by parallel components within the shared
scope of one or more private names, following Regev [2]. As usual for the
π-calculus, communication between shared private names within the complex gives
rise to silent actions; and these in turn model spontaneous actions like complex
dissociation.

As a first simple example, consider two molecules, A and B,
a b

a k1— b

k1

Fig. 1: A very simple
affinity network and
its textual rendering.

that can bind to each other (at rate k1) and subsequently
unbind (at rate k2). As noted above, we model complexation
as scope extrusion and decomplexation as interaction on
a shared private channel. This gives rise to the following
cπ definition of species A and B:

A
df= (ν u k2— v)(a〈u〉.v.A) (1)

B
df= b(x).x.B (2)

with the global affinity network of Fig. 1.
Here the public names a and b represent protein interaction sites, and a communica-

tion event between these two names models binding of these sites. The prefix (ν u k2— v)
declares a new affinity network consisting of two private names, u and v, that can com-
municate with each other at the rate k2. Species A and B can react by a communication
event on the public a k1— b channel, with the private name u sent via a, received on b,
and then substituted for x in x.B. This extends the scope of the network to encompass
the remaining parts of A and B and so form complex C:

A | B
τ〈a,b〉−→ C

df= (ν u k2— v)(v.A | u.B) (3)

If we mix species A and B together in concentrations c1 and c2, then we obtain a
cπ process (c1 · A ‖ c2 · B). The formal semantics of this process reflect mass-
action dynamics: the complex C is produced in proportion to the product of substrate
concentrations, while the substrates themselves (A and B) deplete similarly. If we
compute the semantics (an appropriate d·

dt term) as described in §2.2, we see that this is
indeed the case:

d(c1 ·A ‖ c2 ·B)
dt

= k1c1c2 · C − k1c1c2 ·A− k1c1c2 ·B . (4)
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b

a a′

k1 k2

(a) Affinity network

A
df
= a.A+

A+ df
= a′.A++ + τ@k3.A

K
df
= b.K

P = c1 ·A ‖ c2 ·K

(b) Species and process definitions

Fig. 2: A simple cπ system with a non-trivial affinity network modelling discriminative binding
of the kinase K (via site b) to the molecules A and A+ (at sites a and a′, respectively). The
definition of the inactive A++ species is omitted.

Similarly, when we consider a solution of complexes in concentration c3 and derive the
semantics of the process (c3 · C), we observe that the complex dissolves to give back
substrates A and B at the expected rate:

d(c3 · C)
dt

= −k2c3 · C + k2c3 ·A + k2c3 ·B . (5)

As another example, consider a molecule A that can exists in three states: unphospho-
rylated, phosphorylated and doubly phosphorylated; denoted A, A+ and A++ respec-
tively. Furthermore, suppose that kinase K (the phosphorylating agent) is more effective
at the initial phosphorylation step A → A+ than at the subsequent one A+ → A++,
having reaction rate constants k1 > k2. Finally, assume that A+ (only) can sponta-
neously relax back to A at a rate k3. Figure 2 shows a cπ model for this system, and in
particular a process P representing an initial state where only A and K are present, at
concentrations c1 and c2 respectively.

The affinity network in Fig. 2(a) indicates that site b can react with either site a or
site a′: this will capture the double action of the kinase. Figure 2(b) gives the definitions
of the species involved in the system. The first equation states that species A can be
transformed into A+ on interaction at the site a. The second states that A+ can either
interact on a′ and be transformed into A++ or convert back to A at rate k3 without any
external agent — here “+” models the mutually exclusive choice of alternatives. In the
third equation, kinase K can interact at site b and then return to its initial state; recall
that according to the affinity network, this interaction might be with site a (on A) or a′

(on A+). The final line defines the initial state of the system, with A and K present at
the specified concentrations.

This is a dynamic model, with P evolving in a continuous fashion. At any time
instant we can, using the methods of §2.2, formally derive the vector dP

dt specifying the
gradient of this temporal evolution. In particular, in the initial state we have:

dP

dt
= k1c1c2 ·A+ − k1c1c2 ·A . (6)
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1.2 Related Work

The application of the π-calculus to biology is due to Regev and Shapiro [3], who
identified the fundamental correspondence between cellular processes and concurrent
computations [13]. They proposed modelling molecules as π-processes, and the use
of parallel composition to express the fact that such molecules act independently. In
this framework, names denote molecular interaction sites and communication models
interaction. A further important abstraction was the use of private names to model
molecular complexes and compartments.

Further refinements of this framework addressed the introduction of quantitative
information into the model and on modelling compartments more directly. This led,
for example, to the development of the biochemical stochastic π-calculus [1] and
BioAmbients [14]. Other process algebras, such as PEPA [15] have also been applied
to model biological systems [16]. Although seen mainly as simulation engines, these
formalisms have also been used to perform static analysis of the model [17].

Using process algebras as a high-level descriptive language, Calder et al. [18] have
shown how PEPA models can generate both discrete (stochastic) and continuous (ODE)
behavioural specifications for the same system. Unlike raw ODEs then, a process algebra
model is not itself the behaviour, but can be used to generate it. We believe that this
abstraction step is important in modelling variation, to identify how emergent behaviour
depends on changes in a process or its parameters.

Meanwhile, the interest in mutational robustness has been growing amongst biolo-
gists for the past 15 years. A recent monograph on the subject [5] identifies the explosion
of high-throughput techniques as an important factor for this interest; the other is the
importance of this concept in the context of systems biology [19]. The methods applied
to study this phenomenon range from pure mathematics [20] to exhaustive computations
[21].

2 The Continuous π-Calculus

In this section we set out a formal syntax and mathematical semantics for the continuous
π-calculus. Both syntax and semantics have two “layers”: of species corresponding to
individual molecules, and processes to populations of these. It is important to keep in
mind, however, that none of these terms should invoke associations with their meaning
in the context of evolutionary theory.

2.1 Syntax

Definition 1. Take N a fixed, countably infinite set of names, denoted by lower-case
letters a, b, x, y, . . . Vectors of names are denoted by ~a, ~x etc.; these may be of zero
length.

Definition 2. A prefix is a syntactic expression of the form a(~b; ~y) (a communication
prefix) or τ@k (spontaneous or silent prefix), where all elements of ~y are distinct, τ /∈ N
is a fixed symbol and k ∈ R≥0. We use symbols like π, π′, etc. to denote prefixes.
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A communication prefix models the ability of one molecule to engage in an interaction
with another, at site a. Details of the interaction are modelled as name-passing, where
~b is the vector of names to be sent and ~y is a vector of placeholders for names
to be received (and so binds subsequent occurrences of the ~y). This symmetry and
synchrony of communication is mildly novel, and introduced to reflect the fact that
molecular interaction is a synchronous and (usually) symmetric event. For readability
we abbreviate when possible: a(~y) for a( ; ~y), a〈~b〉 for a(~b; ), and a for a( ; ).

The silent prefix τ@k models the case where a molecule may undergo spontaneous
change, without any interaction with the external environment; or, at least, no observed
interaction at the level of abstraction being modelled (cf. the dephosphorylation of
species A+ in Fig. 2(b)). The rate of this transformation is recorded directly in the
prefix as k.

Definition 3. An affinity network is a pair 〈M,f〉, where M ⊆fin N is a carrier set and
f is a symmetric partial function f : M × M ⇀ R≥0. We often blur the distinction
between a network and its carrier: for a network M we write x ∈ M to indicate that x
lies in the carrier of M , and similarly for other set-theoretic predicates. The expression
M(a, b) denotes the value the network assigns to a pair of names (a, b) if this is defined;
we write M(a, b)↓ when this is the case.

From here on we assume a distinguished global affinity network Aff , which must be a
total relation on its carrier. We shall also use the notation X # Y , read X fresh for Y ,
to state that X ∩ Y = ∅ for name sets X and Y ; and then overload this when X or Y
are terms to refer to their free name sets.

Definition 4. The set of species is generated by the following grammar:

A,B :: = 0 | D(~a) | Σn
i=0πi.Ai | A |B | (νM)A (7)

where M # Aff . These are in turn the inactive species 0, invocation of a species
definition, guarded choice, parallel composition, and local name declaration. This last
is also restriction: names declared in the affinity network M are available in A, but
not elsewhere until explicitly passed out in a communication from A. Small instances
of guarded choice Σ are usually written with +; as in Fig. 2(b). For every invocation
D(~a) we assume a corresponding definition D(~y) df= A, such that every free name
of A appears in either ~y or Aff . Furthermore, these definitions must be productive
in that any recursive cycle includes a prefix guard. We identify α-equivalent species:
the binding operations are prefix π and restriction (νM). Finally, there is a structural
congruence ≡ on species, generated by the axioms in Fig. 3. We use S to denote the
set of species modulo ≡, and write [A] for the equivalence class of species A up to
structural congruence.

Definition 5. The set of processes is generated by the following grammar:

P,Q :: = c ·A | P ‖Q (8)

where A is a species, c ∈ R≥0 and all free names appear in Aff . Figure 3 gives a
structural congruence ≡ on processes.
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A | 0 ≡ A

A |B ≡ B |A
(A |B) | C ≡ A | (B | C)

Σn
i=0πi.Ai ≡ Σn

i=0πσi .Aσi perm. σ

(νM)(A |B) ≡ A | (νM)B M # A

(νM)A ≡ A M # A

(νM)(νN)A ≡ (νN)(νM)A M # N

P ‖ (c · 0) ≡ P

P ‖Q ≡ Q ‖ P

P ‖ (Q ‖R) ≡ (P ‖Q) ‖R

(c ·A) ‖ (d ·A) ≡ (c + d) ·A
c ·A ≡ c ·B A ≡ B

Fig. 3: Axioms generating structural congruence on species (l) and processes (r).

In what follows we maintain a careful distinction between a species and its ≡-
equivalence class, and the same for processes, in order to precisely state the correctness
results for cπ semantics.

2.2 Semantics

The two-layered nature of syntax (a “layer” of species, then another of processes) is
reflected in the semantics: to obtain the semantics of a process, we first examine the
species involved. Formally, we do this by defining a multi-transition system on species
and then using this information to build the continuous semantics for processes. Both
levels maintain compositionality.

The transition system for species A multi-transition system is a labelled transition
system that allows multiple transitions with the same source, target and label. This
extension is necessary to keep track of quantitative aspects of behaviour in cπ, as done
for example in PEPA [15].

We present the multi-transition system for species in an abstraction-concretion style,
following Milner [9] (or see [11] for a shorter explanation). In continuous π the use of
symmetric prefixes eliminates the distinction between abstractions and concretions, and
hence we use “concretion” to refer to both constructions.

Definition 6. A concretion is a term generated by the following grammar:

F,G :: = (~b; ~y)A | F |A | A | F | (νM)F (9)

where all elements of ~y are distinct and binding. As with species, we identify α-
equivalent concretions. We build a structural congruence ≡ from the axioms in Fig. 4,
writing [F ] for the≡-equivalence class of F , and take C as the set of concretions modulo
structural congruence.

A concretion can be seen as a species that has committed to take part in a specific binary
interaction. When it encounters another compatible concretion that interaction may take
place. We formalize this with a notion of “pseudo-application”.
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F | 0 ≡ F

F |A ≡ A | F
(F |A) |B ≡ F | (A |B)

(A | F ) |B ≡ A | (F |B)

F |A ≡ F |B A ≡ B

(~b; ~y)A ≡ (~b; ~y)B A ≡ B

(νM)(A | F ) ≡ A | (νM)F M # A

(νM)(F |A) ≡ F | (νM)A M # F

(νM)F ≡ F M # F

(νM)(νN)F ≡ (νN)(νM)F M # N

(~b; ~y)(A |B) ≡ A | (~b; ~y)B ~y # A

Fig. 4: Axioms generating structural congruence for concretions.

Definition 7. The operation of pseudo-application is a binary partial function ◦ on
concretions, defined by structural induction over its arguments. For the base case,
(~a; ~x)A ◦ (~b; ~y)B is defined if and only if |~a| = |~y| and |~b| = |~x|, in which case the
result is A{~b/~x} |B{~a/~y}. The inductive clauses are as follows:

(~a; ~x)A ◦ (F |B) df= ((~a; ~x)A ◦ F ) |B (A | F ) ◦ F ′ df= A | (F ◦ F ′)

(~a; ~x)A ◦ (B | F ) df= B | ((~a; ~x)A ◦ F ) (F |A) ◦ F ′ df= (F ◦ F ′) |A

(~a; ~x)A ◦ (νM)F df= (νM)((~a; ~x)A ◦ F ) (νM)(F ) ◦ F ′ df= (νM)(F ◦ F ′) .

For the two clauses in the bottom line we assume that M is fresh for the other concretion
involved. Observe that in the presence of α-equivalence this condition can always be
met, and hence the only reason for a pseudo-application to be undefined is the arity
mismatch of the concretions in the base case.

Where pseudo-application is defined we write F ◦ G ↓ and say that F and G are
compatible. It is possible to define a type system for sites to ensure compatibility, but
this complicates the calculus and we shall not do so here.

Proposition 8. The following hold for any compatible concretions F and G.

(i) Application F ◦G is a species.
(ii) Application G ◦ F is defined and G ◦ F ≡ F ◦G.

(iii) If F ′ ≡ F and G′ ≡ G then F ′ ◦G′ exists and is congruent to F ◦G.

Proof. Induction over the derivation of F◦G shows (i) and (ii), while (iii) uses induction
over the derivations of F ′ ≡ F and G′ ≡ G. ut

Finally, Fig. 5 sets out the rules for generating the multi-transition system on species,
as a structural operational semantics [22]. For a species A, we write Trans(A) for the
associated transition multiset. These transitions are of three kinds:

1. From a species to a concretion, labelled by a name. This represents a potential for
interaction; more precisely, a transition A

a−→ (~b; ~y)B means that the species A

can interact with another by sending~b on the channel a and then evolve to B, with
~y replaced by data received.
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0 ≤ j ≤ n πj = aj(~bj ; ~yj)

Σn
i=0πi.Ai

aj−→ (~bj ; ~yj)Aj

CHOICE-1

0 ≤ j ≤ n πj = τ@k

Σn
i=0πi.Ai

τ@k−→ Aj

CHOICE-2

A
a−→ F B

b−→ G F ◦G↓

A |B τ〈a,b〉−→ F ◦G
COM-1

A
τ〈a,b〉−→ B a, b ∈ M M(a, b)↓

(νM)A
τ@M(a,b)−→ (νM)B

COM-2

A
α−→ E

A |B α−→ E |B
PAR-LEFT

B
α−→ E

A |B α−→ A | E
PAR-RIGHT

A
α−→ E α /∈ M

(νM)A
α−→ (νM)E

RES-1

A
τ〈a,b〉−→ E a, b /∈ M

(νM)A
τ〈a,b〉−→ (νM)E

RES-2

B
α−→ E D(~y)

df
= B

D(~b)
α−→ E{~b/~y}

DEFN

Fig. 5: Transition rules for species. Here α ranges over all kinds of transition labels and E ranges
over both species and concretions.

2. From a species to another species, labelled by τ@k where k is a real number, such
as A

τ@1.5−→ B. This denotes the ability of species A to evolve into B without other
interaction, at a basal rate of k (here 1.5). Examples include degradation, where B
is 0, or complex dissociation, with B of the form B′ |B′′.

3. From one species to another, labelled by a term τ〈a, b〉 with names a and b, for

example A
τ〈a,b〉−→ B. This also denotes a potential for evolution of A into B, but

now the basal rate of evolution is the affinity between a and b. This affinity will be
determined by either the global affinity network Aff or some local network M to
be introduced by restriction (νM). Thus local interaction at private names becomes
visible externally as a spontaneous action, maintaining the compositionality of the
semantics.

The following result states that the structural congruence of species is indeed a
behavioural equivalence.

Theorem 9. Let A ≡ B. There exists a bijection φ : Trans(A) → Trans(B) such that

if φ(A α−→ E) = B
α′

−→ E′ then α = α′ and E ≡ E′.

Proof (sketch). We proceed by induction on the derivation of A ≡ B: for every
transition in Trans(A) we exhibit a corresponding one in Trans(B) via a case analysis
of the transition derivation tree, and then show that this association is a bijection. ut

The behaviour of processes We give a compositional semantics to cπ processes in
terms of real vector spaces P and D, capturing respectively the immediate actions dP

dt and
the potential interactions ∂P of a process P . First, however, we need several preliminary
definitions. Recall that S and C are the sets of species and concretions, respectively,
modulo structural congruence.



Marek Kwiatkowski and Ian Stark

Definition 10. A non-zero [A] ∈ S is prime if it is not a parallel composition of non-
trivial species, i.e. if A ≡ (B |C) implies either B ≡ 0 or C ≡ 0. We write S# for the
set of prime species, with S# ( S.

Theorem 11. For any nonzero species A there exists a unique finite multiset
{|[A1], . . . , [An]|} ⊂ S# such that A ≡ A1 | · · · | An. Call this prime decomposition
of A.

Proof (sketch). We assign normal forms to species using a normalising and confluent
term rewriting system respecting ≡, and take the prime decomposition as the multiset
of |-components of the normal form. ut

The decomposition theorem allows us to represent any cπ process as a collection of
prime species weighted by real numbers.

Definition 12. The process space P is the (infinite dimensional) vector space R(S#).

There is a natural mapping from species into process space, with the concentration of
participating prime species matching their multiplicity in the prime decomposition.

Definition 13. Define 〈·〉 : S → P inductively over the structure of its argument:

〈A〉 df=


0 at every position if [A] = [0]
1 at [A], 0 elsewhere if [A] prime
〈B〉+ 〈C〉 if [A] = [B | C] for B,C 6≡ 0.

(10)

It follows from Thm. 11 that 〈·〉 is well-defined and constant inside every equivalence
class of species.

In due course we shall use space P to capture immediate process behaviour. Although
this behaviour is what we are most interested in, it is impossible to define it composi-
tionally without further information on the possible ways a process may interact with
others. We therefore define a space of interaction potentials D and an interaction tensor
� : D× D → P that combines two compatible potentials into an immediate behaviour.

Definition 14. The interaction space D is the (infinite dimensional) vector space
RS×C×N of ternary real functions with pointwise addition and scalar (real) multipli-
cation. Note that it has a basis consisting of functions of the form 1[A],[F ],a which take
the value 1 for the indicated arguments and 0 for any other set of inputs.

Definition 15. The interaction tensor � : D × D → P is the bilinear function defined
by the following action on basis values:

1[A],[F ],a � 1[B],[G],b
df=

{
Aff (a, b)(〈F ◦G〉 − 〈A〉 − 〈B〉) if F ◦G↓

0 otherwise .
(11)

Each element ξ ∈ D associates with every triple ([A], [F ], a) a real number. When ξ
describes the interaction capabilities of a process, this real number denotes the sum
of concentrations of all species present in the process which can make the transition
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A
a−→ F , or structural equivalent. The interaction tensor � combines two such

interaction potentials into an actual process behaviour. Combination of basis elements,
which can be seen as the two transitions A

a−→ F and B
b−→ G, gives a new species

resulting from the interaction F ◦ G, the substrate species A and B are lost, and the
whole expression is weighted by the interaction rate of the a — b channel in Aff .
Combination of more complex ξ, ξ′ ∈ D is computed by bilinear extension of this,
which ensures that all combinations of interaction potentials in ξ and ξ′ are considered.
Moreover, bilinearity means that the result is scaled in proportion to the “amounts” of
interaction potential, and so reflects the Law of Mass Action.

With the above definitions at hand, we are now in a position to define the formal
semantics of cπ.

Definition 16. The complete behaviour of a process P is a pair (dP
dt , ∂P ) ∈ P × D

of its immediate actions and potential interactions defined inductively on the structure
of P as follows:

∂(c ·A)([B], [F ], a) df= c · card{|C a→ G ∈ Trans(A) | C ∈ [B] ∧G ∈ [F ] |} (12)

d(c ·A)
dt

df= c ·Σ
B

τ@k−→C∈Trans(A)
k · (〈C〉 − 〈B〉)

+ c ·Σ
B

τ〈a,b〉−→ C∈Trans(A)
Aff (a, b) · (〈C〉 − 〈B〉)

+
1
2
(∂(c ·A) � ∂(c ·A))

(13)

∂(P ‖Q) df= ∂P + ∂Q (14)

d(P ‖Q)
dt

df=
dP

dt
+

dQ

dt
+ ∂P � ∂Q . (15)

We explain briefly the intuitions behind these definitions. Because every process can
be identified with a point in P, we can view the immediate behaviour dP

dt as a vector
field over P, associating with each process the gradient of its temporal evolution. The
equations (13) and (15) reflect this interpretation. Thus in (13) we take into account the
effect of all τ -transitions of species A, weighted with the interaction rates (given by
the transition labels or the global affinity network) and the initial concentration c, and
then add the behaviour arising from interactions between pairs of A molecules. In (15),
the immediate behaviour of a composition of two processes is the sum of immediate
behaviours of the components plus the behaviour that emerges from their interaction.

Computing the interaction potential ∂P for a process is more straightforward:
equation (12) lifts all the appropriate transitions from the multi-transition system and
multiplies them by the concentration c; while (14) reflects the fact that the interaction
potential of a composition of processes is simply the sum of the interaction potentials
of the components, with no cancellation or further emergent interaction.

The following theorems demonstrate that structural congruence of processes is a
behavioural equivalence, and that further identification of | and ‖ only slightly weakens
this.

Theorem 17. Let P ≡ Q. Then ∂P = ∂Q in D and dP
dt = dQ

dt in P.
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Proof. Straightforward induction on derivation of P ≡ Q. ut

Theorem 18. Let ≡+ be the smallest congruence on processes containing ≡ and
satisfying the additional rule

c · (A |B) ≡+ (c ·A) ‖ (c ·B) (16)

and let P ≡+ Q. Then dP
dt = dQ

dt and for any ξ ∈ D, ∂P � ξ = ∂Q � ξ.

Proof. By induction on derivation of P ≡+ Q. ut

In general we may have P ≡+ Q but ∂P 6= ∂Q, because the transitions A
x−→ F and

A | B x−→ F | B give rise to different points of D via (12), despite being essentially
equivalent as interaction potentials. We discuss this further in §4.4, with a possible
remedy. Notice, though, that the property we do have of equality under −� ξ for all ξ
is a form of observational equivalence: there is no way from within process space to
observe any difference between ∂P and ∂Q.

3 Example

In this section we give a cπ model for a simple biomolecular system, the KaiC circadian
clock. Our reference for this system is the work of van Zon et al. [8].

3.1 The system

Introduction Circadian clocks are molecular systems that exhibit oscillatory behaviour
synchronized with the 24-hour day cycle. They play an important role in many organ-
isms by helping to regulate their cellular behaviour according to the circadian rhythm.

The system we model is a primitive circadian clock found in the cyanobacterium
Synechococcus elongatus [23,24]. It consists of three kinds of protein: KaiA, KaiB
and KaiC. In particular, KaiC forms hexamers with 6 phosphorylation sites which are
phosphorylated and dephosphorylated in a cyclic manner, thus dictating the circadian
rhythm.

The KaiC circadian clock has two features that make it of particular interest to the
biological community. The first is its simplicity — it requires only 3 kinds of molecules
to function. The other is that it does not rely on either intracellular compartments or
gene regulation, which sets it apart from other circadian clocks and (remarkably) makes
it possible to reproduce its self-sustaining cycle relatively easily in vitro [7].

The allosteric model Although there are extensive experimental results on the activity
of the various components of the KaiC system, its precise mechanism is not yet
understood. In order to explain the observed behaviour, the authors of [8] propose
an elegant model based on two assumptions. The first assumption is that every KaiC
protein is allosteric, i.e. it can adopt two distinct 3D shapes (conformations), denoted
active and inactive. This gives every KaiC hexamer a propensity to spontaneously
undergo a phosphorylation-dephosphorylation cycle, as shown in Fig. 6. The cycles of
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C0 C1 · · · C6

C̃6
· · ·C̃1C̃0

Active forms

Inactive forms

kps kps kps

f6

k̃dpsk̃dpsk̃dps

b0

Fig. 6: The phosphorylation cycle of a single KaiC molecule. The two allosteric forms have op-
posite (de-)phosphorylation tendencies: phosphorylation proceeds from left to right, dephospho-
rylation from right to left. The potential to flip between the conformations closes the cycle. Non-
dominant reactions are indicated with dotted arrows. Adapted from [8, Fig. 1(B)].

individual KaiC are then synchronized with each other thanks to the other assumption:
that the phosphorylating agent KaiA binds more strongly to weakly phosphorylated
KaiC molecules. This mechanism is called differential affinity. The role of KaiB in this
model is to stabilise the inactive form of KaiC and to increase the competition for free
KaiA molecules between the differently phosphorylated active forms.

3.2 The cπ model

Figure 7 displays our cπ model of the KaiC system proposed in [8]. It combines species
declarations, a global affinity network Aff and local affinity networks Mi.

Species In the first few lines (17)–(22) we define the 14 distinct species of KaiC: active
and inactive forms, each in one of 7 phosphorylation states. Lines (23)–(28) then define
the complexes formed by inactive KaiC with KaiB and KaiA, while (29) defines species
KaiA and KaiB themselves. Finally, process (30) describes an initial state of the model.
Note that several intermediate species, not explicitly defined here, naturally emerge from
subsequent interactions. For example, the A-C0 complex

(νM0)((u0.C0 + r0.C1) | act0.A) (31)

arising from an interaction between A and C0 on the a
kAf
0— a0 channel, communicating

local names u0 and r0. This complex can then dissociate, triggered by the interaction
between local site act0 and either u0 or r0, corresponding respectively to simple
unbinding of C0 or catalysed phosphorylation to C1.

The definitions of the species are based entirely on their interaction capabilities as
postulated in [8]. For example, the active and unphosphorylated KaiC molecule (species
C0 in (17)) can either flip to the inactive state at rate f0 (the τ@f0.C̃0 component),
spontaneously phosphorylate at rate kps (the τ@kps.C1 component), or bind a KaiA
molecule to form the complex of (31) above (the a0〈act0〉.(u.C0 + r.C1) component).

We have one minor deviation from [8], concerning the binding of KaiB and KaiA to
inactivated KaiC in lines (23)–(28). Both of these bind in multiples to KaiC: based on
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C0
df= (νM0)(τ@f0.C̃0 + τ@kps.C1 + a0〈act0〉.(u0.C0 + r0.C1)) (17)

Ci
df= (νMi)(τ@fi.C̃i + τ@kps.Ci+1

+ τ@kdps.Ci−1 + ai〈act i〉.(ui.Ci + ri.Ci+1))
(18)

C6
df= τ@f6.C̃6 + τ@kdps.C5 (19)

C̃0
df= τ@b0.C0 + τ@k̃ps.C̃1 + b0.b

′.BC̃0 (20)

C̃i
df= τ@bi.Ci + τ@k̃ps.C̃i+1 + τ@k̃dps.C̃i−1 + bi.b

′.BC̃i (21)

C̃6
df= τ@b6.C6 + τ@k̃dps.C̃5 + b6.b

′.BC̃6 (22)

BC̃0
df= τ@kBb

0 .(C̃0 |B |B) + τ@k̃ps.BC̃1 + ã0.ã
′.ABC̃0 (23)

BC̃i
df= τ@kBb

i .(C̃i |B |B) + τ@k̃ps.BC̃i+1

+ τ@k̃dps.BC̃i−1 + ãi.ã
′.ABC̃i

(24)

BC̃6
df= τ@kBb

6 .(C̃6 |B |B) + τ@k̃dps.BC̃5 + ã6.ã
′.ABC̃6 (25)

ABC̃0
df= τ@k̃Ab

0 .(BC̃0 |A |A) + τ@k̃ps.ABC̃1 (26)

ABC̃i
df= τ@k̃Ab

i .(BC̃i |A |A) + τ@k̃ps.ABC̃i+1 + τ@k̃dps.ABC̃i−1 (27)

ABC̃6
df= τ@k̃Ab

6 .(BC̃6 |A |A) + τ@k̃dps.ABC̃5 (28)

A
df= a(x).x.A + ã.0 B

df= b.0 (29)

P
df= cA ·A ‖ cB ·B ‖ cC · C0 (30)

(a) Species and process definitions

act i

ui ri

kAb
i kpf

(b) Local affinity
networks Mi

a

a0 a6

· · ·

ã

ã0 ã6

· · ·

ã′ b

b0 b6

· · ·

b′

kAf
0 kAf

6 k̃Af
0

k̃Af
6

kvf

kBf
0

kBf
6

kvf

(c) The global affinity network Aff

Fig. 7: The cπ model of the KaiC circadian clock. Parameter i takes values 1 . . . 5 in species
definitions and 0 . . . 6 in the affinity networks.
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size measurements, van Zon et al. assume that each KaiC binds two KaiB and then two
KaiA. They model these with a 3-substrate reaction, which cannot be expressed directly
in cπ. Instead, we model the binding by two consecutive binary interactions, where the
rate of the second (kvf) is much greater than that of the first (kBf

i or kAf
i ).

This occurs, for example, in the KaiB-KaiC complex BC̃0 of (23). This can
either spontaneously dissociate, at rate kBb

0 , into an inactivated KaiC and two KaiB,
phosphorylate at rate k̃ps, or bind successively to the ã site on two KaiA molecules to
form a KaiA-KaiB-KaiC complex.

The model also shows other kinetics in action, for example in the binding of KaiA
to active KaiC modelled by scope extrusion shown above (31). When the extrusion is
reversible, as it is here, the cπ semantics of the combined reaction generates a Michaelis-
Menten kinetics. Other binding events are modelled as simple communication, which
gives rise to Mass Action kinetics.

Affinity networks We model the differential affinity mechanism with fan-like affinity
networks, where a single site can interact with several others at different rates (Fig.
7(c)). For the sake of symmetry and for the ease of potential perturbation analysis of
the model, we retain the fan shape even where [8] assumes no differential affinity. The
differential affinity of the KaiA-KaiC binding is modelled by differing interaction rates
kAb

i in the collection of local affinity networks Mi (Fig. 7(b)).

Results There is a close correspondence between the dynamical behaviour of the
cπ model, as generated by the semantics of §2.2, and that of our reference paper [8].
Moreover, we can extract from the species and network declarations of Fig. 7 a set of
ODEs that matches those reported in [25, p.14] (up to minor differences due to our
alternative modelling of multiple binding).

We have a prototype tool that takes textual descriptions of cπ systems and applies
the semantics of §2.2: exploring the transition state space of species, and then combining
these to compute the potential and immediate behaviour of processes. The tool is written
in Haskell [26,27], and generates ODEs in a format suitable for numerical analysis by
Octave [28,29].

Figure 8 shows the result of this tool applied to the cπ model of Figure 7. We take
values for the 65 or so system parameters from those proposed by van Zon et al. in [25],
with some corrections from [30]. Our tool generates a set of 50 ODEs covering all
derived species, which are readily solved by Octave. For comparison, we have replicated
the graphs presented in [8] to show sustained oscillations in the model: the original
graphs are on the left, ours on the right.

4 Discussion

4.1 Alternative behavioural semantics

Process algebras offer a distinct level of abstraction compared to more widespread
dynamical models of biochemical systems such as ordinary differential equations or
Markov chains. A process algebraic description of a system may be translated to
more than one such formalism (see e.g. [31]) and so a modeller may choose the most
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Fig. 8: Graphs comparing oscillatory behaviour of the models defined by van Zon et al. [8] and the
cπ terms of §3. The upper graphs show mean phosphorylation level of KaiC over three circadian
cycles. The lower ones show the relative amounts of the complexes KaiA-KaiC (active); KaiB-
KaiC (inactive); and KaiA-KaiB-KaiC (sequestering KaiA and so inhibiting the phosphorylation
of active KaiC).

appropriate dynamic paradigm for a given situation. This is true of cπ: aside from the
“native” ODE semantics, it is relatively easy to generate Markov chains (by introducing
integer quantities of processes instead of real-valued concentrations) and it may also be
possible to map the cπ syntax to other behavioural models (e.g. Petri Nets as in [32]).
We see this flexibility as a strength of process algebras like cπ.

4.2 Modelling evolution

The target application of continuous π is the investigation of Darwinian evolution on the
molecular level. At present, we are able to identify two promising concrete applications
of cπ in this context. The first is direct simulation of evolution; the other is analysis of
evolutionary robustness.

Evolutionary trajectories In order to simulate molecular evolution by natural selec-
tion, we must be able to express variability, populations and fitness in our process-
algebraic framework. While populations of individuals can be modelled simply as col-
lections of processes, the other two concepts use the process-algebraic nature of the
model in an essential way.

Variability We propose addressing qualitative and quantitative variation of pathway
topology (connectivity) in two ways. The first is by considering small variations in
affinity networks, in order to model changes in the interaction capability of existing
active sites. The other is by altering the structure of the species and thus modelling
evolution of new sites, domain duplication and similar higher-level discrete events.
It is also possible to consider variation in the initial concentrations of processes and
interpret this – particularly in simpler models – as variation in gene expression.
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It remains to be investigated whether it is biologically sensible to include this
type of variation in a model that is otherwise focused on the evolution of network
topologies.

Fitness It is clear that any notion of fitness is problem-dependent and must be defined
externally by the modeller. We plan to use a form of quantitative model checking to
compute the fitness value. This requires a modeller to formulate a fitness measure
in an appropriate logic.

A recently published study [33] uses the process algebra of Beta-binders [34] in a similar
programme of simulating molecular evolution, which provides some validation of this
approach.

Robustness A further intended application of the calculus is the study of neutrality of
biochemical pathways and related concepts such as robustness and evolvability. Since
by definition two pathways are neutral with respect to each other if they have the same
fitness, the question of determining neutrality can be reduced to that of assessing fitness
(see above). We plan to treat it separately, however, as it may be possible to characterize
or approximate neutrality without actually computing fitness. For example, we might
deem two pathways neutral if they satisfy the same subset of a well-chosen set Φ
of sentences in an appropriate logic. Even more desirable would be to characterize
neutrality via a suitable behavioural equivalence, requiring no input from the modeller
at all. In either case we expected the method to be applicable only to a restricted class
of pathways (actual biological entities), whose identification is a challenge in itself.

4.3 Hybrid modelling

A dynamical system is hybrid if its dynamics have both discrete and continuous
characteristics. This is a common situation in models for cell biology: for example,
consider gene regulation by simple direct negative feedback. A protein is produced
at a constant rate (continuous dynamics) until transcription is switched off due to a
protein molecule binding to the DNA (discrete event). Continuous π as it is now cannot
model this situation because we require every molecular species to be present in some
concentration, while the DNA is present as a single copy only. In general, whenever it is
impossible (or undesirable) to abstract over gene expression (or at least transcription),
we are faced with the need to model a genuinely hybrid situation. In addition, even
when the use of a purely continuous approach is conceptually possible, a model may
fail to produce characteristic behaviour that depends crucially on stochastic effects. See
e.g. [35] for a comparison of the continuous and stochastic approaches.

There are a variety of computational approaches to hybrid modelling, such as hybrid
I/O automata [36] and hybrid process algebras [37]. We plan to build on this tradition
and extend cπ with discrete features, in the form of species present as single individuals.
Interactions with these species will act as discrete control events on top of the existing
continuous semantics, giving truly hybrid process behaviour. We take the lac operon
molecular system [38] as a suitable target to validate this approach. This is a regulatory
network involving protein-DNA interactions which modify the transcription process of
several genes; what is more, it is relatively well understood and well known among
biologists.
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4.4 Refinement of semantics

At present the potential behaviour ∂P of a process includes a description of every
reaction in which it can engage. While this is necessary for compositionality, we believe
there is room for improvement in the encoding of this information. Specifically, we
need not record for every offered communication precisely what is consumed and what
produced; a “net result” is enough (cf. formulae (11) and (13)). Consider for example
the process

P = c ·A, where A
df= a.(A |B) . (32)

In the semantics of §2.2 this communication potential is recorded as ∂P (A, (; )(A |
B), a) 6= 0: in a single communication event over a one A is lost while another is
produced along with B. It would be enough just to record that this reaction results in
a production of a single new B. It remains to formalize this and extend it to arbitrary
concretions.

Finally, we conjecture that Rω is unnecessarily large to serve as P and that for
any process P , its immediate behaviour dP

dt is an element of an `p space for some
fixed p (the space of infinite real sequences with a finite p-norm). Moving from Rω

to `p would allow us to use the rich theory of Banach (and Hilbert, if p = 2) spaces
to study the properties of the calculus and to approach biological questions about, for
example, system trajectories.
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