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Abstract

We show how the m-calculus can express local communications within a distributed
system, through an encoding of the local area mw-calculus, an enriched system that
explicitly represents names which are known universally but always refer to local
information. Our translation replaces point-to-point communication with a system
of shared local ethers; we prove that this preserves and reflects process behaviour.
We give an example based on an internet service deemon, and investigate some
limitations of the encoding.

1 Introduction

Part of the power of the m-calculus is that names serve a dual role: as well
as carriers of communication, they have unique identity. By default the scope
of these coincide, so that any two processes that know a common name can
also use it to communicate. In many distributed systems, however, this is not
so natural: widely-known names may be intended to refer always to local
information. For example, the standard finger service operates on well-
known port number 79, but should of course give a different answer on different
machines. We can even take this as a defining characteristic of a distributed
system: that a single name may refer to different things depending on where
it is used.

The local area m-calculus (lam) captures this phenomenon of names which
are known universally but always refer to local information. It extends the
m-calculus so that a channel name can have within its scope several disjoint
local areas. Such a channel name may be used for communication within an
area, it may be sent between areas, but it cannot itself be used to transmit
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information from one area to another. Areas are arranged in a hierarchy of
levels, distinguishing for example between a single application, a machine, or
a whole network.

In previous work we introduced the local area w-calculus and showed how
a combination of static typing and dynamic checks can give flexible scope for
name identity while suitably restricting communication to local areas [8]. In
this paper we give a compositional translation of lar into the plain 7-calculus,
and prove that it correctly encodes process behaviour.

The main challenge for representing local areas in the m-calculus is how
to prevent communication on a channel between different areas, while still
preserving the identity of names. Our solution is to replace communication
inside an area with communication on a new channel created just for that
area. As well as sending the original data, an encoded output sends the
channel name as well. Output action a(b) becomes é(a,b) where e is a name
that corresponds to the appropriate local area — a shared ether. An input
action on a channel translates to a process that listens for communication
on the relevant ether. When it receives a message it tests the first element
against the desired channel name; if they match it accepts the input, otherwise
it rebroadcasts the message.

This translation makes explicit the different roles of names, identity and
communication, by mapping them to two distinct sets of names. Names like
a and b serve purely as data, for identification; ether names like e are for
communication only. The scope of data names manages who knows what,
while the scope of ether names handles locality of communication.

The evident motivation for this model is packet communication on an
ethernet: instead of sending data directly to its destination, we drop a packet
into the ether. Listening processes pick up all packets and sift out the ones
they are interested in. In our case the tree of nested areas (applications,
machines, networks) gives rise to a hierarchy of ethers, with a process using a
different ether for each level of communication (local to an application; within
a machine; over the network).

There is a close match between the behaviour of a process in law and its n-
calculus translation; we show a form of weak bisimilarity on outputs. There is
some loss of information though, in that translated terms may make additional
silent moves, as packets pass over the ether, and an ether may indiscriminately
accept and rebroadcast packets in which no receiver is interested.

The rest of the paper is arranged as follows. Section 2/ presents the local
area m-calculus, its type system and operational semantics. Section |3 reviews
the version of the m-calculus we use. Section 4| gives the encoding between
these, and Section /5 outlines the result that a process and its encoding are
weakly bisimilar on output. Section |6 presents an example of the translation
at work, and Section (7 concludes.
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Related work

Local areas are in some sense a more regular form of CCS restriction or
CHOCS blocking. Vivas and Dam have studied the effect of these on the
higher-order m-calculus, and given an encoding into the m-calculus [23]. How-
ever, their encoding relies on blocking being carried out explicitly on individual
names, and is (in their own words) both complex and indirect (though chiefly
because it also handles higher-order operations).

Cardelli, Ghelli and Gordon take a different approach to limiting commu-
nication with their notion of name groups [5]. Ingeniously, introducing these
into the type system allows one to check statically that a process never passes
out certain names. In our system, by contrast, names may be passed anywhere
— only their action is limited.

There are numerous projects addressing locations in the m-calculus [3/4/13],
and distributed systems more generally [7/10/18/21]. These overlap with our
approach to varying degrees; some look at issues of when locations fail, others
limit communication in particular ways. In the extreme, systems like mobile
ambients make all interaction local: remote agents must move around to talk
to each other [6].

Translating miscellaneous concurrent systems into each other is also a pop-
ular sport. Nestmann and Pierce give a good overview of what makes for a
good encoding in their work on deconstructing choice [16]. Among many ex-
amples, Fournet and others have implemented mobile ambients in the JoCaml
languages [9]; this translates one notion of distributed areas into another,
whereas we make areas disappear entirely. Moreover, their focus is on provid-
ing a basis for a implementation of Mobile Ambients, so much attention is paid
to making it run efficiently. Sangiorgi describes in great detail a rather differ-
ent encoding of locations in order to express non-interleaving semantics [20].

2 A m-calculus with local areas

The local area m-calculus extends a standard m-calculus with nested local ar-
eas arranged in levels. The m-calculus part is unexceptional: it happens to
be polyadic (channels carry tuples rather than single values [14]) and asyn-
chronous (output actions always succeed [2]). To illustrate the extensions, we
present a brief example, based on a mechanism for selecting internet services.

When a browser contacts a web server to fetch a page, or a person operates
finger to list the users on another machine, both connect to a numbered
“port” on the remote host: port 80 for the web page, port 79 for the finger
listing. Of course, this only works if both sides agree; and there is a real-world
committee to set this up [12]. Under Unix, the file /etc/services holds a
list mapping numbers to services. There is also a further level of indirection:
most machines run only a general meta-server inetd, the Internet deemon,
which listens on all ports. When inetd receives a connection, it looks up the
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port in /etc/services, and then consults a second file which identifies the
program to provide that service. The inetd starts the program and hands it a
connection to the caller. A model of this procedure in the local area m-calculus
looks like this (we omit detailed type information).

Client Carp = host| ve.(pike(finger, c) | c(z).print(x)) ]
Server Pike = host[ pike(s,r).5(r) | finger(y).y(PikeUsers)
| 'daytime(z).z{ PikeDate) |
System net[Carp | Pike]

Names pike and c operate at net level,
finger, daytime and print operate at host level

This shows a client machine Carp that wishes to contact a server Pike with a
finger request; the host[—] and net[—] markers indicate local areas. The client
has two components: the first transmits the request, the second prepares to
print the result. Server Pike comprises three replicating processes: a general
Internet deemon, a Finger deemon, and a time-of-day deemon. Channel pike
is the internet address of the server machine, while the free names finger and
daytime represent well-known port numbers. In operation, Carp sends its
request to Pike naming the finger service and a reply channel ¢. The Internet
daemon on Pike handles this by retransmitting the contact ¢ over the channel
named finger. The Finger deemon collects this and passes information on
PikeUsers back to the waiting process at Carp. Figure 1l gives a graphical
representation of the interaction.

In the plain 7-calculus, this models leaks: because the names finger and
daytime are visible everywhere, even when the Internet deemon on Pike has
collected the request there is no protection against a Finger deemon on some
different server actually handling it. Restricting the scope of finger to host
Pike would be no solution, because then Carp could not formulate the request
because it has to know the name of the service.

In the local area m-calculus, each channel has an assigned level of operation,
which limits how far communication on that channel may travel. In this case,
although finger is globally known, messages over it remain within a single host.
This breaks the Catch-22: Carp and Pike agree on the name for the finger
service, but different Finger deemons on separate machines do not interfere
with each other.

2.1 Syntax

The calculus is built around two classes of identifiers:

channels a,b,c,x,y, query, reply, ... € Chan
and levels ¢, m, app, host, net, ... € Level.
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Net

Communications:
1: over "pike" at the net level
2: over "finger" at the host level

3: over "c" at the net level 1
4: data offered on "print" at the host level A
. Carp
Pike 2
4
Daytime Finger Inetd

Fig. 1. Operating a remote finger service through an inet dseemon

Channel names are drawn from a countably infinite supply, Chan. Syntacti-
cally, they behave exactly as in the w-calculus. Levels are rather more con-
strained: we assume prior choice of some finite and totally ordered set Level.
Throughout the paper we use app < host < net, and take ¢ and m as metavari-
ables for levels.

Processes are given by the following syntax, based on the asynchronous
polyadic m-calculus.
Process P,@ :=0 inactive process | a
| P|@Q parallel composition | a
| ([P] local area at level ¢ | !
| va:o.P fresh channel a of type o

The only novelty here is ¢[P], which represents a process P running in a local
area at level ¢; we refer to a process of this form as an agent. Areas, like
processes, are anonymous; this is in contrast to systems for locations, which
are usually tagged with identifiers.

Channel names may be bound or free in any process. The binding prefixes
are as usual the input prefixes a(g), !a(l;) and restriction va:o; the type o gives
information about the level of operation of a and the tuples it carries. We
write fn(P) for the set of free names of process P.
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We identify process terms up to structural congruence ‘=’, the smallest
congruence relation containing the following equations:

Pl0=P a(b).P = a(d).P{¢/b} N fn(P) =10
PlQ=Q|P la(b).P = a(3).P{C/b} &N fa(P) =10
(PIQ)|R=P|(Q|R) va:o.P =vb:o.P{b/a} b ¢ fn(P)
va:o.0 =0 va:ovb:t.P =vbtvao P a#b

lva:o.Pl=va:wo.({[P]) (va:o.P)|Q=vao.(P|Q) a¢ n(Q)

2.2 Scope and areas

The interesting equation in this structural congruence is ([va:0.P] = va:o.(¢[P)),
commuting name binding and area boundaries. A consequence of this is that
the scope of a channel name, determined by v-binding, is quite independent
from the layout of areas, given by ¢[—]. Scope determines where a name is
known, and this will change as a process evolves: areas determine how a name
can be used, and these have a fixed structure.

For a process description to be meaningful, this fixed structure of nested
areas must accord with the predetermined ordering of levels. For example, a
net may contain a host, but not vice versa; similarly a host cannot contain
another host. Writing < for the one-step relation in the total order of levels,
we require that in a well-formed process every nested area must be <;-below
the one above.

Consider some occurrence of a bound channel name a in a well-formed
process P, as the subject of some action: a(—), a(—), or la(—). The scope
of a is the enclosing v-binding va:o.(—). The local area of this occurrence of a
is the enclosing level ¢ area ¢[—|. A single name may have several disjoint local
areas within its scope. It is also possible for a name to occur outside any local
area of the right level; in this case it may only be treated as data, not used
for communication.

2.8  Type system

Channel types have the following rather simple grammar.
Type o = dal

A type declaration of the form a : el states that a is a level ¢ channel carrying
tuples of values whose types are given by the vector ¢. The base types are
those with empty tuples: a channel of type ()ef is for synchronization within
an f-area. Additional base datatypes like int or string can be incorporated
without difficulty.

Figure 2 presents the rules for deriving type assertions of the form I' I,
P, where T' is a finite map from channel names to types. This states that
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TP THQ T,0:6H P I(a)=dam

' P|Q 'ty a(b).p With £<m

IR T,a:0k P T.b:3F P T(a)=é&am
—E <1m - = —_— .

[k, ([ P] I'tyvao.P '+, la(b).p Wwith t<m

— -

I'Fya(b) ifI'(a) =dam, I'(b) =d and £ <m

Fig. 2. Types for processes in the local area calculus

OUT D alby “%o
IN Tt a(b).P 2 p bN dom(I') = 0
IN! Dk la(@).P % PllaB).P 50 dom(T) =0
«a /
AR L PP
T PlQ - P|Q
a(c a l;
cont D PQP'T T Qj—}@’
ke PIQ — PQ{c/b}
la:oby PP
BIND AEARE S — a ¢ f(a)
'+, va:o.P — va:o. P’
o if o is a(b) or a(b)
'+, PSP !
AREA O — then ['(a) = Gam’

Ik, ([P] -2 ([P] with £ <, m < m’

Fig. 3. Operational semantics for the local area calculus

process P is well-typed at level ¢ in context I'. The static checking provided
by the type system makes two assurances: tuples sent over channels will always
be the right size, and a well-typed process will not attempt to communicate
on a name above its level of operation.

2.4 Operational semantics

We give the calculus a late-binding, small-step transition semantics, following
the regular w-calculus. There is only one addition: although the static type
system guarantees that a process will not initiate communication on a name
above its operating level, we still need a dynamic check to make sure that no
active communication escapes from its local area.

The operational semantics is given as an inductively defined relation on
well-typed processes, indexed by their level ¢ and context I'. Figure 3 gives
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rules for deriving transitions of the form
' P-5Q
where I' =y P and « is one of the following.
(b
b

(b) input
T silent internal action

-

Transition o = a(b) output
a

We make a few observations of these rules and the side-conditions attached to
them.

» Active use of the structural congruence ‘=’ is essential to make full use of
the rules: a process term may need to be rearranged or a-converted before
it can make progress. For example, there is no symmetric form for the PAR
rule (and no need for one).

* In order to apply the COMM rule it may be necessary to use structural con-
gruence to expand the scope of communicated names to cover both sender
and recipient.

e Late binding is enforced by the side-condition b N dom(I') = @ on the input
rules; this ensures that input names are chosen fresh, ready for substitution
Q{¢/b} in the COMM rule. Again, we can always a-convert our processes
to achieve this.

e The side-condition m < m’ on AREA is the dynamic check that prevents
communications escaping from their local area.

In previous work [8] we demonstrated that reduction preserves types, and as
a consequence the semantics does successfully capture the intuition behind
areas and levels: areas retain their structure over transitions, and actions on
a channel are never observed above the correct operating level.

2.5  FEzample: Internet daemon

Recall the internet service example given earlier: a host Carp wishes to con-
tact a Finger deemon running on host Pike, through a general Inet daemon.
Figure 4! fills out the details of this, including type definitions.

The type service for finger and daytime expands to (stringanet)ahost.
This means that these channels can be used only for host-level communica-
tion, but the values carried will themselves be net-level names. The host-level
communication is between Inet and Finger or Daytime; the net-level com-
munication is the response sent out to the original enquirer, in this case over
channel ¢ to machine Carp. Channel pike has a net-level type that acts as
a gateway to this, reading the name of a service and a channel where that
service should send its reply.
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Carp = host| ve:response.(pike(finger, c) | ¢(x).print(x)) |
Pike = host| Inet | Finger | Daytime |

Inet = pike(s,r).5(r)
Finger = finger(y).y{ PikeUsers)
2)

Daytime = daytime(z).zZ{ PikeDate)
I’ = {finger, daytime : service service = responseahost
pike : (service, response)anet response = stringanet

print : stringahost }
[' Fpee (Carp | Pike)

Fig. 4. Example of processes using local areas: an Internet server deemon

We can now apply our operational semantics to see this in action.

I' Fne (Carp| Pike) = ( host| vc:response.(pike(finger, c) | c(z).print(z)) ]
| host| Inet | Finger | Daytime | )

veresponse. ( host| pike{finger, c) | c(x).print(z) ]

extend scope of ¢
| host| Inet | Finger | Daytime ] )
expand Inet = veresponse. ( host| pike(finger, c) | ¢(x).print(z) |
| host][ !pike(s,r).5(r)
| Finger | Daytime | )
c(x).print{x) ]
finger{c) | Inet
| Finger | Daytime | )

. . T
communication — veiresponse. ( host
on pikeanet | host

— —

[ e(z)-print(z) |
[ finger(c) | Inet
| {finger(y).y(PikeUsers) | Daytime | )

expand Finger = ve:iresponse. ( host
| host

communication —— veiresponse. ( host| c(z).print(z) |
on fingerahost | host[ Inet | ¢( PikeUsers)
| Finger | Daytime | )
communication —— veiresponse. ( host[ print(PikeUsers) |
on canet | host[Inet | Finger | Daytime ] )

After a sequence of internal communications at the net and host level, the
first host Carp is ready to print the information PikeUsers, and host Pike is
restored to its original configuration.
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3 The target w-calculus.

The target calculus is an asynchronous 7-calculus [1)2/11], with guarded re-
cursion and name testing.

P == ab).P | ad) | 0 | (P|Q) | pX.P | va.P | if x = ythen P else ()

The absence of output prefixing and choice reflects the local area calculus.
Other aspects are tuned to make the encoding as simple as possible by reduc-
ing internal transitions and avoiding inert processes. For example, we could
easily use replication ! P rather than recursion, but this needs an extra trigger
channel.

Unusually, our channels carry non-empty lists of values rather than tuples;
we write b for this, with ; for list concatenation. This is because the translation
multiplexes the action of several polyadic lar-channels onto a single ether, and
hence a single m-channel may carry packets of different sizes. We use head/tail
pattern matching on these lists to unwrap packets; in fact, testing on the head
element of a list is always enough to determine its length. An alternative would
be to further encode lists using standard m-calculus techniques [22], or possibly
type packets with some polymorphic datatype [17].

We need to test names for both equality and inequality, and so combine
these into a conditional with operational rules derived from those for match-
ing [15].

PP Q5 Q
if © = x then P else Q — P if © =y then P else Q —— Q'

r#y

With these rules we can consistently add the following convenient structural
congruence:

(if t =xthen PelseQ) = P.
The operational semantics of the calculus is otherwise quite standard, and we
omit the details.

4 Encoding local areas

In this section we present a compositional encoding of law-terms into the -
calculus, following the scheme outlined in the introduction. All communication
is mapped into packets passing over designated ether channels; thus tuple
output @(b) becomes list output &(a; b) where ether e varies according to the
level of a. To keep track of which ether to use, we maintain an environment A
mapping levels to ether names. The encoding is parameterized over this, and
takes the form
[CFe P ]]A

where P is a well-typed term of level ¢ in context I', and A assigns ethers to
levels ¢ and above.
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Structure:
['F,0],=0
[[F'_KP|QHA: [[FWP]]A | [[F'_ZQ]]A
[T'Fe m[P]]\ = ve. [l Fy, P]]Am%)e e ¢ fn(P)U cod(A)
II'kevao. Pl =va.l' a0 by P]

Actions, all with e = A(m) where I'(a) = dam:

[T ke alb)] = e(asb)

[T e a(b).P]y = puX.e(z;b).if v = athen [I',b:5 &, P] L else (e(x; b) | X)
[ b la(b).P]y = pX.e(x;b).(X | if = athen [T, b:d -y P], else e(x; b))

Fig. 5. Rules for encoding law into the plain w-calculus

Figure 5 presents the full encoding, with one clause for each constructor;
here we go through each one individually. The null process, parallel composi-
tion, and name restriction are unchanged.

[T+, 0], =0

[CFe PIQIy = [T e PIo T Fe Q)a
[I'tyvao.P], =va.[l',a:0 - Pl

To place a process in a local area, as an agent, we create a new ether name and
assign it a level in the environment A. A side condition ensures that we do
not accidentally capture any existing names when introducing the new ether.

[T ke mP]] 5 = ve. [l Fy, P]]A’mHe e ¢ fn(P)U cod(A)

Translating an output action uses the environment and the assignment of
levels to ethers to find the correct ether for the output channel. It then sends
both the output channel and the data for transmission over this ether name
as a list.

-

[T Fea(b)] A = €(a; b) with e = A(m) where I'(a) = Gam

An encoded input also uses the environment and the assignment of levels
to ether names to find which ether it should listen on. When it receives a
packet over this ether, it tests the head of the list to see if it matches the
input channel name. If it does, then the packet is meant for this input and
execution continues as appropriate. If the names do not match, then this
packet is meant for some other channel in the same area. The packet is resent

11
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and the process restarts.

[T e a(b).P]y = puX.e(x;b).if v = athen [I',b:5 -, P] . else (e(x; b) | X)

with e = A(m) where I'(a) = Fam.

Replicated input is the same, except that the process restarts whether or not
the input key is correctly matched.

[T Fela(b).P]y = pX.e(x;b).(X | if v = athen [I',b:5 -y P|, else e(x; b))

with e = A(m) where I'(a) = dam.

The encoding is well-defined up to structural congruence.
Proposition 4.1 For any lar-terms P and Q, if P = Q then [P], = [Q] A-

Proof. Because the encoding is compositional, it is enough to check that all
of the structural axioms for lam given at the end of §2.1/ translate to valid -
calculus equivalences. All of these are immediate; the only significant case is
that ([va:0.P] = va:o.({[P]) becomes exchange of name binders ve.va.[P], =
va.ve.[P] 5 for some ether e. O

It is worthwhile noting that the encoding uses m-calculus channels in a
highly stereotyped manner. Names fall into two distinct classes: data names,
like a@ and b, which correspond directly to lamw channels, and ether names like e.
All communication involves sending data over ethers. Data names are never
used as channels, while ether names are never transmitted, nor do they appear
in match tests. One consequence of this is that all our terms happen to lie
in the subset studied by Merro [13] as the local m-calculus, where names sent
over channels may not be used for further communication.

In the introduction we mentioned that in general m-calculus names have a
dual role, for identity and for communication; what happens in the translation
is that each role is mapped to a different name.

5 Correctness of the encoding

A lam-process and its encoding behave in very similar ways, and this is pre-
served under reduction. Our main result is that they enjoy a form of bisimi-
larity on outputs, up to the translation between direct and ether-based com-
munication.

Theorem 5.1 For any well-typed process I' &y P in the local area m-calculus
and transition o = a(by or a = 1, the following hold.

(i) IfT F¢ P =% P' then [ ¢ Py 32 [T F, P],.

(ii) If [I' ke P]4 loly Q then there is P' such that T -, P == P’ and
[T, P\ =Q.
12
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Here [t =T and [[EL(Z;)]]A = é(a,b) where e = A(m) for I'(a) = dam.

This result says nothing about inputs: in fact, a term and its encoding
generally have different input behaviour, with the translated terms being more
receptive than the original. It is conventional though in asynchronous calculi
to regard only output as observable, as there is no way in principle to know
when an input has been received.

In the terminology of Nestmann and Pierce [16], this is an operational cor-
respondence between the calculi. Although expressed in terms of weak tran-
sitions, the correspondence is in fact rather close. Transitions match exactly,
except that a single internal 7-transition may map to zero lam-transitions.
Unfortunately this does introduce the possibility of divergence: most trans-
lated terms can perform an unbounded sequence of 7 steps as they collect and
return ether packets. Divergence also arises in Nestmann and Pierce’s choice
encoding, except that there it is inserted by design, to give a more convenient
full abstraction result; their initial encoding is divergence free. In our system,
divergence arises rather naturally from mechanism of ethers. We expect that
replacing this with more pragmatic lists of readers and writers would lead to
a divergence-free encoding, but at a cost of considerable complexity.

Theorem 5.1/ follows without difficulty from the following more precise
results, which characterise exactly the possible actions of encoded processes.

Lemma 5.2 For any well-typed process I' =y P in the local area m-calculus the
following hold. In each case @ = [I' -y P], and e = A(m) where I'(a) = Gam.

@) [T, P 2% P othen QY @ where Q' = [T 1 P] .

(ii) If Ty P O P then Q olzb) Q' such that for any vector of names ¢ we

have Q'{a;c/z: b} = [I" ¢ P'{C/b}] -
(iii) IfTF, P — P’ then Q —— Q' where Q' = [I' ¢ P'] 5.

(iv) QY then T+ P 2% P with [T, P, = Q.
(v) If Q i Q' then either Q' = e(x;b) |Q or T+, P O prwhere for any
vector of names ¢ we have Q'{a; c/z: b} = [I" ¢ P'{C/b}] A

(vi) If @ = Q' then either Q = Q' or 'ty P — P with [[ =, P'], = Q'

This makes clear the close connection between lam-transitions and ether
packets. For output, the correspondence is exact: a process can perform
an output if and only if its translation can. For input, recall that when an
encoded process reads a packet, it tests it and if unsuitable it retransmits
the packet again and continues as before. This means that an input in the
encoded system may be matched by a similar input in the system it encodes
or it may perform an output and revert to the original process.

This choice of two possible responses to any input action is carried over to
the case of an encoded process performing a 7. This may either reflect a 7 in
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[T et Carp| Pike ] = Carp'| Pike'

{net—n}
Carp' = vq.ve. ( i{pike, finger,c)

| puX.n(x;y).if © = cthen g(print;y) else (i{r;y) | X))
Pike' = vp.(Inet’| Finger' | Daytime’)

Inet’ = uX.n(z;y).(X | if © = pike then p(y) else n(z;y))
Finger' = uX.p(s,r).(X |if s = finger then n(r, PikeUsers) else p(s, r))
Daytime’ = nX.p(s,r).(X | if s = daytime then n(r, PikeDate) else p(s, 1))

Ether names: n, p, q

Data names: pike, finger, daytime, print,c,r, s

Fig. 6. Example of processes using local areas: an Internet server deemon

the system it encodes or it may be a rejected communication, in which case
the process it reduces to is congruent to the original.

The proofs for each clause in the lemma follow a similar pattern. For
clauses (i)—(iii), we break down a process into the part that performs the
action and a surrounding context. Next we use the encoding rules to encode
these parts. Then we show how the encoding of the part of the lam-process
that performs the action can perform a matching w-action. Finally, we show
that the encoding of the context allows this similar action to escape. There is
a dependency, in that we must prove parts (i) and (ii) before (iii).

Clauses (iv)—(vi) are proved similarly, but in the reverse direction. First
we break down (), into the parts that perform the action and a context, then
using this decomposition we characterize P, finally we show that this P can
perform the required action and reduce to a process matching Q'

The direct relationship between the behaviour of a process and its encoding
make the proof much easier. In particular, there are no intermediate forms on
the m-calculus side to be analysed. If there were such additional “housekeep-
ing” steps, then we would need to enlarge the lemma to cover a one-to-many
relation RA between lam-processes and m-terms.

6 Encoding of the internet daemon

To illustrate how this works we encode the inetd example from Section 2.5.
Figure 6/ shows the result, which can be compared with Figure 4. The trans-
lation uses three ethers, for which we take names n, p and ¢ to cover the
network, server host Pike and client host Carp respectively. All lam-channel
names like finger map to themselves.

Figure 7 represents graphically the behaviour of the translated system.
Grey bars indicate the local ethers; compare this to the direct links of Figure 1.
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Daytime Finger Inetd

Fig. 7. Ether-based encoding of inet deemon relaying finger service

As we expect from Lemma 5.2, reductions of the translated process closely
match those of the original given earlier.

Carp'| Pike' = (vq.ve.(i(pike, finger,c) | pX.n(z;y) . ..
| vp.(Inet’ | Finger' | Daytime') )
extend scope = vp, q, c. ( n(pike, finger,c) | pX.n(x;y) ...
of p, g and ¢ | Inet" | Finger" | Daytime’ )
unroll Inet’ = vp,q,c. ( n{pike, finger,c) | pX.n(x;y) ...
| n(z;y).(Inet" | if x = pike then p(y) else n(z;y))
| Finger" | Daytime' )
communication —— vp,q,c. (uX.n(z;y)...
of pike over n | if pike = pike then p{finger,c) else . ..
| Inet’ | Finger' | Daytime’ )
apply test and =wp,q,c. (pX.n(x;y)...
unroll Finger’ | p(finger, c)
| p(s,r).(Finger' | if s = finger
then n(r, PikeUsers) else ...)
| Inet" | Daytime’)
15
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communication —— vp,q,c. (uX.n(z;y)...
of finger over p | if finger = finger then n{c, PikeUsers) else . ..
| Inet" | Finger’ | Daytime' )
apply test =wp,q,c. ( pX.n(x;y).if © = cthen g(print;y) else . ..
| n{c, PikeUsers)
| Inet” | Finger' | Daytime’ )

communication —— vp, q,c. (if ¢ = cthen @(print, PikeUsers) else . ..
of ¢ over n | Inet’ | Finger’ | Daytime' )

apply test = wvp,q,c. ( g{print, PikeUsers)
| Inet’ | Finger' | Daytime’)

Comparing the reduction in given in Section 2.5, notice how communication
restricted to a local area (“communication on fingerahost”) is replaced by
communication on a local ether (“communication of finger over p”).

Unlike the original lam-term, other reduction sequences are possible, though
they will only add extra 7-transitions. For example, the Daytime’ server may
mistakenly pick up the finger request, but will always immediately rebroadcast
it.

7 Conclusion and further work

We have encoded a notion of distributed areas and local communication into
the m-calculus, by giving a translation of the local area m-calculus. At the
core of this encoding is the technique of replacing communication on a channel
name with communication over an ether associated with the appropriate local
area.

The operational correspondence of Section 5 says that there is a close
relation between the actions of processes and their translations. The next step
is to build on this to investigate the degree to which the encoding preserves
and reflects equivalences between processes. We would expect adequacy, but
not full abstraction, as encoding local areas by ethers exposes them to probing
by general m-calculus terms. For example, it is possible to eavesdrop on all top-
level communications, even ones involving private names (“packet-snooping”),

Well-known names that mean different things in different places are remi-
niscent of dynamic binding in programming languages; that slippery concept
whereby the meaning of a local variable at a program point depends on how
we got there. While there seems to be no direct connection, it would be in-
teresting to know how local areas affect the classic encoding of functions as
m-calculus processes [19)].

Limiting communication to local areas can be seen as a form of “security”.
The lam-calculus does not itself prove processes to be secure, but instead can
show how particular protocols operate under imposed security constraints.
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(In this sense it is about liveness, rather than safety.) We hope to use this to
model aspects of Network Address Translation (NAT), a standard method for
shared internet access, which is known to interact poorly with certain kinds
of application.

The fixed arrangement of local areas in lar does not lend itself to a dynamic
runtime structure. There is however some flexibility: where areas appear
under replication, they will be freshly created during execution; and empty
areas are indistinguishable from the null process. For more general mobility,
we are working on an extension of lam with primitives for relocating areas,
and an associated type system. The encoding given in the present paper does
not extend to handle mobility, because it assumes that each process has direct
access to the ethers for every containing level. We can suggest a solution
though, using an encoding with a network of controllers. Within an area,
each process communicates only through its immediate local area controller.
Packets are routed by controllers to their destination, and mobile areas can
be represented by reprogramming the controllers.
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