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Abstract. The finite π-calculus has an explicit set-theoretic functor-category
model that is known to be fully abstract for strong late bisimulation congruence.
We characterize this as the initial free algebra for an appropriate set of operations
and equations in the enriched Lawvere theories of Plotkin and Power. Thus we
obtain a novel algebraic description for models of theπ-calculus, and validate an
existing construction as the universal such model.
The algebraic operations are intuitive, covering name creation, communication
of names over channels, and nondeterminism; the equations then combine these
features in a modular fashion. We work in an enriched setting, over a “possible
worlds” category of sets indexed by available names. This expands significantly
on the classical notion of algebraic theories, and in particular allows us to use
nonstandard arities that vary as processes evolve.
Based on our algebraic theory we describe a category of models for the
π-calculus, and show that they all preserve bisimulation congruence. We develop
a direct construction of free models in this category; and generalise previous
results to prove that all free-algebra models are fully abstract.

1 Introduction

There are by now a handful of models known to give a denotational semantics for
theπ-calculus [2, 3, 6, 7, 8, 10, 36]. All are fully abstract for appropriate operational
equivalences, and all use functor categories to handle the central issue of names and
name creation. In this paper we present a method for generating such models purely
from their algebraic properties.

We address specifically the finiteπ-calculus model as presented by Fiore et al [8].
This uses the functor categorySetI , with index I the category of finite name sets
and injections, and is fully abstract for strong late bisimulation congruence. We
exhibit this as one among a category of algebraic models for theπ-calculus: all such
π-algebras respect bisimulation congruence, and we give a concrete description of the
freeπ-algebraPi(X) for any objectX of SetI . We show that every free algebra is a
fully-abstract model for theπ-calculus, with the construction of Fiore et al. being the
initial free algebraPi(0).

Our method builds on a recent line of research by Plotkin and Power who use algeb-
raic theories in enriched categories to capture “notions of computation”, in particular
Moggi’s computational monads[18, 26, 27, 28]. The general idea is to describe a com-
putational feature — I/O, state, nondeterminism — by stating a characteristic collection
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of operations with specified equations between them. These then induce the follow-
ing suite of constructions: a notion of algebraic model for the feature; a computational
monad; effectful actions to program with; and a modal logic for specification and reas-
oning. This approach also gives a flexible way to express interactions between features,
by combining sets of operations [11, 12].

For the π-calculus, we apply and expand their technique. The enriched setting
supports not only models that are objects inSetI , but also arities fromSetI ; so that
we have operations whose arity depends on the names currently available. We use
two different closed structures inSetI : the usual cartesian exponential for arities,
and a monoidal function space “(” for operations parameterised byfresh names.
Finally, theπ-calculus depends on a very particular interaction between concurrency,
communication and name generation, which we can directly express in equations
relating the theories for each of these features. This precision in integrating different
aspects of computation is a significant benefit of the algebraic approach over existing
techniques for combining computational monads [13, 15, 19, 37].

The structure of the paper is as follows. In§2 we review the relevant properties
of algebraic theories and the functor categorySetI . We then set out our proposed
algebraic theory ofπ in §3. Following this, in §4 we show how models of the
theory give a denotational semantics for the finiteπ-calculus (i.e., omitting recursion
and replication), and prove that these interpretations respect bisimulation congruence
(Prop. 2). Interestingly, parallel composition of processes is not in general admissible
as a basic operation in the theory, although we are able to interpret it via expansion.
We prove the existence of free algebras overSetI (Thm. 3) and show that they are all
fully abstract (Thm. 5). In particular, the free algebra over the empty set is exactly the
model of Fiore et al., and does support an internal definition of parallel composition
(Prop. 4). Finally, we identify the monad induced by the theory ofπ, which gives a
programming language semantics for mobile communicating concurrency. We conclude
in §5 by indicating possible extensions and further applications of this work.

2 Background

We outline relevant material on algebraic theories and the target categorySetI . For
π-calculus information, see one of the books [16, 32] or Parrow’s handbook chapter [23].

2.1 Algebras and Notions of Computation

We sketch very briefly the theoretical basis for our development: for more on enriched
algebraic theories see Robinson’s clear and detailed exposition [31]; the link to compu-
tations and generic effects is described in [27, 28].

There is a well-established connection between algebraic theories and monads on
the categorySet . For example, consider the following theory, which we shall use later
for an algebraA of nondeterministic computations:

choice : A×A −→ A

nil : 1 −→ A

Operationchoice for combining computa-
tions to be commutative, associative and
idempotent with unitnil .
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A model of this theory is a triple〈A, choice,nil〉 of a carrier setA with two maps
satisfying the relevant commuting diagrams; and these models form a categoryND(Set)
of “nondeterministic sets”. The forgetful functorU into Set has a left adjoint, giving
the free algebraFX over any setX.

ND(Set)

��

FF

afree F U forgetful

Set

In fact, this functorF is the finite powerset〈Pfin ,∪, ∅〉, andND(Set) is monadicover
Set : it is equivalent to the category of algebras for the monadPfin .

The situation here is quite general, with a precise correspondence between single-
sorted algebraic theories and finitary monads onSet (i.e., monads that preserve filtered
colimits). Kelly and Power [14, 29] extend this to an enriched setting: carriers for the
algebras may be from categories other thanSet ; the arities of operations can be not just
natural numbers, but certain objects in a category; and equations can be replaced with
other constraint systems — for example, ordered categories support inequations.

Building on this, Plotkin and Power investigate algebraic theories that induce a
“computational” monadT [18]. They characterize when an operationf : (TX)m →
(TX)n on computations isalgebraic and hence admissible as an operation of the
relevant theory. Moreover, they prove that every such algebraic operation corresponds
to a computationaleffectof typeef : n→ Tm (note the reversal of indicesm andn). In
the example above,Pfin is the standard computational monad for finite nondeterminism,
and its effects arearb : 1 −→ T2 anddeadlock : 1 −→ T0. These two are enough to
code up nondeterministic programming:arb() is a nondeterministictrue or false, and
deadlock() is the empty choice.

Thus not only do algebraic theories characterize computational monads as free
algebras, but they also provide the necessary terms to program with them. They also
support combining monads, a traditionally challenging area, by taking the union of
theories and possibly introducing new equations describing how they interact [11, 12].

As a final example, the theory for input/output of data values from some fixed setV
is:

in : AV −→ A out : A −→ AV with no equations.

This induces theresumptionsmonad for computations performing I/O:

T (−) = µX.(XV + V ×X + (−))

as well as the effectsread : 1 −→ TV andwrite : V→ T1.

2.2 The CategorySetI

We construct our models forπ over the functor categorySetI , whereI is the category
of finite sets and injections. Typically we treat objectss, s′ ∈ I in the index category as
finite sets of names. The intuition is that an objectX ∈ SetI is avaryingset: ifs ∈ I is
the set of names available in some context, thenX(s) is the set ofX-values using them.
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As the set of names available changes, so does this set of values. Functor categories of
possible worldslike this are well established for modelling local state in programming
languages [20, 22, 30] and local names in particular [17, 25, 35]. Similar categories of
varying sets also appear in models for variable binding [5] and name binding (see, for
example, [33] and citations there).

CategorySetI is complete and cocomplete, with limits and colimits taken pointwise.
It is cartesian closed, with a convenient way to calculate function spaces using natural
transformations between functors:

X × Y (X × Y )(s) = X(s)× Y (s)

X → Y or Y X Y X(s) = SetI [X(s + ), Y (s + )]

Thus elements in the varying set of functions fromX to Y over namess must take
account of values inX(s + s′), uniformly for all extended name setss + s′.

There is also a symmetric monoidal closed structure(⊗,() around theDay
tensor[4], induced by disjoint union(s + s′) in I.

X ⊗ Y =
∫ s,s′∈I

X(s)× Y (s′)× I[s + s′, ]

All the constructions in this paper remain within the subcategory of functors inSetI
that preserve pullbacks. For such functors we can give an explicit presentation of the
monoidal structure:

(X ⊗ Y )(s) =
{

(x, y) ∈ (X × Y )(s)∣∣ ∃disjoints1, s2 ⊆ s . x ∈ X(s1), y ∈ Y (s2)
}

(X ( Y )(s) = SetI [X( ), Y (s + )]

Elements of(X ⊗ Y ) denote pairs of elements fromX andY that use disjoint name
sets. Elements of the monoidal function space(X(Y ) are functions defined only at
X-values that use just fresh names.

The two closed structures are related:

intoX,Y : X ⊗ Y −→ X × Y

ontoX,Y : (X → Y ) −→ (X ( Y ) .

Where functorsX andY are pullback-preserving, these are an inclusion and surjection,
respectively.

We use a variety of objects inSetI . For any fixed setS, there is a corresponding
constant functorS ∈ SetI . The object of namesN ∈ SetI is the inclusion functor
mapping anys ∈ I to the sames ∈ Set . From this we build(N ×N ×· · ·×N) = Nk,
the object ofk-tuples of names, and(N ⊗N ⊗ · · · ⊗N) = N⊗k of distinctk-tuples,
with an inclusioninto : N⊗k ↪−→ Nk between them.

We have theshift functorδ on objects ofSetI :

δ : SetI −→ SetI defined by δX( ) = X( + 1) .
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In fact δ(−) ∼= N((−), and elements ofδX are elements ofX that may use a single
fresh name, uniformly in the choice of that name. This functor is well known, for
example asdynamic allocationin [6, 7]; it also appears as theatom abstractionoperator
[N ]X of FM-set theory identified by Gabbay and Pitts [9, 24]. Note that shifting the
object of names gives a coproduct:δN ∼= (N + 1).

The representable objects inSetI are1, N, (N⊗N), (N⊗N⊗N), . . . The finitely
presentable objects are the finite colimits of these, including in particular finite constant
setsS, and all finite products ofN : for example,(N ×N) ∼= N + (N ⊗N). These are
the objects available as arities for algebraic theories overSetI .

Finally, the categorySetI is locally finitely presentable as a closed category, with
respect to both cartesian and monoidal structures. This is a completeness requirement
for building algebraic theories: [29,§2] and [31,§3] expand on what this involves.

3 Theory of π

The algebraic approach supports a modular presentation of theories, and we use this
to manage the combination of features that come together in theπ-calculus. This
section presents in turn separate theories for nondeterminism, communication along
channels, and dynamic name creation; followed by equations specifying exactly how
these features should interact.

We assume a carrier objectA ∈ SetI , and describe the operations and equations
required forA to model theπ-calculus.

3.1 Nondeterministic Choice

For nondeterminism we need a binarychoice operation that is commutative, associative
and idempotent with a unitnil .

choice : A2 −→ A

nil : 1 −→ A

choice(p, q) = choice(q, p)
choice(nil, p) = choice(p, p) = p

choice(p, (choice(q, r)) = choice(choice(p, q), r)

In process calculus terms,choice captures nondeterministic sumP + Q andnil the
deadlocked process0.

3.2 Communication

Communication in theπ-calculus is along named channels, sending names themselves
as data. The relevant theory is a specialised version of that for I/O given earlier.

out : A −→ AN×N

in : AN −→ AN

tau : A −→ A

(No required equations)
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These three operations correspond to the three prefixing constructions of theπ-calculus:
outputx̄y.P , inputx(y).P and silent actionτ.P . Argument and result arities follow the
bound and free occurrences of names respectively:

– out is parameterized in the resultAN×N by both channel and data names;
– in accepts argumentAN parameterized by the data value, with resultAN paramet-

erized by channel name.

The appearance ofAN andAN×N here give our first nonstandard arities,N andN×N ,
to describe operations whose arity varies according to the names currently available. We
follow [27] in using formal indices to write these down: with terms likeoutx ,y(p) and
inx (qy), wherex andy are name parameters.

3.3 Dynamic Name Creation

Processes in theπ-calculus can dynamically generate fresh communication channels:
termνn.P is the process that creates a new channel, binds it to the namen, and then
becomes processP which may then use the new channel.

Our theory for this is a modification of Plotkin and Power’sblock operation for local
state [27,§4]. We require a single operationnew with a monoidal arity.

new : δA→ A new(x.p) = p for p independent ofx

δA ∼= N ( A new(x.new(y.p)) = new(y.new(x.p))

The argumentδA means thatnew is an operation of arityN in the monoidal closed
structure ofSetI . Recall that elements ofδA are elements ofA that depend on a single
fresh name, uniformly in the choice of that fresh name. In the equations fornew we
write x.p for the termp indexed by freshx, borrowing Gabbay and Pitts’s notation for
atom abstraction [9]. (Plotkin and Power write this as〈p〉x.)

Strictly, all our equations are shorthand for certain diagrams inSetI which must
commute. These two state that the creation of unused fresh names cannot be observed,
and computation is independent of the order in which fresh names are created. In
diagram form, these are

A
up //

AA
AA

AA
AA

AA
AA

AA
AA

δA

new

��
A

and

δ2A
δ(new) //

twist

��

δA
new // A

δ2A
δ(new) // δA

new // A

whereup : 1 → δ andtwist : δ2 → δ2 are the evident natural transformations on the
shift functor.
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3.4 Other Operations

There are a few further constructions that might be candidates for inclusion in a theory
of π.

Name testing Some forms of theπ-calculus allow direct comparison of names, with
prefixes like match[x = y]P , mismatch[x 6= y]Q, or two-branched testing
(x = y) ? P : Q. It turns out that these operations are already in the theory. The
SetI map of arities(N × N) ∼= N + (N ⊗ N) −→ 1 + 1 induces an operation
test from which others follow, usingnil :

test : A2 −→ AN×N eq : A −→ AN×N neq : A −→ AN×N .

Bound output The bound output prefix̄x(y).P for the π-calculus is equivalent to
νy(x̄y.P ). There is an analogous derived operation in the theory:

bout : δA −→ AN boutx(y.p)
def
= new(y.outx,y(p))

Because this is definable in terms of the operations given earlier, it can be included
without affecting the induced theory or its algebras.

Parallel composition The usual process calculus construction(P |Q) is not directly
admissible as an operation in our theory ofπ. This is because it is notalgebraic
in the sense of Plotkin and Power [28]. Informally, it does not commute with
composition of computations: in a programming language,(M |M′);N is not in
general equivalent to(M;N) |(M′;N). We shall see more on this later, in§4.

3.5 Combining Equations

To complete the theory ofπ we give equations to specify how the component theories
interact. The algebraic approach gives us some flexibility in doing so, as investigated
in [11, 12]. For example, we can assert no additional equations, giving thesumof
theories [12,§3]; we can require that the operations from two theories commute with
each other, to give the commutative combination, ortensor, of theories [12,§4]; or we
can choose some other custom interaction. To assemble the component theories ofπ,
we use all three methods:

– The sum of the theories of nondeterminism and communication.
– The commuting combination of nondeterminism and name creation.
– A custom set of equations for name creation and communication; mostly commut-

ing, but some specific interaction.

These expand into three sets of equations. The first have effect by their absence:

Sum of component theories

No equations required forchoice or nil with out , in or tau.
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The commuting combination of theories says that operations act independently:

Commuting component theories

new(x.choice(p, q)) = choice(new(x.p),new(x.q))

new(z.outx ,y(p)) = outx ,y(new(z.p)) z /∈ {x, y}
new(z.inx (py)) = inx (new(z.py)) z /∈ {x, y}
new(z.tau(p)) = tau(new(z.p))

Recall that these equations with formal indices and side conditions are a shorthand for
four commuting diagrams inSetI .

Finally, just two equations for interaction capture the precise flavour of the
π-calculus: that the binderνx.(−) is both creation (of new channels) and restriction (of
communication on them).

Interaction between component theories

new(x.outx,y(p)) = nil
new(x.inx(py)) = nil

4 Algebraic Models for π

We now turn to look at models for the theory ofπ. We define what these are, and show
that every such model gives a denotational semantics for theπ-calculus that respects
bisimulation congruence. We give a construction for free models inSetI , and prove
that the category of models is monadic overSetI . We show that all free models are
fully abstract for bisimulation congruence, and in particular that the initial free model
is isomorphic to the construction of Fiore et al.

4.1 Categories of Algebras

Definition 1. A π-algebrain SetI is an objectA together with maps(choice,nil , out ,
in, tau,new) satisfying the equations of§§3.1–3.3and3.5above. These algebras form
a categoryPI(SetI), with morphisms the mapsf : A → B that commute with all
operations. The forgetful functorU : PI(SetI)→ SetI takes aπ-algebra to its carrier
object.

For anyπ-algebraA ∈ PI(SetI) we can build a denotational semantics of the finite
π-calculus: ifP is a process with free names in sets, then there is a map

[[s ` P ]]A : N |s| −→ A .

HereN |s| represents an environment instantiating the free namess.
The interpretation itself is comparatively straightforward. Process sum, nil and the

π-calculus prefixes are interpreted directly by the correspondingπ-algebra operations.
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Binding of fresh names involves managing the monoidal structure; we use a construction
ν(−) on maps intoA:

p : N |s|+1 −→ A Given a mapp;

N ⊗N |s| into−→ N ×N |s| −→ A precompose inclusion;

N |s| −→ (N ( A) take the monoidal transpose;

N |s| −→ δA
new−→ A and apply thenew operator

νp : N |s| −→ A to get the restricted mapνp.

We then define[[s ` νx.P ]]A = ν([[s, x ` P ]]A).
As noted earlier, parallel composition is not algebraic, so we have no general map

for its action onA. However, for any specific finite processesP andQ we can use
the expansion law for congruence [23, Table 9] to express(P |Q) as a sum of smaller
processes, and so obtain an interpretation in theπ-algebraA, recursively:

if P |Q =
k∑

i=1

Ri (canonical choice of expansion)

then [[s ` P |Q]]A = choice([[s ` R1]]A, choice([[s ` R2]]A, . . . )) : N |s| −→ A .

This external expansion makes the translation not wholly compositional; later we shall
improve on this, for one particularπ-algebra, by expressing parallel composition within
the algebra itself.

The interpretation[[s ` P ]]A respects weakening of the name contexts, so we
usually omit it and write[[P ]]A.

Once defined, this interpretation induces a notion of equality over a model: for any
π-algebraA and finite processesP , Q we write

A |= P = Q
def⇐⇒ [[P ]]A = [[Q]]A

and SetI |= P = Q
def⇐⇒ A |= P = Q for all A ∈ PI(SetI).

Proposition 2. All π-algebra models respect (strong, late) bisimulation congruence.
For anyA ∈ PI(SetI) and finite processesP , Q:

P ≈ Q =⇒ A |= P = Q

and more generally:

P ≈ Q =⇒ SetI |= P = Q .

Proof. We draw on the known axiomatization of bisimulation congruence for finite
processes, as given for example in [23,§8.2]. All these axioms are provable in the
theory ofπ and hence hold in every algebra for the theory. ut
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4.2 Freeπ-algebras inSetI

The previous section proposes a theory of algebraic models for theπ-calculus; but it
does not yet give us any concreteπ-algebras. For these we seek a freeπ-algebra functor
F : SetI → PI(SetI), left adjoint to the forgetfulU . Kelly and Power [14, 29] show the
existence in general of such algebras for enriched theories; but there are two difficulties
in our situation. First, their results are in terms of a general colimit, and for any specific
theory one would also like a direct form if possible. Second, and more serious, they treat
a single enrichment, while we have two together.

We can overcome both of these difficulties, in the specific case ofSetI : we have an
explicit description of the freeπ-algebras, and an accompanying proof that they are so.

Before presenting the free algebras for the full theory ofπ, we detour briefly through
those for each of its component theories, to see how they fit together. For simplicity we
present not the free functorsF , but the associated monads(U ◦ F ) onSetI .

The monad for finite nondeterminism is the finite covariant powerset, extended
pointwise toSetI :

Tnondet(−) = Pfin(−) .

The monad for communication is a version of the resumptions monad, with components
for output, input and silent action:

Tcomm(−) = µX.(N ×N ×X + N ×XN + X + (−)) .

Here µX.(−) is the least fixed point, which inSetI is a straightforward pointwise
union. Informally, an element of(TcommY )(s) is a finite trace ofπ-calculus actions
using names froms, finishing with a value fromY ; with the refinement that at input
actions the function spaceXN gives a branching over possible input names, including
uniform treatment of new names.

The monad for dynamic name creation is that originating with Moggi [17,§4.1.4]
and investigated in [35].

Tnew(−) = Dyn(−) = lim−→
s∈I

(
N⊗|s| ( (−)

)
.

This is a colimit over possible sets of fresh names. In particular, the object part has
Dyn(X)(s) =

∑
s′∈I X(s + s′)/ ∼, where∼ is an equivalence relation generated by

injections between fresh name setss′ � s′′. For full element-by-element details of the
Dyn construction, see [35,§5].

Taking the approach of combining monads through monadtransformers[15], we
can try to interleave these to obtain a candidate monad forπ:

Tbad(−) = µX.(Pfin(Dyn(N ×N ×X + N ×XN + X + (−)))) .

Working from the outside in, this asserts that: aπ-calculus process is a recursive system
(µX); which may have several courses of action (Pfin ); that each may create fresh names
(Dyn); and then perform some I/O action, to give some further process.

However, this is not yet quite right:Tbad does not validate any of the equations
of §3.5 for combining the differentπ-calculus effects. For example, inTbad restriction
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new does not commute withchoice; nor does it in fact restrict, as there are terms in the
monad for external I/O on anew -bound channel.

To find the correct monad forπ, we use an observation from existing operational
treatments: name creation is only observable through the emission of fresh names in
bound output. This leads to the following corrected definition:

Tπ(−) = µX.(Pfin(N ×N ×X + N × δX + N ×XN + X +Dyn(−))) . (1)

This still expresses aπ-calculus process as a recursive system (µX) with several courses
of action (Pfin ); but the general application ofDyn(−) has been replaced by a bound
output termN × δX in the I/O expression. The core of this expression matches the
functorH of Fiore et al. [8,§4.4].

The monadTπ is now a correct representation forπ-calculus behaviour, and for any
objectX ∈ SetI we can equipTπ(X) with the six required operations to make it a
π-algebraPi(X). The most interesting case isnew ; this is defined recursively by cases,
using the equations from§§3.3 and 3.5, and following essentially the pattern of [36]
and [8, Table 4].

We thus obtain the desired free functorPi : SetI → PI(SetI), and hence a supply
of concreteπ-algebras. This completes the adjunctionPi a U , with monadU ◦ Pi
beingTπ. What is more, the adjunction is monadic, so thatPI(SetI) is equivalent to
the category of algebras for the monadTπ. To summarise:

Theorem 3.

(i) The forgetful functorU : PI(SetI) → SetI has a left adjointPi giving a free
π-algebraPi(X) over anyX ∈ SetI .

(ii) The comparison functor fromPI(SetI) toTπ-Alg is an equivalence of categories.

Proof (sketch).

(i) Once we have an explicit form forPi , it only remains to check thatPi(X) is
initial amongπ-algebras overX. Given anyπ-algebraA with X → UA in SetI ,
we must extend this to an algebra mapPi(X) → A. The extension is uniquely
determined by the fact that every element ofPi(X) can be generated fromX
using operations from the theory ofπ.

(ii) We apply Beck’s theorem to show that the adjunction is monadic. The develop-
ment closely follows Power’s in [29,§4], specialised to the case at hand. There is
some new work to take account of the two closed structures, which is done using
the properties of the function spacesN(X andXN presented in§2.2. ut

4.3 Fully-Abstract π-algebras

The interpretation in§4.1 ofπ-calculus terms in an arbitraryπ-algebra is not altogether
compositional, in that we expand out parallel processes. If we specialise to the initial
freeπ-algebraPi(0) then we can do better.
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Proposition 4. Writing P ∈ SetI for the carrier object ofPi(0), there is a map
par : P 2 → P in SetI such that for all finiteπ-calculus processesP , Q:

[[P |Q]]Pi(0) = par([[P ]]Pi(0), [[Q]]Pi(0)) .

Usingpar instead of the expansion rule then gives a purely compositional presentation
of the denotational semantics inPi(0) for finiteπ-calculus processes.

Proof. We decomposepar as a sum of interleaving merge and synchronization, and
then define each of these recursively by cases on the expansion (1) ofPi(0) — where
the base case uses the fact thatDyn(0) is empty. This is the procedure known from
existing denotational models, such as [36,§3.2] and [8,§4.6]. Note thatpar is, as
expected, not a map ofπ-algebras. ut

This semantics inPi(0) is in fact isomorphic to the fully-abstract model described by
Fiore et al. in [8, Thm 6.4]. We can extend their analysis to all freeπ-algebras.

Theorem 5. For any objectX ∈ SetI , the freeπ-algebraPi(X) is fully abstract for
(strong, late) bisimulation congruence. For all finiteπ-calculus processesP , Q:

P ≈ Q ⇐⇒ Pi(X) |= P = Q

and hence also:

P ≈ Q ⇐⇒ SetI |= P = Q .

Proof. The forward direction is Prop. 2, and the reverse direction forPi(0) comes
from the full abstraction result of [8]. We lift this to generalPi(X) by factoring the
interpretation[[−]]Pi(X) as[[−]]Pi(0) followed by the monomorphismPi(0) � Pi(X).

ut

4.4 Monads and Effects forπ

The operations and equations in the theory ofπ fit very well with a process-calculus view
of concurrency. However, the monadTπ of (1) is also a “computational” monad in the
style of Moggi, and gives a programming language semantics of mobile communicating
systems. The operations of§3 then induce corresponding generic effects [28]:

choice : A2 −→ A arb : 1 −→ T2

nil : 1 −→ A deadlock : 1 −→ T0

out : A −→ AN×N send : N× N −→ T1

in : AN −→ AN receive : N −→ TN

tau : A −→ A skip : 1 −→ T1

new : δA −→ A fresh : 1 −→ TN

For example,receive(c) fetches a value from channelc, and fresh() returns a newly
allocated channel. In a suitable computational metalanguage these give a semantics
for programing languages that combine higher-order functions with communicating
concurrency. Alternatively, they can be used just as they stand in a language like Haskell
that explicitly handles computational monads:do{x← receive(c); send(c′, x)}.
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5 Extensions and Further Work

In this paper we have examined only finiteπ-calculus processes. We propose to give
algebras for the fullπ-calculus, with replication and recursion, by introducing order
structure with models inCpoI . Plotkin and Power have already investigatedCpo-
enrichment in work on effects for PCF: in particular, taking the least upper bound of
ω-chains is then an algebraic operation of (countable) arity. Our target is the existing
domain models inCpoI , noting that Fiore et al. give a method for lifting full abstraction
in SetI up toCpoI .

Order enrichment also offers the possibility of inequations in theories. For thechoice
operation these can distinguish between upper, lower and convex powerdomains, and we
conjecture that such theories forπ could characterize Hennessy’s fully-abstract models
for must and may-testing [10].

Alternative calculi like asynchronousπ and πI can be treated by changing the
arity of the out operation; process passing and higher-orderπ seem much more
challenging. For different kinds of equivalence, we can follow existing models by
varying arities and translation details: this is enough to capture early bisimulation
congruence, early/late bisimilarity (not congruences), and bisimilarity up to name
constraints. More interesting, though, is the possibility to leave the operations forπ
untouched and instead adjust only the equations. For example, we might add the
characteristicEARLY equation of [23,§9.1] to theπ-theory, and then compare this to
the explicit model of early bisimulation congruence in [7]. The same approach applies
to open bisimilarity and weak bisimulations, known to be challenging for categorical
models: Parrow sets out equational axiomatizations for all these in [23,§9], and we now
need to explore the algebraic theories they generate.

Pitts and others have championednominal setsand Fraenkel-Mostowski set theory
as a foundation for reasoning with names [9, 24, 34]. If we move fromSetI to its full
subcategory of pullback-preserving functors then we have the Schanuel topos, which
models FM set theory. As noted earlier, all of our constructions lie within this, and we
conjecture that ourπ-calculus models are examples of universal algebra within FM set
theory (given first an investigation of what that is).

Prop. 4 presented an internalpar for Pi(0), giving a fully compositional interpreta-
tion for theπ-calculus. In fact we can define an internalparµ for any freeπ-algebra
Pi(X), given an associative and commutative multiplicationµ : X × X → X.
These non-initial free algebras are (fully-abstract) models for implementations of the
π-calculus over a set of basic processes. For example,Pi(1) models theπ-calculus with
an extra process “X” marking completion, which extends the programming language
interpretation of§4.4 with a semantics for terminating threads and thread rendezvous.

More generally, the full range ofπ-algebras inPI(SetI) may be useful to model
applications of theπ-calculus with domain-specific terms, equations and processes.
There are many such ad-hoc extensions, notably those brought together by Abadi and
Fournet under the banner ofappliedπ [1].

In ongoing work, Plotkin has given a construction for modal logics from algebraic
theories. Applying this to the theory ofπ gives a modal logic for theπ-calculus up
to bisimulation congruence. This can represent Hennessy-Milner logic, and also has
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modalities for choice and name creation; though no “spatial” modality for parallel
composition.

We can extend our notion ofπ-algebra to other categoriesC, enriched overSetI .
However, we do not yet have conditions for the existence of free algebras, or for full
abstraction, in generalC. This would require further investigation of the properties of
algebras enriched over a doubly closed structure, as inSetI .

An alternative path, following a suggestion of Fiore, is to give a theory of name
testing that exhibitsSetI as monadic overSetF , whereF is the category of finite name
sets and all maps. We have a candidate theory, and conjecture that in combination with
our existing theory ofπ, this would allow us to generate algebraic models ofπ in SetF
using only cartesian closed structure.
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