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Abstract. The finite w-calculus has an explicit set-theoretic functor-category
model that is known to be fully abstract for strong late bisimulation congruence.
We characterize this as the initial free algebra for an appropriate set of operations
and equations in the enriched Lawvere theories of Plotkin and Power. Thus we
obtain a novel algebraic description for models of thealculus, and validate an
existing construction as the universal such model.

The algebraic operations are intuitive, covering name creation, communication
of names over channels, and nondeterminism; the equations then combine these
features in a modular fashion. We work in an enriched setting, over a “possible
worlds” category of sets indexed by available names. This expands significantly
on the classical notion of algebraic theories, and in particular allows us to use
nonstandard arities that vary as processes evolve.

Based on our algebraic theory we describe a category of models for the
m-calculus, and show that they all preserve bisimulation congruence. We develop
a direct construction of free models in this category; and generalise previous
results to prove that all free-algebra models are fully abstract.

1 Introduction

There are by now a handful of models known to give a denotational semantics for
the r-calculus [[2] 3] 6, 17,18, 10, 36]. All are fully abstract for appropriate operational
equivalences, and all use functor categories to handle the central issue of names and
name creation. In this paper we present a method for generating such models purely
from their algebraic properties.

We address specifically the finitecalculus model as presented by Fiore et al [8].
This uses the functor catego§et”, with index Z the category of finite name sets
and injections, and is fully abstract for strong late bisimulation congruence. We
exhibit this as one among a category of algebraic models forrtbalculus: all such
m-algebras respect bisimulation congruence, and we give a concrete description of the
free m-algebraPi(X) for any objectX of Set”. We show that every free algebra is a
fully-abstract model for ther-calculus, with the construction of Fiore et al. being the
initial free algebraPi(0).

Our method builds on a recent line of research by Plotkin and Power who use algeb-
raic theories in enriched categories to capture “notions of computation”, in particular
Moggi's computational monadd8,(26/27| 28]. The general idea is to describe a com-
putational feature — I/O, state, nondeterminism — by stating a characteristic collection
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of operations with specified equations between them. These then induce the follow-
ing suite of constructions: a notion of algebraic model for the feature; a computational
monad; effectful actions to program with; and a modal logic for specification and reas-
oning. This approach also gives a flexible way to express interactions between features,
by combining sets of operatioris [11,12].

For the m-calculus, we apply and expand their technique. The enriched setting
supports not only models that are objectsSi”, but also arities fronSet”; so that
we have operations whose arity depends on the names currently available. We use
two different closed structures ifet”: the usual cartesian exponential for arities,
and a monoidal function space-¢” for operations parameterised bgesh names.
Finally, ther-calculus depends on a very particular interaction between concurrency,
communication and name generation, which we can directly express in equations
relating the theories for each of these features. This precision in integrating different
aspects of computation is a significant benefit of the algebraic approach over existing
techniques for combining computational monads [13[ 15, 19, 37].

The structure of the paper is as follows. & we review the relevant properties
of algebraic theories and the functor categdit’. We then set out our proposed
algebraic theory ofr in §3 Following this, in§4 we show how models of the
theory give a denotational semantics for the finitealculus (i.e., omitting recursion
and replication), and prove that these interpretations respect bisimulation congruence
(Prop[2). Interestingly, parallel composition of processes is not in general admissible
as a basic operation in the theory, although we are able to interpret it via expansion.
We prove the existence of free algebras aSet” (Thm.@) and show that they are all
fully abstract (Thm[p). In particular, the free algebra over the empty set is exactly the
model of Fiore et al., and does support an internal definition of parallel composition
(Prop.[4). Finally, we identify the monad induced by the theoryrpfvhich gives a
programming language semantics for mobile communicating concurrency. We conclude
in §5 by indicating possible extensions and further applications of this work.

2 Background

We outline relevant material on algebraic theories and the target catSgtry For
m-calculus information, see one of the bodks [16, 32] or Parrow’s handbook chapter [23].

2.1 Algebras and Notions of Computation

We sketch very briefly the theoretical basis for our development: for more on enriched
algebraic theories see Robinson’s clear and detailed expositibn [31]; the link to compu-
tations and generic effects is described.in [27, 28].

There is a well-established connection between algebraic theories and monads on
the categorySet. For example, consider the following theory, which we shall use later
for an algebrad of nondeterministic computations:

choice - Ax A — A Qperatlonchoice for co_mblnmg C(_)m_puta-
tions to be commutative, associative and

nil :1— A idempotent with unitul.
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A model of this theory is a tripld A, choice, nil) of a carrier setd with two maps
satisfying the relevant commuting diagrams; and these models form a catébggset)
of “nondeterministic sets”. The forgetful functérf into Set has a left adjoint, giving
the free algebrd’ X over any sefX.

ND(Set)
{

\
free F -—|’2 U forgetful
\
Set

In fact, this functorF is the finite powersetPs,,, U, 0), andN'D(Set) is monadicover
Set: itis equivalent to the category of algebras for the moRagl.

The situation here is quite general, with a precise correspondence between single-
sorted algebraic theories and finitary monadsSen(i.e., monads that preserve filtered
colimits). Kelly and Poweri[14, 29] extend this to an enriched setting: carriers for the
algebras may be from categories other tat the arities of operations can be not just
natural numbers, but certain objects in a category; and equations can be replaced with
other constraint systems — for example, ordered categories support inequations.

Building on this, Plotkin and Power investigate algebraic theories that induce a
“computational” monad’” [18]. They characterize when an operatipn (TX)™ —

(TX)™ on computations islgebraic and hence admissible as an operation of the
relevant theory. Moreover, they prove that every such algebraic operation corresponds
to a computationadffectof typee; : n — T'm (note the reversal of indices andn). In

the example abovéy,, is the standard computational monad for finite nondeterminism,
and its effects ararb : 1 — T2 anddeadlock : 1 — T0. These two are enough to
code up nondeterministic programmiregb() is a nondeterministicrue or false, and
deadlock() is the empty choice.

Thus not only do algebraic theories characterize computational monads as free
algebras, but they also provide the necessary terms to program with them. They also
support combining monads, a traditionally challenging area, by taking the union of
theories and possibly introducing new equations describing how they interact[11, 12].

As a final example, the theory for input/output of data values from some fixdd set
is:

in: AV — A out : A — AV with no equations.

This induces theesumptionsnonad for computations performing I/O:
T(-) = pX(XV +V x X + (=)

as well as the effectgad : 1 — TV andwrite : V — T1.

2.2 The CategorySet”

We construct our models far over the functor categor§et”, whereZ is the category
of finite sets and injections. Typically we treat objegcts’ € 7 in the index category as
finite sets of names. The intuition is that an obj&ce Set” is avaryingset: if s € 7 is

the set of names available in some context, thér) is the set ofX -values using them.
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As the set of names available changes, so does this set of values. Functor categories of
possible worlddike this are well established for modelling local state in programming
languaged [20, 22, 30] and local names in particlilar[[1/7, 25, 35]. Similar categories of
varying sets also appear in models for variable binding [5] and name binding (see, for
example,[[33] and citations there).

CategonySet” is complete and cocomplete, with limits and colimits taken pointwise.
It is cartesian closed, with a convenient way to calculate function spaces using natural
transformations between functors:

XxY (X xY)(s) = X(s) x Y(s)
X —»Yory*® YX(s) = Set?[X(s4 ), Y(s+ )]

Thus elements in the varying set of functions frofmto Y over nhamess must take
account of values itX (s + s’), uniformly for all extended name setst s'.

There is also a symmetric monoidal closed struct(ge —) around theDay
tensor[4], induced by disjoint unioris + s’) in Z.

s,s'€T
X®Y:/ X(s)xY(s') x I[s+ 8, ]

All the constructions in this paper remain within the subcategory of functo&ih
that preserve pullbacks. For such functors we can give an explicit presentation of the
monoidal structure:

(X®Y)(s) = { (x,9) € (X xY)(s)
| Sdisjointsy, sy C 5.2 € X(s1),y € V(s2) }

(X — Y)(s) = SetT[X (), ¥ (s + )]

Elements of X ® Y) denote pairs of elements froii andY” that use disjoint name
sets. Elements of the monoidal function spage—-Y") are functions defined only at
X-values that use just fresh names.

The two closed structures are related:

intOX,in(X)Y—)XXY
ontoxy (X =Y) — (X —-Y).

Where functorsX andY are pullback-preserving, these are an inclusion and surjection,
respectively.

We use a variety of objects ifet”. For any fixed sef, there is a corresponding
constant functolS € Set”. The object of namesV e Set” is the inclusion functor
mapping any € 7 to the same € Set. From this we build N x N x --- x N) = N*,
the object ofk-tuples of names, andV @ N @ --- ® N) = N®* of distinctk-tuples,
with an inclusioninto : N®* —— N between them.

We have theshift functord on objects ofSet”:

§: Set? — Set” definedby 6X () =X(_+1).
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In factd(—) = N—o(—), and elements of X are elements ok that may use a single
fresh name, uniformly in the choice of that name. This functor is well known, for
example aslynamic allocatiorin [6,(7]; it also appears as tlaom abstractioroperator
[N]X of FM-set theory identified by Gabbay and Pift§[[9] 24]. Note that shifting the
object of names gives a coprodugty = (N + 1).

The representable objects$at” arel, N, (N@N), (N@ N®N), ... The finitely
presentable objects are the finite colimits of these, including in particular finite constant
setsS, and all finite products olN: for example (N x N) 2 N + (N ® N). These are
the objects available as arities for algebraic theories Svef.

Finally, the categonget” is locally finitely presentable as a closed category, with
respect to both cartesian and monoidal structures. This is a completeness requirement
for building algebraic theoried: [292] and [31,53] expand on what this involves.

3 Theory of

The algebraic approach supports a modular presentation of theories, and we use this
to manage the combination of features that come together inrtba&culus. This
section presents in turn separate theories for nondeterminism, communication along
channels, and dynamic name creation; followed by equations specifying exactly how
these features should interact.

We assume a carrier objedt € Set”, and describe the operations and equations
required forA to model ther-calculus.

3.1 Nondeterministic Choice

For nondeterminism we need a binafyice operation that is commutative, associative
and idempotent with a unitl.

choice : A> — A choice(p, q) = choice(q,p)
nil: 1 — A choice(nil, p) = choice(p,p) = p
choice(p, (choice(q,r)) = choice(choice(p, q),r)

In process calculus termshoice captures nondeterministic suf + ¢ and nil the
deadlocked process

3.2 Communication

Communication in ther-calculus is along named channels, sending names themselves
as data. The relevant theory is a specialised version of that for I/O given earlier.

out : A — ANXN

in: AN — AN (No required equations)
tau: A — A
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These three operations correspond to the three prefixing constructionsrettiheulus:
outputzy. P, inputz(y). P and silent action. P. Argument and result arities follow the
bound and free occurrences of names respectively:

— out is parameterized in the result” *"V by both channel and data names;
— in accepts argument’y parameterized by the data value, with restit paramet-
erized by channel name.

The appearance ofV andAY %" here give our first nonstandard ariti@éandN x N,

to describe operations whose arity varies according to the names currently available. We
follow [27] in using formal indices to write these down: with terms liket, , (p) and
ing(qy), Wherez andy are name parameters.

3.3 Dynamic Name Creation

Processes in the-calculus can dynamically generate fresh communication channels:
termvn. P is the process that creates a new channel, binds it to the naared then
becomes proced3 which may then use the new channel.

Our theory for this is a modification of Plotkin and Poweirlsck operation for local
state [27 54]. We require a single operatiotew with a monoidal arity.

new : 04 — A new(x.p) =p for p independent of
JAXN — A new(z.new(y.p)) = new(y.new(z.p))

The argument A means thatew is an operation of arityV in the monoidal closed
structure ofSet”. Recall that elements @fA are elements ofl that depend on a single
fresh name, uniformly in the choice of that fresh name. In the equationsciorwe
write x.p for the termp indexed by fresh:, borrowing Gabbay and Pitts’s notation for
atom abstractiori [9]. (Plotkin and Power write this(as,.)

Strictly, all our equations are shorthand for certain diagramsSetd which must
commute. These two state that the creation of unused fresh names cannot be observed,
and computation is independent of the order in which fresh names are created. In
diagram form, these are

up d(new) new
A——=05A PA—=0A—=A
\ J{new and twistl
d(new new
A s2A (*l fJA—=A

whereup : 1 — & andtwist : 52 — 62 are the evident natural transformations on the
shift functor.
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3.4 Other Operations

There are a few further constructions that might be candidates for inclusion in a theory
of .

Name testing Some forms of ther-calculus allow direct comparison of names, with
prefixes like matchz = y|P, mismatch[z # y|Q, or two-branched testing
(x = y) ? P: Q. It turns out that these operations are already in the theory. The
Set” map of arities(N x N) = N 4+ (N ® N) — 1 + 1 induces an operation
test from which others follow, usingl:

test : A2 — ANXN eq: A — ANXN neq: A — ANXN

Bound output The bound output prefix(y).P for the w-calculus is equivalent to
vy(zy.P). There is an analogous derived operation in the theory:

bout : SA — AN bout . (y.p) o new(y.outy 4 (p))

Because this is definable in terms of the operations given earlier, it can be included
without affecting the induced theory or its algebras.

Parallel composition The usual process calculus construct{@h| Q) is not directly
admissible as an operation in our theorynofThis is because it is natlgebraic
in the sense of Plotkin and Power [28]. Informally, it does not commute with
composition of computations: in a programming langugd&| M’); N is not in
general equivalent toM; N) | (M’; N). We shall see more on this later, 4.

3.5 Combining Equations

To complete the theory of we give equations to specify how the component theories
interact. The algebraic approach gives us some flexibility in doing so, as investigated
in [11,[12]. For example, we can assert no additional equations, givingutineof
theories[[12§3]; we can require that the operations from two theories commute with
each other, to give the commutative combinationtemsor of theories[[12§4]; or we

can choose some other custom interaction. To assemble the component thesories of
we use all three methods:

— The sum of the theories of nondeterminism and communication.

— The commuting combination of nondeterminism and name creation.

— A custom set of equations for name creation and communication; mostly commut-
ing, but some specific interaction.

These expand into three sets of equations. The first have effect by their absence:

Sum of component theories

No equations required fathoice or nil with out, in Or tau.




lan Stark Free-Algebra Models for theCalculus

The commuting combination of theories says that operations act independently:

Commuting component theories

new(z.choice(p, q)) = choice(new(x.p), new(z.q))
new(z.outy y(p)) = outy ,(new(z.p)) z & {z,y}
new(z.ing (py)) = (new(z Dy)) z ¢ {z,y}
new(z.tau(p)) = tau(new(z.p))

Recall that these equations with formal indices and side conditions are a shorthand for
four commuting diagrams iSet” .

Finally, just two equations for interaction capture the precise flavour of the
m-calculus: that the binderz.(—) is both creation (of new channels) and restriction (of
communication on them).

Interaction between component theories

new(z.outy ,(p)) = nil

new(z.ing(py)) = nil

4 Algebraic Models for

We now turn to look at models for the theoryofWe define what these are, and show
that every such model gives a denotational semantics forrtb@lculus that respects
bisimulation congruence. We give a construction for free modelSeiri, and prove
that the category of models is monadic ot”. We show that all free models are
fully abstract for bisimulation congruence, and in particular that the initial free model
is isomorphic to the construction of Fiore et al.

4.1 Categories of Algebras

Definition 1. A m-algebrain Set” is an objectd together with maps$choice, nil, out,

in, tau, new) sat|sfy|ng the equations ¢f3.143.3and3.5above. These algebras form
a categorWJI(Set ), with morphisms the maps : A — B that commute with all
operations. The forgetful functdf : PZ(Set”) — Set” takes ar-algebra to its carrier
object.

For anyr-algebrad € PI(Set”) we can build a denotational semantics of the finite
m-calculus: if P is a process with free names in sethen there is a map

[[SI—P]]AIN‘Sl—>A.

Here N'*| represents an environment instantiating the free names
The interpretation itself is comparatively straightforward. Process sum, nil and the
m-calculus prefixes are interpreted directly by the correspondiatgebra operations.



lan Stark Free-Algebra Models for theCalculus

Binding of fresh names involves managing the monoidal structure; we use a construction
v(—) on maps intoA:

p: NI 4 Given a map;
NNl 8 N x Nlsl — 4 precompose inclusion;
NIl — (N — A) take the monoidal transpose;
Nlsl 54 2% 4 and apply thewew operator
vp: NIsl — 4 to get the restricted magp.

We then definds - vz.P] , = v([s,x - P] ).

As noted earlier, parallel composition is not algebraic, so we have no general map
for its action onA. However, for any specific finite processBsand @ we can use
the expansion law for congruence [23, Table 9] to exp(é58?) as a sum of smaller
processes, and so obtain an interpretation inrtadgebraA, recursively:

k
if PlQ= Z R; (canonical choice of expansion)

=1
then [s+ P|Q], = choice([s - Ri] 4, choice([s - Ra] 4,...)) : ISl — A

This external expansion makes the translation not wholly compositional; later we shall
improve on this, for one particular-algebra, by expressing parallel composition within
the algebra itself.

The interpretation]s + P], respects weakening of the name contexso we
usually omit it and write[ P] ,.

Once defined, this interpretation induces a notion of equality over a model: for any
w-algebraA and finite processeR, () we write

def

ARP=Q <<= [Pl,=1[Q],

d
PN

and Set’ =P =Q A= P =Qforall A€ PL(Set?).

Proposition 2. All w-algebra models respect (strong, late) bisimulation congruence.
Forany A € W(Setz) and finite processeB, Q:

PrQ = AEP=Q
and more generally:
PrQ = Setl=P=qQ.

Proof. We draw on the known axiomatization of bisimulation congruence for finite
processes, as given for example [inl[28,2]. All these axioms are provable in the
theory ofr and hence hold in every algebra for the theory. O
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4.2 Freem-algebras inSet”

The previous section proposes a theory of algebraic models far-tt&culus; but it
does not yet give us any concretealgebras. For these we seek a frealgebra functor
F : Set’ — PL(Set?), left adjoint to the forgetful’. Kelly and Power([14, 29] show the
existence in general of such algebras for enriched theories; but there are two difficulties
in our situation. First, their results are in terms of a general colimit, and for any specific
theory one would also like a direct form if possible. Second, and more serious, they treat
a single enrichment, while we have two together.

We can overcome both of these difficulties, in the specific cagetdf we have an
explicit description of the freg-algebras, and an accompanying proof that they are so.

Before presenting the free algebras for the full theoryr pive detour briefly through
those for each of its component theories, to see how they fit together. For simplicity we
present not the free functofs, but the associated mona@s o F') on Set”.
The monad for finite nondeterminism is the finite covariant powerset, extended
pointwise toSet”:
Tnondet(_) = Pﬁn(_) .

The monad for communication is a version of the resumptions monad, with components
for output, input and silent action:

Tcomm(f) :,U,X(NXNXX+N><XN+X+(7)) .

Here 1 X.(—) is the least fixed point, which iet” is a straightforward pointwise
union. Informally, an element ofT.,.m.nY )(s) is a finite trace ofr-calculus actions
using names froms, finishing with a value front”; with the refinement that at input
actions the function spacg” gives a branching over possible input names, including
uniform treatment of new names.

The monad for dynamic name creation is that originating with Moggi §471.4]
and investigated ir [35].

Thew(=) = Dyn(-) = lim (N¥I) —o (=) .
seZ
This is a colimit over possible sets of fresh names. In particular, the object part has
Dyn(X)(s) = > ez X(s + ')/ ~, where~ is an equivalence relation generated by
injections between fresh name sets— s”. For full element-by-element details of the
Dyn construction, seé [355].
Taking the approach of combining monads through manaasformers[15], we
can try to interleave these to obtain a candidate monad:for

Tpaa(—) = pX.(Pan(Dyn(N x N x X + N x XN + X +(-)))) .

Working from the outside in, this asserts that:-aalculus process is a recursive system
(1X); which may have several courses of acti®,(); that each may create fresh names
(Dyn); and then perform some I/O action, to give some further process.

However, this is not yet quite rightf},,; does not validate any of the equations
of §3.5 for combining the different-calculus effects. For example, .4 restriction
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new does not commute withhoice; nor does it in fact restrict, as there are terms in the
monad for external 1/0 on aew-bound channel.

To find the correct monad fat, we use an observation from existing operational
treatments: name creation is only observable through the emission of fresh names in
bound output. This leads to the following corrected definition:

Tp(—) = pX.(Pin(N X Nx X + N x X + N x XN + X +Dyn(-))) . (1)

This still expressesa-calculus process as a recursive systedi with several courses

of action (Pg,,); but the general application @yn(—) has been replaced by a bound
output termN x 6 X in the 1/O expression. The core of this expression matches the
functor H of Fiore et al.[[8,54.4].

The monadl’; is now a correct representation forcalculus behaviour, and for any
object X € Set” we can equigl,(X) with the six required operations to make it a
m-algebraPi(X). The most interesting casensw; this is defined recursively by cases,
using the equations fror$f3.3 and 3.p, and following essentially the pattern[of [36]
and [8, Table 4].

We thus obtain the desired free functB : Set” — PI(Set”), and hence a supply
of concreter-algebras. This completes the adjunctiBih - U, with monadU o Pi
beingT.. What is more, the adjunction is monadic, so tRat{Set”) is equivalent to
the category of algebras for the moriAd To summarise:

Theorem 3.

(i) The forgetful functol/ : PL(Set’) — Set” has a left adjointPi giving a free
r-algebraPi(X) over anyX € Set”.
(i) The comparison functor frofZ (Set” ) to T, - Alg is an equivalence of categories.

Proof (sketch).

(i) Once we have an explicit form faPi, it only remains to check thaP:(X) is
initial amongr-algebras oveX . Given anyr-algebrad with X — U A in Set?,
we must extend this to an algebra mB(X) — A. The extension is uniquely
determined by the fact that every elementff X) can be generated frofl
using operations from the theory of

(i) We apply Beck’s theorem to show that the adjunction is monadic. The develop-
ment closely follows Power's in [2$4], specialised to the case at hand. There is
some new work to take account of the two closed structures, which is done using
the properties of the function spacls—-X and X" presented i. O

4.3 Fully-Abstract w-algebras
The interpretation it§4.] of r-calculus terms in an arbitranyalgebra is not altogether

compositional, in that we expand out parallel processes. If we specialise to the initial
free-algebraPi(0) then we can do better.
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Proposition 4. Writing P € Set” for the carrier object ofPi(0), there is a map
par : P2 — P in Set” such that for all finiter-calculus processeB, Q:

[P Q] pi(oy = par([P] pi (o) [Ql pio)) -

Using par instead of the expansion rule then gives a purely compositional presentation
of the denotational semantics #%(0) for finite 7-calculus processes.

Proof. We decomposear as a sum of interleaving merge and synchronization, and
then define each of these recursively by cases on the expaﬁ]sionRiO(]c)f— where

the base case uses the fact thgh(0) is empty. This is the procedure known from
existing denotational models, such as|[38,2] and [8,§4.6]. Note thatpar is, as
expected, not a map af-algebras. O

This semantics irPi(0) is in fact isomorphic to the fully-abstract model described by
Fiore et al. in[[8, Thm 6.4]. We can extend their analysis to all fredgebras.

Theorem 5. For any objectX € Set”, the freer-algebra Pi(X) is fully abstract for
(strong, late) bisimulation congruence. For all finitecalculus processei, Q:

P~@Q <+ Pi(X)EP=Q
and hence also:
PrQ <+ St'EP=Q.

Proof. The forward direction is Prof.| 2, and the reverse direction®f0) comes

from the full abstraction result of[8]. We lift this to generBi(X) by factoring the

interpretation—] , ) as[—] p; o, followed by the monomorphisi?i(0) — Pi(X).
]

4.4 Monads and Effects form

The operations and equations in the theory 6f very well with a process-calculus view

of concurrency. However, the mondd of (I) is also a “computational” monad in the
style of Moggi, and gives a programming language semantics of mobile communicating
systems. The operations 8 then induce corresponding generic effects [28]:

choice : A> — A arb: 1 — T2
nil: 1 — A deadlock: 1 — TO
out: A — ANN send : N xN—T1
in: AN — AN receive: N — TN
tau: A — A skip: 1 — T1
new: 0A — A fresh: 1 — TN

For exampleyeceive(c) fetches a value from channel andfresh() returns a newly
allocated channel. In a suitable computational metalanguage these give a semantics
for programing languages that combine higher-order functions with communicating
concurrency. Alternatively, they can be used just as they stand in a language like Haskell
that explicitly handles computational monads{x < receive(c);send(c’, x)}.
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5 Extensions and Further Work

In this paper we have examined only finitecalculus processes. We propose to give
algebras for the fullr-calculus, with replication and recursion, by introducing order
structure with models irCpo?. Plotkin and Power have already investigat@w-
enrichment in work on effects for PCF: in particular, taking the least upper bound of
w-chains is then an algebraic operation of (countable) arity. Our target is the existing
domain models ifpo”, noting that Fiore et al. give a method for lifting full abstraction

in Set” up toCpo?.

Order enrichment also offers the possibility of inequations in theories. Fohtliee
operation these can distinguish between upper, lower and convex powerdomains, and we
conjecture that such theories forcould characterize Hennessy'’s fully-abstract models
for must and may-testing [10].

Alternative calculi like asynchronous and nl can be treated by changing the
arity of the out operation; process passing and higher-ordleseem much more
challenging. For different kinds of equivalence, we can follow existing models by
varying arities and translation details: this is enough to capture early bisimulation
congruence, early/late bisimilarity (not congruences), and bisimilarity up to name
constraints. More interesting, though, is the possibility to leave the operations for
untouched and instead adjust only the equations. For example, we might add the
characteristiEARLY equation of([[2859.1] to ther-theory, and then compare this to
the explicit model of early bisimulation congruencelin [7]. The same approach applies
to open bisimilarity and weak bisimulations, known to be challenging for categorical
models: Parrow sets out equational axiomatizations for all theseli§923and we now
need to explore the algebraic theories they generate.

Pitts and others have championsaiminal setand Fraenkel-Mostowski set theory
as a foundation for reasoning with names’[9,24, 34]. If we move ffeth to its full
subcategory of pullback-preserving functors then we have the Schanuel topos, which
models FM set theory. As noted earlier, all of our constructions lie within this, and we
conjecture that ourr-calculus models are examples of universal algebra within FM set
theory (given first an investigation of what that is).

Prop{]l presented an internalr for Pi(0), giving a fully compositional interpreta-
tion for ther-calculus. In fact we can define an internal, for any freer-algebra
Pi(X), given an associative and commutative multiplicatjon: X x X — X.
These non-initial free algebras are (fully-abstract) models for implementations of the
m-calculus over a set of basic processes. For exanifi(@, models ther-calculus with
an extra processv*” marking completion, which extends the programming language
interpretation of{4.4 with a semantics for terminating threads and thread rendezvous.

More generally, the full range of-algebras ifPZ(Set”) may be useful to model
applications of ther-calculus with domain-specific terms, equations and processes.
There are many such ad-hoc extensions, notably those brought together by Abadi and
Fournet under the banner applied [1].

In ongoing work, Plotkin has given a construction for modal logics from algebraic
theories. Applying this to the theory af gives a modal logic for ther-calculus up
to bisimulation congruence. This can represent Hennessy-Milner logic, and also has
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modalities for choice and name creation; though no “spatial” modality for parallel
composition.

We can extend our notion of-algebra to other categori€s enriched overSet”.
However, we do not yet have conditions for the existence of free algebras, or for full
abstraction, in generdl. This would require further investigation of the properties of
algebras enriched over a doubly closed structure, &stih.

An alternative path, following a suggestion of Fiore, is to give a theory of hame
testing that exhibitset” as monadic oveSet”, whereF is the category of finite name
sets and all maps. We have a candidate theory, and conjecture that in combination with
our existing theory ofr, this would allow us to generate algebraic models of Set”
using only cartesian closed structure.
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