Appears inComputer Science Logic: Proceedings of the 18th International
Workshop CSL 2004, Karpacz, Poland, September 20-24, P@@ture
Notes in Computer Science 3210, pages 235-249. Springer-Verlag, 2004.

A Dependent Type Theory with Names and Binding

Ulrich Schopp and lan Stark

LFCS, School of Informatics, University of Edinburgh
JCMB, King's Buildings, Edinburgh EH9 3JZ

Abstract. We consider the problem of providing formal support for working
with abstract syntax involving variable binders. Gabbay and Pitts have shown in
their work on Fraenkel-Mostowski (FM) set theory how to address this through
first-class names: in this paper we present a dependent type theory for program-
ming and reasoning with such names. Our development is based on a categori-
cal axiomatisation of names, with freshness as its central notion. An associated
adjunction captures constructions known from FM theory: the freshness quanti-
fier I, name-binding, and unique choice of fresh names. The Schanuel topos —
the category underlying FM set theory — is an instance of this axiomatisation.
Working from the categorical structure, we define a dependent type theory which
it models. This uses bunches to integrate the monoidal structure corresponding
to freshness, from which we define novel multiplicative dependent prodilicts

and sum<*, as well as a propositions-as-types generalisdfiafi the freshness
quantifier.

1 Introduction

The handling of variable binding in abstract syntax is a recognised challenge for machine-
assisted reasoning about programming languages and logics. The problem is that a sig-
nificant part of the formalisation effort may go into dealing with issues that are normally
suppressed in informal practice: namely that one is working wittguivalence classes

of terms rather than raw terms.

Gabbay and Pitts have shown that FM set theory supports a notion of names that can
make precise the informal practise of using concrete names-émuivalence classes.

They give a number of useful constructions: abstract syntax with binders can be encoded
as an inductive data type, there is a useful syntax-independent notion of name-freshness,
and a freshness quantifier simplifies reasoning with names.

The approach of Gabbay and Pitts has been studied in a number of other set-
tings, among which are the first-order Nominal Lodicl|[18], the higher-order logic FM-
HOL [6] as well as the programming language FreshML [19]. Related [9] to FM the-
ory, the Theory of Contexts [11] provides an axiomatisation of reasoning with names
in dependent type theory. The ideas underlying FM have also proved useful in other
areas such as Spatial Logid [2] or programming with semi-structured data with hid-
den labels[1]. These approaches typically focus either on programming with names, or
reasoning about them. The Theory of Contexts, for example, supports reasoning with
names, but does not admit functions that compare names or which (locally) choose fresh
names.

http://www.ed.ac.uk/~stark/names+binding.html
http://homepages.inf.ed.ac.uk/uschoepp
http://www.ed.ac.uk/~stark

In this paper we take the first steps towards a dependent type theory incorporating
FM concepts for both programming and reasoning with names. We introduce a depen-
dent type theory, using as guidance the categorical structure of Schanuel topos, which is
the category corresponding to FM set theory. In contrast to FM set theory, where swap-
ping is the primitive notion for working with names, we take freshness as the central
primitive of our type theory. This allows us to describe the constructions with names
and binding in terms of universal constructions, and also avoids problems with exten-
sional equality, which seems to be necessary for definiggjuivalence classes using
swapping.

As the first contribution of the paper we introducéuncheddependent type the-
ory. Since freshness corresponds to a monoidal structure, bunches provide a natural
way of integrating it into the type theory. Our bunched type theory may be seen as
a generalisation of theA-calculus of O’Hearn and Pym [IL7,20]. The\-calculus is
a simple type theory corresponding to a category which is both cartesian closed and
monoidal closed. Our type theory extends this situation, but only in the additive di-
rection: we consider a category whichligally cartesian closed as well as monoidal
closed. In this structure, we can model a dependent type theory with two function spaces
IMx:A. B andIT*z:C. D. The first comes from the locally cartesian closed structure and
consists of normal dependent functions. The second, which is subject to the restriction
that C is closed, comes from the monoidal closed structure and may be thought of as
consisting of functions which are only defined on arguments” that contain just
freshnames. In particular, with a type of nambg we can usdI*n:IN. D to model
a-equivalence classes, which corresponds to the well-known approach of modelling
a-equivalence classes as ‘fresh functions! [7:4,9,5]. Another way of represemting
equivalence classes, as givenlinh [7], is to consider them as:paiif a termz with a
distinguished name in such a way that the identity afis hidden in the pair. This rep-
resentation is also available in our type theory as fresh sum ypedual tolT*. The
inhabitants o&2*z:C. D may be thought of as paif®/.N whereM : C and N : D(M)
and in which all the names it/ have been hidden. To formulat& -types, we intro-
duce a typeB*(M:4) thought of as those elements Bfwhich are free from all the
names in the term/ : A. Thesefreefromtypes are used to enforce that no use of a pair
M.N in ¥*z:C. D can reveal the hidden names.

As a second contribution of the paper, we give a new categorical axiomatisation of
names and binding. The main feature of this axiomatisation is a propositions as types
generalisation of the freshness quantifier of Gabbay and Pitts. To recall the freshness
quantifier, consider quantifiees'x: A. ¢ andv*x: A. o expressingo holds for somer
containing onlyfreshnames’ and¢ holds for anyxz containing onlyfreshnames’ re-
spectively. The freshness quantifidrarises because, for the type of namésthe
propositionsg*n:N. ¢ andv*n:N. ¢ are equivalent; and n. ¢ is used to denote either
of them. We have a propositions-as-types correspondence befivaedX* as well as
betweer* andIl*, so one may generalise the equivalencé’ef: N. o andv*n:N. ¢
to an isomorphism betweeri'n:N. D andIl*n:N. D.

This motivates our categorical axiomatisation of names. The central concept is
freshness, giving rise to a certain ‘fresh weakening’ funétarThe types:* andIT*
are left and right adjoints td). Names are given by an objeX having decidable

equality. Moreover, we require an isomorphidi, = II{; generalising the freshness
quantifier. We show that this structure includes not only the freshness quantifier, but
also binding {.z) as in [7.16] as well as unique choice of fresh naresv n. M) as

in FreshML [19].

The semantics leads us to a type theory with names and binding. Based on the iso-
morphismxy; = IIy;, we introduce hidden-name typHs.. D as a generalisation of the
freshness quantifier. We may think of the elementdof D as elements af*n:N. D,

i.e. pairs with hidden names, but also as elementd*@fIN. D, i.e. functions taking

only fresh names. In analogy to the freshness quantifier, which has the rules from both
3* andv*, the rules forH are those from botli* andIT*. This dual view of hidden-
name types turns out to be useful for working with abstract syntax: it allows us to use
both HOAS-style constructions and FM-style constructions at the same time.

2 A Bunched Dependent Type Theory

In this section we introduce a first-order bunched dependent type theory and identify
the categorical structure corresponding to it. The type theory has the following forms
of sequents(- I Bunch) — I is a bunch, or context{I" - A Type) — A is a

type in contextl”; (I' = M : A) — M is a term of typeA in contextl’; as well as
corresponding sequents for definitional equalities.

2.1 Bunches and Structural Rules

Bunches are built from the empty bun¢husing two kinds of extension. First, the fa-
miliar additive context extension from dependent type theory, which takes a Butach

the bunchl’, z: A. Second, a multiplicative extension taking two bunchesnd A to

a new bunch” x A. This extension is non-dependent in that no dependency is allowed
across the.. The bunchl” « A should be thought of as the contdXtA with the restric-

tion that the names occurring in are disjoint from those iz\. For example, iLam is

a type which encodes object-leveterms, then the bundf:: Lam, y:Lam) * (z:Lam)
declares three terms y andz with the property that the names (representing the free
variables of the encoded terms)arandy are disjoint from those ina.

I' - A Type t I' Bunch F A Bunch
r =
F ¢ Bunch I, z: A Bunch @ ¢ ol F I' x A Bunch o) Nnu(4)=0

In the side condition of these rules, we write") for the set of variables declared in
We will frequently omit such side-conditions on the variable names, assuming tacitly
that we encounter only bunches in which no variable is declared more than once.

We use the notatiof’(A) to indicate thaf” has a sub-bunch, where sub-bunches
are defined as followsA is a sub-bunch of itself, and / is a sub-bunch of” then it
is also a subbunch dff", z: A), andI" « ¢, and® « I". We write ' (&) for the bunch
which results fromi"(A) by replacing the (unique) occurrencefin I" with &.

Using this notation, we can formulate the structural rules:

' A Type

(PrOj)F,x:Al—x:A zgoll)

I'(A)FJ Ar AType AFM:A TIA AT

(Weak) x g v(l, A) (Subst)
ra zarg () M/l - 7 [M/a]

(Unit) F(A)% (Swap)M (ASSO(:)F((A *P)x W) T
rAxo)-g r@+«A)FJ T(Ax(@x0) T

In these rules, we usg for an arbitrary judgement and double lines for bi-directional
rules. We highlight the rule (Unit) which requires the empty bufidb be a unit for,
thus makingk affine. In particular, the multiplicative weakening rule

AT F I'(A * &) Bunch

r
(x-Weak)
r(Axd)-J

becomes admissible by using (Unit) together with (Weak).

Semantically, the bunches and structural rules can be modelled by a comprehension
category [12] that in addition has an affine (i.e. the unit is isomorphic to the termi-
nal object) symmetric monoidal structuten its base. We model the additive context-
extension’, x: A by the comprehension, and the multiplicative context-extensSiad
by the monoidal product. To simplify the development, we make an additional assump-
tion on the monoidal structure, given by the following definition| [10].

Definition 1. Anaffine linear categoris a categoryB with finite products and an affine
symmetric monoidal structuresuch that, for any two object$ and B of B, the canon-
ical map(my,m) : A* B — A x Bis a monomorphism.

In most of the paper, we take a special comprehension category: the codomain fibra-
tion cod : B~ — B for an affine linear categor having all pullbacks. Although tech-
nically the interpretation uses a corresponding split fibration to deal with well-known
coherence issues| [8], in the following we elide such details. We assume the reader to be
familiar with the semantics of (first-order) dependent type theory, seé ellg.[12,22,21].

2.2 Type Formers

In this section, we consider the types and terms, motivating them semantically. Starting
from a codomain fibrationod : B~ — B with an affine linear basB, we step-by-step
add more structure and introduce syntax based on it.

Type and term constant8asic types and terms are given by constants. These can be
formulated as usual. For example, a type consfaint context/” may be introduced
as(I' + T(x) Type), wherez is the list of variables defined if'. That it is enough

to annotate the constants just with the list of variableg jngnoring any bunching
structure, is a consequence of the assumption that the canonical m&p— A x B

is a monomorphism.

Additive typesX, II). Types found in Martin-bf type theory can also be formulated

as usual. In this paper, we use dependent sums and products, but others such as identity
types can be added without problem. To moldelypes in the codomain fibration, we
assumeB to be locally cartesian closed [21]12].

Monoidal product (*). We add typesd=B which internalise the context multiplica-
tion I « A. The typeA«B may be thought of as containing all pai&/, N) in Ax B
for which the sets of names underlyifg and .V are disjoint.

(*_Ty)FAType + B Type (*_l)FA*BType I'-M:A AFN:B
F AxB Type I's AF MxN : AxB

I'(z: AxB) - C Type AR M : AxB I(x:Ax y:B)[z*xy/z] F N : Clzxy/z]
I'(A)[M/z] F (let M bexzxyin N) : C [M/z]

Note that the typel« B requires bottd and B to be closed. This is because of substitu-
tion, as(AxB)[o] and(A[o]*B[o]) would not always have isomorphic interpretations.
Since the rule {-Weak) is admissible, we can derive an inclusiong of type
AxB — Ax B, given by the termy p =qr Ap : AxB. (let p be zxy in (z,y)). Us-

ing this, we can state the equations for the monoidal product:

(+-E)

' let MxN bexxyin R: C
(let M*N be zxyin R) = R[M/z][N/y] : C

(-B) 7

A M : AxB I'(z:AxB)F N : C
(A)[M/z] = N [M/z] =let M be z+y in (N [xxy/z]) : C[M/z]

(1) T

I'+M: AxB I'N: AxB I't14,8(M) =14,8(N): AxB

(Inject)
I'M =N : AxB

Fresh dependent productslt). We now make the further assumption Brthat, for
each objectl in B, the functor—x A preserves pullbacks and has a right adjaintx —.
This gives rise the following situation. Let(— = A) be the fibration defined by

change-of-base as in the left square below.Wet: B~ — B/(— x A) be the functor
which maps an object: B — Gto fxA: Bx A — G« A. The assumption that x A
preserves pullbacks amounts to saying thatis afibredfunctor fromcod to gl (—x A).
Moreover, it follows thatiV 4 has a fibred right adjoiniil’, : B/(— «+ A) — B, see
e.g. [14]. Explicitly,IT*, maps an objegj : C' — G * A to the the morphisriil, g as in
the pullback on the right.

B/(—+A) —=B~ I, C A C
| _
Ql(_*A)\L lcod Hj\gl/ \LA—*g
B——rp G—= A= (GxA)

Proposition 1. For any objectA of B, the functoriV, as defined above has a fibred
right adjointII’ if and only if Ax— preserves pullbacks and has a right adjaifht— —.

In this way, we can recast the monoidal closed structure in terms of a fibred adjunction,
and introduce syntax for the fibred adjunction as follows.

I'xx: At B Type
I' -1I"2z:A. B Type

(IT"-Ty)

(T I'sxx:A-M: B (H*_E)FI—M:H*J::A.B AFN:A
I'FXz:A M : II"'t:A. B I'«x AF MQN : B[N/z]
I'sx:A-M:B AFN:A

I's AF (Xz:A.M)QN = M [N/z] : B[N/z]

I'-M:II"x:A. B
't Xz:A. (MQz)=M :II"'z:A. B
Notice that the fresh dependent prodii¢t:: A. B is only well-formed for closed types4,
as bunching does not allow dependency across thehe bunchl” x x: A.
The rules ofiT* derive from the adjoint correspondence

(IT"-B)

(IT*-n)

lgsa = Wa(lg) —» C inB/(G * A)
lg — 1L (C) inB/G ’

since morphismé; — D in B/G correspond to terms in conte&t Here,1; denotes
the terminal object iB/G. ThatIl* is afibred right adjoint means that substitution
behaves as expected, that is we h@¥ér: A. B)[M/y] = IT*z:A. (B[M/y]) as well as
(Xx:A.N)[M/y] = Xax: A. (N[M/y]).

Freefrom types 4*(V:B)). Having considered a fibred right adjoifity to W, it is
natural to ask for a fibred left adjoiit¥, to W 4. To add syntax for such a left adjoint,
we need to account for a one-to-one correspondence betweenBnapdl4(C) in
B/(G*A)and¥* (B) — CinB/G. Hence, we need a syntactic equivalent for the map
B — W4(C), and so must introduce syntax fidf 4 (C'). Note that this is not necessary
for IT*, since there we only need the valueldf; (1), which islgya.

We introduce types3*(M:4) as a syntax for working witfiV 4 (B). Intuitively, the
type B*(M:4) comprises all thosg : BxA whose second component(p) is M : A.
The functorW may then be understood as a ‘fresh weakening’ functor, taking the
type (I' F B Type) to (I' * z: A - B*(4) Type). Here, typeA is necessarily closed,
while B may in general depend ofi. However, in the present paper we avoid the
complexity of managing substitution i by restricting to closed freefrom types:

F A Type F B Type AFN:A
At B A Type

F A, B Type I'-M:B AFN:A
rs«AF MY gD

(F-Ty)

(F-)

(z:A, 2:B" "L CType A+ M:B* VY DP(y:Bxx:A)F R:Cly™ /7]
I'(A)[N/z|[M/z] - 1et M bey™ in R : C[N/z][M/z]
The equatiorf§ in which " - Q : B*(N:4) are:

FEL

(B) let M*N be y** in R = R[N/z][M/y]
(n) let @bey™ in Rly™*/z] = R[N/x|[Q/]
1 For brevity, from now on, we omit the contexts and typeability assumptions in the formu-

lation of equations. Nevertheless, all equations are to be understood as equations-in-context,
formulated under suitable typeability assumptions.

Furthermore, we add a constant joih’ two elements of freefrom types.

r+=M:A PN g9
E-iof
(Foin) I'Fjoiny g o(M,N): (A x B)*9
This constant is part of the syntax fbl"4, arising from the fact thatl’, is afibred
functor, equivalently that- x A preserves pullbacks. It makes available the important

property of freshness that if two objectsandy are fresh for some then so is the
pair {x, y). The behaviour ofoin is described by the equations

let joiny p (M, N) be y** in (1 y)™ = M,
let joiny g (M, N) be y** in (13 y)™ = N.

The semantic interpretation of (F-Ty) is given by the following diagram.

e ——>BxA——DBxA
- _

B*(N:A)l \Lﬂ'z \LI*A

A—>A—F>1x4

To see how this correspondsiiid,, recall that a closed typB in context!” corresponds
to the projectionrp : I' x B — I'. Using pullback-preservation ef « A, the following
square is easily seen to be a pullback.

ToxA

(I'xB)* A—>Bx A

|
TI'B*A\L i/ﬂ'g

I'xA A

T2

Since the bottom row of this diagram corresponds to the B : A - « : A, this
means thatl" +z: A - B*(®4) Type) receives an interpretation isomorphicig * A,
which, by definition, is justV 4 (7).

Fresh dependent sum&{). We now assume thdl’4 has a fibred left adjoinE?,.
Using freefrom types as syntax fir 4, this gives rise to the following rules fat?.

I'sxx:AF B Type
I''+-Y"z:A. B Type

(Z"-Ty)

z: A+ B Type I'EM:A I'+ N : B[M/x]
't bind(M, N) : (S*z:A. B
I'M:Y2:A.B (I'sx:A),y:BF N:C*®
I'let M bexyinN:C
M.N =4¢ (let bind(M, N)be v*™ in u)
These rules are best explained using the intended model of names. Theité (i, V)
in (X*-1) may be understood as the péiv/, N) with all the names il/ made private,
together with a proof that the names/in are indeed fresh for the pair. The abbrevia-

tion M.N is a short-hand for the pair without the proof of freshness. The introduction
rule *-1) has a freefrom type in its conclusion because the constrbtier{ NV, M)

(="

(X"-E)

comes from the uni : B — W,4X% B of the adjunction, whose codomalitiy X% B
is the semantic equivalent 6£*z: A. B)*"**). The elimination ruleX*-E) formalises
the intuition that an element/ of type ¥*z:A. B is a pair with name-hiding. For this
intuition to be valid, it should only be possible to use the components of thé/pair
such a way that none of the hidden names is revealed*ifE| this is achieved using
freefrom types: the termV has typeC*(**4) and such a term can be understood as an
element ofC whose value does not depend on the namas in

The equations, inwhicfl"xz: A),y: B+ R :C*@4) andrl’, 2: X*1:A. B+ Q : D,
follow from the triangular identities for the adjunctiaif, 4 W4.

(8) let bind(M, N)be z** in (let 2z be .y in R)™" = R[M/x][N/y]
(n) let M be z.y in (let bind(z, y)be z** in Q**) = Q[M/Z]

We remark that the restriction on freefrom types tBamnust be closed id*(M:4)
makes the rules foE* incomplete. For example, we have to restrict{l) so thatB
can only depend omn. More general rules are possible with unrestricted freefrom types.

2.3 Examples and Applications

As a simple example, we show that one can go fidmA. B to I1*z: A. B, as is the
case in the affine\-calculus.

: (Proj)

: r:AFx: A
(Proj) —— (Unit)
f:llz:A.B+ f:1lz:A. B) z:AxQFx: A
(Unit) ——— (Swap)
(f:Iz:A.B)« O F f:1lz:A. B Weak Oxx:Abx: A Weak
(f:Hx:A.B)*x:AI—f:Hm:A.B(eak) (f:Hx:A.B)*a::A}—m:A(eak)

(f:Uz:A.B)*xx: A+ fz: B
fllz:A.BFXz:A fz:T'2:A. B

(IT-1)

With type dependency and freefrom types, we can express freshness assumptions
more precisely than with simply-typed bunches alone. For example, the freshness as-
sertions in the context : A, y: A, u: A*@A) ¢ A*(¥):4x4) cannot be expressed
with simply-typed bunches. On the other hand, the only way the freshness information
in freefrom typesB*(M:4) can ever be used is via bunches. We then have to ask the
guestion if this is enough to derive useful statements involving freefrom types.

A useful set of rules for working with freefrom types appears in the type system of
FreshML [19], which may be seen as a simply typed system with restricted freefrom
types. Rules similar to those in FreshML are admissible in our system, thus allowing
us to work with freefrom types in the style of FreshML. The main use of freshness in
FreshML is for abstraction types{equivalence classes) and for the choice of fresh
names few n. M). Since we will see below that both constructions arise as instances
of IT* andX*, we expect to have at our disposal at least the uses of names and binding
as found in FreshML.

Furthermore, with dependent types we can also work with types that are not avail-
able in FreshML. For example, assume an inductive typélists of names. By struc-
tural recursion, we can define a functieemove of type IIn:N. (L—L*(»N)) taking

a namen and a list/ to the list which results by removing from [. As can be seen

from the typeremove also provides a proof that is fresh for the resulting list. Such
freshness information is crucial for defining functions outweéquivalence classes, to
guarantee that the definition is independent of the choice of representative. An example
of this, the function computing the free variables of a term, is given in[Sec. 3.1 below.

2.4 Models

We summarise the structure required of a categdrgo that its codomain fibration
models all of the syntax. The interpretation itself also requires this structure to be split,
but due to space restrictions we omit the details of the interpretation.

Definition 2. An affine linear categor® is a model of the bunched dependent type
theoryif it is locally cartesian closed, and if, for each objettin B, the functoriV 4 as
defined above is a fibred functor framd to gi(— x A) having both fibred left and right
adjoint X% 4 W, 41T,

We have seen that the fibred adjunctidfy - IT% can be formulated in terms of the
monoidal structure. We know of no such non-fibred restatemertiforl 1 4.

3 Names and Binding

In this section we consider how the bunched type theory can be used for working with
names and binding. To this end, we consider a particular model of the type theory, the
Schanuel topoS, which is being widely used as a universe in which to work with names
and binding. The Schanuel topos may be thought of as a category of sets involving
names. For lack of space, we cannot presentitin any detail; the reader is referred to e.g.
[[7] for its use for names and binding, and to €.al[1%,13,16] for categorical presentations.
For the type theory we use the following categorical structui® of

Proposition 2. The Schanuel topdsis a model of the bunched type theory having the
following additional structure.

1. Finite coproducts which are stable under pullback.

2. An objectN for which[§,¢] : N + (N« N) — (N x N) is an isomorphism. Here
0 is the diagonal map andis the canonical monomorphism.

3. A vertical natural isomorphism: X3, — IIX; such that the triangle below com-
mutes.

W% L@) Wil

et

Heren is the unit of X5, 4 Wi ande is the counit of W IIY;.
4. For each objectd and each monomorphism : B ~— C, the commuting square
below is a pullback.

BxA——>pB
m*AlJ m

C*A?)C

In the rest of this section we explain the structure in this proposition and how it can
be integrated in the type theory. We argue informally towards the relation of the above
structure to constructions in FM set theory.
As a model of the bunched type thed®has bothx* andIl* types. The fresh sums
Y*z:A. B may be constructed by taking certain equivalence classes of (JdirdV)
with M : A and N : B[M/z]. Fresh product$l*z: A. B may be constructed as certain
partial functions fromA to B. This underpins the view df*z:A. B andII*x:A. B as
non-standard sums and products. The difference from the standard sums and products
is determined only by the names.nh For a typeA that does not contain names, such as
the natural numbers, the non-standard sums and products agree with the standard ones.
In Prop[Z.2 we ask for an objedt of names with the property that any two names
are either equal, i.e. a single elemenf™of or they are fresh, i.e. an elementlfIN.
Thus, names have decidable equality, with two names being different precisely when
they are fresh. This object of names plays the same role as the set offaiari$/ set
theory. We omit the rules for the type of names and its decidable equality, but remark
that stable coproducts are used in the formulation of the term for deciding the equality.
Prop[4.3 concerns the structure of the typés:N. B andII*n:N. B. Both types
can be used for encoding afequivalence classes. An element of type ¥*n:N. B
is, by construction, an equivalence class and may be understood asetilgvalence
class ofz with respect ton. This encoding ofv-equivalence classes agrees with that
of FM set theory. Indeed, for a closed type the construction oE*n:IN. B is (essen-
tially) the same as that of the abstraction g&tB of FM set theory. In the work on
FM sets, it was also observed thaequivalence classes may be constructed as partial
functions fromN to B. This construction is captured by the tylién:N. B. Therefore,
¥*n:N. B andIl*n:N. B are different encodings of the sameequivalence classes,
which means that the types should be isomorphic. This explains the isomorphism in
Prop[4.3. The isomorphism is useful for working withequivalence classes, as it al-
lows us, for example, to form am-equivalence class as a pairx in ¥*n:N. B, and
then to use it as a function Ii*n:IN. B to instantiate it at some other narfie M)@Qm.
We give further examples of this in S¢c.]3.1, see al5o [7].
We integrate the isomorphisirin the type theory by means of hidden-name types
Hn. B which are isomorphic to both*n:N. B andIl*n:IN. B. The rules fofHn. B are
those from bottE* andIl*, giving H a self-dual nature.

I'«n:NF B Type

H-T
() I' - Hn. B Type
I'sn:N+M:B I'-M:Hn.B AFN:N
(H-11) ~ (H-E1)
't Xyn.M :Hn. B I's A+ M@QyuN : B[N/n]
n:N F B Type I'-M:N I' N : B[M/n]

(H-12) - *(M:N)

I' - bindg (M, N) : (Hn. B)**"™

. . . . o (:N)
(H_EZ)FI—M.Hn.B (I'sn:N),y:BFN:C

I'let M benpyin N : C
M.gN =gs (let bindg (]\47 N)be uw ™ in u)
The typeHn. B may be interpreted as eith&y B or II{;B. In the first case, the in-
terpretation of\iyn. M and M@yN is given byi~!(X'n : N. M) and (i(M))QN

respectively. With this interpretatiori) and (n)-equations forH derive from those
for ¥* andIT*. A further equation, which we omit, arises from the naturality.of

(81) (Nyn. M)@uN = M [N/]

(nl) Xygn.(MQygn) =M n ¢ FV(M)
(82) let bindy (M, N)be 2** in (let z be z.y in R)™ = R[M/z][N/y]
(n2) let M be z.xy in (let bindg (x, y)be 2** in Q**) = Q[M/ 2]

The commuting diagram in Prop][2.3 provides two additional equations, which ex-
plain (to some extent) the interaction between the two roleEwfB as X*n:N. B
andII*n:N. B. The equations are formulated in contéxt n: N.

(83) let bindg(n, N)be ™ in z@Qpm = N
(n3) bindg(n,let Mbe 2*™ in xQpm) = M

From Prop[B4 it follows that hidden-name types are in propositions as types cor-
respondence with the freshness quantifieaf Gabbay and Pitts. Consider the logic of
subobjects ofs. From the fibred adjunctio*, 4 W4 - II; we can derive a fibred
adjunction3*, 4 W3 - v* onSub(S), whereW 7 is the endofunctor ofub(S) map-
ping a subobjectn : B — Ctom* A : B* A — C x A (note that— x A preserves
pullbacks, and so also monos). P@E] 2.4 then mean$ifijas nothing but substitution
along the projectionr; : (—) * A — (—). Thus, the propositions as types analogues
I of 3% andV? of IT% arise in terms of ordinary quantification along this projection.

In the particular case wheté is N, it follows from X%, = II}, that3% = Vi,. We

have thus shown that, along the projection: (—) * N — N, the existential and the
universal quantifier agree, and it may be seen [16] that this amounts the the freshness
quantifierl, i.e.V = 3% = V. As hidden-name types correspond to béthandvy,

they thus correspond 14.

3.1 Examples and Applications

Unigue choice of fresh nameBor programming with names and binders, it is useful to
have the ability to generate fresh names. In FreshML, one can write dtetm. M),
which is thought of as the unique value bf for an arbitrary freshly chosen name
The existence of such a unique value can be guaranteed by a freshness condition on
Using our notation, the introduction rule for new may be written as follows.

Tsn:NF M:c*™N
I'Fnewn. M :C

This is derivable in our system by means of the following derivation, in which we
write 1 for the unit type with unique element 1.

Tsn:NF M:c*™N

: oy (Weak)
I'sn:NFo:1 (F'sn:N),u:1+ M :C""™
- . (Weak), H-E2)
' Agn.o: Hn.1 I z:Hn.1Flet zbenuin M : C
(Subst)

I'+let (Xgn.o)ben.uin M : C

We use(new n. M) as an abbreviation for the term in the conclusion of this derivation.

In this way, we are using the fact tHat. 1 is inhabitated to obtain a supply of fresh
names. This generalises the situation in FM set theory or the Theory of Contexts, where
one uses the truth of the proposititin. T) as a supply of fresh names for reasoning.

Abstract Syntax with Variable BindincgA key application of names and binding is for
working with abstract syntax involving variable binders. We encode abstract syntax as
an inductive type, using hidden-name types. A for object-level binders. The duality

of H offers two styles of working with abstract syntax: viewiHgasIT* allows us to

work in the style of weak Higher Order Abstract Syntax (WHOAS)) [3,11], and view-
ing H asX* supports the style of FM set theory. In the rest of this section, we give
examples illustrating the advantages of both views as well as showing the benefits of
mixing the two styles.

We take the syntax of the untypedcalculus as an example, encoding it as an
inductive typeLam with three constructorsar : N — Lam, app : (LamxLam)—Lam
andlam : (Hn.Lam) — Lam. For example, the termz. \y. (z y) can be encoded
aslam(Xz. lam(Xjy. app(var(z),var(y)))). In a context with two different names
andy, it may also be encoded &s8n(z.glam(y.gapp(var(x),var(y)))).

SemanticallyLam corresponds to an initial algebra, which lets us define functions
by structural recursion. The following recursion principle follows from the initial alge-
bra whenHn. Lam is viewed ad1*n:N. Lam.

x:Lam F A(z) Type

't f: TIn:N. A(var(n))

I'tg:TM,N:Lam. A(M) — A(N) — A(app(M, N))

't h:TIM:(Hn.Lam). (Hn. A(M@gn)) — A(lam(M))
I'trec(f,g,h) : IM:Lam. A(M)

with equations (in which we writesc for rec(f, g, h))

recvar(n) = fn
recapp(M,N) =g M N (rec M) (rec N)
rec lam(M) = h M (Xyn. (rec (M @Qpn))).

For a closed typel, this structural recursion produces a unique functiom — A
for given functionsf: N — A, g:Lam — Lam — A — A — A andh:(Hn.Lam) —
(Hn.A) — A. In FM set theory one has an apparently different recursion principle,
where instead of, one is essentially given a functién: Hn. Lam — A — A*(mN),
The above recursion principle is also applicable in this case, sinceifrgencan define
h =g¢ Au: (Hn.Lam). Av: (Hn. A). new n. ((k@Qgn) (u@gn) (v@gn)). In this way,
we get a second recursion operatar (f, g, k) with the following equation for theam-
case(rec'(f, g, k) lam(M)) = new n. ((k@Qun) (MQgn) (rec’(f, g, k) (M@Qgn))).

As a first example of a recursively defined function, we define capture-avoiding
substitution in the style of WHOAS and compare the definition to an FM-style encoding.

Givenm:N andR:Lam, we can useec to definesubst : Lam — Lam satisfying

subst(var(n)) = ifeq (m, n) then n. R else n. var(n)
subst(app(M, N)) = app(subst(M), subst(N))
subst(lam(M)) = lam(Xn. subst(M@gn)).

This definition uses only the view &f asII* and is similar in spirit to WHOAS defini-
tions. We can also define substitution in FM-style usig. For thelam-case, we then
havesubst(lam(M)) = new n. (let bindg (n, subst(M@gn))be w*™ in (lam(w))™).
However, this definition is more complex than the first one, since it involves a unique
choice of fresh names via new. In the first definition we could do without the choice of
a fresh name by usingj; to ‘rebind’ the fresh name.

As a second example, we define the function computing the free variables of a term.
This example makes essential use of the viewHoés ¥*. We assume an inductive
type L of lists of names, together with suitably defined functisingleton : N — L,
concat : L — L — L, andremove : TIn:N. (L — L*(™N))_ Usingrec, we can define
fv: Lam — L to satisfy the equations

fv(var(n)) = singleton(n)
fv(app(M, N)) = concat(fv(M), fv(N))
fv(lam(M)) = let (Xyn. fv(M@n)) be n.gy in (remove n y)

This example demonstrates how let-terms can be used for ‘pattern matching’ elements
of Hn. A. A similar pattern matching appears in FreshML. Moreover, the example
shows that it is useful to mix the views BfasII* andX*.

Note that, in the equation féam, the subternf{remove n) has typeL*("™N) and
that this freshness information is necessary for the let to be typeable. Intuitively, this is
because the choice of representativg must not affect the computation. Dependency
in the type ofremove is therefore essential for the pattern matching in the definition
of fv. Without dependency we could writemove with type N — L — L, but then
fv as above would not be typeable. Indeed, this problem arises in FreshML, fvhere
cannot be defined using a remove function of this type (Neverthélesan be defined
in FreshML).

Again, we can useec’ to give an alternative definition d¥ so that it satisfies the
equationfv(lam(M)) = new n. (remove n (fv(M@n))). Note that, by means of new,
this encoding also uses the viewldfasX*, and this is in fact essential. The Theory of
Contexts, for example, axiomatises a ‘is not free in’-predicate rather than deffining

4 Discussion and Further Work

We have introduced a bunched dependent type theory that integrates FM concepts for
working with names and binding.

One decision in the design of the bunches was to allow dependency for additive
context extension but to forbid any dependency for multiplicative context extension.
There are other possibilities for combining bunches and dependencyl Pygi i205],

for example, outlines a bunched dependent calculus allowing more dependency. The
problem with using this for names and binding, which has lead us to the current design,
is that it would require to generalise the monoidal produtt a monoidal product on

the slices ofS, and there seems to be no sensible way of doing this.

We stress that, although the examples in this paper concentrate on programming,
reasoning with names and binding can also be accommodated in the type theory. In-
deed, it is possible to define a higher-order logic over the dependent type theobry [12,
§11]. In addition to the usual logical connectives, this logic also features the multi-
plicative quantifiers?* andv*, similar toV,,.,, and3,.,, from Bl [20], as well as the
freshness quantifiéf. This higher-order logic supports reasoning with names similar to
the Theory of Contexts. For example, the Theory of Contexts has an ‘extensionality’ ax-
iom, which may be expressed &3 F*n:N. (MQun =4 NQgun) - (M =g,. 4 N),
whereM and N have typeHn. A and=4 denotes Leibniz equality. Making essential
use of the equatio3), this sequent is derivable in the logic. In another direction, one
may also ask how the logic relates to Nominal Logicl[18]. For this it is necessary to
consider swapping, an essential ingredient of Nominal Logic that is absent from the
type theory. We briefly discuss the possibilities of adding swapping below.

Another possibility for reasoning is to use dependent types to encode propositions
as types. Alongside the usual encoding$/afsII and3 asX, one can encode* as
IT*, 3* as¥*, andW asH. Although such an encoding is possible, the usg*af very
restricted, because the rules %t use types of the formp*(»N) and, at least in this
paper, we allow such types only wheris closed. Considering a higher-order logic is a
way of side-stepping this problem, since, because of Piop. 2.4, we have an equivalence
of *(™N) andy, so that freefrom types can be avoided altogether in the logic.

Although we have based our type theory on freshness rather than swapping, we
nevertheless think that swapping can be useful in type theory. Swapping can be added
to the type theory as a special kind of explicit substitution, as is dorlglin/ [1,23]. One
application of swapping is to make available more information about the isomorphism
Y = 1Y than is given by the commuting triangle in Prpjh.| 2.3. The triangle only ex-
plains the instantiation of.gz at n. With swapping, we can explain the instantiation
of n.yz at names other thamby adding the equatiom.yz)@Qym = (m n) - M. Fur-
thermore, with swapping, we should get a logic close to Nominal Logic; se€ also [16].

Regarding the categorical semantics of the type theory, it is natural to ask how it
compares to other categorical approaches to names and binding. Besides the Schanuel
topos, two other categories used frequentlyl[9,4,5, .. .] for names and bindifigtdre
whereV is the category of finite cardinals and all functions between them Satfd
wherel is the category of finite cardinals and injections. However, neither category has
all of the structure of Pro;E] 2. 18et” names do not have decidable equality, whereas
Set! does not have a freshness quantifier and not all the canonicalnaBs— A x B
are monomorphic. In this light, Prdp|. 2 should be viewed as identifying the categorical
structure underlying the work with names and binding, while for particular applica-
tions it may well be sufficient to have only some of this structure. Another example of
such a substructure is Menni's axiomatisation of binders [16]. Nevertheless, there are
categories other than the Schanuel topos having the structure of Prop. 2. One such cat-
egory is a variation of the Schanuel topos in which the elements are allowed to contain

countably many names rather than just finitely many, seke [18, p.13]. There is also a
realisability category having almost all of the structure of Pf¢p. 2, the only restriction
being that the typ&*z: A. B can only be formed wheA belongs to a certain restricted
class of types (which includes all types with decidable equality). Moreover, this cate-
gory models an impredicative universe, so that it should provide the basis for a bunched
calculus of constructions.

There are many directions for further work. First, an immediate point requiring
further work is the restriction thag*(*:4) can only be formed for closeB. Second,
the proof theory of the bunched type theory needs further work. Also, variants such as a
non-affine version of the type theory should be possible. Finally, algorithmic questions
such as the decidability of type-checking should be considered.

Acknowledgementsie would like to thank Alex Simpson and John Power for inter-
esting discussions on this work.

References

1. L. Cardelli, P. Gardner, and G. Ghelli. Manipulating trees with hidden labeRrdceedings
of FOSSACS’03rolume 2620 oL NCS Springer, 2003.
2. L. Cardelli and A. Gordon. Logical properties of name restriction. Ptaceedings of
TLCA'0], volume 2044 oL NCS Springer, 2001.
3. J. Despeyroux, A. Felty, and A. Hirschowitz. Higher-order abstract syntax in Cderoin
ceedings of TLCA'951995.
4. M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable bindingPrisceedings of
LICS99 1999.
5. M. Fiore and D. Turi. Semantics of name and value passing?roceedings of LICSQ1
2001.
6. M. Gabbay. FM-HOL, a higher-order theory of namesWarkshop on Thirty Five years of
Automath 2002.
7. M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding.
Formal Aspects of Computing3:341-363, 2002.
8. M. Hofmann. On the interpretation of type theory in locally cartesian closed categories. In
Proceedings of CSL940lume 933 oLNCS Springer, 1994.
9. M. Hofmann. Semantical analysis of higher-order abstract synt@oleedings of LICS99
1999.
10. M. Hofmann. Safe recursion with higher types and BCK-algefmaals of Pure and Applied
Logic, 104(1-3):113-166, 2000.
11. F. Honsell, M. Miculan, and |. Scagnetto. An axiomatic approach to metareasoning about
nominal algebras in HOAS. IRroceedings of ICALPQR001.
12. B. JacobsCategorical Logic and Type Thear§lsevier Science, 1999.
13. P.T. JohnstoneSketches of an Elephant: A Topos Theory Compend@xfiord University
Press, 2002.
14. P. Lietz. A fibrational theory of geometric morphisms. Master’s thesis, TU Darmstadt, May
1998.
15. S. MacLane and |I. MoerdijiSheaves in Geometry and Logic: A First Introduction to Topos
Theory Springer-Verlag, 1992.
16. M. Menni. About/l-quantifiers.Applied Categorical Structured1(5):421-445, 2003.
17. P. O’Hearn. On bunched typindpurnal of Functional Programmindg.3(4):747-796, 2003.

18

19.

20.

21.

22.
23.

. A. M. Pitts. Nominal logic, a first order theory of names and bindihgformation and
Computation186:165-193, 2003.

A. M. Pitts and M. J. Gabbay. A metalanguage for programming with bound names modulo
renaming. InProceedings of MPC200®olume 1837 oLNCS Springer, 2000.

D. Pym. The Semantics and Proof Theory of the Logic of Bunched Implicatikhsver
Academic Publishers, 1999.

R.A.G. Seely. Locally cartesian closed categories and type thedwatm Proc. Cambridge
Philos. Soc.volume 95, pages 33-48, 1984.

P. Taylor.Practical Foundations of Mathematic€ambridge University Press, 1999.

C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification Ptoccedings of CSL'Q3
volume 2803 oLNCS Springer, 2003.

