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Abstract

Languages such as ML or Lisp permit the use of recursively defined func-
tion expressions with locally declared storage locations. Although this can be
very convenient from a programming point of view it severely complicates
the properties of program equivalence even for relatively simple fragments
of such languages—such as the simply typed fragment of Standard ML with
integer-valued references considered here. This paper presents a method for
reasoning aboutcontextual equivalenceof programs involving this combi-
nation of functional and procedural features. The method is based upon the
use of a certain kind oflogical relationparameterised by relations between
program states. The form of this logical relation is novel, in as much as it in-
volves relations not only between program expressions, but also between pro-
gram continuations (also known asevaluation contexts). The authors found
this approach necessary in order to establish the ‘Fundamental Property of
logical relations’ in the presence of both dynamically allocated local state
and recursion. The logical relation characterises contextual equivalence and
yields a proof of the best known context lemma for this kind of language—
the Mason-Talcott ‘ciu’ theorem. Moreover, it is shown that the method can
prove examples where such a context lemma is not much help and which
involve representation independence, higher order memoising functions, and
profiling functions.
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1 Introduction

Lisp and ML arefunctionalprogramming languages because they treat functions
as values on a par with more concrete forms of data: functions can be passed
as arguments, can be returned as the result of computation, can be recursively
defined, and so on. They are alsoprocedurallanguages because they permit the
use of references (or ‘cells’, or ‘locations’) for storing values: references can
be created dynamically and their contents read and updated as expressions are
evaluated. This paper presents a method for reasoning about the equivalence of
programs involving this combination of functional and procedural features. What
emerges is an operationally-based form of reasoning about functions with local
state that seems to be both intuitive and theoretically powerful. Throughout we
assume a passing familiarity with the language Standard ML (Milner, Tofte, and
Harper 1990) and its associated terminology. If in difficulty, see (Paulson 1991).

Some motivation

The combination of functional and procedural features in Standard ML is very
expressive. For example, it permits the programmer to exploit the modularity of
the functional idiom (Hughes 1989) in defining high-level control structures for
manipulating program state. The combination is also useful from the point of view
of efficiency, since the use of local storage permits the efficient implementation of
some functions and data structures with purely functional observable behaviour.
As a simple example, consider the following ‘memoised’ version of the factorial
function in Standard ML.

Example 1.1.

val f = let val a = ref 0 and r = ref 1

fun f′ x = (if x = 0 then 1 else x ∗ f′(x− 1))
in

fn x⇒ ((if x = !a then () else (a := x; r := f′ x)); !r)
end

(dec1)

The local referencesa andr are used to store the argument and the result of
the most recent invocation of the function; and the function acts like the purely
functional factorial

fun f x = (if x = 0 then 1 else x ∗ f(x− 1)) (dec2)

except that when called with the same argument twice in succession it uses the
cached result!r, saving recomputation. So evaluating

let dec1 in (f 1000 + f 1000) end
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will yield the same integer result as evaluating

let dec2 in (f 1000 + f 1000) end

but will only involve computing the factorial of1000 once. Of course in this
simple example a similar saving can easily be achieved without leaving the purely
functional part of the language, for example with

let dec2 ; val x = (f 1000) in (x + x) end.

The point is that in general such functional transformations may require compli-
cated static analysis of the context, whereas the transformation involving the mem-
oised version is simply one of replacing occurrences ofdec2 with dec1 uniformly
in any context. The correctness of this optimisation amounts to the assertion that
dec1 anddec2 are contextually equivalent. In general one says that two phrasese1

ande2 in a programming language arecontextually equivalent, and writese1
∼= e2,

if for all contextsC[−], i.e. for all expressions which become complete programs
when the hole ‘−’ is filled with e1 or e2, executing the programC[e1] yields exactly
the same observable results as executingC[e2].

Why aredec1 anddec2 contextually equivalent? While it may be easy to see
for some particular context such aslet [−] in (f 1000 + f 1000), thatC[dec1] and
C[dec2] evaluate to the same result, it is quite a different matter to prove that this
is so forall contexts. Nevertheless there are reasons for believing thatdec1

∼= dec2

holds, based upon the ‘privacy’ of locally declared references and properties of the
state that remain invariant during evaluation. Here is how the argument goes.

Informal ‘proof’ of dec1
∼= dec2. Consider the following property:

the integer stored inr is the factorial of that stored ina. (1.1)

Note that ifdec1 is evaluated then the two references created satisfy (1.1) (since1
is the factorial of0). Moreover, the function value bound tof as a result of that
evaluation is such that if (1.1) holds before evaluating an applicationf(n), then it
continues to hold afterwards and the value returned agrees with what we would
have obtained usingdec2 instead ofdec1 (namely the factorial ofn).

Given any contextC[−], sincea and r are bound identifiers indec1 and
evaluation of expressions respectsα-conversion, we may assume thata andr do
not occur inC[−]; so, the only way that the contents of the created referencesa

and r could be mutated during evaluation ofC[dec1] is through applications of
the function value bound tof. It follows from the previous paragraph both that the
property (1.1) is invariant throughout the evaluation ofC[dec1] and that any result
returned is the same as forC[dec2]. SinceC[−] was arbitrary,dec1 anddec2 are
contextually equivalent. �?

The reason why this is only an informal proof resides mainly in the statement
in italics about how a context can make use of its ‘hole’, which certainly needs
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further justification. To emphasise this point, we tease the reader with a similar
informal ‘proof’ of contextual equivalence that turns out to be false. Recall that
int ref is the Standard ML type of integer references: its values are addresses
of integer storage locations, and those values can be tested for equality—meaning
equality of the reference addresses rather than equality of their contents. Consider
the following declarations of functions of typeint ref→ int ref.

Example 1.2.

val f = let val a = ref 0 and b = ref 0

in

fn c⇒ (if c = a then b else a)
end

(dec3)

val f = let val a = ref 0 and b = ref 0

in

fn c⇒ (if c = b then b else a)
end

(dec4)

False ‘proof’ ofdec3
∼= dec4. Given any contextC[−], sincea andb are bound

identifiers indeci (i = 3, 4) and evaluation of expressions respectsα-conversion,
we may assume thata andb do not occur inC[−]. Thus in evaluatingC[deci] any
value of typeint ref which is supplied byC[−] to the function declared bydeci
cannot be eithera or b. Therefore any such application will always use the second
branch of the conditional and returna. So evaluation ofC[dec3] will produce the
same result as evaluatingC[dec4]. SinceC[−] was arbitrary,dec3 anddec4 are
contextually equivalent. �?

The italicised part of this ‘proof’ is of the same kind as in the previous case, but
this time it is false. Indeeddec3 anddec4 are not contextually equivalent. As with
any contextual inequivalence, this can be demonstrated rigorously by exhibiting
a contextC[−] for whichC[dec3] andC[dec4] produce different results. Such a
context is

let [−]; val c = ref 0 in (f(f c) = f c) end

since in this caseC[dec3] evaluates tofalse whereasC[dec4] evaluates totrue.
For in the environment created by evaluating the local declarations inC[dec3]
(respectivelyC[dec4]), f c evaluates toa (respectivelya), hencef(f c) evaluates
to b (respectivelya) and therefore the testf(f c) = f c yieldsfalse (respectively
true). Note that contrary to the expectation in the false ‘proof’ given above, even
thoughC[−] does not know about the local referencesa andb, it is able to feed
them as arguments tof after one application off to some external referencec.

Incidentally, Example 1.2 demonstrates that the following na¨ıve extensionality
principle fails for Standard ML functions:
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Two expressionsF andF ′ of function typeσ→ σ′ are contextually
equivalent if for all valuesV of typeσ, F V andF ′ V are contextually
equivalent expressions of typeσ′.

We have just seen that ifF3 andF4 are the expressions of typeint ref→ int ref

that occur on the right-hand sides of the declarationsdec3 anddec4 respectively,
thenF3 6∼= F4. On the other hand, one can show for all valuesc : int ref that
F3 c andF4 c are contextually equivalent. SoF3 andF4 do not satisfy the above
extensionality principle.

This failure of extensionality is not merely a result of mixing higher order
functions with imperative features. For in Reynolds’ Idealised Algol (1981,
1982) with its call-by-name function application and restriction of local state
just to commands (i.e. expressions of typeunit, in ML terminology), such an
extensionality principledoeshold: see (Pitts 1997). Rather, it is the fact that
in ML access to local references can be passed out of their original scope during
evaluation which complicates the properties of contextual equivalence. We saw this
when demonstratingdec3 6∼= dec4 in Example 1.2. Incidentally, it is worth noting
that although this example makes use of equality testing on references, the failure
of extensionality in ML does not depend upon this feature. (Indeed, in the fragment
of ML we use in this paper this equality test is definable from more primitive ones:
see Remark 2.1.) The operationally-based parametric logical relation we present
in this paper provides a characterisation of contextual equivalence that yields a
rigorous underpinning for the kind of informal argument used in Example 1.1,
while avoiding the pitfalls illustrated by Example 1.2.

Some background

The methods presented here for reasoning about recursive functions and local
storage are rooted in the work of O’Hearn and Tennent (1995) and Seiber (1995).
These authors use relational parametricity (Reynolds 1983) and logical relations
(Plotkin, 1973, 1980) to give denotational models of Algol-like languages which
match the operational behaviour of local variables better than previous models
did. Since our goal is not to produce ‘fully abstract’ models, but rather to
identify practically useful proof methods for contextual equivalence, there is some
advantage to concentrating on operationally-based versions of these relational
techniques. This was done for Algol-like languages in (Pitts 1997). Here
we carry out a similar program for an ML-like language. For the reasons
given in the previous subsection, the difficulties which have to be overcome to
produce useful proof methods for ML contextual equivalence are greater than
those for Algol. Nevertheless, we obtain a fairly light-weight tool compared
with the mathematical structures involved in the denotational models, and one
which relates directly to the syntax and structural operational semantics of the
language. But of course these operationally-based techniques would not have
arisen without the previous, denotational insights. Furthermore, the method we use
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to establish the fundamental properties of the operationally-based logical relation
with respect to recursive program constructs relies on operational analogues
of familiar denotational methods (viz. fixed point induction and admissibility
properties).

Mason and Talcott have developed a number of operational methods for rea-
soning about Lisp programs with destructive update (Mason and Talcott 1991a;
Mason and Talcott 1992a; Honsell, Mason, Smith, and Talcott 1995). Like us,
they highlight the issue of functions with local state, which they call ‘objects’
(1991b, 1992b). Notions of ‘constraint’ and ‘equivalence under constraints’ are
used, which can be loosely identified with the use we make in this paper of rela-
tions between states. These lead to a set of reasoning principles that match certain
aspects of our operational logical relation. Their(inv) expresses the fact that prop-
erties of local store are preserved; while their(abstract) and(abstractable) say
that if two functions preserve some property of store, and whenever it holds they
give the same result, then they are equivalent. Proofs based on these principles are
similar in some ways to those given in Section 5. There are however limitations
to these methods, which our work removes. For example, the validity of(inv),
(abstract) and(abstractable) is restricted to first-order functions over atoms, as
a consequence of their ‘hands-on’ proof through direct consideration of reduc-
tion in certain contexts. Our logical relation has no such restriction (witness the
higher order profiler of Example 5.8). Our techniques then can be seen as a certain
generalisation to higher types of the results of Masonet al, through the powerful
machinery of parameterised logical relations.

Overview of the paper

In Section 2 we introduce a language of Recursive Functions with local State,
called ReFS, which is the vehicle for the formal development in the rest of this
paper. Syntactically, it is a simply typed lambda calculus: there are ground
types for booleans, integers, the unit value, and integer references; higher types
are built up over these using product and function type constructors. We give
the structural operational semantics of ReFS in terms of an inductively defined
evaluation relation

s,M ⇓ V, s′ . (1.2)

This and the associated definition of contextual equivalence are quite standard, and
make ReFS equivalent to a fragment of SML according to its definition in (Milner,
Tofte, and Harper 1990). Harper and Stone (1996) reformulate the operational
semantics of SML in terms of transitions between configurations containing a
component for the current program continuation, or evaluation context. (See also
Harper, Duba, and MacQueen 1993.) The advantage of this approach is that
it can give astructurally inductivecharacterisation of the termination predicate,
∃V, s′ (s,M ⇓ V, s′) used to define contextual equivalence. Accordingly, in
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Section 3 we introduce a new termination relation

〈s,K,M〉↓ (1.3)

where the componentK formalises the ReFS evaluation contexts. The relation
(1.3) is defined by induction on the structure ofM andK, and contains the original
termination relation for⇓ as a retract. We are able to exploit the structural nature of
our formulation of termination to streamline the induction proofs that arise when
proving properties of contextual equivalence. A case in point is the proof of the
Unwinding Theorem 3.2 that completes this section. It expresses a compactness
property of recursive function values with respect to termination which we need
later to prove a crucial preservation property of our parametric logical relation
(Proposition 4.8(xv)).

The logical relation itself is introduced in Section 4 and its fundamental prop-
erties established. It is parameterised by binary relations between states. Apart
from being operationally- rather than denotationally-based, we are able to make a
pleasing simplification of (O’Hearn and Tennent 1993, Section 6), in that our pa-
rameters are justarbitrary (non-empty) state-relations without any extra structure
of a partial bijection on the underlying address names. In fact the definition of
the logical relation is rather different from previous such definitions for languages
with local state, because it involves binary relations between evaluation contexts
K as well as binary relations between expressionsM .

We found this approach unavoidable in order to establish the Fundamental
Property of the logical relation (Theorem 4.9) and hence its connection with
contextual equivalence (Theorem 4.10). The reason has to do with the interaction
between recursion and the fact that the ‘size’ of the state (measured by the number
of storage locations allocated) may grow in a non-trivial fashion during evaluation
in a language like ReFS. Thus in (1.2), the number of locations in the final state
s′ may be strictly greater than the number in the initial states and we cannot
‘garbage collect’ that part ofs′ involving these extra locations, because the value
V may be a function closure using those locations. Now in defining a logical
relation parameterised by state-relations and based upon the evaluation relation
(1.2), it is natural to use existential quantification over relations on the dynamically
created part ofs′: this is what the authors did for their nu-calculus in (Pitts and
Stark 1993), for example. However, such an existential quantification destroys the
(operational analogue of the) admissibility property needed to show that recursive
program constructs respect the logical relation—without which there would be no
connection between contextual equivalence and the logical relation.1

By contrast, the logical relation we give here takes account of evaluation
contexts rather than final states and uses the termination relation (1.3), which
makes no explicit mention of final states. This allows us to avoid any use of
existential quantification over state relations in the definition and renders the proof

1This problem did not surface in (Pitts and Stark 1993) because the nu-calculus does not contain
any recursive features.
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of the Fundamental Property relatively straightforward. The price we pay is that
the definition of the logical relation between expressions is intertwined with the
definition of a ‘dual’ relation between evaluation contexts (program continuations).
However, it is a price worth paying, since not only does it allow us to prove
the crucial Fundamental Property of the logical relation, but also we are able to
characterise contextual equivalence in terms of the logical relation2 and deduce the
Mason-Talcott ‘closed instantiations of uses’ theorem for ReFS as a corollary (see
Theorem 4.10). Moreover, we show in Section 5 that we can recover a technique
for proving ReFS contextual equivalence involving existential quantification over
‘locally invariant’ state relations which is reminiscent of the methods of (Pitts and
Stark 1993; Pitts 1997). This Principle of Local Invariants (Proposition 5.1) is
put to work in Section 5 to prove examples of contextual equivalence involving
the notion of representation independence, higher-order memoising functions, and
higher-order profiling functions. We also examine the limitations of this method,
giving an example (Example 5.9) of two contextually equivalent ReFS expressions
that are not easily seen to be logically related.

In the final Section 6 we discuss some desirable extensions of the ReFS language
and how our techniques might be extended to cope with them.

2 Recursive functions with local state

The examples discussed in the Introduction involved the interaction between recur-
sively declared functions and dynamically created, mutable references for storing
integer values. They were phrased in a simply typed fragment of Standard ML
with ground typesbool (booleans),int (integers),unit (one-element type), and
int ref (integer storage locations). In this section we introduce a typed lambda
calculus called ReFS—a language of Recursive Functions with local State. It is
essentially equivalent to the fragment of Standard ML we have in mind and will
be the vehicle for the formal development in the rest of this paper.

The ReFS language

The syntax of ReFS is given in Figure 1. It takes an unusually reduced form, in that
most operators may take only values as arguments. This is essentially a technical
convenience: it means that all the sequential aspects of the language devolve onto
the let construct, and can therefore be treated uniformly. Unrestricted forms are
easily defined in terms oflet as shown in Figure 2, and we shall use them freely.
Note that the ReFSlet is much simpler than that of ML, being neither recursive
nor polymorphic.

ReFS has two kinds of identifier, variables (x, y, f, g, . . . ) and location constants
(`, `′, . . . ). The latter occur explicitly in ReFS expressions because we prefer to

2A similar characterisation for the nu-calculus definitely fails for the logical relation of (Pitts
and Stark 1993).
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Expressions M ::= V | if V then M else M | V op V | fst(V ) | snd(V )

| ref (V ) | !V | V := V | V V | let x = M in M

Values V ::= x | true | false | n | () | ` | rec x(x).M | (V, V )

Types σ ::= bool | int | unit | loc | σ→ σ | σ × σ

where

x ∈ Var an infinite set ofvariables,

` ∈ Loc an infinite set oflocations,

n ∈ Z = {. . . ,−2,−1, 0, 1, 2, . . .} the set of integers,

op ∈ {+,−,=,≤, . . .} a finite set of arithmetic operations and relations.

Figure 1: ReFS syntax

if M1 then M2 else M3
def
= let x = M1 in (if x then M2 else M3)

wherex /∈ fv(M2,M3)

and similar clauses forM1 op M2, (M1,M2), fst(M), snd(M), M1M2, ref (M),
!M , andM1 :=M2.

λx.M
def
= rec f(x).M wheref /∈ fv(M)

M ;M ′
def
= let x = M in M ′ wherex /∈ fv(M ′)

Ycbv
def
= rec y(f). λ x. f(yf)x

while B do M
def
= (rec f(x). if B then (M ; f()) else ())()

wheref, x /∈ fv(B,M)

let x = M1; x′ = M2 in M3
def
= let x = M1 in (let x′ = M2 in M3)

let (x1, x2) = M1 in M2
def
= let x = M1 in let x1 = fst(x) in

let x2 = snd(x) in M2 wherex /∈ fv(M2)

let f(x) = M1 in M2
def
= let f ′ = rec f(x).M1 in M2[f ′/f ]

wheref ′ /∈ fv(M2)

Figure 2: Sugar for the ReFS syntax
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Γ, x : σ ` x : σ Γ ` true : bool Γ ` false : bool

Γ ` n : int (n ∈ Z) Γ ` () : unit Γ ` ` : loc (` ∈ Loc)

Γ, f : σ→ σ′, x : σ `M : σ′

Γ ` rec f(x).M : σ→ σ′
(f, x /∈ Γ)

Γ ` V : σ Γ ` V ′ : σ′
Γ ` (V, V ′) : σ × σ′

Γ ` V : bool Γ `M : σ Γ `M ′ : σ

Γ ` if V then M else M ′ : σ

Γ ` V : int Γ ` V ′ : int

Γ ` V op V ′ : γ
(γ ∈ {bool , int} is the result type ofop)

Γ ` V : σ × σ′

Γ ` fst(V ) : σ

Γ ` V : σ × σ′

Γ ` snd(V ) : σ′

Γ ` V : int

Γ ` ref (V ) : loc

Γ ` V : loc

Γ ` !V : int

Γ ` V : loc Γ ` V ′ : int

Γ ` V := V ′ : unit

Γ ` V : σ→ σ′ Γ ` V ′ : σ
Γ ` V V ′ : σ′

Γ `M : σ Γ, x : σ `M ′ : σ′

Γ ` let x = M in M ′ : σ′
(x /∈ Γ)

Notation. We use the following notation for various collections of well-typed
expressions and values.

Expσ(Γ)
def
= {M | Γ `M : σ} Valσ(Γ)

def
= {V ∈ Expσ(Γ) | V a value}

Expσ
def
= Expσ(∅) Valσ

def
= Valσ(∅)

Exp
def
=
⋃
{Expσ | σ a type} Val

def
=
⋃
{Valσ | σ a type}.

Figure 3: ReFS type assignment
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avoid the use of environments in the ReFS operational semantics. Variables may
be free or bound, while locations are always free. The formrec f(x).M binds
free occurrences of the variablesf andx in expressionM , andlet x = M in M ′

binds any free occurrences ofx in M ′. We identify expressions and values up to
α-conversion of bound variables. The finite sets of free variables and locations
of an expressionM are denotedfv(M) and loc(M) respectively. We substitute
values for free variablesM [V/x] in the usual capture-avoiding way; the restriction
to valuesV arises from the choice of reduced syntax and is appropriate for a call-
by-value language.

We only consider expressions that are well-typed. The ReFS types are given in
Figure 1:bool andint are the types of booleans and integers respectively;unit is a
one-value type;loc is the type of names of integer storage locations, corresponding
to the Standard ML typeint ref; σ → σ′ andσ × σ are function and product
types, corresponding to the Standard ML typesσ−>σ′ andσ ∗ σ′. For simplicity,
we assume that the setVar of variables is partitioned into a family of countably
infinite subsets, one for each type: thus each variablex comes with a typeσ, and
we writex : σ to indicate this. The rules for assigning types to expressions are
given in Figure 3 and are quite standard. They inductively define a judgement of
the formΓ ` M : σ, whereΓ is a finite subset ofVar , M is a ReFS expression,
andσ is a ReFS type. The role ofΓ in the judgement is to indicate explicitly a
set of variables free for substitution inM . Indeed, it is not hard to prove that if
Γ ` M : σ is derivable thenfv(M) ⊆ Γ. Most of the time we will be dealing
with closedexpressions, by which we mean expressions with no free variables, but
quite possibly involving location constants` ∈ Loc.

To further simplify the operational semantics of ReFS we have rolled function
abstraction and recursive function declaration into the one formrec f(x).M which
corresponds to the Standard ML value

fn x⇒ (let fun f x = M in M end).

Figure 2 shows how ordinary lambda abstraction, the call-by-valueY combinator,
local recursive function definitions andwhile loops are all special cases of this
construct.

The ReFS operations for manipulating store are exactly as in Standard ML, but
restricted to storage ofinteger values. Expressionref (V ) allocates local store,
placing the integer denoted byV at some fresh location, which is then returned as
the value of the expression; operation!V fetches the value stored at the location
denoted byV ; andV :=V ′ updates it with the integer denoted byV ′, returning the
unit value().

Remark 2.1 (Testing equality of locations).ReFS does not contain a primitive
operationeq : loc → loc → bool for testing equality of locations (as opposed
to equality of their contents). Nevertheless such an operation is definable. For
example

eq
def
= λx. λ x′. let v = !x in (x := !x′ + 1; let b = (!x = !x′) in (x := v; b))
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s, V ⇓ V, s (⇓val)

s,Mb ⇓ V, s′

s, if b then Mtrue else Mfalse ⇓ V, s′
(⇓if)

s, n op n′ ⇓ c, s if c = n op n′ (⇓op)

s, fst((V, V ′)) ⇓ V, s (⇓fst)

s, snd((V, V ′)) ⇓ V ′, s (⇓snd)

s,M [ (rec f(x).M)/f, V/x ] ⇓ V ′, s′

s, (rec f(x).M)V ⇓ V ′, s′
(⇓app)

s, ref (n) ⇓ `, s⊗ (` := n) any` /∈ dom(s) (⇓ref)

s, !` ⇓ n, s if n = s(`) (⇓get)

s, ` := n ⇓ (), (s; ` := n) (⇓set)

s,M ⇓ V, s′ s′,M ′[V/x] ⇓ V ′, s′′

s, let x = M in M ′ ⇓ V ′, s′′
(⇓let)

Figure 4: ReFS evaluation rules

has the required evaluation properties with respect to the operational semantics of
ReFS introduced below.

Evaluation of expressions

The meaning of ReFS expressions clearly depends on the current contents of
memory orstate. We represent states as finite partial functions from locations
to integerss : Loc ⇀fin Z, with dom(s) being the locations actually occupied. The
empty state is denoted(), and for any states, location` and integern we write
(s; ` := n) for the updated state defined by

dom(s; ` := n) = dom(s) ∪ {`}

(s; ` := n)(`′) =

{
s(`′) if `′ 6= `,

n if `′ = `.

In the case that̀ /∈ dom(s), we writes⊗ (` := n) for (s; ` := n). More generally,
given statess ands′ with disjoint domains theirsmash products ⊗ s′ is the state
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with

dom(s⊗ s′) = dom(s) ∪ dom(s′)

(s⊗ s′)(`) =

{
s(`) if ` ∈ dom(s),

s′(`) if ` ∈ dom(s′).

We write Sta for the set of all states; and ifω ⊆ Loc is a finite set of location
constants, we writeSta(ω) for the subset ofSta consisting of all statess with
dom(s) = ω.

Much as in the Definition of Standard ML (Milner, Tofte, and Harper 1990),
we give the operational semantics of ReFS via an inductively defined evaluation
relation of the form

s,M ⇓ V, s′ (2.1)

wheres, s′ ∈ Sta, M ∈ Exp, andV ∈ Val . We consider onlywell-formed
judgements, whereM andV may be given some common typeσ, and all locations
used are properly defined:loc(M) ⊆ dom(s) andloc(V ) ⊆ dom(s′). The rules
defining the relation are given in Figure 4 and are all quite standard. We write
s,M ⇓ to indicate termination, i.e. thats,M ⇓ V, s′ holds for somes′, V (and
hence in particular thatloc(M) ⊆ dom(s)).

Even taking into account differences in syntax, there are some differences be-
tween this operational semantics and the corresponding fragment of the Stan-
dard ML definition (Milner, Tofte, and Harper 1990). For one thing, we have
eliminated the use of environments in the evaluation relation at the expense
of introducing the syntactic operation of substitution. Thus in rule (⇓app),
M [ (rec f(x).M)/f, V/x ] denotes the result, well-defined up toα-conversion,
of simultaneously substitutingrec f(x).M for all free occurrences off andV for
all free occurrences ofx, in M . The small price to pay for this approach is the
explicit appearance of locations in the syntax of expressions.

More significantly, the reduced syntax has concentrated the sequencing of
evaluation in the language down to just one rule: only (⇓let) has more than one
hypothesis, and most have none.

Contextual equivalence

We regard two expressions of ReFS as equivalent if they can be used interchange-
ably in any program without affecting the observable results of program execu-
tion. This is formalised by the standard notion ofcontextual equivalence, suitably
adapted for the language in hand.

As usual, acontextC[−] is a ReFS expression in which some subexpressions
have been replaced by occurrences of a parameter, orhole, ‘−’. The expression
resulting from filling the holes with an expressionM is denoted byC[M ]. Since
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the holes may occur within the scope oflet- andrec-binders, free variables ofM
may become bound inC[M ]. This ‘capture’ of variables means that although the
operation of substitutingM for ‘−’ in C[−] respectsα-conversion ofM , it does not
necessarily respectα-conversion ofC[−]. Therefore we do not identify contexts
up toα-conversion.

In the following definitions of contextual preorder and equivalence, we take
convergence at arbitrary type as our basic observable. As it happens, the expres-
siveness of contexts means that we could have chosen other observations without
changing the relations that result: convergence at unit type, or to a specified integer
value, would do just as well.

Definition 2.2 (Contextual preorder, contextual equivalence).
Suppose thatM1,M2 ∈ Expσ(Γ) are ReFS expressions. We write

Γ `M1 ≤M2 : σ (contextual preorder)

if for all contextsC[−] such thatC[M1] andC[M2] are closed terms of the same
type it is the case that

s, C[M1]⇓ ⇒ s, C[M2]⇓

holds for all statess with loc(C[M1], C[M2]) ⊆ dom(s). We define

Γ `M1
∼= M2 : σ (contextual equivalence)

to mean thatΓ `M1 ≤M2 : σ andΓ `M2 ≤M1 : σ.

It is an easy consequence of these definitions that≤ is reflexive and transitive,
and hence that∼= is an equivalence relation; moreover both relations are preserved
by all the expression-forming operations of the language (including those that bind
free variables).

3 A structurally inductive definition of termination

Before describing the logical relation for ReFS which is the main contribution of
this paper, we need to describe the continuation-based termination relation upon
which it depends. As mentioned on page 7, the reformulation of termination which
we present in this section seems necessary in order to formulate a notion of logical
relation that respects both dynamically allocated local state and recursively defined
higher-order functions. Apart from this, the structurally inductive definition of
termination we give here is very convenient for formalising inductive proofs about
contextual equivalence, for the following reason.

Developing properties of ReFS contextual equivalence directly from its defini-
tion is not so easy. This is due to the quantification over all possible contexts that
occurs in Definition 2.2 together with the nature of the termination relation,s,M ⇓.
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Although it is an inductive (i.e. recursively enumerable) subset ofSta ×Exp, its
definition is notstructurallyinductive. For example, we can derive the rule

s′,M ′[V/x] ⇓
s, let x = M in M ′ ⇓

if s,M ⇓ V, s′

but the value expressionV used in the substitutionM ′[V/x] is not a primitive recur-
sive function of the syntax oflet x = M in M ′. As a consequence, the proof meth-
ods for contextual equivalence which naturally suggest themselves—induction
over the structure of contexts and induction on the derivation of termination from
the rules in Figure 4—very often founder for want of a sufficiently strong induction
hypothesis. We shall fill this need for stronger induction hypotheses by consider-
ing a larger set thanSta ×Exp, carving out a subset by structural induction, and
exhibiting the termination relation{(s,M) | s,M ⇓} as a retract of this subset.
The key ingredient in this strategy is a formal version of continuations.

Continuations

The concept of continuation that we extract from ReFS evaluation is fairly
standard. However, our continuations are typed at both argument and result; and
we have no need here of continuationpassing. Continuations take the form of
finite lists of expression abstractions(x)M , with Id for the empty list and ‘◦’ for
concatenation:

K ::= Id | K ◦ (x)M .

Free variables and locations are defined by

fv(Id) = ∅ fv(K ◦ (x)M) = fv(K) ∪ (fv(M) \ {x})
loc(Id) = ∅ loc(K ◦ (x)M) = loc(K) ∪ loc(M).

We identify continuations up toα-conversion of bound variables (free occurrences
of x in M are bound in(x)M).

TheapplicationK@M of a continuation to an expression is defined by

Id@M
def
= M

(K ◦ (x)M ′)@M
def
= K@(let x = M in M ′)

and is an expression (well-defined up toα-conversion). This notion of application
gives a tie-up withevaluation contexts. For ReFS, with its reduced form of syntax,
these are simply the subset of expression contexts given by

E[−] ::= [−] | let x = E[−] in M.

For any suchE[−], there is a continuationK such thatE[M ] ≡ K@M for
all expressionsM , and conversely every continuation has a matching evaluation
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context. Evaluation contexts were originally derived (as ‘unlabelled sk-contexts’)
from continuations in (Felleisen and Friedman 1986).

To each continuation we assign a typeσ ◦→ σ′, where the notation is meant
to suggest the fact that evaluation contexts would give rise tostrict (continuous)
functions in a denotational semantics. The rules for types are as follows:

Γ ` Id : σ ◦→ σ
Γ ` K : σ2 ◦→ σ3

Γ ` K ◦ (x)M : σ1 ◦→ σ3

if Γ, x : σ1 `M : σ2

Note that ifΓ ` K : σ ◦→ σ′ andΓ ` M : σ, thenΓ ` K@M : σ′. We collect
typed continuations into a range of indexed sets.

Contσ,σ′(Γ)
def
= {K | Γ ` K : σ ◦→ σ′} Contσ(Γ)

def
=
⋃
{Contσ,σ′(Γ) | σ′ a type}

Contσ
def
= Contσ(∅) Cont

def
=
⋃
{Contσ | σ a type}.

Termination

We are now ready to give ourstructurallydefined termination relation. This will
be an inductively defined subset ofSta ×Cont ×Exp and we write

〈s,K,M〉↓

to indicate that(s,K,M) is in the subset. As usual we consider only well-formed
judgements, here requiring thatM ∈ Expσ andK ∈ Contσ for some typeσ,
and thatloc(K,M) ⊆ dom(s). Figure 5 gives the rules defining the relation.
Notice that these are now properly structurally inductive, with a simple syntactic
connection between the conclusion and hypothesis of each rule.

Theorem 3.1 (Termination). The two termination relations correspond in the
sense that

〈s,K,M〉↓ ⇔ s,K@M ⇓ . (3.1)

In particular, one has

〈s, Id ,M〉↓ ⇔ s,M ⇓ (3.2)

〈s,K,M〉↓ ⇔ ∃V, s′ (s,M ⇓ V, s′ & 〈s′, K, V 〉↓). (3.3)

Proof. One way to prove these properties is to note that

〈s,K,M〉↓ ⇔ ∃s′, V (〈s,K,M〉 →∗ 〈s′, Id , V 〉).

where→∗ is the reflexive-transitive closure of a suitable transition relation→ be-
tween configurations. One can then establish (3.1)–(3.3) via a series of inductions
involving⇓ and→. We omit the details.
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〈s, Id , V 〉↓ (↓val1)

〈s,K,M [V/x]〉↓
〈s,K ◦ (x)M,V 〉↓

(↓val2)

〈s,K,Mb〉↓
〈s,K, if b then Mtrue else Mfalse〉↓

(↓if)

〈s,K, c〉↓
〈s,K, n op n′〉↓

if c = n op n′ (↓op)

〈s,K, V 〉↓
〈s,K, fst((V, V ′))〉↓

(↓fst)

〈s,K, V ′〉↓
〈s,K, snd((V, V ′))〉↓

(↓snd)

〈s,K,M [ (rec f(x).M)/f, V/x ]〉↓
〈s,K, (rec f(x).M)V 〉↓

(↓app)

〈s⊗ (` := n), K, `〉↓
〈s,K, ref (n)〉↓

if ` /∈ dom(s)
∪ loc(K)

(↓ref)

〈s,K, n〉↓
〈s,K, !`〉↓

if n = s(`) (↓get)

〈s; ` := n,K, ()〉↓
〈s,K, ` := n〉↓

(↓set)

〈s,K ◦ (x)M ′,M〉↓
〈s,K, let x = M in M ′〉↓

(↓let)

Figure 5: Continuation-based termination relation
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The unwinding theorem

In contrast to⇓, thestructuralnature of the termination relation↓ enables many
properties of the contextual preorder and equivalence relations to be proved in a
rather straightforward way, via an induction on the derivation of〈s,K,M〉↓. As
an illustration, we give such a proof for the ‘unwinding theorem’ for recursive
function values in ReFS, which provides a syntactic analogue of Dana Scott’s
induction principle for least fixed points and which is needed in the proof of the
Fundamental Property of the logical relation introduced in the next section. Such
theorems have been proved by several different people in various contexts: see for
example (Mason, Smith, and Talcott 1996).

We fix some closed recursively defined function valuerec f(x). F ∈ Valσ→σ′
and define the following abbreviations:

Ω
def
= (rec f(x). fx)()

F0
def
= λx.Ω

Fn+1
def
= λx. F [Fn/f ]

Fω
def
= rec f(x). F .

EachFn is a finite unwinding of the full functionFω. The essence of the following
theorem is that these finite approximations provide all the observable behaviour of
Fω itself.

Theorem 3.2 (Unwinding). For anyM ∈ Expσ′′(f :σ→σ′) we have

s,M [Fω/f ]⇓ ⇔ ∃n ∈ N (s,M [Fn/f ]⇓).

Equivalently, for anyK ∈ Contσ→σ′

〈s,K, Fω〉↓ ⇔ ∃n ∈ N 〈s,K, Fn〉↓.

Proof. The two statements in the theorem are equivalent by Theorem 3.1, noting
that for anyK andF , K@F is of the formM [F/f ] for someM , and conversely
that whenF is a value thens,M [F/f ]⇓ holds if and only if〈s, Id ◦ (x)M,F 〉↓.
The theorem (in its second formulation) follows from parts (iii) and (iv) of the
following lemma, by takingK ′ = K andM ′ = g.

Lemma 3.3. For all M ′ ∈ Expσ1
(g:σ→σ′),K ′ ∈ Contσ1(g:σ→σ′), ands ∈ Sta,

if loc(M ′, K ′, F ) ⊆ dom(s) then

(i) for all G ∈ Valσ→σ′ with loc(G) ⊆ dom(s)

〈s,K ′[F0/g],M ′[F0/g]〉↓ ⇒ 〈s,K ′[G/g],M ′[G/g]〉↓

(ii) for all n ∈ N

〈s,K ′[Fn/g],M ′[Fn/g]〉↓ ⇒ 〈s,K ′[Fn+1/g],M ′[Fn+1/g]〉↓
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(iii) 〈s,K ′[Fω/g],M ′[Fω/g]〉↓ ⇒ ∃n ∈ N.〈s,K ′[Fn/g],M ′[Fn/g]〉↓

(iv) for all n ∈ N

〈s,K ′[Fn/g],M ′[Fn/g]〉↓ ⇒ 〈s,K ′[Fω/g],M ′[Fω/g]〉↓.

Proof. (i) is proved by induction on the derivation of〈s,K ′[F0/g],M ′[F0/g]〉↓
from the rules in Figure 5. More precisely, one shows that the set of machine
states

{ 〈s,K,M〉 | ∀K ′,M ′ (K = K ′[F0/g] & M = M ′[F0/g]

⇒ ∀G 〈s,K ′[G/g],M ′[G/g]〉↓) }

is closed under those rules. The only non-straightforward case is (↓app), where
one uses the easily verified fact that〈s,K,Ω〉↓ cannot hold for anys andK. We
omit the details.

(ii) is proved by induction onn, with part (i) providing the base case ofn = 0.

For (iii), again one works by induction on the proof of termination, showing
that the set of machine states

T = { 〈s,K,M〉 | ∀K ′,M ′ (K = K ′[Fω/g] & M = M ′[Fω/g]

⇒ ∃n ∈ N 〈s,K ′[Fn/g],M ′[Fn/g]〉↓) }

is closed under the rules of Figure 5 generating↓. As for part (i), the only difficult
case is closure under the application rule (↓app). For that, suppose we have

〈s,K,M [ (rec f(x).M)/f, V/x ]〉 ∈ T. (3.4)

Then we have to show that〈s,K, (rec f(x).M)V 〉 ∈ T, i.e. that if

K = K ′[Fω/g] and (rec f(x).M)V = M ′[Fω/g] (3.5)

then 〈s,K ′[Fn/g],M ′[Fn/g]〉↓ holds for some finiten. Now (3.5) must hold
becauseM ′ = V1V2 for some valuesV1 andV2 such that

rec f(x).M = V1[Fω/g] and V = V2[Fω/g].

The first of these can occur in two situations:

(a) V1 = g andrec f(x).M = Fω, thusM = F .

(b) V1 = rec f(x).M1 for someM1 with M = M1[Fω/g].

The proof in case (b) is straightforward and we omit it. In case (a) we now have
M [ (rec f(x).M)/f, V/x ] = F [ g/f, V2/x ][Fω/g] and so by (3.4) there is some
finitem with 〈s,K ′[Fm/g], F [ g/f, V2/x ][Fm/g]〉↓. Using the definition ofFm+1
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and rule (↓app) gives〈s,K ′[Fm/g], Fm+1(V2[Fm/g])〉↓ and hence by part (ii) also
〈s,K ′[Fm+1/g], Fm+1(V2[Fm+1/g])〉↓. But

Fm+1(V2[Fm+1/g]) = (V1V2)[Fm+1/g] = M ′[Fm+1/g]

and so we have the desired conclusion that〈s,K ′[Fn/g],M ′[Fn/g]〉↓ holds for
somen (namelyn = m+ 1).

The closure ofT under the other rules of Figure 5 requires the same straightfor-
ward reasoning as for case (b), and we omit the details.

Finally, part (iv) of the lemma is once again proved by an induction over↓: one
shows that the set of machine states

{ 〈s,K,M〉 | ∀K ′,M ′, n (K = K ′[Fn/g] & M = M ′[Fn/g]

⇒ 〈s,K ′[Fω/g],M ′[Fω/g]〉↓) }

is closed under the rules generating↓. Again, the only non-routine case is
for (↓app) and for that the proof is very much as for part (iii), with two distinct
cases (a) and (b). We omit the details.

Note that the imperative features of ReFS have little rˆole in the proof of
unwinding. If we had storage of non-ground data, these features would play a
greater part, but the same proof methods would still work.

4 A parametric logical relation

In this section we define a family of binary relations between ReFS expressions (of
equal type) parameterised by relations between states and establish its relationship
to contextual equivalence. We prove a ‘Fundamental Property’ typical of logical
relations (Theorem 4.9). This is the main technical result of the paper and it
draws heavily upon the work of the previous section. From the Fundamental
Property we easily deduce an extensionality result for ReFS contextual equivalence
(Theorem 4.10) that includes the ‘ciu’ theorem of Mason and Talcott (1992b).
So we get proofs for a range of basic contextual equivalences that are the usual
consequences of the ‘ciu’ theorem. However, our extensionality theorem also
characterises contextual equivalence in terms of the logical relation (with the
state-relation parameter instantiated to the identity). In the next section we shall
show that this characterisation can be used to give quite straightforward proofs for
some examples of contextual equivalence which are not easily seen to be direct
consequences of the ‘ciu’ theorem.

Definitions

We begin by defining a variety of relations between elements of our ReFS language,
starting with states.
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Definition 4.1 (State relations). Given finite subsetsω1, ω2 ⊆ Loc, a state rela-
tion from ω1 to ω2 is a non-empty subsetr ⊆ Sta(ω1) × Sta(ω2). (Recall from
page 13 thatSta(ω) denotes the set of all states with domain of definition equal to
ω.) We write

Rel(ω1, ω2)

for the set of all such relations. Givenr ∈ Rel(ω1, ω2), we refer toω1 andω2 as the
domain and codomain ofr respectively. (Note that since we are assuming that any
state relationr is in particular non-empty,3 its domain and codomain are uniquely
determined.)

For any finite subsetω ⊆ Loc, theidentity state relationonω is

idω
def
= {(s, s) | dom(s) = ω}.

Given two state relations relationsr ∈ Rel(ω1, ω2) and r′ ∈ Rel(ω′1, ω
′
2) with

ωi ∩ ω′i = ∅ (i = 1, 2), their smash productr ⊗ r′ ∈ Rel(w1 ∪ ω′1, ω2 ∪ ω′2) is
defined using the smash product of states defined in Section 2:

r ⊗ r′ def
= {(s1 ⊗ s′1, s2 ⊗ s′2) | (s1, s2) ∈ r & (s′1, s

′
2) ∈ r′}.

It is straightforward to show that

idω ⊗ idω′ = idω∪ω′ (w ∩ w′ = ∅) r ⊗ r′ = r′ ⊗ r
id ∅ ⊗ r = r r ⊗ (r′ ⊗ r′′) = (r ⊗ r′)⊗ r′′

with the last three in particular following from the corresponding property of⊗ on
states.

We say that a state relationr′ extendsanother oner, and writer′ B r, if
r′ = r⊗ r′′ for somer′′. It follows from the above properties of the smash product
⊗ that the extension relationB is a partial order.

Suppose we have two configurations〈s,K,M〉 and〈s′, K ′,M ′〉 of the abstract
machine described in Section 3. We say that they areconvergence equivalent,
written

〈s,K,M〉 l 〈s′, K ′,M ′〉

if they are both well formed,i.e. loc(KM) ⊆ dom(s) andloc(K ′M ′) ⊆ dom(s′),
and they converge or diverge together:

〈s,K,M〉↓ ⇔ 〈s′, K ′,M ′〉↓ .
3This is merely a technical convenience which, amongst other things, simplifies the definition

of the logical relation at ground types.
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Definition 4.2 (A parametric logical relation for ReFS).
For each state relationr ∈ Rel(ω1, ω2) and each typeσ we define three binary
relations:

Eσ(r) ⊆ Expσ(ω1)× Expσ(ω2)

Kσ(r) ⊆ Contσ(ω1)× Contσ(ω2)

Vσ(r) ⊆ Valσ(ω1)×Valσ(ω2).

Here Expσ(ω) denotes the set of closed ReFS expressions of typeσ involving
location constants in the finite setω; similarly for continuationsContσ(ω) and
valuesValσ(ω). We make the definitions of these relations for allr simultaneously.
The first relation, between expressions, is defined in terms of the second:

(M1,M2) ∈ Eσ(r)
def⇔ ∀r′ B r, (s1, s2) ∈ r′, (K1, K2) ∈ Kσ(r′) .

〈s1, K1,M1〉 l 〈s2, K2,M2〉. (4.1)

The second relation, on continuations, is defined in terms of the third:

(K1, K2) ∈ Kσ(r)
def⇔ ∀r′ B r, (s1, s2) ∈ r′, (V1, V2) ∈ Vσ(r′) .

〈s1, K1, V1〉 l 〈s2, K2, V2〉. (4.2)

The final relation, between values, is defined by induction on the structure of the
typeσ:

(c1, c2) ∈ Vσ(r)
def⇔ c1 = c2 for σ ∈ {unit , bool , int} (4.3)

(`1, `2) ∈ V loc(r)
def⇔ (!`1, !`2) ∈ E int(r)

& ∀n ∈ Z . (`1 := n, `2 := n) ∈ Eunit(r)
(4.4)

(V1, V2) ∈ Vσ×σ′(r) def⇔ (fst(V1), fst(V2)) ∈ Eσ(r)
& (snd(V1), snd(V2)) ∈ Eσ′(r)

(4.5)

(V1, V2) ∈ Vσ→σ′(r) def⇔ ∀r′ B r, (W1,W2) ∈ Vσ(r′) .
(V1W1, V2W2) ∈ Eσ′(r′).

(4.6)

We call this family of relations ‘logical’ simply because it relates function
values if, roughly speaking, they map related arguments to related results. This
is the characteristic feature of a wide range of relations used in connection with the
lambda calculus which ever since (Plotkin 1973, 1980) have been called ‘logical
relations’.

Note. It is possible to simplify Definition 4.2 by replacing the use of an arbitrary
extensionr′ B r by r itself in the defining clauses forEσ(r) andKσ(r) (but not
Vσ→σ′(r)). This simplification depends partly upon the ‘flat’ nature of state in
ReFS and since we have an eye to generalisations of ReFS (see Section 6), we
chose not to build it into the definition. Furthermore, this simplification would
complicate the proof of the following property.
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Lemma 4.3 (Weakening).Extending a state relation preserves existing relations
between expressions, continuations and values: ifr′ B r then

(M1,M2) ∈ Eσ(r) ⇒ (M1,M2) ∈ Eσ(r′)

(K1, K2) ∈ Kσ(r)⇒ (K1, K2) ∈ Kσ(r′)

(V1, V2) ∈ Vσ(r) ⇒ (V1, V2) ∈ Vσ(r′)

Proof. Clauses (4.1) and (4.2) of Definition 4.2 specifyEσ(r) and Kσ(r) by
quantifying over all extensionsr′ B r and so the first two parts are immediate
(sinceB is a preorder). The third part concerning values then follows from the
first, matching the way clauses (4.3) to (4.6) defineVσ(r) in terms ofEσ(r).

The definition of the relationsEσ(r) on expressions andVσ(r) on values
are quite different; nevertheless they agree in that values can be considered as
expressions without changing their relations, as the following lemma shows.

Lemma 4.4 (Coincidence).RelationsEσ(r) andVσ(r) coincide on values: for
V1, V2 ∈ Valσ

(V1, V2) ∈ Eσ(r)⇔ (V1, V2) ∈ Vσ(r).

Proof. The direction from right to left follows at once from the definition ofEσ(r)
andKσ(r) given in clauses (4.1) and (4.2), together with Lemma 4.3. From left to
right, we proceed by cases on the structure of typeσ.

Caseσ = unit is trivial, as the only unit value is() and((), ()) ∈ Vunit(r) for
anyr.

Caseσ = bool . Consider the continuation

K = Id ◦ (x)(if x then () else Ω)

whereΩ is the non-terminating expression used in the Unwinding Theorem 3.2.
From the definition ofVbool andKbool it is not hard to show that(K,K) ∈ Kbool (r).
Suppose then thatb1, b2 ∈ {true, false} with (b1, b2) ∈ Ebool (r). Since state
relations are by definition non-empty, we can choose some(s1, s2) ∈ r. Then
we have〈s1, K, b1〉 l 〈s2, K, b2〉 and hence

〈s1, Id , if b1 then () else Ω〉 l 〈s2, Id , if b2 then () else Ω〉.

Since〈si, Id ,Ω〉6 ↓ and 〈si, Id , ()〉↓ it follows that b1 = b2, and thus(b1, b2) ∈
Vbool (r) as required.

Caseσ = int is similar to the previous case, using the continuation

K = Id ◦ (x)(let y = (V1 = x) in if y then () else Ω)

whereV1 is one of the integer values involved.
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Caseσ = loc. Suppose that(`1, `2) ∈ E loc(r). We need to prove that(!`1, !`2) ∈
E int(r) and also((`1 := n), (`2 := n)) ∈ Eunit(r) for everyn ∈ Z. Suppose
that at some extensionr′ B r we have(s1, s2) ∈ r′ and (K1, K2) ∈ Kint(r

′).
For the first property, we have to show that〈s1, K1, !`1〉 l 〈s2, K2, !`2〉. But it is
not hard to verify that((K1 ◦ (x)!x), (K2 ◦ (x)!x)) ∈ Kloc(r′), and then because
(`1, `2) ∈ E loc(r) we obtain

〈s1, (K1 ◦ (x)!x), `1〉 l 〈s2, (K2 ◦ (x)!x), `2〉

and hence also〈s1, K1, !`1〉 l 〈s2, K2, !`2〉, as required. The argument that
(`1 := n, `2 := n) ∈ Eunit(r) is similar.

Caseσ = σ1 × σ2. The proof is as in the previous case, this time taking
(K1, K2) ∈ Kσ1(r′) to (K1 ◦ (x) fst(x), K2 ◦ (x) fst(x)) ∈ Kσ(r′) and similarly
with snd .

Case σ = σ1 → σ2. The proof takes the same form again, based on the
observation that ifr′′ B r′ B r and(K1, K2) ∈ Kσ2(r′′) then

( (K1 ◦ (x)xW1), (K2 ◦ (x)xW2) ) ∈ Kσ1→σ2(r′′)

for all (W1,W2) ∈ Vσ1(r′).
These last three cases all use the weakening results of Lemma 4.3.

Definition 4.5 (Extension of the logical relation to open expressions).
Given two open expressionsM1,M2 ∈ Expσ(Γ) with loc(Mi) ⊆ ωi (i = 1, 2) and
a state relationr ∈ Rel(ω1, ω2) we write

Γ `M1 {r}M2 : σ

to mean that for all extensionsr′ B r and values{V1x, V2x ∈ Valσ′ | x : σ′ ∈ Γ}
we have

(∀x : σ′ ∈ Γ . (V1x, V2x) ∈ Vσ′(r′))⇒ (M1[~V1/~x],M2[~V2/~x]) ∈ Eσ(r′).

In particular∅ ` M1 {r}M2 : σ holds if and only if(M1,M2) ∈ Eσ(r), thanks to
Lemma 4.3: so this is indeed an extension of the original logical relation.

The following structural properties of this relation are automatic from the above
definition.

Γ `M1 {r}M2 : σ ⇒ ΓΓ′ `M1 {r}M2 : σ

Γ `M1 {r}M2 : σ ⇒ Γ `M1 {r ⊗ r′}M2 : σ

(Γ ` V1 {r} V2 : σ) & (Γ, x : σ `M1 {r}M2 : σ′)⇒
Γ `M1[V1/x] {r}M2[V2/x] : σ′ (V1, V2 ∈ Valσ(Γ)).

In addition to the logical relation, we shall use the following equivalence between
expressions.
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Definition 4.6 (‘ciu’ equivalence). GivenM1,M2 ∈ Expσ we write

M1
∼=ciu M2 : σ

to mean that for alls ∈ Sta andK ∈ Contσ with loc(K,M1,M2) ⊆ dom(s),

〈s,K,M1〉 l 〈s,K,M2〉.

We extend this to open expressions by value substitution: forM1,M2 ∈ Expσ(Γ),

Γ `M1
∼=ciuM2 : σ

means that for all{Vx ∈ Valσ′ | x : σ′ ∈ Γ} we haveM1[~V /~x] ∼=ciu M2[~V /~x] : σ.
(Note that theVx may use locations not mentioned inM1 orM2.)

This relation ‘∼=ciu ’ coincides with the ciu-equivalence of (Mason and Talcott
1991a; Talcott 1997). This is because the results of Section 3 imply thatΓ `
M1
∼=ciu M2 : σ holds if and only if for all suitable value substitutions{Vx | x ∈

Γ}, evaluation contextsE[−] and statess:

s, E[M1[~V /~x]]⇓ ⇔ s, E[M2[~V /~x]]⇓ .

These are the appropriate ‘closed instantiations of uses’ for ReFS expressions. The
next result shows that the logical relations respect ciu-equivalence.

Lemma 4.7 (Composition). The logical relation is closed under composition
with ciu-equivalence. For closed terms we have(

M ′1
∼=ciu M1 & (M1,M2) ∈ Eσ(r) & M2

∼=ciu M ′2
)
⇒ (M ′1,M

′
2) ∈ Eσ(r)

and more generally for open ones(
Γ `M ′1 ∼=ciu M1 & Γ `M1 {r}M2 & Γ `M2

∼=ciuM ′2
)
⇒ Γ `M ′1 {r}M ′2 .

Proof. For the first property, suppose thatr′ B r and that we have states(s1, s2) ∈
r′ and continuations(K1, K2) ∈ Kσ(r′). Then

〈s1, K1,M
′
1〉 l 〈s1, K1,M1〉 l 〈s2, K2,M2〉 l 〈s2, K2,M

′
2〉

and the result follows by transitivity of ‘l’. For open expressions, we consider
values{V1x, V2x ∈ Valσ′ | x : σ′ ∈ Γ} with each(V1x, V2x) ∈ Vσ′(r′) and deduce
that

M ′1[~V1/~x] ∼=ciuM1[~V1/~x] & M2[~V2/~x] ∼=ciu M ′2[~V2/~x]

& (M1[~V1/~x],M2[~V2/~x]) ∈ Eσ(r′).

The first part now gives(M ′1[~V1/~x],M ′2[~V2/~x]) ∈ Eσ(r′) and soΓ `M ′1 {r}M ′2 as
desired.
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Fundamental property of the relation

We aim to prove the ‘Fundamental Property’ of the logical relation introduced in
Definition 4.2. Roughly speaking, this says that the relationsExpσ(r) are preserved
by the various operations in the ReFS language; the precise statement is given
below in Theorem 4.9.

The reader familiar with previous work on relational parametricity for languages
with storage locations may be surprised that such a property holds without
some restriction on the parameterising relationsr. O’Hearn and Tennent (1993,
Section 6) sketch a construction for a language like ReFS in which the parameter
is a binary relation between states equipped with a partial bijection between the
underlying sets of locations, which together must satisfy some simple conditions
to do with assignment and look-up. The reason given for the use of the extra
information of a partial bijection is to ensure that the operation for location-equality
testing preserves the parametric logical relation. But in fact use of partial bijections
is superfluous. We will establish the preservation property for all expressions in
ReFS with respect to the logical relation simply parameterised by state relations;
and we noted in Remark 2.1 that location-equality testing is definable in ReFS—so
in particular it preserves the logical relation. In this respect ReFS is simpler than
the ‘nu-calculus’ studied in (Pitts and Stark 1993) where location-equality testing
is not definable in terms of the rest of the language and use of partial bijections
between locations is unavoidable.

Proposition 4.8. The logical relation is preserved by all the expression-forming
operations of the ReFS language.

(i) Γ, x : σ ` x {r} x : σ.

(ii) Γ ` () {r} () : unit.

(iii) Γ ` b {r} b : bool , for eachb ∈ {true, false}.

(iv) Γ ` n {r} n : int , for anyn ∈ Z.

(v) Γ ` ` {r ⊗ id{`}} ` : loc, where` /∈ dom(r) ∪ cod(r).

(vi) If Γ ` V1 {r} V2 : σ andΓ ` V ′1 {r} V ′2 : σ′ then
Γ ` (V1, V

′
1) {r} (V2, V

′
2) : σ × σ′.

(vii) If Γ ` V1 {r} V2 : bool , Γ `M1 {r}M2 : σ andΓ `M ′1 {r}M ′2 : σ then
Γ ` (if V1 then M1 else M ′1) {r} (if V2 then M2 else M ′2) : σ.

(viii) If Γ ` V1 {r} V2 : int andΓ ` V ′1 {r} V ′2 : int then
Γ ` (V1 op V ′1) {r} (V2 op V ′2) : γ, whereγ is the result type ofop.

(ix) If Γ ` V1 {r} V2 : σ × σ′ thenΓ ` fst(V1) {r} fst(V2) : σ and
Γ ` snd(V1) {r} snd(V2) : σ′.
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(x) If Γ ` V1 {r} V2 : int thenΓ ` ref (V1) {r} ref (V2) : loc.

(xi) If Γ ` V1 {r} V2 : loc thenΓ ` !V1 {r} !V2 : int .

(xii) If Γ ` V1 {r} V2 : loc andΓ ` V ′1 {r} V ′2 : int then
Γ ` (V1 := V ′1) {r} (V2 := V ′2) : unit .

(xiii) If Γ ` V1 {r} V2 : σ→ σ′ andΓ ` V ′1 {r} V ′2 : σ then
Γ ` (V1V

′
1) {r} (V2V

′
2) : σ′.

(xiv) If Γ `M1 {r}M2 : σ andΓ, x : σ `M ′1 {r}M ′2 : σ′ then
Γ ` (let x = M1 in M ′1) {r} (let x = M2 in M ′2) : σ′.

(xv) If Γ, f : σ→ σ′, x : σ `M1 {r}M2 : σ′ then
Γ ` (rec f(x).M1) {r} (rec f(x).M2) : σ→ σ′.

Proof. As might be expected, many of the clauses here have similar proofs,
with only four of them ((v), (x), (xiv) and (xv)) requiring individual attention.
Moreover, there is no hard work: essentially all the proofs are compositions of
properties proved earlier. First though we note some general points. Because
each clause preservesΓ and makes no use of it, we may assume without loss of
generality that all of its variables have already been substituted by{r}-related
values, and so takeΓ = ∅. We may similarly take justr rather than an extension
r′ B r in all clauses whereΓ is the only source of free variables (i.e. (ii)–(xiii)).
Lemma 4.4, which says thatVσ(r) andEσ(r) coincide on values, allows us to
move between the two relations and we do this silently throughout.

Cases (i)–(iv) all follow immediately from the definition of{r} andVσ(r). In
case (v) we need to show that

(!`, !`) ∈ E int(r ⊗ id{`}) and ∀n ∈ Z . (` := n, ` := n) ∈ Eunit(r ⊗ id{`})

for a given locatioǹ not mentioned byr. We look at the first of these: the second
is treated similarly. Suppose that(s1, s2) ∈ (r ⊗ id{`} ⊗ r′) and (K1, K2) ∈
Kint(r ⊗ id{`} ⊗ r′) for somer′. We have to show

〈s1, K1, !`〉 l 〈s2, K2, !`〉. (4.7)

As (s1, s2) ∈ (r ⊗ id{`} ⊗ r′) we know thats1(`) = s2(`) = n for some integern.
Then

〈si, Ki, !`〉 l 〈si, Ki, n〉 for i = 1, 2. (4.8)

But (n, n) ∈ V int(r ⊗ id{`} ⊗ r′) and as(K1, K2) ∈ Kint(r ⊗ id{`} ⊗ r′),

〈s1, K1, n〉 l 〈s2, K2, n〉. (4.9)

Combining (4.8) and (4.9) gives (4.7) as required.
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Cases (vi), (vii) and (viii) are all alike and we look only at the first. We have

(V1, V2) ∈ Eσ(r) and (V ′1 , V
′

2) ∈ Eσ′(r), (4.10)

and need to show((V1, V
′

1), (V2, V
′

2)) ∈ Vσ×σ′(r). This requires

( fst(V1, V
′

1), fst(V2, V
′

2) ) ∈ Eσ(r)

( snd(V1, V
′

1), snd(V2, V
′

2) ) ∈ Eσ′(r).
(4.11)

The following ciu-equivalences are all straightforward:

fst(V1, V2) ∼=ciu V1 fst(V ′1 , V
′

2) ∼=ciu V ′1

snd(V1, V2) ∼=ciu V2 snd(V ′1 , V
′

2) ∼=ciu V ′2
(4.12)

and by Lemma 4.7 we can combine these with the logical relations of (4.10) to
give (4.11) as required. Such use of ciu-equivalence is also the key to cases (vii)
and (viii).

In case (ix) we are given(V1, V2) ∈ Vσ×σ′(r) and need to show that
(fst(V1), fst(V2)) ∈ Eσ(r) and (snd(V1), snd(V2)) ∈ Eσ′(r)—but this is ex-
actly the definition ofVσ×σ′(r) on page 22. Cases (xi), (xii) and (xiii) use the
definition ofV(r) at locations and function types in exactly the same way.

For case (x) we again need to consider actual continuations. Suppose that
(V1, V2) ∈ V int(r), i.e. V1 = V2 = n for somen ∈ Z. For anyr′ B r, (s1, s2) ∈ r′,
and(K1, K2) ∈ Kloc(r′) we need to show that

〈s1, K1, ref (n)〉 l 〈s2, K2, ref (n)〉. (4.13)

By considering a single reduction step4 we have that

〈si, Ki, ref (n)〉 l 〈si ⊗ (` := n), Ki, `〉 for i = 1, 2 and` fresh. (4.14)

Now (s1⊗(`:=n), s2⊗(`:=n)) ∈ r′⊗id{`}, by the weakening Lemma 4.3 we have
(K1, K2) ∈ Kloc(r′ ⊗ id {`}), and from part (v) we know(`, `) ∈ V loc(r′ ⊗ id{`}).
Thus

〈s1 ⊗ (` := n), K1, `〉 l 〈s2 ⊗ (` := n), K2, `〉 (4.15)

and this in combination with (4.14) gives (4.13) as required.

In part (xiv) we have the hypothesis that

(M1,M2) ∈ Eσ(r) and x : σ `M ′1 {r}M ′2 : σ′.

Considerr′ B r, (s1, s2) ∈ r′, and(K1, K2) ∈ Kσ′(r′): we need to show

〈s1, K1, let x = M1 in M ′1〉 l 〈s2, K2, let x = M2 in M ′2〉.
4Strictly speaking, the left-to-right implication in (4.14) relies upon the easily verified fact that

the termination relation↓ is invariant under bijective renamings of location constants.
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Again, taking one reduction step gives

〈si, Ki, let x = Mi in M ′i〉 l 〈si, Ki ◦ (x)M ′i ,Mi〉 for i = 1, 2,

and as(M1,M2) ∈ Eσ(r) it is sufficient to prove that

(K1 ◦ (x)M ′1, K2 ◦ (x)M ′2 ) ∈ Kσ(r′). (4.16)

Suppose thatr′′ B r′, (s′1, s
′
2) ∈ r′′, and(V1, V2) ∈ Vσ(r′′); we now need

〈s′1, K1 ◦ (x)M ′1, V1〉 l 〈s′2, K2 ◦ (x)M ′2, V2〉. (4.17)

A single reduction step gives

〈s′i, Ki ◦ (x)M ′i , Vi〉 l 〈s′i, Ki,M
′
i [Vi/x]〉 for i = 1, 2. (4.18)

Finally the hypothesis onM ′i and choice ofVi gives (M ′1[V1/x],M ′2[V2/x]) ∈
Eσ(r′′), from which we get

〈s′1, K1,M
′
1[V1/x]〉 l 〈s′2, K2,M

′
2[V2/x]〉. (4.19)

Combining this with (4.18) gives (4.17) and hence (4.16) as required.

For case (xv), concerning recursively defined function values, it is no surprise
that we turn to the Unwinding Theorem 3.2. The first step is to show that for
non-recursive functions

x : σ `M1 {r}M2 : σ′ ⇒ ` (λx.M1) {r} (λx.M2) (4.20)

which is done through the ciu-equivalence

(λx.M)V ∼=ciu M [V/x]

in much the same way as case (vi). Now suppose more generally that we have

f : σ→ σ′, x : σ `M1 {r}M2 : σ′. (4.21)

As in Section 3, consider the following progressive unwindings:

Ω
def
= (rec f(x). fx)() Fi,n+1

def
= λx.Mi[Fi,n/f ]

Fi,0
def
= λx.Ω Fi,ω

def
= rec f(x).Mi .

for i = 1, 2. We then prove in turn

(Ω,Ω) ∈ Eσ→σ′(r) (4.22)

(F1,n, F2,n) ∈ Eσ→σ′(r) (4.23)

(F1,ω, F2,ω) ∈ Eσ→σ′(r). (4.24)
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The first of these is straightforward asΩ never terminates in any context; this
provides the base case to prove (4.23) by induction onn, using (4.20) and (4.21)
at each step; and finally the Unwinding Theorem 3.2 allows us to deduce (4.24),
which is exactly the desired result:

` (rec f(x).M1) {r} (rec f(x).M2) : σ→ σ′.

What we are using here is that theEσ(r) relations areadmissible, in an appropriate
syntactic variant of the usual notion on domains: if every finite approximation of
some(M1,M2) is in Eσ(r), then so is(M1,M2) itself.

Theorem 4.9 (Fundamental Property of the Logical Relation).

(i) Contexts preserve the identity logical relation: ifΓ ` M1 {idω} M2 : σ,
then for any contextC[−] with fv(C) ⊆ Γ′ ⊆ Γ, loc(C[−]) ⊆ ω, and
Γ′ ` C[Mi] : σ′ for i = 1, 2 (so that the hole ‘−’ occurs inC[−] within the
scope of binding occurrences of the variables inΓ \ Γ′), it is the case that
Γ′ ` C[M1] {idω} C[M2] : σ′.

(ii) The identity logical relation is reflexive: ifM ∈ Expσ(Γ) with loc(M) ⊆ ω,
thenΓ `M {idω}M : σ.

Proof. Part (i) is proved by induction on the structure ofC[−], using Proposi-
tion 4.8. Part (ii) is then the special case whenC[−] has no occurrences of the
hole ‘−’ at all, and is just an ordinary expressionM .

The following result draws together all the relations we have defined between
ReFS expressions. It includes the ‘ciu’ theorem of Mason and Talcott (1992b).

Theorem 4.10 (Operational Extensionality).The logical relation{idω}, con-
textual equivalence∼=, and ciu-equivalence∼=ciu all coincide: for anyM1,M2 ∈
Expσ(Γ)

Γ `M1 {idω}M2 ⇔ Γ `M1
∼= M2 ⇔ Γ `M1

∼=ciuM2 .

Proof. We show that each of the three relations entails the next, in rotation. First,
that

Γ `M1 {idω}M2 ⇒ Γ `M1
∼= M2 .

Suppose thatM1 andM2 are identity related as shown and thatC[−] is some
context with∅ ` C[Mi] : σ′ (i = 1, 2). Using the weakening Lemma 4.3 on
Γ ` M1 {idω} M2 if necessary, we can assume without loss of generality that
loc(C[−]) ⊆ ω. Then by Theorem 4.9(i) we have∅ ` C[M1] {idω} C[M2], that
is (C[M1], C[M2]) ∈ Eσ′(idω). Given any states with dom(s) = ω we know that
(s, s) ∈ idω; and(Id , Id) ∈ Kσ′(idω) holds by definition ofKσ′(idω). Therefore
from the definition ofEσ′(idω) we have

〈s, Id , C[M1]〉 l 〈s, Id , C[M2]〉.
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Equivalently (by Theorem 3.1),

s, C[M1]⇓ ⇔ s, C[M2]⇓ .

Since this holds for any suitableC[−] ands, we have contextual equivalence of
M1 andM2, as required.

Now for

Γ `M1
∼= M2 ⇒ Γ `M1

∼=ciuM2 .

Consulting the note after Definition 4.6, we recall that ciu-equivalence for an
expressionM is entirely determined by the set of terminations

s, E[M [~V /~x]]⇓

for statess, evaluation contextsE[−] and values~V to instantiate the free vari-
ables ofM . This however corresponds exactly to termination in the context
E[(λ~x. (−))~V ]. As ciu-equivalence thus requires correspondence only in a sub-
set of all contexts, it is clear that it is entailed by contextual equivalence, which
requires agreement on all of them.

Finally,

Γ `M1
∼=ciu M2 ⇒ Γ `M1 {idω}M2 .

By Theorem 4.9(ii) we haveΓ ` M1 {idω}M1, and Lemma 4.7 lets us compose
this with Γ `M1

∼=ciu M2 to obtain the logical relationΓ `M1 {idω}M2 that we
desire.

5 Examples

In this section we look at some practical applications of the parametric logical re-
lation to proving ReFS contextual equivalences, via the Operational Extensionality
Theorem 4.10.

Before giving applications that make overt use of the logical relation, let us
recall (from Mason and Talcott 1992b, for example) that the coincidence of
contextual equivalence with ciu-equivalence gives sufficient leverage to prove a
range of basic contextual equivalences. This includes those ciu-equivalences that
hold by virtue of the immediate evaluation behaviour of the terms involved, such
as

(rec f(x).M)V ∼= M [ (rec f(x).M)/f, V/x ].

It also includes equivalences incorporating ‘garbage collection’, in the manner of
Mason’s ‘strong isomorphism’ (Mason 1986; Mason and Talcott 1991a), allowing
us to ignore parts of the store that are unreachable.
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Using logical relations

To prove specific contextual equivalences via the logical relation, we need to be
able to show that pairs of expressions are indeed related. The next result gives
a general technique for demonstrating(M1,M2) ∈ Eσ(r): if their evaluation
preservesr and we can exhibit some ‘local invariant’r′′ that correctly captures
the wayM1 andM2 treat their local variables, then they are logically related.

Proposition 5.1 (Principle of Local Invariants). Given a state relationr and
expressionsM1,M2, suppose that for all(s1, s2) ∈ r,

s1,M1 ⇓ V1, s
′
1 ⇒ ∃r′, s′2, V2 . (s

′
1, s
′
2) ∈ (r ⊗ r′)

& s2,M2 ⇓ V2, s
′
2 & (V1, V2) ∈ Eσ(r ⊗ r′)

and

s2,M2 ⇓ V2, s
′
2 ⇒ ∃r′′, s′1, V1 . (s

′
1, s
′
2) ∈ (r ⊗ r′′)

& s1,M1 ⇓ V1, s
′
1 & (V1, V2) ∈ Eσ(r ⊗ r′′).

Then(M1,M2) ∈ Eσ(r). (We call the state relationsr′, r′′ local invariants.)

Proof. To prove(M1,M2) ∈ Eσ(r) it suffices to show for all(s1, s2) ∈ r and
(K1, K2) ∈ Kσ(r) that〈s1, K1,M1〉↓ if and only if 〈s2, K2,M2〉↓ (cf. theNoteon
page 22). By the symmetry of the assumptions, it suffices to prove just the forward
direction of this bi-implication. So suppose〈s1, K1,M1〉↓. Then by (3.3) for some
s′1 andV ,

s1,M1 ⇓ V1, s
′
1 and 〈s′1, K1, V1〉↓.

So by hypothesis there arer′, s′2 andV2 such thats2,M2 ⇓ V2, s
′
2, (s′1, s

′
2) ∈ (r ⊗

r′), and(V1, V2) ∈ Eσ(r ⊗ r′). From Lemma 4.3 we have(K1, K2) ∈ Kσ(r ⊗ r′)
and so〈s′1, K1, V1〉 l 〈s′2, K2, V2〉. Hence〈s′2, K2, V2〉↓ and then the other direction
of (3.3) gives〈s2, K2,M2〉↓ as desired. Similarly, the second hypothesis implies
that 〈s2, K2,M2〉↓ ⇒ 〈s1, K1,M1〉↓ and so we have(M1,M2) ∈ Eσ(r) as
required.

This gives us a tool for proving instances of the logical relation. Conversely,
if we have that two expressions are related, what can we deduce about them? To
answer this requires a mild restriction on the state relations considered.

Definition 5.2. A state relationr ∈ Rel(ω1, ω2) is closedif every non-element
can be detected as such. That is, for each pair of states(s1, s2) ∈ (Sta(ω1) ×
Sta(ω2)) \ r there are continuations(K1, K2) ∈ Kunit(r) such that

〈s1, K1, ()〉 6 l 〈s2, K2, ()〉

with one converging and the other diverging.
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All the state relations we shall encounter are closed. In particular we have the
following result.

Lemma 5.3. If a state relationr ∈ Rel(ω1, ω2) is bijective where defined

(s1, s2) ∈ r & (s1, s
′
2) ∈ r ⇒ s2 = s′2

(s1, s2) ∈ r & (s′1, s2) ∈ r ⇒ s1 = s′1

then it is closed.

Proof. First we note that all states have finite domain, so for any states we can
write an expressiontests such thats′, tests ⇓ precisely whens′ is of the forms⊗s′′.

Now suppose(s1, s2) ∈ (Sta(ω1)× Sta(ω2)) \ r. We seekr-related continua-
tions that distinguish between the two. If there is nos′2 such that(s1, s

′
2) ∈ r, then

we choose

K1
def
= Id ◦ (x) tests1 and K2

def
= Id ◦ (x)Ω.

If on the other hand(s1, s
′
2) ∈ r holds for somes′2, then by assumption onr we

must haves′2 6= s2 (since(s1, s2) /∈ r) and we take

K1
def
= Id ◦ (x) tests1 and K2

def
= Id ◦ (x) tests′2 .

In either case we have〈s1, K1, ()〉↓ and〈s2, K2, ()〉6 ↓, while these continuations
agree on all state pairs in anyr ⊗ r′ and so(K1, K2) ∈ Kunit(r) as required.

Proposition 5.4. If (M1,M2) ∈ Eσ(r) and(s1, s2) ∈ r then

s1,M1 ⇓ ⇔ s2,M2 ⇓ .

If r is closed, then related expressions also preserve the state relation:

s1,M1 ⇓ V1, s
′
1 and s2,M2 ⇓ V2, s

′
2

implies there isr′ such that(s′1, s
′
2) ∈ (r ⊗ r′).

Proof. For the first part, consider the continuationK = Id ◦ (x)() of type
(σ ◦→ unit). Clearly(K,K) ∈ Kσ(r) and so using (3.3) we can deduce

s1,M1 ⇓ ⇔ 〈s1, K,M1〉↓ ⇔ 〈s2, K,M2〉↓ ⇔ s2,M2 ⇓

as required. For the second part, suppose thatr is closed and thatM1 andM2

evaluate as given. Takingr′ = ω′1×ω′2, whereω′i = dom(s′i) \ dom(si) (i = 1, 2),
we need only show that(s′1|dom(r), s

′
2|cod(r)) ∈ r. Sincer is closed, if these states

are not so related, then there is some(K1, K2) ∈ Kunit(r) that can detect this and
hence for which

〈s1, K1 ◦ (x)(),M1〉 6 l 〈s2, K2 ◦ (x)(),M2〉.

This however would contradict the assumption that(M1,M2) ∈ Eσ(r), and
instead we must have(s′1|dom(r), s

′
2|cod(r)) ∈ r and hence(s′1, s

′
2) ∈ (r ⊗ r′) as

required.
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This provides a partial converse to Proposition 5.1 (at least as regards termina-
tion and treatment of store) which we will use in the higher-order profiling Exam-
ple 5.8. At ground types we can do better and show that the resulting values will
also be related. However, the converse of Proposition 5.1 does not hold in general.
Example 5.9 gives a pair of logically related expressions where no choice ofr′′

will makeV1 andV2 related. Thus as a method for demonstrating instances of the
logical relation and hence contextual equivalence, the Principle of Local Invariants
of Proposition 5.1 is not complete. Nevertheless, it does provide a powerful method
for proving equivalences, as the examples in the following subsections show. We
consider various idioms for using functions with local state and prove that they be-
have correctly, interacting properly with surrounding code that may itself use state
and higher order functions. The general approach is that we present contextual
equivalences which express the desired behaviour of a program fragment, and then
prove that these hold by using the logical relation. In all cases the crucial step is to
choose the right local invariant that captures the way an expression is expected to
use its local store.

Representation independence

Informally, it is clear that if two functions in ReFS have private local store
that they use in different ways to compute the same result, then they should be
contextually equivalent. One can use coincidence of contextual equivalence with
ciu-equivalence to show that this is true for expressions which use local store only
for temporary variables. However in ReFS it is also possible to write functions that
rely on store remaining private from one invocation to the next. Logical relations
can capture this notion of privacy through local invariants, and we give here two
examples of how this can lead to proofs of contextual equivalence.

Consider the following expressions of Standard ML:

let val c = ref 1

fun inc () = (c:=!c + 1)
fun test () = (!c > 0)

in

(inc, test)
end

∼= let

fun skip () = ()
fun test′ () = true

in

(skip, test′)
end.

The first of these evaluates to a pair of functions sharing a common storage cellc;
one function to incrementc, and one to test its contents. However the test always
returns true and the increment cannot be observed; so this expression has an
equivalent simpler version which doesn’t bother with the cellc. A corresponding
example in ReFS is this:

Example 5.5.

(let c = ref (1) in (inc c, test c)) ∼= (skip, test ′)

: (unit → unit)× (unit → bool)

(5.1)
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where

inc
def
= λ c. λ x. (c := (!c + 1)) skip

def
= λx. ()

test
def
= λ c. λ x. (!c > 0) test ′

def
= λx. true.

Proof. Although the internal action of these expressions is quite different, they are
contextually equivalent because the value stored in cellc is always positive. This
invariance property is expressed by the state relation

r
def
= {(s, ()) | s(`) > 0} ∈ Rel({`}, ∅).

Looking at the bodies of the functionsinc andskip we can show by Proposition 5.1
that

( (` := !`+ 1), () ) ∈ Eunit(r)

because both preserver. Similarly for thetest functions

( (!` > 0), true ) ∈ Ebool (r)

because they give equal results provided thatr holds. By Proposition 4.8(xv)
lambda abstraction preserves these relations and we can then derive

(inc `, skip) ∈ Eunit→unit(r) and (test `, test ′) ∈ Eunit→bool (r).

Proposition 4.8(vi) now gives

( (inc `, test `), (skip, test ′) ) ∈ E (unit→unit)×(unit→bool)(r)

which are the results of evaluating either side of (5.1). Since((` := 1), ()) ∈ r, the
corresponding states resulting from this evaluation are also related and so by the
Principle of Local Invariants (Proposition 5.1)

( (let c = ref (1) in (inc c, test c)), (skip, test ′) ) ∈ E(unit→unit)×(unit→bool)(id∅).

The contextual equivalence (5.1) then follows by Operational Extensionality
Theorem 4.10.

The next example considers not private shared state, but more visible store used
in two different but equivalent ways. Consider these two counters in Standard ML:

let val c = ref 0

fun up x = (c := !c + x; !c)
in

up

end

∼= let val c = ref 0

fun down x = (c := !c− x; 0− !c)
in

down

end

which can be written in ReFS thus:
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Example 5.6.

(let c = ref (0) in up c) ∼= (let c = ref (0) in down c)

where

up
def
= λ c. λ x. (c := (!c+ x); !c) down

def
= λ c. λ x. (c := (!c− x); 0− !c).

Proof. Both of these functions maintain an accumulator, summing the arguments
to successive calls and returning a running total. Internally though, the second
function reverses signs throughout. The appropriate local invariant is the rela-

tion r
def
= {(s1, s2) | s1(`) = −s2(`)} ∈ Rel({`}, {`}). For this we have

(up `, down `) ∈ E int→int(r) and the proof of contextual equivalence proceeds
as in the previous example.

In both of these examples, the local store is not in fact private: the functions
do export a certain limited access to it, both for reading and writing. What is
important though is that this access is certain to preserve the relevant invariant, no
matter how a surrounding program uses it; and as long as the invariant holds, the
results returned by the given functions always agree.

Memoisation

One practical use for local state is in the implementation of amemo function.
This is a function that retains a cache of past results in order to assist future
computations. Logical relations provide a means to show that the consistency of
this cache is maintained, whatever the surrounding program.

Here we consider a higher-order memoisation function, that transforms any
‘repeatable’ function into a memo function. For simplicity, we only record a single
argument/result pair, and take both to be integers. In Standard ML one might define
this by:

fun memoise f = let val a = ref 0 and r = ref(f 0);
fun f′ x =

((if x = !a then () else (a := x; r := f x)); !r)
in

f′

end

memoise : (int→ int)→ (int→ int)

The idea here is thatmemoise modifies functionf by attaching two private cells,a
andr, to hold the argument and result of its most recent invocation. The resulting
functionf′ acts likef, except that when called with the same argument twice in
succession it uses the cached result!r, saving recomputation. This can be written
in ReFS as follows.
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Example 5.7. Let

memoise
def
= λ f. let a = ref (0); r = ref (f 0)

in
λx. ((if x = !a then () else (a := x; r := fx)); !r)

.

We say thatF ∈ Val int→int computessome total functionφ : Z → Z if for each
states with loc(F ) ⊆ dom(s) and everyn ∈ Z,

s, Fn ⇓ φ(n), (s⊗ sn)

for somesn. ThusF may make use of local or global store, but its results are
‘repeatable’ in the sense that they do not depend on the global states ands is
unchanged at the end of evaluating the application ofF to a numeral. We claim
that such anF is suitable for memoisation:

memoise F ∼= F. (5.2)

In particular for eachn ∈ Z, (memoise F )n computes the same integer asFn,
namelyφ(n).

Proof. First note that

s,memoise F ⇓ F ′, (s⊗ (`a := 0)⊗ s0 ⊗ (`r := φ(0))) (5.3)

where

F ′
def
= λx. ((if x = !`a then () else `a := x; `r := Fx); !`r)

is the ‘memoised’ version ofF . A suitable local invariant is that locations`a and
`r always hold a valid argument/result pair; which we express with the relation

r
def
= {(s, ()) | φ(s(`a)) = s(`r)} ∈ Rel(ω0`a`r, ∅).

whereω0 = dom(s0) (which by α-conversion we can assume is disjoint from
{`a, `r}). As before the Principle of Local Invariants (Proposition 5.1) shows that
the bodies ofF andF ′ arer-related, so we can use Proposition 4.8(xv) to obtain

(F ′, F ) ∈ V int→int(idω ⊗ r)

whereloc(F ) ⊆ ω. Since the states(`a := 0; s0; `r :=φ(0)) and() are related byr,
taking (5.3) we can apply Proposition 5.1 again to give

((memoise F ), F ) ∈ E int→int(idω).

The Operational Extensionality Theorem 4.10 then provides the desired contextual
equivalence (5.2).
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We considered total functionsφ : Z → Z in this example only to simplify
matters. Extending the definition of ‘F computesφ in a repeatable fashion’ to
partial functions (whenφ(n) is undefinedFn must diverge, andvice versa), (5.2)
still holdsprovidedwe restrict attention to thoseφ for whichφ(0) is defined, since
memoise initialises the cache using this value.

Note that this same memoisation function can be used repeatedly in a program,
to give several memo functions each with their own local store. One memo function
can even be used within another without interference. For example, ifF andG are
function abstractions computingφ andψ, then the compositionF ◦G (definable in
ReFS in the usual way) computes the composition ofφ with ψ; and (5.2) together
with the congruence properties of contextual equivalence imply

memoise((memoise F ) ◦ (memoise G)) ∼= F ◦G
(although one of the memoisations is redundant).

Higher-order profiling

Next we consider the use of local state forprofiling function use,i.e. recording the
calls to a particular function as it is used within a larger program. We use contextual
equivalence to express two important properties of the profiled function:

• it correctly counts the number of times it is called;

• the overall program is otherwise unaffected.

Both of these assertions are then proved using logical relations, although in this
case we need to use Proposition 5.4 in addition to the Principle of Local Invariants
(Proposition 5.1).

As with memoisation, a single higher order function can capture the whole
operation of profiling. In Standard ML:

fun profile f = let val c = ref 0;
fun f′ x = (c:=!c + 1; f x);
fun r () = !c

in

(f′, r)
end

profile : (σ→ σ′)→ ((σ→ σ′)× (unit→ int))

Thisprofile takes any functionf and returns an instrumented versionf′ together
with a read operationr. Bothf′ andr share a private local counterc, incremented
by each call tof′ and read by means ofr(). Otherwisef′ behaves exactly as the
original functionf; which may include further side-effects on global or local store.
The profiling operation is truly higher order, working with functions of all types;
we could for example safely apply it to thememoise function described earlier.

In ReFS one can write this profiling functional as follows.
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Example 5.8.

profile
def
= λ f. (let c = ref (0) in (f ′, r)) where f ′

def
= λx. (c := !c+ 1; fx)

r
def
= λx. !c.

The fact the profiling correctly records function calls means that the following
contextual equivalence between integer expressions:

let (f ′, r) = profile F
in

Pf ′;FV ;Qf ′;
r() + 1

∼= let (f ′, r) = profile F
in

Pf ′; f ′V ;Qf ′;
r()

(5.4)

holds foranyF ∈ Valσ→σ′ , P,Q ∈ Val (σ→σ′)→unit , andV ∈ Valσ.

Here the context(Pf ′; [−]V ;Qf ′) represents a program using the instrumented
functionf ′. Depending on whether its hole is filled withF or f ′, the final total
r() alters by1. It is significant that the valuesP andQ have access only tof ′

in this context and cannot user to read the current contents of the counter. More
generally, the functionf ′ on its own is indistinguishable from the originalF :

fst(profile F ) ∼= F : σ→ σ′ (5.5)

In this contextual equivalence the read operator is thrown away, withfst selecting
just the profiled functionf ′.

Proof. To demonstrate (5.4) and (5.5), look first at the evaluation of the expres-
sions in (5.4). The computation is in three parts, followed by examination of the
counterc using the read operationr(). Assume that the counter is bound to loca-
tion ` and set

F ′
def
= λx. (` := !`+ 1;Fx). (5.6)

Both sides of (5.4) begin with the same evaluation:

s⊗ (` := 0), PF ′ ⇓ (), s′ ⊗ (` := n)⊗ s1

for somen ∈ Z. Thanks to the ‘garbage collection’ properties of contextual
equivalence mentioned at the beginning of this section, the unreachable extra
stores1 need not concern us. The next step is the evaluation of a call toF or F ′:

s′ ⊗ (` := n), FV ⇓ V ′, s′′ ⊗ (` := n)⊗ s2

s′ ⊗ (` := n), F ′V ⇓ V ′, s′′ ⊗ (` := (n+ 1))⊗ s2

The only difference so far is the value stored at location`. What is important
now is thatQF ′ preserves this but is otherwise unaffected. The appropriate local
invariant is the relation

r
def
= {(s, s′) | s′(`) = s(`) + 1} ∈ Rel({`}, {`}),
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which is closed, by Lemma 5.3.

By the Fundamental Property of the logical relation (Theorem 4.9(ii)) we have
that bothF andQ are idω-related to themselves. Using Proposition 5.1 we can
show directly that increment preservesr:

( (` := !`+ 1), (` := !` + 1) ) ∈ Eunit(r).

Applying Proposition 4.8, we combine all these with the definition (5.6) ofF ′ to
deduce that the applicationQF ′ satisfies

(QF ′, QF ′) ∈ Eunit(idω ⊗ r).

We know that the closed relation(idω ⊗ r) holds before this application, and
Proposition 5.4 now tells us that it also holds after it. Thus

s′′ ⊗ (` := n), QF ′ ⇓ (), s′′′ ⊗ (` := n′)⊗ s3

s′′ ⊗ (` := n+ 1), QF ′ ⇓ (), s′′′ ⊗ (` := n′ + 1)⊗ s3

for somen′ ≥ n, s′′′, ands3. The last computation for each alternative is then

s′′′ ⊗ (` := n′), (r() + 1) ⇓ (n′ + 1), s′′′ ⊗ (` := n′)

s′′′ ⊗ (` := n′ + 1), r() ⇓ (n′ + 1), s′′′ ⊗ (` := n′ + 1).

The final states are(idω ⊗ r)-related and the returned values are equal; thus by the
Principle of Local Invariants, the two original expressions areidω-related and the
equivalence (5.4) follows.

The second equivalence (5.5), thatF ′ on its own is indistinguishable fromF , is
more straightforward. We need to show that

( (let c = ref (0) in λx. (c := !c+ 1; fx)), F ) ∈ Eσ→σ′(idω)

and this follows by Proposition 5.1 from

(F ′, F ) ∈ Vσ→σ′(idω ⊗ r)

wherer
def
= {(s, ()) | s ∈ Sta({`})}. Thus the operationprofile has exactly the

behaviour we would expect.

As with memoisation, we can applyprofile many times to give several profiled
functions, each with its own private counter. So when we writeprofile F , the
functionF may have subprocedures within it that are already recording profiles,
without causing interference. The procedure can also be adapted to profile the
recursive calls a function makes to itself. The proof in this case is no more
complicated than before, thanks to the fact that logical relations are preserved by
recursive function abstractions (Proposition 4.8(xv)).
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A more intricate situation with shared store arises if we use a profiler that keeps
the same global counter for each function that it modifies:

val(g profile, g read) = let val c = ref 0;
fun prof f x = (c := !c + 1; f x);
fun read () = !c

in

(prof, read)
end.

Analogues of the equivalences (5.4) and (5.5) can be given for this global profiler,
and proved using logical relations.

Limitations of the Principle of Local Invariants

We give an example to show that the existence of a local state relation, as asserted
in the hypotheses of the Principle of Local Invariants (Proposition 5.1), although
sufficient, is not necessary in order for two expressions to be{idw}-related and
hence to be contextually equivalent.

Consider the following two second-order functions in Standard ML:

val awkward = let val c = ref 0;
fun upto one f = (c := 1; f(); !c)

in

upto one

end

val const one = fn f⇒ (f(); 1)

awkward, const one : (unit→ unit)→ int.

Both of these evaluate to functions that take a commandf as an argument, execute
it and then return the value1. The second achieves this in a straightforward
manner, whereas the first achieves it in an awkward manner—through the function
upto one which fetches the return value1 from private cellc. One expects
awkward andconst one to be contextually equivalent because this cell, although
it initially holds 0, is set to1 before every inspection, and during the execution of
upto one in any context the functionf() cannot resetc to 0. We shall turn this
into a formal proof of equivalence below. First, let us express these functions in
ReFS:

Example 5.9.

awkward ∼= const one : (unit → unit)→ int (5.7)

where

awkward
def
= let c = ref (0) in λ f. (c := 1; f(); !c)

const one
def
= λ f. (f(); 1).
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To show (5.7) using Proposition 5.1 we would needr ∈ Rel({`}, ∅) satisfying

( (` := 0), () ) ∈ r (5.8)

and (upto one, const one) ∈ E(r). (5.9)

where upto one
def
= λ f. (` := 1; f(); !`). From (5.8) we can deduce that

( (λx. (` := 0)), λ x. () ) ∈ Vunit→unit(r). Using Proposition 4.8(xiii) to combine
this with (5.9), we deduce

( upto one(λx. (` := 0)), const one(λx. ()) ) ∈ E int(r).

But these expressions evaluate to give different results

(` := 0), upto one(λx. (` := 0)) ⇓ 0, (` := 0)

(), const one(λx. ()) ⇓ 1, ().

and this is easily seen to be impossible for expressions related byE at a ground
type. Thus we cannot have both (5.8) and (5.9) at the same time, and there is no
way to prove contextual equivalence (5.7) through Proposition 5.1.

We are left in the situation that although (5.7) does hold, and by Theorem 4.10
the two expressions are therefore related byE(id∅), it seems hard to demonstrate
this relation directly. The root of the problem is that the argument(λx. (` := 0)),
which causesupto one to return the surprise value0, cannot in fact be provided
by any surrounding context. Note that the location` is not entirely private, since
its contents can be changed (from0 to 1) by a use ofupto one in a context which
knows nothing of̀ (such as[−](λx. ())). (See Stark 1994,§5.4, Example 14 for a
related example, this time of contextual inequivalence.)

This problem with(λx. (` := 0)) resembles known subtleties of contextual
equivalence in Algol due to the undefinability of so-called ‘snapback’ operations in
the language (see Pitts 1997, Example 4.1—an example due to O’Hearn). However
this particular example has no direct Algol equivalent, because it relies on the fact
thatupto one can both change the state and return a value — such ‘active integers’
are intentionally excluded from Algol.

We conjecture that a more general form of logical relation can be used to
demonstrate the equivalence (5.7) via a result like Proposition 5.1, if we use
parameterising relationsrwith Kripke-style indexing to capture the one-way nature
of state change. Here this would allow the following relation with two components:

r1 ⊃ r2 where r1 = {(s, ()) | s(`) = 0 or 1}
r2 = {(s, ()) | s(`) = 1}.

This is meant to express the fact that the value stored at location` may progress
from 0 to 1, but is then fixed. More complex examples of progressing state would
require a more complex index structure.

Without such generalised logical relations, we can proceed only by brute force.
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Proof of (5.7). By completeness of ciu-equivalence (Theorem 4.10) it is enough
to consider evaluation in any continuation. In this case we derive the requirement
that for any states and continuationK with ` /∈ dom(s) ⊇ loc(K)

〈s⊗ (` := 0), K, upto one〉 l 〈s,K, const one〉.

This is equivalent to showing that for any states and expressionM with ` /∈
dom(s) ⊇ loc(M) andfv(M) ⊆ {g : (unit → unit)→ int}

s⊗ (` := 0),M [upto one /g]⇓ ⇔ s,M [const one /g]⇓ . (5.10)

This can be proved by computation induction, but we first need a suitably strong
induction hypothesis. Define the predicateP(s,M) for statess and expressionsM
with ` /∈ dom(s) ⊇ loc(M) according to

P(s,M)
def⇔ There is a states′ and a valueV with free variableg such that

1. s,M [const one /g] ⇓ V [const one /g], s′

and 2a. ∀n ∈ Z. s⊗ (` := n),M [upto one /g]
⇓ V [upto one /g], s′ ⊗ (` := 1)

or 2b. ∀n ∈ Z. s⊗ (` := n),M [upto one /g]
⇓ V [upto one /g], s′ ⊗ (` := n)

& s,M [λ f.Ω/g] ⇓ V [λ f.Ω/g], s′.

This rather complex expression captures exactly the way that evaluations of
upto one and const one correspond to each other in appropriate contexts. In
particular, wheneverM [−/g] is evaluated, it either applies the function replacingg
(case 2a), or it does not (case 2b).

The following properties hold ofP(s,M):

∀n ∈ Z. (P(s,M) ⇔ s⊗ (` := n),M [upto one /g]⇓) (5.11)

P(s,M) ⇔ s,M [const one /g]⇓ . (5.12)

The forward implications simply expand the definition ofP(s,M). The reverse
directions can be proved by induction on the height of proofs of the evaluations
s⊗(`:=0),M [upto one /g] ⇓ V ′, s′ ands,M [const one /g] ⇓ V ′, s′ respectively.
All the details are routine: in particular every evaluation rule either creates one of
the situations (2a) or (2b), or preserves an existing one.

These equivalences (5.11) and (5.12) immediately give (5.10), from which the
original contextual equivalence (5.7) follows as indicated.

6 Further topics

We have seen that for each typeσ, two ReFS expressions are contextually
equivalent if and only if they are{idω}-related. Moreover, this characterisation
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of contextual equivalence not only implies the Mason-Talcott ‘ciu’ theorem for
ReFS, but also allows one to formalise various intuitive arguments about contextual
equivalence based on invariant state relations. The examples in the previous section
demonstrate that the logical relation provides a powerful method for establishing
ReFS contextual equivalences. Clearly it is of interest to extend the techniques
introduced here to larger fragments of Standard ML than that represented by the
ReFS language. In particular we would like to be able to treat:

(a) recursively defined types (rather than the simple types of ReFS),

(b) references to data of any type (rather than the integer-valued references of
ReFS), and

(c) no types at all!

(a) would enable one to tackle proofs of equivalence involving efficient implemen-
tation with pointers and arrays of data structures with purely functional behaviour.
(One would probably want to consider abstract types at the same time.) (b) is of
interest because of the connections between object-based programming and the
use of storage for function and procedure values. By (c) we mean the kind of
untyped imperative lambda calculus considered by Mason and Talcott (1991a) and
others; its dynamics includes the phenomena that (a) and (b) introduce in a more
disciplined way, and more besides.

Extension (a) takes us beyond the techniques used in this paper because we
relied on the simple nature of ReFS types to define the relationsEσ(r), Kσ(r),
andVσ(r) by induction on the structure of the typeσ (see Definition 4.2). In the
non-simply typed case one could instead attempt to define these relations for all
types simultaneously by solving a fixed point equation for a suitable operator on
(families of) relations. The addition of algebraic data types (lists, trees,etc.) to
ReFS could be accommodated in this way. However, general forms of data type
declaration may have negative or mixed-variance occurrences of the type being
defined. The property required of the logical relation at such a type takes the
form of a fixed point equation for an operator that is non-monotone; so it is not
immediately clear that it can be satisfied. For denotationally-based logical relations
there are ways of overcoming this problem using the ‘minimal invariance’ property
of recursively defined domains: see (Pitts 1994; Pitts 1996). Operational versions
of the techniques inloc. cit. are possible and can be used to extend the results
presented here to cover (a). (This suggestion has been taken up for a pure functional
language in Birkedal and Harper 1997.)

Regarding (b), it is well known that the ability to store function values gives rise
to more complex behaviour than storing only values of ground types. For example,
it becomes possible to encode recursive function definitions. This is reflected in
the denotational semantics of such storage by the need to solve a mixed-variance
domain equation. In this respect the difficulties which must be overcome to define
a suitable logical relation might seem to be similar to those in case (a). However,
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there are further complications. In ReFS any dynamically created state has
‘support’ disjoint from the existing global state: the definition of the logical relation
exploits this fact in the use it makes of the smash productr ⊗ r′ of state-relations.
This disjointness of support breaks down with (b), since a global location can
get updated with a function value involving a freshly created location. (Consider
for examplelet val b = ref(fn x⇒ 0) in a := (fn x⇒ (!b)0) end, wherea is
some previously declared identifier of type(int→ int) ref.) Therefore the
way the parameterisation of the logical relation treats dynamic allocation is more
complicated in the presence of (b) and it remains to be seen if the techniques of
this paper extend to cover this case.

Even for ReFS itself, it is possible to consider more refined versions of the
parameterisation. For example one can consider relations on the flat complete
partial order of states rather than on the set of states. Building on work of O’Hearn
and Reynolds (1996), Pitts (1997, Example 4.1) shows how this small alteration
helps with operational reasoning about divergence in Idealised Algol. It seems
likely that it would be similarly useful for ReFS.

Of course the above list of enhancements is hardly complete: one might well
want to consider I/O effects, or exception mechanisms, for example. When adding
language features, we also need to keep in mind the feasibility of the proof
method. The strength of the technique presented here lies as much in its usability
as in its theoretical power. Although one may need to develop operationally-
based analogues of some rather sophisticated methods from domain theory in
order to define a logical relation (and establish its Fundamental Property) for
function references and recursive datatypes, these technicalities do not necessarily
complicate theuseof logical relations to prove contextual equivalence. We can
already see this in the treatment of recursion. The proof of Proposition 4.8(xv) is
not straightforward, but its statement is simple and its use unrestricted: the logical
relation is preserved by any recursive function abstraction. Our aim is to further
increase the power of operationally-based logical relations without compromising
their ease of use.

The operationally based logical relation we have presented here seems to
provide a convenient and reasonably powerful method for proving contextual
equivalences between functions with local store. Once a correct relation between
states has been identified, verifying equivalence involves routine calculations with
the structural operational semantics of the language. However, the examples we
have given are all small-scale. It would be interesting to investigate machine-
assistance for proofs using our methods. Note that we do not necessarily have
to implement the proof that logical relations imply contextual equivalence; what
might benefit from machine-assistance is the demonstration, in the case of large
programs, that two expressions are{idω}-related.
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