Operational Reasoning for
Functions with Local State

Andrew Pitts and lan Stark

Abstract

Languages such as ML or Lisp permit the use of recursively defined func-
tion expressions with locally declared storage locations. Although this can be
very convenient from a programming point of view it severely complicates
the properties of program equivalence even for relatively simple fragments
of such languages—such as the simply typed fragment of Standard ML with
integer-valued references considered here. This paper presents a method for
reasoning aboutontextual equivalencef programs involving this combi-
nation of functional and procedural features. The method is based upon the
use of a certain kind dbgical relation parameterised by relations between
program states. The form of this logical relation is novel, in as much as it in-
volves relations not only between program expressions, but also between pro-
gram continuations (also known agaluation contexjs The authors found
this approach necessary in order to establish the ‘Fundamental Property of
logical relations’ in the presence of both dynamically allocated local state
and recursion. The logical relation characterises contextual equivalence and
yields a proof of the best known context lemma for this kind of language—
the Mason-Talcott ‘ciu’ theorem. Moreover, it is shown that the method can
prove examples where such a context lemma is not much help and which
involve representation independence, higher order memoising functions, and
profiling functions.

Contents

1 Introduction 2
2 Recursive functions with local state 8
3 A structurally inductive definition of termination 14
4 A parametric logical relation 20
5 Examples 31
6 Further topics 43

1 Introduction

Lisp and ML arefunctionalprogramming languages because they treat functions
as values on a par with more concrete forms of data: functions can be passed
as arguments, can be returned as the result of computation, can be recursively
defined, and so on. They are alsmcedurallanguages because they permit the
use of references (or ‘cells’, or ‘locations’) for storing values: references can
be created dynamically and their contents read and updated as expressions are
evaluated. This paper presents a method for reasoning about the equivalence of
programs involving this combination of functional and procedural features. What
emerges is an operationally-based form of reasoning about functions with local
state that seems to be both intuitive and theoretically powerful. Throughout we
assume a passing familiarity with the language Standard ML (Milner, Tofte, and
Harper 1990) and its associated terminology. If in difficulty, see (Paulson 1991).

Some motivation

The combination of functional and procedural features in Standard ML is very
expressive. For example, it permits the programmer to exploit the modularity of
the functional idiom (Hughes 1989) in defining high-level control structures for
manipulating program state. The combination is also useful from the point of view
of efficiency, since the use of local storage permits the efficient implementation of
some functions and data structures with purely functional observable behaviour.
As a simple example, consider the following ‘memoised’ version of the factorial
function in Standard ML.

Example 1.1.
valf = letvala=refOandr =ref1l (decy)
funf'x = (ifx = Othenlelsex * f'(x — 1))
in
fnx = ((ifx = lathen() else (a:=x;r:=1f'x));r)
end

The local references andr are used to store the argument and the result of
the most recent invocation of the function; and the function acts like the purely
functional factorial

funfx = (ifx=O0thenlelsex*f(x —1)) (decy)

except that when called with the same argument twice in succession it uses the
cached resultr, saving recomputation. So evaluating

let dec; in (£ 1000 + £ 1000) end

will yield the same integer result as evaluating
let decs in (f 1000 + £ 1000) end

but will only involve computing the factorial 0000 once. Of course in this
simple example a similar saving can easily be achieved without leaving the purely
functional part of the language, for example with

letdecy; valx = (£ 1000) in (x + x) end.

The point is that in general such functional transformations may require compli-
cated static analysis of the context, whereas the transformation involving the mem-
oised version is simply one of replacing occurrencegeof with dec; uniformly

in any context. The correctness of this optimisation amounts to the assertion that
dec, anddec, are contextually equivalent. In general one says that two pheases
ande, in a programming language acentextually equivalenaind writese; = e,

if for all contextsC'[—|, i.e. for all expressions which become complete programs
when the hole+’ is filled with e; or e,, executing the prografi[e,] yields exactly

the same observable results as executiig].

Why aredec; anddec, contextually equivalent? While it may be easy to see
for some particular context suchast [—] in (f 1000 + £ 1000), thatC[dec; | and
C'[decs] evaluate to the same result, it is quite a different matter to prove that this
is so forall contexts. Nevertheless there are reasons for believingd¢hat® dec,
holds, based upon the ‘privacy’ of locally declared references and properties of the
state that remain invariant during evaluation. Here is how the argument goes.

Informal ‘proof’ of dec; = dec,. Consider the following property:
the integer stored in is the factorial of that stored ia (1.2)

Note that ifdec; is evaluated then the two references created satisfy (1.1) (since
is the factorial of0). Moreover, the function value bound foas a result of that
evaluation is such that if (1.1) holds before evaluating an applicdfiop then it
continues to hold afterwards and the value returned agrees with what we would
have obtained usingec, instead ofdec; (namely the factorial of).

Given any contextC|—|, sincea and r are bound identifiers inlec; and
evaluation of expressions respeatgonversion, we may assume thaandr do
not occur inC[—]; so,the only way that the contents of the created refereces
and r could be mutated during evaluation 6fldec,| is through applications of
the function value bound th It follows from the previous paragraph both that the
property (1.1) is invariant throughout the evaluatiortflec;| and that any result
returned is the same as f6f{dec,]. SinceC|[—] was arbitrarydec; anddec, are
contextually equivalent. ?

The reason why this is only an informal proof resides mainly in the statement
in italics about how a context can make use of its ‘hole’, which certainly needs

further justification. To emphasise this point, we tease the reader with a similar
informal ‘proof’ of contextual equivalence that turns out to be false. Recall that
int ref is the Standard ML type of integer references: its values are addresses
of integer storage locations, and those values can be tested for equality—meaning
equality of the reference addresses rather than equality of their contents. Consider
the following declarations of functions of typget ref — int ref.

Example 1.2.
valf = letvala=refOandb=ref0 (decs)
in
fnc = (if c = athenbelsea)
end
valf = letvala=refOandb=ref0 (decy)
in
fnc = (if c =bthenbelsea)
end

False ‘proof’ ofdecs = decy. Given any context”|—|, sincea andb are bound
identifiers indec; (i = 3,4) and evaluation of expressions respeetsonversion,

we may assume thatandb do not occur inC'[—]. Thus in evaluating’[dec;] any
value of typeint ref which is supplied by’[—] to the function declared byec;
cannot be eithea or b. Therefore any such application will always use the second
branch of the conditional and retuan So evaluation of”[decs] will produce the
same result as evaluatin@decy|. SinceC|[—| was arbitrarydecs anddec, are
contextually equivalent. ?

The italicised part of this ‘proof’ is of the same kind as in the previous case, but
this time it is false. Indeedecs; anddec, are not contextually equivalent. As with
any contextual inequivalence, this can be demonstrated rigorously by exhibiting
a contextC[—] for which C[decs] and C|dec,| produce different results. Such a
context is

let [—]; valc =ref Oin(f(fc) = f c)end

since in this cas€’'[dec;] evaluates tdalse whereas ' [dec,] evaluates t@rue.

For in the environment created by evaluating the local declaratiod$|dac;]
(respectivelyCldec,]), £ c evaluates ta (respectivelya), hencef (f c) evaluates

to b (respectivelya) and therefore the testf c) = f c yieldsfalse (respectively
true). Note that contrary to the expectation in the false ‘proof’ given above, even
thoughC[—] does not know about the local refereneeandb, it is able to feed
them as arguments foafter one application of to some external reference

Incidentally, Example 1.2 demonstrates that the followingy@extensionality
principle fails for Standard ML functions:

Two expressiong” and F” of function types — ¢’ are contextually
equivalentif for all value$” of typeo, 'V andF’ V are contextually
equivalent expressions of typé

We have just seen thatH; andF, are the expressions of typet ref — int ref
that occur on the right-hand sides of the declaratidtig anddec, respectively,
then F3 22 F,. On the other hand, one can show for all valdesint ref that
F3 c and F, c are contextually equivalent. Sg and F, do not satisfy the above
extensionality principle.

This failure of extensionality is not merely a result of mixing higher order
functions with imperative features. For in Reynolds’ Idealised Algol (1981,
1982) with its call-by-name function application and restriction of local state
just to commandsi.g. expressions of typenit, in ML terminology), such an
extensionality principledoeshold: see (Pitts 1997). Rather, it is the fact that
in ML access to local references can be passed out of their original scope during
evaluation which complicates the properties of contextual equivalence. We saw this
when demonstratindecs % dec, in Example 1.2. Incidentally, it is worth noting
that although this example makes use of equality testing on references, the failure
of extensionality in ML does not depend upon this feature. (Indeed, in the fragment
of ML we use in this paper this equality test is definable from more primitive ones:
see Remark 2.1.) The operationally-based parametric logical relation we present
in this paper provides a characterisation of contextual equivalence that yields a
rigorous underpinning for the kind of informal argument used in Example 1.1,
while avoiding the pitfalls illustrated by Example 1.2.

Some background

The methods presented here for reasoning about recursive functions and local
storage are rooted in the work of O’'Hearn and Tennent (1995) and Seiber (1995).
These authors use relational parametricity (Reynolds 1983) and logical relations
(Plotkin, 1973, 1980) to give denotational models of Algol-like languages which
match the operational behaviour of local variables better than previous models
did. Since our goal is not to produce ‘fully abstract’ models, but rather to
identify practically useful proof methods for contextual equivalence, there is some
advantage to concentrating on operationally-based versions of these relational
techniques. This was done for Algol-like languages in (Pitts 1997). Here
we carry out a similar program for an ML-like language. For the reasons
given in the previous subsection, the difficulties which have to be overcome to
produce useful proof methods for ML contextual equivalence are greater than
those for Algol. Nevertheless, we obtain a fairly light-weight tool compared
with the mathematical structures involved in the denotational models, and one
which relates directly to the syntax and structural operational semantics of the
language. But of course these operationally-based techniques would not have
arisen without the previous, denotational insights. Furthermore, the method we use

to establish the fundamental properties of the operationally-based logical relation
with respect to recursive program constructs relies on operational analogues
of familiar denotational methodsvig. fixed point induction and admissibility
properties).

Mason and Talcott have developed a number of operational methods for rea-
soning about Lisp programs with destructive update (Mason and Talcott 1991a;
Mason and Talcott 1992a; Honsell, Mason, Smith, and Talcott 1995). Like us,
they highlight the issue of functions with local state, which they call ‘objects’
(1991b, 1992b). Notions of ‘constraint’ and ‘equivalence under constraints’ are
used, which can be loosely identified with the use we make in this paper of rela-
tions between states. These lead to a set of reasoning principles that match certain
aspects of our operational logical relation. THeww) expresses the fact that prop-
erties of local store are preserved; while th@ibstract) and (abstractable) say
that if two functions preserve some property of store, and whenever it holds they
give the same result, then they are equivalent. Proofs based on these principles are
similar in some ways to those given in Section 5. There are however limitations
to these methods, which our work removes. For example, the validinof,
(abstract) and(abstractable) is restricted to first-order functions over atoms, as
a consequence of their ‘hands-on’ proof through direct consideration of reduc-
tion in certain contexts. Our logical relation has no such restriction (witness the
higher order profiler of Example 5.8). Our techniques then can be seen as a certain
generalisation to higher types of the results of Masbal, through the powerful
machinery of parameterised logical relations.

Overview of the paper

In Section 2 we introduce a language ofddesive Finctions with local $ate,

called ReFS, which is the vehicle for the formal development in the rest of this
paper. Syntactically, it is a simply typed lambda calculus: there are ground
types for booleans, integers, the unit value, and integer references; higher types
are built up over these using product and function type constructors. We give
the structural operational semantics of ReFS in terms of an inductively defined
evaluation relation

s, M V,s . (1.2)

This and the associated definition of contextual equivalence are quite standard, and
make ReFS equivalent to a fragment of SML according to its definition in (Milner,
Tofte, and Harper 1990). Harper and Stone (1996) reformulate the operational
semantics of SML in terms of transitions between configurations containing a
component for the current program continuation, or evaluation context. (See also
Harper, Duba, and MacQueen 1993.) The advantage of this approach is that
it can give astructurally inductivecharacterisation of the termination predicate,
V,s'(s,M | V,s') used to define contextual equivalence. Accordingly, in

Section 3 we introduce a new termination relation
(s, K, M)| (1.3)

where the componerk” formalises the ReFS evaluation contexts. The relation
(1.3) is defined by induction on the structureldfand K, and contains the original
termination relation fof} as a retract. We are able to exploit the structural nature of
our formulation of termination to streamline the induction proofs that arise when
proving properties of contextual equivalence. A case in point is the proof of the
Unwinding Theorem 3.2 that completes this section. It expresses a compactness
property of recursive function values with respect to termination which we need
later to prove a crucial preservation property of our parametric logical relation
(Proposition 4.8(xv)).

The logical relation itself is introduced in Section 4 and its fundamental prop-
erties established. It is parameterised by binary relations between states. Apart
from being operationally- rather than denotationally-based, we are able to make a
pleasing simplification of (O’Hearn and Tennent 1993, Section 6), in that our pa-
rameters are justrbitrary (non-empty) state-relations without any extra structure
of a partial bijection on the underlying address names. In fact the definition of
the logical relation is rather different from previous such definitions for languages
with local state, because it involves binary relations between evaluation contexts
K as well as binary relations between expressiths

We found this approach unavoidable in order to establish the Fundamental
Property of the logical relation (Theorem 4.9) and hence its connection with
contextual equivalence (Theorem 4.10). The reason has to do with the interaction
between recursion and the fact that the ‘size’ of the state (measured by the number
of storage locations allocated) may grow in a non-trivial fashion during evaluation
in a language like ReFS. Thus in (1.2), the number of locations in the final state
s’ may be strictly greater than the number in the initial statend we cannot
‘garbage collect’ that part of involving these extra locations, because the value
V' may be a function closure using those locations. Now in defining a logical
relation parameterised by state-relations and based upon the evaluation relation
(1.2), itis natural to use existential quantification over relations on the dynamically
created part of": this is what the authors did for their nu-calculus in (Pitts and
Stark 1993), for example. However, such an existential quantification destroys the
(operational analogue of the) admissibility property needed to show that recursive
program constructs respect the logical relation—without which there would be no
connection between contextual equivalence and the logical refation.

By contrast, the logical relation we give here takes account of evaluation
contexts rather than final states and uses the termination relation (1.3), which
makes no explicit mention of final states. This allows us to avoid any use of
existential quantification over state relations in the definition and renders the proof

1This problem did not surface in (Pitts and Stark 1993) because the nu-calculus does not contain
any recursive features.

of the Fundamental Property relatively straightforward. The price we pay is that
the definition of the logical relation between expressions is intertwined with the
definition of a ‘dual’ relation between evaluation contexts (program continuations).
However, it is a price worth paying, since not only does it allow us to prove
the crucial Fundamental Property of the logical relation, but also we are able to
characterise contextual equivalence in terms of the logical refaimhdeduce the
Mason-Talcott ‘closed instantiations of uses’ theorem for ReFS as a corollary (see
Theorem 4.10). Moreover, we show in Section 5 that we can recover a technique
for proving ReFS contextual equivalence involving existential quantification over
‘locally invariant’ state relations which is reminiscent of the methods of (Pitts and
Stark 1993; Pitts 1997). This Principle of Local Invariants (Proposition 5.1) is
put to work in Section 5 to prove examples of contextual equivalence involving
the notion of representation independence, higher-order memoising functions, and
higher-order profiling functions. We also examine the limitations of this method,
giving an example (Example 5.9) of two contextually equivalent ReFS expressions
that are not easily seen to be logically related.

In the final Section 6 we discuss some desirable extensions of the ReFS language
and how our techniques might be extended to cope with them.

2 Recursive functions with local state

The examples discussed in the Introduction involved the interaction between recur-
sively declared functions and dynamically created, mutable references for storing
integer values. They were phrased in a simply typed fragment of Standard ML
with ground typesool (booleans)int (integers)unit (one-element type), and

int ref (integer storage locations). In this section we introduce a typed lambda
calculus called ReFS—a language ofcBesive_Rinctions with local &te. It is
essentially equivalent to the fragment of Standard ML we have in mind and will
be the vehicle for the formal development in the rest of this paper.

The ReFS language

The syntax of ReFS is given in Figure 1. It takes an unusually reduced form, in that
most operators may take only values as arguments. This is essentially a technical
convenience: it means that all the sequential aspects of the language devolve onto
the let construct, and can therefore be treated uniformly. Unrestricted forms are
easily defined in terms dkt as shown in Figure 2, and we shall use them freely.
Note that the ReF%:t is much simpler than that of ML, being neither recursive
nor polymorphic.

ReFS has two kinds of identifier, variables{, f, g, .. .) and location constants
(¢, 7,...). The latter occur explicitly in ReFS expressions because we prefer to

2A similar characterisation for the nu-calculus definitely fails for the logical relation of (Pitts
and Stark 1993).

Expressions M ==V |if Vthen M else M |V op V| fst(V) | snd(V)
| ref(V) | W | V=V |VV |letx=MinM
Values V=l true| false |n| ()| €] recx(z). M | (V,V)
Types o = bool | int | unit | loc | c w0 |o X0
where
x € Var an infinite set olvariables
¢ € Loc an infinite set ofocations
neZ=A{...,-2,—1,0,1,2,...} the set of integers,
op € {+,—,=,<,...} afinite set of arithmetic operations and relations.

Figure 1: ReFS syntax

if My then M, else M ©f Jet x = M in (if x then My else Ms3)

wherezx ¢ fu(Ms, Ms)

and similar clauses fak!; op My, (M, Ms), fst(M), snd(M), My M,, ref (M),
M, andM1 = M.
Ao, M < rec f(z). M wheref ¢ fuo(M)
M;M' = letx =Min M wherex ¢ fu(M')
Yepo :f T’@Cy(f). Az f(yf)x

while B do M % (rec f(z).if Bthen (M; f()) else ())()
wheref, x ¢ fu(B, M)

letx = My;2' = Myin Mz = letx = My in (let 2’ = My in M)

let (x1,x9) = My in My = let x = My in let zp = fst(z) in
let x5 = snd(x)in My wherex ¢ fu(M,)

let f(x) = Myin My = let f' = rec f(x). My in My[f'/ f]
wheref’ ¢ fv(M,)

Figure 2: Sugar for the ReFS syntax

10

Nz:okFz:0o I'F true : bool T F false : bool

F'kn:int (ne€eZ) TF(): unit I'E2:loc (€€ Loc)

Ifio—=odx:io-M:o F'-V:ie THV 0
(f,z ¢T)
I'krecf(x).M:0—0d 'E(V,V):oxd

I'FV:bool TFM:0 THFM :0o
't if Vthen M else M : o

F'EVeiint THEV :int
FEVop V' iy

(v € {bool, int} is the result type obp)

'FV:oxdo '-v:.oxodo
F'Efst(V):o 'k snd(V):o

T'FV:int 'V :loc I'FVi:loe TFV':int
I'Fref(V) : loc L'V :int CEV:=V": unit

'-v:.e—o T'HV':0o '-M:0 T,z:0FM:0o

z ¢!l
T'FVV':o 'Flete=MinM :o (@¢l)

Notation. We use the following notation for various collections of well-typed
expressions and values.

Exp,D) € {M|T+M:0} Val,(I) ¥ {V € Exp,(I') | V avalug

Exp, < Ezp_(0) Val, © Val,(0)
Exp ¥ U{Expg | o atype Val U{ Val, | o atypé.

Figure 3: ReFS type assignment

11

avoid the use of environments in the ReFS operational semantics. Variables may
be free or bound, while locations are always free. The foemf(x). M binds

free occurrences of the variablgsandx in expressionV/, andlet x = M in M’

binds any free occurrences ofin M’. We identify expressions and values up to
a-conversion of bound variables. The finite sets of free variables and locations
of an expression/ are denotedwv (M) andloc(M) respectively. We substitute
values for free variabled/[V/z| in the usual capture-avoiding way; the restriction

to valuesl” arises from the choice of reduced syntax and is appropriate for a call-
by-value language.

We only consider expressions that are well-typed. The ReFS types are given in
Figure 1:bool andint are the types of booleans and integers respectively;is a
one-value typeloc is the type of names of integer storage locations, corresponding
to the Standard ML typeant ref; 0 — ¢’ ando x o are function and product
types, corresponding to the Standard ML types> ¢’ ando * o’. For simplicity,
we assume that the séur of variables is partitioned into a family of countably
infinite subsets, one for each type: thus each varialdemes with a type, and
we write z : o to indicate this. The rules for assigning types to expressions are
given in Figure 3 and are quite standard. They inductively define a judgement of
the formI" - M : o, wherel is a finite subset olar, M is a ReFS expression,
ando is a ReFS type. The role d@f in the judgement is to indicate explicitly a
set of variables free for substitution 1. Indeed, it is not hard to prove that if
I' = M : o is derivable therfu(AM) C I'. Most of the time we will be dealing
with closedexpressions, by which we mean expressions with no free variables, but
guite possibly involving location constants Loc.

To further simplify the operational semantics of ReFS we have rolled function
abstraction and recursive function declaration into the one feenfi(z). M which
corresponds to the Standard ML value

fnx = (let funfx = MinMend).

Figure 2 shows how ordinary lambda abstraction, the call-by-vVElaembinator,
local recursive function definitions andhile loops are all special cases of this
construct.

The ReFS operations for manipulating store are exactly as in Standard ML, but
restricted to storage dhtegervalues. Expressionef (V') allocates local store,
placing the integer denoted by at some fresh location, which is then returned as
the value of the expression; operatidn fetches the value stored at the location
denoted by; andV := V' updates it with the integer denoted %Y, returning the
unit value().

Remark 2.1 (Testing equality of locations).ReFS does not contain a primitive
operationeq : loc — loc — bool for testing equality of locations (as opposed

to equality of their contents). Nevertheless such an operation is definable. For
example

eq & Az A2 letv =z in (x:=12' + 1;letb = (lz = 12') in (x :=v; b))

12

s,VIV,s (Yval)
S, Mb U ‘/7 5, .
s, if b then My, else Mygse L V, s’ (D
s,nopn’ e,s ifc=nopn ({lop)
s, fst(V, V') I Vs (Ufst)
s, snd(V, V")) 4 V', s ({lsnd)
5, M[(ree f(2). M)/J, V] 4 V", oo

s, (rec f(z). M)V { V', '
s,ref(n) £,s® (£:=n) anyl ¢ dom(s) ({ref)
s,Wln,s ifn=sl) ({get)
s,0:=n (), (s;£:=n) (Uset)
s,M Vs sSM'V/z) V', s"
s,letz = MinM | V' s"

(Ulet)

Figure 4: ReFS evaluation rules

has the required evaluation properties with respect to the operational semantics of
ReFS introduced below.

Evaluation of expressions

The meaning of ReFS expressions clearly depends on the current contents of
memory orstate We represent states as finite partial functions from locations
to integerss : Loc —in Z, With dom(s) being the locations actually occupied. The
empty state is denoted, and for any stata, location¢ and integem we write

(s; £ :=n) for the updated state defined by

dom(s;€:=n) = dom(s) U {l}

S Y

In the case that ¢ dom(s), we writes ® (¢ :=n) for (s; £ :=n). More generally,
given states ands’ with disjoint domains theismash product ® s’ is the state

13

with

dom(s ® s') = dom(s) U dom(s)

,) s(e) it L€ dom(s),
(s®s)(0) = {S'(f) if £ € dom(s').

We write Sta for the set of all states; anddf C Loc is a finite set of location
constants, we writéta(w) for the subset ofSta consisting of all states with
dom(s) = w.

Much as in the Definition of Standard ML (Milner, Tofte, and Harper 1990),
we give the operational semantics of ReFS via an inductively defined evaluation
relation of the form

s, M| V,s (2.1)

wheres, s’ € Sta, M € FEzp, andV € Val. We consider onlywell-formed
judgements, wher&/ andl” may be given some common typeand all locations
used are properly definedoc(M) C dom(s) andloc(V) C dom(s"). The rules
defining the relation are given in Figure 4 and are all quite standard. We write
s, M |} to indicate termination, i.e. that M | V,s' holds for somes’, V' (and
hence in particular thdve(M) C dom(s)).

Even taking into account differences in syntax, there are some differences be-
tween this operational semantics and the corresponding fragment of the Stan-
dard ML definition (Milner, Tofte, and Harper 1990). For one thing, we have
eliminated the use of environments in the evaluation relation at the expense
of introducing the syntactic operation of substitution. Thus in rulapfp),

M] (rec f(x). M)/ f, V/x| denotes the result, well-defined up deconversion,
of simultaneously substitutingc f(z). M for all free occurrences of andV for

all free occurrences of, in M. The small price to pay for this approach is the
explicit appearance of locations in the syntax of expressions.

More significantly, the reduced syntax has concentrated the sequencing of
evaluation in the language down to just one rule: oglet) has more than one
hypothesis, and most have none.

Contextual equivalence

We regard two expressions of ReFS as equivalent if they can be used interchange-
ably in any program without affecting the observable results of program execu-
tion. This is formalised by the standard notioncoihtextual equivalengsuitably
adapted for the language in hand.

As usual, acontextC|—| is a ReFS expression in which some subexpressions
have been replaced by occurrences of a parametégler'—'. The expression
resulting from filling the holes with an expressidf is denoted byC[M]. Since

14

the holes may occur within the scopelef- andrec-binders, free variables af/
may become bound i@[M]. This ‘capture’ of variables means that although the
operation of substituting/ for * —’ in C|—| respectsv-conversion of\/, it does not
necessarily respeet-conversion ofC[—]. Therefore we do not identify contexts
up toa-conversion.

In the following definitions of contextual preorder and equivalence, we take
convergence at arbitrary type as our basic observable. As it happens, the expres-
siveness of contexts means that we could have chosen other observations without
changing the relations that result: convergence at unit type, or to a specified integer
value, would do just as well.

Definition 2.2 (Contextual preorder, contextual equivalence).
Suppose that/;, M, € Exp,(T") are ReFS expressions. We write

T'EM,<M,:0o (contextual preorder

if for all contextsC|[—] such thatC[M;] andC|[M;] are closed terms of the same
type it is the case that

s, C[Mi]l} = s, C[Ms] |}
holds for all states with loc(C[M,], C[M,]) C dom(s). We define
My &2 M,: 0o (contextual equivalenge
tomeanthat' - M; < M, :ocandl' - M, < M; : 0.

It is an easy consequence of these definitions thet reflexive and transitive,
and hence that is an equivalence relation; moreover both relations are preserved
by all the expression-forming operations of the language (including those that bind
free variables).

3 A structurally inductive definition of termination

Before describing the logical relation for ReFS which is the main contribution of
this paper, we need to describe the continuation-based termination relation upon
which it depends. As mentioned on page 7, the reformulation of termination which
we present in this section seems necessary in order to formulate a notion of logical
relation that respects both dynamically allocated local state and recursively defined
higher-order functions. Apart from this, the structurally inductive definition of
termination we give here is very convenient for formalising inductive proofs about
contextual equivalence, for the following reason.

Developing properties of ReFS contextual equivalence directly from its defini-
tion is not so easy. This is due to the quantification over all possible contexts that
occurs in Definition 2.2 together with the nature of the termination relatialy, || .

15

Although it is an inductivei(e. recursively enumerable) subset$: x Fzp, its
definition is notstructurallyinductive. For example, we can derive the rule

s, M'[V/x] |
s,letx = Min M|

ifs, M| V,s

but the value expressidnused in the substitutioh/’[V/z] is not a primitive recur-

sive function of the syntax dét = M in M'. As a consequence, the proof meth-
ods for contextual equivalence which naturally suggest themselves—induction
over the structure of contexts and induction on the derivation of termination from
the rules in Figure 4—very often founder for want of a sufficiently strong induction
hypothesis. We shall fill this need for stronger induction hypotheses by consider-
ing a larger set tha§ta x Exp, carving out a subset by structural induction, and
exhibiting the termination relatiofi(s, M) | s, M ||} as a retract of this subset.
The key ingredient in this strategy is a formal version of continuations.

Continuations

The concept of continuation that we extract from ReFS evaluation is fairly
standard. However, our continuations are typed at both argument and result; and
we have no need here of continuatipassing Continuations take the form of
finite lists of expression abstractiofis) M, with Zd for the empty list andc’ for
concatenation:

K:=Zd | Ko (zx)M.
Free variables and locations are defined by
fo(Zd) =0 Jo(K o ()M) = fu(K) U (fo(M) \ {x})
loc(Zd) = 0 loc(K o (x)M) = loc(K) U loc(M).

We identify continuations up ta-conversion of bound variables (free occurrences
of z in M are bound in(z)M).

Theapplication K@M of a continuation to an expression is defined by

TdaM ¥ s

(K o (2)M")aM < KQ(letx = M in M')

and is an expression (well-defined upateconversion). This notion of application
gives a tie-up witlevaluation contextd~or ReFS, with its reduced form of syntax,
these are simply the subset of expression contexts given by

E[—] == [—-] | letx = E[—]in M.

For any suchE[—|, there is a continuatiod’ such thatE[M] = KQM for
all expressions\/, and conversely every continuation has a matching evaluation

16

context. Evaluation contexts were originally derived (as ‘unlabelled sk-contexts’)
from continuations in (Felleisen and Friedman 1986).

To each continuation we assign a type— o', where the notation is meant
to suggest the fact that evaluation contexts would give risrtot (continuous)
functions in a denotational semantics. The rules for types are as follows:

I'-K:o090-03
I'FKo(z)M: o003

I'Zd :00—0 fl,x:00FM: oy

Note thatifl' - K : 0 o> ¢’ andl’ - M : o, thenI' H KQM : ¢'. We collect
typed continuations into a range of indexed sets.

Cont, o (T) o {K|THK:00>0'} Cont,(I) oo U{C’ontma/(lj) | o’ atype
Cont, % Cont, (1) Cont & U{C’onta | o atype.
Termination

We are now ready to give owstructurallydefined termination relation. This will
be an inductively defined subset&fa x Cont x Exp and we write

(s, K, M)|

to indicate that s, K, M) is in the subset. As usual we consider only well-formed
judgements, here requiring thAf € FEzp, and K € Cont, for some typeo,

and thatloc(K, M) C dom(s). Figure 5 gives the rules defining the relation.
Notice that these are now properly structurally inductive, with a simple syntactic
connection between the conclusion and hypothesis of each rule.

Theorem 3.1 (Termination). The two termination relations correspond in the
sense that

(s, K, M)| & s, KQM | . (3.1)

In particular, one has
(s,Zd,M)] < s, M | (3.2)
(s, K, M) & 3V, (s, M I V,s' & (s, K, V)]). (3.3)

Proof. One way to prove these properties is to note that
(s, K, M)| < 35",V ((s, K, M) —* (', Zd,V)).

where—* is the reflexive-transitive closure of a suitable transition relatiobe-
tween configurations. One can then establish (3.1)—(3.3) via a series of inductions
involving || and—. We omit the details. O

(5,7, V)1

(s, K, M[V/x])]
(s, Ko (x)M, V)]

<S, K, Mb>\L
(s, K, if bthen My, else Mpgse) .

(s, K,)l
(s, K,nopn')]

ifc=mnopn

(s, K, V)]

(s, K, fst((V, V)4
(s, K, V')

(s, K, snd((V, V"))

(s, K, M[(rec f(z). M)/ f, V/x])]
(s, K, (rec f(z). M)V){

(s@(L:=n),K, 0| if ¢ ¢ dom(s)
(s, K, ref(n))] U loc(K)

(s, K,n)|
(s, K,10)]

(s;0:=mn,K, ()}
(s, K, 0:=n)|

if n=s(0)

(s, Ko(x)M' , M)|
(s, K,letx = Min M')]

Figure 5: Continuation-based termination relation

17

(Jvah)

(Jvalk)

({if)

({op)

(Lfst)

({snd)

({app)

({ref)

({get)

({set)

(Llet)

18

The unwinding theorem

In contrast ta|, the structural nature of the termination relationenables many
properties of the contextual preorder and equivalence relations to be proved in a
rather straightforward way, via an induction on the derivatiosof, M)|. As

an illustration, we give such a proof for the ‘unwinding theorem’ for recursive
function values in ReFS, which provides a syntactic analogue of Dana Scott's
induction principle for least fixed points and which is needed in the proof of the
Fundamental Property of the logical relation introduced in the next section. Such
theorems have been proved by several different people in various contexts: see for
example (Mason, Smith, and Talcott 1996).

We fix some closed recursively defined function vatdef(z). F' € Val, o
and define the following abbreviations:

def

Q= (rec f(x). fx)()

Y220

Foii ¥ Nz F[F,/f]
F, % rec f(z). F.

EachF,, is a finite unwinding of the full functio,. The essence of the following
theorem is that these finite approximations provide all the observable behaviour of
F,, itself.

Theorem 3.2 (Unwinding). Forany M € Exp_.(f:c—0c’) we have
s, M[F,/f]} & 3n € N (s, M[F,/]).
Equivalently, for any € Cont, ..
(s, K,F,)| < 3IneN(s, K, F,)|.

Proof. The two statements in the theorem are equivalent by Theorem 3.1, noting
that for anyK andF', KQF is of the formM F/ f] for someM, and conversely

that whenF' is a value thers, M [F'/ f]} holds if and only if(s, Zd o (x) M, F)].

The theorem (in its second formulation) follows from parts (iii) and (iv) of the
following lemma, by taking<’ = K andM' = g. O

Lemma 3.3. Forall M’ € Exp, (g:0—0'), K' € Cont, (9:0—0'), ands € Sta,
if loc(M', K', F') C dom(s) then

(i) forall G € Val,_,, with loc(G) C dom(s)
(s, K'[Fo/gl, M'[Fo/gl)} = (s, K'[G/g], M'|G/g]){
(i) foralln e N

(s, K'[F/g], M'[F,/g])} = (s, K'[Fni1/g], M'[Foi1/9])d

19

(i) (s, K'[F./g], M'[F.,/g])} = 3n € N(s, K'[F,/g], M'[F,/g])}
(iv) foralln e N
(s, K'[Fn/g], M'[F,/g])l = (s, K'[F,/g], M'[F,/g])..

Proof. (i) is proved by induction on the derivation of, K'[Fy/g], M'[Fy/g]))
from the rules in Figure 5. More precisely, one shows that the set of machine
states

{<S’K7M> |VK/7M/ (K: K,[FO/Q] & M = M/[Fﬂ/g]
= VG (s, K'[G/g], M'[G/g])]) }

is closed under those rules. The only non-straightforward casapp), where
one uses the easily verified fact tHat K, ©2)| cannot hold for any and K. We
omit the detalils.

(ii) is proved by induction om, with part (i) providing the base caseof= 0.

For (iii), again one works by induction on the proof of termination, showing
that the set of machine states

T ={(s,K,M) |VK',M' (K = K'[F, /9] & M = M'[F,/g]
= 3n e N (s, K'[F,/g], M'[F,/g)))) }

is closed under the rules of Figure 5 generatinés for part (i), the only difficult
case is closure under the application rulafdp). For that, suppose we have

(s, K, M[(rec f(x).M)/f, V/z]) € T. (3.4)
Then we have to show théat, K, (rec f(x). M)V') € T, i.e. that if
K =K'[F,/g] and (recf(z). M)V = M'[F,/¢] (3.5)

then (s, K'[F,/g], M'[F,/g])) holds for some finiten. Now (3.5) must hold
becausé/’ = V;V, for some value¥; andV, such that

rec f(x). M =V1[F,/g] and V =1V4[F,/g].
The first of these can occur in two situations:
(@) Vi = gandrec f(z). M = F,, thusM = F.
(b) Vi = rec f(x). M, for someM; with M = M;[F,,/g].

The proof in case (b) is straightforward and we omit it. In case (a) we now have
M (rec f(x). M)/ f, V/x| = Flg/f, Va/x|[F,/g] and so by (3.4) there is some
finite m with (s, K'[F,,,/gl, F[g/ f, Va/x][Fn/g]){. Using the definition o, 4

20

and rule (app) gives(s, K'[F./g], Fm+1(Va[Fin/g])){d and hence by part (i) also
(8, K'[Frni1/9], Frnia(Va[Fria /g]))4- But

Fm+1(V2[Fm+1/g]) = (V1V2)[Fm+1/g] = M/[Fm+1/g]

and so we have the desired conclusion tatk’[F,, /g|, M'[F,/g]){ holds for
somen (namelyn = m + 1).

The closure ofl under the other rules of Figure 5 requires the same straightfor-
ward reasoning as for case (b), and we omit the details.

Finally, part (iv) of the lemma is once again proved by an induction gvene
shows that the set of machine states

{{(s, K, M) |VK',M',n(K = K'[F,,/g9] & M = M'[F,/qg|
= (s, K'[FL./g], M'[F./g])L) }

is closed under the rules generating Again, the only non-routine case is
for (Japp) and for that the proof is very much as for part (iii), with two distinct
cases (a) and (b). We omit the details. O

Note that the imperative features of ReFS have littee rin the proof of
unwinding. If we had storage of non-ground data, these features would play a
greater part, but the same proof methods would still work.

4 A parametric logical relation

In this section we define a family of binary relations between ReFS expressions (of
equal type) parameterised by relations between states and establish its relationship
to contextual equivalence. We prove a ‘Fundamental Property’ typical of logical
relations (Theorem 4.9). This is the main technical result of the paper and it
draws heavily upon the work of the previous section. From the Fundamental
Property we easily deduce an extensionality result for ReFS contextual equivalence
(Theorem 4.10) that includes the ‘ciu’ theorem of Mason and Talcott (1992b).
So we get proofs for a range of basic contextual equivalences that are the usual
consequences of the ‘ciu’ theorem. However, our extensionality theorem also
characterises contextual equivalence in terms of the logical relation (with the
state-relation parameter instantiated to the identity). In the next section we shall
show that this characterisation can be used to give quite straightforward proofs for
some examples of contextual equivalence which are not easily seen to be direct
consequences of the ‘ciu’ theorem.

Definitions

We begin by defining a variety of relations between elements of our ReFS language,
starting with states.

21

Definition 4.1 (State relations). Given finite subsets,w, C Loc, astate rela-
tion from w; to wy is a non-empty subset C Sta(w;) x Sta(ws). (Recall from
page 13 thabta(w) denotes the set of all states with domain of definition equal to
w.) We write

Rel(wy, ws)

for the set of all such relations. Givere Rel(w;,ws), we refer tav; andw, as the
domain and codomain efrespectively. (Note that since we are assuming that any
state relation is in particular non-emptyjts domain and codomain are uniquely
determined.)

For any finite subset C Loc, theidentity state relatiomnw is
. def
id, = {(s,8) | dom(s) = w}.

Given two state relations relations € Rel(w;,ws) andr’ € Rel(w},ws) with
w; Nwi = 0 (@ = 1,2), theirsmash product ® r € Rel(w; U w},ws U w}) is
defined using the smash product of states defined in Section 2:

rer & {(s1 ®8],805,) | (s1,82) €r & (s],85) €'}
It is straightforward to show that

id, ® idy = idyuy (wNw' =0) rer=reQr
idg@r =1 reo(rer)y=rer)er”

with the last three in particular following from the corresponding property oh
states.

We say that a state relatiari extendsanother one, and writer’ > r, if
r" = r®r” for somer”. It follows from the above properties of the smash product
® that the extension relatian is a partial order.

Suppose we have two configuratios K, M) and(s’, K’, M') of the abstract
machine described in Section 3. We say that theycaravergence equivalent
written

(s, K, M) 1 (s', K', M')

if they are both well formed,e. loc(K M) C dom(s) andloc(K'M') C dom(s'),
and they converge or diverge together:

(s, K, M)| < (s', K', M) .

3This is merely a technical convenience which, amongst other things, simplifies the definition
of the logical relation at ground types.

22

Definition 4.2 (A parametric logical relation for ReFS).
For each state relation € Rel(w;,ws) and each typer we define three binary
relations:

E,(r) C Ezp,(w1) X Ezp,(ws)
K, (r) C Cont,(wy) x Cont,(ws)
Vo(r) C Valy(wr) X Valy(ws).

Here Ezp,(w) denotes the set of closed ReFS expressions of sype/olving

location constants in the finite set similarly for continuationsCont,(w) and

valuesVal, (w). We make the definitions of these relations for-aimultaneously.
The first relation, between expressions, is defined in terms of the second:

(M, M) € E,(r) L9 1, (51, 80) € 7, (K1, Ka) € Ko (r').
<SlaK1aM1> $ <827K27M2>' (41)
The second relation, on continuations, is defined in terms of the third:
(K, Ky) € K, (1) v T, (s1,80) € 1, (V1, Vo) € Vo (1').
<817K17‘/1> :l: <827K27‘/2>' (42)

The final relation, between values, is defined by induction on the structure of the
typeo:

(c1,¢2) € Vo(r) M e =c foroe {unit, bool, int} (4.3)
(£1,05) € Vie(r) & (101,185) € Es(7) (4.4)
&Vn e Z.(ly:=n,ly:=n) € Epnu(r)
(Vi,V2) € Voxor(r) & (fst(V1), fst(Va)) € E4(r) (4.5)
& (snd(V4), snd(Vs)) € E,/(r)
(Vi, Va) € Voo () & W' > 1, (W1, Wa) € V, (') . (4.6)

(i, VaWs) € Eqr(1).

We call this family of relations ‘logical’ simply because it relates function
values if, roughly speaking, they map related arguments to related results. This
is the characteristic feature of a wide range of relations used in connection with the
lambda calculus which ever since (Plotkin 1973, 1980) have been called ‘logical
relations’.

Note. It is possible to simplify Definition 4.2 by replacing the use of an arbitrary
extension”’ > r by r itself in the defining clauses fd&, () andC,(r) (but not

Vs (1)). This simplification depends partly upon the ‘flat’ nature of state in
ReFS and since we have an eye to generalisations of ReFS (see Section 6), we
chose not to build it into the definition. Furthermore, this simplification would
complicate the proof of the following property.

23

Lemma 4.3 (Weakening). Extending a state relation preserves existing relations
between expressions, continuations and values:if » then

(My, My) € E,(r) = (My, M) € E,(r)
(Kl,KQ) c]Co-(’f’> = (Kl,KQ) c]Co-(’f’,)
(V1,V2) € Vo(r) = (V1,V2) € Vo(r)
Proof. Clauses (4.1) and (4.2) of Definition 4.2 spec#y(r) and K, (r) by
quantifying over all extensions > r and so the first two parts are immediate

(sincer> is a preorder). The third part concerning values then follows from the
first, matching the way clauses (4.3) to (4.6) defihér) in terms of,(r). O

The definition of the relation€,(r) on expressions and,(r) on values
are quite different; nevertheless they agree in that values can be considered as
expressions without changing their relations, as the following lemma shows.

Lemma 4.4 (Coincidence).Relations&,(r) and V,(r) coincide on values: for
Vi,V € Val,

(V1, Vo) € E,(r) & (V1, Vo) € V, (7).

Proof. The direction from right to left follows at once from the definition&f(r)
andXC,(r) given in clauses (4.1) and (4.2), together with Lemma 4.3. From left to
right, we proceed by cases on the structure of gype

Caseo = unit is trivial, as the only unit value i§) and((), ()) € Vuui(r) for
anyr.
Caseo = bool. Consider the continuation

K =7Zd o (x)(if x then () else)

where(2 is the non-terminating expression used in the Unwinding Theorem 3.2.
From the definition o¥;,,; andiCy,,; it is not hard to show thatis, K) € Kpooi (7).
Suppose then that, b, € {true, false} with (by,b2) € Epu(r). Since state
relations are by definition non-empty, we can choose s@mes;) € r. Then

we have(sy, K, b1)] (s2, K, by) and hence

(s1,Zd, if by then () else Q) T (sq, Zd, if by then () else Q).
Since (s;, Zd, Q)4 and (s;, Zd, ()){ it follows thatb; = by, and thus(by, bs) €
Vool () @s required.
Caseo = int is similar to the previous case, using the continuation
K =Zdo (x)(lety = (V1 = x) inif y then () else)

whereV; is one of the integer values involved.

24

Caseo = loc. Suppose thatty, (2) € £,,.(r). We need to prove that/,, !45) €
Eint(r) and also((¢; :=n), (ly :=n)) € Eu(r) for everyn € Z. Suppose
that at some extensior > r we have(sy, s2) € " and (Ky, K3) € Kip(r').
For the first property, we have to show that, K1, !¢1) (s2, Ko, !45). Butitis
not hard to verify thaf(K; o (z)!x), (K, o (z)!z)) € Ki(r'), and then because
(01, 05) € Ei,e(r) We obtain

(s1, (Ky o (z)lx), b1) T (89, (K30 (z)lx), o)

and hence alsds, K1,!01) T (s2, K2, !0s), as required. The argument that
(01 :=mn, by :=n) € Eynir(r) is similar.

Caseoc = o; x 0o. The proof is as in the previous case, this time taking
(K1, Ky) € Koy (r') to (K o (z) fst(x), Ky o (z) fst(x)) € K, (r') and similarly
with snd.

Caseo = o1 — o03. The proof takes the same form again, based on the
observation that if” > 7' > r and (K, K3) € K., (r") then

(Ko (x)aWh), (Kyo (2)2Ws)) € Koy o, (77)

for all (W, Ws) € V,y, (17).
These last three cases all use the weakening results of Lemma 4.3. [

Definition 4.5 (Extension of the logical relation to open expressions).
Given two open expressiond;, M, € Exp, (') with loc(M;) C w; (i = 1,2) and
a state relatiom € Rel(w;,wsy) we write

M {r}My:0o

to mean that for all extension$ > r and valueqVy,, Vs, € Val, |z : 0o’ € T'}
we have

(Vo : 0’ €. (Vig, Vaz) € Vo (') = (Mi[V}/T], Mo[V5/E]) € E,(r').

In particular() - M, {r} M, : o holds if and only if(AM;, My) € €,(r), thanks to
Lemma 4.3: so this is indeed an extension of the original logical relation.

The following structural properties of this relation are automatic from the above
definition.

TEM {r}My:0=TT"F M {r}My:0o
PEMA{r}My:o=THM{r@r}M:o

CEW{r}Va:0)& (T,z:0 b M {r} My:0') =
L'E M [Vi/x] {r} My[Va/x] : o’ (V1, Vo € Val,(T)).

In addition to the logical relation, we shall use the following equivalence between
expressions.

25

Definition 4.6 (‘ciu’ equivalence). Given M, M, € Ezxp, we write
M, 2™ M, o
to mean that for al € Sta andK € Cont, with loc(K, M, My) C dom(s),
(s, K, My)] (s, K, M>).
We extend this to open expressions by value substitutiomfioiVl; € Exp, (T),
L'F M =M, : o

means that for a{V, € Val, | z : o’ € I'} we haveM, [V /] = M, [V /] : o.
(Note that thé/, may use locations not mentionedM, or M,.)

This relation =¢*’ coincides with the ciu-equivalence of (Mason and Talcott
1991a; Talcott 1997). This is because the results of Section 3 implyl'that
M, =" M, : o holds if and only if for all suitable value substitutiofig, | =

'}, evaluation context®’|—| and states:

s, E[My[V /7] | & s, E[Mp[V /)] {.

These are the appropriate ‘closed instantiations of uses’ for ReFS expressions. The
next result shows that the logical relations respect ciu-equivalence.

Lemma 4.7 (Composition). The logical relation is closed under composition
with ciu-equivalence. For closed terms we have

(M} =My & (My, Ms) € E,(r) & My = My) = (M, My) € E,(r)
and more generally for open ones
(F =M =M, & T M {r} My & T+ M, %Ci“Mg) = ' M {r} M,.

Proof. For the first property, suppose that> r and that we have statés,, s;) €
r" and continuationéK, K») € K,(r'). Then

<Sla K17M{> :l: <81a Kl; M1> $ <82a KQ; M2> $ <827K2a M£>

and the result follows by transitivity off’. For open expressions, we consider
values{Vy,, Vs, € Val, | x : ¢’ € T'} with each(Vy,, Va,) € V,.(r") and deduce
that
M;[Vy/&] =" My VA /3] & Mo[Vs/E] = My [V /]
& (Ml[vl/f]? MQ[%/f]) € ga(,r,)‘

The first part now givesM! [V, /@], M}[V,/Z]) € £,(r') and sal’ + M, {r} M} as
desired. n

26

Fundamental property of the relation

We aim to prove the ‘Fundamental Property’ of the logical relation introduced in
Definition 4.2. Roughly speaking, this says that the relatiéns, () are preserved

by the various operations in the ReFS language; the precise statement is given
below in Theorem 4.9.

The reader familiar with previous work on relational parametricity for languages
with storage locations may be surprised that such a property holds without
some restriction on the parameterising relation®©’Hearn and Tennent (1993,
Section 6) sketch a construction for a language like ReFS in which the parameter
is a binary relation between states equipped with a partial bijection between the
underlying sets of locations, which together must satisfy some simple conditions
to do with assignment and look-up. The reason given for the use of the extra
information of a partial bijection is to ensure that the operation for location-equality
testing preserves the parametric logical relation. But in fact use of partial bijections
is superfluous. We will establish the preservation property for all expressions in
ReFS with respect to the logical relation simply parameterised by state relations;
and we noted in Remark 2.1 that location-equality testing is definable in ReFS—so
in particular it preserves the logical relation. In this respect ReFS is simpler than
the ‘nu-calculus’ studied in (Pitts and Stark 1993) where location-equality testing
is not definable in terms of the rest of the language and use of partial bijections
between locations is unavoidable.

Proposition 4.8. The logical relation is preserved by all the expression-forming
operations of the ReFS language.

(i) T,z:obz{rtz:o.
(i) THO{r}() : unit.
(i) THb{r}b: bool, for eachb € {true, false}.
(iv) T'Fn{r}n:int, foranyn € Z.
(V) T HL{r®idgy} L : loc, wherel ¢ dom(r) U cod(r).

i) I TV {r}Vo:ocandl' - V] {r} V] : o’ then
TEWL W) {r} (2, V) 10 x o

(viiy FTEVy{r} V5 : bool,T'+ My {r} My : o andl' - M; {r} M} : o then
' (if Vi then M else My) {r} (if Vo then M, else M)) : o.

(viiy fT Vi {r} Vs :intandT - V] {r} Vj : int then
C'E(ViopVY){r} (VaopVy):~, wherey is the result type obp.

(ix) T EVi{r}Vy:0 x o' thenl \ fst(V7) {r} fst(V3) : o and
L'E snd(Vy) {r} snd(V3) : o'.

27

(x) T F Vi {r} V,:int thenD - ref (V) {r} ref (V2) : loc.
xi) FTF Vi {r} Vy:locthenT - 1V; {r} !V, : int.

(xii)y fTFVi{r}Va:locandl - V{ {r} V] : int then
C'E V=V {r} (Vo:=V)) : unit.

(xiii) FTF Vi {r}Va:o— o andl - Vi {r} V{ : o then
I'= (Vi) {r} (V2V3) : o',

(xiv) ' M, {r} My :oandl',z : o = Mj {r} M} : ¢’ then
L'k (letx = Myin M) {r} (let x = Myin M) : o'

xv) fT, f:0—0',x:0F M, {r} M, : o' then
L'F (rec f(x). My) {r} (rec f(x). M) : 0 — o'.

Proof. As might be expected, many of the clauses here have similar proofs,
with only four of them ((v), (x), (xiv) and (xv)) requiring individual attention.
Moreover, there is no hard work: essentially all the proofs are compositions of
properties proved earlier. First though we note some general points. Because
each clause preservEsand makes no use of it, we may assume without loss of
generality that all of its variables have already been substitutefl-byelated
values, and so takeé = (). We may similarly take just rather than an extension

r’ > r in all clauses wher€ is the only source of free variableisg((ii)—(xiii)).
Lemma 4.4, which says that,(r) and £,(r) coincide on values, allows us to
move between the two relations and we do this silently throughout.

Cases (i)—(iv) all follow immediately from the definition ¢f} andV,(r). In
case (v) we need to show that

(1,10) € Ep(r @ idyey) and VYn e Z.(L:=n,l:=n) € Eypi(r @ idyy)

for a given locatiorf not mentioned by. We look at the first of these: the second
is treated similarly. Suppose théd;,s;) € (r®idyy @ r') and (K, K;) €
ICint(r ® idp @ r') for somer’. We have to show

<31,K1,!€) i <32,K2,!€). (47)

As (s1,52) € (r ® idgy @ r') we know thats, (¢) = s,(¢) = n for some integen.
Then

<Si, Ki, ‘€> i <5i; Ki> n> for: = 1, 2. (48)
But (n,n) € Viu(r ® idgy @ ') and ag K, K3) € Ki(r ® idg @ 17),
<$1,K1,n) i <32,K2,n). (49)

Combining (4.8) and (4.9) gives (4.7) as required.

28

Cases (vi), (vii) and (viii) are all alike and we look only at the first. We have
(V1,V2) € &:(r) and (V{,V;) € Eq(r), (4.10)
and need to shoW(V1, VY), (V,V3)) € Voo (r). This requires
(fst(Vi, V), fst(Va, V3)) € Eq(r)

4.11
(snd(V V). snd(Ve,V})) € Ex(r). @1

The following ciu-equivalences are all straightforward:
fst(Vi, Vo) =Wy fst(V, Vp) =V (4.12)

Sﬂd(%,%) gciu% snd(V{, ‘/2/> gcz‘u ‘/2/

and by Lemma 4.7 we can combine these with the logical relations of (4.10) to
give (4.11) as required. Such use of ciu-equivalence is also the key to cases (vii)
and (viii).

In case (ix) we are giver(V;,V2) € V,.»(r) and need to show that
(fst(V1), fst(Va)) € E4(r) and (snd(V1), snd(V3)) € &,.(r)—but this is ex-
actly the definition ofY, ., (r) on page 22. Cases (xi), (xii) and (xiii) use the
definition of V(r) at locations and function types in exactly the same way.

For case (x) we again need to consider actual continuations. Suppose that
(V1, V) € Vins(r), ..V} = Vo = nfor somen € Z. Foranyr’ > r, (s, $2) € 1/,
and(Ki, K») € Ki,.(r") we need to show that

(s1, K1, ref(n)) T (s2, Ko, ref (n)). (4.13)
By considering a single reduction sfaepe have that
(8i, Kiyref(n)) T (si ® (£:=n), K;,£) fori=1,2and{ fresh. (4.14)

Now (s;®(£:=n), 52®({:=n)) € r'Qidy, by the weakening Lemma 4.3 we have
(K1, K3) € Kioe(r" ® idyey), and from part (V) we knowt, £) € Vi (1’ ® idyy).
Thus

(1@ (L:=n),K1,0)] (so® (£:=n), Ky, () (4.15)

and this in combination with (4.14) gives (4.13) as required.
In part (xiv) we have the hypothesis that

(My,My) € E,(r) and z:0F M{{r} M, : o
Considen”’ > r, (s1, s2) € 7', and(K;, Ks) € K (r'): we need to show

. . / . . /
1) -)) - .
(s1, K1, let x = My in My) T (s2, Ko, let & = My in M3)

4Strictly speaking, the left-to-right implication in (4.14) relies upon the easily verified fact that
the termination relatiog is invariant under bijective renamings of location constants.

29

Again, taking one reduction step gives
(8i, Ki, let x = My in M) T (s, K; o (x)M], M;) fori=1,2,
and ag M;, M,) € E,(r) itis sufficient to prove that
(Kjo ()M, Kyo (z)My) € K, (r"). (4.16)
Suppose that” > 7/, (s}, s4) € r”, and(V1, V3) € V,(r"); we now need
(sh, Ky o (z) My, V1) T (s3, Ko 0 (z) My, Va). (4.17)
A single reduction step gives
(i, Ky o (x) M, Vi) T (sq, K, M;[Vi/z]) fori=1,2. (4.18)

Finally the hypothesis o] and choice ofV; gives (M;[Vi /x|, Mj}[V>/x]) €
E,(r"), from which we get

(s, Ky, Mi[Vi/z]) T (s, K2, M3[Va/]). (4.19)

Combining this with (4.18) gives (4.17) and hence (4.16) as required.

For case (xv), concerning recursively defined function values, it is no surprise
that we turn to the Unwinding Theorem 3.2. The first step is to show that for
non-recursive functions

r:ob M {r}My:0' = +(Az. M) {r} Az My) (4.20)
which is done through the ciu-equivalence
(Az. M)V = M[V /]
in much the same way as case (vi). Now suppose more generally that we have
fio—=od oM {r} M :o' (4.21)

As in Section 3, consider the following progressive unwindings:

0 (rec f(x). fz)() Fint1 =DV M;[F;pn/ f]

Fo % A2.Q Fio ™ rec f(z). M;.

for i = 1,2. We then prove in turn

(Q7 Q) S 60’%0” (T> (422)
(Fl,n7 Fg’n) - gg_m/ (’f’) (423)
(Fl,wa F27w) S ga—m’ (’f’) (424)

30

The first of these is straightforward &snever terminates in any context; this
provides the base case to prove (4.23) by induction,omsing (4.20) and (4.21)

at each step; and finally the Unwinding Theorem 3.2 allows us to deduce (4.24),
which is exactly the desired result:

F (rec f(x). My) {r} (rec f(x). M) : 0 — o’

What we are using here is that thg(r) relations aredmissiblein an appropriate
syntactic variant of the usual notion on domains: if every finite approximation of
some(M;, My) isin E,(r), then so ig My, M) itself. O

Theorem 4.9 (Fundamental Property of the Logical Relation).

(i) Contexts preserve the identity logical relation:Tif- M {id,} M : o,
then for any context|[—] with fo(C) C I" C T, loc(C]-]) € w, and
I+ C[M;] : o' fori = 1,2 (so that the hole~’ occurs inC[—] within the
scope of binding occurrences of the variable§'ih '), it is the case that
I+ C[M;] {id,} C[Ms) : o'

(i) The identity logical relation is reflexive: ¥/ € Exp, (T") with loc(M) C w,
thenT' - M {id,} M : o.

Proof. Part (i) is proved by induction on the structure @f—|, using Proposi-
tion 4.8. Part (ii) is then the special case wh&p-| has no occurrences of the
hole *—" at all, and is just an ordinary expression. O

The following result draws together all the relations we have defined between
ReFS expressions. It includes the ‘ciu’ theorem of Mason and Talcott (1992b).

Theorem 4.10 (Operational Extensionality). The logical relation{:d,}, con-
textual equivalencée?, and ciu-equivalencez™ all coincide: for anyM;, M, €
Ezp,(T')

F"Ml{ZdW}MQ <:>F|_M12M2 @F}MlgciuM2.

Proof. We show that each of the three relations entails the next, in rotation. First,
that

F"Ml{ldw}MQ = FI_MlgMQ

Suppose thaf\/; and M, are identity related as shown and tl@t—| is some
context with() = C[M;] : ¢’ (: = 1,2). Using the weakening Lemma 4.3 on
I' - M, {id,} M, if necessary, we can assume without loss of generality that
loc(C[—]) € w. Then by Theorem 4.9(i) we ha¥e- C[M;] {id,,} C[M], that

is (C[M], C[Ms]) € E,(id,,). Given any state with dom(s) = w we know that
(s,s) € id,; and(Zd,Zd) € K, (id,) holds by definition ofC,. (id,). Therefore
from the definition off,. (id,,) we have

(s,Zd, C[M)) T (s, Zd, C[Ma)).

31

Equivalently (by Theorem 3.1),
s,C[Mi|{ & s,C[M,] .

Since this holds for any suitablé[—| and s, we have contextual equivalence of
M, and M, as required.

Now for
LM M, = T'F M =2%M,.

Consulting the note after Definition 4.6, we recall that ciu-equivalence for an
expressionV/ is entirely determined by the set of terminations

s, EIM[V /2] §

for statess, evaluation context&[—] and valuesV to instantiate the free vari-

ables of M. This however corresponds exactly to termination in the context
E[(AZ.(—))V]. As ciu-equivalence thus requires correspondence only in a sub-
set of all contexts, it is clear that it is entailed by contextual equivalence, which

requires agreement on all of them.
Finally,

L'+ M, =M, = T'F M, {id,} M,.

By Theorem 4.9(ii) we hav€ + M, {id,} M;, and Lemma 4.7 lets us compose
this with " = M; =™ M, to obtain the logical relatioff - M, {id,} M, that we
desire. O

5 Examples

In this section we look at some practical applications of the parametric logical re-
lation to proving ReFS contextual equivalences, via the Operational Extensionality
Theorem 4.10.

Before giving applications that make overt use of the logical relation, let us
recall (from Mason and Talcott 1992b, for example) that the coincidence of
contextual equivalence with ciu-equivalence gives sufficient leverage to prove a
range of basic contextual equivalences. This includes those ciu-equivalences that
hold by virtue of the immediate evaluation behaviour of the terms involved, such
as

(rec f(x). M)V = M| (rec f(z). M)/ f, V/z].

It also includes equivalences incorporating ‘garbage collection’, in the manner of
Mason’s ‘strong isomorphism’ (Mason 1986; Mason and Talcott 1991a), allowing
us to ignore parts of the store that are unreachable.

32

Using logical relations

To prove specific contextual equivalences via the logical relation, we need to be
able to show that pairs of expressions are indeed related. The next result gives
a general technique for demonstratit®yf;, /M>) € E,(r): if their evaluation
preserves and we can exhibit some ‘local invariant” that correctly captures

the wayM; and M, treat their local variables, then they are logically related.

Proposition 5.1 (Principle of Local Invariants). Given a state relation- and
expressiond/;, M, suppose that for alls, s;) € ,

SlyMl ‘U’ ‘/178/1 = ElT,aS,27‘/2‘ (8/178/2) € (T®T/)
& s, My |} Vo, 85 & (V1,V2) € E,(r @17)

and

So, My || Vo, 85 = I 81, V1. (s],85) € (r@r”)
& s1, My | Vi, 87 & (Vi, V) € Eq(r@r”).

Then(My, M,) € E,(r). (We call the state relations, »” local invariants)

Proof. To prove (M, My) € &E,(r) it suffices to show for alls;,s,) € r and

(K1, K3) € K, (r) that(sy, K1, My)| if and only if (so, K5, Ms)] (cf. theNoteon

page 22). By the symmetry of the assumptions, it suffices to prove just the forward
direction of this bi-implication. So suppose , K, M;)|. Then by (3.3) for some

sy andV,

817M1‘U"/17SI1 and <8117K17‘/1>\L'

So by hypothesis there arg s, andV; such thatsy, M, || V2, s, (7, 85) € (r®

'), and(Vy, V3) € E,(r ® r'). From Lemma 4.3 we havg(,, K») € K, (r @ r')

and sa(s}, K1, V1) T (sh, K, Vo). Hence(sh, Ky, V3)| and then the other direction
of (3.3) gives(ss, K>, M,)] as desired. Similarly, the second hypothesis implies
that (so, Ko, Ms)| = (s1, Ky, M;)]l and so we havéM, M,) € E,(r) as
required. 0J

This gives us a tool for proving instances of the logical relation. Conversely,
if we have that two expressions are related, what can we deduce about them? To
answer this requires a mild restriction on the state relations considered.

Definition 5.2. A state relationr € Rel(w;,ws) is closedif every non-element
can be detected as such. That is, for each pair of states,) € (Sta(w;) %
Sta(ws)) \ r there are continuationd(;, Ks) € K..::(r) such that

<81’ Kla ()> X <327 K2’ ()>

with one converging and the other diverging.

33

All the state relations we shall encounter are closed. In particular we have the
following result.

Lemma 5.3. If a state relation- € Rel(w;,ws) is bijective where defined
(s1,82) €7 & (81,85) ET = 89 = 8
(s1,82) €7 & (s],82) €7 = 51 =5

then it is closed.

Proof. First we note that all states have finite domain, so for any state can
write an expressiotest, such thaw', test, |} precisely when' is of the forms®s”.

Now supposési, s2) € (Sta(wy) x Sta(ws)) \ . We seek-related continua-
tions that distinguish between the two. If there isshsuch thafs;, s;) € r, then
we choose

Ky ¥ Tdo (z) test,, and K, ™ Td o (z)Q.

If on the other hands,, s,) € r holds for somes), then by assumption onwe
must haves), # s, (since(sy, s2) ¢ r) and we take

Ky ® Tdo () test,, and K, ™ Zd o (z) test,, .

In either case we havésy, K1, ()] and (sy, Ks, ()£, while these continuations
agree on all state pairs in any " and so(K, Ks) € K,.:(r) as required. [

Proposition 5.4. If (M, M,) € £,(r) and(sy, s3) € r then
s, Myl < s, M) .
If r is closed, then related expressions also preserve the state relation:
s;, My 4 Vi, 81 and sy, My || Va,),
implies there i3’ such that(s}, s}) € (r @ r').

Proof. For the first part, consider the continuatiéh = Zd o (z)() of type
(0 o— unit). Clearly (K, K) € K, (r) and so using (3.3) we can deduce

si, Mill & (s1, K, My)| < (s2, K, Ma)| < s9, M)

as required. For the second part, suppose thatclosed and thad/; and M,
evaluate as given. Taking = w; x w}, wherew, = dom(s}) \ dom(s;) (i = 1,2),
we need only show thak’ | jom (), 55|c0ar)) € 7. Sincer is closed, if these states
are not so related, then there is sofhg, K,) € K,..:(r) that can detect this and
hence for which

(s1, K10 (z)(), My) J (s2, Kz 0 (2)(), My).

This however would contradict the assumption thaf,, M,) € &,(r), and
instead we must haves' | gom(r), Sh|cod(r)) € 7 @and hencesy,s;) € (r®r’) as
required. O

34

This provides a partial converse to Proposition 5.1 (at least as regards termina-
tion and treatment of store) which we will use in the higher-order profiling Exam-
ple 5.8. At ground types we can do better and show that the resulting values will
also be related. However, the converse of Proposition 5.1 does not hold in general.
Example 5.9 gives a pair of logically related expressions where no choice of
will make V; andV; related. Thus as a method for demonstrating instances of the
logical relation and hence contextual equivalence, the Principle of Local Invariants
of Proposition 5.1 is not complete. Nevertheless, it does provide a powerful method
for proving equivalences, as the examples in the following subsections show. We
consider various idioms for using functions with local state and prove that they be-
have correctly, interacting properly with surrounding code that may itself use state
and higher order functions. The general approach is that we present contextual
equivalences which express the desired behaviour of a program fragment, and then
prove that these hold by using the logical relation. In all cases the crucial step is to
choose the right local invariant that captures the way an expression is expected to
use its local store.

Representation independence

Informally, it is clear that if two functions in ReFS have private local store
that they use in different ways to compute the same result, then they should be
contextually equivalent. One can use coincidence of contextual equivalence with
ciu-equivalence to show that this is true for expressions which use local store only
for temporary variables. However in ReFS it is also possible to write functions that
rely on store remaining private from one invocation to the next. Logical relations
can capture this notion of privacy through local invariants, and we give here two
examples of how this can lead to proofs of contextual equivalence.

Consider the following expressions of Standard ML.:

letvalc =refl = let
funinc() = (c:=lc+1) funskip () = ()
funtest () = (Ic > 0) funtest’ () = true
in in
(inc, test) (skip, test’)
end end.

The first of these evaluates to a pair of functions sharing a common storage cell
one function to increment, and one to test its contents. However the test always
returns true and the increment cannot be observed; so this expression has an
equivalent simpler version which doesn’t bother with the celi corresponding
example in ReFS is this:

Example 5.5.
(let ¢ = ref (1) in (inc c, test ¢)) = (skip, test') (5.1)
: (unit — unit) X (unit — bool)

35

where
inc < e M. (c:=(le+1)) skip < X z. ()
test < Ac. Az (le > 0) test' %< \z. true.

Proof. Although the internal action of these expressions is quite different, they are
contextually equivalent because the value stored incdslalways positive. This
invariance property is expressed by the state relation

rE{(s,0) | s(6) > 0} € Rel({¢},0).

Looking at the bodies of the functiomsc andskip we can show by Proposition 5.1
that

((:=1+1),()) € Eunit(r)
because both preserveSimilarly for thetest functions
((M>0), true) € Epoor(r)

because they give equal results provided th&iblds. By Proposition 4.8(xv)
lambda abstraction preserves these relations and we can then derive

(inc £, skip) € Eunit—sunit(r) and (test £, test’) € Eunit—sboot (T)-
Proposition 4.8(vi) now gives
((ch g? test g)? (Sklp, teSt/>) € 8(unit—>unit)><(unit—>bool) (T>

which are the results of evaluating either side of (5.1). S{tée=1), ()) € r, the
corresponding states resulting from this evaluation are also related and so by the
Principle of Local Invariants (Proposition 5.1)

((let c= ref(l) i (ch c, test C))7 (Sklpv teSt,)) € g(unit%unit)x(unit%bool)(id@)'

The contextual equivalence (5.1) then follows by Operational Extensionality
Theorem 4.10. O

The next example considers not private shared state, but more visible store used
in two different but equivalent ways. Consider these two counters in Standard ML

letvalc =refO = letvalc =ref0

funupx = (c:=lc +x; lc) fundownx = (c:=!c —x; 0 — l¢)
in in

up down
end end

which can be written in ReFS thus:

36

Example 5.6.
(let c = ref (0) in up ¢) = (let ¢ = ref(0) in down c)
where
up ¥ Ne Az (c:=(le+ x);le) down & Ae. Az (c:=(lc—x);0—le).

Proof. Both of these functions maintain an accumulator, summing the arguments
to successive calls and returning a running total. Internally though, the second
function reverses signs throughout. The appropriate local invariant is the rela-

tion r < {(s1,82) | s1(f) = —s2(0)} € Rel({¢},{¢}). For this we have
(up £, down £) € Equuiini(r) and the proof of contextual equivalence proceeds
as in the previous example. O

In both of these examples, the local store is not in fact private: the functions
do export a certain limited access to it, both for reading and writing. What is
important though is that this access is certain to preserve the relevant invariant, no
matter how a surrounding program uses it; and as long as the invariant holds, the
results returned by the given functions always agree.

Memoisation

One practical use for local state is in the implementation ofieano function

This is a function that retains a cache of past results in order to assist future
computations. Logical relations provide a means to show that the consistency of
this cache is maintained, whatever the surrounding program.

Here we consider a higher-order memoisation function, that transforms any
‘repeatable’ function into a memo function. For simplicity, we only record a single
argument/result pair, and take both to be integers. In Standard ML one might define
this by:

funmemoisef = letvala =refOandr = ref(f0);
funf'x =
((if x =lathen()else (a:=x;r:=£fx));!r)
in
f/
end

memoise : (int — int) — (int — int)

The idea here is thaikemoise modifies functionf by attaching two private cellg,
andr, to hold the argument and result of its most recent invocation. The resulting
function £’ acts likef, except that when called with the same argument twice in
succession it uses the cached re&ylsaving recomputation. This can be written

in ReFS as follows.

37

Example 5.7. Let

memoise = \ f.leta = ref (0);r = ref(f0)
n
Az ((if z =lathen () else (a:=x;r:= fz));!r)

We say thatt’ € Val,,;_.;,; cOmputesome total functior : Z — Z if for each
states with loc(F') C dom(s) and everyn € Z,

s, F'n b ¢(n), (s © sn)

for somes,,. ThusF may make use of local or global store, but its results are
‘repeatable’ in the sense that they do not depend on the globalsstatd s is
unchanged at the end of evaluating the applicatiofd’@d a numeral. We claim
that such ar¥’ is suitable for memoisation:

memoise F' = F. (5.2)

In particular for eachn € Z, (memoise F))n computes the same integer Bs,
namelyg(n).

Proof. First note that
s,memoise F | F' (s ® (£, :=0) ® s @ (£, := ¢(0))) (5.3)
where
' \z. ((if © = W, then () else by, = x; 4, := Fz); 1{,.)

is the ‘memoised’ version aof'. A suitable local invariant is that locatiordig and
¢, always hold a valid argument/result pair; which we express with the relation

rE {(5,0) | #(s(6)) = s(6)} € Rel(wolalsr, 0).

wherew, = dom(sg) (which by a-conversion we can assume is disjoint from
{44, 2. }). As before the Principle of Local Invariants (Proposition 5.1) shows that
the bodies oft” and F’ arer-related, so we can use Proposition 4.8(xv) to obtain

(F/a F) € Vint%int(idw ® T)

whereloc(F') C w. Since the state¥,, :=0; so; £, := ¢(0)) and() are related by,
taking (5.3) we can apply Proposition 5.1 again to give

((memoise F), F) € Eiptsint(id,,).

The Operational Extensionality Theorem 4.10 then provides the desired contextual
equivalence (5.2). O

38

We considered total functions : Z — Z in this example only to simplify
matters. Extending the definition of* computesy in a repeatable fashion’ to
partial functions (whem(n) is undefinedf’n must diverge, andglice versg, (5.2)
still holdsprovidedwe restrict attention to thosefor which ¢(0) is defined, since
memoise initialises the cache using this value.

Note that this same memoisation function can be used repeatedly in a program,
to give several memo functions each with their own local store. One memo function
can even be used within another without interference. For exam@leamidG are
function abstractions computigandz), then the compositiof’ o GG (definable in
ReFS in the usual way) computes the composition wfith ; and (5.2) together
with the congruence properties of contextual equivalence imply

memoise((memoise F) o (memoise G)) = F o G

(although one of the memoisations is redundant).

Higher-order profiling

Next we consider the use of local state jpwofiling function usej.e. recording the
calls to a particular function as it is used within a larger program. We use contextual
equivalence to express two important properties of the profiled function:

e it correctly counts the number of times it is called;

¢ the overall program is otherwise unaffected.

Both of these assertions are then proved using logical relations, although in this
case we need to use Proposition 5.4 in addition to the Principle of Local Invariants
(Proposition 5.1).

As with memoisation, a single higher order function can capture the whole
operation of profiling. In Standard ML:

fun profile f = letvalc =refO;
funf'x = (c:=lc + 1;f x);
funr () =lc
in
(£, 1)
end

profile : (0 —»¢') = ((0 = ¢') x (unit — int))

Thisprofile takes any functiod and returns an instrumented versitiogether
with a read operation. Both £’ andr share a private local counterincremented
by each call tat” and read by means af). Otherwiset’ behaves exactly as the
original functionf; which may include further side-effects on global or local store.
The profiling operation is truly higher order, working with functions of all types;
we could for example safely apply it to tlemoise function described earlier.

In ReFS one can write this profiling functional as follows.

39

Example 5.8.

profile & X f. (letc = ref(0)in (f,7)) where f % Az (ci=lc+1; fz)
r ¥ azle.

The fact the profiling correctly records function calls means that the following
contextual equivalence between integer expressions:

let (f',r) = profile F = let (f',r) = profile F’ (5.4)
mn m

PLEV QS P FVQL

r()+1 r()

holds forany F' € Val,_,/, P, Q € Val(s— oy —unit, andV € Val,.

Here the contextP f'; [—]V; Q f') represents a program using the instrumented
function f’. Depending on whether its hole is filled wifii or f’, the final total
r() alters byl. It is significant that the valueB and @ have access only t¢’
in this context and cannot usgo read the current contents of the counter. More
generally, the functiorf’ on its own is indistinguishable from the origin&l

fst(profile F) =2 F :0 — o' (5.5)

In this contextual equivalence the read operator is thrown away,fetielecting
just the profiled functiory’.

Proof. To demonstrate (5.4) and (5.5), look first at the evaluation of the expres-
sions in (5.4). The computation is in three parts, followed by examination of the
counterc using the read operatiar{). Assume that the counter is bound to loca-
tion ¢ and set

def

F'=Xz.(0:=U+1;Fx). (5.6)

Both sides of (5.4) begin with the same evaluation:
s®(:=0),PF' | (), ® (l:=n)® s

for somen € Z. Thanks to the ‘garbage collection’ properties of contextual
equivalence mentioned at the beginning of this section, the unreachable extra
stores; need not concern us. The next step is the evaluation of a cAllioF”:

SQ@U:=n),FV V' s ®{:=n)® s,
S@U:=n),F'V{V d0{U=mn+1)Q s
The only difference so far is the value stored at locatiorWhat is important

now is thatQ F’ preserves this but is otherwise unaffected. The appropriate local
invariant is the relation

= {(s,8") | §'(€) = s(¢) + 1} € Rel({¢},{¢}),

40

which is closed, by Lemma 5.3.

By the Fundamental Property of the logical relation (Theorem 4.9(ii)) we have
that bothF" and (@ areid,-related to themselves. Using Proposition 5.1 we can
show directly that increment preserves

((:=+1), (l:=+1)) € Epnur(r).

Applying Proposition 4.8, we combine all these with the definition (5.6)"ofo
deduce that the applicatidpF” satisfies

(QF',QF") € Eynit(id, @ 1).

We know that the closed relatiofid,, ®) holds before this application, and
Proposition 5.4 now tells us that it also holds after it. Thus

"@:=n),QF | (),s" @ (L:=n") @ s3
"@U:=n+1),QF | (),s" @ (L:=n"4+1)® s3

for somen’ > n, s/, andss. The last computation for each alternative is then

"@U:=n"),(r)+1) I (0 +1),s" @ (l:=n)
s"®@(C=n"+1),r() 4 (W +1),s" ® (L:=n"+1).

The final states ar@d,, ® r)-related and the returned values are equal; thus by the
Principle of Local Invariants, the two original expressions @grelated and the
equivalence (5.4) follows.

The second equivalence (5.5), tlidton its own is indistinguishable from, is
more straightforward. We need to show that

((letc=ref(0)inAx.(c:=lc+1; fx)), F) € Esspr(idy,)
and this follows by Proposition 5.1 from
(F',F) € Voo (id, ®1)

wherer & {(s,()) | s € Sta({¢})}. Thus the operatioprofile has exactly the
behaviour we would expect. O

As with memoisation, we can appbyofile many times to give several profiled
functions, each with its own private counter. So when we wpitefile I, the
function F' may have subprocedures within it that are already recording profiles,
without causing interference. The procedure can also be adapted to profile the
recursive calls a function makes to itself. The proof in this case is no more
complicated than before, thanks to the fact that logical relations are preserved by
recursive function abstractions (Proposition 4.8(xv)).

41

A more intricate situation with shared store arises if we use a profiler that keeps
the same global counter for each function that it modifies:

val(g profile,g read) = let valc = ref0;
funprof fx = (c:=lc + 1; f x);
funread() =lc
in
(prof,read)
end.

Analogues of the equivalences (5.4) and (5.5) can be given for this global profiler,
and proved using logical relations.

Limitations of the Principle of Local Invariants

We give an example to show that the existence of a local state relation, as asserted
in the hypotheses of the Principle of Local Invariants (Proposition 5.1), although
sufficient, is not necessary in order for two expressions té:bg}-related and
hence to be contextually equivalent.

Consider the following two second-order functions in Standard ML.:

val awkward = letvalc = ref O;
funupto_onef = (c:=1;£();!c)
in
upto_one
end

val const_one = fnf = (£();1)
awkward, const_one : (unit — unit) — int.

Both of these evaluate to functions that take a comnfaaglan argument, execute

it and then return the valugé. The second achieves this in a straightforward
manner, whereas the first achieves it in an awkward manner—through the function
upto_one which fetches the return value from private cellc. One expects
awkward andconst_one to be contextually equivalent because this cell, although

it initially holds 0, is set tol before every inspection, and during the execution of
upto_one in any context the functiodi() cannot reset to 0. We shall turn this

into a formal proof of equivalence below. First, let us express these functions in
ReFS:

Example 5.9.
awkward = const_one : (unit — unit) — int (5.7)
where
awkward = let ¢ = ref(0) in A f. (c:=1; f();le)
const_one < X f. (fO;1).

42

To show (5.7) using Proposition 5.1 we would need Rel({¢(}, () satisfying

((t:=0),0)er (5.8)
and (upto_one, const_one) € E(r). (5.9)

where upto_one o Af.(:=1;f();¥). From (5.8) we can deduce that
((Az. (€:=0)), Az.()) € Vunit—unit(r). Using Proposition 4.8(xiii) to combine
this with (5.9), we deduce

(upto_one(Ax.(£:=0)), const_one(Ax.())) € Eimi(r).
But these expressions evaluate to give different results

(¢:=0), upto_one(Az.(£:=0)) | 0,(¢£:=0)
(), const_one(Az.()) | 1,().

and this is easily seen to be impossible for expressions relatédabya ground
type. Thus we cannot have both (5.8) and (5.9) at the same time, and there is no
way to prove contextual equivalence (5.7) through Proposition 5.1.

We are left in the situation that although (5.7) does hold, and by Theorem 4.10
the two expressions are therefore related&byly), it seems hard to demonstrate
this relation directly. The root of the problem is that the argunfent (¢ := 0)),
which causesipto_one to return the surprise valug cannot in fact be provided
by any surrounding context. Note that the locatias not entirely private, since
its contents can be changed (fronto 1) by a use ofupto_one in a context which
knows nothing of (such ag—|(A z. ())). (See Stark 19945.4, Example 14 for a
related example, this time of contextual inequivalence.)

This problem with(Az. (¢ := 0)) resembles known subtleties of contextual
equivalence in Algol due to the undefinability of so-called ‘snapback’ operations in
the language (see Pitts 1997, Example 4.1—an example due to O’Hearn). However
this particular example has no direct Algol equivalent, because it relies on the fact
thatupto_one can both change the state and return a value — such ‘active integers’
are intentionally excluded from Algol.

We conjecture that a more general form of logical relation can be used to
demonstrate the equivalence (5.7) via a result like Proposition 5.1, if we use
parameterising relationswith Kripke-style indexing to capture the one-way nature
of state change. Here this would allow the following relation with two components:

L D T where r; = {(s,()) | s(¢) =0o0r1}
ro={(s,()) [s(£) = 1}.

This is meant to express the fact that the value stored at locatizay progress
from 0 to 1, but is then fixed. More complex examples of progressing state would
require a more complex index structure.

Without such generalised logical relations, we can proceed only by brute force.

43

Proof of (5.7). By completeness of ciu-equivalence (Theorem 4.10) it is enough
to consider evaluation in any continuation. In this case we derive the requirement
that for any state and continuatiors” with ¢ ¢ dom(s) 2 loc(K)

(s® (£:=0), K, upto_one) T (s, K, const_one).

This is equivalent to showing that for any statend expressiod/ with ¢ ¢
dom(s) D loc(M) andfv(M) C {g : (unit — unit) — int}

s® (£:=0), Mupto_one /g||| < s, M[const_one /g]. (5.10)

This can be proved by computation induction, but we first need a suitably strong
induction hypothesis. Define the predic&{e, M) for statess and expressions/
with £ ¢ dom(s) 2 loc(M) according to

P(s, M) & There is a state’ and a valug’ with free variabley such that

1. s, M[const_one /g] || V[const_one /g], s’

and 2a. Vn € Z. s ® (¢ :=n), M[upto_one /g|
I Vupto_one /g],s @ (£:=1)
or2b. Vné€Z s® (L:=n), Mlupto_one /g|
I V]upto_one /g],s' ® (£ :=n)
& s, MINf9/g) b VIA£.9/g), '

This rather complex expression captures exactly the way that evaluations of
upto_one and const_one correspond to each other in appropriate contexts. In
particular, whenevel![—/g| is evaluated, it either applies the function replagjng
(case 2a), or it does not (case 2b).

The following properties hold dP(s, M):

Vn e Z.(P(s,M) < s® (£:=n), M[upto_one /g]) (5.11)
P(s,M) < s, M[const_one /gl . (5.12)

The forward implications simply expand the definition®fs, /7). The reverse
directions can be proved by induction on the height of proofs of the evaluations
s®(£:=0), M[upto_one /g] || V', s ands, M |[const_one /g] || V', s' respectively.
All the details are routine: in particular every evaluation rule either creates one of
the situations (2a) or (2b), or preserves an existing one.

These equivalences (5.11) and (5.12) immediately give (5.10), from which the
original contextual equivalence (5.7) follows as indicated. O

6 Further topics

We have seen that for each type two ReFS expressions are contextually
equivalent if and only if they aréid,, }-related. Moreover, this characterisation

44

of contextual equivalence not only implies the Mason-Talcott ‘ciu’ theorem for
ReFS, but also allows one to formalise various intuitive arguments about contextual
equivalence based on invariant state relations. The examples in the previous section
demonstrate that the logical relation provides a powerful method for establishing
ReFS contextual equivalences. Clearly it is of interest to extend the techniques
introduced here to larger fragments of Standard ML than that represented by the
ReFS language. In particular we would like to be able to treat:

(a) recursively defined types (rather than the simple types of ReFS),

(b) references to data of any type (rather than the integer-valued references of
ReFS), and

(c) notypes at all!

(a) would enable one to tackle proofs of equivalence involving efficient implemen-
tation with pointers and arrays of data structures with purely functional behaviour.
(One would probably want to consider abstract types at the same time.) (b) is of
interest because of the connections between object-based programming and the
use of storage for function and procedure values. By (c) we mean the kind of
untyped imperative lambda calculus considered by Mason and Talcott (1991a) and
others; its dynamics includes the phenomena that (a) and (b) introduce in a more
disciplined way, and more besides.

Extension (a) takes us beyond the techniques used in this paper because we
relied on the simple nature of ReFS types to define the relatigis), 1C,(r),
andV,(r) by induction on the structure of the typeg(see Definition 4.2). In the
non-simply typed case one could instead attempt to define these relations for all
types simultaneously by solving a fixed point equation for a suitable operator on
(families of) relations. The addition of algebraic data types (lists, tretes, to
ReFS could be accommodated in this way. However, general forms of data type
declaration may have negative or mixed-variance occurrences of the type being
defined. The property required of the logical relation at such a type takes the
form of a fixed point equation for an operator that is non-monotone; so it is not
immediately clear that it can be satisfied. For denotationally-based logical relations
there are ways of overcoming this problem using the ‘minimal invariance’ property
of recursively defined domains: see (Pitts 1994, Pitts 1996). Operational versions
of the techniques imoc. cit. are possible and can be used to extend the results
presented here to cover (a). (This suggestion has been taken up for a pure functional
language in Birkedal and Harper 1997.)

Regarding (b), itis well known that the ability to store function values gives rise
to more complex behaviour than storing only values of ground types. For example,
it becomes possible to encode recursive function definitions. This is reflected in
the denotational semantics of such storage by the need to solve a mixed-variance
domain equation. In this respect the difficulties which must be overcome to define
a suitable logical relation might seem to be similar to those in case (a). However,

45

there are further complications. In ReFS any dynamically created state has
‘support’ disjoint from the existing global state: the definition of the logical relation
exploits this fact in the use it makes of the smash product’ of state-relations.

This disjointness of support breaks down with (b), since a global location can
get updated with a function value involving a freshly created location. (Consider
for examplelet valb = ref(fnx = 0) ina:= (fnx = (!b)0) end, Wherea is

some previously declared identifier of typént — int)ref.) Therefore the

way the parameterisation of the logical relation treats dynamic allocation is more
complicated in the presence of (b) and it remains to be seen if the techniques of
this paper extend to cover this case.

Even for ReFS itself, it is possible to consider more refined versions of the
parameterisation. For example one can consider relations on the flat complete
partial order of states rather than on the set of states. Building on work of O’'Hearn
and Reynolds (1996), Pitts (1997, Example 4.1) shows how this small alteration
helps with operational reasoning about divergence in Idealised Algol. It seems
likely that it would be similarly useful for ReFS.

Of course the above list of enhancements is hardly complete: one might well
want to consider I/O effects, or exception mechanisms, for example. When adding
language features, we also need to keep in mind the feasibility of the proof
method. The strength of the technique presented here lies as much in its usability
as in its theoretical power. Although one may need to develop operationally-
based analogues of some rather sophisticated methods from domain theory in
order to define a logical relation (and establish its Fundamental Property) for
function references and recursive datatypes, these technicalities do not necessarily
complicate theuseof logical relations to prove contextual equivalence. We can
already see this in the treatment of recursion. The proof of Proposition 4.8(xv) is
not straightforward, but its statement is simple and its use unrestricted: the logical
relation is preserved by any recursive function abstraction. Our aim is to further
increase the power of operationally-based logical relations without compromising
their ease of use.

The operationally based logical relation we have presented here seems to
provide a convenient and reasonably powerful method for proving contextual
equivalences between functions with local store. Once a correct relation between
states has been identified, verifying equivalence involves routine calculations with
the structural operational semantics of the language. However, the examples we
have given are all small-scale. It would be interesting to investigate machine-
assistance for proofs using our methods. Note that we do not necessarily have
to implement the proof that logical relations imply contextual equivalence; what
might benefit from machine-assistance is the demonstration, in the case of large
programs, that two expressions diid,, }-related.

46

References

Birkedal, L. and R. Harper (1997). Relational interpretation of recursive types
in an operational setting (Summary). Broc. TACS'97 Lecture Notes in
Computer Science. Springer-Verlag, Berlin. To appear.

Felleisen, M. and D. P. Friedman (1986). Control operators, the SECD-machine
and the\-calculus. InFormal Description of Programming Concepts, ipip.
193-217. North Holland.

Harper, R., B. F. Duba, and D. MacQueen (1993). Typing first-class continua-
tions in ML. Journal of Functional Programming(3), 465—-484.

Harper, R. and C. Stone (1996). A type-theoretic account of Standard ML
1996 (version 2). Technical Report CMU-CS-96-136R, Carnegie Mellon
University, Pittsburgh, PA.

Honsell, F., I. A. Mason, S. F. Smith, and C. L. Talcott (1995). A variable typed
logic of effects.Information and Computation 1{9), 55-90.

Hughes, R. J. M. (1989). Why functional programming matt€h& Computer
Journal 342), 98-107.

Mason, I. A. (1986)The Semantics of Destructive Ligth. D. thesis, Stanford
University. Also published as CSLI Lecture Notes Number 5, Center for the
Study of Language and Information, Stanford University.

Mason, I. A., S. F. Smith, and C. L. Talcott (1996). From operational semantics
to domain theoryinformation and Computation 128), 26—-47.

Mason, I. A. and C. L. Talcott (1991a). Equivalence in functional languages
with effects.Journal of Functional Programming, R87—-327.

Mason, I. A. and C. L. Talcott (1991b). Program transformations for configuring
components. IlPEPM '91: Proceedings of the ACM/IFIP Symposium
on Partial Evaluation and Semantics-based Program ManipulatR@M
SIGPLAN Notices 26(9), pp. 297-308.

Mason, I. A. and C. L. Talcott (1992a). Inferring the equivalence of functional
programs that mutate dafBheoretical Computer Science 10%7-215.

Mason, I. A. and C. L. Talcott (1992b). References, local variables and opera-
tional reasoning. IfProceedings of the 7th Annual Symposium on Logic in
Computer Scien¢ep. 186—-197. IEEE Computer Society Press.

Milner, R., M. Tofte, and R. Harper (1990yhe Definition of Standard ML
MIT Press.

O’Hearn, P. W. and J. C. Reynolds (1996, April). From Algol to polymorphic
linear lambda-calculus. Draft version, 46 pp.

O’Hearn, P. W. and R. D. Tennent (1993). Relational parametricity and local
variables. IR0th SIGPLAN-SIGACT Symposium on Principles of Program-
ming Language9p. 171-184. ACM Press.

47

O’Hearn, P. W. and R. D. Tennent (1995). Parametricity and local variables.
Journal of the ACM 4@3), 658—709.

Paulson, L. C. (1991 ML for the Working ProgrammeCambridge University
Press.

Pitts, A. M. (1994). Computational adequacy via ‘mixed’ inductive definitions.
In Proc. MFPS’93, New Orleans, LA, USA, April 199%&lume 802 of
Lecture Notes in Computer Scienpp. 72—82. Springer-Verlag, Berlin.

Pitts, A. M. (1996). Relational properties of domailmormation and Compu-
tation 127 66-90.

Pitts, A. M. (1997). Reasoning about local variables with operationally-based
logical relations. In P. W. O’'Hearn and R. D. Tennent (Edalyol-Like
LanguagesVolume 2, Chapter 17, pp. 173-193. Birkhauser. First appeared
in Proc. LICS’96 pp 152-163, IEEE Computer Society Press, 1996.

Pitts, A. M. and |. D. B. Stark (1993). Observable properties of higher or-
der functions that dynamically create local names, or: What's new? In
Proc. MFCS’93, Gdask, 1993Volume 711 ofLecture Notes in Computer
Sciencepp. 122-141. Springer-Verlag, Berlin.

Plotkin, G. D. (1973). Lambda-definability and logical relations. Memorandum
SAI-RM-4, School of Artificial Intelligence, University of Edinburgh.

Plotkin, G. D. (1980). Lambda-definability in the full type hierarchy. In J. P.
Seldin and J. R. Hindley (Eds.Jp H. B. Curry: Essays on Combinatory
Logic, Lambda Calculus and Formalisimp. 363—-373. Academic Press.

Reynolds, J. C. (1981). The essence of Algol. In J. W. de Bakker and J. C.
van Vliet (Eds.),Algorithmic Languages. Proceedings of the International
Symposium on Algorithmic Languagep. 345-372. North-Holland, Ams-
terdam.

Reynolds, J. C. (1982). Idealized Algol and its specification logic. In BelN”
(Ed.), Tools and Notions for Program Constructiopp. 121-161. Cam-
bridge University Press.

Reynolds, J. C. (1983). Types, abstraction and parametric polymorphism. In
R. E. A. Mason (Ed.)Information Processing 83pp. 513-523. North-
Holland, Amsterdam.

Seiber, K. (1995). Full abstraction for the second order subset ofLaDA
like language. Technical Report A 04/95, Fach. Informatik, Univ. des
Saarlandes, Saatmken, Germany.

Stark, I. D. B. (1994)Names and Higher-Order FunctionBh. D. thesis, Uni-
versity of Cambridge. Also published as Technical Report 363, University
of Cambridge Computer Laboratory, April 1995.

Talcott, C. (1997). Reasoning about functions with effects. In this volume.

