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Abstract

Traditional ordinary differential equation-based approaches to simula-
tion of chemical reacting systems fail to capture the randomness inherent
in such systems at scales common in intracellular biochemical processes. A
number of stochastic algorithms have been proposed and implemented on
an ad-hoc basis, but no standard stochastic chemical simulation package
exists. We present STOCHKIT, an efficient, extensible stochastic simula-
tion framework developed in the C++ language that aims to make stochas-
tic simulation accessible to practicing biologists and chemists, while re-
maining open to extension via new stochastic and multiscale algorithms.
STOCHKIT1.0 has the basic simulation ability using the popular Gillespie’s
SSA algorithm, optimized SSA algorithm, explicit, implicit, and trape-
zoidal tau-leaping methods. Useful tools are provided to make stochastic
simulation more convenient. We provide a Java Converter to convert an
SBML file specifying the chemical mechanism to the input files needed
for our software. We also provide some basic tools to solve a question of
great concern to developers of accelerated stochastic algorithms—how can
we verify the accuracy of a stochastic solver, given the inherently random
nature of stochastic simulation? The Kolmogorov distance and histogram
distance for quantifying differences in statistical distribution shapes are
provided in the MATLAB language. For those who need to run the Monte
Carlo simulations a large number of times to collect the ensemble, we also
provide a convenient MPI interface enabling the Monte Carlo simulation
to run on a parallel cluster. This manual presents a detailed introduction
to the software.

*This work was supported by the California Institute of Technology under DARPA Award
No. F30602-01-2-0558, by the U. S. Department of Energy under DOE award No. DE-
FG02-04ER25621, by the National Science Foundation under NSF awards CCF-0326576, CCF-
0928912 and ACI00-86061, and by the Institute for Collaborative Biotechnologies through
grant DAAD19-03-D-0004 from the U. S. Army Research Office.



1 Introduction

Chemical reaction systems have historically been simulated using ordinary dif-
ferential equation (ODE) initial value problem (IVP) methods. Such methods
appeal to chemical kinetic theory, using reaction rate constants to characterize
the evolution of the system in time as a function of the concentrations of the
reactant species. As an example, consider the simple reaction

S + BSy —5 ~4Ss, (1)

where S7, Sy, and S3 represent chemical species, «, 8, and 7 are positive in-
tegers denoting the stoichiometry of the reaction, and £ is an experimentally-
determined reaction rate constant expressed in units of concentration per unit
time (typically mole L=1s™1).

Classically, the simulation of such a reaction would proceed by writing down
the kinetics equations that characterize the instantaneous rates of change of the
concentrations of each species S, as a function of the reaction rate k, and the
instantaneous concentrations of each of the reactant species [23]. For Reaction
1, these so-called reaction rate equations are:
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where [S,,] denotes the instantaneous concentration of species S,, '. Equations (2)
clearly constitute a system of coupled first-order ODEs. A standard initial value
problem is formed by specifying the concentration of each species S, at some
initial time ¢;,. By applying a numerical integration algorithm such as Euler’s
method or any of a host of Runge-Kutta or multistep methods to the IVP, the
concentration of each species at any future time ¢ can be closely approximated.
A substantial body of theory exists for the numerical solution of such IVPs; see
for example [5].

1.1 The Continuum Approximation

Two related assumptions are inherent in the use of differential equations for
chemical simulation—first, that the reactant populations are large, and second,

!The exponents in the reaction rate equations (2) are not always simply the stoichiometric
coeflicients of the reaction, because there may be intermediate species in a reaction whose
existence cannot be inferred from the simplified reaction equation. In general, we can say
d[S;]/dt = f(k,[S1],-..,[Sn]), where S; denotes any of the N species participating in the
reaction, and f is some differentiable rational function. See [23] for more on the determination
of f.



that the reaction environment is well-stirred. Indeed, these are the only condi-
tions under which it is meaningful to discuss the concentrations of the reactant
species. Essentially, these assumptions allow us to approximate the system state
as a smooth, real-valued continuum. By extension, it is also assumed that an
arbitrary degree of accuracy can be achieved with a numerical ODE solver by
choosing a suitably small step size.

In the context of industrial chemical reactors and other large-scale domains,
the continuum approximation can be quite effectively employed, and results
in no significant loss of accuracy. However, it is at best an abstraction—
stoichiometry and thermodynamics dictate that chemical reactions are inher-
ently integer-valued stochastic processes. This distinction becomes increasingly
important as the scale? of the reaction system decreases.

1.2 Biochemistry and Stochastic Simulation

An important class of systems for which the continuum approximation cannot
reasonably be made are those arising in cellular processes. Biochemical reaction
systems are often quite complex. Reactants may participate in several different
reaction pathways, and may be present in quantities that differ by several orders
of magnitude. In many cases, the presence or absence of a single important
molecule (i.e., an enzyme) can significantly change the course of the reaction.
Gene expression is one scenario for which this is often the case [21, 4, 22]. When
reactant populations are this small (perhaps in the ones or tens), it makes little
sense to speak of their concentrations, and the standard ODE/IVP numerical
simulation techniques are no longer applicable. Clearly an alternative approach
is called for.

Because chemical reactions result fundamentally from random collisions of
discrete molecules, a more faithful numerical simulation technique might try to
explicitly model these molecular interactions. Rather than tracing the evolution
of the concentration of each species in time by approximating it as a differentiable
function, such methods would instead tally the number of molecules of each
species, and rely on discrete-event simulation techniques to evolve the population
vector in time.

An important advantage of the discrete approach to modeling chemical reac-
tion systems is that it is capable of capturing the randomness inherent in such
processes. Because the populations of important species can be quite small, the
evolution of the system state may depend strongly on the relatively unlikely in-
teraction of these molecules with those of other, more abundant species. Such
an interaction can result in a cascade of other reactions that significantly alters
the system state. In a very real sense, the state of such a system at any time

2In this context, scale refers to both the spatial dimension of the reaction vessel and the
populations of the reactant species.



t > ty depends not only on the relative abundance of each of the reactant species
at the initial time ¢y, but on the exact position, velocity, orientation, etc. of
each molecule at that time.

For a variety of reasons, this sensitive dependence on initial conditions presents
a problem. Quantum mechanics (specifically the Heisenberg Uncertainty Princi-
ple) asserts the impossibility of ever measuring the exact position and velocity of
a single particle, to say nothing of an entire system of hundreds or even millions
of molecules. Furthermore, even if it were theoretically possible to do so, so
much initial data would be needed that the simulation would be impractical to
use.

Stochastic methods offer a convenient shortcut that allows us to avoid the
initial condition dilemma. Rather than employing an exact physical model to
track the movement and interactions of each molecule, we can instead use a
probabilistic model that estimates the likelihood of occurrence of each reaction
pathway as a function of the instantaneous population of each reactant species
and a rate constant ¢, derived from the standard reaction rate constant k[10].
We can then draw samples from these probability distributions using standard
Monte Carlo techniques to determine the time of the next reaction event, and up-
date the system state according to the stoichiometry of that reaction. Gillespie’s
Stochastic Simulation Algorithm (SSA) [10, 11] is the seminal work in this direc-
tion (for a detailed description of the SSA, see [10, 11]). By performing a large
number of realizations (and with a sufficiently good random number generator),
such stochastic techniques make it possible to visualize the entire distribution of
possible system states at time ¢.

1.3 Accelerated Stochastic Methods

Unfortunately, the rigorous physical basis for the SSA comes at a high cost
in computational run-time, as these algorithms derive their accuracy from the
explicit modeling of each reaction event. Even systems with relatively modest
reactant populations and reaction rates might generate millions of such events
in a short time, and the number of events tends to increase superlinearly as the
population size increases. Furthermore, biological reaction networks frequently
feature some pathways with comparable forward and reverse rates that are large
relative to those of the other pathways. These systems effectively involve multiple
time scales, with uninteresting high-frequency oscillations superimposed on a
slow overall trend driven by the more important reaction channels. In such
cases, the vast majority of the simulated reaction events will consist of forward
and reverse firings of these uninteresting channels, resulting in relatively little
change to the overall population vector. If we are concerned with the distribution
of the population at some final time ¢; rather than with the exact sequence of
reactions that occurred in a particular realization, much of the computation time
is wasted on ‘uninteresting’ reaction events.
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Accelerated stochastic methods are an active area of research in computa-
tional biochemistry. These algorithms seek to improve upon the performance of
the SSA by enabling larger time steps, sacrificing some accuracy in the name
of efficiency. Various methods have been proposed (see [12, 7, 35, 33, 9], for
example), each with a different strategy for relieving the computational burden
of simulating each reaction event. Such techniques appear quite promising, often
decreasing the runtime by several orders of magnitude while maintaining a high
degree of accuracy. However, no ‘silver bullet’ has thus far been discovered. Con-
ditions that will cause each technique to fail outright or rapidly to lose accuracy
are known. Accelerated stochastic simulation techniques will likely continue to
be an important area of research until a suitably robust and efficient, multiscale
algorithm is developed.

1.4 Scope of Work

The work presented herein consists of a suite of software tools for stochastic
chemical simulation developed for the C++ [29], JAvA [30] and MATLAB [20]
programming languages. The intended audience for the programs can be divided
into two distinct, yet equally important groups—those doing research on and
development of stochastic simulation methods, and those seeking to employ such
methods to further their biological or chemical research.

The primary tool presented is a generalized stochastic simulation package
StocHKiIT. This package makes it possible to access a variety of stochastic
solver algorithms through a unified interface, such that any available solver can
be applied to a given problem by changing a single function parameter. In
addition, due to the modular nature of the package, those developing new solver
algorithms (or simply refining existing ones) need only supply a new routine that
captures their particular innovation (i.e. stepsize selection, single step execution,
data management, etc.).

A number of secondary tools are provided to complement the stochastic sim-
ulation solvers. The DataAnalyzer assists with collecting and analyzing distri-
bution statistics generated by making ensemble runs of the solver on a given
problem. These tools are useful for comparing the accuracy of various solver
algorithms, and for visualizing the range of outcomes a particular problem can
generate. The SBML2StochKit Converter provides a tool to convert an SBML
[14] file to the input files required by STOCHKIT. Using this converter, the user
can conveniently construct their problem files using any SBML constructor and
run the simulation using STOCHKIT. In many applications, Monte Carlo simu-
lation has to be run a large number of times to collect the ensemble. This work
is natural for parallel computing. We provide an MPI interface to the StochKit
package. The user can easily use this tool to collect the ensemble using a parallel
cluster. Thus, STOCHKIT and its supporting tools should be effective and easy
to use for both of its intended audiences.
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Figure 1: Structure of STOCHKIT

The structure of STOCHKIT is shown as in Figure 1.4. In this manual we
will explain the details of each block.

2 Mathematical Primitives in C++

STOCHKIT was initially developed in the MATLAB language[3]. The develop-
ment of the C++ implementation of STOCHKIT was slowed by the low level of
support for scientific programming provided by the C++ standard library. Specif-
ically, matrix and vector primitives are not built into the language, though the
strong support for data abstraction and operator overloading make it relatively
easy to create linear algebra libraries whose syntax and semantics closely match
those of standard mathematical notation. A number of commercial ([16]) and
open-source ([28, 24, 31, 27, 15]) libraries provide this capability already.

A review of the freely available linear algebra libraries for C++ was inconclu-
sive. LAPACK++ ([15]) seemed like a logical choice due to its affiliation with
the successful LAPACK Fortran/C libraries [2], but it has been superseded by
TNT ([24]), which appears to be no longer supported. MTL ([28]), Blitz++
([31]), and TNT ([24]) were rejected for syntactical reasons—although improved
performance is the primary goal of the C++ implementation, a secondary goal is
to maintain as much syntactic commonality with the MATLAB implementation
as is feasible. For this reason, it was decided that it would be worthwhile to
spend some time implementing a small library whose syntax and semantics con-
formed to those of MATLAB. This decision was made with some trepidation, and
will be worth revisiting in the future if a “standard” C++ linear algebra library
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emerges.

Basic Capabilities

The CSE::Math library defined and implemented in the Math directory provides
a set of operations to ease the transition from MATLAB to C++ development. It
is not intended to serve as a general-purpose high-performance linear algebra
library, but rather to minimize surprises for experienced MATLAB programmers
while remaining as efficient as possible within the context of STOCHKIT. The
basic capabilities are outlined below.

Vector and (dense) Matrix Classes Basic linear-algebraic quantities are im-
plemented with strict deep-copy. This means that unnecessary memory
allocation and data movement may sometimes occur, but guarantees that
modifications to one vector or matrix do not inadvertently cause changes
in others via aliasing. Vectors and Matrix are implicitly column-oriented.
This helps to construct internal calls to the popular linear algebra For-
tran packages (LAPACK or LINPACK) when necessary. The Vector
and Matrix classes and all of the following operations are defined in the
CSE: :Math namespace.

Indexing Operations Elements from vectors and matrices can be accessed us-
ing the ‘()’ operator as in MATLAB. Unlike MATLAB, indices start at 0
(as is customary in C and C++). Rows and columns of matrices can be
selected using the Row() and Col() member functions. This is a neces-
sary departure from the MATLAB slicing syntax, as the ‘:’ operator is
not available for overloading in C++. These operations return objects that
serve as proxies for the row or column of the original matrix, such that
the expression ‘m.Row(0) = 1;’ fills the top row of the matrix with ones,
rather than creating a separate vector object and filling it with ones. How-
ever, all operations defined for vectors are also defined for matrix row and
column proxies, so they can be treated as vectors when convenient without
excessive data copying.

Scalar-Vector and Scalar-Matrix Operations As in MATLAB, binary op-
erators ‘+’, ‘=’ and ‘*’ involving any mix of scalar and vector or scalar and
matrix operands are provided. The resulting value is a matrix or vector
equal to the original with the scalar operation applied to each element.
Thus, the expressions ‘y = x * 5;’ and ‘y = 5 * x;’ (where x and y are
vectors) are equivalent, with the result that ||y|| = 5||x||. The division
operator, ‘/’, can have a vector or matrix on the left side and a scalar on
the right, and similarly applies the scalar division to each element of the

[/

matrix. In addition, the ‘“+=’, ‘=", ‘4=’ and ‘/=" operators are provided
for vector or matrix left sides, and result in in-place modification of the
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left side operand. Thus, ‘x += 5;’ is semantically equivalent to ‘x = x +

5;’, but avoids the expensive creation of a temporary object to hold the
intermediate result. These operators have no analog in MATLAB, but will
be familiar to C and C++ programmers and are provided because they are
significantly more efficient when applicable.

Vector-Vector Operations Vectors can be added and subtracted just as in
MATLAB. An InnerProduct() function is provided to obviate the need
for a data-copying transpose operation (although Matrix objects do have
a defined Transpose() function). The Norm() function can compute any
vector p-norm. As mentioned above, all vector operations are equally valid
for matrix row and column proxies.

Matrix-Vector Operations Vectors can be left-multiplied by matrices, and
linear systems can be solved for a particular right side vector using the
SolveGE() function. If the USELAPACK option is chosen, SolveGE()
internally calls LAPACK Fortran LULinearSolver dgesv(), otherwise we
provide a simple implementation of Gaussian Elimination with partial piv-
oting. Our numerical test shows that the LAPACK function is 10% slower
but should be more robust.

Matrix-Matrix Operations Matrices can be added, subtracted, and multi-
plied using standard operator syntax. An identity matrix of any size can
be constructed via the Identity() function, and the Zeros() and Ones()
functions are analogous to the M ATLAB routines of the same names.

It was not possible to exactly match MATLAB syntax in all cases, as the set of
operators available in C++ and MATLAB differ slightly. However, in most cases
the changes were minor and unsurprising, and translation from MATLAB code
to C++ was a simple task once the CSE::MATH library was in place.

Random Number Generation

High quality pseudorandom number generation is the cornerstone of any stochas-
tic simulation system. In fact, statistical results can only be relied upon if the
independence of the samples can be guaranteed. The standard library routines
rand() from C, and random(), which is not present on all UNIX systems, could
in principle be used to provide uniform random integers for our simulations.
However the implementation of these routines is not the same on all systems,
and the quality of the various implementations is often poor. Favoring speed
over quality, rand () is usually implemented using a one-seed linear congruential
algorithm [25], and hence produces a sequence with period 23% (4,294, 967, 296)
or less on 32-bit architectures. This short period suggests that repetition of the
sequence is a realistic possibility for algorithms that take many steps (e.g. SSA)
or when many realizations are needed.



For the C++ implementation of STOCHKIT, a higher-quality source of pseu-
dorandom numbers was needed. We chose to use the Scalable Parallel Random
Number Generators Library (SPRNG) [18, 19]. SPRNG provides multiple gen-
erators; by default we use the linear congruential generator, because it is the
fastest one, but only one variable needs to be modified in order to switch to a
different type of generator. An added bonus of using SPRNG is that we now
have the ability to parallelize our code at will, since SPRNG provides a facility
for generating parallel streams of random numbers that are guaranteed to be
uncorrelated.

Furthermore, non-uniform distributions are needed—the 7-leaping algorithm
requires Poisson deviates, and one can easily imagine future stochastic algorithms
that require numbers drawn from normal, binomial, or other distributions. The
library selected for this purpose was RANLIB.C [6], freely available on Netlib
[8]. RANLIB.C provides generators for a wide variety of distributions based
on a common uniform generator with period greater than 2 x 10'® [17], making
sequence repetition extremely unlikely. Nevertheless, we adapted RANLIB.C to
use SPRNG’s linear congruential generator as its uniform generator, in order to
further minimize the probability of sequence repetition. A simple C++ wrapper
was provided for a few of the RANLIB.C routines to improve user-friendliness.
These functions are also defined in the CSE: :Math namespace.

3 Stochastic Simulation Routines

This directory contains the core simulation functions of our package. With possi-
ble further extensions in mind, these functions were designed to be as modular as
possible. The simulation methods and major drivers are provided as functions.
The user can call these functions in his/her own code. Examples are provided in
the Test directory. The following is the basic outline followed by all algorithms:

1. Configuration Program inputs are analyzed and used to set key solver pa-
rameters (e.g. tolerances, step size, etc.).

2. Solution Loop The following steps are repeated at each time ¢ as the solu-
tion advances from initial time Z, to final time ;:

1. Select the step size dt.

e For SSA, this involves determining the time at which the next
reaction will fire.

e For 7-leaping methods, this involves determining the largest step
that can be taken without significantly altering the reaction propen-
sity function (the so-called leap condition). In the adaptive mode[32],
the selected 7 will be further compared with the time stepsize
given by SSA to decide which method to use in the next step.
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e For any solver, a check is needed to make sure that ¢ + dt < t;.
2. Take a single step to t + dt with the selected algorithm.

e For SSA, determine which reaction is imminent, and generate a
new state vector reflecting the occurrence of this reaction.

e For 7-leaping methods, determine how many times each reaction
channel fired during the interval [t,¢ + dt), and generate a new
state vector reflecting the cumulative effect of these reactions.

e For any method, checks must be implemented to prevent non-
physical behavior. In particular, reactant species populations
must be non-negative.

3. Update the solution history.

e If the user wishes to see the entire solution history, append the
new state vector to the history.

e If the user wishes to see the solution history sampled at some
fixed interval, determine if ¢ + dt is one of the sample times, and
if so, append the new state vector to the history.

e If the user cares only about the final state of the solution, over-
write the history with the new state vector.

4. Repeat if t < t5.

3. Cleanup & output Terminate the solver loop and return the solution his-
tory to the user.

All algorithms are implemented in the CSE::StochRxn library. In order to
use this library, we highly recommend users try the test examples provided in
the TEST directory. The following are the concepts involved in this library:

System A system contains three necessary elements. The first element is the
state vector, which represent the population of all the species in the system.
If a system involves N molecular species {Si, ..., Sy}, the state vector
is denoted by X(t) = (Xi(¢),..., Xn(t)), where X;(¢) is the number of
molecules of species S; in the system at time ¢. The user is required to
provide N, the dimension of the state vector and xg, the initial value of
X. The second element is the reaction set, which contains all the reaction
channels. We denote these by {Ry,..., Ry }. In the current version, the
user is required to provided all the possible reaction channels. We are
aware that there are some applications in which it is not practical to list
all possible channels. That situation is not handled in the current version.
The last element is the simulation time interval. The user is required to
provide the initial time ¢y, and the final time ¢;.
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ReactionSet A ReactionSet contains all the possible reaction channels in a sys-
tem. Each reaction channel R; is characterized by the propensity function
a; and by the state change vector v; = (v1j,...,vnj): a;(x)dt gives the
probability that one R; reaction will occur in the next infinitesimal time
interval [t,t + dt), and v;; gives the change in the S; molecular population
induced by one R; reaction. The user must provide M, the number of
reaction channels, an N x M Matrix v, the stoichiometric matrix, and a
propensity function PropensityFunc, which takes a Vector of states as an
argument and returns a Vector of propensities.

SolverOptions For a system, different simulation and output methods can be
chosen by setting up SolverOptions. Some important parameters are:

StepControl This is an option to choose different simulation strategies.
Two possible options are provided. One is FixedStep (value = 0).
Under this option, a fixed simulation method (SSA or one of the
tau-leaping methods) will be applied. The other is AdaptiveStep
(any nonzero value). Under this option, the non-negative tau-leaping
method [32] will be applied, which will automatically switch between
SSA and tau-leaping methods according to the algorithm given in
[32]. If the user doesn’t set this value, the default value will be taken
as FixedStep(0).

StepsizeSelectionFunc This is a function which decides the time progress
of the current step. The possible options are SSADirect_Stepsize (de-
fault), which uses Gillespie’s SSA method to decide the next reaction
time and Fixed_Stepsize, which uses a fixed stepsize. The second
option can be used with leaping methods. If it is chosen, the user
should provide an initial stepsize in the parameter initial_stepsize.
Other options include Gillespie_Stepsize (Gillespie’s stepsize selection
strategy [12]), GillespiePetzold Stepsize (Gillespie and Petzold’s im-
proved stepsize selection strategy [13]), and Cao_Stepsize (Cao et. al’s
componentwise stepsize selection formula [34].

SingleStepFunc This is a function to update the states in each step. The
possible options are:

SSA SingleStep, OSSA _SingleStep and MSSA _SingleStep They
pick one reaction channel as in the SSA method, and updates the
states affected by this reaction; SSA _SingleStep is the default
value.

ExplicitTau_SingleStep It updates the states according to the ex-
plicit tau-leaping method [12].

ImplicitTau_SingleStep It updates the states according to the im-
plicit tau-leaping method [26].
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ImplicitTrapezoidal SingleStep It updates the states according
to the trapezoidal tau-leaping method|[1].

Note that if an implicit method is chosen, the user should provide
the absolute tolerance absolute_tol and relative tolerance relative_tol
for Newton iteration at each time step. The Jacobian function for
the propensity function should also be provided for the linear system
in the Newton iteration. The user can choose to provide the ana-
lytic function to evaluate the Jacobian, or to use the finite difference
method.

Progress_interval This is an option for the simulation progress report.
The program will print the states to the standard output at the end
of each such progress interval. This can be helpful for debugging pur-
poses. This value gives the length of progress interval by the number
of steps between reports. The user should usually select a large num-
ber; Otherwise the progress report will slow down the simulation.

StochRxn This is the function to compute one realization. It requires argu-
ments of initial state vector xy, starting time %, ending time ¢;, Reaction-
Set and SolverOptions. Then it performs the simulation according to the
setup. After the simulation is done, a simulation history is returned to the
function call.

CollectStats This is the function to compute many realizations and generate
ensembles. It is useful to study a system’s statistical properties. Besides
the arguments one single realization requires, this function requires another
argument: the ensemble dimension, which represents how many Monte
Carlo realizations the user wants to perform. The ensemble data is returned
to the function call after all the simulations are done. This ensemble data
can be written in a text file. By using the data analysis tools provided, the
user can conveniently generate plots from the ensemble data. The current
version provides only the ensemble for the states at the final time.

The methods applied in STOCHKIT is shown in Figure 3 Full references for these
functions are listed in the Appendix.

4 Solving the Test Problem with StochKit

In this section we will show how to use STOCHKIT to solve the DimerDecay
example. A UNIX-style command line interface will be used for the examples.
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Figure 2: Methods implemented in STOCHKIT

4.1 Preparing for the Run

Asintroduced above, we need to first encode the test problem in the C++ language
before we can invoke the solver routines. We will need to provide the initial
state vector xy, stoichiometric matrix v, propensity function and propensity
Jacobian functions. The easiest way to do so is to create a “.cpp” problem
definition file to hold all of it. We can simplify things by including a header file
ProblemDefinition.h and defining the functions it declares in our file.

The results of doing this for our test problem are shown in Figure 3. Note that
the InitialState() and Stoichiometry() functions are each called a single
time before invoking the solver, and are responsible for generating the vector x,
and the matrix v. In this example, we take advantage of the zero-initializing
Vector and Matrix constructors in the MATLAB emulation library to create x0
and nu, then simply fill in the non-zero elements manually. Equivalently, we
could have used the Zeros() functions to achieve the same effect.

The Propensity() and PropensityJacobian() 2 functions have specific in-
terface requirements due to the solver’s dependence on them. Specifically, the
Propensity() function expects to receive a state vector x of dimension N (the
number of species), and return a propensity vector of dimension M (the number
of reaction channels). Likewise, the PropensityJacobian() function expects
to receive a state vector x of dimension N and return a Jacobian matrix of
dimension N by M.

With all the details of our problem contained in a single file, we can link it
to single-realization and statistical endpoint sampling driver programs at will.

3The user does not always need this Jacobian function. The Jacobian is only needed for
implicit tau methods to solve stiff problems.
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#include "ProblemDefinition.h
Vector InitialState()

{
Vector x0(3, 0.0);
x0(0) = leb;
return x0;

}
Matrix Stoichiometry()

{
Matrix nu(3, 4, 0.0);

nu(0,0) = -1; nu(0,1) = -2; nu(0,2) = 2;
nu(1,1) =1; nu(1,2) =-1; nu(1,3) = -1;
nu(2,3) = 1;

return nu;

}

Vector Propensity(const Vector& Xx)
{
const double c1 = 1.0, c2 = 0.002, c3 =0.5, c4 = 0.04;
const double x1 = x(0), x2 = x(1);
Vector a(4);
a(0) =cl *x1,
a(l) = (c2/2.0)*x1*(x1-1);
a(2) = c3 * x2;
a(3) =c4 *x2;
return a;

}

Matrix PropensityJacobian(const Vector& x)

{
const double c1 = 1.0, c2 =0.002, c3 =0.5, c4 = 0.04;
const double x1 = x(0);
Matrix j(4, 3, 0.0);
j(0,0) = c1;
J(1,0) = c2 * x1 - ¢2/2.0;
I(2,1) = c3;
13,1) = c4;
return j;

}

Figure 3: Listing of C++ test problem definition file DimerDecayRxn. cpp.

14



4.2 Generating a Single Realization

With our test problem in place in file DimerDecayRxn. cpp, we need a driver rou-
tine to exercise it. In this section we will create a driver routine that can generate
a single realization of our test problem using any of the supplied exact or accel-
erated methods. The driver file appears as Figure 4. It will be helpful to refer to
it as we discuss its structure. We will refer to the driver as SingleDriver.cpp.

In lines 1-9 of the driver file, we include the necessary declarations from
the stoch_rzn and CSE::MATH libraries. In particular, the functions defined
in DimerDecayRxn.cpp are declared in ProblemDefinition.h (line 2). Lines
13-26 simply parse the command line and set the solver algorithm selection
string (solverName) and output file name (outFile) accordingly. Lines 28—
34 get the initial state vector and stoichiometry matrix by calling the func-
tions defined in DimerDecayRxn.cpp. A ReactionSet object is prepared in
line 31 to collect all the problem-specific information into a format that the
solvers understand. Line 36 creates the SolverOptions structure using the
ConfigStochRxn() function. For users who are only interested in an efficient
SSA or tau-leaping solver, they do not need to worry about the SolverOptions.
For SSA, simply set SolverOptions opt = ConfigStochRxn(1);. For tau-
leaping method that automatically chooses 7 value and switch to SSA when
necessary, set SolverOptions opt = ConfigStochRxn(1);. For users who are
also interested in testing different formulas, they can modify these options and
get different results. Examples can be found in test directory.

The call to the StochRxn() solver appears in line 40 of the code. The call
returns a SolutionHistory object that contains a single SolutionPt object
containing time, population vector, and selected stepsize information for each
step made by the solver. An auxiliary function, WriteHistoryFile() is invoked
after the realization completes, to write the reaction history to a text file readable
by MATLAB or any other program with plotting capability. Finally, lines 46-51
handle error situations and cleanup.

To invoke the solver we compile both files and link them together and with the
CSE_Math and CSE_StochRxn libraries. Assuming we’ve named our executable file
“dimersingle”, a transcript of a single run using the implicit 7-leaping solver
follows:

dimersingle rxnhist.txt

x0 = [ 1000 0 0 1]

Nu:
-1 -2 2 0
0 1 -1 -1
0 0 0 1

History written to file <rxnhist.txt>.
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#i ncl ude " St ochRxn. h"
#i ncl ude " Probl enDefinition. h"
#i ncl ude "Vector. h"
#i ncl ude "Matri x. h"
5 #include <stdlib. h>

usi ng nanespace CSE:: Mat h;
usi ng nanmespace CSE:: St ochRxn;

1o int main(int argc, const char* argv[])

try {
/] Parse argunents:

double tf = 10.0;
15 const char *sol ver Nane, *outFil e;

if (argc !'=4) {
std::cerr << "Usage: singletest <tf>"
<< "<solver> <out file>\n";

20 exit (EXI T_FAI LURE) ;
el se {
sol ver Nane = argv[ 2];
25 outFile = argv[3];
}

/1 Set up the problem
Vector xO0 = Initial State();

30 Matrix nu = Stoichiometry();
Reacti onSet rxns(nu, Propensity);

std::cout << "x0 =" << x0 << '\n’;

std::cout << "Nu: \n" << nu << '\n’;
35

/1 Configure sol ver

Sol ver Opti ons opt = ConfigStochRxn(1);

/1 Make the run & report results
40 Sol utionHi story sln = StochRxn(x0, 0, tf, rxns, opt);
WiteHi storyFile(sln, outFile);

std::cerr << "History witten to file <"
<< outFile << ">.\n";
45
catch (const std::exception& ex) {
std::cerr << "\nCaught " << ex.what() << '\n’;
}

50 return O;

}

Figure 4: Listing of C++ single-realization driver file SingleDriver.cpp. The
file is compatible with any problem defined according to ProblemDefinition.h
conventions.
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At the completion of this run, rxnhist.txt contains the time and population
vector data for each step, with one step per line. This file can be opened and
plotted with MATLAB.

4.3 Generating an Endpoint Population Distribution

SToCHKIT was really designed with the generation of large numbers of real-
izations in mind. We can achieve this with a few small modifications to the
single realization driver code presented in Figure 4. The distribution genera-
tor code appears in Figure 5. We will assume that it is stored in source file
StatDriver.cpp.

The main differences between the StatDriver.cpp and SingleDriver.cpp
files are highlighted here. In line 1, we include the CollectStats.h header file
rather than the StochRxn.h file. An additional command-line parameter has
been added to capture the number of realizations to be performed, resulting in
the addition of lines 14 and 24. Then, in lines 42 and 43, the CollectStats()
solver driver function is invoked, producing an EndPtStats object that contains
the final population vector for each realization. In line 45, these endpoint pop-
ulation vectors are written to the specified text file via the WriteStatFile()
auxiliary function, one realization to a line.

Having prepared the distribution generator driver, we compile and link as
before. Assuming that we create an executable named dimerdist, a 10,000
realization ensemble run would appear as follows:

dimerdist 10000 endpts.txt
x0=[ 1000 0 O 1]
Nu:

Run 10000 of 10000
Endpoints written to file <endpts.txt>.

We will explain in Section 5.1 how to draw plots based on the ensemble data.

4.4 Test Problems

We have provided two simple test problems from the literature. One is the the
Dimerdecay problem studied in [12], which consists of three species S;, S, and
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#i ncl ude "Coll ectStats. h"

#i ncl ude " Probl enDefinition. h"
#i ncl ude "Vector. h"

#i ncl ude "Matri x. h"

#i ncl ude <stdlib. h>

usi ng nanespace CSE:: Mat h;
usi ng nanmespace CSE:: St ochRxn;

int main(int argc, const char* argv[])

try {
/] Parse argunents:

int iterations;
double tf = 10.0;
const char *sol verNanme, *outFile;

if (argc !'= 4) {

std::cerr << "Usage: stattest <iterations>

<< "<tf> <solver> <out file>\n";
exi t (EXI T_FAI LURE)

else {
iterations

atoi (argv[1]);

sol ver Nane argv[ 2] ;
outFile = argv[3];

}

/1 Set up the problem

Vector xO0 = Initial State();
Matrix nu = Stoichionmetry();
Reacti onSet rxns(nu, Propensity);

std::cout << "x0 =" << x0 << '"\'n’
std::cout << "Nu: \n" << nu << '\n’;

/1 Configure sol ver
Sol ver Opti ons opt = ConfigStochRxn(1);

/1 Make the run & report results

EndPt Stats endpts =
CollectStats(iterations, x0, 0, tf, rxns,

WiteStatFil e(endpts, outFile);

std::cerr << "Endpoints witten to file <"
<< outFile << ">.\n";

catch (const std::exception& ex) {

}

return O;

std::cerr << "\nCaught " << ex.what() << '\n’;

}

Figure 5: Listing of C++ multiple-realization driver file StatDriver. cpp.
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S3 and four reaction channels:

Si 30
Si+85 38,

So B S+ 5

Sy 4 Ss.

The propensity functions are given by

Co
a1 =T, G = 5551(301 —1), a3=csze, 4= 4%,

Following [12], we chose values for the parameters
cl =10, ¢2=0.002, c3=0.5, c4=0.04.

The initial conditions were changed to z;(0) = 1000, z2(0) = 0 and z3(0) = 0,
and the problem was solved on the time interval [0, 10].

The second example is the Schlogl reaction. This reaction is famous for its
bistable distribution. The reactions are given by

B, +2X 2 3X,
“ (4)

C.
B, = X,
Ca

where B; and B, denote buffered species whose respective molecular populations
N; and N, are assumed to remain essentially constant over the time interval of
interest. Let

z(t) = number of X molecules in the system at time ¢. (5)

The state change vectors are v; = v3 = 1, 1, = vy = —1. The propensity
functions are

a(x) = Z%Nlm(x —1),
o = g
as(z) = eqz.

For some parameter values, this model has two stable states. The parameter set
that we used in our simulation has this property, and was given by

cg=3X 10_7, Co = 10_4, C3 = 10_3, cy = 3.9, (7)
Ny =1x10°, Np=2x 10°.

We set the simulation interval from ¢ = 0, with initial state z(0) = 250, to time
T = 4. Plots of different trajectories are shown in Figure 6
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Figure 6: Different trajectories for the Schlogl model.
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5 Tools

5.1 Data Analyzer

The data analysis in deterministic simulation usually gives a trajectory of the
system states from the initial time to the final time. In stochastic simulation,
that can also be done. But of more relevance in the stochastic simulation are
the statistical properties. By repeating stochastic simulation for many times
with different random number sequences, we obtain an ensemble of the data.
The histogram can be plotted from the ensemble which represents the probabil-
ity density function of the corresponding variable. The cumulative distribution
function can also be plotted from the ensemble. In the tools directory, three
MATLAB subroutines are provided for plotting distributions.

A question that often arises in the research of stochastic simulation is how to
measure the error of the stochastic simulation. One may compare the ensemble
from the simulation with the ensemble from the experimental data, or compare
it with the ensemble from an ”exact” simulation such as SSA. In either way, the
answer requires calculation of the distance between two distributions. A number
of distribution distances have been proposed in the literature. In this package
we provide three functions to calculate two distribution distances. One is the
total variance distance, which is related to the histogram, defined as

D(X,Y) = / px(s) — py (s)|ds, (8)

where px and py are the probability density functions of X and Y respectively.
Another is the Kolmogorov distance, which is related to the cumulative distri-
bution function, defined as

K(X,Y)= _max_|Fx(r) - Fr(z)], 9)
where Fx and Fy are the distribution functions of X and Y respectively 4. The
details of the provided functions are listed below:

histoplot_int is a histogram plot subroutine which takes a vector as the first
argument. It assumes that the vector elements are integers. If a real-valued
vector is given, that vector will automatically be rounded to integers. The
probability for a variable to be at a particular value (integer) is given by
the number of samples, whose value is equal to that integer, divided by

4Note that the distribution function and the probability density function have the relation-
ship:

Fz) = / " p(s)ds. (10)
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Samples: 10000 Mean: 4.688 Variance: 6.36289 StdDev: 2.522
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Figure 7: Histoplot_int plot for X; in the Dimerdecay example. This plot is
based on 10,000 samples.

the total number of samples. The plot gives the calculated probabilities
for all the possible values. The mean, variance and standard deviation are
also calculated for the variable.

histoplot_real is a histogram plot subroutine which takes a vector as the first
argument, and a positive integer as the second argument. The positive
integer K is the number of bins. Since we do not assume that the vector
contains only integers, bins are used to measure the histogram. The bins
are constructed by dividing the whole interval into K subgroups (bins).
The probability that a random variable falls into a bin is the number of
samples which are in that bin divided by the total number of samples. The
plot gives the calculated probabilities for all the bins. The mean, variance
and standard deviation are also calculated for the variable.

cdfplot is a cumulative distribution function (cdf) plot subroutine which takes
a vector as the first argument. The cdf value is calculated as the number
of samples that are smaller than a particular value, divided by the total
number of samples. Here we do not distinguish whether the input vector
are integers. The mean, variance and standard variance are also calculated
for the variable.

histodistance_int calculates the histogram distance between two random vari-
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Samples: 10000 Mean: 310.965 Variance: 46817.7 StdDev: 216.4
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Figure 8: Histoplot_int plot for Schlogl example. This plot is based on 10,000
samples. Note that because the values have a large range, this plot exhibits a
large fluctuation.

Samples: 10000 Mean: 310.965 Variance: 46817.7 StdDev: 216.4
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Figure 9: Histoplot_real plot for Schlogl example. This plot is based on 10,000
samples. The default number 50 of bins is applied.
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Samples: 10000 Mean: 310.965 Variance: 46817.7 StdDev: 216.4
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Figure 10: cdfplot plot for the Schlogl example. This plot is based on 10,000
samples.

ables. The first two arguments are the vectors of the samples of two random
variables. The numbers of samples (sizes of the two vectors) do not have
to be equal. It assumes that the two vectors contain integers. If not, they
will automatically be rounded to integers. The distance calculates the sum
of the absolute value of the difference between the calculated probabilities
of the two ensembles. Since all data are integers, the probabilities are
calculated for integer values rather than bins.

histodistance_real calculates the histogram distance between two random vari-
ables. The first two arguments are the vectors of the samples of two random
variables. The numbers of samples (sizes of the two vectors) do not have to
be equal. The third argument is a positive integer representing the number
of bins. Here we do not assume the data are integers. Thus the proba-
bilities are calculated based on bins. The rest is the same as the function
histodistance_int.

kolmogorovdistance calculates the Kolmogorov distance between two random
variables. The first two arguments are the vectors of the samples of two
random variables. The numbers of samples (sizes of the two vectors) do
not have to be equal. The Kolmogorov distance measures the maximum
distance between the measured cdfs between the two random variables.
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Figure 11: histodistance_int plot for the Schlogl example. This plot is based on
10,000 samples of SSA runs and explicit tau-leaping runs with tau = 0.4.
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Figure 12: histodistance_real plot for the Schlogl example. This plot is based on
10,000 samples of SSA runs and explicit tau-leaping runs with tau = 0.4. The
default number 50 of bins is applied.

25



Kolmogrov Difference = 0.067700
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Figure 13: Kolmogorov distance plot for the Schlogl example. This plot is based
on 10,000 samples of SSA runs and explicit tau-leaping runs with tau = 0.4.

5.2

MPI Parallel Toolbox

Monte Carlo simulation is naturally suited to parallel computation. In STOCHKIT
we provide an MPI toolbox which enables users to parallelize the collection of
Monte Carlo ensembles. Although it is part of the STOCHKIT package, the ap-
plication of this toolbox is not limited to STOCHKIT. Any Monte Carlo ensemble
collection software can be parallelized after small modifications to its code. To
use this toolbox, simply follow these steps.

1.

Set the environment variables to include the path for MPI.

Ezample:
setenv PATH {$PATH}:/usr/local/mpich/bin/:.

Compile SToCcHKIT. It is important to correctly compile STOCHKIT for
parallel computation. We recommend using SPRNG to generate the ran-
dom numbers since it provides better performance and accuracy in ran-
dom number generation on a parallel machine. If you choose not to use
SPRNG, we made our best efforts to avoid statistical error due to the corre-
lation between random number generation on different nodes. The results
are still quite trustable. If you choose to use SPRNG, please follow the
README for SPRNG (see under StochKit/Math/sprng2.0 or visit their
website) to ensure that SPRNG is using its parallel version. After you
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recompile SPRNG, you need to recompile STOCHKIT. This step is impor-
tant to reduce the statistical error due to the correlation between random
number generation on different nodes.

3. Write the parallel code using our template. We will use the Dimerdecay
model as the example to explain this step. There are two other examples:
the heatshock and Schlogl models under the directory "test”. ° Suppose
you have written your code for a single processor system. Copy all the
files for the single processor system to a new directory. Make the following
changes.

(a) Change your main function to a normal function call.

Ezample: (DimerDecay)

Open DimerStats.cpp. Use “int DimerStats(int iterations, char® out-
File)” to replace the “main” fucntion line. Remove those lines con-
cerned with the arquments and output file.

(b) Update the include files to reflect the above change.
Ezample:
Put 7int DimerStats(int iterations, char* outFile);” int DimerStats.h
and include DimerStats.h in DimerStats.cpp.

(c) Copy parallel.cpp to the new directory and edit it as follows:

i. Add the include file for the new problem.
Example: Add
#include ”Random.h”
#include ”DimerStats.h”
wn parallel.cpp.

ii. Set parameters. These parameters are the following:
A. Totallte: How many samples you need to simulate.

B. Nodelte: How many samples each node will simulate at one
assignment. This parameter should be chosen not be too
small otherwise the message passing overhead will be large.
Nor should it be too large, otherwise it may take too long for
a slow node.

C. ModelName: the directory name for the result.
Ezample:
int Totallte=10000; // We need an ensemble of 10000 samples

int Nodelte=500; // Each time, a node will simulate 500 samples
char ModelName[50] = "DM”; // The name of this model

5Note: the directories starting with 'p’ are directories for parallel computing. Otherwise,
they are for single processor systems.
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iii. Set the function to call. In the function ”static unit_result_t
do_work(unit_of_work_t work)”, add your function call with work
and workdir as parameters after the line
sprintf(workdir, ”./result/%d%s/%d.txt”, myrank, ModelName,
CalledTimes);

Ezample:
DimerStats(work, workdir);

4. Copy the Makefile to your new directory and edit it as follows:

(a) Set the EXE to the name you prefer for your code.

Ezxample:
EXFE = p_dimer

(b) Change parameters in the OBJS to the file name you use.

Ezample:
OBJS = parallel.o DimerStats.o ProblemDefinition.o

(c) Change other names for your model.

5. Compile the parallel code. Type "make clean” then type "make”. Now
you are ready to run the parallel code.

6. To run the parallel code, use the command "mpirun -np 8 p_dimer (change
it for your own model)”. This means we will use 8 nodes to run the job.
One will be the master node. Seven slave nodes will do the real simulation
(this number has to be larger than 1). After the simulation is finished, you
can find all the results in the directory ”result”. You can go to the sub-
directory "result” to collect all the data. Just type ”cat */* >result.txt”.
This UNIX command will save all the results in the file result.txt.

NOTE: Before and after your simulation, make sure that you have an empty
directory "result”. This will help to avoid mixing your simulation results.

Here are the CPU time statistics for the heatshock example using 16 nodes
on the CISE/IGERT cluster in UCSB. The total number of samples is 10,000.
Each subtask has 100 samples. The CPU time statistics are:

Node 1 working time: 65300.751900s
Node 2 working time: 71237.403293s
Node 3 working time: 71925.680539s
Node 4 working time: 72152.520430s
Node 5 working time: 72039.307552s
Node 6 working time: 64859.650003s
Node 7 working time: 72277.642849s
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Node 8 working time: 71807.694310s
Node 9 working time: 72953.922793s
Node 10 working time: 73102.471573s
Node 11 working time: 62843.083589s
Node 12 working time: 73094.701832s
Node 13 working time: 72377.459407s
Node 14 working time: 72125.499277s
Node 15 working time: 64139.769542s
Total working time: 1052237.558889s

5.3 SBML2StochKit Converter

SBML (System Biology Makeup Language) [14] is a computer-readable format
for representing models of biochemical reaction networks. SBML is applicable
to metabolic networks, cell-signaling pathways, regulatory networks, and many
others. Dozens of software packages support this format. Many biochemical
problems are written as SBML files. For the convenience of SBML users, we
provide an easy SBML to STOCHKIT Converter using Java. Here we explain
how users can translate an SBML file into the input files that STOCHKIT needs.

1. Prepare the SBML file of your model. Our converter accepts standard
Version 1 (level 1 and 2) and Version 2 SBML files with some additional
requirements. These requirements are

(a) In the tag <listOfSpecies>, give the initial amount for each species.

Ezample:
<specie name="81" compartment="DimerDecay” initial Amount="1000"
boundaryCondition="false” >

(b) In the tag <listOfReactions>, specify the kinetic law for each reac-
tion.
Ezample:
<kineticLaw formula="c1*S1">

(c) In the tag <kineticLaw formula="c1*S1”>, specify the values of the
parameters.
Ezxample:

<listOfParameters>
<parameter name="c1” value="1">
<listOfParameters>

2. Set the environment variables in your shell. For example, if you use Cshell,
add the following lines to your .cshrc or run them via command line.
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setenv XML_HOME < StochKit_directory> /tools/SBML2StochKit/
setenv LD_LIBRARY_PATH $XML_HOME/test: SLD_LIBRARY_PATH

Compile our Converter with the following command

javac -classpath .:$XML_HOME/classes/XML.jar:3XML_HOME/classes/terces.jar
Converter.java

Run the Converter with the following command

java -ms128m -mz256 -classpath .:$XML_HOME/classes/XML.jar:$XML_HO
ME/classes/xerces.jar Converter test.xml 10

where ”test.xml” is the file name of your SBML file and ”10” is final time
you want to simulate your system to.

We have provided some simple examples to demonstrate how to use the

SBML2StochKit Converter. Figures 14-17 show the source files and the gener-
ated files.
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A StochKit Function Reference

This section serves as a basic reference for the STOCHKIT implementation of
each of the components presented in Section 3. The general signature (includ-
ing parameter and return types) for each class of functions is presented, along
with a description of the purpose of each parameter and the expected seman-
tics of functions of that class. All functions in this section are defined in the
CSE: :StochRxn namespace.
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<?xm version="1. 0" encodi ng="UTF-8"?>
<sbm xm ns="http://ww. sbm .org/sbm /| evel 1" | evel ="1" version="1">
<nodel nane="Di nmer Decay" >

<li st X Speci es>
<speci e nanme="S1" conpart nent =" D mer Decay" initial Anount="1000"
boundaryCondi ti on="f al se" />
<speci e nane="S2" conpartnment="Di nmer Decay"” i niti al Amount="0"
boundaryCondi ti on="f al se" />
<speci e nane="S3" conpartnment="Di nmer Decay"” initi al Amount="0"
boundaryCondi ti on="f al se" />
</listCOf Speci es>

<li st O Reacti ons>
<reaction name="Reactionl" reversible="fal se">
<l i st React ant s>
<speci eRef erence speci e="S1" />
</list O React ant s>

<li st O Product s>
</listCf Product s>

<ki neti cLaw fornul a="c1*S1">
<li st Par anet er s>
<par amet er nanme="c1l" val ue="1"/>
</listCO Paranet er s>
</ ki neti cLaw>
</reaction>

<reaction name="Reaction2" reversible="fal se">
<l i st React ant s>
<speci eRef erence speci e="S1" stoichionetry="2"/>
</list O React ant s>

<li st Product s>
<speci eRef erence speci e="S2" stoichionetry="1"/>
</list O Product s>

<ki neti cLaw formul a="(c2/2.0)*S1*(S1-1)">
<l i st Of Par anmet er s>
<par amet er name="c2" val ue="0.002"/>
</list O Par anet er s>
</ ki neti cLaw>
</reaction>

<reaction name="Reaction3" reversible="fal se">
<l i st React ant s>
<speci eRef erence speci e="S2" stoichionetry="1"/>
</listO React ant s>

<li st Product s>
<speci eRef erence speci e="S1" stoichionetry="2"/>
</list O Product s>

<ki neti cLaw formul a="c3*S2" >
<l i st Of Par anet er s>
<par anet er nanme="c3" val ue="0.5"/>
</li st O Paranet er s>
</ ki neti cLaw>
</reaction> 34

Figure 14: The first page of the SBML file for the DimerDecay model



Table 1: C++ driver function reference

Name StochRxn
Signature | SolutionHistory StochRxn(x0, tO, tf, react, opt)
Parameters| Name | Type Description
x0 Vector Initial reactant species populations
t0 double Initial time
tf double Final time
react | ReactionSet Reaction details (stoichiometric ma-
trix, propensity function, propensity
Jacobian function)

opt SolverOptions | Options structure produced by a call
to ConfigStochRxn
Return A SolutionHistory object containing a number of SolutionPt
Value objects that depends on the integration time and history buffer
management routine specified in opt.
Purpose Generate a single realization of the reaction system specified in
react by propagating the system from state x0 at time t0 to
time tf using the algorithms specified in opt.
Name CollectStats
Signature | EndPtStats CollectStats(runs, x0, tO, tf, react, opt)
Parameters| Name | Type Description
runs unsigned int | Number of Realizations to perform
x0 Vector Initial reactant species populations
t0 double Initial time
tf double Final time
react | ReactionSet Reaction details (stoichiometry ma-
trix, propensity function, propensity
Jacobian function)

opt SolverOptions | Options structure produced by a call
to ConfigStochRxn

Return An EndPtStats object containing a the final state vector from

Value each realization.

Purpose Generate runs realizations of the reaction system specified in

react by propagating the system from state x0 at time t0 to
time tf using the algorithms specified in react. Only the final
state vector from each realization is stored.

35




Table 2: C++ stepsize selection function reference

Name Fixed_Stepsize
SSADirect_Stepsize
Gillespie_Stepsize
GillespiePetzold _Stepsize
Cao_Stepsize
Signature | double Name (x, a, a0, nu, tau, eps, j)
Parameters| Name | Type Description
X Vector Current reactant species populations
a Vector Current reaction propensities
a0 double Sum of current reaction propensities
nu Matrix Stoichiometric matrix (number of
species X number of reactions)
tau double Previous stepsize (t; — t;_1)
eps double Accuracy control parameter (for ac-
celerated methods)
j Propensity- Pointer to function that evaluates Ja-
JacobianFunc | cobian of reaction propensity vector
Return A double indicating the size of the next step to take (dt). Thus,
Value if we are executing step ¢ at time t;, t;11 = t; + dt.
Purpose Given information regarding the current system state and the

previous stepsize, determine the size of the next step to take,
using the following methods:

Name

Description

Fixed_Stepsize

SSADirect_Stepsize

Gillespie_Stepsize

Constant stepsize equal to that spec-
ified via the ‘ “init_step’’ parame-
ter in the ConfigStochRxn() call
Step to the next reaction time indi-
cated by the direct SSA method
Take step according to the leap con-
dition presented in [12]
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Table 3: C++ single stepper function reference

Name SSA _SingleStep
ExplicitTau_SingleStep
ImplicitTau_SingleStep
ImplicitTrapezoidal _SingleStep
TrapezoidalTau_SingleStep
Signature | void Name (x, t, dt, a, a0, nu, pf, pjf, absTol, relTol, rxn, p)
Parameters| Name | Type Description
X Vector Current reactant species populations
t double Current time
dt double Current stepsize
a Vector Current reaction propensities
a0 double Sum of current reaction propensities
nu Matrix Stoichiometric matrix (number of
species X number of reactions)
pf Propensity- Pointer to function that evaluates re-
Func action propensity
pjf Propensity- Pointer to function that evaluates Ja-
JacobianFunc | cobian of reaction propensity vector.
absTol | double Absolute tolerance for implicit meth-
ods)
relTol | double Relative tolerance for implicit meth-
ods)
rxn int reaction index of occuring reaction
for SSA methods)
P Vector number of reactoins for all reaction
channels for tau-leaping methods)
Return None. The system state vector x is modified in place.
Value
Purpose Given the current state x, time t, and the stepsize dt sug-

gested by the chosen stepsize selection function, advance x to
time t-+dt.

37




Table 4: C++ history buffer management functions

Name Exponential _StoreState
NoHistory_StoreState
OneHertz_StoreState
Signature | void Name (hist, solPt)
Parameters| Name | Type Description
hist Solution- History buffer
History
solPt | SolutionPt Object containing current time, state
vector, and stepsize for possible inser-
tion into the history buffer
Return None.
Value
Purpose At the discretion of the selected function, adds the current time,

state, and step size to the history buffer. Actual behavior is as

follows:

Name

Description

Exponential_StoreState

NoHistory_StoreState

OneHertz_StoreState

Stores all solution points in the
buffer, doubling the buffer’s size when
its capacity is exceeded

Stores only the final solution point in
the buffer

Stores solution points at approxi-
mately 1s (integration time) inter-
vals, regardless of the stepsize choices
made by the stepsize selection func-
tion. Useful for shrinking output file
size when using SSA
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<reacti on name="Reacti on4" reversibl e="fal se">
<l i st O React ant s>
<speci eRef erence speci e="S2" stoichionmetry="1"/>
</list O React ant s>

<l i st Of Product s>
<speci eRef erence speci e="S3" stoichionmetry="1"/>
</1istOf Product s>

<ki neti cLaw for mul a="c4*S2" >
<li st O Par anet er s>
<par anet er nanme="c4" val ue="0.04"/>
</|istCf Par amet er s>
</ ki neti cLaw>
</reaction>
</|istOf Reacti ons>
</ nodel >
</ sbm >

Figure 15: The second page of the SBML file for the DimerDecay model
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#i ncl ude "Probl enDefinition.h"
Vector Initialize()

{
Vector x0(3, 0.0);
x0(0) = 1000;
x0(1) = 0;
x0(2) = 0O;
return xO;
}
Matri x Stoichiometry()
{
Matrix nu(3, 4, 0.0);
nu(0,0) = -1; nu(1,0) = 0; nu(2,0) = 0;
nu(0,1) = -2; nu(l,1) = 1; nu(2,1) = 0;
nu(0,2) = 2; nu(l,2) =-1; nu(2,2) = 0;
nu(0,3) = 0; nu(l,3) = -1; nu(2,3) =1;
return nu;
}
Vect or Propensity(const Vectoré& x)
{
cl=1, c2=0.002, c3=0.5, c4=0.04;
Vector a(4);
a(0) = cl*x(0);
a(l) = (c2/2.0)*x(0)*(x(0)-1);
a(2) = c3*x(1);
a(3) = cd*x(1);
return a;
}
Matri x PropensityJacobi an(const Vector & x)
{
cl=1, c2=0.002, c3=0.5, c4=0.04;
Matrix j(4,3,0.0);
j(0,3) = c1;
j(1,3) = (c2/2.0)*(x(0)-1);
j(2,3) =1c3;
j(3,3) = c4
return j;
}

Figure 16: The problem definition file generated by the SBML2StochKit Con-
verter: ProblemDefinition.C++.
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#i ncl ude " StochRxn. h"

#i ncl ude " Probl enDefinition.h"
#i ncl ude "Vector. h"

#i ncl ude "Matri x. h"

#i ncl ude <stdlib. h>

usi ng namespace CSE: : Mat h;

usi ng nanmespace CSE:: St ochRxn;

Vector Propensity(const Vector& Xx);

Matri x PropensityJacobi an(const Vectoré& Xx);

int main(int argc, const char* argv[])

try{
i nt nunRuns;

std::string outFile;
doubl e Ti neFinal = 100

if (argc == 3) {

nunRuns = atoi (argv[1]);
outFile = argv|[2];
el se {

std::cerr << "Usage: dinerstats <# runs> <output file>";
exi t (EXI T_FAI LURE) ;

}

/1 Set up the problem

Vector X0 = Initial State()

Matrix nu = Stoichionmetry()

ReactionSet rxns(nu, Propensity, PropensityJacobian);

/1 Configure sol ver

Sol ver Opti ons opt;

opt. stepsi ze_sel ector_func = SSADi rect _Stepsi ze;
opt.single_step_func = SSA_Si ngl eSt ep;

opt. progress_interval = 1000000;
opt.initial_stepsize = 0.001;

opt . absol ute_t ol le-6;

opt.relative_tol le-5;

/1 Make the Run and report results
EndPt Stats stats = Col |l ect St at s(nunRuns, x0, 0, TinmeFinal, rxns,

opt)
WiteStatFile(stats, outFile);
std::cerr << "Done.\n";:

}

catch (const std::exception& ex) {
std::cerr << "\nCaught " << ex.what() << '\n';
}

return O;

}

Figure 17: The simulation code generated by SBML2StochKit Converter:
Dimer.C++.
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