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Abstract

The Centralised Two Phase Commit Protocol (2PC) is the most
widely used protocol in commercial distributed systems. Many vari-
ants of this protocol exist which try to reduce both the number of
messages required to execution. In addition to this the extent to
which the operational phase of a transaction and its commit phase
overlap varies in practice. We provide a formal framework in which
to describe these variations. We define serializability in this frame-
work and show that it holds for many of the optimisations but not for
others.

1 Introduction

Skip

2 The Model

We model a distributed transaction processing environment where trans-
actions arrive at coordinator sites. In our simplified model a transaction
consists of a set of actions that are supervised by a transaction coordinator
(TC). The TC interacts with one or more resource managers (RMs) by means
of message passing in order to perform these actions. Actions performed on
resources may change the state of a resource.

We are interested in the behavior of the system when several RMs are
involved in a transaction. Each process has an internal state and a set of



Formal Analysis of 2PC 2

rules which modify this state based on current state and the perceived state
of remote processes. The rules and state variables for a particular type of
process (in our system either RMs or TCs) are the same but a set of rules and
a state exists for each process in the system. To express this we parameterise
our rules. An instantiation of the parameterised rules gives rise to a set of
rules for one process.

At various points during execution, the protocol being used might require
that a process records its current state by writing it to non-volatile storage.
After a crash, the process executes a recovery phase. The last recorded state
is restored and the recovery begins.

2.1 Views and Message Passing

Let T be a set of transactions, and V be a set of resource states !. We use
the notation p.s to talk about the state variable s at process p. For example
t.final is the final state, either commit or abort, of the TC process t.

Processes in our distributed system have both their own local state and a
view of the internal states of other processes. This view is constructed from
information it receives from the other processes in the form of messages. We
say,

g.s=<x

holds at process p if the most up-to-date message p received from ¢ informed
p that ¢ was in state x.

Not all local state is exchanged between processes. We distinguish be-
tween state variables that can be viewed at remote processes and call these
variables viewable. Furthermore, in the centralised protocols we examine,
local state is only exchanged between TCs and RMs.

We assume that processes in our system are connected by message passing
channels. These channels are assumed to be reliable FIFO. Messages take
some time to travel along these channels but messages are never lost and
arrive in the order they were sent. Provided the sender and receiver of a
message remain operational for long enough this level of reliability can be
achieved in practice.

We also assume some mechanism to detect remote crashed processes in
the system, sometimes called a connection manager, or failure detector. We

Lthis set contains the value | which is the empty value.
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say,
q.s = < crashed

holds at p if p detects that ¢ has crashed.

When a process ¢ changes an externally—viewable local state variable, in
our notation, g.s := z, a message is passed to a remote process p ? enabling p
to update its view of q. After the message is delivered at p, g.s = <z holds
at p. We abstract all other communication issues (e.g. message routing, error
detection, reliable delivery) in this way.

Sometimes the state stored at ¢ will include more structured data than
scalar values. In particular, in our model we wish to store sets of values. We
say,

q.S> <«

holds at p where S is a set in ¢’s local state. This assertion will hold whenever
the most up-to-date message p has received from ¢ informs p that ¢’s local
state set S contained the element . When ¢ adds or deletes an element from
its local set ¢.S a message is propagated to other processes allowing them to
update their views.

2.2 Rules, State and Stable Storage

Rules determine the behavior of processes by transforming the state of a
process given that certain conditions are met. A rule is a pair which consists
of a pre-condition and a postaction. The pre-condition is a logical state-
ment which may contain assertions about views of remote process states. A
postaction is a list of assignments to local state variables; assignments to
viewable variables cause messages to be sent to remote processes.

Commit protocols are designed to ensure that after a process crash, a
recovery process can continue with executing the protocol. Such recovery
requires that at protocol-specific points in the execution, state is force written
to stable storage. Force writing a record to stable storage is an expensive
operation and, consequently, this is the focus for much of the research effort
on protocol optimizations.

We add a new operator to our postactions which force writes all the
process state to stable storage we call this operator FORCE_WRITE. After
a crash the value of the process state will be restored to the value that was

2We don’t specify to which processes messages are sent preferring to abstract this to
those processes that are interested.
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last force written. In practice not all state need be written but to simplify
notation we will assume it is.

2.3 Rules for Centralised Two Phase Commit

Table 1 describes the state of a transaction coordinator ¢. A transaction
coordinator carries out a set of actions from the set A.

Associated with each TC is a set Act; = {a1,...,ax} of actions which
constitute the transaction . These actions are assumed to have originated
from some external application. rm(a;) is the resource manager that is to
perform action a;. The set of all RMs involved in carrying out these actions is
denoted RM (Act;). For each transaction we assume each action is performed
at a different resource manager. More formally, rm(a;) = rm(a;) =i = j.

In practice transactions may be interactive and have branching control
structure. This means that actions are created as the transaction proceeds
and several actions may be carried out at the same resource manager. We
only model the case where all the actions are known at the start of the
transaction, and each is carried out at a distinct resource manager. The rules
we give do allow these actions to be executed in any concurrent manner.

To simplify the analysis, we assume that all actions yield results 3. We
use ev(a) to denote the value that an action returns when executed at a RM.
For example if the action was to read a data item at an RM the value would
be the current value of the data item.

In the case that a TC reaches a final commit state ¢. final = commit then
t.v(a) contains the result of each of the actions a € Acty, this can be thought
of as the result of the distributed transaction.

For notational convenience we define the following sets for a TC action
set Act;.

o COMMIT ¥ {commit,|d € RM(Act,)}
o ABORT ¥ {aborty|d € RM(Act,)}

e PREPARE ¥/ {preparey|d € RM(Act;)}

3In reality some actions may just change a resources state without returning a value.
In this case the result is the current value of the resource.
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Name Viewable | Description Values
t.s N State {L, prepare, commit, abort}
t.A Y Actions of the transaction | {a,done,|a € Act;}
t.Decn Y Outcome of the transaction | ABORT U COMMIT
t.Prep Y Prepare the transaction PREPARE
t.w N Action return values Acty =V
t.status N Coordinator has crashed {normal, crashed}
t.final N The final state {commit, abort, zombie, 1 }
Table 1: The state of a transaction coordinator ¢. Initially t.s = 1, t.A =
Acty, t.Decn = t.Prep = 0, Ya € Acty, t.w(a) = L, t.status = normal,
t.final = L

We now give rules for TCs. These are divided into two sections. First
we give rules for normal operation when t.status = normal, then we give
the crash recovery rules. To ease notation, the clause t.status = normal is
omitted in the pre-conditions of the non recovery rules.

Before fully describing the rules and state for a RM we will introduce
d.R a viewable element of a resource manager’s state. This variable is used
to enable a RM to communicate with a TC. For example, in the next rule
the clause d.R > <lack? becomes true when a TC receives a message from
a RM acknowledging an action from its action set Act;. In the rules we use
the shorthand ¢.AU:= {z} for t.A := t.AU {z}.

CA Coordinator receives confirmation of an action
PRE: a € t.A A rm(a).R > < ack!
POST: t.AU:= {done,} —{a} A t.w(a) =7

As soon as the TC gets an acknowledgement that a RM has performed an
action it can start to prepare the transaction at that RM. There are two
possible flavours of this rule. A TC might start to prepare a transaction at
a RM as soon as the action at that RM has been acknowledged. We call
this overlapping prepare where the operational and commit phases of the
transaction overlap. Alternatively, the TC may require acknowledgements
from all the RMs that the actions have taken place before starting to prepare
a transaction at any RM. We call this syncpoint prepare. We will see that
the choice of which rule to use may affect the serializability properties of
protocols.
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CP Overlapping Coordinator performs overlapping prepare
PRE: done, € t.A
POST: t.PrepU:= {prepare,m@)} A t.s := prepare

CP Syncpoint Coordinator performs syncpoint prepare
PRE: t. AN Act, =0
POST: t.Prep := PREPARE A t.s := prepare

Once the coordinator has started to prepare the transaction it starts to collect
votes on the outcome of the transaction. We require two rules for this. The
first collects a yes vote from a RM and the second collects a no vote or an
outcome request.

CY Coordinator collects a yes vote
PRE: d.R > < {yes;} A t.s = prepare
POST: t.Prep := t.Prep—{prepareg}

CN Coordinator collects a no vote or an outcome request
PRE: (d.R > <no; V (d.R > <req; A t.s # commit))
POST: t.Decn := ABORT A t.s = abort A t.Prep:=0 N FORCE_WRITE

If the coordinator receives yes votes from all the resource managers it can
commit the transaction.

CC Coordinator commits the transaction
PRE: t.Prep=0 A t.s = prepare A t. AN Act; = ()
POST: t.Decn := COMMIT A t.s := commit AN FORCE_WRITE

Finally, a RM may request the outcome of a transaction. We have seen in
rule CN that this can cause a transaction to abort. In the case where the
transaction has passed the point where it must commit, the request causes a
commit outcome.

CCD Coordinator sends commit decision
PRE: d.R > <req; A t.s = commit
POST: t.DecnU:= {commity} *

The coordinator now collects acks for the commit or abort decision made,
and then finally commits or aborts the transaction. The abort rule CFA is
not given but is similar.

4 Although commity € t.Decn, commit, is added to t.Decn to cause a message to be
resent to d to fulfill d’s outcome request.
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CCD Coordinator collects decision acks
PRE: d.R > < ackd, ®
POST: t.Decn := t.Decn—{commity, aborty}

CFC Coordinator finally decides commit
PRE: t.s = commit N t.Decn = ()
POST: t.final := commit

We must now give rules to allow the coordinator to recover from a crash.
There are two cases. If the coordinator has passed the point of committing
the transaction it must continue to commit. This is why the commit record
must be force written when the commit message is sent to the resource man-
agers. The second case is when the transaction has not yet committed or if
it has aborted, in this case the TC aborts the transaction.

CRA Coordinator recovers from crash and aborts
PRE: t.s = abort A t.status = crashed
POST: t.Decn := ABORT A t.status := normal

CRC Coordinator recovers from crash and commits
PRE: t.s = commit A t.status = crashed
POST: t.Decn := COMMIT A t.status := normal

It might be the case that a coordinator recovers from a crash and all record
of the transaction it was coordinating has been lost. In fact the coordinator
does not really exist as a separate entity. We model this situation by saying a
coordinator enters a zombie state. It never recovers and all outcome requests
result in abort replies.

CRZ Coordinator in a zombie state
PRE: (t.s = L V t.final = zombie) A d.R > <req; N t.status = crashed
POST: t.DecnU:= {aborty} A t.final := zombie

2.4 The Resource Manager

We now turn our attention to the resource manager. Table 2 describes the
internal state of a resource manager.

Resource managers carry out the actions of the Transaction Coordina-
tors. Actions on these resources may conflict. Locking is used to detect

5In fact abort acknowledgements will not be received from RMs that voted “no”, how-
ever “no” votes can be collected instead.
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these conflicts. Some locking information, £, must be kept at the resource
managers. For example, a data item resource might have shared locks and
exclusive locks. Shared locks do not conflict with each other but they do
with exclusive locks whereas exclusive locks always conflict. The following
three operations are assumed to exist.

e SET(d.L,a,t) updates the locking information at a resource manger d
for transaction ¢, and action, a.

e CLEAR(d.L,t) removes the locking information for transaction t.

e TEST(d.L,a,t) is used to see if an action, a, would cause a conflict,
by examining the types of locks held.

Name Viewable | Description Domain of Values

d.q) N Set of in doubt transactions | 27

d.R Y Responses 2{ack};, yest,nog,ackds,regs,rot}
d.L N Locking information L

d.v N Resource value V

d.sv N Saved value V

d.status N Recovering from crash {normal, crashed}

Table 2: The state of a resource manager. Initially there is no locking infor-
mation d.R =d.Q =0, d.v = d.sv = L and d.status = normal.

We now give the rules for the RM. The first rule describes how a resource
manager performs an action. Again we do not include the clause d.status =
normal in all the pre-conditions.

RA Resource manager performs an action
PRE: tA> <a ANd=rm(a) N TEST(d.L,a,t)
POST: d.RU:= {ackfv(a)} A dwv:=ev(a) NUPDATE(d.L,a,t)
We now give rules to allow the RM to vote. A RM may decide unilaterally

to vote no and abort ¢ or to vote yes and await the global outcome of the
transaction. We also add a rule that allows a RM to vote no if it sees a

6A RM may vote no and abort for a number of reasons. One such reason might be to
resolve a deadlock.
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prepare message for a transaction that it has performed no action for. This
is to ensure that if the RM crashes and loses all knowledge of the transactions
and subsequently recovers and receives a prepare message, it can abort the
transaction by voting no.

RUP Resource manager receives an unexpected prepare
PRE: t.Prep > <prepareg A {ack}lv € V}Nd.R=10
POST: d.RU:= {no;}

RVY Resource manager votes yes
PRE: t.Prep > <prepareg A {ack?|lv € V}INd.R#
POST: d.RU:= {yes;} N d.QU:= {t} AN FORCE_WRITE

Whenever a RM votes “yes” to a transaction it adds the transaction to its
local set d.() and awaits the outcome of that transaction.

RVN Resource manager votes no and unilaterally aborts
PRE: {ack}|lv e VINdR#D Nt ¢d.Q
POST: d.RU:= {no;} A dv:=d.sv N CLEAR(d.L,1)

If a RM votes has performed an action but has not yet voted “yes” to that
transaction it is able to vote “no” and unilaterally abort the transaction.

RC Resource manager commits a transaction

PRE: t.Decn > < commity

POST: d.RU:= {ackd;} Nd.Q := d.Q—{t} Nd.sv := dvANCLEAR(d.L,t) A
FORCE_WRITE

RAB Resource manager receives abort decision

PRE: t.Decn > < aborty A {no;} ¢ d.R

POST: d.RU:= {ackd;} Nd.Q :=d.Q—{t} Ndow :=d.su ACLEAR(d.L,t) A
FORCEWRITE

RRQ Resource manager requests outcome
PRE:t € d.Q
POST: d.RU:= {req;}

We give rules for crash recovery of a RM. Firstly, the RM resolves all trans-
actions in the set d.() by requesting the outcome from the TCs using the rule
RRQ above. When all the requests have been made the RM can continue
processing.

RR Resource manager recovers
PRE: d.status = crashed N Vt € d.Q), req; € d.R
POST: d.v :=d.sv A d.status := normal
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3 Presumed Abort (PrA)

Presumed abort optimises the basic two phase commit by reducing the num-
ber of messages and forced writes required in the case that the transaction
aborts. Because the coordinator always force writes a commit decision it
need not force write an abort decision. The absence of a commit decision is
enough to infer an abort decision. A RM need not now acknowledge abort
decisions, because the final abort state is reached at the TC as soon as it
decides abort. We can change our rules to reflect this optimisation as follows.

CN(PrA) Coordinator collects a no vote or an outcome request
PRE: (d.R> <no; V (d.R > <req: A t.s # commit))
POST: t.Decn := ABORT A t.s = abort A t.Prep:= 0 A t.final = abort

RAB(PrA) Resource manager receives abort decision
PRE: t.Decn > < aborty A {no;} ¢ d.R
POST: d.Q :=d.Q — {t} AN dv:=d.sv N CLEAR(d.L,t)

Once an abort decision is made at the coordinator the transaction can be
forgotten. If a RM requests the outcome of a decision once the transaction
is forgotten then the decision will be to abort. This is expressed in the rule
CN by allowing an decision request in the pre-condition.

Typically, only a tiny proportion of transactions abort, so PrA would
not, by itself, be a significant advantage. However, the big difference is that
PrA can be combined with the read only optimisation described in the next
section. When combined it can treat read only transactions as if they were
aborted, providing a significant optimization.

4 Read Only Optimizations (RO)

Often an action only examines and does not change the state of a resource.
If this is the case the resource manager does not need to know the overall
decision of the transaction because it would take the same actions in the
case of abort or commit. To optimise our protocols a resource manager can
vote read only, (r0) to a prepare message and release any locks held for that
transaction. We can change our rules to reflect this read only optimisation
as follows.

CY (RO) Coordinator collects a yes vote (or a read only vote)
PRE: (d.R > <yes; V d.R> <roy) A t.s = prepare
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POST: t.Prep :=t.Prep—{prepare,}

RVR Resource manager votes read only
PRE: t.Prep > < prepareg
POST: d.RU:= {ro;} N CLEAR(d.L,t)

RC Resource manager commits a transaction

PRE: t.Decn 5 < commity A {ro;} ¢ d.R

POST: d.RU:= {ackd;} Nd.Q := d.Q—{t} Nd.sv :=dvANCLEAR(d.L,t) A
FORCE_WRITE

RAB Resource manager receives abort decision

PRE: t.Decn > < aborty A {noy,ro;} € d.R

POST: d.RU:= {ackd;} Nd.Q := d.Q—{t} Ndw :=d.su ACLEAR(d.L,t) A
FORCE WRITE

The rule CC changes slightly. If a resource manager responds ro; to
a prepare message then it need not participate in the second phase of the
transaction. In fact if all resource managers respond ro; (i.e.. when the
whole transaction is read only which is often the case in practice) and the
PrA optimisation is being used in conjunction with the RO optimisation, then
no commit decision need be made at all. The transaction can be handled
in the same way as if it had aborted and the coordinator can move directly
to a final commit state, forget the transaction and need not force write any
records. We do not explicitly model the accounting information which needs
to be maintained at each TC but it would be straight forward to do this.

5 Grouping rules

In order to define serializability, we will first group our rules into categories.
These categories can be further divided by the transaction or resource with
which the rule interacts. For example, a RM d may end a transaction 7 by
receiving an abort decision from a TC we write this rule as RABY, and we
say it is a member of the end rules ¢f. The following table classifies the rules.
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Start rules o | Middle rules p End rules ¢ Post-end rules ¢
RA CA, CRA, RV N CCA
CP, CRC, RC CFC
CY,CRZ, RAB
RRQ,RUP, | Crashg, t & d.QQ
CN, CC, RVR
cCcD

All start rules, o, are of the form RA where a RM d performs an action for
a transaction 7 which we sometimes write as RA?. This rule updates locking
information and performs the action as long as there is no conflict with other
outstanding actions. Middle rules, u, define the interaction between a TC
and its RMs. These include collecting action acknowledgement, performing
the steps of two phase commit, and any required crash and recovery steps.
None of the rules in this category change the locking information held at a
RM. End rules, ¢, end the interaction of a RM with a TC. We can think of
the case that a RM crashes before a transaction is recorded as being in doubt
(i.e. in the set d.QQ), as one of these rules. We write, ¢ to represent a rule
which ends the involvement of RM d with transaction ¢. After an end rule a
TC may collect acknowledgments of a decision we call these rules ¢ rules.

6 Executions

Let 7, ..., 7, be the local states of the TCs and 41, . .
of the RMs in our system, at a point in time.
The global system state is simply the m + n tuple

,Om)-

The system state evolves by taking steps. These steps are defined by the
rules. A rule may happen at a process when the precondition to that rule
becomes true. Exactly one step is taken at a time. A step is assumed to be
an atomic instantaneous event. In some of our rules an atomic event may
comprise one or more local state changes. However, an atomic event only
ever affects one process and all changes refer to a particular transaction.

., 0m, be the local states

S:<7_1,..

-:Tnadla---

Suppose rule R fires for ¢;, when it is in state 7;. We write this as 7; &, .
This causes the global system state to take a step

R !
(Thy ooy Tiy ooy Ty Oty e ey Omn) == (Thy e oy Ty ooy Ty 01y« « 3 O
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Similarly, a resource manager d; may take a step, 9; L o, causing the
global state to change in a similar way.

Definition 1 An execution, p, of our system, from an initial global state Sy,

. R R Ry

is a sequence of rules Ry, Ry,...,R,,... such that S —» S, —= ... ==
R,

Sr— ...

d
Definition 2 A transaction is before another with respect to a RM d, ¢; < t;,

in an execution iff the rule 7 ¢/ is before the rule ¢ in that execution. If

. d d . . .
neither ¢; < t; nor ¢; < t; we say there exists an interleaving of t; and ¢; on
d.

Definition 3 A transaction is before another in an execution, ¢; < t; iff

d
Vd € RM(Acty,) N RM (Acty;), t; < t;. If neither ¢; < ¢;, nor t; < ¢; in an
execution we say ¢; and ¢; are interleaved in that execution.

Definition 4 A serial execution is one in which no two transactions are
interleaved. More formally a total order 7 exists in which ¢, < t,, < ... <

b,

Perhaps we should mention Hebrand Semantics as an alternative
classification of the semantics and equivalence of schedules

Definition 5 Let 7/, 7” be two states of a TC ¢, after it has taken two
distinct sequences of steps from a common initial state 7. We say 7’ and
7" are equivalent states, 7 = 7", iff (7'.final = 7".final) A (7'.final =
commit = Ya € Acty,7'.v(a) = 7".v(a)) Similarly, we say &', §" are equivalent
states of a RM, ¢’ = ¢”, iff d.sv = ¢'.sv.

Definition 6 A TC has terminated when it has reached a decision, or it
has become a zombie, t.final # 1. We say a RM is idle when there are
no in doubt transaction at this RM, d.Q = . We say an execution, p, has
terminated when all TCs have terminated and all RMs are idle in p.

"We note that each for each transaction at most one start and one end rule per resource
manager is allowed by the rules.
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Definition 7 Let S" = (1{,...,7.,01,...,00.), S" = (v],..., 70,07, ..., ")
be the global states after two distinct terminated executions p’, and p” start-
ing from an initial state global state S. We say these terminated executions
are equivalent, p' = p" iff Vi € {1,...,n}, 7/ =7/ and Vj € {1,...,m}, 0} =

1
6.7 .

Definition 8 A terminated execution is serializable iff there exists an equiv-
alent terminated serial execution.

Definition 9 A protocol is serializable iff given an initial set of TCs and RMs
every possible terminated execution generated by the rules of the protocol is
serializable.

Lemma 1 Let t; be a committing transaction in an execution, p then the
subsequence of start and end rules pertaining to t; in p will have the form.

d1 dn, dry dry,
- i - .. z ---ei ---ei PECEEY

where {dy,...,d,} = RM(Acty,) and 7 is a permutation of 1...n.

Proof To establish the lemma we show that no end rule for transaction ¢;
may happen until all start rules have happened. The rule CP(Syncpoint)
requires all start actions to have happened before the TC ¢; starts to prepare
the transaction. No end rules may happen before CP(Syncpoint) thus no
end rules happen until all start rules have happened.

There is one exception to this. A RM d, could crash and release locks
after performing an action but before that transaction becomes in doubt at
d. After this crash a different RM, d’, may perform an action. This would
cause € to be before o in the execution. If this happens we can see that
on recovery d will receive and unexpected prepare from TC, and rule RUP
will cause d to vote no causing ¢; to abort.

If ¢; commits then then each RM in RM (Act;,) must either vote read
only with rule RVR or acknowledge the commit decision with rule RC. Fur-
thermore all RMs must perform an action with rules RA. We conclude that
each RM in RM (Acty,) perform a start rule and an end rule and all end rules
happen after all the start rules.
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Lemma 2 Lett; be an aborting transaction in an execution, p then t; makes
no persistent changes at any d € RM (Act;,) and furthermore no other trans-
action t; can see temporary changes made by t;.

Proof

If an action executed on behalf of ¢; for a resource manager d, changes
the value d.v of d, rule RA? must acquire an exclusive lock. This means rule
RA¢ may not happen for any other transaction t; until d performs an end
rule, €. There are four possible end rules:-

e The RM d commits RC. This is not possible since ¢; aborts.

e The RM d votes read-only, RV R. This is not possible since ¢; changes
the value d.v at d.

e The RM d aborts RAB. The postaction of this rule releases locks but
also restores the value of d.v before it was changed by RA.

e The RM crahes releasing locks before the transaction was in doubt. In
this case the locks are lost but on recovery the d restores the previous
value d.sv into d.v before any other RA rules may happen. The case
when the RM crashes when ¢; is in doubt is not considered as locks are
not lost since they were written to stable storage.

In each case if locks are released we see that the value before the action,
d.sv, is restored to d.v. We can conclude that no persistent changes are made
to d € RM(Act;,) and furthermore no other transaction can see temporary
changes.

O

Theorem 1 The presumed abort protocol with read only optimisation and
syncpoint prepare is serializable.

Proof

Consider two transactions, ?; and ?;, in an execution, p suppose neither
7; < t; nor t; < t; and also without loss of generality ¢; aborts in p. We can
construct an execution p’ from p by moving all rules pertaining to t; to the
very start of the execution maintaining their original order in p. We now
claim p = p'. By lemma 2 the values of d.v and d.sv for all d € RM (Acty,)
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is unchanged by ¢; so for all RMs rho’ will be equivalent to those in p.
Futhermore, by lemma 2 no other transaction ?; may see any temporary
changes made by ¢; so the values of ¢;.v remains the same in p'. Since ¢;
aborts in p and p’ we can conclude p = p'.

Now consider two commiting transactions ¢;, ¢; and suppose neither 7; <
tjnort; < t; in p. By lemma 1 each transaction’s start rules are before any of
their end rules therefore there exists a common resource manager that they
are interleaved on; more formally 3d € RM (Acty;) N RM (Act,;) such that

d. dp.d. d
..o a0 BEE; .

is part of the execution p where «, 3, v represent arbitrary, possibly
empty, sequences of rules.

To show any execution is serializable we will use double induction. The
outer induction will be on the number of interleavings of the form above. The
inductive step of this outer induction will require a further sub-induction.
This sub-induction will show that if two transactions t;, ¢;, are interleaved
ona RM d € RM (Acty,)NRM (Act,;) in an execution p then an equivalent ex-
ecution p' can be constructed in which these transactions are not interleaved
on d.

The sub-induction will be on the distance of the end rule of t; at d,
denoted €, from the start rule of ¢; at d, denoted a;-i, assuming without loss
of generality ¢; starts at d before ¢; starts at d in the execution.

We will start with the base case of the sub-induction where the distance

rule e from o in p is zero (i.e. ( is the empty string). We can write this as

d d.d. _d
O QO EYES

We can commute ajl and € because ¢; and ¢; don’t conflict (otherwise the
original execution would not be possible).

To prove the inductive step of the sub-induction we are required to reduce
the length of 3 by one. Let us assume we have chosen ¢;, ¢; and d in such
a way that there are no other ¢;, t; or d we could have chosen which give a
smaller (.

Before providing transformations to reduce the size of  in our sub-
induction we prove the following fact and use it to transform 3 to a form
which contains no rules of the form of or epsilong, for k ¢ {i,7}.

Whenever another transaction ¢ starts (ends) at d in 8 then it will also
end (start) in 3. More formally, Vk ¢ {i,5} ol € B iff €l € 3. Suppose not
then,
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d  _dol 1" d, 1. d ! dpt.d.t.d
..oiaa]ﬂo Be;ve ... or akaa Bley € -

provide smaller candidates for 3, which contradicts our assumption that

[ is the smallest. So we can write 3 as
ot ot ok e
where 7 is a permutation of 1,... n.

We now make the following observation. A start rule o¢, can be moved
before any middle rule x and also before any start rules of the form o, d' # d
in an execution to provide an equivalent execution Using this observation
and the fact that O;l does not conflict with any Ukl, I =1...n (as otherwise
the original execution p would not be possible) we can move all start rules
of the form of, k ¢ {i,j} before o Slmllarly we can move all end rules of
the form €¢, k ¢ {4,;} that are in ,6 after €4 to give the equivalent execution
below.

. .az‘-jaagl ..ol ‘-jﬂ'edez ezﬂn ’ye;-i
Using this initial transformation we can assume 3 does not contain any
rules of the form o or €¢ for k ¢ {i,75}.
The following transformations reduce the size of 3 and form the inductive
step of our sub-induction. Transformation T1 covers the cases where the first
and last rules of 3 are start and end rules respectively, on a RM d' # d. In

the sequal, U?i,j} is short for of or of.

T1

d d d d d d
- 05 0‘@ {i,j,k}‘ﬂe{i,j,k}ﬁiﬂej e

In T1 we move a start (end) rule for any transaction on a RM d’ # d before
(after) a start (end) rule on a RM d. The rules commute because they don’t
conflict since d # d'. Furthermore, start (end) rules can always be moved
earlier (later) in an execution. Clearly T1 results in an equivalent execution,
reducing the size of (.
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12

d, ded ddAd
.. 0} a@{i,k}‘ﬁa{j,k}ei GEEE

In T2 we move an end (start) rule on a RM d' # d before (after) a start
(end) rule on a RM d. In general an end (start) rule cannot be moved before
(after) a start (end) rule to yield an equivalent execution. However, in the
case that rules are for different transactions as well as on different RMs we
can see the resulting execution will indeed be equivalent. Again the size of

B is reduced.
T3

ddg .d d. . d &
O QOB TON €€ L T F €

U

T3 does not reduce the size of # but it may need to be performed before one
of the (8 reducing transformations.

If of is immediately to the before of ¢/ in p it may be move earlier in the
execution. Unfortunately, it cannot be moved before any end rules involving
d" as this may not result in an equivalent execution. The transformation
therefore moves of earlier as long as it is not moved before an end rule on
d'. This results in an equivalent execution. Although this does not reduce

the size of 3 it may allow other transformations to do so.

T4

ofacfedr Bedyet ... r#of i,

Y

T4 is very similar to the T3. In the case that an end rule e?’ is immediately
after of o;d we may move 6?’ after any rule that is not a start rule on d’. This
will result in an equivalent execution. Again it does not reduce the size of (3
but it may allow other transformations to do so. We now consider the cases
when the first or last rules of # are u rules.

T5

d,d’ d,d'
O'Ck d ﬂ, d d

ik R
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The previous transformation allows us to remove p rules from 3. Clearly, p
rules commute with start rules, provided they are on different transactions,
to give an equivalent execution. We use this fact to move p;; rules earlier
in the execution before a;-i. Also a p rule can be moved after a neighbouring
end rule, again provided that it is on a different transaction. This allows us

to move p; after € to giving an equivalent execution.

T6
d. ~d,dd  ord, d
cofaofut T Beles .. T g€

(G

Transformation T6 does not reduce the size of # but it may need to be
performed before one of the [ reducing transformations. It can only be
applied when r # p;, €;. The transformation yeilds an equivalent execution.

7

. 0¢ OéO'dﬂ’ dd d d

€, VG - - -

T7 allows p; rules to be moved after e?. This last final transformation allows
us to remove all the p from .

Applying transformations T1, T2, T5 or T7 (possibly prefixed with trans-
formations T6, T4 or T3) reduce the size of 3 by one, however we need to be
sure that one transformation is always applicable. There is one case which
will result in a situation where no transformation can be applied. That case

is when (8 = e] od’. We can write such an execution

4 I
d. gded g ed ¢l

: ]U N

In general, commuting 6?’ with 0f does not give an equivalent execution.
However, we will argue that if the original execution p was possible then
these rules do commute to give a possible equivalent execution. Notice t;,
t; at d do not conflict (i.e. they hold a read-only lock on d) because of is
followed by 03-1 before €/. By examining the rules RC and RVR we see that
exclusive locks are never released before shared locks at the RMs involved

in a committing transaction. This means e RVRd that is RM d' votes
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read-only. Thus the state of RM d’ is not changed by ¢;. So commuting e;-l'
and af’, yields an equivalent execution.

Our sub-induction reduces the number of interleavings by one, further-
more it does not create any other interleavings in the process. This then
forms the inductive step of the outer induction. The base case of the outer
induction is when the number of interleavings is 0, in which case the execution
is trivially serialized. We conclude any execution can be serialized.

O

Theorem 2 The presumed abort protocol with read only optimisation and
overlapped prepare is not serializable.

RM1 TC1 TC2 RM2
RA
ca ™
CP (overlapping) -
J RVR
CY(RO) R
« J RA
RA CP (ov:arlapping)
CP (Everlapping)
-+ g
RVY >
CYy RVY
cy
CC
'CCD
CCD
CFC
RA
CA
CP (overlapping)
RVR -
CY(RO)
CFC

Figure 1: Strong Isolation is not maintained
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Proof The counter example in figure 1 shows an execution that is not seri-
alizable. TC1 and TC2 both access RM1 and RM2. TC1 performs a write
action at both these RMs between the two read actions of TC2 at RM1 and
RM2. Neither of the possible serial executions of these two transactions will
result in the same values being read at TC2 as the interleaved execution
presented in figure 1. Interestingly, in the previous proof we made use of the
fact that no end rule, for a committing transaction, proceeds a start rule for
that transaction in an execution. We can no longer make this assumption.

7 Conclusions

skip
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