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Abstract

Recently, the Transaction Internet Protocol (TIP) became an Internet standard. TIP is intended to facilitate

electronic commerce transactions in which the customer may need to acquire a package of goods and services from

several di�erent enterprises, each enterprise having its own autonomous transaction processing system. TIP ensures

transaction atomicity: either all enterprises commit the transaction or all enterprises abort it. Groups of enterprises

planning to use TIP should be aware of its strengths and weaknesses for their application. Thus we provide a formal

framework for reasoning about TIP's behavioural and performance properties. We discuss how TIP �ts in to the

broader transaction processing and e-commerce picture.

1 Introduction

The bulk of Internet electronic commerce [10] transactions are relatively simple, involving a customer and a single

enterprise. When two or more enterprises are involved in providing a package of goods or services, e-commerce

becomes considerably more complex. Not surprisingly, where such arrangements do exist, they are based on long-

term bilateral relationships between a �xed sets of enterprises. Consequently, Internet commerce has, to date,

merely been a more convenient way of doing shopping, that is `visiting' one enterprise at a time to buy goods or

services. However, the Internet has the potential to allow a radically di�erent approach to the buying and selling

of goods and services by allowing enterprises to come together on an ad hoc basis to provide, collectively, a package

that can be acquired by the customer in \one stop". By making this complexity transparent to the customer, the

enterprises can appear to be a single, virtual, enterprise. Such an arrangement can be very transient, possibly

exploiting special market conditions.

Whenever a transaction is distributed between several autonomous transaction processing systems, there imme-

diately arises the problem of ensuring the \atomicity" of the transaction. For example, making sure the customer

does not end up with the hotel booking but no 
ight, in the classic holiday booking example. The solution to this

problem is to use a commit protocol [4]. However, the nature of these virtual enterprises, combined with the way

in which the customer interactively puts the package together, create the need for a lightweight, 
exible approach

to commit processing.

TIP (Transaction Internet Protocol) [9, 8] is a distributed commit protocol proposed by Microsoft and Tandem

to be adopted by the Internet Engineering Task Force (IETF) as an Internet standard. Potential implementers of

TIP and application programmers using TIP services need to be aware of the problems which TIP solves and the

problems that it has been deliberately designed to side step. In view of this, we provide a framework in which

to analyse behavioural properties of TIP. This allows us to identify potential problem areas, which arise from the

implementers' set of choices.

2 Growing A TIP Transaction Tree

A transaction manager (TM) provides transaction services to applications. Typically, each application participating

in a distributed transaction will invoke the services of its local TM. Although each TM will manage many trans-

actions simultaneously, the states of each transaction do not a�ect each other (except indrectly through locking).

Thus we focus on the life cycle of a single transaction and think of the TMs at each of the sites at which the

transaction executes as managing only this transaction. A TM, therefore should be thought of as the state of the

sub-transaction held on behalf of the local application.

TIP makes use of transaction identi�ers (TIDs). A TID labels and locates a transaction at a particular TM.

TIP speci�es a TID as the concatenation of the IP address of a machine where the TM is located, a port number

to connect to the TM process at that machine and �nally the local transaction identi�er assigned to the transaction

by that TM. TIP calls these TIDs TIP URLs. During the lifetime of a transaction TIDs are Internet wide unique

identi�ers.
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Using TIP, the distributed transaction grows as sites enlist in the transaction. There are two ways in which this

can happen, namely pushing and pulling.

2.1 Push

Figure 1 describes the PUSH enlistment method. Before any TIP commands can take place, an application must

open a TIP connection to its local TM. This is achieved with a tip open call (steps 1 and 2). If no connection

exists between X and Y a connection is �rst established, (steps 3 and 4). If application A, wishes to enlist a

remote application B then A contacts its local TM, X and requests that the transaction be pushed to B's TM Y

using tip push. Application A must supply the whereabouts of TM Y with this request. X then contacts Y and

pushes the transaction (steps 5 and 6). Y creates a new sub-transaction and returns a TID to X for this new

sub-transaction. After the push the connection enters the enlisted state with X the superior and Y the subordinate.

X now noti�es application A that the push has taken place (step 7), supplying A with the TID obtained from Y .

Whenever application A makes a request to application B to carry out some work on the transaction the request

carries with it the TID returned in step 7. Application B can now register this work with its local TM Y using

the TID. This request, response and register dialogue is shown in steps 8{11.
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Figure 1: A Push

2.2 Pull

The second method by which an application A can enlist a subordinate application B in a transaction is called

Pull; see Figure 2. Application A opens a connection to the TIP gateway by contacting its local TM, X (step 1)

and receives a TID for the transaction (step 2). This TID not only contains the ID of the transaction at X but

also the means by which X can be contacted (an IP address and port number).

If an application B wishes to carry out some work on the transaction, as a subordinate of A, it can ask its TM

Y to pull into the transaction via A's TM X. In order to do this it must �rst obtain, by some means, the TID

returned to A in step 2. In most cases A will pass the TID along with a request for B to carry out some work on

the transaction, but in general any method whereby B receives the TID is possible. The passing of the TID is

represented in step 3.

Application B now presents Y with the TID and asks Y to PULL into the transaction, using tip pull. TM

Y uses the TID to contact X and pulls into the transaction, possibly setting up a connection �rst (steps 5{8) and

returns control to application B steps 7,8 and 9. An asynchronous version tip pull async exists, where control

is returned to the application straight away and then the application noti�ed later when the PULL completes.

Application B may now contact A to inform A that it is enlisted (step 11).

One of the main di�erences between push and pull is that in pull a TID is made available in some way to a

subordinate which then may pull into the transaction. Any application that acquires the TID may pull into the

transaction whereas if a TM pushes to another TM the enlistment is directed to only that TM.

2.3 Enlistment using Push and Pull

Once an application has registered the work it carries out as part of a transaction with its local TM, transaction

semantics are enforced. At some point the initiator application will try to terminate the whole transaction. All it

need do is contact its local TM to do this and the TIP protocol will then ensure that all TMs decide a consistent

abort or commit outcome. If a local application unilaterally decides to abort its part of the transaction it will contact

its local TM. This TM will then use the TIP protocol to ensure all TMs and their associated local applications

are informed of the global abort decision. Thus once enlisted in a transaction an application can delegate all

responsibilities of commit processing to its TM. This simpli�es the application programmer's task.
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Figure 2: A Pull

In the example of Figure 3, a TM R pushes a transaction to two other applications B and C. In order for B to

ful�ll the requests of A, B further pushes the transaction to D. In order for C to ful�ll the requests of A it requests

E and G to pull into the transaction and it pushes the transaction to F .
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pull pull

R R
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Figure 3: Growing a transaction tree in TIP. By default transaction are pushed unless otherwise stated.

Growing of the transaction tree and thus the shape of the tree is completely controlled by the local applications

cooperating in the transaction. This means the application that originated the transaction only has indirect control

over the shape of the tree in terms of the identities and number of subordinates at each level. The decision to enlist

a TM is not made in the TIP protocol but instead by the applications.

The same transaction may arrive at a TM via di�erent paths. If so, the TM has two or more superiors for the

same transaction. In TIP there is no way to know that the two enlistment actions refer to the same transaction.

This is because the format of a TID is de�ned by each TM and so there is no way to compare TIDs and deduce

that they pertain to the same transaction. Thus we model this situation by viewing subordinate TMs that are

enlisted multiple times as separate TMs, one for each enlistment. In Figure 3 TMs F and D may reside on the

same physical site in the same TM implementation but we view them as distinct TMs. For this reason, transaction

enlistment always gives rise to a tree structure: each TM has at most one superior for any given transaction. The

TIP speci�cation is ambiguous as to whether a TIP transaction should be modelled as a tree structure rather than

a directed graph.

3 Terminating the Transaction Tree

In the previous section we saw how TIP enlists TMs into a transaction. We now describe how TMs communicate

in order to arrive at a consistent global commit or abort decision at each TM in the transaction. In contrast to the

enlistment process, local applications play little part in the termination of a transaction. The applications interact

in the following ways. When the initiator application decides to terminate the transaction it contacts its local

TM. The TM then executes the TIP protocol to determine the global outcome of the transaction. Each local TM

eventually discovers the outcome and passes this on to its local application.

If any enlisted application wishes to abort the transaction it may do so and the TIP protocol will ensure that

the transaction is aborted at each enlisted TM.

We now describe the steps taken when the initiator application wishes to commit the transaction. The initiator

application contacts its local TM to start the commit process. A two-phase commit (`2PC') is entered into between

every superior and each subordinate. The steps are as follows

� If a local application can commit the transaction a PREPARE command is sent to each of its subordinates.

Each subordinate replies PREPARED if it is prepared to make its local work permanent, the state of the

connection between superior and subordinate then changes to prepared. Before replying PREPARED a

subordinate TM must carry out a 2PC with each of its own subordinate TMs. Thus a PREPARED response

is not propagated up until all subordinate TMs have replied PREPARED.



� If the local application cannot commit the transaction, its TM responds with ABORTED to any PREPARE

request and also sends an ABORT message to all its subordinates. If a TM receives an ABORTED response

from any subordinate or an ABORT message from its superior, it sends an ABORT to all its non-aborted

subordinates and replies ABORTED to its superior. In TIP, a TM cannot ABORT from an enlisted state

until it is asked to PREPARE or ABORT. However, the application can abort, releasing any resources, once

it has informed its TM of the abort decision.

� Once all the subordinate TMs of the initiator TM, R, have replied PREPARED, R moves into a committed

state and issues a COMMIT command to each of its subordinate TMs. Once a TM receives a COMMIT

command it moves to a committed state and propagates the commit command down to each of its subordinates

and replies COMMITTED once all subordinates have replied COMMITTED.

4 Modeling TIP Protocol Execution

The execution of a TIP protocol can be modeled as a tree. The vertices of the tree represent the TMs. An arc from

vertex X to Y , models a superior to subordinate connection between the TMs X and Y . The end points of the

arcs are \coloured" to represent the states of the connection at each TM. The di�erent state colours are initial i,

enlisted e, prepared p, committed c and aborted a1. Figure 4 shows a tree. The initiator application has issued a

command to start to commit the transaction. The subtree with TMs B and D, have connections that have entered

their p state.
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Figure 4: A TIP Transaction tree

We now give a set of rules which manipulate the coloured trees of our TIP transactions. The rules provide a

transition semantics for all possible TIP transaction trees and describe the possible termination sequences of the

transactions.

Each rule manipulates an arc representing the state of a connection in a TIP transaction tree. We write

X(x) ! Y (y) if an arc exists between vertices X and Y and the arc is coloured x at X and y at Y . Each rule

transforms these arcs provided certain conditions hold. We write rules as

Name
X(x)! Y (y)

X(x0)! Y (y0)
CONDITION

meaning rule Name transforms a connection of type X(x)! Y (y) to X(x0)! Y (y0) provided condition CONDI-

TION holds. In most of our rules x = y and x0 = y0.

We de�ne OUT (X) = fx j 9Y (y); X(x) ! Y (y)g to be the multi-set of states of outbound connections from

X. We de�ne the singleton or empty set IN(X) = fx j 9Y (y); Y (y) ! X(x)g, to be the state of the inbound

connection, or empty if there is no inbound connection.

Applications must ensure that a TM does not enlist new TMs after it has entered its prepared state or if it has

decided the outcome of the transaction. It will be useful to de�ne

grown(X)
def
= (p 2 IN(X)) _ (a; c 2 IN(X) [ OUT (X))

Applications must also ensure that if a TM X enlists another TM Y in a superior/subordinate relationship then

either X is the initiator application's TM, i.e. X = R, or X has an enlisted superior2. This can be expressed with

the predicate

1The TIP speci�cation [9] groups the initial, committed, and aborted states into a single state they call idle. A connection starts in

an idle state and once aborted or committed it returns to idle. We use the states committed, aborted and initial in order to di�erentiate

between a connection that has terminated and one that is new.
2It is possible to envisage an enlistment scheme where TMs enlist one another into a forest of trees, each tree having a di�erent root

TM. Eventually these trees merge into a single tree with one root. Our rules require modi�cation for this more general case.



enlisted(X)
def
= (e = IN(X)) _ (X = R)

The �rst three rules grow the transaction tree enlisting TMs.

Connect
Y is new

X(i)! Y (i)

Push
X(i)! Y (i)

X(e)! Y (e)
:grown(X) ^ enlisted(X)

Pull
X(i)! Y (i)

X(e) Y (e)
:grown(Y) ^ enlisted(Y)

The Connect rule establishes a new arc between two TMs. This models the situation where TIP creates a new

connection between two TMs or reuses an old connection that has terminated. The Push and Pull rules move

initial connections into enlisted connections.

To move a connection to a prepared state we require all outbound connections to be in a prepared state. We

can write this rule as follows.

Prepare
X(e)! Y (e)

X(p)! Y (p)
8z 2 OUT (Y ); z = p

When a TM is sent a PREPARE message it might respond with an ABORTED message. This might be because

the local application cannot guarantee to do the work asked of it. The rule for this is given below. It might seem

that the lack of a condition for this rule means that a TM can spontaneously abort from an enlisted state. In

normal operation a TM will try to commit but we must allow it to abort if it needs to.

Abort I
X(e)! Y (e)

X(a)! Y (a)

If a PREPARE command causes a TM X to abort then this abort decision must be propagated to all prepared

subordinate and superior TMs of X. The rule for this is given below.

Abort II
X(p)! Y (p)

X(a)! Y (a)
9a 2 IN(X) [ OUT (X)

Once all TMs are prepared from the bottom up the transaction can commit. The commit rule is given below, it

propagates the commit decision down the tree.

Commit
X(p)! Y (p)

X(c)! Y (c)
(8x 2 IN(X); x = c) ^ (8x 2 OUT (X); x = c _ x = p)

The example in �gure 5 below shows the start of a possible execution of the TIP protocol.

5 Failure, Recovery and Logging

A rule changes the state of a TIP TM connection. This requires a state change at both the TIP TMs associated

with this connection. Although modeled as an atomic event, a handshake between the TMs must take place in

order for both TMs to change state. We can break down the event of transforming X(x)! Y (x) to X(x0)! Y (x0)

into two steps. Firstly, X sends a messages along the connection to Y requesting it to move to state x0. When Y

receives this it moves to state x0 and then sends an acknowledgement back. When X receives the acknowledgement

it too moves to state x0. We call this a forward handshake. A backward handshake is where the sender changes state

before the message is sent. All our rules employ a forward handshake with the exception of Commit.

Failures may occur when a TM at one end of a connection crashes or the connection between two TMs fails.

TIP does not di�erentiate between a lost connection due to communications failure or a lost connection because

the remote end of a connection failed. We model failure as a loss of connection.

5.1 Connection Failure

Failure can happen at any time between any of the TMs in the system. When a TM detects a failure on a connection

it carries out steps depending on the last known state of the connection before the failure. We cannot always assume

that the state of the connection at the remote TM is the same as the state of the connection at the TM where

the failure is detected. This is because the failure may have happened during the handshake process when the two

TMs are changing state. In the case of a forward handshake the subordinate might be in a more advanced state

than the superior. In TIP, handshakes are of the forward variety unless otherwise stated.
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Figure 5: An execution of TIP

To model connection failure, we let X(x)� ! Y (y) denote that a previously established connection between

X in state x and Y in state y has failed. We can express the failure of a connection in the following rule where x

ands y range over the states i, e, p, c and a.

Failure
X(x) �! Y (y)

X(x)� ! Y (y)

In TIP the actions taken by a TM after failure depend on the state of the connection at the TM prior to the

failure. If the state of the connection is i, c or a no action need be taken3 . If a TM X is in the e state the

transaction is aborted. We model this using the rule

EAbort I
X(e)� ! Y (�)

X(a)� ! Y (�)
EAbort II

X(�)� ! Y (e)

X(�)� ! Y (a)

These two rules model the case where a superior aborts an enlisted connection to a subordinate or vice versa,

when it detects a connection failure to the remote TM. The exact state at the remote end of the connection is

unknown so we denote it � which could be e, p or a in the �rst rule and � which could be i, e or a in the second

rule.

If the superior TM connection failed in state p then it should try to reconnect to its subordinate. In fact, if

the superior TM is going to abort the transaction reconnection is optional. After recovering the connection the

superior sends a RECONNECT message to the subordinate which responds with a RECONNECTED message and

both TMs re-enter the p state.

If a subordinate TM connection failed in state p, on recovery it periodically attempts to contact its superior in

order to resolve the outcome of the transaction. The subordinate issues a QUERY command. The superior then

attempts a RECONNECT/RECONNECTED handshake re-establishing the connection in the p state, or else, if

the superior had aborted the transaction it replies with QUERYNOTFOUND moving the connection to the the a

state. We model this behaviour with the following three rules.

Rec
X(p)� ! Y (p)

X(p)! Y (p)

Query I
X(c)� ! Y (p)

X(c)! Y (c)

Query II
X(a)� ! Y (p)

X(a)! Y (a)

3Although the TIP speci�cation states that no action need be taken if a connection fails in the c state this is not quite true. In order for

the superior to be able to \forget" the transaction and deallocate the memory associated with it, it must be sure that all its subordinates

have committed. A recovering subordinate in the c state may need to inform its superior that it has committed



The Rec rule models the behaviour of either the subordinate or the superior reconnecting. The Query I rule

models the case where the subordinate queries the superior and �nds out the transaction has committed. The

Query II rule models the case where the subordinate queries the superior and �nds out that the transaction has

aborted. Note a subordinate will only attempt to query its superior when it is in the p state.

Handshakes in TIP are based on half duplex communications. Once a message is sent along a channel the

channel is switched to listen mode. Microsoft's �rst implementation of the TIP protocol uncovered some problems

where in a certain failure sequence both ends of a channel could be switched to listen mode causing the channel to

deadlock.
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Figure 6: Failure and recovery in TIP

The example of Figure 6 describes the execution of the TIP protocol when two connection failures happen. The

�rst connection lost is C(p)! D(p) and the second failure breaks the connection R(e)! B(p) half way through

the handshake between R and B which would have moved that connection to a p state at both ends. This leaves

the connections in C(p)� ! D(p) and R(e)� ! B(p) respectively. When R detects the failure of its connection

with B it moves its end of the failed connection to state a, the EAbort rule. B queries R to try to re-establish the

connection and receives a QUERYNOTFOUND message moving the connection to R(a) ! B(a). Meanwhile C

issues a RECONNECT message to D which replies RECONNECTED re-establishing the C(p)! D(p) connection,

the REC rule. Two applications of the Abort II rule then propagates the abort decision to all TMs.

5.2 Crash Failure and Logging

Previously we examined the actions taken by TMs when they loose connections with one another. One cause of a

loss of connection might be the failure of a TM at either end of the connection. We have seen that upon recovery a

TM may be required to take actions to reestablish the connection depending on the state at its end of the connection

before the crash.

If failure in a state, s, requires a TM to take actions upon recovery, the TM is required to force write a log

record to stable storage before entering state. The absence of a record can also be used to determine which action

to take. Forced log writes are expensive, so optimizations have been proposed to reduce the number a protocol

requires. TIP implements the presumed abort optimization[11]. In this scheme, upon recovery, the presumption is

that a transaction should be aborted unless there is a log entry to indicate otherwise. This requires a forced log

write in the following cases.

1. If a TM receives a PREPARE message from its superior it sends a PREPARE messages to each subordinate it

might have. Once they have all replied PREPARED it force writes a prepare record and replies PREPARED

to its superior. On recovery from a crash if a prepare log record exists, the subordinate will reestablish



its connection with its superior and determine the transaction outcome. In the case that a TM and all its

subordinates are read-only it can reply READONLY and no log record need be written.

2. If a TM receives a COMMIT message from its superior, or in the case that the TM is at the root of the tree

and all subordinates have replied PREPARED, a commit record is force written and then COMMIT messages

are sent to all subordinates4. By replying COMMITTED a subordinate promises that it will not request the

outcome of the transaction from its superior. Once all subordinate TMs have replied COMMITTED a TM

may in turn reply COMMITED to its superior allowing the superior to safely \forget" about the transaction

by logging an end record. This need not be force written.

Figure 7 details the required logging activity in TIP. When transaction trees have a depth greater than one level,

as they may do in TIP, logging at each level presents quite a large overhead compared to a 
attened transaction

tree[11]. Although not speci�ed as part of TIP, Lampson and Lomet[7] provide a technique to further reduce logging

overheads.
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Figure 7: Logging in TIP

Message latencies are likely to be much higher in Internet transaction processing than in traditional, tightly clustered

transaction processing environments. Thus by Amdahl's law[1], relative savings by reducing logging costs in the

two environments will be lower for Internet transaction processing.

6 Atomicity of TIP

In the sequel let w; x; y; z range over states connections may take.

De�nition 1 A directed path X1(x1)) Xn(xn) exists in a transaction tree if there exists arcs

X1(x1); X2(y1); X2(x2); X2(y2); : : : ; Xn�1(xn�1); Xn(yn�1):

Where ; is �! or � !. The length of the directed path is equal to the number of arcs on the path.

In the following we say a TM X �rst commits when IN(Y ) = fcg �rst holds for any subordinate Y of X.

We also say a TM X has prepared once it has received a PREPARE message from each of its subordinates i.e.

8z 2 OUT (X); z = p.

Lemma 1 TM R is the �rst to commit.

4In fact, once a commit record has been written a TM can reply COMMITED to its superior.



Proof: By the condition of the commit rule, Commit, and the fact that IN(X) = ; ) X = R.

2

Lemma 2 Each TM prepares before all its ancestors.

Proof: We must prove that, if 9x 2 OUT (X); x = p and X(p)) Y (y) then 8z 2 OUT (Y ); z = p. Our method

of proof is by induction on the length of the path X(p)) Y (y).

Base Case: Y is a child of X. The Prepare rule must have created the connection X(p) ! Y (p)5 and a

condition of that rule is 8x 2 OUT (Y ); x = p.

Induction: Let X(p) ) Z(p) be a directed path of length n. Thus by the inductive hypothesis 8w 2
OUT (Z); w = p. Extend this path with any connection Z(z) ! Y (y). By the induction hypothesis z = p

and Z(p)! Y (p) must have been created by the Prepare rule so 8x 2 OUT (Y ); x = p holds.

It might appear that the above proof technique is invalid because the tree is dynamically growing as new TMs

are enlisted. However, once a TM has voted to prepare it may not enlist any other TMs. This means that the

inductive hypothesis will continue to hold for paths of length n as we consider paths of length n+ 1.

2

De�nition 2 Atomicity. We say that the atomicity property holds over a TM tree if for any TMs X and Y in the

tree

� if c 2 OUT (X) [ IN(X) then a 62 OUT (Y ) [ IN(Y ) and

� if a 2 OUT (X) [ IN(X) then c 62 OUT (Y ) [ IN(Y )

Theorem 1 TIP ensures atomicity.

Proof: Let X and Y be TMs. We prove that the Atomicity property of de�nition 2 holds. If 9c 2 OUT (X)[IN(X)

then by Lemma 1 R was the �rst to commit, and when it did, 8x 2 OUT (R); x = p held. By Lemma 2 all descendant

connections of R must also be in state p. For this situation to happen no connection could have been in state a, by

the condition of the Prepare rule. Once all connections are in a p state no connection can abort by the conditions

of rules Abort I, Abort II, EAbort I and EAbort II rules. Suppose 9a 2 OUT (X)[ IN(X) then the Prepare

rule cannot happen at X for one connection. This means that R will never commit and so neither will any other

TM.

2

7 TIP Optimizations

7.1 One Phase Commit Violates Atomicity

A 2PC optimization, known as last agent [11], is available in TIP. The TIP speci�cation[9] states that a one{phase

commit can be performed when

\...the sender [superior] has 1) no local recoverable resources involved in the transaction, and 2) only one

subordinate (the sender will not be involved in any transaction recovery process)".

TIP supports a one{phase commit by allowing a COMMIT message to be sent from a superior to a subordinate

when the superior and subordinate maintain an enlisted connection. Unfortunately, the speci�cation's conditions

as to when this may take place are not strict enough to guarantee atomicity; see de�nition 2. Consider the example

of Figure 8.

We can rectify this problem by insisting that only the root may delegate commit and only when it has a single

subordinate. In the case that this single subordinate has only one subordinate it can again delegate and so on.

In fact the condition of no local recoverable resources could be relaxed. This condition is certainly required if

no reply is sent to commit delegation message. In TIP the delegated COMMIT message is replied to, with either

COMMITTED or ABORTED. This means the superior, on receipt of this message, can take the appropriate action

with local recoverable resources. This does however present a problem. If a failure were to occur and the outcome

message returned to the superior were lost the superior can not easily determine the outcome. This is because after

sending the outcome the subordinate forgets about the transaction. Changes to the TIP protcol could solve this

problem but they are not currently implemented. In the case that a TM has no local recoverable resources it need

not force write a prepare record to its log before delegating commitment.

It is unclear how TIP supports the delegation of commitment further than the root of the transaction tree. A

TM can determine if it is the root of the transaction by checking that it has no superiors. If it is not the root it can

determine if it has no siblings in the following way. If a TM receives a COMMIT message while in the the e state

without going to through the p state it can determine that this COMMIT message must be of the delegate type.

Since 80% of distributed transactions are read only[11], with one or two remote subordinates these optimization

can represent a signi�cant saving.

5If X(p)� ! Y (p) then, earlier, the Prepare rule must have moved this connection to X(p)! Y (p).
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7.2 Acknowledgement Schemes

During a transaction, applications enlist one another and issue requests for (application-speci�c) work to be done on

the transaction. A response to such a request would be an acknowledgement that the balance has been tentatively

updated. The change is not made permanent until the transaction commits. Alternatively a response to a request

might just acknowledge that the request arrived and that the update will be dealt with in due course.

Suppose the initiator application, A enlists another application, B and issues requests for work to be carried

out, at B, on that transaction. Application B, once enlisted, tries to carry out the request and in so doing enlists

another application C. An interesting question now arises. Should B send an acknowledgement to A to indicate

that it has undertaken the work before it has received acknowledgements from C or should it always wait for C

to acknowledge its own work in turn before passing the acknowledgement up to A. We discuss two options which

applications might take.

Strict Acknowledgement Each application acknowledges a request when it has �nished the work requested

of it and when all enlisted subordinate applications have acknowledged their work in turn. In this case the

initiator application will eventually receive acknowledgments from all its subordinates. Microsoft's implemen-

tation of TIP assumes only this policy.

Lazy AcknowledgementAn applications is free to acknowledge a request from its superior before completing

the work requested of it. It may also acknowledge the request before the enlistment of subordinates required

to complete the request. In this case, when the initiator application receives an acknowledgement it cannot

be sure that its subordinates have completed their work or even that all the participants in the transaction

have been enlisted.

If strict acknowledgment is used, a transaction cannot exploit the parallelism achieved by working while messages

propagate. For instance, if an application acknowledges work requests before carrying out the work requested, that

work might well have completed by the time the acknowledgement message is received by the requester. In this

way an application can overlap work with message propagation. It might seem that this strategy is 
awed because

the response might acknowledge work which was not in fact possible to perform. If so, the application still has the

option to abort the transaction when asked to prepare.

The increased concurrency of lazy acknowledgement comes at a price. The initiator application will receive

lazy acknowledgements and may try to commit the transaction. This will cause each subordinate TM to be sent

a PREPARE message. If all the work has taken place by the time the PREPARE message arrives the TM may

respond PREPARED. If however work has still not been completed or further subordinates need to be enlisted the

subordinate TM is faced with three options.

1. The TM can reply ABORT. We call this situation rushed abort

2. The TM can delay the PREPARED response until work has completed, and all its subordinates are enlisted.

This might cause other prepared TMs to wait exposing them to blocking in the case of failure.

3. In the case where the TM has not �nished enlisting subordinates it might just leave them out of the transaction.

This may be possible if for instance it were just collecting prices for a product from available various vendors,

as it could use the prices it has collected so far. We call this situation excluded participants.

In some cases a superior will need the �nal results of a work request before it can proceed. We call this constraint

ack with results. If this is required then a lazy acknowledgement scheme would be inappropriate.

7.3 Read Only Optimization

Another 2PC optimization is known as read only [11]. This optimization, when combined with presumed abort,

reduces the need for forced log writes. TIP supports this optimization by allowing a TM that does not need to
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know the outcome of a transaction to reply READONLY to a PREPARE message.

For instance if a TM and all its subordinates only performed reads of their resources then they can reply

READONLY and release their read locks, when asked to prepare. In general, this optimization increases concur-

rency because locks on read only resources can be released earlier. When combined with lazy acknowledgement,

concurrency can be increased further still because TMs may be asked to prepare earlier than in strict acknowledge-

ment and so can release their locks earlier still.

Unfortunately combining lazy acknowledgement with read only, lowers transaction isolation levels. Consider an

example adapted from[11]. TMs X and Y are subordinates to a common TM R. Both X and Y receive PREPARE

messages. Y replies READONLY and releases locks before X has �nished with the transaction. X6 needs to access

a resource that Y unlocked, but another unrelated transaction has locked the resource and changed it. When

X gains access to the resource it has changed since Y unlocked it. The transaction will thus see an inconsistent

view of the resource. One view read by X and a di�erent view read by Y . This level of isolation is known as

READ COMMITTED [5]. If strict acknowledgement is used then this scenario cannot arise and SERIALIZABLE

isolation is maintained.

7.4 Early Preparation

Suppose application A requests services from applications B and C; see Figure 10. The transaction is pushed to

the relevant TMs and work starts at both B and C. Application B pushes the transaction further to applications

D and E. Suppose B completes its work receiving the information it needs from D and E and then informs A of

completion. It then waits for noti�cation from its TM to terminate the transaction. Application B's TM cannot

independently commit the transaction because it has a superior and a sibling who might need to abort. It could

however start the �rst phase of the two phase commit. We call this scheme early preparation. B contacts its TM

and asks it to carry out only the �rst phase of the 2PC with the TMs of D and E. Once the subtree comprising

nodes B, D and E have reached a prepared state they must wait. When B's TM receives a PREPARE message

from A's TM it can immediately respond PREPARED.

This scheme could provide greater concurrency. While C is carrying out its work the applications that comprise

the subtree B, D and E can perform half their commit processing. (Part of this commit processing involves forced

6We slightly abuse notation for brevity's sake. We should write an application local to TM X but instead just write X.
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disk writes which in some systems constitutes most of the delay.) If the request to C is long running overlapping

processing in this way might present a useful gain. There is a cost associated with this optimization. Firstly, B

must know that it will not be asked to carry out further work in the transaction and therefore it is safe to start to

prepare the transaction. Secondly, there is the issue of exposure to blocking. Once a TM has replied PREPARED

to its superior it requires noti�cation of the outcome. If it loses the connection with its superior it must hold locks

on resources until it can reconnect. By replying PREPARED it has given up its right to unilaterally abort.

Table 1 summarizes the impact of combining Lazy and Strict Acknowledgement with Early and Late Prepare.

The application programmer can choose to use Lazy or Strict Acknowledgement within the current TIP speci�cation.

In contrast Early Preparation would require an method to allow the application to request its local TM to carry

out the �rst phase of the two phase-commit protocol. Currently Microsoft's implementation of TIP only supports

the most conservative schemes of strict acknowledgement with late preparation.

LA + PrepASAP LA+PrepLate SA+PrepASAP SA+PrepLate

Isolation Level READ COMMITED SERIALIZABLE SERIALIZABLE SERIALIZABLE

Concurrency Best Good Good Worst

Excluded Participants Possible Possible Not Possible Not Possible

Ack with results No No Yes Yes

Blocking Exposure High Low High Low

Rushed abort Yes Yes No No

Table 1: The impact of combinations of Lazy Acknowledgement (LA), Strict Acknowledgement (SA), Late prepare

(PrepLate) and ASAP prepare on the TIP service.

8 Security and Trust

The 2PC protocol relies on the trust of the parties involved.

In 2PC, if an application states that it can commit a transaction and then later reneges on this promise atomicity

is comprimised. We assume that if an application can be trusted then it will not behave in this way. This assumption

is not an invalid one as long as we can be sure of the identities of the applications involved. If they were to act in

such a disruptive manner then, because their identities are known, appropriate action can be taken, for example

they could excluded from such business transactions in the future. Some protocols deal in trading environment

where the level of trust is much lower[6].

We now discuss how to restrict transaction enlistment in TIP to only known trusted parties.

Although the TIP speci�cation[9][8] states that TIP should use TLS[3] to provide encryption and authentication,

it gives very few details of how to use the services of TLS to this end. We take this opportunity to outline how

public key encryption and authentication services such as those o�ered by TLS, could be used to make TIP more

secure. We extend the TIP protocol to provide secure methods of enlistment. Once TMs are enlisted they should

communicate over encrypted channels. If our extensions are adopted we claim the following two security properties

will hold.

1. If Application A with local TM X wishes to enlist application B with local TM Y in a transaction then no

other application can be mistakenly enlisted. Furthermore A's identity is authenticated to B and vice versa.

2. No outside parties can detect that the messages being sent pertain to a TIP transaction.



We �rst examine the enlistment of TM Y by X. Let priv(X) and pub(X) denote respectively the private

and public keys of a TM or application X. For an excellent account of public key encryption and authentication

techniques see[12].

8.1 Secure Pull

The Pull enlistment method was described in Section 2.2. We now describe how this can be made secure. We

assume secure communication between an application and its local TM. We refer to Figure 11 in the following.
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Figure 11: Secure PULL

1. Application A requests a TID from TM X to send to Application B. In this request application A informs

TM X that it intends TM Y to initiate the Pull. TM X therefore internally associates the public key, pub(Y ),

with the TID issued.

2. TM Y dispenses the TID.

3. Application A sends the TID with a request for work to application B. The message is encrypted with the

public key, pub(B) and signed with priv(A).

4. When application B receives the message it can be authenticated as having originated at A. It is encrypted

with pub(B) so no other application could intercept the message. Application B contacts its local TM Y and

requests Y to pull into the transaction.

5. In the Pull request Y includes Y 's signature generated using priv(Y ) and this request is encrypted with

pub(X).

6. When X receives the pull request from Y it validates this request by looking up pub(Y ) using the TID received

and comparing it to Y 's signature to ensure that the request was from TM Y .

7. TM X replies PULLED if everything checks out. This message is signed by TM X and encrypted with pub(Y ).

8.2 Secure Push

The Push enlistment method was described in Section 2.1. We now describe how this can be made secure. We refer

to Figure 12 in the following.

1. Application A makes a request to its local TM X to push the transaction to Y .

2. A Push request is made from X to Y encrypted with pub(Y ) and signed with priv(X).

3. On receipt of this request, Y can decide if it wishes to be enlisted in a transaction with X as its superior.

If it does enlist then it creates a new TID, associates pub(X) with the TID, and returns it to TM X. This

messages is signed using priv(Y ) and encrypted using pub(X)

4. TM X returns the TID to application A, verifying that it came from Y .
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5. Each of A's requests for work to be carried out at B carries the TID received in the previous step. This

message can be signed using priv(A) and encrypted using pub(B).

6. When application B registers work with TM Y , the TID is presented. TM Y can check to see if it issued this

TID and knows that it was issued to X a valid superior.

8.3 Implications

In our scheme we require the application to application channels to be encrypted and secure. Although the TIP

speci�cation states that the TIP protocol channel should be secure it does not specify that the applcation channel

should also be. A simple attack can be constructed if the application to application channel is comprimised, for both

push and pull methods of enlistment. Currently Microsoft's implementation does not fully address this problem.

The scheme we suggest provides authentication and security. Any application or TM can authenticate a request

and decide whether or not to join the transaction. A problem arises when the transaction tree has a depth of more

than one.

If application A trusts application B and vice versa A can enlist B. B can now enlist another application C

who it trusts but who is not trusted by A. A has no direct control over who joins the transaction. It may only

authenticate subordinates. In this scheme A must be sure that it not only trusts its subordinates but also that it

trusts them not to enlist any TM that it does not trust, and so on. We call this criteria trust transitivity.

9 Problems with TIP

In traditional transaction processing environments the participants in a transaction cooperate. In an Internet

environment, the participants might be competitors and may therefore not cooperate all of the time. Thus we

should design an Internet protocol so that if a participant deliberately acts in a way to unfairly disadvantage other

participants this can be detected. In the last section we discussed how enlistment of only trusted participants could

be achieved. In this section we show how, once enlisted, a participant can act to deliberately disrupt a transaction

without detection. The fact that it is trusted is not enough to ensure a fair playing �eld if it could act in such a

way that blame cannot be apportioned.

9.1 Deliberate blocking

TIP uses 2PC to ensure atomicity. However, 2PC su�ers from blocking: a TM is prevented from terminating a

transaction due to failures in other parts of the system[2]. In TIP, a TM X becomes blocked if the connection to

its superior fails in the p state. This will block every descendent of X.

In Figure 13 the connections have been lost between R and the most superior TMs in the subtrees labeled A

and D. Until these connections are repaired no TM can terminate in either subtree D or A. They are blocked. The

connection to a superior must not be lost when it is in the p state because termination will require reconnection.



In TIP a TM could fake failure in order to block other TMs. It would be di�cult for other blocked participants

to tell the di�erence between genuine and fake failures. The other participants might have to hold locks on resources

while blocked, and thus be at a disadvantage.
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Figure 13: Blocking in TIP

One method which might reduce blocking (deliberate or otherwise) is to pass the TIP URL of R down the tree

when it is grown. If connections are lost some blocking (deliberate or otherwise) can be avoided by reconnecting to

R to determine the outcome. If a decision has been made it will be known at R. This optimization is not currently

supported by TIP.

9.2 Jamming

Participants in an Internet transaction might deliberately delay responses, faking failure, and then abort a trans-

action in order to gain a competitive advantage. We call this jamming. Two examples of jamming are given

below.

Example 1 Suppose a pension fund wishes to buy some government bonds and some gold futures in order to adjust

the risk pro�le of the fund. The fund contacts two di�erent investment banks one willing to sell it gold futures the

other government bonds. The fund decides to use TIP to carry out the transaction. Atomicity is important as

the gold futures are of little use to the fund without the government bonds and vice versa. The pension fund then

tries to commit the transaction. A PREPARE message is sent to each supplier. Ideally both suppliers will respond

PREPARED together and the transaction will then commit. Suppose however the seller of the bonds responds

PREPARED as soon as it is asked to PREPARE but the seller of the gold futures delays its response, because it is

waiting for some imminent news on interest rates. If the news is favourable (the market price falls lower than the

agreed delivery price) it replies PREPARED and the transaction commits. If the news is not favourable the seller

of gold futures will reply ABORT and the transaction will globally abort.

Bond prices and gold futures generally move in the opposite directions when interest rates change. This means

by delaying a response to a PREPARE message the bond seller always pro�ts at the expense of the seller of the gold

futures.

9.3 Excessive Aborts

Consider the example in Figure 14. A connection is lost with one subordinate of R before it enters the p state.

All other connections from R have entered p. Once this failure has been detected by R it moves the connection to

the a state. The global outcome must now be abort. If instead the TM tried to reconnect to its subordinate the

connection may be able to be re-established in the e state and global abortion might be avoided. To do this we

could introduce a new rule ERec.

ERec
X(e)� ! Y (e)

X(e) �! Y (e)
a 62 OUT (X) [ IN(X)

A modi�cation that might prevent excessive aborts would oblige a TM to try to reconnect before aborting (perhaps

providing proof that the connection could not be established) otherwise it could always claim that a network fault

caused an abort decision. In this way by enlisting and then faking failure and aborting a TM could deliberately

abort transactions.

10 Conclusions and Future Work

There are choices to be made, both by the implementers of TIP and the application programmers using the TIP

services. The particular choices made will depend on the level and type of transactional services required. Our



e

Transaction must now
abort

p p
C D

A
p

p p

R
p a

B

EAbort

ERec

p p
C D

A
p

p p

R
p e

B
e

Transaction may now
commit

p p
C D

A
p

p p

R
p eFailure

B
e

Figure 14: Excessive aborts in TIP

model of TIP provides a good framework in which to reason about possible TIP executions. A possible future

direction might extend TIP to use a quorum based three-phase commit protocol to further alleviate the problems

of blocking. Our model is amenable to model checking. Using a modal logic such as CTL liveness and safety

properties can be formally veri�ed using game based model checking algorithms.
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