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Abstract


The Swendsen-Wang process provides one possible dynamics for the Q-
state Potts model in statistical physics. Computer simulations of this
process are widely used to estimate the expectations of various observ-
ables (random variables) of a Potts system in the equilibrium (or Gibbs)
distribution. The legitimacy of such simulations depends on the rate of
convergence of the process to equilibrium, often known as the mixing rate.
Empirical observations suggest that the Swendsen-Wang process mixes rap-
idly in many instances of practical interest. In spite of this, we show that
there are occasions on which the Swendsen-Wang process requires expo-
nential time (in the size of the system) to approach equilibrium.
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1 Introduction


The Potts model is a natural generalisation of the Ising model to an arbitrary
number Q ≥ 2 of states or “spins.” Configurations in the Potts model can be
viewed as Q-colourings (not in general proper) of the vertices of an undirected
n-vertex graph. One is interested in sampling configurations from a certain distri-
bution, known as the Gibbs distribution, with the aim of obtaining estimates for
certain random variables on configurations. For the ferromagnetic Potts model
— the focus of this article — the Gibbs distribution assigns greater probability
to configurations in which a larger number of pairs of adjacent spins are alike. A
precise definition of the Potts model is provided in Section 2.


In the absence of effective direct methods, the usual approach to sampling
configurations is via the “Markov chain Monte Carlo” method [11]. The idea is
to provide the model with a dynamics by defining an ergodic random walk on
configurations whose stationary distribution is the required Gibbs distribution.
Provided the walk is rapidly mixing, i.e., converges rapidly to equilibrium, con-
figurations may be efficiently sampled by simulating the walk for a sufficient, but
not excessive, number of steps.


A number of different dynamics are possible. The simplest is to move between
configurations by changing one spin at a time, with transition probabilities de-
termined by the “Metropolis rule” [17]. It is fairly easy to demonstrate situations
in which this random walk takes exponential time (in n, the size of the graph) to
approach equilibrium, even in the ferromagnetic case.1 A more complicated dy-
namics, which allows many spins to change in one step, was proposed by Swendsen
and Wang [22] and is now widely used in computer simulations.


The Swendsen-Wang process (as we shall call it) appears to converge rapidly
to equilibrium in many instances of practical interest. This empirical observation
might encourage us to attempt to prove that the mixing time of the process
grows not too quickly as a function of n, specifically that it is bounded by a
fixed polynomial in n, independent of the other parameters of the system. Such
a result would establish the existence of an efficient approximation algorithm
— more precisely, a “fully polynomial randomised approximation scheme” or
fpras [13, 11] — for computing the partition function of a Q-state ferromagnetic
Potts system. Such an algorithm is only known to exist in the case Q = 2 [9].


Our main result (see Proposition 7 for a precise statement) demonstrates that
this is a vain hope. For a certain particularly simple family of Potts systems based
on the complete graph Kn on n vertices (the so-called “Curie-Weiss model”) the
Swendsen-Wang process is still far from equilibrium after exponentially many
steps. This counterexample is valid for all Q ≥ 3 and for a suitably chosen
“coupling constant.” It is an open question whether rapid mixing obtains when


1The antiferromagnetic model, in which adjacent spins tend to be unlike, includes graph
colouring as a limit, so rapid convergence cannot be expected for any reasonable dynamics.
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Q = 2 (the Ising model), or if the negative result can be extended to more
physically realistic instances of the Potts model, for example, 2- or 3-dimensional
lattices.


2 The Potts model


The Potts model was introduced by R. B. Potts [19] in 1952, has been a fo-
cus of much attention in the physics and mathematics communities ever since.
Rather than present a detailed historical account of the model here, we refer the
interested reader to Baxter [2, Chap. 12].


The problem is easily stated. Consider a collection of sites {1, 2, . . . , n}, de-
noted by [n], each pair i, j of which has an associated interaction energy, which,
for simplicity, we assume takes on one of just two values, either 0 or J . In
most cases of physical interest, the set E of unordered pairs of sites with non-
zero interaction energy forms a regular lattice graph ([n], E). A configuration
σ = (σ1, . . . , σn) is an assignment of spins to sites, where σi denotes the spin at
site i. The number of spins is denoted by Q, where Q ≥ 2; individual spins may
simply be denoted by the numbers in [Q]. The energy of a configuration σ is
given by the Hamiltonian


H(σ) =
∑


(i,j)∈E
J(1− δ(σi, σj))


where δ is the Kronecker-δ function which is 1 if its arguments are equal, and 0
otherwise.


The central problem is to compute the partition function


Z =
∑
�


exp(−βH(σ))


where β > 0 is what is called the inverse temperature (to be precise, β = 1/kT ,
where T is the temperature and k is Boltzmann’s constant) and the sum is over
all possible configurations σ. Many of the physical properties of the system
can be computed from the knowledge of Z. Essentially, Z is the normalising
factor in the calculation of probabilities: according to the fundamental theory of
statistical mechanics, the probability that the system in equilibrium is found in
state σ (the steady state probability) is π(σ) = Z−1 exp(−βH(σ)). Moreover,
certain logarithmic derivatives of Z correspond to quantities such as mean energy
and mean magnetic moment. Singularities in these derivatives (in the limit, as
n → ∞) generally correspond to phase transitions, when a small change in a
parameter has an observable effect on the macroscopic properties of the system.
If a small change in temperature causes a phase transition, then that temperature
is called the critical temperature.
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Consider the effect of the parameter J in the Hamiltonian. The high probab-
ility configurations are those for which H(σ) is low. Let d(σ) denote the number
of edges in E that connect sites with different spins in the configuration σ. It is
easy to see that H(σ) = Jd(σ), and that


Z =
∑
�


exp(−βJd(σ))


We let K = βJ ; K is usually known as the coupling constant in the statistical
physics community. By the definition of H(σ), if J (or K, since β > 0) is
positive, then configurations in which neighbouring spins (spins associated with
a pair of sites with non-zero interaction energy) are the same are preferred: this
is the ferromagnetic (attractive) case. On the other hand, if J is negative, the
neighbouring spins will tend to be different, and this is the antiferromagnetic
(repulsive) case.


The search for efficient computational solutions to these problems has proved
extremely hard and has generated a vast body of literature. (The reader is re-
ferred to Chapter 12 of Baxter [2], where some special cases have been considered.)
A huge amount of computational effort has also been poured into numerical solu-
tions, especially for regular lattices.


Although this problem arises in statistical physics, it has a very interesting
connection with theoretical computer science. It is another example of a signi-
ficant combinatorial enumeration problem which is #P-complete, and is hence
apparently intractable in exact form. This is an intriguing class of problems,
and includes the problems of computing the volume of a convex body and the
permanent of a 0-1 matrix. The Potts model also turns out to be one of the many
specialisations of the famous Tutte polynomial in graph theory. The reader is
referred to Welsh [23, p. 62] for more on this interesting connection.


A lot of research effort has been devoted to finding efficient approximation
algorithms for #P-complete problems, where by efficient we mean that the al-
gorithm is guaranteed to run in time polynomial in the number of sites n. Ran-
domness has played a major role in this area, and efficient randomised approx-
imation algorithms have been given for computing the volume of a convex body
and estimating the permanent of a dense 0-1 matrix, as well as for many other
problems. Each of these algorithms is a fully polynomial randomised approx-
imation scheme (fpras), i.e., one that produces solutions which, with very high
probability, fall within arbitrarily small error bounds specified by the user, the
price of greater accuracy being a modest increase in runtime.


Most of these algorithms use Markov chain simulation. This approach has
been used extensively over the years in the field of physics, and in the last ten
years or so, it has been used by researchers in computer science to provide fully
polynomial randomised approximation schemes for many problems. For further
information on this approach and its applications, refer to the surveys by Kan-
nan [12] and Jerrum and Sinclair [11].
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2.1 Single spin flip process


It is, in fact, very easy to use the Markov chain approach to approximate the
partition function of a Potts system. The state space Σ is simply the set of
all possible configurations. Let π(σ) denote the steady state probability of the
configuration σ as described earlier. Transition probabilities from the current
state σ are modelled by the following procedure:


(1) choose a site i ∈ [n] and a spin s ∈ [Q], uniformly at random;


(2) assign spin s to site i to get a new configuration σ′, and let the probability
of accepting the move, pacc = min{1, π(σ′)/π(σ)};


(3) with probability pacc let the next state be σ′, and with probability 1− pacc


let the next state be σ itself.


The procedure described above is an example of what is known in the stat-
istical physics community as the “Glauber dynamics” or the “single spin flip
dynamics” of the Potts model. The acceptance condition used here is called the
Metropolis rule, which is familiar in the computer simulation of models in statist-
ical physics [17]. Unfortunately, the Markov chain described above has not been
proved to be rapidly mixing. In fact, when Q = 2, i.e., when we have an Ising
system, it can be shown that the chain is not rapidly mixing in the ferromagnetic
case, when K is sufficiently large. It is well known that ferromagnetic Ising sys-
tems typically exhibit a phase transition at a certain value of the parameter β;
for values of β above this critical value, the system settles into a state in which
there is a preponderance of one or the other of the two spins.


A significant theoretical advance came in 1990 when Jerrum and Sinclair [9]
described the first provably efficient approximation algorithm for the partition
function of an arbitrary ferromagnetic Ising system. They used a completely
different Markov chain, one in which the state space consists of all the subgraphs
of the interaction graph G. They proved that this Markov chain is rapidly mixing
at all temperatures, and this fact can be used to estimate the partition function
of the system. Unfortunately, their approach doesn’t seem to generalise to Q > 2.


The antiferromagnetic case seems to be even harder: in fact, for the Ising
model, Jerrum and Sinclair [9] (following Barahona [1]) proved that the existence
of even an fpras is highly unlikely. Similar results for the Potts model have been
proved by Welsh [23, p. 138]. However, it is worth mentioning that if Q ≥ 2∆,
where ∆ is the maximum degree of a vertex in the interaction graph G, then the
Markov chain described above can be shown to be rapidly mixing and yields an
fpras. This was shown for the zero temperature case (β →∞) by Jerrum [10], and
then extended to arbitrary temperature (at least for Q > 2∆), by Sokal [21]. The
latter result follows directly from the standard proof of the Dobrushin uniqueness
theorem [4, 5], combined with Salas and Sokal’s verification [20] of the hypotheses
of that theorem for the case of the antiferromagnetic Potts model with Q > 2∆.


4







2.2 The random cluster model


Before introducing the Swendsen-Wang approach for approximating the partition
function for the Q-state Potts model, it would be instructive to look at a related
model, called the Random Cluster model, which was introduced by Fortuin and
Kasteleyn [8] in 1972. We have the interaction graph G = ([n], E) just as before,
however, there are no spins on the sites. The behaviour of the system depends
on the formation of bonds between pairs of interacting sites, and the clusters
(connected components in graph terminology) formed by these bonds. There are
two parameters associated with the model, a probability p of the formation of
a bond between two interacting sites, and a weighting factor Q. (When this Q
is a positive integer it corresponds to the Q in the Potts model; however, in the
random cluster model, Q may be an arbitrary non-negative real number.) The
partition function for this model is given by


Z =
∑
A⊆E


p|A|(1− p)|E|−|A|QC(A)


where A denotes the set of interactions that form a bond, and C(A) is the number
of clusters (connected components) in the bond graph A. The sum is over all
possible subgraphs of G.


It turns out that the Q-state Potts model is equivalent to the random cluster
model with p = 1 − exp(−K), where K is the coupling constant as described
earlier, and the parameter Q is common to both models. The equivalence is
close, even at the microstate level: to obtain a Potts configuration from a random
cluster configuration, simply assign a spin from [Q] independently and u.a.r. to
each cluster. Note that the random cluster model effectively generalises the Potts
model to an arbitrary (possibly nonintegral) positive number of spins.


2.3 The Swendsen-Wang approach


This approach is based on the “bond graph and cluster” view of the Potts model
described in the previous section. Unlike the single spin flip dynamics, this ap-
proach is not local in that a single transition can affect a large number of sites.
Each transition can be described as a two-step process, and the connection with
the random cluster model is very clear. Let the current Potts configuration be
denoted by σ. The next configuration σ′ is obtained as follows:


(1) Let A ⊆ E be the subset of edges that form a bond, i.e., ones with the same
spin on both incident sites. Each of the edges inA is retained independently
with a probability p = 1− exp(−K); this gives a subset A′ of A.


(2) Using A′ as the set of edges, connected components (clusters) are formed.
For each cluster, a spin is chosen uniformly at random from [Q], and all
sites within the cluster are assigned that spin.
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That the Markov chain with transitions defined by this experiment is ergodic is
immediate; that it has the correct distribution is not too difficult to show. (See,
for example, Edwards and Sokal [6].)


This Markov chain seems to work very well in practice, however, it has not
been proved to be rapidly mixing for any class of graphs. The non-local nature
of the transitions seems to allow the chain to move more freely within the state
space, thus avoiding the possible constrictions that might result at low temperat-
ures. Our result deals with the case where the interaction graph is the complete
graph Kn, and we prove that the chain is not rapidly mixing in this case for
Q ≥ 3.


3 A first-order phase transition


The slow mixing rate of the Swendsen-Wang process is connected with what is
known as a “first-order phase transition,” which we now investigate in the context
of the Potts model on the complete graph (Curie-Weiss model). We exhibit two
distinct kinds of configurations that account for all but an exponentially small
fraction of the partition function Z. In fact, by tuning the coupling constant,
we arrange that the two kinds of configurations make a roughly equal contribu-
tion to Z. Such a system is said to be in a mixed phase and the two kinds of
configurations are called coexisting phases [7]. This value of the coupling con-
stant is usually referred to as its critical value (denoted here by Kcr). The phase
transition reflects a crucial instability in the model in the following sense. When
K > Kcr, the system prefers the so called ordered phase (one of the spins domin-
ates). As K is decreased (i.e., temperature is increased), the system goes into a
mixed phase at K = Kcr and then makes an abrupt transition to the disordered
phase (each of the Q spins appears roughly the same number of times) when
K < Kcr.


We consider the case where K = Kcr and in Section 4 we show that the
Swendsen-Wang process only very infrequently makes a transition between the
coexisting phases, which results in a slow mixing rate.


Consider an arbitrary configuration σ ∈ Σ of theQ-state Potts system. Recall
that the equilibrium probability of σ is given by


π(σ) = Z−1 exp(−Kd(σ)),


where d(σ) is the number of pairs of sites in E with different spins. We choose
K = c/n, where 1 < c < Q is a constant depending on Q. (See (4) for an
explicit expression for c.) For the complete graph Kn, since all interactions are
present, the only relevant observable quantities are the number of different spins
and the sizes of these spin classes. Let n = (n1, . . . , nQ) be the vector whose ith
component is the size of the ith spin class of σ; we say that n is the type of σ.
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Note that


d(σ) =
1
2


(
n2 −


Q∑
i=1


n2
i


)
. (1)


Since π(σ) is a function only of type, we may write π(n) to denote the value of
π(σ) for any configuration σ of type n.


In equilibrium, the probability of being in a configuration of type n is N(n)×
π(n), where


N(n) =
(


n


n1, n2, . . . , nQ


)
denotes the number of configurations of type n. Using Stirling’s approximation,


N(n) = n−(Q−1)/2 exp
{(
−


Q∑
i=1


ai ln ai


)
n+ ∆(a)


}
(2)


where a = (a1, . . . , an) = n/n, and ∆(a) is an error term; in general, |∆(a)| =
O(log n), but the tighter estimate |∆(a)| = O(1) holds if it is known that a ≥
(ε, . . . , ε) for some constant ε > 0. (The implicit constants depend of Q and ε
only.)


From (1), recalling K = c/n, we have


π(n) = Z−1 exp
{
− c


2


(
1−


Q∑
i=1


a2
i


)
n


}
.


Therefore,


Pr(σ has type n) = Z−1n−(Q−1)/2 exp{f(a)n+ ∆(a)}, (3)


where


f(a) =
Q∑
i=1


g(ai)−
c


2


and g(x) = 1
2cx


2 − x lnx.
In order to identify the configurations that have the largest weights, we need


to maximise f , which in turn means that we need to maximise
∑Q
i=1 g(ai), in


the region defined by ai ≥ 0 for all i, and
∑Q
i=1 ai = 1. This is clearly a closed


region (viewed as a set in (Q − 1)-dimensional Euclidean space), and we use R
to denote it. We now proceed to look at the behaviour of g in the interval [0, 1].
The following are easy observations:


• if we define g(0) = 0, then g is continuous in [0, 1].


• g′(x) = cx− lnx− 1 is defined in (0, 1], and tends to ∞ as x→ 0+.


• g′(x) has a unique minimum in (0, 1] at x = c−1, such that g′(c−1) = ln c.
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• g′′(x) > 0 in (c−1, 1] and g′′(x) < 0 in (0, c−1).


Proposition 1 Let a = (a1, · · · , aQ) be a local maximum point of f . Then a
satisfies the following properties:


(i) a lies in the interior of R.


(ii) Either ai = Q−1 for all i, or there are α and β such that 0 < α < c−1 <
β < 1, and ai ∈ {α, β}, for all i.


(iii) If a is such that the ai are not all equal, then there is a unique component aj
such that aj = β; the other components ai with i 6= j satisfy ai = α.
Furthermore, g′(α) = g′(β).


Proof


(i) Suppose, on the contrary, that a is such that ai = 0 and aj > 0. Since
g′(x) → ∞ as x → a+


i and g′(aj) is finite, we can increase f by setting
ai = ε and aj = aj − ε, where ε > 0 is sufficiently small.


(ii) At any local maximum, it must be the case that g′(ai) = g′(aj), for all i
and j. For suppose g′(ai) 6= g′(aj), for some i 6= j. Then a small perturba-
tion of ε to ai and aj (either ai ← ai + ε and aj ← aj − ε or the other way
round, depending on the values of g′(ai) and g′(aj)) would cause f(a) to
increase. Since g′(x) is unimodal in (0, 1], ai ∈ {α, β} for all i where α and
β are on either side of the minimum of g′.


(iii) Suppose on the contrary, that aj = ak = β, where j 6= k. Since g′′(β) > 0,
setting aj ← aj − ε and ak ← ak + ε would cause f(a) to increase.


If we now set2


c =
2(Q− 1) ln(Q− 1)


Q− 2
(4)


it is routine to verify that the following three choices for a satisfy properties
(i)–(iii) in the statement of Proposition 1:


(S1) ai = Q−1 for all i = 1, . . . , Q;


(S2) ai = (Q(Q− 1))−1 for all i = 1, . . . , Q− 1, and aQ = (Q− 1)/Q;


(S3) ai = (2(Q− 1))−1 for all i = 1, . . . , Q− 1, and aQ = 1/2.


2Beyond a certain value c0 > 1 of c, the function f can be shown to have two local maximum
points and a local minimum point. Our chosen value of c is the unique value at which the two
local maxima become equal to yield a global maximum. Much of the analysis has been done in
[15], albeit in a somewhat different context.
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We shall shortly see that they are the only solutions satisfying properties (i)–
(iii). Note that the ordering of subscripts on the spin classes is not significant, as
explained earlier.


Claim 2 The first two solutions (S1)–(S2) above are the only local maximum
points of f in R, and they both correspond to the global maximum of f . (The
final solution (S3) is a local minimum.)


Proof It is clear from Proposition 1 that any maximum point of f should have
the form ai = α for all i = 1, . . . , Q− 1, and aQ = β = 1− (Q− 1)α, for some α
in (0, Q−1] satisfying


h(α) = g′(α) − g′(1− (Q− 1)α) = 0.


Now h(α) = cQα− c+ ln(1− (Q− 1)α) − lnα, and


h′(α) = cQ− Q− 1
1− (Q− 1)α


− 1
α


= cQ− 1
α(1− (Q− 1)α)


Setting h′(α) = 0, we get the quadratic equation α(1− (Q− 1)α) = 1/cQ, which
implies that h(α) has at most two turning points (and hence, at most three zeros)
in the interval (0, Q−1]. Since α = (Q(Q− 1))−1, α = (2(Q− 1))−1 and α = Q−1


all satisfy h(α) = 0, they are in fact the only solutions to that equation. We
conclude that (S1)–(S3) are the only choices for a consistent with the conditions
of Proposition 1, and hence they must cover all the local maximum points of
f(a).


We now proceed to show that solutions (S1) and (S2) correspond to the global
maximum of f , and that (S3) does not. (In fact it is a local minimum point.)
Since, by Proposition 1, we are only interested in solutions of the form ai = α for
all i = 1, . . . , Q− 1, and aQ = β = 1− (Q− 1)α. we may view f as a function of
the single variable α. Accordingly, define f̂(α) = f(α, . . . , α, β). For the value of
c chosen above (4), we have, by direct calculation,


f̂ (Q−1) = f̂((Q(Q− 1))−1) = lnQ− (Q− 1)2 ln(Q− 1)
Q(Q− 2)


(5)


and
f̂ ((2(Q− 1))−1) = ln 2− Q ln(Q− 1)


4(Q− 2)
. (6)


Denote by d(Q) the difference between (5) and (6):


d(Q) = f̂(Q−1)− f̂((2(Q− 1))−1) = lnQ− ln 2− (3Q− 2) ln(Q− 1)
4Q


.


Then d(Q) > 0 for all Q ≥ 3. To verify this, observe that for Q ≥ 16,


d(Q) > lnQ− ln 2− 3Q lnQ
4Q


= lnQ− ln 2− 3
4


lnQ ≥ 0.
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The cases 3 ≤ Q ≤ 15 can be checked separately. Thus (S1) and (S2) are global
maximum points of f and are the only such.


Note that d(Q) = f(Q−1) − f((2(Q − 1))−1) is very small for smaller values
of Q (e.g., of the order of 10−3 for Q = 3); however, since f appears in the
exponent and is multiplied by n, the actual difference in weights of these two
types of configurations is quite large even for fairly small values of n.


Denote by B=(ε) the set of all points in R that are within (Euclidean) dis-
tance ε of the balanced maximum point (Q−1, . . . , Q−1), and by B6=(ε) the points
that are within distance ε of any one of the other maximum points. (B=(ε) is
a (Q− 1)-dimensional ball and B6=(ε) a union of Q such balls.) Let Σ=(ε) ⊂ Σ
(respectively Σ 6=(ε)) be the set of configurations whose type n lies in nB=(ε) (re-
spectively nB6=(ε)). The following result summarises what we have discovered.


Proposition 3 For any ε > 0:


(i) Pr(σ ∈ Σ=(ε)) = Ω(n−(Q−1));


(ii) Pr(σ ∈ Σ6=(ε)) = Ω(n−(Q−1)); and


(iii) Pr(σ /∈ Σ=(ε) ∪ Σ 6=(ε)) = e−Ω(n).


The implicit constants depend only on Q and ε.


Proof Let a ∈ R be chosen so that every component of a has value either
i/n or (i + 1)/n for some integer i, and let n0 = na; observe that all con-
figurations σ of type n0 are in Σ=(ε), provided n is sufficiently large. Then
|f(a) − f(Q−1, . . . , Q−1)| = O(n−1), and hence, by (3), n0 comes within a con-
stant factor of maximising Pr(σ is of type n) over all types n. (Note that we are
operating within the |∆(a)| = O(1) regime.) Since the total number of distinct
types is O(n(Q−1)) we have part (i). Part (ii) is proved in a similar manner.


Finally note that the supremum of f(a) over the region a ∈ R\(Σ=(ε)∪Σ6=(ε))
is strictly less than the supremum over the whole of R. Part (iii) follows by
combining this observation with (3).


4 Dynamics


It is clear from Proposition 3 that the single spin flip process described in Sec-
tion 2.1 will converge only very slowly to equilibrium, since it is difficult to escape
from either of the neighbourhoods Σ=(ε) or Σ 6=(ε) using small steps. However,
the Swendsen-Wang process is able to change large blocks of spins in one step,
which at first sight seems to give it a significant advantage. Our main result
(Proposition 7 below) suggests that this advantage may on occasion be illusory.


Before we present a formal proof, it would be useful get an intuitive feel as
to why we expect Proposition 7 to be true. Let σ denote the current Potts
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configuration. Note that the Swendsen-Wang process only considers edges that
form a bond, so that the configuration may be viewed as a collection of smaller
complete graphs, one for each spin in [Q]. Let n1, n2, . . . , nQ denote the sizes
of these graphs. Let Gν,p denote the standard random graph model, in which an
undirected ν-vertex graph is formed by adding, independently for each unordered
pair of vertices u, v, an edge connecting u and v with probability p. Step (1) of the
process essentially creates Q random graphs, Gni,p, one of each size ni, 1 ≤ i ≤ Q,
where the probability of retaining an edge is p = 1 − exp(−K). Recall that
K = c/n, where 1 < c < Q, so that for large n, p ≈ c/n. For a carefully chosen
value of c, we expect two possibilities:


• Just prior to Step (1), if all the spin classes in σ have roughly the same size
ν (≈ n/Q), then, for any such class, the probability p of retaining an edge
can be written as d/ν, where d ≈ c/Q, so that d < 1. A well-known result
in the theory of random graphs [3] tells us that with very high probability,
the spin class will break up into very small components (of size O(log ν))
so that at the end of Step (2), after assigning random spin values to these
very small components, with high probability, we again end up with all spin
classes having roughly equal size.


• Just prior to Step (1), if there is one very large spin class in σ and all the
other spin classes are very small, then the value of d (as above) would be
> 1 for the large class whereas it would be� 1 for the other classes. We can
now appeal to results about “the giant component” in random graphs [3]
to say that with high probability, at the end of Step (1) there would be
one large component and all the other components would be very small.
This means that at the end of Step (2), we expect, with high probability, a
configuration similar to the one before Step (1). The choice of c determines
how close the new configuration would be to the previous one.


Proposition 7 shows that for a carefully chosen value of c (depending on Q),
a Q-state Potts system tends to settle in one of the two kinds of configurations
mentioned above, and the probability of making a transition from one kind to
the other is very small. Our proof utilises some standard bounds on the tails
of distributions of sums of independent r.v’s that we state here for convenient
reference.


Lemma 4 [Chernoff.] Let the random variable Z have distribution Bin(ν, p),
where Bin(ν, p) is the binomial distribution with parameters ν and p. Then for
any real γ > 0,


Pr(Z > γνp) <
(


eγ−1


γγ


)νp
.


Proof See [18, Theorem 4.1].
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Lemma 5 [Hoeffding.] Let Z1, . . . , Zk be independent r.v’s with ai ≤ Zi ≤ bi,
for suitable constants ai, bi, and all 1 ≤ i ≤ k. Also let Ẑ =


∑k
i=1 Zi. Then for


any λ > 0,


Pr
(
|Ẑ − Exp Ẑ| ≥ λn


)
≤ exp


(
−2λ2n2


/ k∑
i=1


(bi − ai)2
)


Proof See [16, Theorem 5.7].


Let Gν,p denote the standard random graph model as before. Suppose that
p < d/ν, with d < 1 a constant, and G is selected according to the model Gν,p. It
is a classical result that, with probability tending to 1 as ν →∞, the connected
components of G all have size O(log ν). We require a (fairly crude) large deviation
version of this result.


Lemma 6 Let G be selected according to the model Gν,p, where p < d/ν and
0 < d < 1 is a constant. Then the probability that G contains a component of
size exceeding


√
ν is exp(−Ω(


√
ν )).


Proof Following Karp [14], we consider a simple stochastic procedure for grow-
ing a connected component of G from specified vertex s. Let D0 = {s} and
P0 = ∅. At step t, Dt will be the set of “discovered” vertices (those that have
been shown to be connected to s), and Pt ⊆ Dt the set of “processed” vertices.
If Dt = Pt we are done: Dt is the connected component of G containing s. Oth-
erwise, we select v ∈ Dt \ Pt and let Dt+1 = Dt ∪ G(v) and Pt+1 = Pt ∪ {v},
where G(v) denotes the set of neighbours of v in G. Note that the termination
condition is equivalent to |Dt| = t.


We must show that this process terminates within
√
ν steps with very high


probability. We do this by comparing the evolution of Di against another se-
quence of random variables (Xi) defined by X0 = 1 and Xt+1 = Xt + Bin(ν, d/ν),
where Bin(ν, p) is the binomial distribution with parameters ν and p. If Y
and Z are random variables taking non-negative integer values, then Y is said
to stochastically dominate Z if Pr(Y ≤ i) ≤ Pr(Z ≤ i) for all i ≥ 0. It is an
elementary fact that stochastic domination is preserved by addition. Now it is
easily checked that Xt+1 −Xt stochastically dominates |Dt+1| − |Dt|, and so Xt


stochastically dominates |Dt|. But Xt − 1 is clearly distributed as Bin(tν, d/ν)
so we can estimate the probability that Xt is large using a Chernoff bound. In
particular, letting γ = (t− 1)/td in Lemma 4, the probability that Xt exceeds t
is bounded as follows:


Pr(Xt > t) = Pr(Xt − 1 > t− 1)
= Pr(Xt − 1 > γtd)
= Pr(Xt − 1 > γ Exp(Xt − 1))


≤
(


eγ−1


γγ


)td
.
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Setting t = b√νc, and noting that γ → d−1 > 1 as ν →∞, we obtain


Pr(|Dt| > t) ≤ Pr(Xt > t) = exp(−Ω(
√
ν )),


where we have used the fact that Xt stochastically dominates |Dt|. But |Dt| > t is
the event that the component building procedure has not terminated at or before
time t, i.e., that the connected component of G containing s has size greater
than t = b


√
νc. Multiplying by ν we obtain a bound on the probability that any


connected component in G has size exceeding
√
ν; this small extra factor may be


absorbed by the Ω-notation.


Proposition 7 Suppose Q ≥ 3 is an integer, c = 2(Q − 1)(Q − 2)−1 ln(Q− 1),
and consider a Potts system on Kn with coupling constant K = c/n. Let ε > 0
be sufficiently small, and let Σ=(ε) and Σ 6=(ε) be as in Proposition 3. Starting
at any configuration σ(0) ∈ Σ=(ε), the expected time T for the Swendsen-Wang
process to reach a configuration σ(T ) ∈ Σ6=(ε) is exp(Ω(


√
n )).


Proof Suppose the configuration σ(t) at time t is an arbitrary member of Σ=(ε).
By definition of Σ=(ε), the size ν of any spin-class of σ(0) is bounded above by
ν ≤ (Q−1 + ε)n. Focussing attention on a particular spin-class of size ν, the
set A constructed in step (1) of the Swendsen-Wang process is the edge set of
a complete graph Kν on ν vertices, and the set A′ is the edge set of a random
graph G selected according to the model Gν,p, where


p = 1− e−K ≤ c


n
≤
( 1
Q


+ ε
)
c


ν


Since cQ−1 < 1 we have p ≤ d/ν where d < 1, provided ε is sufficiently small.
By Lemma 6, with probability 1− exp(−Ω(


√
ν )), all connected components of G


have size at most
√
ν. Since (Q−1 − ε)n ≤ ν ≤ n, the same statement holds


with n replacing ν. Similar arguments apply to the other spin-classes, so, with
probability 1− exp(−Ω(


√
n )), all the connected components formed in step (1)


of the Swendsen-Wang process have size at most
√
n.


Let κ be the number of such components, and s1, . . . , sκ be their respective
sizes. The expected size of a spin-class constructed in step (2) of the Swendsen-
Wang process is n/Q, and because there are many components (at least


√
n )


we expect the actual size of each spin-class to be close to the expectation. We
quantify this intuition by appealing to a Hoeffding bound. Fix a spin γ, and
define the random variables Y1, . . . , Yκ and Ŷ by


Yi =
{
si, if the ith component receives spin γ in step (2);
0, otherwise,


and Ŷ =
∑κ
i=1 Yi. Then Exp Ŷ = n/Q and, by Lemma 5, for any λ > 0


Pr
(
|Ŷ − Exp Ŷ | ≥ λn


)
≤ exp


(
−2λ2n2


/ κ∑
i=1


s2
i


)
≤ exp(−2λ2√n ),
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since
κ∑
i=1


s2
i ≤


κ∑
i=1


si
√
n = n3/2.


Similar bounds apply, of course, to the other spins. Choosing λ = ε/
√
Q we see


that, with probability 1− exp(−Ω(
√
n )), the size of every spin-class in σ(t + 1)


lies in the range
(
(Q−1 − ε/


√
Q )n, (Q−1 + ε/


√
Q )n


)
; but this condition implies


σ(t + 1) ∈ Σ=(ε). The claimed result follows easily.


Note that Proposition 7 only proves that starting from any configuration in
Σ=(ε), the Swendsen-Wang process requires exponential time to reach a config-
uration in Σ 6=(ε). However, since the Swendsen-Wang process is reversible, it is
clear that the same statement also holds if we interchange the roles of Σ=(ε) and
Σ 6=(ε) in the Proposition.
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