
A Type-Theoretic Analysis of

Modular Specifications

Savitri Maharaj

Doctor of Philosophy

University of Edinburgh

1995

Abstract

We study the problem of representing a modular specification language in

a type-theory based theorem prover. Our goals are: to provide mechanical

support for reasoning about specifications and about the specification language

itself; to clarify the semantics of the specification language by formalising them

fully; to augment the specification language with a programming language in a

setting where they are both part of the same formal environment, allowing us

to define a formal implementation relationship between the two.

Previous work on similar issues has given rise to a dichotomy between “shal-

low” and “deep” embedding styles when representing one language within

another. We show that the expressiveness of type theory, and the high degree

of reflection that it permits, allow us to develop embedding techniques which

lie between the “shallow” and “deep” extremes. We consider various possible

embedding strategies and then choose one of them to explore more fully.

As our object of study we choose a fragment of the Z specification language,

which we encode in the type theory UTT, as implemented in the LEGO proof-

checker. We use the encoding to study some of the operations on schemas

provided by Z. One of our main concerns is whether it is possible to reason

about Z specifications at the level of these operations. We prove some theorems

about Z showing that, within certain constraints, this kind of reasoning is indeed

possible. We then show how these metatheorems can be used to carry out formal

reasoning about Z specifications. For this we make use of an example taken from

the Z Reference Manual (ZRM).

Finally, we exploit the fact that type theory provides a programming lan-

guage as well as a logic to define a notion of implementation for Z specifications.

We illustrate this by encoding some example programs taken from the ZRM.

ii

Declaration

I declare that this thesis was composed by myself, and that the work con-

tained in it is my own except where otherwise stated. Some of this work has

been published previously [Mah94].

Savitri Maharaj

iii

Acknowledgements

First of all, I would like to thank my supervisor, Stuart Anderson, for his

invaluable encouragement during this work. I would also like to thank Rod

Burstall, who first introduced me to my thesis topic, and who has supported me

in many ways throughout the last few years. Thanks also go to my examiners,

Cliff Jones and Stephen Gilmore, whose comments on this thesis have substan-

tially deepened my understanding of my work. My ideas have been influenced

also by discussions and comments from the following people: Thorsten Alten-

kirch; Yves Bertot; Bob Constable; Ranan Fraer; Healf Goguen; Elsa Gunter;

Claire Jones; Gilles Kahn; Zhaohui Luo; Lena Magnusson; Randy Pollack; Alex

Simpson; the members of the LEGO club at Edinburgh.

I am also very grateful to the British Council and to the ORS for the material

support that they have provided me, and to my family, friends, and fellow-

sufferers, for support of the other kind.

iv

Table of Contents

1. Introduction 1

1.1 Example: The Z Notation : 2

1.2 Overview : 5

1.3 Introduction to the tools: UTT and LEGO : : : : : : : : : : : : 7

1.3.1 UTT : 7

1.3.2 LEGO : 8

1.3.3 Working with LEGO : : : : : : : : : : : : : : : : : : 9

1.3.4 Inductive Types in LEGO : : : : : : : : : : : : : : : : 13

1.4 Related work : 15

1.4.1 Tool support for modular specification languages : : : : 15

1.4.2 Proof-checkers used for specification : : : : : : : : : : : 16

2. Representation Techniques 17

2.1 Rating embeddings : 18

2.2 Examples of embedding techniques : : : : : : : : : : : : : : : 19

2.2.1 Embedding 1: A “deep embedding” : : : : : : : : : : : 19

2.2.2 Embedding 2: A “shallow embedding” : : : : : : : : : 24

2.2.3 Embedding 3: A grammatical translation : : : : : : : : 25

2.2.4 An embedding example: value-passing CCS in LEGO : : 26

v

Table of Contents vi

2.2.5 An embedding example: Union types : : : : : : : : : : 30

2.3 Conclusion : 34

3. Encoding Z : Schemas 35

3.1 Separate core and module languages : : : : : : : : : : : : : : 36

3.2 The syntax of Z0 : 36

3.3 The semantics of Z0 : 40

3.4 Choosing a Representation Technique : : : : : : : : : : : : : : 41

3.4.1 Embedding 1: a shallow embedding : : : : : : : : : : : 42

3.4.2 Embedding 2: Syntactic names and types in signatures : : 44

3.4.3 Embedding 3: Syntactic names in bindings : : : : : : : : 51

3.5 Working out the details : 54

3.5.1 Relating schemas and bindings : : : : : : : : : : : : : 54

3.5.2 Well-formedness conditions : : : : : : : : : : : : : : : 59

3.5.3 Properties of schemas : : : : : : : : : : : : : : : : : : 60

3.5.4 Logical equivalence of schemas : : : : : : : : : : : : : 60

3.5.5 Equality : 62

3.5.6 Handling failed lookups : : : : : : : : : : : : : : : : : 62

3.5.7 Wrapping functions : : : : : : : : : : : : : : : : : : : 65

3.5.8 Representing the schema S : : : : : : : : : : : : : : : 67

3.6 Conclusion : 67

4. A Specification Example 68

4.1 An encoding of finite set theory : : : : : : : : : : : : : : : : : 69

4.1.1 Relations and functions : : : : : : : : : : : : : : : : : 71

Table of Contents vii

4.1.2 Dealing with partial functions : : : : : : : : : : : : : : 72

4.2 Representing the given sets of the BirthdayBook : : : : : : : : 74

4.3 Putting it all together : 75

4.4 Proving well-formedness : 76

5. Encoding Z : Logical schema operations 80

5.1 The binary propositional operations : : : : : : : : : : : : : : 81

5.1.1 Type compatibility : : : : : : : : : : : : : : : : : : : 82

5.1.2 Schema conjunction : : : : : : : : : : : : : : : : : : : 84

5.1.3 Theorems about schema conjunction : : : : : : : : : : : 84

5.1.4 Schema disjunction : : : : : : : : : : : : : : : : : : : 89

5.1.5 Theorems about Schema disjunction : : : : : : : : : : : 90

5.1.6 Implication : 92

5.1.7 Theorems about implication : : : : : : : : : : : : : : : 93

5.2 Schema negation : 94

5.2.1 Theorems about schema negation : : : : : : : : : : : : 95

5.3 The hiding operations : 98

5.3.1 Hiding : 99

5.3.2 Encoding the hiding operator : : : : : : : : : : : : : : 99

5.3.3 Universal and existential quantification : : : : : : : : : 100

5.3.4 Encoding the quantifiers : : : : : : : : : : : : : : : : : 101

5.4 Schema inclusion : 102

5.4.1 Encoding schema inclusion : : : : : : : : : : : : : : : 103

5.4.2 Theorems about schema inclusion : : : : : : : : : : : : 104

5.5 Formal description of our translation : : : : : : : : : : : : : : 105

Table of Contents viii

5.5.1 Definition of the semantic objects : : : : : : : : : : : : 106

5.5.2 Syntax annotations : : : : : : : : : : : : : : : : : : : 106

5.5.3 Translating the annotated syntax : : : : : : : : : : : : : 107

5.6 Conclusion : 112

6. Encoding Z: Specifying operations 113

6.1 Schema decoration : 114

6.1.1 Encoding schema decoration : : : : : : : : : : : : : : 115

6.1.2 Theorems about schema decoration : : : : : : : : : : : 116

6.2 The � convention : 117

6.2.1 Encoding � : 118

6.2.2 Theorems about Delta : : : : : : : : : : : : : : : : : : 118

6.3 Binding formation (�) : 119

6.4 The � convention : 120

6.4.1 Encoding � : 120

6.4.2 Theorems about Xi : : : : : : : : : : : : : : : : : : : 121

6.5 Precondition schemas : 121

6.6 Sequential composition : 122

6.6.1 Encoding sequential composition : : : : : : : : : : : : 123

6.7 Conclusion : 124

7. A Specification Example Continued 125

7.1 The Z specification : 126

7.2 Encoding the specification : : : : : : : : : : : : : : : : : : : 127

7.3 A theorem about AddBirthday : : : : : : : : : : : : : : : : : 131

Table of Contents ix

7.4 Specifying a robust system : : : : : : : : : : : : : : : : : : : 136

7.4.1 Encoding the schema RAddBirthday : : : : : : : : : : : 137

7.4.2 RAddBirthday has property P : : : : : : : : : : : : : : 138

8. Speculations 140

8.1 Defining a type to represent programs : : : : : : : : : : : : : 140

8.2 The programming language : : : : : : : : : : : : : : : : : : 142

8.3 Examples : 145

8.4 Refinement and implementations in the ZRM : : : : : : : : : : 150

8.4.1 An example : 151

8.5 The implementation relationship : : : : : : : : : : : : : : : : 152

8.6 Further Work: refinement : 154

8.7 Conclusion : 155

9. Conclusions 157

9.1 Extending the encoding : 157

9.2 Comments about LEGO : 158

9.3 Comments about Z : 158

9.4 The main contributions of this thesis : : : : : : : : : : : : : : 159

A. Proof Descriptions 160

A.1 Proofs of theorems in Chapter 3 : : : : : : : : : : : : : : : : : 160

A.2 Proofs of theorems in Chapter 5 : : : : : : : : : : : : : : : : : 161

A.2.1 The propositional operations : : : : : : : : : : : : : : 161

A.2.2 The hiding operations : : : : : : : : : : : : : : : : : : 170

A.3 Include : 171

A.4 Proofs of theorems in Chapter 6 : : : : : : : : : : : : : : : : : 172

Table of Contents x

B. Lemmas 175

B.1 Functions used in the main encoding : : : : : : : : : : : : : : 175

B.1.1 Lemmas about lookup : : : : : : : : : : : : : : : : : : 175

B.1.2 Lemmas about restrict : : : : : : : : : : : : : : : : : : 176

B.1.3 Lemmas about join : : : : : : : : : : : : : : : : : : : 177

B.1.4 Lemmas about post bin : : : : : : : : : : : : : : : : : 179

B.1.5 Lemmas about join bin : : : : : : : : : : : : : : : : : 180

B.1.6 Other lemmas : 180

B.2 Sets and Functions : 181

C. Function definitions 183

C.1 General function definitions : : : : : : : : : : : : : : : : : : 183

C.2 Wrapper functions : 186

C.2.1 Lemmas about wrapper functions : : : : : : : : : : : : 192

C.2.2 Wrapped versions of functions : : : : : : : : : : : : : 192

D. LEGO library functions and lemmas 196

D.1 The logic of LEGO : 198

E. Correctness of the Representation 199

E.1 Translating Z0 to Z : 199

E.2 Soundness property : 202

E.2.1 A restricted class of semantic objects : : : : : : : : : : : 203

E.2.2 Proof Strategy : 205

E.2.3 Lemmas needed to prove soundness : : : : : : : : : : : 206

Chapter 1

Introduction

In the quest after formal methods, many expressive languages have been de-

veloped for use in writing program specifications. These languages often

provide specification-building operations which enable specifications to be con-

structed in a modular fashion. For effective use of specification languages it is

desirable to have automated support to facilitate reasoning about the properties

of specified systems. It is even better if this support incorporates some means

of exploiting the modularity in a specification in order to structure the proofs of

these properties.

Computerised proof checkers provide support — type-checking, environ-

ment management, tactics, etc — for carrying out proofs within specific formal

systems. One of the main areas of application for which these tools are intended

is assisting with the proof obligations engendered by the use of formal methods.

However, in order to do this, the logics supported by proof checkers must be

enriched with the concepts used in formal methods. The essential requirement

is a notion of “specification”. Even more can be achieved if is is possible to add

definitions of “program”, “implementation”, and “refinement”. Proof check-

ers which are based on type theory are equipped with a particularly rich and

versatile foundation upon which these concepts can be defined.

In this thesis we examine a specific combination of a specification language

with an automated proof-checker. The specification language is the well-known

and widely used Z notation. The tool with which it is combined is the LEGO

1

Chapter 1. Introduction 2

proof-checker, which implements an expressive and powerful type theory, the

Unifying Theory of dependent types (UTT). The concrete product of our work

is an encoding within UTT of a substantial fragment of the Z notation, together

with a large collection of theorems and lemmas about this encoding, all of which

have been formally verified using LEGO. Several of these theorems concern the

module-forming operations in Z, and provide a basis for using LEGO to prove

theorems about Z specifications in a modular fashion. We also investigate ways

of defining notions of “program”, “implementation” and “refinement” that are

appropriate to Z.

In the process of devising the encoding of Z in UTT we were led to consider

the general topic of representing one formalism within another, and the variety

of techniques available for doing so. The encoding process also entailed an

in-depth examination of the semantics of the Z notation. The encoding itself

may be viewed as an alternate presentation of the semantics of Z, using type

theory as the underlying foundation.

1.1 Example: The Z Notation

In this section we introduce the specification language which is the focus of our

work, and describe some of the goals which we aim to achieve by integrating

this specification language with a general-purpose proof checker.

The Z notation was invented by Abrial [Abr84a,Abr84b,ASM79] around

1979. It has since undergone a series of evolutions and the second draft of a

Base Standard for it is still under development. Several case studies have been

carried out in Z (e.g. [Hay93]) and it has attracted many users in industry. Mike

Spivey provided a theoretical foundation for Z in his PhD thesis [Spi88] and has

since produced a reference manual[Spi92] (the ZRM). We shall use both of these

works as our main references for Z.

Z allows us to construct specifications by putting together basic building

blocks called schemas. A schema consists of two parts: a signature, in which

Chapter 1. Introduction 3

variables are declared, and a predicate which places a constraint on the declared

variables. Here is an example of a schema whose signature contains two vari-

ables x and y, both ranging over natural numbers. The predicate part of this

schema states that x is greater than y.

S

x; y : N

x > y

Following the informal discussion in the ZRM, the meaning of a schema is

given in terms of structures called bindings, which assign values to the variables

in the signature of that schema. A schema is considered to denote all the

bindings over the signature of that schema which make the schema predicate

true. For example, the schema S above denotes all bindings in which the value

assigned to x is greater than that assigned to y.

Our first goal in encoding Z in UTT is to provide support for reasoning

within the logic of Z. By this we mean that we want to be able to show that some

property is implied by a given schema. For example, we may wish to show that

the schema S implies that x + z > y + z, for all values of z.

The Z notation provides several operations which allow schemas to be put

together to build specifications. One example is the operation of schema con-

junction. If T is the following schema,

T

x; z : N

x < z

then the conjunction, S ^ T is a schema whose signature is obtained by joining

the signatures of S and T and conjoining their predicates:

Chapter 1. Introduction 4

SandT

x; y; z : N

x > y ^ x < z

Our second goal is to support reasoning about specifications at the level

of modules. To achieve this we shall need theorems about the module-level

operations such as schema conjunction. For example, we would like to prove

that if two schemas both have some property P, then their conjunction also has

the property P.

The Z notation incorporates conventions for specifying state-changing op-

erations. The state after an operation is designated by variables decorated with

the symbol 0, while the state before is designated by undecorated variables.

For example, the following schema describes an operation which increments a

variable x:

Inc

x; x0 : N

x0 = x + 1

The increment operation can be implemented in a Pascal-like, imperative

programming language, as follows:

procedure inc (var x: nat);

begin

x := x + 1

end

The formalism of Z does not include any programming language. Our third

goal is to make specifications and programs a part of the same formalism, so

that it is possible to formally define an implementation relationship between the

two. We can hope to achieve this by using type theory because this provides a

notation in which both specifications and programs can be represented.

Chapter 1. Introduction 5

1.2 Overview

Chapter 1 continues with a description of the tools used for the work in this

thesis (Section 1.3). These are the type theory UTT and its implementation in

the LEGO proof-checker. The chapter concludes with a description of related

work done by others (Section 1.4). This includes projects aimed at providing

support for reasoning about modular specifications, particularly where this

support involves the use of computerised tools for proof-checking. We also

look at projects which proceed in the opposite direction, starting with a general-

purpose proof-checker which is then adapted to the application of reasoning

about specifications.

In Chapter 2 we examine a variety of representation techniques that are

available for representing a language within the logic of a theorem-prover. We

see that the choice of technique for a particular application depends on several

things including: the expressive capabilities of the logic of the theorem-prover;

the style of the definition of the language to be embedded; the intended use of

the embedding.

The bulk of our embedding of Z in UTT is presented in Chapters 3, 5, and

6. The embedding is illustrated by a running example which is presented in

parallel, in Chapters 4 and 7.

Chapter 3 begins with the definition of a reduced version of Z, called Z0 , in

which it is possible to distinguish between a “core” language and a “module”

system. We then examine different techniques for representing Z0 in UTT,

bearing in mind the issues discussed in Chapter 2. The basic semantic object we

shall use, the schema is defined, and some of the details are worked out. These

include defining well-formedness conditions on schemas, and formalising a

notion of model which most closely captures the semantics of Z.

Our main specification example, introduced in Chapter 4, is adapted from an

example in the ZRM. To encode the example we see that we must first develop a

Chapter 1. Introduction 6

representation of finite set theory within UTT. The first schema of the example is

then encoded, and LEGO to verify that it satisfies the well-formedness condition

defined in Chapter 3.

Chapter 5 deals with the representation of the “logical” operations on schemas

provided in the Z notation (conjunction, disjunction, et c). These operations are

defined in UTT, and LEGO is then used to prove several theorems about them.

The key theorems concern the relationship between the operations and the no-

tions of model defined in Chapter 3. These results provide a means of reasoning

about (encoded) Z specifications at a modular level. Other results (or obser-

vations about non-results) show some of the consequences of our decision to

encode Z within a constructive type theory.

In Chapter 6 we discuss the Z conventions for specifying state-changing

operations. We explain these conventions and then show how they may be

encoded in UTT as operations upon schemas. We use LEGO to prove some

theorems about the encoded operations, mainly showing that they preserve the

well-formedness condition.

Chapter 7 continues the example introduced in Chapter 4. The encodings of

the schema operations are used to encode a number of compound schemas, and

LEGO is then used to prove several theorems about the encoded specification.

Some of these are routine proofs, showing that the schemas introduced are

well-formed. Two of the theorems (Theorems 55 and 57) illustrate how our

encoding can be used to support reasoning about Z specifications. The first is

a formalisation of a proof in the ZRM. The second is an example of a modular

proof which makes use of the metatheorems proved in Chapters 5 and 6.

In Chapter 8 we speculate about possible extensions of our work, laying

down the basis for definitions of “implementation” and refinement for (en-

coded) Z specifications. We begin by identifying a UTT type which provides a

notion of “program” compatible with the way in which Z schemas are repres-

ented. We describe a simple programming language and show how programs

may be translated into our chosen UTT type. Some examples are presented to il-

lustrate the translation. We then define an implementation relationship between

Chapter 1. Introduction 7

specifications and programs, and compare this with the way that implementa-

tions are dealt with in the ZRM. We also examine the way that the ZRM handles

refinement of specifications, and speculate about a notion of refinement for Z

that is closer to that used in other specification languages such as VDM.

Concluding the main body of the thesis, Chapter 9 contains some observa-

tions about Z, UTT and LEGO.

Appendices A-D give the definitions and descriptions of LEGO proofs re-

ferred to in the main text. Appendix E discusses the relationship between the

semantics for Z defined by our encoding into UTT and the official semantics

presented in [Spi88].

1.3 Introduction to the tools: UTT and LEGO

The tools which we shall use are the type theory UTT ([Luo90,Luo94,Gog94,

Gog95]) and its implementation in the LEGO proof-checker ([LP92,Pol95,LEG95]).

In this section we shall briefly describe UTT and LEGO; the cited references

should be consulted for complete information.

1.3.1 UTT

The type theory UTT is an extension of the Calculus of Constructions ([CH88])

with dependent sum types and a predicative hierarchy of type universes and

inductive types. Our understanding of UTT is based on an interpretation sug-

gested by Luo, in which the type theory is thought of as consisting of two

layers. The first of these is a single type universe, named Prop. Types which lie

in the universe Prop are interpreted as propositions, using the “propositions as

types” paradigm described in [How80]. It is possible to encode an intuitionistic,

higher-order logic within the universe Prop. The encoding that is used in the

LEGO system is described in Appendix D.

Chapter 1. Introduction 8

The second layer in UTT consists of an infinite hierarchy of type universes,

Typei. We shall think of this layer as representing all the objects in our universe of

discourse: e.g. datatypes, programs, specifications, sets et c. The type universes

are cumulative: all objects in Typei are also contained in Typei+1. In addition

Type0 contains the universe Prop. For simplicity of presentation, we shall use

the name Type to refer to the entire hierarchy.

Both layers of UTT can be extended by means of inductive type definitions.

We shall say more about this in Section 1.3.4.

1.3.2 LEGO

LEGO [Pol95] is a proof development system implemented by Randy Pollack.

The LEGO Reference Manual [LP92] is the main documentation for users of

this system. Figures 1–1, 1–2 and 1–3 show the notation which we use in this

thesis for representing LEGO terms. Figure 1–1 gives the notation used for those

LEGO terms which are concrete representations of the terms of UTT, plus other

useful features (such as local definitions and implicit argument designations)

some of which are described below. Figure 1–2 shows our notation for a number

of frequently-used inductively-defined types. The definitions of these types are

taken from the LEGO library and are described in Appendix D. Figure 1–3

shows the syntax that we used to represent the logic that is encoded in UTT. The

details of this encoding are described in Appendix D.

The salient functions of the LEGO system include the following:

� Type-checking and partial type inference for UTT terms.

� Automatic handling of definitions, contexts, substitutions, et c.

� Built in tactics and environment control to support the incremental defin-

ition of UTT terms of a desired type. This feature is the basis of the

proof-development function of the LEGO system, so we shall say more

about it below.

Chapter 1. Introduction 9

Notation Explanation

Prop the universe Prop

Type the hierarchy of universes Typei

�x :T:M function with explicit argument

� x jT:M function with implicit argument

M N function application to explicit argument

MjN function application to implicit argument

� x :T1:T2 dependent function space

T1!T2 non-dependent function space

[x = M] local definition

[x : T] assumption (global � abstraction)

Figure 1–1: Notation used for LEGO terms

� Tactics for introducing inductive type definitions.

� Typical ambiguity. The LEGO system allows the user to refer to the hier-

archy of universes Typei as a single entity Type. The system computes

appropriate values of i and detects cycles if they occur.

� Argument synthesis. When a function is applied to several arguments, it

may be possible to infer the values of some of these arguments by looking

at the values of the others. The LEGO system allows the user to exploit

this fact by designating some arguments as implicit. This is done by using

a vertical stroke j rather than a colon : in the definition of terms which can

take an implicit argument. Figure 1–1 gives an example of what this looks

like for function definitions.

1.3.3 Working with LEGO

When we start up the LEGO system we find ourselves in a mode called LEGO

mode. In this mode we may do several things: add definitions to the LEGO

Chapter 1. Introduction 10

Notation Explanation

� x :T1: T2 dependent sum type

(M;N) pairing

M:1 first projection

M:2 second projection

nat natural number type

0 zero

suc successor

nat rec, nat iter elimination operators (See Section 1.3.4)

bool boolean type

true true

false false

if See Appendix D.

M + N sum type

in1 left injection

in2 right injection

case See Appendix D.

unit one-element type

void element of unit

list T lists of elements of type T

cons cons

[x1; : : : ; x2] list construction

list rec See Appendix D.

Figure 1–2: Notation used for common inductively defined terms

Chapter 1. Introduction 11

Notation Explanation

P1 ^ P2 conjunction

P1 _ P2 disjunction

:P negation

P1) P2 implication

8 x :T1: T2 universal quantifier

9 x :T1: T2 existential quantifier

Figure 1–3: Notation used for logic

context; add or discharge assumptions; load library files; enter proof mode by

using the command Goal.

In proof mode we have a goal, which is a type, and our job is to construct

a term of that type. To do this we may make use of the tactics provided by

the LEGO system. Most often we will use a powerful tactic called Refine. We

do not give a complete description of the behaviour of this tactic, but we will

illustrate its use in the small example below. In proof mode we can also add

definitions to the LEGO context but we cannot add new assumptions. When

the proof is completed the LEGO system re-enters LEGO mode, where the user

may then save the proof term as a definition in the LEGO context.

For example, let us look at one way of proving the following simple propos-

ition in LEGO.

8 T :Type: 8 P;Q :T!Prop: 8 x :T: ((P x) ^ (Q x))) ((Q x) ^ (P x))

We shall begin by adding some declarations to the LEGO context:

T : Type

P;Q : T!Prop

x : T

H : (P x) ^ (Q x)

Chapter 1. Introduction 12

Now we use the Goal command and tell the system that we would like to prove

the term (P x) _ (Q x). The system enters proof mode and shows us our goal:

? : (Q x) ^ (P x)

We begin by using the and elimination tactic, applied to the assumption H. The

effect of this tactic is to introduce two new names into the LEGO context.

H1 : P x

H2 : Q x

Next we use the and introduction tactic. The effect of this is to replace our goal

by the following two subgoals:

?1 : Q x

?2 : P x

The current goal is the first one displayed (in this case, ?1.) (If we wish to work

on a different subgoal, we must explicitly change the current goal by using the

Next command.) To solve the current goal we use the Refine tactic applied to

H2. This checks that H2 is capable of proving the current goal. In general, Refine

may generate further subgoals but this is not the case in our simple example.

Goal ?2 becomes the new current goal, and is proved by refining by H1. This

completes the proof, so the LEGO system returns to LEGO mode.

The proof process has the effect of constructing a �-term, the proof object. In

our case, the proof object is the following:

pair (snd H) (fst H)

This can be stored in the LEGO context by using the Save command. We shall

store our little proof under the name And commutes.

Next, we discharge the assumptions we made before commencing the proof

by giving the command Discharge T. This removes from the LEGO context the

identifier T as well as all identifiers declared after the declaration of T. All defin-

itions made after the declaration of T are �- abstracted over those declarations

Chapter 1. Introduction 13

on which they depend. In our case, the only definition is that of the proof object,

And commutes. Discharging T changes the definition of And commutes to the

following:

�T :Type: �P;Q :T!Prop: �x :T:

�H : (P x) ^ (Q x):

pair (snd H) (fst H)

The type of this term is the following:

8 T :Type: 8 P;Q :T!Prop: 8 x :T: ((P x) ^ (Q x))) ((Q x) ^ (P x))

This is the goal which we originally set out to prove.

The LEGO User’s Manual should be consulted for details about the tactics

available for doing proofs in LEGO. In general, there are introduction and

elimination tactics for all of the logical operators in Figure 1–3.

1.3.4 Inductive Types in LEGO

A theoretical foundation for adding inductive type definitions to UTT was

developed by Goguen and Luo [Gog94,Gog95,Luo92,Luo94]. This was then

implemented in LEGO by Claire Jones. As an example, the inductive type of

natural numbers is defined by issuing the following command:

Inductive[nat : Type]

Constructors[zero : nat;

suc : nat!nat]

This command has the effect of adding the names nat, zero, and suc to the context.

It also automatically produces an elimination schema for the new inductive type,

and computation rules which dictate the behaviour of the elimination schema. In

the example given, the elimination schema that is produced is the following:

nat elim

: � T :nat!Type: (T zero)!(� x :nat: (T x)!(T (suc x)))!(� x :nat: T x)

Chapter 1. Introduction 14

The computational rules which are produced are as follows. These define the

behaviour of nat elim.

[T : nat!Type]

[H : T zero][H1 : � x :nat: (T x)!(T (suc x))]

[x : nat]

nat elim T H H1 zero =) H

nat elim T H H1 (suc x) =) H1 (nat elim T H H1 x)

So far, we have described what is automatically produced by the LEGO

system when a new inductive type is introduced. Generally, a user will wish to

make some additional definitions, as described below.

The elimination schema can be used to define an induction principle for the

new inductive type. For nat, the induction principle has the following type.

nat ind

: 8 P :nat!Prop: (P zero)) (8 x :nat: (P x)) (P (suc x)))) (8 x :nat: P x)

We can also define restricted versions of the elimination schema. These include

the recursor (nat rec) and the iterator (nat iter):

nat rec : � T :Type: T!(nat!T!T)!nat!T

nat iter : � T :Type: T!(T!T)!nat!T

Finally, the elimination schema may be used to define a decidable equality on

the inductive type:

nat eq
def
= nat iter (nat iter true (� :bool: false))

(�prev :nat!bool: nat rec false (�x :nat: � :bool: prev x))

: nat!nat!bool

Chapter 1. Introduction 15

1.4 Related work

1.4.1 Tool support for modular specification languages

Other work aimed at providing proof support for Z includes: the ProofPower

system [Jon92,Pro2] which is based upon a deep embedding of Z in a HOL-like

theorem-prover with a user interface that closely resembles Z notation — this

embedding is not deep enough, however, to allow facts like the commutativity

of schema conjunction to be proved [BG94]; a shallow embedding of Z in the

HOL theorem-prover [HOL95] carried out by Bowen and Gordon [BG94]; the

work of Martin [Mar93] who has encoded W, a logic for Z, in the metalogical

framework 2OBJ; the Z/EVES project [Saa91] which uses a theorem prover for

ZF set theory; the Balzac project [Har91] at Imperial Software Technology.

The Vienna Development Method[Jon86] incorporates a specification lan-

guage which is similar to Z in that it is model-oriented (a specification is viewed

as a description of an abstract machine). However, the structuring mechanisms

of the two notations are very dissimilar. VDM and Z are compared entertain-

ingly in [HJN93]. The Mural system [JJ+91] provides a support system for

VDM.

Algebraic specification languages are based on a different approach in which

a specification is viewed as a collection of axioms describing the behaviour of

a set of operations. The specification language CLEAR [BG81] extends this

approach by providing a number of specification-building operations which

allow the modular construction of specifications. Harper, Sannella and Tarlecki

[HST89] have looked at using the Logical Framework to provide a support

system for specification languages similar to CLEAR. A different means of

achieving modularity is explored in Extended ML [San89,ST89,KST94], in which

specifications are structured using constructs inspired by the module system of

the programming language Standard ML.

Chapter 1. Introduction 16

The Prototype Verification System [CO+95], developed at SRI International

Computer Science Laboratory, provides a specification language integrated with

support tools and a theorem-prover. The Larch system [GGH93,Lar94] incor-

porates a specification language together with interface languages which allow

translation to a variety of specific programming languages. The system includes

a theorem prover, LP.

The RAISE formal method [Geo91,Rai95] provides a specification language

RSL together with a development method. RSL is a “wide-spectrum” language

which supports a variety of specification styles, including that of Z. Tool support

includes a justification editor which provides assistance with formal proof.

1.4.2 Proof-checkers used for specification

Rod Burstall and James McKinna have worked on an approach to program

specification and verification in the type theory ECC (a precursor to UTT) using

constructs called “deliverables” [BM91,McK92]. Zhaohui Luo has looked at

methods for expressing structured specifications in ECC using the �-type as the

basic specification module [Luo91].

The Coq project [Coq95] centres upon the Coq proof assistant [DFH+93]

which implements a constructive type theory very similar to UTT. One of the

main applications to which this is being applied is the development of an envir-

onment for formal program development incorporating a specification language

(Gallina) and a modular programming language (FML).

Chapter 2

Representation Techniques

In this chapter we discuss the general topic of representing languages within

the logic of a theorem-prover. This is a subject which has been studied very

formally in work on Logical Frameworks [HHP87,AHM87]. Our treatment of

this topic will be more informal, because we wish to consider and compare a

very broad class of representation techniques. The issues which arise are related

to traditional issues in the logic of translation, but also include new concerns

created by the translation process itself, and by the intended use of the final

translation. (For example, we are interested in the applicability of automated

tools to mechanise parts of the translation process. The availability of automatic

type-checking, user-defined tactics, decision procedures, et c. all play a role

here.)

We shall begin by stating a number of criteria by which representation tech-

niques may be rated. We then give a small example of a language and discuss

several ways of representing this language within UTT, evaluating the pros

and cons of each method according to our defined criteria. In some cases we

shall use other examples which specifically illustrate the power of a particular

embedding technique, or the particular kind of language description for which

that technique is best suited. We shall also see how the expressive type theory

implemented in LEGO makes available to us embedding techniques that are

more powerful than those available in the HOL proof-checker.

17

Chapter 2. Representation Techniques 18

We focus our attention on representation techniques that involve only defin-

itional extensions of the logic of the theorem-prover, or conservative extensions

such as the introduction of a new inductive type. By avoiding axiomatisations

we avoid the possibility of introducing logical contradiction.

Mike Gordon et al have considered the problem of embedding hardware

description languages in the HOL theorem prover [Gor88] and have coined

the terms “shallow” and “deep” [BG+92] to describe two opposing styles of

representation. We shall consider how these terms may be interpreted with

respect to type theory. We shall see that these two terms are not adequate to

describe the gamut of representation styles possible in type theory.

We use the term “language definition” broadly and informally. A language

definition may consist of a syntax definition and perhaps an equational theory

on that syntax. There may be types and well-typedness rules as well. There may

be semantic objects and operational rules or denotation functions which relate the

syntax to the semantic objects. Or the language may be a logic, and there may

be a notion of model and rules giving the satisfaction relationship between models

and terms in the language. All of the highlighted terms are possible components

of a language description. In embedding a language we must decide how (or

whether) each of these components is to be represented in the embedding.

2.1 Rating embeddings

We state a number of informal criteria by which we can rate different embedding

techniques.

Adequacy Can the embedding technique capture all the aspects of the language

description? How accurate is the representation? For instance, suppose

we represent the syntax Syn of a language by some object Syn in the logic

of the theorem prover. Are the two classes Syn and Syn exactly equal? Are

there spurious objects in the representing class Syn, or are there not enough

Chapter 2. Representation Techniques 19

objects to represent all the terms in Syn? Similar questions about adequacy

may be asked about all the classes in any given language description.

Note that we do not intend to define the term adequacy as strictly as

the above example might suggest. The meaning of the term must be

decided ad hoc for any given embedding. However, certain combinations

of language description style and embedding technique make it easier to

define adequacy and to verify it.

Ease of use How easy is it for a user to translate terms of the object language

into the language of the embedding, and then to use the embedding to

reason about the relationships (e.g. equality, type-checking, evaluation, or

satisfaction) defined in the object language.

Expressiveness To what extent does the embedding make it possible to reason

about the meta-theory of the object language.

2.2 Examples of embedding techniques

We shall use as an example a very small typed programming language called L

which is defined in Figure 2–1.

2.2.1 Embedding 1: A “deep embedding”

In the paper [BG+92], the deep embedding approach to representing a hardware

description language (HDL) in the HOL theorem-prover is explained as follows:

Represent the abstract syntax of HDL programs by terms, then define

within the logic semantic functions that assign meanings to the pro-

grams.

This description can be applied to embedding the language L in the LEGO

theorem-prover. In a deep embedding all parts of the language description are

Chapter 2. Representation Techniques 20

Types

LType = nat | bool |(LType -> LType)

Terms

LTerm = true | false | 0 | suc | LTerm < LTerm | (LTerm LTerm)

Typing rules

true:bool false:bool <:(nat->(nat->bool))

0:nat suc:nat->nat
tm1:(ty1->ty2) tm2:ty1

tm1 tm2:ty2

Semantic objects

Value = true | false | zero | suc Value

Evaluation rules

true)true false)false 0)0
tm) v

(suc tm))suc v

(0 < 0))false (0 < (suc tm)))true
tm1 < tm2)v

(suc tm1) < (suc tm2))v

Figure 2–1: Definition of the language L

Chapter 2. Representation Techniques 21

represented within the logic of the theorem prover. Concretely, this can be done

by defining inductive types in LEGO to represent the terms and types of L. The

evaluation rules and typing rules can be represented as inductive relations. Part

of such an embedding is shown in Figure 2.2.1. We think of this embedding as

a full, internal description of the language L in UTT.

Remarks

1. In embedding 1 all the entities that make up the language description

are represented by some aspect of the logic of the theorem prover. For

instance, the type-checking rules of L are represented within the logic

(by the relation has type) as opposed to being implemented outside the

logic by some pre-processor which would filter out ill-typed terms before

passing them to the theorem-prover.

2. The objects in the logic that represent L are all internal to the logic. By

this we mean that we can talk about these objects within the logic: we can

quantify over the types LType, LTerm, Eval t v (where t and v have types

LTerm and Value, respectively), etc. Being able to quantify over these things

allows us to express meta-theoretical statements about the language L. We

shall see that property 2 does not necessarily follow from property 1.

3. The internal objects that represent L are all inductively defined. This gives

us elimination rules which we can use for computing with these objects or

proving results about them.

4. This embedding is very cumbersome to set up, as Figure 2-2 shows. It

is also cumbersome to use, because even the simplest term in the em-

bedded language becomes very long and ugly when translated into the

embedding, since its abstract syntax must be written out in full. This

problem could be ameliorated, to some extent, by a helpful user interface.

However, when used in a theorem prover like LEGO which provides the

ability to type-check and normalise terms automatically, this embedding

Chapter 2. Representation Techniques 22

Representation of types, terms and values

Inductive [LType : Type]

Constructors [nat ty; bool ty : LType; arrow ty : LType!LType!LType]

Inductive [LTerm : Type]

Constructors [true sy; false sy; zero sy; suc sy; lt sy : LTerm;

app sy : LTerm!LTerm!LTerm]

Inductive [Value : Type]

Constructors [true v; false v; zero v : LTerm;

suc v : Value!Value]

Representation of evaluation relation

Relation [Eval : LTerm!Value!Prop]

Constructors [eval true : Eval true sy true v;

eval false : Eval false sy false v;

eval zero : Eval zero sy zero v;

eval app suc : 8 tm :LTerm: 8 v :Value:

(Eval tm v)) (Eval (app sy suc sy tm) (suc v v));

eval app lt1 :

Eval (app sy (app sy lt sy zero sy) zero sy) false v;

eval app lt2 : 8 tm :LTerm:

Eval (app sy (app sy lt sy zero sy) (app sy suc sy tm))

true v;

(�One rule omitted�)

The typing rules are represented in a similar way by a relation has type.

Figure 2–2: Embedding 1

Chapter 2. Representation Techniques 23

has a more serious disadvantage. The user must reason explicitly about

the typing and evaluation of terms rather than having this done for free

by the theorem-prover. Of course, this may not be seen as a disadvant-

age if the goal is to reason about the formal metatheory of the embedded

language, rather than to reason about the behaviour of specific programs.

5. An advantage of embedding 1 is that it is very easy to compare it with

the original definition of L in order to verify that L has been encoded

accurately. The inductive types and inductive relations of the embedding

mirror the original grammar and evaluation and typing rules of the op-

erational semantics account of L. This advantage depends on the style of

the language description and may be reduced for languages (such as Z)

whose description is not given in an inductive style.

Embedding 1 provides a great deal of expressiveness thanks to points 1, 2,

and 3. It is easy to be convinced of its adequacy. However, this embedding is

relatively difficult to use.

Examples of this embedding style

An example is Altenkirch’s encoding of Girard’s System F in LEGO [Alt93],

which he uses to formalise a proof of strong normalisation for System F.

Another example is an embedding in HOL of the dynamic semantics of

the programming language Standard ML (SML) [VG94,MG94]. (Donald Syme

[Sym93] has carried out a similar project using essentially slightly different tech-

niques.) In this embedding, the syntactic classes, semantic objects, and evalu-

ation relations of SML were all represented explicitly via inductive structures in

HOL. An extension of SML with higher-order functors[MT94] was encoded in a

similar fashion, and the encoding was then used to formally study the relation-

ship between the two languages. This example illustrates the great expressive

power of the deep embedding technique, and its usefulness when appropriately

applied.

Chapter 2. Representation Techniques 24

2.2.2 Embedding 2: A “shallow embedding”

The term “shallow embedding” is defined by Gordon et al as follows:

Only define semantic operators in the logic and arrange that the

user-interface parse input from HDL syntax directly to semantic

structures, and also print semantic representations in HDL syntax.

It is not so clear how to apply this description to embeddings of L in type

theory. One interpretation would be to represent only the semantic objects of L

within the type theory, while all other elements of the language description are

handled by an external user-interface. This interface would read LTerms, type-

check them according to the typing rules of L, evaluate them to obtain Values,

and then pass these values to the theorem-prover. The theorem-prover can only

be used to prove results about Values. This can be useful if the values are the

main object of interest. For instance we may be more interested in the functions

computed by programs written in some particular programming language than

in the syntax of the programs themselves.

We can think of this embedding as modelling the universe of discourse of the

language L within UTT.

It is instructive to look at a couple of possibilities for representing Values in

a shallow embedding of L, because they illustrate some of the issues around

adequacy.

1. One possibility is to embed Value as an inductive type, just as in the deep

embedding. In one sense this gives us the most “adequate” representation

of Value, because the representing object (the type Value) is isomorphic to

the class Value in the definition of the language L.

2. Another possibility is to use the LEGO types nat and bool to represent

Values:

Value
def
= nat + bool

Chapter 2. Representation Techniques 25

In one sense this embedding is not adequate since the representing type

nat+ bool does not contain representations of all possible Values. (Values

such as suc false are not represented.) However, the values represented

are exactly those obtained by evaluating well-typed expressions, so in this

sense this is an adequate representation.

2.2.3 Embedding 3: A grammatical translation

We now consider an embedding which has property 1 of Section 2.2.1 but not

property 2. This embedding can be thought of as a grammatical translation:

well-formed terms of the language L are translated to terms of UTT.

For this translation we do not make any definitions within the logic of the

theorem-prover. Rather we define, externally to the theorem prover, transla-

tion functions which translate individual LTerms, LTypes, and Values into the

logic of the theorem-prover. In theorem-provers like HOL or Coq, a program-

ming language is provided which acts as a meta-language to the logic of the

theorem-prover. This may be conveniently used for defining these translations.

Unfortunately, the LEGO proof-checker does not provide this facility.

Each type of L will be translated to a type in the logic. The type nat is

translated as nat, bool as bool et c. Terms are translated similarly: true is

translated as true, 0 as 0, < as<, function application in L by function application

in the logic, and so on. Type-checking in L is translated by type-checking in the

logic of the theorem-prover. Similarly, evaluation in L is translated by evaluation

in the theorem-prover.

Remarks

1. All the parts of the definition of the language L are represented within

the logic of the theorem-prover. However, the representing objects are not

necessarily internally named within this logic. This reduces the express-

Chapter 2. Representation Techniques 26

iveness of the embedding: for instance, we cannot express the statement

that zero does not have the LType bool.

2. The expressive power of this embedding depends on the capability of

the logic of the theorem-prover to reflect those aspects of itself that are

being used for the embedding. For instance, the logic of LEGO contains

type universes, which reflect the types in the logic. These types are our

representation of the types in L. Since the logic allows us to quantify over

type universes, the embeddings allow us to quantify over the types of L.

It is true that there are a lot of spurious types present (The type universe

Type contains far more than just nat, bool and the functional hierarchy over

these!) but we shall see in the next section that the ability to quantify over

types can be useful all the same.

3. From the point of view of adequacy, this style of embedding depends a

lot on there being a good match between the embedded language and

the logic of the theorem-prover. For instance, if we were to extend the

language L with an operator for general recursion, this kind of embedding

of L would no longer be possible in UTT.

4. This kind of embedding is easy to set up and to use. For languages that

are non-trivial, this can be a huge advantage over the “deep embedding”

technique. For instance, consider adding abstractions to L. The “deep” em-

bedding technique would now require us to explicitly define the handling

of substitution. With embedding style 3, the theorem prover automatically

handles substitution. (A similar point is raised by Constable and Howe

[CH89] with reference to the logic of the proof-checker NuPrl [Con86].).

2.2.4 An embedding example: value-passing CCS in LEGO

This embedding illustrates a point that was briefly mentioned in the previous

section: having type universes in UTT enables us to devise representation tech-

niques that are not possible in theories without type universes. We examine

Chapter 2. Representation Techniques 27

an embedding that was done in the HOL system (which lacks type universes)

and show how a deficiency in that embedding can be corrected by moving to a

system with type universes and dependent � types.

In [Nes94], Monica Nesi describes an embedding of value-passing CCS[Mil89]

in the HOL theorem-prover. This is a process algebra in which processes can

input and output values through named ports. A fragment of the grammar

of value-passing CCS expressions is shown below. Here the labels v, x, and e

range over constants, variables, and expressions, all taken from some domain

of values V. The label a stands for an input port, and the label a for an output

port. The symbol � is called the silent action and its meaning is irrelevant to

this discussion.

E ::= a(x):E j a(e):E j �:E

In the original definition of value-passing CCS, the values are restricted

to a single domain V, just as described above and as implemented in Nesi’s

work. However, Milner mentions that in real applications values of many

different types may be used. It is difficult to extend Nesi’s embedding to a

many-sorted version of value-passing CCS because of the inherent limitations

of HOL. However, this extension can be done easily if the embedding is done

in a type theory with universes and dependent types.

Nesi’s embedding of CCS in HOL is essentially a grammatical translation

(like embedding 3) in which the domain of values V is represented by a type

parameter �. The phrase classes of CCS are translated by defining appropri-

ate inductive types parameterised by �. For instance, labels and actions are

represented as follows:

labelv = in n j out n

actionv = tauv j labelv labelv �

(To simplify things slightly we have assumed that ports are to be named by

natural numbers, n.) The type labelv consists of input or output ports, named

by natural numbers. Actions are either the silent action or a label followed by a

Chapter 2. Representation Techniques 28

value expression of type �. The entire definition of CCS terms is parameterised

by the type variable � representing the type of values.

There are two possibilities for moving from this definition to a multi-sorted

value passing CCS. One method is to use the definition above, instantiating the

type � as the disjoint sum of all the types that are required. This embedding

is still essentially single-sorted: there can be no such thing as a port which

passes only natural numbers while another passes only booleans. Both ports

would have to pass values of the same type which would be whatever � is

instantiated to. The second alternative is to define a distinct class of labels for

each type that is required. This results in a huge and cumbersome embedding

where many functions must be duplicated for each type. Both methods also

have the deficiency that new types may not be introduced to the embedding

dynamically: once � is instantiated to a particular sum type, or a particular

class of typed labels has been chosen, no new types may be added.

Another possible way of representing the multi-sorted calculus in HOL

would be to move to a full internal description (like embedding 1). This would

require us to model the types and type-checking of value-passing CCS explicitly

in HOL. This approach gives us an embedding that is difficult and awkward to

use, because we are forced to reason explicitly about type-checking.

By contrast if we use UTT it becomes very easy to change the definition of

label slightly so that labels carry around the type of values that they are allowed

to pass. Here is a translation into UTT of the original, single-sorted definitions

of labels and actions:

Inductive [labelv : Type]

Constructors [in; out : nat! labelv]

Inductive [actionv : Type!Type]

Constructors [tauv : � a :Type: actionv a]

[labvv : � a :Type: labelv!a!(actionv a)]

Chapter 2. Representation Techniques 29

To extend this to a many-sorted system we simply tag labels with the type

that they are allowed to pass:

labelv2
def
= labelv� Type

Next, we define actions in the following way which specifies that the value

that passes through a particular port must be of the type with which that port

is tagged:

Inductive [actionv2 : Type]

Constructors [tauv2 : actionv2]

[labvv : � port : labelv2: port:2!actionv]

Now suppose we wish to represent agents which have some ports that pass

natural numbers and some that pass booleans. With the single-sorted system

we have to make all ports pass the type (nat + bool). Here is how we would

represent the actions a(true) and b(0). First we define the ports a and b:

a
def
= in zero

b
def
= in one

Next, here are the definition of the actions a(true) and b(0):

labv (nat + bool) a (in2 true)

labv (nat + bool) b (in1 zero)

There is nothing to prevent us from inputting in1 zero to the port a, or in2 true

to the port b.

With the multi-sorted version, here are the definitions of these two actions:

a2
def
= (in zero; bool)

b2
def
= (in one; nat)

labv2 a true

labv2 b zero

If we tried to input naturals to port a, or booleans to port b, the terms would fail

to type-check.

Chapter 2. Representation Techniques 30

Remarks

We first note that our embeddings of multi-sorted, value-passing CCS in LEGO

are all incomplete, since they do not show how the rules of the calculus (or

even its full syntax) are represented. We can extend our embedding to the full

language by copying the techniques used by Nesi in her encoding.

All of the embeddings discussed represent the syntax of the object language

“deeply”, as in embedding 1, and therefore provide the ability to quantify over

syntactic structures and to express metatheorems about the embedded language.

In all of the embeddings the class of types of the object language is represented

by the class of types of the metalanguage, as in embedding 3. The embeddings

done in LEGO are more expressive because UTT allows us to quantify over all

of its types. None of the embeddings allow us to express statements about the

typing relationship itself, since this is represented by the typing relationship of

the metalanguage, and neither of the metalanguages used provides an internal

reflection of its own typing judgements.

Our multi-sorted embedding identifies the types and type-checking of the

object language with those of the meta-language. This helps to make the em-

bedding easier to use: type-checking is provided for free, rather than being a

proof obligation.

2.2.5 An embedding example: Union types

Our final example is intended to illustrate the kind of embedding techniques

we shall develop for the Z notation. Consider the small language T described

in Figure 2.2.5. In this language we define a union type constructor
S

whose

behaviour is specified by three equations. We would like to embed this language

in LEGO in order to study its properties.

If we attempt a full internal description like embedding 1, we run into a

problem representing the equations on the types of T. The types of T are not

freely defined, so they cannot be adequately represented by an inductively

Chapter 2. Representation Techniques 31

Types

TType = bool | nat | Ttype
S

Ttype

Equations on Types

T
S

T = T

S
S

T = T
S

S

S
S

(T
S

U) = (S
S

T)
S

U

Terms

TTerm = true | false | 0 | suc

Typing rules

true:bool false:bool 0:nat suc:nat->nat
x:S

x:SST

Figure 2–3: A type theory with Union types

defined type. (We could devise an embedding in which the equality of the types

in the object language is represented explicitly, rather than being identified

with equality in UTT, but this would be very awkward to set up and to use.

Alternatively, we could use a type-theory with quotient types, such as NuPrl

[Con86].) If we attempt a grammatical translation in the style of embedding

3 we find that there are no objects in the logic that can provide a satisfactory

representation of the union type. The nearest thing that we can find is a disjoint

sum type, and this does not satisfy the equations of the Union type.

We observe, however, that a restricted version of the disjoint sum type would

provide the representation that we are looking for. If we could restrict ourselves

to disjoint sums whose summands contain no duplicates and are ordered in

some canonical way, then we would obtain a class of types that is isomorphic

to the types that we are trying to embed. We can think of this embedding as a

non-literal translation: the terms of T cannot all be represented directly as terms

of UTT, but must be translated indirectly in some cases.

We achieve such a translation by doing the following: First we define the

Chapter 2. Representation Techniques 32

syntax of types of T as an inductive type, just as we would for a deep embedding:

Inductive [TType : Type]

Constructors [bool ty; nat ty : TType]

[U ty : TType!TType!TType]

Next we define a function which maps these syntactic TTypes to the UTT

types which represent them. We shall call this function Typ. Its type is TType!

Type and its definition is described below:

First we define the base types of T:

Inductive [BType : Type]

Constructors [bool bty; nat bty : BType]

We define a computational equality BType eq : BType ! BType ! bool and a

total order BType lt : BType!BType!bool.

For convenience we shall define a type of non-empty lists:

Inductive [nelist : Type!Type]

Constructors [single : � t :Type: t!(nelist t)]

[more : � t :Type: t!(nelist t)!(nelist t)]

Now we can define a function get btypes which maps a TType to a non-

empty list made up of all the BTypes in that TType. We also define two functions

remove dup : (nelist BType) ! (nelist BType) and sort : (nelist BType) !

(nelist BType). As the names suggest, the first of these removes duplicates from

a non-empty list of BTypes, using BType eq for comparison, while the second

sorts a non-empty list of BTypes into, say, ascending order according to the

ordering BType lt.

Next we define a function which maps BTypes to types in the type theory. We

call this function Typ BType. Its type is BType! Type and its behaviour is very

simple: it maps nat bty to nat and bool bty to bool.

Chapter 2. Representation Techniques 33

We extend this function to a function Typ BType list which forms the disjoint

sum of all the types obtained by applying Typ BType to all the members of a

non-empty list of BTypes.

Finally we can define the function Typ:

Typ
def
= �t : TType :Typ BType list (sort (remove dup (get Btypes t))):

The range of the function Typ is our desired representation of the types of T.

We can verify that the equations on the types are satisfied: Typ (U ty T T) =

Typ T, and so on.

Next we must decide how to represent the terms of T. We shall simply

represent true by true, false by false, 0 by 0 and suc by suc. We can check

that these terms satisfy the first four typing rules: the type of true is Typ bool ty

and so on. However, the fifth typing rule presents a problem. Unions are

represented as disjoint sums — and an object of some type S is not going to have

the type S + T for any other T.

To get around this we must define a function which computes the combina-

tions of in1s and in2s required to coerce an object of type Typ S into the union

of S with any other TType T. We omit the definition of this function which we

shall name push. Its type is

� S; T :TTtype: (Typ S)!(Typ (U ty S T))

To embed the terms of T correctly, we shall have to use a pre-processor of

some kind which will compute correct TType arguments to give to the function

push in order to coerce a term into the desired type.

Properties of this embedding

The embedding provides an expressive language in which we can quantify over

types and terms in the object language. We can express statements about the

equality of specific object language types, but not about the rules by which

equality or typing relationships are judged.

Chapter 2. Representation Techniques 34

We shall not give a formal statement of adequacy for this embedding, but we

believe that it is possible to do so and to verify that this embedding is adequate

in a very strict sense.

This embedding is relatively easy to use compared to deep embeddings.

However, there is a need for an external interface to compute the appropriate

arguments to push when translating terms into the embedding, and to remove

the occurrences of push when translating terms out of the embedding.

2.3 Conclusion

In chosing an embedding technique, there are tensions between the various

desirable properties. Adequacy and expressivity are often traded off against

ease of use. The use of a theorem-prover which implements a powerful logic,

and which provides extensive automated support for that logic, can enable us

to develop embedding techniques which offer good compromises among these

properties.

Chapter 3

Encoding Z : Schemas

In this chapter we discuss our choice of representation technique for the Z

notation. In accordance with the ideas discussed in the previous chapter, we are

looking for an embedding style which will provide a reasonable compromise

among adequacy, expressiveness, and ease of use. We shall consider three

different encodings and discuss their advantages and drawbacks before we

settle on one of them to use for the rest of this work.

For several reasons, we shall not consider doing a full internal description

such as embedding 1 of Chapter 2. Such embeddings are difficult to set up and

to use, and there exist simpler embedding techniques which give satisfactory

results. In addition to these reasons, we do not consider the style of the definition

of Z, as presented in [Spi88] to be amenable to the deep embedding technique.

The definition of Z is itself presented as a Z specification: to represent this

faithfully in UTT via a deep embedding we need to have already defined a

translation from Z to UTT!

We shall use a reduced version of the Z notation which we call Z0 . One of

the main motivations behind the restrictions we impose is that we want to be

able to distinguish between a core language and a module system. This point

is discussed further in Section 3.1. In Section 3.2 we formally define the syntax

and semantics of Z0 . The remainder of the chapter deals with the technical

aspects of our representation in UTT of the basic specification module in Z0 , the

schema.

35

Chapter 3. Encoding Z : Schemas 36

3.1 Separate core and module languages

In the full Z language it is impossible to identify separate core and module

languages. This is because any term in Z, and in particular, any schema, can be

treated as a type. We shall not permit this in Z0 . Instead we introduce a separate

phrase class of types. This allows us to divide the syntax into separate core and

module languages. Such a separation is desirable for a number of reasons.

From the point of view of embedding Z in type theory, it allows us to embed

the core language independently of the representation of the module language.

As we shall see, this gives us greater flexibility in our choice of representation

technique. This advantage was our main motivation for making this change to

the Z notation. However, we believe that a separation of this kind is desirable

in general in the definition of any large language, because it allows both the

user and the metatheorist to understand the language in a piecewise fashion.

Another advantage is that it allows us to consider the possibility of using the

same module language with a different core language, or vice versa.

3.2 The syntax of Z0

Figures 3–1 and 3–2 show the abstract syntax of Z0 . This syntax is a modified

version of the syntax used in [Spi88]. Our syntax can be embedded into the

latter: the presentation of the rules for doing this is deferred until Appendix

E which discusses the relationship between our semantics for Z0 and Spivey’s

semantics for Z.

A specification (SPEC) consists of a PRELUDE, which lists the given types

over which that specification, followed by a main specification (MAINSPEC)

which contains axiomatic descriptions and schema definitions. The separation

of the PRELUDE is a departure from the syntax in [Spi88], where new given

types may be introduced at any point within a specification.

Chapter 3. Encoding Z : Schemas 37

A major difference between Z0 and the full Z notation is the reduced grammar

for declarations. In the full Z notation, any TERM can appear at the right of the

colon in a basic declaration. In Z0 , we introduce instead a special syntax class

called TYPE, representing the allowed types. These may be given types, the

type of finite sets over some other type, or the product of two types. (We restrict

ourselves to finite sets in order to avoid difficulties in dealing with set-theoretic

functions in type theory [Mah90].) We also add two primitive types N and B .

A related restriction involves the grammar of predicates (PRED). Whereas

in Z the existential and universal quantifiers are allowed to quantify over

SCHEMAs, in Z0 they quantify over an IDENT together with a TYPE.

The full Z notation also allows the use of schema designators (SDES) as

declarations. This is not allowed in Z0 , but is partially recaptured by the

addition of an include operation to the grammar of schema expressions. This

allows schema designators to be used a declarations within schema expressions,

but not within axiomatic descriptions.

Another big constraint is that our reduced syntax does not support schemas

that are parameterised over generic formal parameters. However, it will be

possible for whole specifications to be parameterised over generic given types

listed in the PRELUDE.

The grammar of terms (TERM) is reduced to reflect the fact that terms and

types have been separated. We also do not allow sets formed by comprehension,

�-terms, �-terms, or �-terms.

Minor restrictions include the following: we do not treat the operation of

projection on schemas; only primes can be used to decorate schema designators.

There is no theoretical difficulty in removing these restrictions.

Chapter 3. Encoding Z : Schemas 38

SPEC ::= PRELUDE in MAINSPEC

PRELUDE ::= given IDENT; : : : ;IDENT

MAINSPEC ::= let SCHEMA end

| let WORD = SEXP

| MAINSPEC in MAINSPEC

SEXP ::= schema SCHEMA end

| SDES

| : SEXP

| SEXP ^ SEXP

| SEXP _ SEXP

| SEXP) SEXP

| SEXP n (IDENT,: : :,IDENT)

| 9 SCHEMA � SEXP

| 8 SCHEMA � SEXP

| include SDES DECL PRED

SCHEMA ::= DECL | PRED

DECL ::= IDENT : TYPE

| DECL ; DECL

Figure 3–1: Syntax of Z0 (part 1)

Chapter 3. Encoding Z : Schemas 39

PRED ::= TERM = TERM

| TERM 2 TERM

| true

| false

| : PRED

| PRED ^ PRED

| PRED _ PRED

| PRED) PRED

| 9 IDENT : TYPE � PRED

| 8 IDENT : TYPE � PRED

TERM ::= IDENT

| ; [TYPE]

| fTERM,: : :,TERMg

| (TERM,TERM)

| TERM (TERM)

TYPE ::= IDENT

| N

| B

| F TYPE

| TYPE�TYPE

SDES ::= WORD PRIMES

IDENT ::= WORD DECOR

WORD - undecorated identifiers (alphanumeric strings)

DECOR - decorations (strings over f’,!,?g)

PRIMES - primes (strings over f’g)

Figure 3–2: Syntax of Z (part 2)

Chapter 3. Encoding Z : Schemas 40

3.3 The semantics of Z0

Here we present a short summary of the official semantics of Z proposed in

[Spi88]. This discussion is necessarily incomplete, and is intended simply to

give a flavour of the semantics of Z, and to introduce the names, though not the

formal definitions, of the semantic functions that will be referred to in Appendix

E.

For our reduced language Z0 , the corresponding semantics will be obtained

by first applying the embedding into Z defined in figures E–1 and E–2 of Ap-

pendix E.

The denotation of a Z specification in Spivey’s semantics is an environment.

This consists of two parts. The first is a variety, called the global variety, which

represents all the given types and axiomatic descriptions of the specification.

The second, the schema dictionary, is a mapping from names to varieties, and

represents all the schema definitions in the specification.

A variety consists of a signature, together with a set of models over that signa-

ture. A signature contains names of given types and variables, and associates

types with all the variables.

Several operations are then defined on these semantic objects. The join

operation, for example, combines two signatures to form a new signature con-

taining the union of the variables in the two argument signatures. This function

is defined only for signatures in which the common variables have the same

types. This operation is used to obtain the signature of the schema denoted by

any of the various binary schema expressions.

Another important operation, enrich takes as arguments a variety V and an

environment E whose global component must be a sub-variety of V (i.e. , the

signature of V must contain all variables in the signature of E:global, and all

models in V must also be models in E:global.) This operation then returns the

environment formed by replacing the global component of E with V. Intuitively,

Chapter 3. Encoding Z : Schemas 41

the environment E has been enriched by adding the variables and the constraints

of the variety V.

An example of the use of enrich is the semantics of a schema body (SCHEMA).

This is evaluated within an environment and denotes a variety. To obtain this

variety, the environment is first enriched with a variety obtained by evaluating

the declarations of the SCHEMA. Another semantic function called pred is then

used to evaluate the predicate of the SCHEMA within this new, enriched envir-

onment. The denotation of the predicate is a set of models. The denotation of

the SCHEMA is then the variety whose signature is that of the global variety of

the enriched environment, and whose models component is the denotation of

the predicate.

Several operations are defined on varieties. For example, the operations com-

bine is used in giving the meaning of schema expressions formed by conjunction.

The combine operation takes a pair of varieties as arguments and returns a new

variety. The signature of the result is formed by applying join to the signatures

of the argument. The models of the result are all models over the new signature

which, when suitably restricted, yield models of both of the argument varieties.

3.4 Choosing a Representation Technique

In this section we consider various possibilities for encoding the syntax and

semantics of Z0 in type theory. We must find suitable representations for all

the components of the definition of Z0 — the syntactic classes, the semantic

objects, and the relationships between them — bearing in mind that all these

parts must be capable of being put together to provide a representation of the

whole. This will impose a requirement of expressiveness on the representation

chosen for some components. We would also like to keep all the representations

as simple as possible, and to be able to identify measures of the adequacy of

each representation.

Chapter 3. Encoding Z : Schemas 42

Since our goal is simplicity, we shall begin by considering the simplest pos-

sible embedding style: the shallow embedding. This turns out to be unsatis-

factory, so we shall move to a slightly deeper embedding in the style of Section

2.2.5.

We shall look at how the following small Z0 specification can be represented.

This example is written in the concrete syntax of Z, and makes use of some

definitions from the Z library.

S

x; y : N

x < y

T

x; z : T

x + z = 0

U c= S ^ T

According to the definition of schema conjunction, the schema U denotes the

same variety as the following schema:

U

x; y; z : N

(x < y) ^ (x + z = 0)

3.4.1 Embedding 1: a shallow embedding

The obvious method of embedding Z0 shallowly in UTT, within a theorem-

prover such as LEGO, is as follows: The global part of a Z0 specification is

represented by assumptions added to the LEGO context. For each given set a

Chapter 3. Encoding Z : Schemas 43

type is assumed. For each variable within an axiomatic description, a LEGO

variable of the appropriate type is assumed. For each axiom within an axiomatic

description, a corresponding axiom is assumed in the LEGO context. Next, we

must decide how to represent the schema definitions. This can be represented by

a collection of definitions in LEGO: for each name defined in the Z0 specification,

a corresponding identifier is defined in LEGO. The value associated with that

identifier will be a UTT term which somehow represents the meaning of the

associated schema expression. This leaves us with the question of deciding

what UTT terms should be used to represent these meanings.

The obvious candidate for this is the �-types of UTT. This approach is

explored in [Mah90]. We can think of these�-types as representing the varieties

of Spivey’s semantics. The signature of the variety is represented by a UTT

type, formed by taking the product of all the types in the signature. The models

component of the variety is then represented by a UTT predicate over this

type. The two are combined to form a � type. As an example, here is the

representation of part of the example specification:

T : Type

S sig
def
= T�T

S pred
def
= �b :S sig: b:1 = b:2

S
def
= � b :S sig: S pred b

This encoding of varieties is reminiscent of other representations of modular

specifications in LEGO, such as the work of Luo [Luo91] and the “deliverables”

approach of Burstall and McKinna [BM91,McK92].

The shortcoming of this representation is that it provides a poor degree of

expressiveness. There is no way for us to capture, within UTT, the operations

on varieties which are used to give meaning to compound schema expressions.

The reason is that our embedding does not provide us with any object in the

type theory that represents the class of all varieties. The nearest thing to such

an object is the universe Type, since all varieties are represented as types, but

this universe also contains many types that are not representations of varieties.

Chapter 3. Encoding Z : Schemas 44

In order to define an operation on varieties we would need to extend that

operation somehow so that it applied to all types. There is no obvious way

of doing this meaningfully. What is more, even if such an extension could be

found, we would still be unable to define the combine operation because we

have no representation of the names of the identifiers in a signature, only of

their types.

Our challenge is to find a UTT type which is a more accurate representation

of varieties. This leads us to consider a slightly deeper embedding.

3.4.2 Embedding 2: Syntactic names and types in signatures

The problem with the previous embedding arose because of the way that sig-

natures were represented. Firstly, we kept no information about the names in a

signature. Secondly, the UTT type used to represent signatures (viz. Type) was

too general. Our second encoding addresses both of these problems.

We introduce a type to represent Z identifiers. For convenience, we shall use

the type of natural numbers:

Definition 1 Ident,Ident eq.

Ident
def
= nat : Type

Ident eq
def
= nat eq : Ident! Ident!bool

Similarly, we introduce a type to represent the names of the types in Z0 . We

shall assume that we have already defined a types GivenType representing the

given types used in some particular specification. We define an inductive type

called Ztype.

Chapter 3. Encoding Z : Schemas 45

Definition 2 Ztype.

Inductive[Ztype : Type]

Constructors[nat ty; bool ty : Ztype

given ty : GivenType!Ztype

finset ty : Ztype!Ztype

prod ty : Ztype!Ztype!Ztype]

This embedding represents the class TYPE exactly. The elimination rule,

Ztype elim, produced by the inductive definition gives us a lot of power to

define operations and prove theorems about TYPE. If we are able to define a

decidable equality on GivenType, or if we assume that such an equality exists,

then the elimination rule allows us to extend this to a decidable equality on

Ztype:

Definition 3 Ztype eq.

Ztype eq
def
= [omitted] : Ztype!Ztype!bool

We could, if we chose, develop this into a deep embedding of Z0 but we

prefer not to take this route. Deep embeddings, at least in the LEGO system,

are difficult and painful to use. As we have seen in the previous chapter, type

theory provides us with another possibility:

We adopt the approach used in for representing union types in Section 2.2.5.

We define an operation Typ which maps Ztypes to Types. Typ can be thought of

as mapping each TYPE to the semantic object that it denotes. (We shall assume

that we are able to define a similar operation Typ gtype on GivenType.)

Definition 4 Typ.

Typ
def
= Ztype rec (�g :GivenType: Typ gtype g)

(�z :Ztype: �Typ z :Type: finset Typ z)

(�z; z0 :Ztype: �Typ z; Typ z0 :Type: Typ z� Typ z0)

: Ztype!Type

Chapter 3. Encoding Z : Schemas 46

TYPEs are represented by the type Ztype and their denotations by the types in

the range of Typ. (The type Typ (fin set z) is defined as list z: the details of the

representation of finite sets are described in Chapter 4.)

We define signatures as lists of signature items, which are pairs consisting of

an Ident and a Ztype.

Definition 5 Signature.

sig item
def
= (Ident�Ztype) : Type

Signature
def
= list sig item : Type

nil sig
def
= nil j sig item : Signature

We can define decidable equalities on both of these types:

sig item eq : sig item! sig item!bool

Sig eq : Signature !Signature!bool

Next we extend Typ to a function Typify of type Signature!Type which forms

a product of the types obtained by applying Typ to all of the Ztypes in a given

signature, together with the unit type in the case of the empty signature. This

function can be defined easily using induction on lists. Typify sig can be seen as

representing the set of models over a signatures sig. Imitating the terminology

used in the ZRM, we shall call such objects bindings.

We can use this new definition of signatures to define a much better repres-

entation of the class of Schemas than that provided by the previous embedding.

A schema is defined as a Signature sig paired with a predicate over bindings of

type Typify sig:

Schema
def
= � sig :Signature: (Typify sig)!Prop

: Type

Chapter 3. Encoding Z : Schemas 47

To help us work with these syntactic signatures we shall use a function called

lookup which has the following somewhat complicated definition:

lookup aux
def
= �i : Ident:

[result type = �s :Signature:� t :Type: (Typify s)! t]

list elim result type

(Error; �x :Error: x)

(�hd : Ident � Ztype: �tl :Signature: �prev :� t : (Typify tl)! t: :

if (Ident eq i hd:1)

(Typ hd:2; �x :Typify (cons hd tl): x:1)

(prev:1; �x :Typify (cons hd tl): prev:2 x:2))

: Ident!� sig :Signature: (Typify sig)!� t :Type: t

lookup
def
= �i : Ident: �sig :Signature: (lookup aux i sig):2

When given an identifier i and a signature sig, lookup aux attempts to locate i in

sig. If i is found then lookup aux returns a dependent pair consisting of the type

t with which i is found to be associated and a function of type (Typify sig)! t.

When applied to a tuple of type Typify sig, this function projects the component

which corresponds to the position of i in sig. If i does not occur in sig then

lookup aux returns the pair (Error; �x : Error: x). The function lookup simply

extracts the second component of the result returned by lookup aux.

To understand the working of lookup let us look at the following example.

We first define some identifiers and syntactic signatures.

x
def
= 0

y
def
= 1

Sig1
def
= [(x;nat ty); (y; nat ty)]

Sig2
def
= [(y; nat ty); (x; bool ty)]

Sig3
def
= [(y; nat ty)]

Chapter 3. Encoding Z : Schemas 48

Next we define some bindings typed by the signatures above:

Bin1
def
= (2; 3; error) : Typify Sig1

Bin2
def
= (2; true; error) : Typify Sig2

Bin3
def
= (2; error) : Typify Sig3

The following table shows some of the results of applying lookup to these sig-

natures and bindings:

Term Type Value

(lookup x Sig1) Bin1 nat 2

(lookup x Sig1) Bin2 fails to typecheck

(lookup x Sig2) Bin2 bool true

(lookup x Sig3) Bin3 Error error

The main use of lookup is in writing schema predicates. This is illustrated

by the new definition of the schema S.

x
def
= 0

y
def
= 1

S sig
def
= [(x;nat ty); (y; nat ty)]

S pred
def
= �bin :Typify S sig: ((lookup x S sig) bin) < ((lookup y S sig) bin)

S
def
= (S sig; S pred)

Typechecking will detect when lookup fails since the value returned in the case

of failure will have the type Error, rather than the type required by the rest of

the predicate in which the lookup occurs. For example, in the above definition

of the schema S, if we remove the identifier x from S sig (or if we paired it with

some other Ztype), then the definition of S pred will fail to typecheck.

Encoding operations on schemas

This representation of schemas provides us with enough expressiveness to

define the operations on schemas. Let us look at the operation of conjoin-

ing two schemas S and T. Suppose S and T are represented by Schemas S and

Chapter 3. Encoding Z : Schemas 49

T, respectively. First we compute the new signature newsig by joining the sig-

natures of S and T. Having computed the new signature, we must somehow

conjoin the predicates of S and T, whose domains are Typify S:1 and Typify T:1,

respectively, to form a new predicate over the domain Typify newsig. To do this

we must be able to extract from objects of type Typify newsig the components

that make up objects of type Typify S and Typify T.

Whenever two signatures are joined, as they are for many of the schema

operations, it will be necessary to perform extractions such as that described

above. So, whenever we join two signatures we shall also compute coercion

functions which extract bindings of the type of the two argument signatures

from bindings of the type of the result signature.

join
def
= �s :Signature:

list rec (s; �b :Typify s: b)

(�h : sig item: �s0 :Signature: �prev :� v :Signature: (Typify v)!(Typify s):

if (member sig item eq h s)

prev

(cons h prev:1; �x :Typify (cons h prev:1): prev:2 x:2))

: � s; :Signature:� newsig :Signature: (Typify newsig)!(Typify s)

The join operation, as we define it above, takes two signatures s1 and s2 and

yields a new signature newsig together with a coercion back from newsig to s1.

The coercion takes a tuple of type Typify newsig and produces a tuple of type

Typify s2 by projecting only those components that correspond to identifiers

present in s1. No coercion back to the second signature s2 is computed since this

may not exist if s1 and s2 happen to be incompatible for joining. (For instance, if

s1 is [(x; bool ty)], and s2 is [(x;nat ty)], they are incompatible for joining. The

join operation, as defined, will use the Ztype obtained from s1 rather than s2 in

its result, so it returns the signature [(x; bool ty)].)

Another operation coerce attempts to find coercions between arbitrary signa-

tures. The type of coerce reflects the fact that it is partial: if no coercion exists it

returns in2 error. The definition of coerce is fairly long, though not conceptually

Chapter 3. Encoding Z : Schemas 50

difficult, so we shall not include it here.

coerce : � S; S0 :Signature: ((Typify S)!(Typify S0)) + Error

Next we define a trivial, unsatisfiable schema, Absurd:

Absurd
def
= (nil; � :Error: absurd)

Now we can represent schema conjunction. To conjoin S and S0 we first join

their signatures to form a new signature newsig. Then we attempt to coerce

newsig back to the signature of S0. This will fail if S and S0 happen to be type-

incompatible, in which case we return Absurd as our result. Otherwise we

return a schema made up of newsig and the predicates of S and S0 conjoined and

composed with coercions as appropriate. The definition is as follows:

And
def
= �S; S0 :Schema:

[tmp
def
= join S S0]

[newsig
def
= tmp:1]

[coercion1
def
= tmp:2]

[coercion2
def
= coerce newsig S0:sig]

case

(�f : (Typify newsig)!(Typify S0:sig):

(newsig; �s :Typify newsig: (S:pred (coercion1 s)) ^ (S0:pred (f s))))

(�x :Error:Absurd)

coercion2

: Schema!Schema!Schema

With this method it will be possible to define all the operations on schemas.

However, we have to deal with coercions. Whenever a schema operation makes

a change to a signature, or somehow combines two or more signatures, it may

be necessary to compute coercions between the new signature and the old

one(s). In practice, we found that reasoning about these coercions turns out

to be awkward. We therefore chose to explore a third method of representing

schemas, in which we have managed to avoid the need to talk about coercions

between signatures.

Chapter 3. Encoding Z : Schemas 51

3.4.3 Embedding 3: Syntactic names in bindings

In the previous embedding, the Z typing relationship between bindings and

Signatures was identified with the typing relationship between terms and types

in UTT. Each distinct Signature gave rise to a distinct type representing the

bindings over that signature. Whenever an operation caused a signature to be

changed in any way, it was necessary to compute coercions relating the new type

of bindings associated with the new signature to the type of bindings associated

with the old signature.

We shall now look at an embedding technique in which we do not make the

identification described above, but instead explicitly define the typing relation-

ship between bindings and signatures. This allows us to have a single, uniform

type to represent all bindings, rather than a different type for each Signature.

Schema Predicates, as a result, will also be represented by a single type, instead

of a different type for each Signature. As we shall see, this choice makes it much

easier to define operations on schemas. Because of the ease of use, this will be

the embedding technique that we shall adopt for the rest of this work.

We shall define a general type to represent bindings. Bindings are lists of

bin items, which are themselves triples in which a syntactic identifier and a

Ztype z are paired with a value of type Typ z:

Definition 6 Binding.

bin item
def
= � p : Ident�Ztype:Typ p:2 : Type

Binding
def
= list bin item : Type

nil bin
def
= nil j bin item : Binding

We shall write some functions to handle these syntactic bindings. First we

define a function which simply extracts a Signature from a Binding:

Definition 7 extract sig.

extract sig
def
= map �x :bin item: x:1

: Binding!Signature

Chapter 3. Encoding Z : Schemas 52

The next function, matches, checks whether a given Binding is typed by a

given Signature:

Definition 8 matches.

matches
def
= �S :Signature: �bin :Binding: is true (Sig eq S (extract sig bin))

: Signature!Binding!bool

We redefine lookup to work with our new representation of bindings.

Definition 9 lookup.

small item
def
= � z :Ztype: (Typ z) : Type

lookup
def
= �x : sig item:

list iter (in1 void)

(�y :bin item: �prev : (Error + small item):

if (sig item eq x y:1) (in2 (y:1:2; y:2)) prev)

: sig item!Binding!(Error + small item)

The next function restrict, attempts to cut down a Binding so that it has only

those components specified in a given Signature; restrict fails if the Signature

requires components that are not in the Binding.

Definition 10 restrict.

restrict
def
= �str :Binding:

list iter (in2 nil bin)

(�x : sig item: �prev : (Error + Binding):

case � :Error: in1 void

�s :Binding: case � :Error: in1 void

�si : small item: in2 (cons ((n:1; si:1); si:2) s)

(lookup x bin)

prev)

: Binding!Signature!(Error + Binding)

Chapter 3. Encoding Z : Schemas 53

An example of a Binding is the following:

x
def
= 0 : Ident

b
def
= 1 : Ident

B
def
= [(x;nat ty; 0); (b; bool ty; true)] : Binding

If we define sig to be the signature [(b; bool ty)] then (matches sig B) evaluates

to false and (restrict B sig) evaluates to the Binding [(b; bool ty; true)].

Schema predicates will be encoded by the following type:

Definition 11 Predicate.

Predicate
def
= Binding!Prop

Our new definition of the type Schema is:

Definition 12 Schema.

Schema
def
= Signature�Predicate : Type

The join operation for combining Signatures can be defined much more

simply than in embedding 2 because there is no need to keep track of coercions

between types:

Definition 13 join.

join
def
= �s; t :Signature:

list iter

t

(�x : sig item: �prev :Signature:

if (member sig item eq x prev) prev (cons x prev))

s

: Signature!Signature!Signature

Schema conjunction can then be represented as follows:

And
def
= �S; S0 :Schema:

(join S:sig S0:sig; �s :Binding: (S:pred s) ^ (S0:pred s))

: Schema!Schema!Schema

Chapter 3. Encoding Z : Schemas 54

3.5 Working out the details

In this section we discuss some of the technical issues that must be dealt with

in working out the details of our embedding technique.

3.5.1 Relating schemas and bindings

Embedding 2 provided only one possible relationship between bindings and

schemas. If S is of type Schema, as defined in embedding 2, then an object of type

S can be interpreted as a binding over the signature of S together with a proof

that the binding satisfies the predicate of S. With embedding 3, it is possible

to define several different relationships between schemas and bindings. It is

necessary to choose which of these best captures the Z notion of model. We

consider some of the possibilities and the relationships between them.

� Exact models

We say that a Binding is an exact model of a Schema if it matches the

Signature of that Schema and if we can prove that it satisfies the Predicate

of that Schema. This is essentially the same as the notion of model in

embedding 2, rephrased in the language of embedding 3. This definition

is closest to the satisfaction relationship between schemas and bindings

defined in Section 3.3.

Definition 14 exactly models.

exactly models
def
= �S :Schema: �b :Binding:

(is true (matches S:1 b)) ^ (S:2 b)

: Schema!Binding!Prop

� Restricting models

Exact models seem to capture the Z notion of model, so why should we

consider any other definitions? The reason is similar to the reason why

Chapter 3. Encoding Z : Schemas 55

we needed coercion functions in method 2 of encoding schemas. We are

often interested in the relationship between a single binding and various

different schemas with differering signatures. In embedding 2 we took

care of this need by finding coercions between the various signatures.

For embedding 3, we shall invent the notion of “restricting models” of

schemas. A binding is a restricting model of a schema S if it is capable of

being restricted to the signature of S, and the restricted binding satisfies

the predicate of S.

Another way of looking at this definition is to think of a schema as a min-

imal description: bindings must contain at least those identifiers present

in the schema signature. When restricted to this signature, the binding

must satisfy the schema predicate.

Definition 15 restricts to model.

restricts to model
def
= �S :Schema: �b :Binding:

9 b0 :Binding: (in2 b0 = restrict b S:1) ^ (S:2 b0)

: Schema!Binding!Prop

� Signature-independent models

Finally, we consider bindings which satisfy the predicate of a schema,

independently of their relationship with the signature of that schema. We

shall call such bindings “models” of a schema.

Definition 16 models.

models
def
= �S :Schema: S:2

: Schema!Binding!Prop

Now we shall look at the relationships among these three notions of model

for schemas.

Chapter 3. Encoding Z : Schemas 56

Exact models and models

All exact models of a Schema S are also models of S:

Theorem 1 exact models are models.

8 S :Schema: 8 b :Binding: (exactly models S b)) models S b

Proof. Trivial.

It is easily shown that the converse of the above statement is not true.

Exact models and restricting models

Bindings which are exact models of a schema are always capable of being

restricted to the signature of that schema. (This is implied by lemma 16 of

Appendix A). However, it is not the case that the binding produced by the

restriction must necessarily satisfy the predicate of the schema. The restricted

binding is not necessarily equal to the original binding: if a signature contains

more than one occurrence of the same identifier, a binding that matches this

signature will not necessarily contain the same values as its restricted form,

since the restriction function grabs the first occurence of each identifier. If

we restrict ourselves to schemas whose signatures do not contain repeated

identifiers, then we can show that the restricted binding does indeed satisfy the

schema predicate.

First we shall define a predicate unique idents on Signatures. As the name

implies, this is true of a signature if no identifier occurs more than once in that

signature. The definition makes use of a decidable equality sig item ident eq :

sig item ! sig item ! bool which simply judges two sig items to be equal if

their Ident components are equal under Ident eq.

Chapter 3. Encoding Z : Schemas 57

Definition 17 unique idents.

unique idents
def
=

list rec trueProp

(�x : sig item: �l :Signature: �prev :Prop:

(is false (member sig item ident eq x l)) ^ prev)

: Signature!Prop

Theorem 2 exact models are restricting models.

8 S :Schema: 8 b :Binding: (unique idents S:1))

(exactly models S b)) restricts to model S b

Proof. This follows easily from the Lemma 15 which says that a binding is equal

to the result of restricting it to its own signature, provided it has no duplicate

identifiers. ut

It is easy to show that the converse of the above result is false: not all

restricting models are exact models. However, all restricting models yield exact

models when restricted:

Theorem 3 restricting models give exact models.

8 S :Schema: 8 b :Binding: (restricts to model S b))

9 b0 :Binding: (in2 b0 = restrict b S:1) ^ (exactly models S b0)

Proof. This is an easy consequence of lemma 17 which states that any binding

obtained by restriction to a signature will match that signature. ut

Models and restricting models

The most interesting relationship to consider is that between models and restrict-

ing models. First of all, is it the case that a model of a schema S is necessarily

a restricting model of S? The following object of type schema gives us a neg-

ative answer to this question. (The operation lookup used in this definition is

Chapter 3. Encoding Z : Schemas 58

similar in function to the lookup that was defined for embedding 2. Its detailed

definition will be given later in this chapter.)

S
def
= (nil sig; �b :Binding: lookup x b = (nat ty; 0))

: Schema

This Schema arises as the translation of the following ill-formed Z schema:

S

x = 0

There are many Bindings which are models of this Schema, but there are none

which are restricting models. In general, any Schema whose predicate makes

reference to identifiers not found in its signature will fail to have restricting

models.

What about the converse situation? If a Binding is a restricting model of a

Schema, is it itself a model? Again the answer is no. Consider the following

term of type Schema:

T
def
= (nil sig; �b :Binding: length b = 0)

: Schema

All bindings are restricting models of this Schema, but only the empty binding

is a model. However, unlike the schema S above, this LEGO term does not arise

from the translation of any Z schema, even one that is ill-formed.

Finally, let us look at one more Schema:

U
def
= ([(x;nat ty); (y; nat ty)]; �b :Binding: lookup x b = (nat ty; 0))

: Schema

This Schema is the translation of the following Z schema:

U

x; y : N

x = 0

Chapter 3. Encoding Z : Schemas 59

Any Binding which is a restricting model of U will also be a model of U. However,

not all models of U are restricting models of U: the binding [(x; nat ty; 0)] is

a model of U but cannot be restricted successfully to the Signature of U, and

therefore cannot be a restricting model. However, all models of U that can be

successfully restricted to the Signature of U are indeed restricting models. This

leads us to our definition of well-formedness for schemas.

3.5.2 Well-formedness conditions

Many schemas exist which do satisfy the properties that restricting models are

models, and sufficiently large models are restricting models. Later on we shall

see that these properties are preconditions for some metatheorems about the

schema operations. We formalise these properties in LEGO by means of the

following definitions:

Definition 18 Down closed.

Down closed
def
= �S :Schema: 8 b :Binding:

(models S b)) (succeeds (restrict b S:sig))) (restricts to model S b)

Definition 19 Up closed.

Up closed
def
= �S :Schema: 8 b :Binding:

restricts to model S b) models S b

: Schema!Prop

These two properties are independent of each other. The schema S is not

down-closed, as we have seen, but it is up-closed. The schema T is down-closed

but is not up-closed. We have verified these facts using LEGO.

Finally we shall define a well-formedness condition on schemas:

Chapter 3. Encoding Z : Schemas 60

Definition 20 Well formed.

Well formed
def
= �S :Schema:

(Up closed S) ^ (Down closed S) ^ (unique idents S:1)

: Schema!Prop

3.5.3 Properties of schemas

We define what it means for a schema to have a property:

Definition 21 Has prop.

Has prop
def
= �S :Schema: �P :Predicate:

8 b :Binding: (restricts to model b S)) (P b)

: Schema!Predicate!PropSchema!Prop

3.5.4 Logical equivalence of schemas

The three different relationships between Schemas and Bindings that we have

defined give rise to several possible ways in which we can define a logical

equivalence on schemas. Some of these are the following:

Definition 22. Schema equivalences

Equiv1
def
= �S; T :Schema: 8 b :Binding:

(exactly models S b)() (exactly models T b)

Equiv2
def
= �S; T :Schema: 8 b :Binding:

(restricts to model S b)() (restricts to model T b)

Equiv3
def
= �S; T :Schema: 8 b :Binding:

(models S b)() (models T b)

We can prove that these relationships are all different from each other.

If two schemas have signatures which are unequal permutations of each

other, then they can be equivalent under Equiv2, without being equivalent under

Equiv1.

Chapter 3. Encoding Z : Schemas 61

Theorem 4 Equiv2 not Equiv1.

9 S; T :Schema: (Equiv2 S T) ^ :(Equiv1 S T)

Proof. The Schemas ([(y; nat ty); (x; nat ty)]; trueProp) and

([(x;nat ty); (y; nat ty)]; trueProp) are equivalent under Equiv2 but not under

Equiv1. ut

However, all schemas which are equivalent under Equiv1 are also equivalent

under Equiv2:

Theorem 5 Equiv1 implies Equiv2.

8 S; T :Schema: (Equiv1 S T)) (Equiv2 S T)

Proof. See Proof 1 in Appendix A.

Two schemas with unequal signatures can be equivalent under Equiv3 if

they have logically equivalent predicates. Such schemas are not necessarily

equivalent under Equiv1 or Equiv2.

Theorem 6 Equiv3 not Equiv1.

9 S; T :Schema: (Equiv3 S T) ^ :(Equiv1 S T)

Proof. The Schemas ([]; trueProp) and ([(x;nat ty)]; trueProp) are equivalent

under Equiv3 but not under Equiv1. ut

Theorem 7 Equiv3 not Equiv2.

9 S; T :Schema: (Equiv3 S T) ^ :(Equiv2 S T)

Proof. The example used for Theorem 6 works here as well. ut

Chapter 3. Encoding Z : Schemas 62

Of the three relationships, Equiv2 seems closest to the notion of logical equi-

valence that is used in the ZRM. Equiv1 is too strong, since it requires equivalent

schemas to have their signature items listed in the same order. Equiv3 seems

too weak, since it does not take account of the schema signatures. We therefore

define:

Definition 23. Schema equivalence

Equiv
def
= Equiv2

3.5.5 Equality

We shall assume that all given types have computational equalities defined on

them. In other words, if we have G : GivenType, we shall assume an equality

G eq : (Typ (given ty G))!(Typ (given ty G))!bool

This enables us to define, by induction on GivenType and on Ztype, a general

computational equality.

Definition 24. Equal

Equal : � t :Ztype: (Typ t)!(Typ t)!bool

3.5.6 Handling failed lookups

Just as in embedding 2, it is possible for the lookup function to fail when asked

to look up an identifier in a signature. Unfortunately, dealing with the con-

sequences of failure is now a lot more difficult. The difficulty arises from the

fact that our notion of Binding is more general than that in embedding 2. In

embedding 2 Bindings were typed by schema predicates. This means that in

order to know whether a particular identifier can be looked up in a particular

Binding, it is sufficient to know the Signature that gives the type of that Binding.

This is the reason why the definition we have given for the schema S under

Chapter 3. Encoding Z : Schemas 63

embedding 2 can be successfully type-checked by LEGO. LEGO can check that

each identifier that is looked up actually occurs in the Signature S sig, and this

information is enough to show that that identifier can be successfully looked up

in any binding bin whose type is Typify S sig.

We cannot use the same trick to handle failed lookups in embedding 3. In this

embedding schema predicates need to look up identifiers in arbitrary Bindings,

unrelated to the associated schema signatures. We must therefore find some

other way of dealing with failed lookups.

Let us suppose we wish to encode the schema S under embedding 3. This

schema has as its predicate:

P c= x < y

We shall represent this predicate by a UTT predicate of the form:

�b :Binding: (lookup (x; nat ty) b) ?? (lookup (y; nat ty) b)

The question is what shall we use in place of the ?? to represent the < rela-

tion. The operation we need must have as its type something like (Error +

small item) ! (Error + small item) ! Prop. In the case where both of the

lookups succeed, this operation must behave like the < relation. In other cases

we must decide what this operation should do. There are two kinds of failure

that may happen. First, the lookup may fail entirely because an identifier-Ztype

pair is looked up in a binding in which it does not occur. Second, it is possible

to look up the wrong Ztype. Consider the term:

�b :Binding: (lookup (x; bool ty) b) ?? (lookup (y; nat ty) b)

We shall need to decide what the operation ?? should do when placed in such a

context. Let us consider the options for dealing with these two kinds of failure.

It seems desirable that we should never be able to prove that a predicate is

true of a binding b if the predicate looks up an identifier-Ztype combination that

is not present in b. There are several ways in which we can try to achieve this.

Chapter 3. Encoding Z : Schemas 64

One technique we can adopt is to explicitly add definedness conditions to

schema predicates when we translate them into Lego. For example, the predicate

P would become:

�b :Binding:

(succeeds (lookup (x; nat) b)) ^ (succeeds (lookup (y; nat) b)) ^

(lookup (x; nat) b ?? lookup (y; nat) b)

In this case it will not matter what the operation ?? does in the case of failed

lookups, since the definedness conditions will guarantee that the entire predicate

is false. However, this method is inelegant since it seems to be duplicating the

purpose of the schema signature.

Perhaps the most obvious solution is to treat the failure of lookup as an error

condition, and to propagate this error throughout the predicate. This requires

us to change the type of schema predicates from Binding! Prop to Binding!

(Prop+ Error). When a predicate is applied to a binding any failed lookups will

be propagated through the term and will result in a value of (in1 error).

Why should we want to consider other possibilities? The reason is that

dealing with sums is awkward, and makes our definitions and theorems more

clumsy. For instance we would need to redefine all our logical combinators

(such as ^, _,), et c.) so that they propagate errors. Theorems about these

combinators would need to be hedged by conditions stating that their arguments

must not be equal to in1 error.

We shall get around the need for sums by taking advantage of the fact that

there is an independent means of checking that a binding contains the identifiers

required by a schema predicate: we can check that it matches, or can be restricted

to, the schema signature. If we only care about the cases when the predicate

is applied to bindings that satisfy this condition, then it does not really matter

how we deal with the cases where lookup fails. So to simplify matters, we can

simply allow these cases to “collapse” to some arbitrarily chosen value of type

Prop. We use the value absurd.

Chapter 3. Encoding Z : Schemas 65

This method only works if the schema signature does in fact include all of the

identifiers looked up by the schema predicate. We cannot express this syntactic

condition within the type theory because our encoding of schema predicates is

not sufficiently “deep”. However, we have tried to capture the essence of this

condition by the well-formedness conditions (Definition 20) mentioned in the

previous section.

3.5.7 Wrapping functions

We shall now discuss the technicalities of handling failed lookups by “collapsing

to absurd”. What does this mean in practice? How is the operation ?? to be

defined?

When lookup fails it returns the value in1 error. So, clearly, one thing that

must be done is to perform a case analysis on the result of the lookup and

return the value absurd in the case where the result is in1 error. We shall define

a “wrapped” version of the equality predicate “=” which performs this case

analysis. In general, we must define similarly wrapped versions of all the UTT

terms which represent the Expressions and relations (Rel) of Z. More precisely,

whenever we have a predicate whose type is, say, (Typ z)! Prop, where z is

some Ztype, we shall define a wrapped version of type (Error + small item)!

Prop. For a function of type (Typ z1)! (Typ z2) we shall define a wrapped

version of type (Error + small item) ! (Error + small item). This can be

generalised for relations and functions of higher arity.

So far we have only discussed the possibility that lookup fails outright. In

order to define the wrapped version of functions we must also deal with the

possibility that the wrong type was looked up. To do this we must employ

another elaborate case-analysis which analyses the Ztype in a small item and

returns absurd (or in1 error, if appropriate) if this Ztype does not conform to

the type of the function or predicate that is being wrapped. To make this

more concrete, we shall display the wrapped version of the boolean negation

Chapter 3. Encoding Z : Schemas 66

function inv : (Typ bool ty)! (Typ bool ty). The wrapped version, INV has

type (Error + small item)!(Error + small item).

INV
def
= case � :Error: in1 error

(sigma rec

(Ztype elim (�x :Ztype: (Typ x)!(Error + small item))

(� :Typ nat ty: in1 error)

(�b :Typ bool ty: in2 (inv b))

(�g :GivenType: � :Typ (given ty g): in1 error)

(�x :Ztype: � : (Typ x)!Prop: � :Typ (finset ty x): in1 error)

(�x; y :Ztype:� : (Typ x)!Prop: � : (Typ y)!Prop:

� :Typ (prod ty x y): in1 error)))

Wrapped functions are very elaborate to define, even for a simple, unary

function like inv. The definition of the binary operation ?? is too long to display

here. Fortunately, it is possible to define UTT functions which will compute

these nestings for us. These functions exploit the fact that Ztype is an inductive

type: the nesting is computed by induction on the Ztypes of the arguments to

the nested function, and the Ztype of the value to which that function is being

applied. The definitions of these functions are given in Appendix C, together

with some lemmas about their behaviour.

We shall call these functions wrappers. We distinguish the wrapped versions

of constants by using the name of the constant written in ALL CAPITALS. The

wrapper for unary functions is called wrap and has the type:

� z1; z2 :Ztype: (Typ z1)!(Typ z2)!

(Error + small item)!(Error + small item)

The wrapped version of the function inv can be computed using wrap, as follows:

wrap bool ty bool ty inv

The value obtained is equal to INV.

Chapter 3. Encoding Z : Schemas 67

3.5.8 Representing the schema S

Here is the representation of the schema S under embedding 3. The wrapped

version of the < relation is represented by the term LT : (Error+ small item)!

(Error + small item)!Prop.

x
def
= 0

y
def
= 1

S sig
def
= [(x;nat ty); (y; nat ty)]

S pred
def
= �bin :Binding: ((lookup x S sig) bin) LT ((lookup y S sig) bin)

S
def
= (S sig; S pred)

3.6 Conclusion

We have considered a number of possibilities for representing (a reduced version

of) the Z schema in UTT, and decided upon one technique which provides a

good compromise between expressiveness and ease of use.

Chapter 4

A Specification Example

In this chapter we introduce a Z specification which we are going to use as a

running example through this thesis. The specification describes a system for

recording birthdays and is an adaptation of the BirthdayBook example from the

ZRM. We shall present the first schema of the specification, in which the basic

system is described, and show how this schema is encoded in LEGO. The rest

of the specification will be given in later chapters.

The specification is parameterised over two given sets: a set of names and a

set of dates:

[NAME;DATE]

The basic system is specified by the schema BirthdayBook. This describes

a state space in which two identifiers are defined: known, which is the set of

names known to the system, and birthday, which is a partial function giving the

birthdays associated with the names in its domain. The set known is specified

to be equal to the domain of the birthday function.

BirthdayBook

known : F NAME

birthday : NAME 7! DATE

known = dom birthday

68

Chapter 4. A Specification Example 69

4.1 An encoding of finite set theory

The Z notation is based upon set theory, and the Birthday Book specification

makes use of various set-theoretical constructs such as sets, partial functions,

function domains, and equality of sets. We must therefore develop representa-

tions of all of these things within UTT.

There are several ways in which set theory can be encoded in type theory. See

for instance the encodings presented in the Lego library [JM94] and in previous

work on embedding Z in LEGO [Mah90]. Also of interest is Aczel’s encoding

of constructive set theory in Martin-Lof type theory [1].

As we have already explained, we are going to use an encoding of finite

sets represented via lists. An advantage of using finite sets is we can define

decidable membership and equality relations (provided we assume we are given

decidable equality relations on the types of members of sets.) It is easier to

reason about partial functions since membership of the domain of a partial

function is decidable.

However, we would like to emphasise that we do not consider this to be

the last word on encoding the set-theoretic aspect of Z in type theory. Our

encoding of the rest of the Z notation is not dependent on this choice of method

for encoding sets, so it is possible to use a more sophisticated representation of

sets if this is required.

The encoding of finite sets as lists is straightforward and is shown in Figure

4–1. It is assumed that there is a decidable equality eq on the type of elements,

z. The empty set is represented by the empty list nil, and the formation of a

singleton set is represented by cons. The function member is used to represent

the membership relation In. These definitions work correctly provided they are

applied to lists which contain no duplicate elements. The set-forming operations

(in particular, Union) are defined so as to never introduce duplicate elements.

Chapter 4. A Specification Example 70

Assume z : Ztype; eq : (Typ z)!(Typ z)!bool

Null
def
= nil (Typ z)

Single
def
= �x :Typ z: cons x Null

In
def
= member eq

Subset
def
= �s; s0 :Typ (finset ty z):

list iter true (�x :Typ z: �prev :bool: andalso (In x s0) prev)

Set eq
def
= �s; s0 :Typ (finset ty z): andalso (Subset s s0) (Subset s0 s)

Add one
def
= �x :Typ z: �s :Typ (finset ty z): if (In x s) s (cons x s)

Union
def
= �s; s0 :Typ (finset ty z): list iter s0 Add one s

Intersect
def
= �s; s0 :Typ (finset ty z):

list iter Null

(�x :Typ z: �prev : (finset ty z): if (In x s0) (Add one x prev) prev)

s

Discharge z, eq.

Figure 4–1: Finite sets encoded as lists

Chapter 4. A Specification Example 71

Assume z; z0 : Ztype

Assume eq : (Typ z)!(Typ z)!bool

Assume eq0 : (Typ z0)!(Typ z0)!bool

[eq2 = �x; y :Typ (prod ty z z0): andalso (eq x:1 y:1) (eq0 x:2 y:2)

rel ty
def
= finset ty (prod ty z z0)

RelIn
def
= In eq2

RelUnion
def
= Union eq2

Rel eq
def
= Set eq eq2

Dom
def
= map(�x :Typ (prod ty z z0): x:1

Discharge z, z0, eq, and eq0.

Figure 4–2: Finite relations encoded as lists

We use the wrapping functions described in the previous chapter to form

partial versions of these operations.

In order to reason about the Birthday Book, we have developed a small

library of lemmas and theorems about the set theoretic operations. Some of the

contents of this library is listed (without proofs) in Appendix B.2.

4.1.1 Relations and functions

In Figure 4–2 we give our encoding of set-theoretic relations, and various opera-

tions relating to them. Following Z, we shall represent set-theoretic functions as

relations which satisfy the property of being many-to-one. However, in Z0 we

do not allow such logical constraints to become part of the definition of types,

so we cannot define a type of set-theoretic functions. To encode schema signa-

tures which contain functions, we shall have to make the many-to-one property

an explicit part of the schema predicate. The definitions of union, singleton

formation, and equality on relations are used to represent the corresponding

operations on functions, again with the proviso that appropriate conditions are

Chapter 4. A Specification Example 72

added to the predicates of schemas in which these operations are used.

fun ty
def
= rel ty

FunSingle
def
= RelSingle

FunUnion
def
= RelUnion

Fun eq
def
= Rel eq

4.1.2 Dealing with partial functions

In order to formalise partial set-theoretic functions within a total type theory

such as UTT, we must make explicit the way in which we handle the cases where

such functions are applied to arguments outside of their domain. The semantics

of partially defined terms is an aspect of Z that has raised many interesting

questions. While this topic is not a main focus of this thesis, it is one which we

cannot avoid completely, so we shall discuss it briefly here. Though we shall

phrase our discussion in terms of our formal encoding of Z, the issues that are

being discussed are really questions about the semantics of Z itself.

We define an operation Apply which applies a set-theoretic function. This

has the following type:

� z; z0 jZtype:� eq : (Typ z)!(Typ z)!bool:

(Typ (Rel z z0))!(Typ z)!(Error + (Typ z0))

(The full definition is given in Appendix C.1.) Here z and z0 are the Ztypes of the

domain and codomain of the function to be applied, and eq is a computational

equality on Typ z. Apply performs function application by searching the list that

represents the function until it finds the value to which the function is being

applied. The eq argument is needed for comparison during this searching. If the

search fails, then the value in1 error is returned. Dealing with partiality means,

in the context of this thesis, dealing with the cases in which Apply returns this

error value.

Suppose we wish to encode the following schema

Chapter 4. A Specification Example 73

S

f ; g : N 7! N

x : N

f x < g x

In translating the predicate of this schema, we must decide what to do in the

cases where either f x or g x are undefined.

One possibility is to redefine the type of schema predicate so that a failed

function would result in an error value. (This approach was suggested in the

previous chapter as a means of handling failed lookups.) This is reminiscent

of suggestions for adopting a 3-valued logic for dealing with undefined terms

in specification languages (e.g.,[BCJ84]). For the reasons mentioned in Section

3.5.6 we shall not pursue this approach, but we believe it warrants further study.

The method we have adopted for dealing with partial functions is very

simple, and is essentially one of those suggested in Section 2.5 of the ZRM:

whenever we apply a function we also explicitly require that the value to which

it is applied must lie within the domain of the function. This allows us to keep

the type of schema predicate as Binding ! Prop. For instance the predicate

part of the schema S will be translated as follows. First we define the wrapped

version of Apply.

APPLY
def
= [See Appendix C.2.]

: � z1; z2 jZtype:� eq j(Typ z1)!(Typ z1)!bool:

(Error + small item)!(Error + small item)!(Error + small item)

We choose distinct natural numbers to represent the identifiers f , g, and x.

We pair these with the appropriate decorations and Ztypes to form the signature

Chapter 4. A Specification Example 74

items used in encoding the signature of S:

f item
def
= ((0; blank); fun ty nat ty nat ty) : sig item

g item
def
= ((1; blank); fun ty nat ty nat ty) : sig item

x item
def
= ((2; blank);nat ty) : sig item

S sig
def
= [f item; g item; x item] : Signature

We now encode the predicate of S as follows:

S pred
def
= �b :Binding:

[f = lookup f item b]

[g = lookup g item b]

[x = lookup x item b]

(9 n1 :nat: EQUAL (APPLY f x) (in2 (nat ty; n1))) ^

(9 n2 :nat: EQUAL (APPLY g x)(in2 (nat ty; n2))) ^

(IS TRUE (LT (APPLY f x) (APPLY g x)))

The signature and predicate are paired to complete the encoding of S:

S
def
= (S sig; S pred) : Schema

4.2 Representing the given sets of the BirthdayBook

To represent the BirthdayBook specification in LEGO we first define the given

types that it uses. We do this by defining an inductive type GivenType whose

constructors are the names of the two given types. Using an inductive type like

this has the disadvantage that the pool of given types is fixed once GivenType

is defined. To add a new given type we must restart with a new definition of

GivenType. The advantage is that we are provided with an elimination rule for

GivenType. We cannot dispense with this, and simply declare or define new

given types as we need them, because we need to know the totality of all given

types in order to define the type Ztype (Definition 2).

Chapter 4. A Specification Example 75

Inductive[GivenType]

Constructors[Name ty;Date ty]

We use the elimination rule on GivenType to define a decidable equality:

GivenType eq
def
= [omitted] : GivenType!GivenType!bool

We also define an operation Typ gtype :which maps GivenTypes to Types. This

operation is needed in order to define Typ (Definition 4.) We shall introduce two

type parameters which we use as the range of Typ gtype.

Name;Date : Type

Typ gtype
def
= GivenType rec Name Date

: GivenType!Type

We shall assume that we have decidable equalities on these two types:

Name eq : Name!Name!bool

Date eq : Date!Date!bool

4.3 Putting it all together

Once the given types are defined we can load the definition of Ztype, which is

parameterized over GivenType, and then all the remaining definitions of signa-

tures, bindings, schemas, et c.

We then encode the signature items and signature of the BirthdayBook

schema. As we did for the schema S, we select distinct natural numbers to

represent the identifiers and pair these with the appropriate decorations and

Chapter 4. A Specification Example 76

Ztypes:

known type
def
= finset ty (Given ty Name ty) : Ztype

known item
def
= ((0; blank); known type) : sig item

birthday type
def
= fun ty (Given ty Name ty) (Given ty Date ty) : Ztype

birthday item
def
= ((1; blank); birthday type) : sig item

BB sig
def
= [known item; birthday item] : Signature

We then define the predicate, making use of the wrapped versions of the

set-theoretical constants, and pair this with the signature to form the schema.

Definition 25 BirthdayBook.

BB pred
def
= �B :Binding:

[known
def
= lookup known item B]

[birthday
def
= lookup birthday item B]

IS TRUE (EQUAL known (DOM birthday))

BirthdayBook
def
= (BB sig; BB pred) : Schema

4.4 Proving well-formedness

Theorem 8 BirthdayBook well formed.

Well formed BirthdayBook

Proof. First we must show that BirthdayBook is Up closed:

8 b :Binding:

(restricts to model BirthdayBook b)) (models BirthdayBook b)

Chapter 4. A Specification Example 77

By doing introductions and expanding definitions we transform the proof

context to the following:

b : Binding

H : 9 b0 :Binding: ((restrict b BB sig) = (in2 b0)) ^ (BB pred b0)

? : IS TRUE (EQUAL (lookup known item b)

(DOM (lookup birthday item b)))

We then do some eliminations on H and add the following to the context:

t : Binding

H2 : restrict b BB sig = in2 t

H3 : BB pred t

By using Lemma 18 we can show that the results of looking up known item and

birthday item in b are equal to those obtained by looking up these items in t.

Rewriting with these equalities we transform the goal to:

? : IS TRUE (EQUAL (lookup known item t)

(DOM (lookup birthday item t)))

This is the same as H3, so the proof of up-closure is complete.

Now we must tackle the proof of down-closure. Unfortunately, we have not

been able to refine this proof so as to make it as simple as that of up-closure.

Our goal is:

? : 8 b :Binding: (models BirthdayBook b))

(succeeds (restrict b BirthdayBook:sig)))

(restricts to model BirthdayBook b)

We introduce a binding b, and then expand definitions to simplify the goal.

Next we do case analyses on the results of looking up the items known item and

birthday item in b. In the cases where one or other of these lookups returns the

value in1 error, by substituting this value into the goal we can reduce it to the

Chapter 4. A Specification Example 78

form

absurd) (succeeds (restrict b BirthdayBook:sig)))

restricts to model BirthdayBook b

because the wrapped functions IS TRUE, EQUAL, and DOM collapse to absurd

when applied to an error value. This completes the proof in these cases.

In the case where both of the lookups succeed we derive the following proof

context:

t; t1 : small item

H1 : lookup known item b = in2 t

H2 : lookup birthday item b = in2 t1

H3 : IS TRUE (EQUAL (in2 t)) (DOM (in2 t1))

H3 : succeeds (restrict b BirthdayBook:sig)

? : restricts to model BirthdayBook b

We expand the definition of restricts to model, and then do an existential intro-

duction which gives us two goals:

?1 : Binding

?2 : (restrict b BB sig = in2 ?1) ^ (BB pred ?1)

The binding which we supply for goal ?1 is the following:

[(known item; t:2); (birthday item; t1:2)]

We must then show that this binding is that obtained by restricting b to BB sig,

and that it satisfies the predicate BB sig. We prove this by expanding the

definitions of restrict and BB pred and rewriting with the equalities H1 and

H2. ut

We have devoted so much attention to the proof of well-formedness for the

schema BirthdayBook because this is an example of a routine proof obligation

which will need to be discharged whenever a new schema is introduced. In

Chapter 4. A Specification Example 79

proof-checkers which provide the ability to write user-defined tactics (such

as HOL, Coq, or NuPrl[Con86]) routine proofs like these can be completely

automated. The LEGO proof-checker, unfortunately, does not have this facility.

However, the work required can be reduced by finding simple, reusable proof

scripts for routine results. The proof of up-closure is simple, short, and easy to

reuse because most of its work is encapsulated in the main lemma that is used.

The proof of down-closure is less satisfactory, involving complicated equality

manipulations and uses of the “Equiv” command to rewrite the goal. These

make the proof less reusable. It seems likely that further analysis would enable

us to find a more elegant proof.

Chapter 5

Encoding Z : Logical schema
operations

In this chapter and the next we shall discuss the operations provided by Z

for putting schemas together in a modular fashion. This chapter is concerned

with the “logical” operations of schema conjunction, disjunction, universal and

existential quantification, et c. while Chapter 6 deals with the conventions used

for describing state changes in systems. The logical operations make up the

syntax class of schema expressions which is described in Figure 5–1.

We shall represent the constructors for schema expressions by operations on

Schemas. For instance, the operation of schema conjunction is represented by a

function of type Schema!Schema!Schema. This encoding technique allows

us to represent individual schema expressions, but does not provide the ability

to quantify over the class of all schema expressions. (Our embedding could

be extended to allow this, using techniques similar to those used in Sections

2.2.5 and 3.4.2, but we have not seen any pressing reasons for adding this extra

complexity.)

In the rest of this chapter we discuss the semantics of the logical operations,

give the details of their encodings, and use the encoding to prove some results

about their metatheoretic properties. These theorems have all been formally

verified using LEGO. A few of the proofs are described in this chapter, in order

80

Chapter 5. Encoding Z : Logical schema operations 81

Schema-Exp ::= Schema Flat schema

| Schema-Exp ^ Schema-Exp Schema conjunction

| Schema-Exp _ Schema-Exp Schema disjunction

| Schema-Exp) Schema-Exp Schema implication

| Schema-Exp, Schema-Exp Schema equivalence

| : Schema-Exp Schema negation

| Schema-Exp n Declaration Hiding

| 8 Schema-Exp � Schema-Exp Universal quantification

| 9 Schema-Exp � Schema-Exp Existential quantification

Figure 5–1: The syntax of the logical schema operations

to illustrate the kinds of techniques used, while the remainder are described in

Appendix A.

Results such as Theorems 11 and 13, et c concern the relationship between

the operations on schemas and the different notions of model. Such results form

the basis for the intended use of our system for supporting modular reasoning

about Z specifications. The ability to state and to prove these theorems is a

consequence of the expressive power of the encoding technique that we have

used: these results cannot be stated in a “shallower” embedding such as that of

[BG94]. However, we shall see that the use of a constructive type theory places

some limitations on the results which can be proved.

5.1 The binary propositional operations

The semantics of the binary propositional operations (^;_;), and ,) is de-

scribed in the ZRM as follows:

For one of the binary operations to be allowed, its two arguments

must have type compatible signatures. The signatures are joined to

form the signature of the result. The truth of its property in any

Chapter 5. Encoding Z : Logical schema operations 82

binding b is defined in terms of the truth in the argument schemas

of the restrictions of b to their signatures. For example, the property

of S _ T is true in a binding b if and only if either the property of

S is true in the restriction of b to the signature of S or the property

of T is true in the restriction of b to the signature of T (or both). The

other operations follow the rules for propositional connectives [not

shown].

5.1.1 Type compatibility

Two signatures are type compatible if each variable that is common to the two has

the same type in both. This is a decidable, syntactic condition so we shall write

a function in LEGO which checks it:

type compatible fun
def
= [See Appendix C.1] : Signature!Signature!bool

From this we derive a relation:

type compatible
def
= �s1; s2 :Signature: is true (type compatible fun s1 s2)

: Signature!Signature!Prop

The advantage of defining the predicate in terms of a computational procedure

for checking type compatibility is that in cases where we are required to prove

that two defined (as opposed to hypothetical) Signatures are type-compatible,

we can make the proof-checker do the work by checking whether the applica-

tion of type compatible fun normalises to true. (In LEGO parlance, we use the

command Refine Eq_refl.)

Well-formedness is preserved if a schema has its signature extended with a

type-compatible signature which contains no repeated identifiers:

Theorem 9 Extend well formed.

8 S :Schema: 8 Sig :Signature:

(Well formed S) ^ (unique idents Sig) ^ (type compatible S:1 Sig))

(Well formed (join S:1 Sig; S:2))

Chapter 5. Encoding Z : Logical schema operations 83

Proof. By doing introductions and expanding the definition of Well formed we

arrive at the following proof state:

S : Schema

Sig : Signature

H : (Up closed S) ^ (Down closed S) ^ (unique idents S:1)

H1 : unique idents Sig

? : Up closed (join S:1 Sig; S:2)

?1 : Down closed (join S:1 Sig; S:2)

?2 : unique idents (join S:1 Sig)

First we show up-closure. Some more introductions give us the context:

b : Binding

H2 : restricts to model (join S:1 Sig; S:2)b

?4 : models (join S:1 Sig; S:2)b

Since S is up-closed, we can prove this goal by showing

?4 : restricts to model (join S:1 Sig; S:2) b

Now, we can show from hypothesis H2 that the binding b can be successfully

restricted to the signature join S:1 Sig, yielding a binding t and a proof H3 : S:2 t.

Lemmas 27 and 26 then allow us to conclude the following:

H4

def
= succeeds (restrict b S:1) :

H5

def
= succeeds (restrict b Sig) :

We can then use Lemma 24 to derive:

H6

def
= : : : : restrict b S:1 = restrict t S:1

By rewriting the goal with this equality we get a new goal:

?5 : restricts to model (join S:1 Sig; S:2) t

Chapter 5. Encoding Z : Logical schema operations 84

Next we apply the assumption that S is down-closed. This gives us the goals:

?5 : models S t

?6 : succeeds (restrict t S:1)

We have a proof of ?5 among our hypotheses (H3). To prove ?6 we write with the

equality H6 and then use H4. This completes the proof that (join S:1 Sig; S:2) is

up-closed.

The proof of down-closure is very similar to that of up-closure, so we omit

its description. To show the final subgoal, ?2, we simply apply Lemma 22 which

states that join preserves the property unique idents. ut

5.1.2 Schema conjunction

Schema conjunction was defined in the previous chapter. Here is that definition

once more:

Definition 26 And.

And
def
= �S; S0 :Schema:

(join S:sig S0:sig; �b :Binding: (S:pred b) ^ (S0:pred b))

: Schema!Schema!Schema

5.1.3 Theorems about schema conjunction

First we show that schema conjunction preserves well-formedness when applied

to type compatible schemas:

Theorem 10 And preserves well formedness.

8 S; T :Schema:

(Well formed S) ^ (Well formed T) ^ (type compatible S:1 T:1))

Well formed (And S T)

Chapter 5. Encoding Z : Logical schema operations 85

Proof. See Proof 2 of Appendix A. This proof is very similar to that of Theorem

9.

Next comes our main metatheorem about the And operation with respect to

the model relationship between Schemas and Bindings. This theorem states that

a Binding is a model of S ^ T if and only if it is a model of both S and T.

Theorem 11 And model char.

8 S; T :Schema: 8 b :Binding:

(models S b) ^ (models T b)() models (And S T) b

Proof. We introduce S, T, and b into the context. By expanding the definition of

models we can reduce the remaining goal to the following:

? : ((S:2 b) ^ (T:2 b))() ((S:2 b) ^ (T:2 b))

which is easily proved. ut

Next we show that And is commutative with respect to the model relationship:

Theorem 12 And model commutes.

8 S; T :Schema: 8 b :Binding:

models (And S T) b) models (And T S) b

Proof. This follows easily from Theorem 11. ut

Similar results can be proved about restricting models. They apply only to

schemas which are well-formed and type-compatible:

Theorem 13 And restricting model char.

8 S; T :Schema: 8 b :Binding:

(Well formed S) ^ (Well formed T) ^ (type compatible S:1 T:1))

(restricts to model S b) ^ (restricts to model T b)()

restricts to model (And S T) b

Chapter 5. Encoding Z : Logical schema operations 86

Proof. By doing introductions we arrive at the following proof context:

S; T : Schema

b : Binding

W1 : Well formed S

W2 : Well formed T

C : type compatible S:1 T:1

? : ((restricts to model S b) ^ (restricts to model T b)))

(restricts to model (And S T) b)

?1 : (restricts to model (And S T) b))

((restricts to model S b) ^ (restricts to model T b))

We shall only describe the proof of the first subgoal since both subgoals have

very similar proofs. Our first step is to introduce the antecedent of the goal as a

new hypothesis H:

H : (restricts to model S b) ^ (restricts to model T b)

?3 : restricts to model (And S T) b

To prove goal ?3 we use the fact that And preserves down-closure (Theorem 10)

to reduce it to the following two subgoals:

?4 : models (And S T) b

?5 : succeeds (restrict b (And S T):1)

Theorem 11 (And model char) enables us to reduce the first goal to the following

two goals:

?6 : models S b

?7 : models T b

These subgoals can be proved using the facts that S and T are up-closed (by

hypotheses W1 and W2, respectively), and b is a restricting model of each of

these schemas (by hypothesis H.)

Chapter 5. Encoding Z : Logical schema operations 87

To prove the outstanding subgoal, ?5, we use Lemma 23 which states that if

a binding can be successfully restricted to each of two signatures sig1 and sig2,

then it can be successfully restricted to the signature formed by joining sig1 and

sig2. ut

Theorems 11 and 13 are very useful because they allow us to prove results

about conjoined schemas in a modular fashion. For instance, if we know that

all restricting models of a schema S have some property P, Theorem 13 allows

us to conclude that, for all schemas T, all restricting models of S ^ T will also

have property P. We shall see an example of this kind of reasoning in Chapter

7.

We show that schema conjunction is commutative with respect to restricting

models:

Theorem 14 And restricting model commutes.

8 S; T :Schema: 8 b :Binding:

(Well formed S) ^ (Well fomed T) ^ (type compatible S:1 T:1))

(restricts to model (And S T) b) restricts to model (And T S) b)

Proof. See Proof 3 in Appendix A

So far we have proved theorems about schema conjunction with respect

to the model relationship and the restricts to model relationship. We shall not

bother to show similar theorems about the exactly models relationship. This is

not because such theorems cannot be obtained, but because we believe they

are neither as elegant nor as useful as the theorems about restricting models.

As we have seen, these two definitions of the relationship between schemas

and bindings are more or less equivalent: exact models are restricting models

(Theorem 2) and restricting models yield exact models (Theorem 3). Restricting

models also seem to give us the best definition of logical equivalence on schemas

(Section 3.5.4). If we formulate the result of Theorem 13 in terms of exact models,

instead of restricting models, we find that we must still talk about restricting

Chapter 5. Encoding Z : Logical schema operations 88

Bindings to Signatures, and the result is not so elegant. For example, here is one

possible reformulation:

8 S; T :Schema: 8 b :Binding:

(Well formed S) ^ (Well formed T) ^ (type compatible S:1 T:1))

(9 b1 :Binding: (restrict b S = in2 b1) ^ (exactly models S b1) ^

9 b2 :Binding: (restrict b T = in2 b1) ^ (exactly models T b1)) ()

(exactly models (And S T) b)

Now we give a result involving the Has prop relationship:

Theorem 15 And property.

8 S; T :Schema: 8 P :Predicate:

((Well formed S) ^ (Well fomed T)))

(type compatible S:1 T:1))

((Has prop S P) _ (Has prop T P)))

(Has prop (And S T) P)

Proof. By expanding definitions and using the introduction tactic, we arrive at

the following context:

S; T : Schema

P : Predicate

H : (Well formed S) ^ (Well formed T)

H1 : type compatible S:1 T:1

H2 : (Has prop S P) _ (Has prop T P)

b : Binding

H3 : restricts to model b (And S T)

? : P b

Using Theorem 13 we can conclude:

H4 : restricts to model b SH5 : restricts to model b T

We now apply or-elimination to hypothesis H2 and verify that the goal is satisfied

in each case. ut

Chapter 5. Encoding Z : Logical schema operations 89

5.1.4 Schema disjunction

Schema disjunction is encoded as follows:

Definition 27 Or.

Or
def
= �S; S0 :Schema:

(join S:sig S0:sig; �b :Binding: (S:pred b) _ (S0:pred b))

: Schema!Schema!Schema

A consequence of this definition is that in order for a binding to be a re-

stricting model of a disjunction Or S T, it must contain the components listed in

the signatures of both S and T. At first sight, this seems to be at odds with the

description of Or given in the ZRM:

[...] the property of S _ T is true in a binding b if and only if either

the property of S is true in the restriction of b to the signature of S or

the property of T is true in the restriction of b to the signature of T

(or both).

The anomaly disappears if we recall that bindings in Z are typed by schema

signatures. The quoted extract does not explicitly state the type of the binding b

to which it refers, but this can only be derived from the signature of the schema

S _ T. Hence, the binding b must contain the components referred to in the

signatures of both S and T.

We show that Or preserves well-formedness.

Theorem 16 Or preserves well formedness.

8 S; T :Schema:

(Well formed S) ^ (Well formed T) ^ (type compatible S:1 T:1))

Well formed (Or S T)

Proof. See Proof 4 in Appendix A.

Chapter 5. Encoding Z : Logical schema operations 90

5.1.5 Theorems about Schema disjunction

Our first theorem about schema disjunction is analogous to that about schema

conjunction, and is just as simple to prove.

Theorem 17 Or model char.

8 S; T :Schema: 8 b :Binding:

(models S b) _ (models T b)() models (Or S T) b

Proof. Trivial ut

As a consequence, we show that Or is commutative with respect to the model

relationship:

Theorem 18 Or model commutes.

8 S; T :Schema: 8 b :Binding:

models (Or S T) b () models (Or T S) b

Dealing with the restricts to model relationship is more difficult. We cannot

prove a simple “Or-introduction” result such as the following:

8 S; T :Schema: 8 b :Binding:

(restricts to model S b) _ (restricts to model T b)

) restricts to model (Or S T) b

This statement is false because a binding that is capable of being restricted to the

signature of one of the disjuncts will not in general contain enough identifiers

to allow it to be restricted to the signature of the disjunction. The best we can

do is to restrict ourselves to talking about bindings that are large enough to

allow both restrictions. We must also restrict ourselves to well-formed, type-

compatible schemas.

Chapter 5. Encoding Z : Logical schema operations 91

Theorem 19 Or restricting model intro.

8 S; T :Schema: 8 b :Binding:

(Well formed S) ^ (Well formed T) ^ (type compatible S:1 T:1) ^

(succeeds (restrict b (join S:1 T:1))))

((restricts to model S b) _ (restricts to model T b))

restricts to model (Or S T) b)

Proof. See Proof 5 in Appendix A

We also show that restricting models of a disjunction are restricting models

of each disjunct:

Theorem 20 Or restricting model elim.

8 S; T :Schema: 8 b :Binding:

(Well formed S) ^ (Well formed T) ^ (type compatible S:1 T:1))

(restricts to model (Or S T) b))

(restricts to model S b) _ (restricts to model T b)

Proof. See Proof 6 in Appendix A

We show that Or is commutative with respect to the restricts to model inter-

pretation:

Theorem 21 Or restricting model commutes.

8 S; T :Schema: 8 b :Binding:

(Well formed S) ^ (Well formed T) ^ (type compatible S:1 T:1))

(restricts to model (Or S T) b)

restricts to model (Or T S) b)

Proof. See Proof 7 in Appendix A

Finally, we give a result involving the Has prop relationship:

Chapter 5. Encoding Z : Logical schema operations 92

Theorem 22 Or property.

8 S; T :Schema: 8 P :Predicate:

((Well formed S) ^ (Well fomed T))

(type compatible S:1 T:1))

((Has prop S P) ^ (Has prop T P)))

(Has prop (Or S T) P)

Proof. By expanding definitions and using the introduction tactic, we arrive at

the following context:

S; T : Schema

P : Predicate

H : (Well formed S) ^ (Well formed T)

H1 : type compatible S:1 T:1

H2 : (Has prop S P) ^ (Has prop T P)

b : Binding

H3 : restricts to model b (Or S T)

? : P b

Using Theorem 20 we can conclude:

H4 : (restricts to model b S) _ (restricts to model b T)

We apply or-elimination to hypothesis H4 and verify that the goal is satisfied in

each case. ut

5.1.6 Implication

We encode the implication operation on schemas:

Definition 28 Imply.

Imply
def
= �S; S0 :Schema:

(join S:sig S0:sig; �b :Binding: (S:pred b)! (S0:pred b))

: Schema!Schema!Schema

Chapter 5. Encoding Z : Logical schema operations 93

5.1.7 Theorems about implication

We show that schema implicationpreserves the well-formedness property:

Theorem 23 Imply preserves well formedness.

8 S; T :Schema:

(Well formed S) ^ (Well formed T) ^ (type compatible S:1 T:1))

Well formed (Imply S T)

Proof. See Proof 8 in Appendix A.

We prove the following simple result about Imply and the model relationship:

Theorem 24 Imply model char.

8 S; T :Schema: 8 b :Binding:

((models S b)) (models T b))() (models (Imply S T) b)

Proof. This follows easily from the definition of Imply. ut

The analogous statement for restricting models is false. Given two schemas

S and T and a binding b, the hypothesis

H : (restricts to model S b)) (restricts to model T b)

is not sufficient to allow us to conclude that b is a restricting model of Imply S T.

The reason is that any binding which is not a restricting model of S will (vacu-

ously) fit the hypothesis H. Such a binding will not, in general, be capable of

being restricted to the signature of Imply S T. If we only consider bindings

which are large enough to be restricted to this signature, we can prove the

following result:

Chapter 5. Encoding Z : Logical schema operations 94

Theorem 25 Imply restricting model intro.

8 S; T :Schema: 8 b :Binding:

(Down closed S) ^ (Up closed T))

(succeeds (restrict b (Imply S T):1)))

((restricts to model S b)) (restricts to model T b)))

(restricts to model (Imply S T) b)

Proof. See Proof 9 in Appendix A.

We also prove an elimination result:

Theorem 26 Imply restricting model elim.

8 S; T :Schema: 8 b :Binding:

(Up closed S) ^ (Down closed T))

(restricts to model (Imply S T) b))

((restricts to model S b)) (restricts to model T b))

Proof. Omitted, because it is very similar to the proof of Theorem 25.

5.2 Schema negation

The ZRM explains the semantics of schema negation as follows:

The negation :S of a schema S has the same signature as S but its

property is true in just those bindings where the property of S is not

true.

Here is our encoding of schema negation:

Definition 29 Not.

Not
def
= �S :Schema: (S:sig; �b :Binding::(S:pred b))

: Schema!Schema

Chapter 5. Encoding Z : Logical schema operations 95

5.2.1 Theorems about schema negation

We show that Not preserves well-formedness. The unique idents property is

obviously preserved, since Not S has the same signature as S. Up-closure and

down-closure are also preserved:

Theorem 27 Not up closed.

8 S :Schema:Down closed S) Up closed (Not S)

Proof. See Proof 10 in Appendix A.

Theorem 28 Not down closed.

8 S :Schema:Up closed S) Down closed (Not S)

Proof. Omitted, because it is very similar to the proof of Theorem 27.

The next two theorems are simple results about models of negated schemas

which follow directly from the definition of Not.

Theorem 29 Not model property1.

8 S :Schema: 8 b :Binding:

(models S b)) :(models (Not S) b)

Proof. Trivial.

The converse of Theorem 29 is equivalent to the statement 8 P :Prop:::P)

P which is not provable in LEGO’s intuitionistic logic. (We have used LEGO to

verify that the two statements are equivalent.)

Theorem 30 Not model property2.

8 S :Schema: 8 b :Binding:

:(models S b)() (models (Not S) b)

Chapter 5. Encoding Z : Logical schema operations 96

Proof. Trivial.

Next we show that a binding cannot model both a schema and its negation.

Theorem 31 Non contradiction.

8 S :Schema: 8 b :Binding::((models S b) ^ (models (Not S) b))

Proof. Trivial.

The next result is an intuitionistically provable version of the Law of the

Excluded Middle.

Theorem 32 Not model cases.

8 S :Schema: 8 b :Binding:::(models (Or S (Not S)) b)

Proof. By expanding the definitions of Or, Not, models, et c., we transform the

goal to:

::((S:2 b) _ :(S:2 b))

By expanding the definitions of_ and:, we can prove this goal. The technique

is well-known so we omit it here.

Now we come to some results about restricting models. First we show that

a restricting model of a schema S cannot be a restricting model of Not S.

Theorem 33 Not restricting model property1.

8 S :Schema: 8 b :Binding:

(restricts to model S b)) :(restricts to model (Not S) b)

Proof. See Proof 11 in Appendix A.

Next we show that if a binding is a restricting model of Not S then it cannot

be a restricting model of S.

Chapter 5. Encoding Z : Logical schema operations 97

Theorem 34 Not restricting model property2.

8 S :Schema: 8 b :Binding:

(restricts to model (Not S) b)) :(restricts to model S b)

Proof. Omitted, since it is very similar to the proof of Theorem 33.

The converse of Theorem 33 is false, as we can prove in LEGO.

Theorem 35 Not restricting model property3.

:(8 S :Schema: 8 b :Binding:

:(restricts to model (Not S) b)) restricts to model S b)

Proof. By expanding the definition of : and doing an introduction we arrive at

the following proof context:

H : 8 S :Schema: 8 b :Binding:

:(restricts to model (Not S) b)) restricts to model S b

? : absurd

Take any schema S and any binding b which is not capable of being restricted to

the signature of S. An example might be S
def
= ([(x;nat ty)]; trueProp) and the

empty binding nil bin. First we prove, by computation, that nil bin cannot be

restricted to the signature of S:

H1

def
= : : : : fails (restrict nil bin S:1)

We use Lemma 38 to show that nil bin is not a restricting model of S. Hypothesis

H then allows us to conclude:

H1

def
= : : : : restricts to model S nil bin

Lemma 38 allows us to deduce from H1 that nil bin can be successfully restricted

to the signature of S. However, H1 shows that nil bin cannot be restricted to

the signature of S. We use the LEGO library theorem in1 not in2 to put these

pieces together to prove absurd. ut

Chapter 5. Encoding Z : Logical schema operations 98

To prove Theorem 35 we used a schema together with a binding which was

not capable of being restricted to the signature of that schema. If we disallow

such bindings, can we prove the converse of Theorem 33? We cannot, for the

same reason that we could not prove the converse of Theorem 29: the statement

we get is equivalent to 8 P :Prop:::P) P.

Using a similar argument to that of Theorem 35 we prove that the converse

of Theorem 34 is also false. However, in this case, if we restrict ourselves to

bindings for which restriction is successful we get the following result:

Theorem 36 Not restricting model property4.

8 S :Schema: 8 b :Binding: (succeeds (restrict b S:1)))

:(restricts to model S b)) restricts to model (Not S) b

Proof. See Proof 12 in Appendix A.

Finally, we prove an intuitionistic version of the law of the excluded middle

for restricting models.

Theorem 37 Not restricting model cases.

8 S :Schema: 8 b :Binding: (succeeds (restrict b S:1)))

::(restricts to model (Or S (Not S)) b)

Proof. The proof is similar to that of Theorem 32.

5.3 The hiding operations

In this section we discuss the three operations n, 8, and 9, which all have in

common the feature that they hide some of the components of their argument

schemas.

Chapter 5. Encoding Z : Logical schema operations 99

5.3.1 Hiding

The hiding operator n is described as follows in Section 2.2.3 of the ZRM.

If S is a schema, and x1; : : : ; xn are components of S then

S n (x1; : : : ; xn)

is a schema. Its components are the components of S, except for

x1; : : : ; xn, and they have the same types as in S. The property of

this schema is true under exactly those bindings that are restrictions

of bindings that satisfy the property of S.

5.3.2 Encoding the hiding operator

The ZRM states that the hiding operator can be written in terms of the existential

quantifier. For instance, if we have the following schema

S

x; y; z : N

x = y ^ z = 0

then the schema T c= S n (x; z) can be written as

T

y : N

9 x :N: 9 z :N: x = y ^ z = 0

We shall use this as the basis of our encoding of the hiding operator.

First, we define an auxiliary function hide sig : Signature ! Signature !

Signature. (See Appendix C.1 for the full definition of hide sig.) When applied to

two signatures s1 and s2, this function returns the signature formed by removing

from s2 all signature items which happen to be in s1. We use this to compute the

signatures of the schemas produced by the hiding operator.

Chapter 5. Encoding Z : Logical schema operations 100

Next, we define another auxiliary function join bin which puts two bindings

together to form a new binding. This uses a third function remove occurs :

Signature ! Binding ! Binding which, when applied to a signature s and a

binding b, returns the binding formed by removing all components from b

whose identifier occurs in s. (The full definition of remove occurs is in Appendix

C.1.) We use this function to remove duplicate identifiers when we combine

two bindings:

Definition 30 join bin.

join bin
def
= �a; b :Binding: append a (remove occurs (extract sig a) b)

: Binding!Binding!Binding

Here is our encoding of the hiding operator:

Definition 31 Hide.

Hide
def
= �sig :Signature: �S :Schema:

(hide sig sig S:1;

�b :Binding: 9 b0 :Binding:

(is true (matches sig b0)) ^ (S:2 (join bin b b0)))

: Signature!Schema!Schema

We prove that the Hide operation preserves well-formedness:

Theorem 38 Hide preserves well formedness.

8 s :Signature: 8 S :Schema: (Well formed S)) (Well formed (Hide s S))

Proof. See Proof 13 in Appendix A

5.3.3 Universal and existential quantification

A schema may be formed by universally or existentially quantifying one schema

over another. These operations are described in the ZRM as follows:

Chapter 5. Encoding Z : Logical schema operations 101

If D is a declaration, P is a predicate, and S is a schema, then

8D j P � S

is a schema. The schema S must have as components all the variables

introduced by D and they must have the same types. The signature of

the result contains all the components of S except those introduced

by D, and they have the same types as in S. The property of the

result is derived as follows: for any binding z for the signature of the

result, consider all the extensions z0 of z to the signature of S. If every

such extension z0 which satisfies [...] the predicate P also satisfies

the property of S, then the original binding satisfies the property of

8D j P � S,

The schema 9D j P � S has the same signature as 8D j P � S, but its

property is true under a binding z if at least one of the extensions of

z simultaneously satisfies [...] the predicate P and the property of S.

(We have removed references to the constraints associated with declarations

in Z because, in our reduced version of Z, declarations do not carry constraints.)

5.3.4 Encoding the quantifiers

We use the function hide sig to construct the signatures of the schemas formed

by the universal and existential quantifier.

The predicate produced by the universal quantifier is encoded as follows:

a binding b satisfies the predicate produced by All S T provided that, for all

bindings b0 which match the hidden signature S:1, if join bin b0 b satisfies the

predicate of S then it also satisfies the predicate of T.

Chapter 5. Encoding Z : Logical schema operations 102

Definition 32 All.

All
def
= �S; T :Schema:

(hide sig S:1 T:1;

�b :Binding: 8 b0 :Binding: (is true (matches S:1 b0)))

(S:2 (join bin b0 b))) (T:2 (join bin b0 b)))

: Schema!Schema!Schema

The existential quantifier is encoded similarly:

Definition 33 Exists.

Exists
def
= �S; T :Schema:

(hide sig S:1 T:1;

�b :Binding: 9 b0 :Binding: ((is true (matches S:1 b0)) ^

(S:2 (join bin b0 b)) ^ (T:2 (join bin b0 b))))

: Schema!Schema!Schema

We conjecture that All and Exists preserve well-formedness.

5.4 Schema inclusion

In the grammar shown in Figure 3–1 we see that the declaration part of a

schema may contain schema references, that is, the names of previously defined

schemas. In this section we shall look at how to encode this kind of declaration.

We shall group this with the logical operations because, as we shall see, forming

declarations in this way is logically related to schema conjunction.

First let us look at the semantics of this kind of declaration. To give an

example, if we have defined a schema S,

S

x : N

x > 0

Chapter 5. Encoding Z : Logical schema operations 103

then the name of this schema can be used in the declaration of another schema:

T

S

y : N

y = x

According to Section 3.4 of the ZRM,

[A schema reference] introduces the components of the schema as

variables, with the same types as they have in the schema, and

constrains their values to satisfy their property.

When several basic declarations are combined, as in the above example, repeated

occurrences of the same identifier are merged in the resulting signature. Any

identifier which appears more than once must be given the same type in every

basic declaration in which it occurs.

The schema T is logically equivalent to the following schema:

T

x; y : N

x > 0 ^ y = x

5.4.1 Encoding schema inclusion

The use of schema references as declarations can be thought of as a way of

defining new schemas which “include” previously defined schemas within their

definition. We shall represent such declarations by an operation Include which

puts together a Schema, a Signature, and a Predicate to form a new Schema.

Chapter 5. Encoding Z : Logical schema operations 104

Definition 34 Include.

Include
def
= �S :Schema: �sig :Signature: �P :Predicate:

(join S:1 sig; �b :Binding: (S:2 b) ^ (P b))

: Schema!Signature!Predicate!Schema

This definition allows only one Schema to be included at a time. To include

several schemas, we first conjoin them all with And.

5.4.2 Theorems about schema inclusion

First we show two ways in which Includecan be defined in terms of And. The first

result shows that including a schema S within a signature sig with a predicate P

is the same as conjoining S with the schema (sig; P).

Theorem 39 Include equals And1.

8 S :Schema: 8 sig :Signature: 8 P :Predicate:

Include S sig P = And S (sig; P)

Proof. By conversion.

The second result shows that, under certain conditions, Include S sig P is the

same as conjoining S with the schema (join S:1 sig; P). This is more useful than

Theorem 39 because it will usually be the case that the predicate P will refer to

items in the signature of the included schema S. In such cases (sig; P) will not

be a well-formed schema, but (join S:1 sig; P) might be.

Theorem 40 Include equals And2.

8 S :Schema: 8 sig :Signature: 8 P :Predicate:

(unique idents S:1) ^ (unique idents sig) ^ (type compatible S:1 sig))

Include S sig P = And S (join S:1 sig; P)

Proof. See Proof 14 in Appendix A.

Chapter 5. Encoding Z : Logical schema operations 105

By using Theorem 40 to rewrite Include in terms of And, we can use our

metatheorems about And to prove the following metatheorems about Include:

Theorem 41 Include well formed.

8 S :Schema: 8 Sig :Signature: 8 P :Predicate:

(Well formed S) ^ (type compatible S:1 Sig))

(Well formed (join S:1 Sig; P))) (Well formed (Include S Sig P))

Proof. This follows from Theorems 40 and 10. ut

Theorem 42 Include model property.

8 S :Schema: 8 Sig :Signature: 8 P :Predicate: 8 b :Binding:

((models S b) ^ (P b))() (models (Include S Sig P) b)

Proof. The proof is the same as that of Theorem 11. ut

Theorem 43 Include restricting model property.

8 S :Schema: 8 Sig :Signature: 8 P :Predicate: 8 b :Binding:

(Well formed S) ^ (Well formed (join S:1 Sig; P)) ^

(type compatible S:1 Sig) ^ (unique idents (extract sig b)))

((restricts to model S b) ^ (restricts to model (join S:1 Sig; P) b))()

(restricts to model (Include S Sig P) b)

Proof. This follows from Theorems 40 and 13. ut

5.5 Formal description of our translation

At this point we have presented all the UTT definitions needed to give our

semantics of Z0 . We now complete the description of the semantics by describing

formally how to translate Z0 specifications into their representations in UTT.

Chapter 5. Encoding Z : Logical schema operations 106

UTTenv = Global�SchemaDict

Global = Vars�Axioms

SchemaDict = UTTIdent 7 7! Schema

Vars = UTTIdent 7 7! Ztype

Axioms = UTTIdent 7 7! Prop

UTTIdent = allowed identifiers in UTT

Figure 5–2: Semantic objects

5.5.1 Definition of the semantic objects

First of all we must define some semantic objects to capture those aspects of the

representation which are not internally represented by definitions in UTT. All

the definitions are parameterised over a set of given types, G, obtained from the

prelude of a Z0 specification.

The definitions of the semantic objects are shown in figure 5–2, where, as in

Z, the symbol 7 7! is used to represent “finite, partial functions” in our informal

meta-language.

5.5.2 Syntax annotations

To simplify the presentation of the translation, we shall add some annotations

to the syntax of Z0 . Though we do not give the algorithms for doing so, these

annotations can all be automatically computed for well-typed Z0 specifications.

� All axiomatic descriptions are labelled with new, unique identifiers. In

other words, the first clause in the definition of the syntax of MAINSPEC

(figure 3–2) becomes:

let WORD : SCHEMA end

These identifiers will be used as the names of the assumptions in UTT by

which axiomatic descriptions are represented.

Chapter 5. Encoding Z : Logical schema operations 107

� Terms are annotated with types as shown below:

TERM ::= IDENTTYPE (type of the identifier)

| ; [TYPE]

| fTERM1,: : :,TERMngTYPE (base type of the set)

| (TERM,TERM)

| (TERM (TERM))TYPE (argument type of first term)
These annotations will be used to compute the correct Ztype arguments to

give to lookup, Equal and Apply.

� In schema expressions formed by hiding, the identifiers to be hidden are

annotated with their expected types. We shall simply re-use the phrase

class DECL instead of introducing more syntax to represent these annot-

ated identifiers. The syntax of these schema expressions becomes:

SEXP n (DECL)

� PREDs formed using = and 2 are annotated with types:

PRED ::= TERM =TYPE TERM

| TERM 2TYPE TERM

5.5.3 Translating the annotated syntax

We now show how to translate an annotated Z0 specification to a UTT environ-

ment. We shall assume that the prelude of the specification has been translated,

so that the definitions of GivenType and Ztype have already been created. The

rules in figures 5–3, 5–4, 5–5 and 5–6 show how to translate the main specification

to obtain a UTTenv. The symbols
S

and ; are generalised to mean, respectively,

the component-wise union of two tuples of sets, and a tuple of empty sets.

For the sake of readability, we have not used subscripts to distinguish the

semantic functions on different phrase classes, except for the cases where more

than one semantic function happen to operate on the same phrase class.

Chapter 5. Encoding Z : Logical schema operations 108

Main specifications [[]] : MAINSPEC!UTTenv!UTTenv

[[let word:schema end; E]] = E
S
([[word; schema]]top; ;)

[[let word = sexp; E]] = E
S
((;; ;); fword 7! [[sexp; E]]g)

[[mainspec
1
in mainspec

2
; E]] = [[mainspec

2
; [[mainspec

1
; E]]]]

Axiomatic descriptions [[]]top : WORD!SCHEMA!Global

[[word;decl|pred]]
top
= ([[decl]]top; [[word; pred]]

top
)

Top declarations [[]]top : DECL!Vars

[[ident:type]]
top
= fident 7! Typ [[type]]g)

[[decl1 ; decl2]]top = [[decl1]]top

S
[[decl2]]top

Top-level predicates [[]]top : WORD!PRED!Axioms

[[]]top : PRED!Prop

[[word;pred]]
top
= fword 7! [[pred]]

top
g

[[term1 =type term2]]top
=

IS TRUE (EQUAL [[type]] [[term1]]top [[term2]]top)

[[term1 2type term2]]top
=

IS TRUE (IN (Equal [[type]]) [[term1]]top [[term2]]top)

[[true]]top = trueProp

[[false]]top = absurd

[[: pred]]
top
= �[[pred]]

top

[[pred
1
^ pred

2
]]

top
= [[pred

1
]]

top
^ [[pred

2
]]

top

[[pred
1
_ pred

2
]]

top
= [[pred

1
]]

top
_ [[pred

2
]]

top

[[pred
1
) pred

2
]]

top
= [[pred

1
]]

top
) [[pred

2
]]

top

[[9 ident : type � pred]]
top
= 9 ident :Typ [[type]]: [[pred]]

top

[[8 ident : type � pred]]
top
= 8 ident :Typ [[type]]: [[pred]]

top

Figure 5–3: Semantic rules (part 1)

Chapter 5. Encoding Z : Logical schema operations 109

Top level terms [[]]top : TERM! small item

[[(ident : type)]]
top
= in2 ([[type]]; ident)

[[fterm1; : : : ; termngtype]]top
=

ADD ONE (Equal [[type]]) [[term1]]top

(: : : (ADD ONE (Equal [[type]]) [[term1]]top (NULL [[type]])))

[[; [type]]]
top
= NULL [[type]]

[[(term1; term2)]]top = PAIR [[term1]]top [[term2]]top

[[term1(term2)type]]top
=

APPLY (Equal [[type]]) [[term1]]top [[term2]]top

Schema expressions [[]] : SEXP!UTTenv!Schema

[[schema schema end; E]] = [[schema]]

[[sdes; E]] = [[sdes]]; Esdes

[[:sexp; E]] = Not schema [[sexp; E]]

[[sexp
1
^ sexp

2
; E]] = And [[sexp

1
; E]] [[sexp

2
; E]]

[[sexp
1
_ sexp

2
; E]] = Or [[sexp

1
; E]] [[sexp

2
; E]]

[[sexp
1
) sexp

2
; E]] = Imply [[sexp

1
; E]] [[sexp

2
; E]]

[[sexp n decl; E]] = Hide [[decl]] [[sexp; E]]

[[9 schema � sexp; E]] = Exists [[schema]] [[sexp; E]]

[[8 schema � sexp; E]] = All [[schema]] [[sexp; E]]

[[include sdes decl pred; E]] =

Include schema

[[decl]] [[pred; join [[decl]] [[sdes; E]]SDES:1]] [[sdes; E]]SDES

Schema designators [[]]SDES : SDES!UTTenv!Schema

[[word; E]]SDES = E:2 (word)

[[sdes0; E]]SDES = Prime ([[sdes]]SDES)

Schema bodies [[]] : SCHEMA!Schema

[[decl j pred]] = ([[decl]]; [[pred; [[decl]]]])

Figure 5–4: Semantic rules (part 2)

Chapter 5. Encoding Z : Logical schema operations 110

Declarations [[]] : DECL!Signature

[[ident : type]] = [([[ident]]; [[type]])]

[[decl1; decl2]] = append [[decl1]] [[decl2]]

Predicates [[]] : PRED!Signature!(Binding!Prop)

[[pred; sig]] = �b :Binding: [[pred; sig]]
body

[[term1 =type term2; sig]]
body

=

IS TRUE (EQUAL [[type]] [[term1; sig]] [[term2; sig]])

[[term1 2type term2; sig]]
body

=

IS TRUE (IN (Equal [[type]]) [[term1; sig]] [[term2; sig]])

[[true; sig]]body = trueProp

[[false; sig]]body = absurd

[[: pred; sig]]
body

= �[[pred; sig]]
body

[[pred
1
^ pred

2
; sig]]

body
= [[pred

1
; sig]]

body
^ [[pred

2
; sig]]

body

[[pred
1
_ pred

2
; sig]]

body
= [[pred

1
; sig]]

body
_ [[pred

2
; sig]]

body

[[pred
1
) pred

2
; sig]]

body
= [[pred

1
; sig]]

body
) [[pred

2
; sig]]

body

[[9 ident : type � pred; sig]]
body

=

9 ident :Typ [[type]]: [[pred; sig � [[ident]]]]
body

[[8 ident : type � pred; sig]]
body

=

8 ident :Typ [[type]]: [[pred; sig � [[ident]]]]
body

Identifiers [[]] : IDENT! Ident

This can be any function giving an isomorphism between the identifiers of a

given Z0 specification and some finite subset of the UTT type Ident (= nat).

Figure 5–5: Semantic rules (part 3)

Chapter 5. Encoding Z : Logical schema operations 111

Terms [[]] : TERM!Signature! small item

[[ident : type; sig]] =

(lookup ([[ident]]; [[type]]) b) [[ident]] 2 sig

[[ident : type; sig]] = in2([[type]]; ident) [[ident]] 62 sig

[[fterm1; : : : ; termngtype; sig]] =

ADD ONE (Equal [[type]]) [[term1; sig]]

(: : : (ADD ONE (Equal [[type]]) [[term1; sig]] (NULL [[type]])))

[[; [type]; sig]] = NULL [[type]]

[[(term1; term2); sig]] = PAIR [[term1; sig]] [[term2; sig]]

[[term1(term2)type]] =

APPLY (Equal [[type]]) [[term1; sig]] [[term2; sig]]

Types [[]] : TYPE!Ztype

[[N]] = nat ty

[[B]] = bool ty

[[ident]] = given ty ident

[[F type]] = finset ty [[type]]

[[type
1
�type

2
]] = prod ty [[type

1
]] [[type

1
]]

Figure 5–6: Semantic rules (part 4)

Chapter 5. Encoding Z : Logical schema operations 112

5.6 Conclusion

We have encoded several of the logical operations on schemas provided by the

Z notation. This allowed us, finally, to give a complete, formal definition of our

semantics for Z0 .

We used UTT to prove some meta-theoretical results about the relationship

between the logical operations and our different notions of model for Z schemas.

In chapter 7, we shall see how these theorems enable us to reason about Z

specifications in a modular fashion.

Chapter 6

Encoding Z: Specifying operations

All the schemas that we have looked at so far have contained only undecorated

identifiers in their signatures. Such schemas are conventionally understood as

specifying the state space of an abstract datatype. For instance, the following

schema specifies a state space containing two natural numbers, x and y:

Sch

x; y : N

x > y

Operations map one state to another and can take input and produce output.

They are specified by relationships between input and output variables and pairs

of states representing the states before and after the execution of the operation.

In Z, an operation upon the state space described by a schema S is specified by a

schema which contains two copies of S, one of which has had all of its identifiers

decorated with a ’, and which represents the state after the operation is executed.

In addition, the schema which specifies the operation may contain identifiers

decorated with the symbols ? or !, representing the inputs and outputs of the

operation. The notation S0 is used to represent the operation of decorating all

the identifiers in a schema S with a ’. As an example, here is a schema which

specifies an operation on the state space of the schema Sch. The operation takes

as input a value inc and increments both x and y by this value.

113

Chapter 6. Encoding Z: Specifying operations 114

Op

Sch

Sch0

inc? : N

x0 = x + inc?

y0 = y + inc?

In this chapter we shall look at a group of schema forming operations which

relate to the specification of operations. We shall describe these operations,

show how they may be encoded in type theory, and prove some theorems about

the encoded operations.

6.1 Schema decoration

The operation of schema decoration was applied to the schema Sch in the defin-

ition of the schema Op. The meaning of this operation is described in Section

2.2.2 of the ZRM as follows:

If S is a schema, then S0 is the same as S, except that all the component

names have been suffixed with the decoration ’. The signature of S0

contains a component x0 for each component x of S, and the type of

x0 in S0 is the same as the type of x in S.

From a binding z for this new signature, a binding z0 for the signature

of S can be derived. In z0, each component of S is given the value

that x0 takes in z, so that z0:x = z:x0. The property of S0 is true under

z exactly if the property of S is true under the derived binding z0.

Though it is possible to decorate schemas with decorations other than ’, only

the decoration with ’ is meaningful for the purposes of specifying operations,

so we shall look at this type of decoration only. There is no technical difficulty

in extending our encoding to all other types of decoration.

Chapter 6. Encoding Z: Specifying operations 115

6.1.1 Encoding schema decoration

We shall encode schema decoration as a function Prime : Schema!Schema. It

is easy to define a function to compute the signature of the new schema. First

we define a function decorate item : Decor char ! sig item! sig item which

decorates a single signature item. This simply appends the given decoration

character to the decoration of the identifier of the given signature item. We use

this to define an operation prime sig : Signature! Signature which decorates

all the identifiers in a signature with the decoration character pr. We prove that

prime sig preserves the property unique idents.

Lemma 1 prime sig preserves unique idents.

8 Sig :Signature: (unique idents Sig)) (unique idents (prime sig sig))

Proof. By induction on Sig. The details are straightforward. ut

We cannot compute the predicate of the primed schema in such a direct

fashion. This is because our encoding of schema predicates does not provide

us with access to the syntactic structure of these predicates. Schema predicates

are represented as terms of type Binding!Prop. The only way in which we can

compute with such a term is to apply it to a Binding. This means that the only

way in which we can modify a schema predicate is by modifying the Bindings

to which it is applied.

To define the new predicate we shall take advantage of the semantic property

of the Prime operation that was quoted above. The property of a primed schema

holds true of a binding b, if and only if the property of the original schema holds

true of the binding formed from b by removing a prime from the decoration of

each identifier in b. We shall use this as the basis of our definition of the new

predicate.

First we define a function primed part : Binding ! Binding which forms a

new binding from all of the primed components in a given binding. Next, we

define a function post bin : Binding!Binding which, when applied to a binding

Chapter 6. Encoding Z: Specifying operations 116

b, forms a new binding by stripping the final prime from the decorations of all

the components of primed part b. We prove that post bin produces a binding

which matches a signature s if it is applied to a binding which matches the

signature Prime s:

Lemma 2 post bin lemma.

8 S :Signature: 8 b :Binding:

(is true (matches (prime sig S) b))) (is true (matches S (post bin b)))

The converse of this result is not true, since the post bin operation discards

components which are not decorated with a prime.

Now we can define the Prime operation on schemas:

Definition 35 Prime.

Prime
def
= �S :Schema: (prime sig S:1; �b :Binding: S:2 (post bin b))

: Schema!Schema

6.1.2 Theorems about schema decoration

First we show that the Prime operation preserves well-formedness. We have

already shown that the unique idents property is preserved (Lemma 1), so now

we prove that down-closure and up-closure are also retained.

Theorem 44 Prime down closed.

8 S :Schema:Down closed S) Down closed (Prime S)

Proof. See Proof 15 of Appendix A.

Theorem 45 Prime up closed.

8 S :Schema:Up closed S) Up closed (Prime S)

Chapter 6. Encoding Z: Specifying operations 117

Proof. Omitted, since this proof is similar to that of Theorem 44

Next we prove two theorems which characterise the behaviour of the Prime

operation. The first relates to the model relationship and the second is the

equivalent result for the restricts to model relationship.

Theorem 46 Prime model char.

8 S :Schema: 8 b :Binding:models S (post bin b)() models (Prime S) b

Proof. This is a trivial consequence of the definition of Prime.

Theorem 47 Prime restricting model char.

8 S :Schema: 8 b :Binding:

restricts to model S (post bin b)() restricts to model (Prime S) b

Proof. See Proof 16 of Appendix A.

6.2 The� convention

The � convention is the basis for specifying state-changing operations in Z.

When applied to a schema S, � produces a new schema containing S and S0.

For example, the schema Op could equally well have been defined as:

Op

�Sch

inc? : N

x0 = x + inc?

y0 = y + inc?

Chapter 6. Encoding Z: Specifying operations 118

6.2.1 Encoding�

We encode � in terms of And and Prime:

Definition 36 Delta.

Delta
def
= �S :Schema:And S (Prime S)

: Schema!Schema

6.2.2 Theorems about Delta

We would like to prove that Delta preserves well-formedness. The simplest

way to prove this would be to use the facts that And and Prime preserve well-

formedness, since Delta is defined in terms of these operations. However, it

turns out that in order to use the result about And (Theorem 10) we need to place

an extra syntactic condition on schemas. Theorem 10 applies only to schemas

whose signatures are type compatible. The prime sig operation does not always

produce a signature which is type compatible with the signature to which it

is applied. If a signature s contains both primed and unprimed versions of

the same identifier, and these happen to be paired with unequal Ztypes, then s

will not be type compatible with prime sig s. We must exclude such signatures

if we want to guarantee type compatibility. To do so we define a predicate

static sig : Signature ! Prop which is true of a signature s if and only if no

identifier occurs both primed and unprimed in s.

Lemma 3 static sig gives type compatibility.

8 s :Signature: (unique idents s))

(static sig s)) (type compatible s (prime sig s))

We prove that Delta preserves well-formedness when applied to schemas

whose signatures satisfy the static sig property:

Theorem 48 Delta preserves well formedness.

8 S :Schema: (static sig S:1)) (Well formed S)) (Well formed (Delta S))

Chapter 6. Encoding Z: Specifying operations 119

Proof. This follows easily from Lemma 3 and the facts that And and Prime pre-

serve well-formedness (Theorems 10, 44 and 45, and Lemma 1.) ut

Because of the way that Delta is defined, we can use the theorems about And

and Prime to reason in a modular fashion about schemas created by Delta.

6.3 Binding formation (�)

Before we go on to discuss the next schema-forming operation, �, we shall

say something about �-expressions (ZRM, p 60) because these are used in the

definition of � in the ZRM. We can think of the expression �S as denoting

an operation which captures the portion (if it exists) of a given binding that

matches the signature of a schema S. It is similar to the restrict operation that

we have defined. However, � differs from restrict in the way that it behaves

when applied to schemas decorated with a ’. When applied to such a schema, �

captures the matching portion of a binding and then strips off the ’ from every

identifier before returning the result. Hence the bindings returned by �S0 have

the same signature as those returned by �S. In the case of S0, � behaves like

restrict followed by post bin.

In our encoding we have no way to distinguish between schemas formed by

the Prime operation, and other schemas, so we cannot encode the � operation

directly. Instead we shall have to use the functions restrict or restrict followed

by post bin, as appropriate. We believe that being forced to separate the uses

of � into these two operations gives us a more perspicuous account of Z. We

preserve the intended function of � but we avoid such anomalies as the fact that

� is not preserved by schema renaming: if we define T = S0, where S is some

schema, then �T produces bindings that are different from those produced by

�S, because the primes are not stripped from the bindings produced by �T.

Chapter 6. Encoding Z: Specifying operations 120

6.4 The � convention

The � convention is used in Z for specifying operations which cause no change

in state. For example, these might be access operations which simply look up

the value of an identifier in the state. When applied to a schema S, � produces

a schema that is the same as � S with the additional predicate:

� S = � S0

6.4.1 Encoding �

In encoding�we are faced with the question of choosing an appropriate equality

predicate for bindings. This is not so much a question about encoding schemas

correctly as it is a decision about the correct theory of the core language of

Z. We have chosen to use the standard inductive equality, Eq, but this is by

no means the only possibility, nor do we believe that this choice is the final

word on equality for bindings. Further experimentation may well reveal that

inductive equality is too strong for this purpose. It is certainly stronger than the

set-theoretic equality that is used by Z, because this equates extensionally equal

functions, which the inductive equality does not.

We shall encode Xi in terms of Delta and Include. To represent � we use

restrict and post bin as described in Section 6.3.

Definition 37 Xi.

Xi
def
= �S :Schema: Include (Delta S) nil sig

(�b :Binding: restrict (post bin b) S:1 = restrict b S:1)

: Schema!Schema

Chapter 6. Encoding Z: Specifying operations 121

6.4.2 Theorems about Xi

We have proved that Xi preserves well-formedness under the same conditions

required for Delta to do so:

Theorem 49 Xi preserves well formedness.

8 S :Schema: (static sig S:1)) (Well formed S)) (Well formed (Xi S))

Proof. See Proof 17 of Appendix A.

6.5 Precondition schemas

When applied to a schema which specifies an operation, the precondition oper-

ator produces a schema which describes the precondition of that operation. It

is described in the ZRM as follows:

If S is a schema, and x0
1
; : : : ; x0m are the components of S that have

the decoration ’, and y1!; : : : ; yn! are the components that have the

decoration !, then the schema ‘pre S’ is the result of hiding these

variables of S:

S n (x0
1
; : : : ; x0m; y1!; : : : ; yn!):

To encode the precondition operator, we first define a function after sig :

Signature!Signature which, when applied to a signature s, forms a new signa-

ture by gathering all the signature items in s which have the decoration prime

or shriek as their final decoration. The precondition operator is then defined as

follows:

Definition 38 Pre.

Pre
def
= �S :Schema:Hide (after sig S:1) S

: Schema!Schema

Chapter 6. Encoding Z: Specifying operations 122

We show that Pre preserves well-formedness:

Theorem 50 Pre preserves well formedness.

8 s :Signature: 8 S :Schema: (Well formed S)) (Well formed (Pre S))

Proof. First we show that after sig produces a sub-signature of any signature

to which it is applied. We also show that after sig preserves the property

unique idents. We then use the fact that Hide preserves well-formedness (The-

orem 38) to complete the proof. ut

6.6 Sequential composition

Two schemas S and T which specify operations may be put together by se-

quential composition (o9) to form a new schema. The formal definition of this

operation is given as follows in the ZRM:

For the composition S o

9 T to be defined, for each word x such that

x0 is a component of S and x itself is a component of T, the types

of these two components must be the same. We call x a matching

state variable. Also, the types of any other components they share

(including inputs, outputs, and state variables that do not match)

must be the same.

The schema S o

9 T has all the components of S and T, except for the

components x of S and x0 of T, where x is a matching state variable.

If State is a schema containing just the matching state variables, then

S o

9 T is defined as

9 State00�

(9 State0 � [S; State00 j �State0 = �State00]) ^

(9 State � [T; State00 j �State = �State00]):

Chapter 6. Encoding Z: Specifying operations 123

We can understand this schema as follows: for a binding b1 to satisfy the

predicate of S o

9
T, there must exist another binding b2 which matches the hidden

state variables of S and T. The binding b2 may be thought of as the state in

which S terminates and T begins. If b2 is decorated with primes and combined

with b1, the result must satisfy the predicate of S. If b2 is combined with b1 the

result must satisfy the predicate of T.

6.6.1 Encoding sequential composition

We can encode the formal definition of sequential composition directly, using

the functions restrict and post bin to represent the � operation as required. First,

we define a function matching vars : Signature!Signature!Signature, which

computes the matching state variables of two signatures. In other words, when

applied to two signature s1 and s2, matching vars returns a signature containing

all the identifiers in s2 which appear primed in s1. Then, we define Compose as

follows:

Definition 39 Compose.

Compose
def
= �S; T :Schema:

[State = (matching vars S:1 T:1; � :Binding: trueProp)]

[State0 = Prime State]

[State00 = Prime State0]

Exist State00

(And (Exist State0

(Include (And S State00) nil sig

(�b :Binding:

restrict (post bin b) State:1 = restrict (post bin (post bin b)) State:1)))

(Exist State

(Include (And T State00) nil sig

(�b :Binding:

restrict b State:1 = restrict (post bin (post bin b)) State:1))))

: Schema!Schema!Schema

Chapter 6. Encoding Z: Specifying operations 124

The compose operation is meaningful only if applied to schemas whose

signatures are consistent for composition, as described in the quoted extract,

as well as being type-compatible. Two signatures S and T are consistent for

composition if any identifier that occurs primed in S and unprimed in T is

paired with the same type in both occurrences. We formalise this as a predicate

compose consistent : Signature!Signature!Prop. We conjecture that Compose

preserves well-formedness if applied to schemas which are type-compatible and

have the property compose consistent.

6.7 Conclusion

We have encoded some of the schema-forming operations conventionally used

in Z for the specification of operations. We have used LEGO to prove some

results about the metatheory of these operations, though much work remains

to be done in investigating this subject.

Chapter 7

A Specification Example Continued

In this chapter we present the rest of the Birthday Book specification which

was introduced in Chapter 4. The specification makes use of several of the

schema-forming operations discussed in Chapters 5 and 6. We show how this

specification can be encoded in LEGO and then use the encoding to formally

verify a result about one of the specified operations, AddBirthday. We then

encode an extension to the original specification, which specifies a robust version

of the AddBirthday operation in which failure conditions are taken into account.

We show that our theorem about AddBirthday can be carried over to the robust

operation.

This chapter shows examples of two kinds of formal reasoning about Z

specifications that are made possible by our encoding. Theorem 55 shows how

we can reason at the level of the core language and Theorem 57 shows how we

can take advantage of our metatheorems about the schema-level operators to

prove results about schemas in a modular style.

All of the Z code in this chapter is taken from the ZRM. The proof of Theorem

55 is a formalisation of a proof in the ZRM.

125

Chapter 7. A Specification Example Continued 126

7.1 The Z specification

The first schema specifies an operation which adds a new birthday to the set of

birthdays recorded by the system.

AddBirthday

�BirthdayBook

name? : NAME

date? : DATE

name? =� known

birthday0 = birthday [fname? 7! date?g

The next operation looks up a name in the set of birthdays, and returns the

birthday associated with that name if it is in the set.

FindBirthday

�BirthdayBook

name? : NAME

date! : DATE

name? � known

date! = birthday(name?)

The next schema specifies an alarm operation which, when supplied with

the current date, returns the set of all birthdays which fall on that date.

Remind

�BirthdayBook

today? : DATE

cards! : F NAME

8 n :NAME: n 2 cards! , birthday(n) = today?

Chapter 7. A Specification Example Continued 127

The original version of this schema in the ZRM made use of set comprehension

in the predicate:

cards! = fn : known j birthday(n) = today?g

We have not allowed set comprehension in the syntax of Z0 because it is difficult

to see how to add this to our representation of finite sets as lists.

The initial state of the BirthdayBook system is specified by the schema:

InitBirthdayBook

BirthdayBook

known = ;

7.2 Encoding the specification

We first define all of the signature items needed to encode this specification:

name type
def
= Given ty Name ty : Ztype

name item
def
= ((2; query);name type) : sig item

date type
def
= Given ty Date ty : Ztype

date item
def
= ((3; shriek); date type) : sig item

today type
def
= Given ty Date ty : Ztype

today item
def
= ((4; query); today type) : sig item

cards type
def
= finset ty (Given ty Name ty) : Ztype

cards item
def
= ((5; shriek); cards type) : sig item

known0 item
def
= decorate item pr known item : sig item

birthday0 item
def
= decorate item pr birthday item : sig item

To encode the schema AddBirthday, we first define its signature and predic-

ate and then put all the parts together using the operations Include and Delta.

Chapter 7. A Specification Example Continued 128

Definition 40 AddBirthday.

AB sig
def
= [name item; date item]

AB pred
def
= �b :Binding:

[name = lookup name item b]

[date = lookup date item b]

[known = lookup known item b]

[birthday = lookup birthday item b]

[birthday0 = lookup birthday0 item b]

(IS FALSE (IN name known)) ^

(IS TRUE (EQUAL birthday0

(FUN UNION birthday (FUN SINGLE name date))))

AddBirthday
def
= Include (Delta BirthdayBook) AB sig AB pred

We prove that the schema AddBirthday is well-formed.

Theorem 51 AddBirthday well formed.

Well formed AddBirthday

Proof. We show first that the schema (AddBirthday:1; AB pred) is well-formed.

This is a flat schema, like the schema BirthdayBook, and the proof of its well-

formedness is basically similar to the proof that BirthdayBook is well-formed

(Theorem 8).

Since Delta preserves well-formedness (Theorem 48) and BirthdayBook is

well-formed, we can prove that Delta BirthdayBook is well-formed. By applying

the result that Include preserves well-formedness (Theorem 41) to these two facts

we complete the proof. ut

Next we define the schema FindBirthday. To handle the application of the

partial function birthday, we add an existence condition, as described in Section

4.1.2.

Chapter 7. A Specification Example Continued 129

Definition 41 FindBirthday.

FB sig
def
= [name item; date item]

FB pred
def
= �b :Binding:

[name = lookup name item b]

[date = lookup date item b]

[known = lookup known item b]

[birthday = lookup birthday item b]

(9 d :Date: APPLY birthday name = in2 (Given ty Date ty; d)) ^

(IS TRUE (IN name known)) ^

(IS TRUE (EQUAL date (APPLY birthday name)))

FindBirthday
def
= Include (Xi BirthdayBook) FB sig FB pred

Theorem 52 FindBirthday well formed.

Well formed FindBirthday

Proof. The proof is very similar to the proof of Theorem 51. First we show

that the schema (FindBirthday:1; FB pred) is well-formed. We then use the fact

that Xi preserves well-formedness to prove that Xi BirthdayBook is well-formed.

(To do this we are required to verify that the signature of BirthdayBook has the

property static sig.) We use Theorem 41 to complete the proof. ut

Here is our encoding of the schema Remind.

Chapter 7. A Specification Example Continued 130

Definition 42 Remind.

Remind sig
def
= [today item; cards item]

Remind pred
def
= �b :Binding:

[today = lookup today item b]

[cards = lookup cards item b]

[known = lookup known item b]

[birthday = lookup birthday item b]

8 n :Typ (givenT Name): [N = (givenT Name; n)]

(IS TRUE (IN N cards))()

((IS TRUE (IN N known)) ^

(IS TRUE (EQUAL (APPLY birthday N) today)))

Remind
def
= Include (Xi BirthdayBook) Remind sig Remind pred

Theorem 53 Remind well formed.

Well formed Remind

Proof. Omitted. The proof is similar to that of Theorem 52.

Definition 43 InitBirthdayBook.

Init BB pred
def
= �b :Binding:

[known = lookup known item b]

IS TRUE (EQUAL known NULL)

InitBirthdayBook
def
= Include BirthdayBook nil sig Init BB pred

Theorem 54 InitBirthdayBook well formed.

Well formed InitBirthdayBook

Proof. We prove that the schema (InitBirthdayBook:1; Init BB pred) is well-

formed, and then use the facts that Include preserves well-formedness (Theorem

41) and BirthdayBook is well-formed (Theorem 8) to complete the proof. ut

Chapter 7. A Specification Example Continued 131

7.3 A theorem about AddBirthday

The ZRM gives an informal proof of the following statement: the AddBirthday

operation causes the set of names known to the system to be augmented with

the new name supplied to the operation.

known0 = known[fname?g

We shall prove this result formally in LEGO. First we formalise the statement

of what we want to prove. Our goal is to show that all bindings which are

restricting models of the schema AddBirthday satisfy the following predicate:

Definition 44 P.

P
def
= �b :Binding:

[known = lookup known item b]

[known0 = lookup known0 item b]

[name = lookup name item b]

IS TRUE (EQUAL known0 (UNION known (SINGLE name)))

: Binding!Prop

The formal proof goes in two stages. The first stage is essentially overhead

resulting from our encoding of Z while the main proof is in the second stage.

The first stage consists of proving Lemma 4. This states that if a binding

b is a restricting model of the BirthdayBook schema, then the signature items

known item and birthday item can be successfully looked up in b, and the values

so obtained satisfy the predicate BB pred if they are substituted in place of the

lookups. We anticipate that this kind of proof obligation — where we show that

a binding that is a restricting model of a schema does indeed provide witnesses

that make the predicate of that schema hold true — will arise frequently in the

use of this system. For this reason we have tried to streamline the proof script

so that it can be reused easily.

Chapter 7. A Specification Example Continued 132

Lemma 4 AddBirthday lemma. 1

8 b :Binding: (restricts to model AddBirthday b))

9 known v :Typ known type: 9 birthday v :Typ birthday type:

9 known0 v :Typ known type: 9 birthday0 v :Typ birthday type:

9 name v :Typ name type: 9 date v :Typ date type:

(lookup known item b = in2 (known type; known v)) ^

(lookup birthday item b = in2 (birthday type; birthday v)) ^

(lookup known0 item b = in2 (known type; known0 v)) ^

(lookup birthday0 item b = in2 (birthday type; birthday0 v)) ^

(lookup name item b = in2 (name type; name v)) ^

(lookup date item b = in2 (date type; date v)) ^

(is true (Set eq known v (Dom birthday v))) ^

(is true (Set eq known0 v (Dom birthday0 v))) ^

(is false (In name v known v)) ^

(is true (Fun eq birthday0 v

(FunUnion birthday v (FunSingle name v date v))))

Proof. We begin by introducing a binding b and the hypothesis:

H : restricts to model AddBirthday b

From H, we can easily show that b can successfully be restricted to the signature

AddBirthday:1:

b0 : Binding

H1 : restrict AddBirthday:1 b = in2 b0

H2 : AddBirthday:2 b0

1The use of unwrapped versions of core functions (Dom, rather than DOM, et c) in

the statement of this lemma may be confusing. The statement of the lemma is actually

computationally equivalent to the corresponding statement in which only wrapped

functions are used, because the wrapped functions are being applied to values of the

“correct” type. See Section 3.5.7 for explanations.

Chapter 7. A Specification Example Continued 133

We can then use Lemma 12 (restrict works then lookup works) to show that

known item, birthday item, et c. can all be successfully looked up in b. Then we

use Lemma 6 (lookup success lemma) to obtain witnesses for all the existentials

in the goal, and to prove the equalities. For example, by applying Lemma 6

to our proof that known item can be successfully looked up in b, we obtain the

following:

t : Typ known type

H3 : lookup known item b = in2 (known type; t)

Similarly, we obtain values t1; t2; t3; t4 and t5 and proofs that these are the

results of looking up birthday item, known0 item, birthday0 item, name item,

and date item, respectively, in b.

Now we must show that these values satisfy the predicate AddBirthday:2 if

they are substituted in place of the appropriate lookups:

? : (is true (Set eq t (Dom t1))) ^

(is true (Set eq t2 (Dom t3))) ^

(is false (In t4 t1)) ^

(is true (Fun eq t3 (FunUnion t1 (FunSingle t4 t5))))

By rewriting with the equalities such as H3 that were obtained in the last step,

we can transform the goal to:

?1 : (IS TRUE (EQUAL (lookup known item b)

(DOM (lookup birthday item b)))) ^

(IS TRUE (EQUAL (lookup known0 item b)

(DOM (lookup birthday0 item b)))) ^

(IS FALSE (IN (lookup name item b) (lookup known item b))) ^

(IS TRUE (EQUAL (lookup birthday0 item b)

(FUN UNION (lookup birthday item b)

(FUN SINGLE (lookup name item b)

(lookup date item b)))))

Lemma 18 (lookup restrict equals lookup orig) allows us to replace all of the

lookups in b by lookups in the binding b0 obtained by restricting b. Lemma 8 then

Chapter 7. A Specification Example Continued 134

allows us to replace both of the lookups in b0 of primed signature items (such

as known0 item) by lookups of the unprimed item in post bin t. These rewrites

bring the goal into a form where it matches the hypothesis H2. Refining by this

hypothesis completes the proof. ut

Now we can use this lemma to prove the main result.

Theorem 55 AddBirthday prop.

Has prop AddBirthday P

Proof. We introduce a binding b and a hypothesis:

H : restricts to model AddBirthday b

By applying Lemma 4 to this hypothesis, and then doing several existential

eliminations, introductions, and eliminations, we arrive at the following proof

context:

known v; known0 v : Typ known type

birthday v; birthday0 v : Typ birthday type

name v : Typ name type

date v : Typ date type

H1 : lookup known item b = in2 (known v known type)
...

H6 : lookup date item b = in2 (date v date type)

H7 : is true (Set eq known v (Dom birthday v))

H8 : is true (Set eq known0 v (Dom birthday0 v))

H9 : is false (In name v known v)

H10 : is true (Fun eq birthday0 v

(FunUnion birthday v (FunSingle name v date v)))

By rewriting with the equalities H1 : : :H6, we transform the goal to:

? : is true (Set eq known0 v (Union known v (Single name v)))

Chapter 7. A Specification Example Continued 135

We use the fact that Set eq (Lemma 41) is transitive to transform this to the

following two goals:

?1 : is true (Set eq (Union (Dom birthday v) (Single name v))

(Union known v (Single name v)))

?2 : is true (Set eq known0 v (Union (Dom birthday v) (Single name v)))

To prove ?1, we use the fact that Union respects set equality (Lemma 42). This

gives us two goals:

?3 : is true (Set eq (Dom birthday v) known v)

?4 : is true (Set eq (Single name v) (Single name v))

To prove ?3 we use hypothesis H7 and the fact that Set eq is symmetric (Lemma

40). To prove ?4 we use the fact that Set eq is reflexive (Lemma 39). This

completes the proof of subgoal ?1.

Now we work on subgoal ?2. Single name v is computationally identical to

Dom (FunSingle name v date v). We rewrite the goal using this fact, and then

use the transitivity of Set eq to transform it into the following two subgoals:

?5 : is true (Set eq (Union (Dom birthday v)

(Dom (FunSingle name v date v)))

(Dom (FunUnion birthday v (FunSingle name v date v))))

?6 : is true (Set eq (Dom (FunUnion birthday v (FunSingle name v date v)))

known0 v)

Goal ?5 is proved by refining by Lemma 45. To prove goal ?6 we again use the

fact that Set eq is transitive. Our new subgoals are:

?7 : is true (Set eq (Dom (birthday0 v)) known0 v)

?8 : is true (Set eq (Dom (FunUnion birthday v (FunSingle name v date v)))

(Dom (birthday0v)))

Goal ?7 is proved by refining by H8 and the fact that Set eq is transitive. To

prove goal ?8 we use Lemma 44 to reduce the goal to

?9 : is true (Fun eq (FunUnion birthday v (FunSingle name v date v)) birthday0 v)

Chapter 7. A Specification Example Continued 136

We prove goal ?9 by using H10 and the fact that Fun eq is symmetric (Lemma

43.) ut

7.4 Specifying a robust system

The ZRM gives a specification of a robust version of the BirthdayBook system,

in which allowances are made for the failure of the various operations. We shall

focus on the modified specification of the operation AddBirthday.

In the robust system, each operation produces an output result! which in-

dicates whether or not that operation was successful. The values that can be

assigned to this output come from a type REPORT which is defined as follows:

REPORT ::= ok j already known

The following schema, Success, specifies a state in which the result output

has the value ok.

Success

result! : REPORT

result! = ok

The next schema, AlreadyKnown, specifies an operation which acts upon the

state space of the birthday book and takes an input name?, and which produces

the result already known if name? is among the set of known names in the

birthday book.

AlreadyKnown

�BirthdayBook

name? : NAME

result! : REPORT

name? 2 known

result! = already known

Chapter 7. A Specification Example Continued 137

The robust version of the AddBirthday operation is defined as follows:

RAddBirthday c= (AddBirthday ^ Success) _ AlreadyKnown

7.4.1 Encoding the schema RAddBirthday

We represent the type REPORT by extending the type GivenType with a new

constructor Report ty, and defining a new inductive type Report, with construct-

ors ok and already known, to represent the semantics of this new GivenType. (In

other words, the function Typ maps given ty Report ty to the type Report.) We

also define a decidable equality Report eq : Report!Report!bool.

We define the signature item result item:

result item
def
= ((6; shriek); given ty Report ty) : sig item

We encode the schema Success as follows:

Definition 45 Success.

Success sig
def
= [result item] : Signature

Success pred
def
= �b :Binding: [result = lookup result item b]

IS TRUE (EQUAL result OK)

: Predicate

Success
def
= (Success sig; Success pred) : Schema

We can prove that Success is well-formed. The proof is obtained by slightly

modifying the proof of the fact that BirthdayBook is well-formed (Theorem 8).

Next we encode the schema AlreadyKnown:

Chapter 7. A Specification Example Continued 138

Definition 46 AlreadyKnown.

AK sig
def
= [name item; result item] : Signature

AK pred
def
= �b :Binding:

[name = lookup name item b]

[known = lookup known item b]

[result = lookup result item b]

(IS TRUE (IN name known)) ^

(IS TRUE (EQUAL result ALREADY KNOWN))

: Predicate

AlreadyKnown
def
= Include (Xi BirthdayBook) AK sig Ak pred : Schema

We prove that AlreadyKnown is well-formed.

Theorem 56 AlreadyKnown well formed.

Well formed AlreadyKnown

Proof. The proof is a slight modification of the proof of Theorem 52. ut

Finally, we encode the schema RAddBirthday:

Definition 47 RAddBirthday.

RAddBirthday
def
= Or (And AddBirthday Success) AlreadyKnown : Schema

Since this is composed of well-formed schemas (Theorems 51 and 56) and the

operations Or and And preserve well-formedness (Theorems 16 and 10), we can

easily show that it is well-formed.

7.4.2 RAddBirthday has property P

We use our metatheorems about schema operations to prove a version of The-

orem 55 for the robust version of the AddBirthday operation. We show that

Chapter 7. A Specification Example Continued 139

bindings which are restricting models of RAddBirthday either satisfy the prop-

erty P or represent failure as specified by AlreadyKnown. First, we define this

new property:

RobustP
def
= �b :Binding: (P b) _ (restricts to model b AlreadyKnown)

Theorem 57 RAddBirthday prop.

Has prop RAddBirthday RobustP

Proof. We refine by Theorem 22 which gives us the following subgoals:

?1 : Has prop (And AddBirthday Success) RobustP

?2 : Has prop AlreadyKnown RobustP

To prove the first subgoal we use Theorem 15:

?3 : (Has prop AddBirthday RobustP) _ (Has prop Success RobustP)

We prove this by using Theorem 55 to prove the first disjunct. We are then left

with subgoal ?2 which is trivial. ut

Chapter 8

Speculations

In this chapter we speculate on ways of extending our encoding with notions of

implementation and refinement.

The type theory UTT can be thought of as a rudimentary programming lan-

guage in which terms are evaluated by normalisation. This has been exploited

by others as a means of developing UTT and LEGO into a tool for reasoning

about programs ([Hof92,Sch95,McK92]). In this chapter we shall look at one

way in which this can be harnessed in order to define a notion of implementa-

tion for Z specifications. We first choose a UTT type which seems to provide a

notion of program that is complementary to our representation of Z schemas.

We call this type Program. We define an implementation relationship between

the types Schema and Program. We shall then give a more conventional syntax

for a simple programming language and show how terms in this language can

be translated into the type Program.

8.1 Defining a type to represent programs

As we have seen in Chapter 6, when an operation is specified by a Z schema, a

single signature is used to specify the inputs, outputs, and the state spaces before

and after that operation is executed. A binding which matches the signature of

such a schema will contain values representing all of these components. The

140

Chapter 8. Speculations 141

decoration on an individual signature item (or binding item) identifies which of

these components that item belongs to.

This leads to a natural notion of “program”. A program can be thought

of as a computable function which, when supplied with bindings which rep-

resent its inputs and the state before its execution, returns two more bindings,

representing its outputs and the state after execution. In a type theory such as

UTT, where all functions are computable, this can be represented by the type

(Binding � Binding)!(Binding � Binding).

In practise, when we attempt to encode programs as terms of this type, we

shall need to use the lookup function in order to obtain the values associated

with identifiers in bindings. This means that we need to consider what happens

when a program is applied to a pair of bindings which do not contain all the

identifiers required by that program. In such a case some of the applications

of lookup will fail, and this must be handled somehow. This is essentially the

same issue which we dealt with in regard to schema predicates in Section 3.5.6.

Our solution there was to have predicates and relations “collapse” to the value

absurd when applied to a failed lookup. For programs, we shall adopt one of

the alternate approaches discussed in Section 3.5.6: when a lookup fails we shall

cause the program to return an error value. Hence we define the type Program

as follows:

Definition 48 Program.

Program
def
= (Binding � Binding)!Error + (Binding � Binding) : Type

It would be possible for us to use instead a solution analogous to that used for

schema predicates. We could have programs return some arbitrarily chosen pair

of bindings in the case where lookups fail. However, there is little advantage in

using this technique for programs. Schemas are combined in various ways by

a multitude of operations, so it quickly becomes tedious to have to deal with

error results when encoding these operations. In contrast, we do not anticipate

having many operations which combine programs so the cost of using error

Chapter 8. Speculations 142

results to handle failure is not so great. The advantage of using error results is

that we have a more informative model: by looking at the result returned by

applying a program we can tell whether any lookups failed when that result was

computed. This information is lost if programs return binding pairs whether or

not their lookups succeed.

8.2 The programming language

We have identified a type Program which can serve as a model of a programming

language. Now we shall look at what this programming language might be,

and how it may be translated into terms of the type Program. Figure 8–1 gives

a syntax for a very simple, imperative programming language, which has been

devised so as to be easy to translate into type theory. (For this reason, we do

not have while loops, for example.) Our programming language is intended

only to give a taste of what is possible in formalising a notion of implementation

in Z. More sophisticated programming languages than this can be encoded in

type theory. (For example, it is possible to define a restricted form of general

recursion for programs which are provably terminating.)

A program in our language consists of a sequence of procedure declarations

and variable declarations, followed by a list of statements which make up the

program body. A procedure declaration begins with a procedure name followed

by two lists of declarations. The first list contains the names of the input and

output variables used by that procedure. Output variables are preceded by the

keyword var. (It is not possible for a variable to be simultaneously an input

and an output variable.) The second list of declarations contains the variables

declared locally to that procedure. The body of a procedure is a sequence of

statements which may be assignments (to variables or to array elements), for

loops, or if statements. A procedure is executed by being called with a list

of values which supply the inputs to that program. We shall not go into the

formalities of the semantics of the programming language.

Chapter 8. Speculations 143

Program = Decl;...Decl;Body

ProcDecl =

procedureProcName (IoDecl;:::;IoDecl)

VarDecl;:::;VarDecl;

ProgBody

IoDecl = InputDecl | OutDecl

InputDecl = VarDecl

OutDecl = var VarDecl

VarDecl = Ident:Type

Decl = VarDecl | ProcDecl

Body = begin Statement;:::;Statement end

ProgBody = begin ProgStatement;:::;ProgStatement end

Statement = Ident := Expression |

Ident [Expression] := Expression

for Ident := Expression to Expression do Statement |

if Expression then Statement else Statement |

begin Statement;:::;Statement end|

ProcCall = ProcName (Expression;:::;Expression)

ProgStatement = Statement | ProcCall

Expression = Ident | Integer | Boolean |

(Op Expression)| (Expression BinOp Expression)|

Ident [Expression]

Op = not

BinOp = + | = | < | and | or

The definitions of Ident and Type, the typechecking rules and the evaluation

rules are all omitted.

Figure 8–1: The programming language

Chapter 8. Speculations 144

Our programming language can be modelled in UTT via the type Program.

(Note that not all Programs correspond to terms in the programming language.)

Procedures and programs will both be represented by the type Program. Here

we describe the key points of the translation.

We shall re-use the types Ident and Ztype as representations of the identifiers

and types of our programming language. The type of arrays of elements of

some type t is translated as the Ztype, fun ty nat ty t, where t is the Ztype

representing t. Let us suppose that we have a procedure P, which we wish to

represent as a term of type Program. Suppose that some identifier i is used as

an Expression within the body of P. We shall call such an Expression an identifier

reference. The key to our translation of procedures lies in the way identifier

references are translated. Suppose that the i is translated as an Ident, i. The

translation of the identifier reference i depends upon where the identifier i is

declared in the procedure P. If i is among the input declarations of P, then the

reference i is translated by looking up i in the input binding. If i is a local

declaration in P then it is represented as a locally defined variable in UTT, and

the reference i is translated as a reference to that variable. Finally, if i is not

among the declarations of P, then the reference i is translated by looking up i in

the binding representing the state before the execution of P.

The rest of the encoding of Expressions, Statements, et c, follows naturally

from the way identifier references are encoded. Operations are encoded via

suitably wrapped (in the sense of Section 3.5.6) versions of the corresponding

operations in the LEGO library. For statements are encoded as wrapped versions

of nat rec or bool rec, as appropriate. If statements are encoded by wrapping the

LEGO library if operation. Assignments are encoded by the way in which the

output and post-state bindings are constructed. Some examples which illustrate

the process are given in Section 8.3.

It is straightforward to translate the composition of statements which make

up a procedure body. Doing the same for a program body is not so straightfor-

ward, since the class ProgStatement includes procedure calls, which are state-

changing operations. It is possible to define a composition operation in type

Chapter 8. Speculations 145

theory, which computes the composition of two procedures. However, we shall

not discuss this any further.

8.3 Examples

The programs which we shall use as examples are based on code that is presented

in the ZRM as implementations of the operations of the Birthday Book system.

Later we shall look at defining an implementation relationship, but, for the

moment, we shall just consider the translation of these programs into terms of

type Program.

The programs operate within a global state which contains an integer vari-

able hwm (read as “high water mark”) and two arrays name, of type NAME and

date, of type DATE. (Let us assume that the programming language provides

some means of defining type abbreviations, and that NAME and DATE are two pre-

viously defined type abbreviations.) This state represents the Birthday Book.

The variable hwm records the number of birthdays currently in the system. The

array name holds all the names in the system: the birthday associated with

name[i] is found by looking up date[i].

The first program is intended to implement the AddBirthday operation:

procedure AddBirthday (name:NAME; date:DATE);

begin

hwm := hwm + 1;

names[hwm] := name;

dates[hwm] := date

end

To encode this program in UTT, we first encode the identifiers hwm, names, and

dates as Idents called hwm i, names i, and dates i, respectively. We pair these

with the appropriate Ztypes (nat ty, fun ty nat ty Name, and fun ty nat ty Date,

respectively) to form signature items called names item, dates item and hwm item.

Chapter 8. Speculations 146

We also define primed versions of these signature items, and call them names0 item,

dates0 item, and hwm0 item.

The encoding makes use of a number of auxiliary functions. The first is

mk sum bin item (abbreviated as msbi) which has type Ident ! (Error +

small item)!(Error+bin item). This simply adds a given Ident to a small item

to produce a bin item, returning the value in1 error if it is applied to in1 error.

We also define partial versions of the cons and pairing operations applied to

bindings:

CONSBIN
def
= [SeeAppendixC:2]

: (Error + bin item)!(Error + Binding)!(Error + Binding)

PAIRBIN
def
= [SeeAppendixC:2]

: (Error + Binding)!(Error + Binding)!(Error + (Binding � Binding))

We shall also need to define an update operator on finite functions. The wrapped

version of this operator is called UPDATE.

The program AddBirthday is encoded as a Program, AddBirthday prog:

Chapter 8. Speculations 147

Definition 49 AddBirthday prog.

AddBirthday prog
def
= �pre state; input :BInding:

[HWM = lookup hwm item pre state]

[NAME = lookup name item input]

[DATE = lookup date item input]

[NAMES = lookup names item input]

[DATES = lookup dates item input]

[HWM ITEM = msbi hwm i (PLUS HWM ONE)]

[NAMES ITEM = msbi names i

(UPDATE NAMES (PLUS HWM ONE) NAME)]

[DATES ITEM = msbi names i

(UPDATE DATES (PLUS HWM ONE) DATE)]

[post state = CONSBIN HWM ITEM (CONSBIN NAMES ITEM

(CONSBIN DATES ITEM NIL BIN))]

[output = NIL BIN]

(PAIRBIN post state output)

: Program

AddBirthday first looks up all of the input and pre-state identifiers in the ap-

propriate bindings. It then computes binding items for the post-state, using

wrapped operations as appropriate. The binding items are put together to form

the post-state binding and the output binding (which, in this case, is empty),

and these two bindings are returned as the result. In the case where any of the

lookups fail, the value in1 error will be returned instead.

This next program is intended to implement the FindBirthday operation.

(Note: this is not the program given in the ZRM, since that program uses a

while loop which is not part of our programming language.)

procedure FindBirthday (name:NAME; var date:Date);

var i : INTEGER;

begin

for i := 1 to hwm do

Chapter 8. Speculations 148

begin

if names[i] = name then date := dates[i]

end

end

To encode the for-loop in FindBirthday we shall use a wrapped version of the

recursion operator nat rec:

FOR
def
= [See Appendix C.2]

: � t jType: t!(nat! t! t)!(Error + small item)!(Error + t)

The first argument taken by FOR is a starting value for recursion, and the second

argument is the step function. The third argument gives the number of iterations

to perform. If this argument is in1 error, or has a Ztype other than nat ty, then

the result returned is in1 error, otherwise the result is computed using nat rec.

The if statement in FindBirthday is encoded using a wrapped version of the

function if :

IF
def
= [See Appendix C.2]

: � t jTYPE: (Error + small item)!(Error + t)!(Error + t)!(Error + t)

Here is the encoding of the program FindBirthday:

Chapter 8. Speculations 149

Definition 50 FindBirthday prog.

FindBirthday prog
def
= �pre state; input :Binding:

[NAMES = lookup names item pre state]

[DATES = lookup dates item pre state]

[HWM = lookup hwm item pre state]

[NAME = lookup name item input]

[preDATE =

FOR (in1 Error)

(�i :nat: �x :Error + small item:

IF (EQUAL NAME (APPLY NAMES (in2 (nat ty; i))))

(APPLY DATES (in2 (nat ty; i)))

x)]

[DATE = case (� :Error: in1 Error)

(�x :Error + small item: x)

preDATE]

[DATE ITEM = msbi date i DATE]

[post state = in2 pre state]

[output = CONSBIN DATE ITEM NIL BIN]

(PAIRBIN post state output)

: Program

The final program which we shall translate is the simplest. It initialises the

Birthday Book system:

procedure InitBirthdayBook;

begin

hwm := 0

end

This is encoded as follows:

Chapter 8. Speculations 150

Definition 51 InitBirthdayBook prog.

InitBirthdayBook prog
def
= � ; :Binding:

[HWM ITEM = in2 (hwm item; zero)]

[post state = CONSBIN HWM ITEM NIL BIN]

[output = in2 NIL BIN]

(PAIRBIN post state output)

: Program

8.4 Refinement and implementations in the ZRM

Before we go on to discuss how to define an implementation relationship

between programs and schemas, we shall say something about how this is

handled in the ZRM. The Z notation itself does not incorporate a programming

language or a notion of implementation. However, the ZRM suggests, by means

of examples, a method of dealing with these concepts.

In brief, the method suggested in the ZRM goes like this. We begin with an

abstract specification. We formulate a concrete specification of the same system,

relating the state spaces and the operations in the two specifications by means

of abstraction relations defined as schemas. (Moving from the abstract to the

concrete specification may take place in a series of steps.) The concrete spe-

cification is written so as to be as close as possible to a programming language.

For instance, the only types used are ones that are available in programming

languages. The concrete schemas are then implemented directly by programs

written in some programming language.

The weakest step in this process is the final one. The programming language

is outside of the formalism of Z, so it is unclear how to verify that a program

correctly implements a concrete schema. In some cases (such as those given in

the ZRM) this will be obvious, but in other cases this may represent a significant

proof obligation.

Chapter 8. Speculations 151

8.4.1 An example

This is an extract from the example used in the ZRM to illustrate how schemas

can be refined to implementations. Again, the system used for the example is

the Birthday Book.

First, a decision is made about how to implement the Birthday Book. The

system will be implemented via two arrays:

names : Array[1...] of NAME;

dates : Array[1...] of DATE;

The arrays used in the implementation can be modelled in Z by functions from

a set N1 of strictly positive integers to NAME or DATE:

names : N1 ! NAME

dates : N1 ! DATE

The ith element of the array is represented by the value of the appropriate

function applied to the argument i. Assignment to array elements is modelled

by function update.

Next, the ZRM gives a concrete specification of the state space of the Birthday

Book system. The types used in this schema model the types that will be used

in the implementation.

BirthdayBook1

names : N1 ! NAME

dates : N1 ! DATE

hwm : N

8 i; j : 1 : : : hwm � i == j) names (i) == names (j)

The relationship between the schemas BirthdayBook1 and BirthdayBook is de-

scribed by an abstraction schema (See Section 8.6).

The next schema gives a concrete specification of the AddBirthday operation:

Chapter 8. Speculations 152

AddBirthday1

�BirthdayBook1

name? : NAME

date? : DATE

8 i : 1 : : : hwm � name? == names(i)

hwm0

= hwm + 1

names0 = names� fhwm0

7! name?g

dates0 = dates� fhwm0

7! date?g

Again, this is related to the abstract schema, AddBirthday, by means of an

abstraction schema, which we shall not show.

The initial state of the concrete system is specified by the following schema.

InitBirthdayBook1

BirthdayBook1

hwm = 0

The ZRM then presents the programs AddBirthday and InitBirthdayBook

as implementations of the operations specified by the schemas AddBirthday1

and InitBirthdayBook1. However, no justification is given for this claim. In the

next section we shall see how this relationship can be formally defined using

UTT.

8.5 The implementation relationship

We shall define an implementation relationship between Schemas and Programs.

First, we define some simple predicates on Bindings. (The details of the defini-

tions are omitted.)

is pre state; is post state; is input; is output : Binding!Prop

Chapter 8. Speculations 153

The predicate is pre state is true of a Binding provided that none of the identifiers

in that Binding are decorated in any way. The other predicates, is post state,

is input, and is output, check that all identifiers are decorated with, respectively,

prime, query, and shriek.

Definition 52 Implements.

Implements
def
= �S :Schema: �P :Program:

8 b; b1 :Binding:

((is pre state b) ^ (is input b1) ^

(restricts to model (pre S) (join bin b b1))))

9 b0; b2 :Binding:

(P b b1 = in2 (b0; b2)) ^

(restricts to model S

(join bin b (join bin b1 (join bin (decorate bin pr b0) b2))))

: Schema!Binding!Prop

This definition states that a program P implements a schema S provided that the

following conditions hold. Whenever P is applied to a pre-state binding b and

an input binding b1 which together satisfy the precondition schema pre S, the

application succeeds, producing a post-state binding b0 and an output binding

b2. If the output binding is decorated with primes, and all four bindings are

then joined together, the resulting binding is a restricting model of the schema

S.

Further work needs to be carried out to test whether this is a useful way

of defining the implementation relationship, and to discover how difficult it

is, in practice, to prove that a Schema and a Program are related under this

relation. Another important area of exploration is whether the proof of the

implementation relationship can be done in a modular fashion, exploiting the

modularity in the structure of both specifications and programs.

Chapter 8. Speculations 154

8.6 Further Work: refinement

In the Birthday Book example, abstraction schemas are used to relate the ab-

stract and concrete specifications of the system. For example, the schemas

BirthdayBook and BirthdayBook1 are related by the following schema:

Abs

BirthdayBook

BirthdayBook1

known = fi : 1 : : : hwm � names (i)g

8 i : 1 : : : hwm � birthday (names (i)) = dates (i)

This schema describes a relationship between the state spaces described by the

two schemas BirthdayBook and BirthdayBook1. However, it is unclear from

examining the schema Abs what exactly needs to be proved in order to verify

that BirthdayBook1 is a correct refinement of BirthdayBook.

In the specification language VDM [Jon86], clearly defined proof obligations

are used to express a refinement (or reification) relationship between two data

types. For example, in order to show that a data type Rep is an adequate

representation of a more abstract datatype, Abs, the following proof obligation

must be met:

9 retr :Rep!Abs:

8 a 2 Abs: 9 r 2 Rep:retr(r) = a

Other proof obligations are used to express a refinement relationship between

operations on data types.

The VDM notion of refinement has been extensively studied ([HJ88,JHS86])

and is relatively well understood. It is therefore useful to see whether a similar

definition can be applied to specifications in Z. Expressed in the language of our

encoding, here is such a definition:

Chapter 8. Speculations 155

Definition 53 Refines.

Refines
def
= �A; C :Schema:

9 retr :Binding!Binding:

(8 b :Binding: (exactly models b C)) (exactly models (retr b) A)) ^

(8 a :Binding: (exactly models a A))

(9 c :Binding: (exactly models c C) ^ (retr c = a)))

: Schema!Schema!Prop

This states that a schema C is a refinement of a schema A, provided that the

following conditions are satisfied. There must exist a retrieval function retr :

Binding ! Binding which maps exact models of C to exact models of A. For

every exact model a of A, there must exist a concrete representation c which is

an exact model of C, such that retr c = a.

Further work needs to be done to study this notion of refinement. For

example, are exact models the appropriate notion of model to use here, or should

we use restricting models instead? How are the two definitions different?

Another interesting question is what are the consequences of defining the

refinement relationship in a constructive type theory? How does this relate to

the set-theoretic definition used in VDM?

The proof obligations involved in refining operations should also be defined

and studied.

8.7 Conclusion

We have seen that it is possible to define a programming language in UTT in

such a way that programs and schemas become part of the same formalism. This

allows us to formally define an implementation relationship between the two.

The work in this chapter is intended only to suggest a way towards achieving

this goal; further work needs to be done to test the concepts that have been

Chapter 8. Speculations 156

defined. It would also be interesting to see if the principles of [Mor90] could be

integrated into our work.

Chapter 9

Conclusions

9.1 Extending the encoding

The subset of Z which we have encoded contains a number of serious restric-

tions. How difficult would it be to remove these?

To enrich our core language, we would need a good encoding of set theory in

type theory. Unfortunately, this seems to be difficult to achieve. An alternative

strategy would be to dispense with the idea of set theory altogether, and to use a

core language more closely based on the type theory. This would take us rather

far from Z, but might be useful in its own right.

It is difficult to see how to reintroduce the free use of terms as types, and

of schemas as types without having to resort to a deep embedding. The latter

would, in any case, conflict with our desire to maintain separate core and module

languages.

In the Z notation, it is possible, and often useful, for schemas to be paramet-

erised over types. These parameters may then be used to build the types used

in the schema signature. Unfortunately, it is difficult to see how to add such a

feature to our encoding. We would need to incorporate parameterization and

parameter substitution into our syntactic types (Ztype) and into the semantic

function (Typ). It is not obvious to us how to do this.

157

Chapter 9. Conclusions 158

9.2 Comments about LEGO

To develop our work into a realistic tool for users, based upon the LEGO system

it would be nice to have: user-definable tactics to help discharge routine proof

obligations (type-compatibility, well-formedness, etc); an interface to implement

the translation of Z0 specifications to LEGO input; a search feature (like that of

HOL) to cut down the amount of time time spent searching for the names of

theorems and definitions within the libraries or within the user’s own files.

9.3 Comments about Z

The Z notation is modular, in the sense that one can prove theorems about

schemas in a compositional way, using metatheorems about the schema oper-

ators. (Modularity in the more traditional sense of “information hiding” is also

present, in the form of the hiding operator.) These metatheorems suggest that

the schema operators of Z provide a potentially useful mechanism for organising

theories.

The specification of operations, however, seems to be treated as an after-

thought. The decorations on variables make no difference to their treatment in

the official semantics even though these decorations have an important meaning

in terms of a user’s understanding of a Z specification.

The Z notation, therefore, seems to be composed of two separate languages

whose relationship with each other is difficult to understand. There is a static

language in which theories (schemas) may be combined using logical operators,

and there is a dynamic part consisting of the conventions for defining operations.

It is unclear how these two parts interact: more concretely, for example, it is not

obvious what theorems to prove relating, say, the Prime and the And operations.

As a consequence of the way in which Z deals with the specification of

operations , definitions of “refinement” and “implementation” do not seem to

Chapter 9. Conclusions 159

arise naturally, though, as we have seen, it is not impossible to define such

notions.

9.4 The main contributions of this thesis

� We have demonstrated that type theory is expressive and affords a variety

of representation techniques that is much richer than the shallow/deep

dichotomy provided by less expressive systems like HOL.

� A significant portion the Z notation has been formalised in type theory.

This provides a basis for reasoning formally about the Z notation and

about specifications expressed in Z.

� We have shown that, within certain constraints it is possible to reason

about Z specifications at a modular level. Evidence for this is provided by

various theorems about the schema operations. An example is given to

illustrate the kind of modular proof that is supported.

� Type theory provides a broad spectrum language incorporating a pro-

gramming language. We have used this to illustrate how the Z notation

can be enriched by means of a programming language that is within the

same formal system. This gives us a basis for formalising a notion of

implementation between programs and Z specifications.

Appendix A

Proof Descriptions

A.1 Proofs of theorems in Chapter 3

Proof 1 Equiv1 implies Equiv2.

Goal: 8 S; T :Schema: (Equiv1 S T)) (Equiv2 S T)

We introduce two schemas S and T. We then do a case analysis on whether S

and T have equal signatures. In the first case, we have:

H : is true (sig eq S:1 T:1)

By expanding definitions and doing introductions, we transform the proof con-

text to the following:

H1 : 8 b :Binding: (exactly models S b)() (exactly models T b)

b : Binding

?1 : (restricts to model S b)) (restricts to model T b)

?2 : (restricts to model T b)) (restricts to model S b)

The proofs of Goals ?1 and ?2 are similar so we shall only show the first of these.

We expand the definition of restricts to model and then do an introduction:

H2 : 9 t :Binding: (restrict b S:1 = in2 t) ^ (S:2 t)

?3 : 9 t :Binding: (restrict b T:1 = in2 t) ^ (T:2 t)

160

Appendix A. Proof Descriptions 161

By existential elimination on H2, we obtain a binding t which is the result of

restricting b to S:1 and which satisfies the predicate S:2. We use this binding t

as our witness to prove goal ?3. By doing and-introduction on the remaining

goal we obtain:

?4 : restrict b T:1 = in2 t

?5 : T:2 t

Since t is obtained by restricting b to S:1, and S:1 equals T:1 by hypothesis H,

we can prove goal ?4. To prove goal ?5, we observe that t is an exact model of

S because it was obtained by restriction (cf Theorem 3). By hypothesis H1, t is

therefore an exact model, and hence a model, of T.

Now we consider the case where S and T have unequal signatures. Lemmas

36 and 37 show that in this, case, neither S nor T can have any restricting models.

Hence they are equivalent under Equiv2. ut

A.2 Proofs of theorems in Chapter 5

A.2.1 The propositional operations

In this section, we shall assume that we have two schemas S and T with the

following properties:

H : Well formed S

H1 : Well formed T

H2 : type compatible S:1 T:1

Proof 2 And preserves well formedness.

Goal: Well formed (And S T)

Appendix A. Proof Descriptions 162

We must show the following three goals:

? : unique idents (And S T):1

?1 : Up closed (And S T)

?2 : Down closed (And S T)

Goal ? follows from the fact that join preserves unique idents (Lemma 22). The

proofs of goals ?2 and ?3 are very similar, so we shall only describe the first of

these. We introduce a binding b and a hypothesis H1 stating that b is a restricting

model of And S T. By existential elimination on this we obtain:

t : Binding

H3 : restrict b (join S:1 T:1) = in2 t

H4 : (S:2 t) ^ (T:2 t)

We use and introduction to reduce the remaining goal to the following:

?3 : S:2 b

?4 : T:2 b

To prove goal ?3 we use the assumption that S is up-closed, so that it is sufficient

to show that b is a restricting model of S:

?5 : 9 b0 :Binding: (restrict b S:1) ^ (S:2 b0)

We can show that restrict b S:1 is equal to restrict t S:1 (Lemmas 27, 26, and

24.) By rewriting with this equality we reduce the goal to showing that t is a

restricting model of S:

?6 : 9 b0 :Binding: (restrict t S:1) ^ (S:2 b0)

We can prove this because we know that t is a model of S (hypothesis H4 and

that S is down-closed. This concludes the proof of goal ?3. Goal ?4 is similar,

using the facts that T is up-closed and down-closed. We have therefore shown

that And S T is up-closed.

The proof of down-closure is very similar and is omitted. ut

Appendix A. Proof Descriptions 163

At this point we discharge the schemas S and T, and all the assumptions

listed at the beginning of this section. This has the effect of causing all the

theorems we have proved to be universally quantified over S and T, and to

have the discharged assumptions added to their hypotheses. (We shall need

these fully quantified theorems for the next proof.) We then make the same

declarations afresh:

H : Well formed S

H1 : Well formed T

H2 : type compatible S:1 T:1

Proof 3 And restricting model commutes.

Goal:

8 b :Binding: (restricts to model (And S T) b))

(restricts to model (And T S) b)

By doing introductions we obtain the following proof state:

b : Binding

H3 : restricts to model (And S T) b

? : restricts to model (And T S) b

Theorem 11 tells us that we can prove this goal by showing:

?1 : restricts to model S b

?2 : restricts to model T b

(We use the fact that the type-compatibility relationship is symmetric (Lemma

35).) Theorem 11 then enables us to obtain proofs of each of these goals from

hypothesis H3. ut

Proof 4 Or preserves well formedness.

Goal: Well formed (Or S T)

Appendix A. Proof Descriptions 164

Again, we know that Or preserves the unique idents property because join pre-

serves it (Lemma 22). The proofs that up-closure and down-closure are pre-

served are again very similar. We shall describe the latter this time. By doing

introductions, and expanding definitions, we transform the proof state to the

following:

b : Binding

H3 : (S:2 b) _ (T:2 b)

H4 : succeeds (restrict b (Or S T):1)

? : 9 b0 :Binding: (restrict b (Or S T):1 = in2 b0) ^ ((S:2 b0) _ (T:2 b0))

Hypothesis H4 gives us a binding b0 and a proof that this is obtained by restricting

b to (Or S T):1. We shall show that b0 is a model of Or S T.

We proceed by doing an or elimination on H3. In the first case:

H5 : S:2 b

we shall prove the goal by proving the left hand disjunct:

?1 : S:2 b0

Since S is up-closed, we can prove this by showing that b0 is a restricting model

of S.

?2 : 9 t :Binding: (restrict b0 S:1 = in2 t) ^ (S:2 t)

Lemmas 28 and 29 enable us to show that restrict b0 S:1 equals restrict b S:1.

(We omit the details of this part of the proof.) Rewriting with this equality leaves

us with the goal of showing that b is a restricting model of S. This follows from

the facts that S is down-closed, and b is a model of S (hypothesis H3).

In the case where b is a model of T, we show, by a similar argument, that b0

is a model of T. This completes the proof of down-closure. ut

Appendix A. Proof Descriptions 165

Proof 5 Or restricting model intro.

Goal:

8 b :Binding: (succeeds (restrict b (Or S T):1)))

((restricts to model S b) _ (restricts to model T b))

restricts to model (Or S T) b)

By doing introductions we arrive at the following proof state:

b : Binding

H3 : succeeds (restrict b (Or S T):1)

H4 : (restricts to model S b) _ (restricts to model T b)

? : restricts to model (Or S T) b

Since Or S T is down-closed our goal can be proved by showing:

?1 : (S:2 b) _ (T:2 b)

We do or-elimination on hypothesis H4. If b is a restricting model of S, then,

since S is up-closed, we can prove S:2 b. Similarly, if b is a restricting model of

T, we show T:2 b. ut

Proof 6 Or restricting model elim.

Goal:

8 b :Binding: (restricts to model (Or S T) b))

(restricts to model S b) _ (restricts to model T b)

We introduce a binding b and a proof H3 that b is a restricting model of Or S T.

Since Or S T is up-closed, b is also a model of Or S T. We shall prove the goal

by doing or-elimination on this fact. In the first case, we know that b is a model

of S:

H4 : S:2 b

? : (restricts to model S b) _ (restricts to model T b)

We use the fact that S is down-closed to prove the left hand disjunct. (We need

Lemma 27 to show that b can be restricted to the signature of S.)

Appendix A. Proof Descriptions 166

Similarly, in the case where we know that b is a model of T, we prove the

right hand disjunct of Goal ?, using Lemma 26 and the assumption that T is

down-closed. ut

Once more, we discharge and then reintroduce our global assumptions (S,

T, H, H1, and H2).

Proof 7 Or restricting model commutes.

Goal:

8 b :Binding: (restricts to model (Or S T) b) restricts to model (Or T S) b)

We introduce a binding b and a proof H3 that b is a restricting model of Or S T.

Theorem 20 (Proof 6) enables us to split our proof into two cases. In the first

case, the proof state is as follows:

H4 : restricts to model S b

? : restricts to model (Or T S)

We use Theorem 19 (Proof 5) to prove this goal. In order to satisfy the con-

ditions for this theorem, we need Lemma 35 (to show that T:1 and S:1 are

type-compatible) and Lemmas 23, 26 and 27 (to show that b is capable of being

restricted to the signature (Or T S):1.

The proof of the second case is similar to that of the first. ut

Proof 8 Imply preserves well formedness.

Goal: Well formed (Imply S T)

We shall only describe the proof that Imply S T is up-closed. By expanding

definitions, and doing introductions and eliminations, we transform the proof

context to:

b; t : Binding

H3 : restrict b (Imply S T):1 = in2 t

H4 : (S:2 t)) (T:2 t)

H5 : S:2 b

? : T:2 b

Appendix A. Proof Descriptions 167

Since T is up-closed, we can prove the goal by showing that b is a restricting

model of T:

?1 : 9 b0 :Binding: (restrict b T:1 = in2 b0) ^ (T:2 b0)

Lemmas 25, 27 and 26 allow us to show that restrict b T:1 is equal to restrict t T:1.

We can therefore prove the goal by showing that t is a restricting model of T:

?2 : 9 b0 :Binding: (restrict t T:1 = in2 b0) ^ (T:2 b0)

Since T is down-closed, we can prove this by showing:

?3 : T:2 t

Hypothesis H4 enables us to prove this by showing:

?4 : S:2 t

Since S is up-closed, we can prove this by showing that t is a restricting model of

S. We use Lemmas 24, 27 and 26 to show that restrict t S:1 equals restrict b S:1.

Rewriting with this transforms our goal to:

?5 : restricts to model S b

Since S is down-closed, and we know (hypothesis H5) that b is a model of S, the

proof is complete. ut

Proof 9 Imply restricting model intro.

Goal:

8 b :Binding: (succeeds (restrict b (Imply S T):1)))

((restricts to model S b)) (restricts to model T b)))

(restricts to model (Imply S T) b)

We introduce hypotheses to obtain the following proof state:

b : Binding

H3 : succeeds (restrict b (Imply S T):1)

H4 : (restricts to model S b)) (restricts to model T b)

? : restricts to model (Imply S T) b

Appendix A. Proof Descriptions 168

Hypothesis H3 enables us to obtain a binding t which is the result of restricting

b to the signature of Imply S T. Our goal is reduced to showing that t is a model

of Imply S T:

H5 : S:2 t

?2 : T:2 t

Since T is up-closed, we can prove goal ?2 by showing that t is a restricting

model of T. Lemmas 27, 26 and 25 enable us to show that restrict t T:1 equals

restrict b T:1. So the goal can be rewritten as:

?6 : restricts to model T b

To prove this we use hypothesis H4. Now we must show that b is a restricting

model of S. Lemmas 27, 26 and 24 can be used to prove that restrict b S:1 equals

restrict t S:1. The goal then becomes:

?7 : restricts to model S t

This follows from hypothesis H5 and the assumption that S is down-closed. ut

Proof 10 Not up closed.

Goal: Well formed (Not S)

By doing introductions we transform the proof state to:

b : Binding

H3 : restricts to model (Not S) b

? : (S:2 b)) absurd

Hypothesis H implies that restricting b to the signature (Not S):1, which is the

same as S:1, yields a binding t and a proof:

H4 : (S:2 t)) absurd

To prove goal ?, we introduce its antecedent, and then use hypothesis H4 to

prove the remaining goal. This gives us the following proof state:

H5 : S:2 b

?1 : S:2 t

Appendix A. Proof Descriptions 169

Since S is down-closed, H5 implies that b is a restricting model of S. We know

that the binding obtained by restricting b to S:1 is t. We can therefore conclude

that t has the property S:2. ut

Proof 11 Not restricting model property1.

Goal:

8 b :Binding: (restricts to model S b)) :(restricts to model (Not S) b)

By expanding the definition of not and doing introductions we obtain the fol-

lowing proof context:

b : Binding

H3 : restricts to model S b

H4 : restricts to model (Not S) b

? : absurd

Since Not S and S have the same signature, the same binding t is obtained by

restricting b to each of them. Hypotheses H3 and H4 allow us to prove S:2 t and

:(S:2 t), respectively. Hence we can prove absurd. ut

Proof 12 Not restricting model property4.

Goal:

8 b :Binding: (succeeds (restrict b S:1)))

:(restricts to model S b)) restricts to model (Not S) b

Doing introductions, and expanding the definition of :, gives us the following

proof context:

b : Binding

H3 : succeeds (restrict b S:1)

H4 : (restricts to model S b)) absurd

? : restricts to model (Not S) b

From H3 we obtain a binding t that is the result of restricting b to the signature

of S. Since Not S has the same signature as S, our goal reduces to showing:

?1 : (S:2 t)) absurd

Appendix A. Proof Descriptions 170

To prove this we assume S:2 t. From this we can show that b is a restricting

model of S, since we know that t is obtained by restricting b to the signature of

S. Hypothesis H4 then allows us to prove absurd. ut

We discharge all our global assumptions at this point.

A.2.2 The hiding operations

Proof 13 Hide preserves well formedness.

Goal:

8 s :Signature: 8 S :Schema: (Well formed S)) (Well formed (Hide s S))

We introduce a signature s, a schema S, and a hypothesis H stating that S is

well-formed. We must now show the following:

? : unique idents (Hide S):1

?1 : Down closed (Hide S)

?2 : Up closed (Hide S)

It is easy to show that the hide sig operation preserves the property unique idents.

The proofs of subgoals ?1 and ?2 are similar, so we shall only describe the latter.

By expanding definitions, and doing introductions, we obtain the following

proof state:

b : Binding

H1 : 9 b0 :Binding: ((restrict b (hide sig s S:1)) = in2 b0) ^

(9 b00 :Binding: (is true (matches s b00)) ^ (S:2 (join bin b00 b0)))

?3 : 9 b0 :Binding: (is true (matches s b0)) ^ (S:2 (join bin b0 b))

By existential elimination on hypothesis H1, we obtain two bindings b0 and b00.

We use b00 as a witness in proving goal ?3. We must now show:

?4 : is true (matches s b00)

?5 : S:2 (join bin b00 b)

Appendix A. Proof Descriptions 171

We know from hypothesis H1 that b00 matches s, so goal ?4 is taken care of. Since

S is up-closed, we can prove goal ?5 by showing that join bin b00 b is a restricting

model of S:

?6 : 9 b1 :Binding: (restrict (join bin b00 b1) S:1 = in2 b1) ^ (S:2 b1)

We now use Lemma 33 which allows us to deduce from that join bin b00 b0 can

be successfully restricted to the signature of S. We then use the fact that S is

down-closed to show that the binding join bin b00 b0 is a restricting model of S.

By existential elimination on this we get:

b1 : Binding

H2 : restrict (join bin b00 b0) S:1 = in2 b1

H3 : S:2 b1

We use the binding b1 as a witness for proving goal ?6. We know from hypothesis

H3 that b1 satisfies the property of S. Lemma 34 enables us to prove the remaining

subgoal. ut

A.3 Include

Proof 14 Include equals And2.

Goal:

8 S :Schema: 8 sig :Signature: 8 P :Predicate:

(unique idents S:1) ^ (unique idents sig) ^ (type compatible S:1 sig))

Include S sig P = And S (join S:1 sig; P)

We introduce a schema S, a signature sig, a predicate P, and three hypo-

theses H, H1, and H2. We must now show that Include S sig P is equal to

And S (join S:1 sig; P). These two schemas have exactly the same predicate

(�b : Binding: (S:2 b) ^ (P b)), so all that is required is to prove that their

signatures are the same. Lemma 19 shows that this is indeed the case. ut

Appendix A. Proof Descriptions 172

A.4 Proofs of theorems in Chapter 6

We assume that we have a well-formed schema, S which has a static signature:

S : Schema

H : Up closed S

H1 : Down closed S

H2 : unique idents S:1

H3 : static sig S:1

Proof 15 Prime down closed.

Goal: Down closed (Prime S)

By expanding definitions and doing introductions we transform the goal to:

b : Binding

H4 : S:2 (post bin b)

H5 : succeeds (restrict b (Prime S):1)

? : 9 b1 :Binding: (restrict b (Prime S):1) ^ (S:2 (post bin b1))

From H5 we obtain a binding b1 with at proof that this is equal to the restriction

of b to the signature of Prime S. We shall show that post bin b1 satisfies the pre-

dicate S:2. Since we know that S is down-closed, we can infer from hypothesis

H4 that post bin b is a restricting model of S. Lemma 31 enables us to prove that

post bin b1 is the binding obtained by restricting post bin b to the signature of

S. Since post bin b is a restricting model of S, its restriction to S:1 must satisfy

the predicate of S. ut

Proof 16 Prime restricting model char.

Goal:

8 b :Binding:

restricts to model S (post bin b)() restricts to model (Prime S) b

Appendix A. Proof Descriptions 173

We introduce a binding b. First we must show that if post bin b is a restricting

model of S, then b is a restricting model of Prime S. We transform the proof state

to:

b1 : Binding

H4 : restrict (post bin b) S:1 = in2 b1

H5 : S:2 b1

? : 9 b2 : (restrict b (decorate sig pr S:1) = in2 b2) ^ (S:2 (post bin b2)):

We shall use the binding decorate bin pr b1 as the witness to prove the goal ?.

Lemma 32 shows us that this binding is indeed obtained by restricting b to the

signature decorate sig pr S:1. We are left to show:

?1 : S:2 (post bin (decorate bin pr b1))

Lemma 30 tells us that decorate bin is the right inverse of post bin, so this

reduces to showing that b1 satisfies the predicate S:2. This is hypothesis H5.

This completes the forward half of the proof.

Next, we must show that if b is a restricting model of Prime S, then post bin b

is a restricting model of S. By means of introductions and eliminations we

transform the proof state to the following:

b1 : Binding

H4 : restrict b (Prime S):1 = in2 b1

H5 : (Prime S):2 b1? : 9 b2 :Binding: (restrict (post bin b) S:1 = in 2 b2) ^ (S:2 b2)

We use the binding post bin b1 as the witness in proving this goal. Lemma 31

tells us that this is the binding obtained by restricting post bin b to the signature

of S. Hypothesis H5 tells us that this binding has the property S:2. ut

Proof 17 Xi preserves well formedness.

Goal: Well formed (Xi S)

The Xi operation is defined in terms of Include. We shall prove the goal by

using Theorem 41, which gives conditions for Include to produce well-formed

Appendix A. Proof Descriptions 174

schemas. The proof is reduced to the following subgoals:

? : Well formed (Delta S)

?1 : type compatible (Delta S):1 nil sig

?2 : Well formed (join (Delta S:1) nil sig;

�b :Binding: restrict b S:1 = restrict (post bin b) S:1)

To prove goal ? we use Theorem 48 which states that Delta preserves well-

formedness. All signatures are type-compatible with nil sig, so goal ?1 is proved.

Since S:1 has unique identifiers, and Delta preserves this property, we can show

that the the signature join (Delta S:1) nil sig also has unique identifiers. We are

left with having to show down-closure and up-closure for the schema in Goal

?2. The proofs of both properties are similar, so we shall only describe the proof

of down-closure.

Since (Delta S):1 has unique identifiers, we can use Lemma 20 to simplify the

signature of the schema. We then do introductions and eliminations to obtain

the following proof context:

b; b1 : Binding

H4 : restrict (post bin b) S:1 = restrict b S:1

H5 : restrict b (Delta S):1 = in2 b1

? : 9 b2 :Binding: (restrict b (Delta S):1 = in2 b2) ^

(restrict (post bin b2) S:1 = restrict b2 S:1)

We use the binding b1 as a witness to prove this goal. The goal becomes:

?1 : restrict (post bin b1) S:1 = restrict b1 S:1

We prove this by rewritings and other manipulations involving Lemmas 24, 27,

26, 31 and 25. ut

Appendix B

Lemmas

B.1 Functions used in the main encoding

B.1.1 Lemmas about lookup

Lemma 5 lookup x equals x.

8 b :Binding: 8 s : sig item: 8 z :Ztype: 8 v :Typ z:

(lookup s b = in2 (z; v))) (s:2 = z)

Lemma 6 lookup success lemma.

8 x : sig item: 8 b :Binding: (succeeds (lookup x b)))

9 y :Typ x:2: lookup x b = (x:2; y)

Lemma 7 lookup member equiv.

8 x : sig item: 8 b :Binding:

(succeeds (lookup x b))() (is true member sig item eq x (extract sig b))

Lemma 8 lookup orig is lookup undecorated post.

8 b :Binding: 8 x : sig item:

(last decoration x:1:2 = prime))

(lookup x b = lookup (undecorate item x) (post bin b))

175

Appendix B. Lemmas 176

B.1.2 Lemmas about restrict

Lemma 9 restrict to tail.

8 sig :Signature: 8 x : sig item: 8 b :Binding:

succeeds (restrict b (cons x sig))) succeeds (restrict b sig)

Lemma 10 restrict equals sig.

8 sig :Signature: 8 b :Binding:

(case � :Error: trueProp

�b0 :Binding: extract sig b0 = sig

(restrict b sig))

Lemma 11 member restrict implies member orig.

8 sig :Signature: 8 b :Binding: 8 x : sig item:

case � :Error: trueProp

�b0 :Binding: (is true (member x (extract sig b0))))

(is true (member x (extract sig b)))

(restrict b sig)

Lemma 12 restrict works then lookup works.

8 sig :Signature: 8 b :Binding: 8 x :bin item:

(is true (member sig item eq x sig)))

(succeeds (restrict b sig))) (succeeds (lookup x b))

Lemma 13 restrict larger binding.

8 sig :Signature: 8 b :Binding: 8 x :bin item:

succeeds (restrict b S)) succeeds (restrict (cons x) S)

Lemma 14 restrict own sig.

8 b :Binding: succeeds (restrict b (extract sig b))

Appendix B. Lemmas 177

Lemma 15 restrict own sig2.

8 b :Binding: unique idents (extract sig b))

restrict b (extract sig b) = in2 b

Lemma 16 restrict matching sig.

8 sig :Signature: 8 b :Binding:

is true (matches sig b)) succeeds (restrict b sig)

Lemma 17 restriction matches.

8 sig :Signature: 8 b :Binding:

(succeeds (restrict b sig))) is true (case � :Error: false

�b0 :Binding:matches sig b0

(restrict b sig))

Lemma 18 lookup restrict equals lookup orig.

8 Sig :Signature: 8 x : sig item: 8 b; c :Binding:

(restrict b Sig = in2 c))

(is true (member sig item eq x Sig)))

lookup x b = lookup x c

B.1.3 Lemmas about join

Lemma 19 join twice left.

8 sig; sig0 :Signature: (type compatible sig sig0))

(unique idents sig)) (unique idents sig0))

join sig (join sig sig0) = join sig sig0

Lemma 20 join s nil.

8 sig :Signature: (unique idents sig)) join s nil sig = s

Appendix B. Lemmas 178

Lemma 21 join cons cases.

8 sig; sig0 :Signature: 8 x : sig item:

(join (cons x sig) sig0 = join sig sig0) _

(join (cons x sig) sig0 = cons x (join sig sig0))

Lemma 22 join has unique idents.

8 sig; sig0 :Signature: (unique idents sig) ^ (unique idents sig0))

(unique idents (join sig sig0))

Lemma 23 restrict join.

8 sig; sig0 :Signature: 8 b :Binding:

(succeeds (restrict b sig))) (succeeds (restrict b sig0)))

succeeds (restrict b (join sig sig0))

Lemma 24 restrict join l.

8 sig; sig0 :Signature: 8 b :Binding:

(type compatible sig sig0))

(unique idents sig)) (unique idents sig0))

(succeeds (restrict b sig))) (succeeds (restrict b sig0)))

case (� :Error: absurd)

(�b0 :Binding: restrict b0 sig = restrict b sig)

(restrict b (join sig sig0))

Lemma 25 restrict join r.

8 sig; sig0 :Signature: 8 b :Binding:

(unique idents sig)) (unique idents sig0))

(succeeds (restrict b sig))) (succeeds (restrict b sig0)))

case (� :Error: absurd)

(�b0 :Binding: restrict b0 sig0 = restrict b sig0)

(restrict b (join sig sig0))

Appendix B. Lemmas 179

Lemma 26 restrict join back r.

8 sig; sig0 :Signature: 8 b :Binding:

(succeeds (restrict b (join sig sig0)))) succeeds (restrict b sig0)

Lemma 27 restrict join back l.

8 sig; sig0 :Signature: 8 b :Binding:

(type compatible sig sig0))

(unique idents sig)) (unique idents sig0))

(succeeds (restrict b (join sig sig0)))) succeeds (restrict b sig)

Lemma 28 restrict twice lemma.

8 s :Signature: 8 b :Binding: (unique idents s))

case (� :unit: trueProp)

(�b0 :Binding: restrict b0 s = restrict b s)

(restrict b S)

Lemma 29 restrict split lemma.

8 s; t :Signature: 8 b; b1; b2; b3 :Binding:

(restrict b s = in2 b1))

(restrict b1 t = in2 b3))

(restrict b t = in2 b2))

b2 = b3

B.1.4 Lemmas about post bin

Lemma 30 post bin inverse decorate bin.

8 b :Binding: post bin (decorate bin pr b) = b

Lemma 31 post bin restrict decorated lemma.

8 sig :Signature: 8 b1; b2 :Binding:

(restrict b1 (decorate sig pr sig) = in2 b2))

(restrict (post bin b) sig = in2 (post bin b0))

Appendix B. Lemmas 180

Lemma 32 restrict post bin decorate lemma.

8 sig :Signature: 8 b1; b2 :Binding:

(restrict (post bin b) sig = in2 b2))

(restrict b1 (decorate sig pr sig) = in2 (decorate bin pr b2))

B.1.5 Lemmas about join bin

Lemma 33 join bin lemma1.

8 s; t :Signature: 8 b; b1; b2 :Binding:

(restrict b (hide sig s t) = in2 b1))

(is true (matches s b2)))

(succeeds (restrict (join bin b2 b1) t))

Lemma 34 join bin lemma2.

8 s; t :Signature: 8 b; b1; b2; b3 :Binding:

(restrict b (hide sig s t) = in2 b1))

(restrict (join bin b2 b1) t = in2 b3))

(restrict (join bin b2 b) t = in2 b3)

B.1.6 Other lemmas

Lemma 35 type compatible sym.

8 s; t :Signature: (unique idents s) ^ (unique idents t))

(type compatible s t () type compatible t s)

Lemma 36 unequal sigs thm1.

8 S; T :Schema: ((is false (sig eq S:1 T:1)) ^ (Equiv1 S T)))

8 b :Binding::(exactly models S b)

Appendix B. Lemmas 181

Lemma 37 unequal sigs thm2.

8 S; T :Schema: ((is false (sig eq S:1 T:1)) ^ (Equiv1 S T)))

8 b :Binding::(exactly models T b)

Lemma 38 restricting models restrict.

8 S :Signature: 8 b :Binding:

(restricts to model S b)) (succeeds (restrict b S:1))

B.2 Sets and Functions

This file shows an extract from a library of lemmas about finite sets and relations

encoded as lists. The lemmas shown are those that have been used in proving

Theorem 51 of Chapter 7.

Assume z; z0 : Ztype; eq : (Typ z)!(Typ z)!bool;

eq0 : (Typ z0)!(Typ z0)!bool.

Lemma 39 Set eq refl. 8 s :Typ (finset ty z): is true (Set eq eq s s)

Lemma 40 Set eq sym. 8 s; t :Typ (finset ty z): (Set eq eq s t) = (Set eq eq t s)

Lemma 41 Set eq trans. 8 s; t; u :Typ (finset ty z):

(is true (Set eq eq s t))) (is true (Set eq eq t u))) (is true (Set eq eq s u))

Lemma 42 Union resp Set eq. 8 s; t; u; v :Typ (finset ty z):

(is true (Set eq eq s t))) (is true (Set eq eq u v)))

(is true (Set eq eq (Union eq s u) (Union eq t v)))

Lemma 43 Fun eq sym. 8 s; t :Typ (fun ty z z0): Fun eq eq eq0 s t = Fun eq eq eq0 t s

Lemma 44 Dom resp Fun eq. 8 s; t :Typ (fun ty z z0):

(is true (Fun eq eq eq0 s t))) (is true (Set eq eq (Dom s) (Dom t)))

Appendix B. Lemmas 182

Lemma 45 Dom Union lemma. 8 s; t :Typ (fun ty z z0):

(is true (Set eq eq (Dom (FunUnion eq eq0 s t)) (Union eq (Dom s) (Dom t))))

Discharge z; z0; eq; eq0.

Appendix C

Function definitions

C.1 General function definitions

This is the elimination rule for the inductive type Ztype.

Definition 54 Ztype elim.

Ztype elim : � F :Ztype!Type:

(F nat ty)!

(F bool ty)!

(� x :GivenType: F (given ty x))!

(� z :Ztype: (F z)!(F (finset ty z)))!

(� z; z1 :Ztype: (F z)!(F z1)!(F (prod ty z z1)))!

(� z :Ztype: F z)

We define a reduced form of the elimination rule Ztype elim.

183

Appendix C. Function definitions 184

Definition 55 Ztype dep enum.

Ztype dep enum
def
= [omitted]

: � F :Ztype!Type:

(F nat ty)!

(F bool ty)!

(� x :GivenType: F (given ty x))!

(� z :Ztype: F (finset ty z))!

(� z; z1 :Ztype: F (prod ty z z1))!

(� z :Ztype: F z)

Definition 56 Error.

Error
def
= unit : Type

error
def
= void : Error

Definition 57 succeeds,fails.

succeeds
def
= is in1 j Error : � t jType: (Error + t)!Prop

fails
def
= is in2 j Error : � t jType: (Error + t)!Prop

When applied to a signature item x, and a signature, sig, mem and comp

returns a pair of booleans. The first of these is equal to true if the identifier x:1

occurs in sig, and is false otherwise. The second boolean is equal to false if the

first occurence of x:1 in sig is paired with a Ztype that is unequal to x:2, and is

true otherwise.

Definition 58 mem and comp.

mem and comp
def
= �x : sig item:

list rec (false; true)

(�h : sig item: � :Signature: �prev :bool � bool:

if (Ident eq x:1 h:1)

(true;Ztype eq x:2 h:2)

prev)

: sig item!Signature!(bool � bool)

Appendix C. Function definitions 185

Definition 59 type compatible fun.

tcf aux
def
= �s; t :Signature:

list iter (t; true)

(�n : sig item: �prev :Signature� bool:

[tmp = mem and comp n prev:1]

if tmp:1

(if tmp:2 prev (prev:1; false))

(cons n prev:1; prev:2))

type compatible fun
def
= �s; t :Signature: (tcf aux s t):2

: Signature!Signature!bool

Definition 60 hide sig.

hide sig
def
= �sig :Signature:

list iter nil sig

(�h : sig item: �prev :Signature:

if (member sig item eq h sig) prev (cons h prev))

: Signature!Signature!Signature

Definition 61 remove occurs.

remove occurs
def
= �sig :Signature:

list rec nil bin

(�h :bin item: � ; prev :Binding:

if (member sig item ident eq h:1 sig) prev (cons h prev))

: Signature!Binding!Binding

Appendix C. Function definitions 186

Definition 62 Apply.

Apply
def
= � z1; z2 jZtype:� eq : (Typ z1)!(Typ z2)!bool:

�r :Typ (Rel z1 z2): �x :Typ z1:

list iter (in1 error)

(�h :Typ (prod ty z1 z2): �prev :Error + (Typ z2):

if (eq x h:1) (in2 h:2) prev)

r

: � z; z0 jZtype:� eq : (Typ z)!(Typ z)!bool:

(Typ (Rel z z0))!(Typ z)!(Error + (Typ z0))

Definition 63 mk sum bin item, msbi.

mk sum bin item
def
= �i : Ident: case (� :Error: in1 error)

(�n : small item: in2 ((i; n:1); n:2))

: (Error + small item)!(Error + small item)

msbi
def
= mk sum bin item

C.2 Wrapper functions

In this section we explain how to define the wrapper functions referred to in

Section 3.5.6. We first define a more general version of the type small item:

Definition 64 pre small item.

pre small item
def
= �F :Ztype!Ztype: (� z :Ztype:Typ (F z))

: (Ztype!Ztype)!Type

Next, we define wrappers specific to each of the various constructors for

Ztype. As examples, we display the wrappers for nat ty and for finset ty z.

Appendix C. Function definitions 187

Definition 65 pre nat wrap.

pre nat wrap
def
= �F :Ztype!Ztype: � out jType:

�f : (Typ (F nat ty))!(Error + out):

sigma rec

(Ztype dep enum

(�z :Ztype: (Typ (F z))!(Error + out))

(�n :Typ (F nat ty): f n)

(� :Typ (F bool ty): in1 error)

(�g :GivenType: � :Typ (F (given ty g)): in1 error)

(�z :Ztype: � :Typ (F (finset ty z)): in1 error)

(�z; z1 :Ztype: � :Typ (F (prod ty z z1)): in1 error))

: � F :Ztype!Ztype:� out jType:

((Typ (F nat ty))!(Error + out))!((pre small item F)!(Error + out))

Appendix C. Function definitions 188

Definition 66 pre finset wrap.

pre finset wrap
def
=

�z :Ztype:

�z wrap :� F :Ztype!Ztype:� out :Type:

((Typ (F z))!(Error + out))!((pre small item F)!(Error + out)):

�F :Ztype!Ztype: � out jType:

�f : (Typ (F (finset ty z)))!(Error + out):

sigma rec

(Ztype dep enum

(�z :Ztype: (Typ (F z))!(Error + out))

(�n :Typ (F nat ty): in1 error)

(� :Typ (F bool ty): in1 error)

(�g :GivenType: � :Typ (F (given ty g)): in1 error)

(�z1 :Ztype: � :Typ (F (finset ty z)):

z wrap (�x :Ztype: F (finset ty x)) f (z1; x))

(�z1; z2 :Ztype: � :Typ (F (prod ty z1 z2)): in1 error))

: � z :Ztype:

� z wrap :� F :Ztype!Ztype:� out :Type:

((Typ (F z))!(Error + out))!((pre small item F)!(Error + out)):

� F :Ztype!Ztype:� out jType:

((Typ (F nat ty))!(Error + out))!((pre small item F)!(Error + out))

The other wrappers, pre bool wrap, pre given wrap, pre fun wrap, and pre prod wrap

are defined in a similar manner.

We then define a general wrapper, which works for all Ztypes, which uses

the elimination rule on Ztypes to select the correct specific wrapper to be applied

in a given case.

Appendix C. Function definitions 189

Definition 67 pre wrap.

pre wrap
def
= Ztype elim

(�z :Ztype: �F :Ztype!Ztype: � out jType:

((Typ (F z))!(Error + out))!(pre small item F)!(Error + out))

pre nat wrap

pre bool wrap

pre given wrap

pre finset wrap

pre prod wrap

: � z :Ztype:� F :Ztype!Ztype:� out jType:

((Typ (F z))!(Error + out))!((pre small item F)!(Error + out))

The general wrapper, pre wrap, is then used to define various wrapper

functions for specific situations. For example, the following is the wrapper

which is commonly used for unary functions on Ztypes.

Definition 68 wrap.

wrap
def
= �z; z1 :Ztype: �f : (Typ z)!(Typ z1):

case (� :Error: in1 error)

(sigma rec

(�z2 :Ztype: �x :Typ z2:

pre wrap

z (�y :Ztype: y) (�y :Typ z: in2 (z1; (f x))) (z2; x)))

: � z; z1 :Ztype: ((Typ z)!(Typ z1))!

((Error + small item)!(Error + small item))

The next function is a more general wrapper for unary functions, Here, only

the domain of the wrapped function is required to be a Ztype.

Appendix C. Function definitions 190

Definition 69 wrap 1.

wrap1
def
= �z :Ztype: � out jType: �f : (Typ z)!out:

case (� :Error: in1 error)

(sigma rec

(�z1 :Ztype: �x :Typ z1:

pre wrap z (�y :Ztype: y) (�y :Typ z: in2 (f x)) (z1; x)))

: � z :Ztype:� out jType: ((Typ z)!out)!

((Error + small item)!(Error + out))

Next, we define a wrapper for partial, unary functions on Ztypes. Failure

of the wrapped function, when applied to an argument of the correct Ztype, is

identified with the case where the wrapped function is applied to an argument

of the wrong Ztype.

Definition 70 wrap2.

wrap2
def
= �z; z1 :Ztype: �f : (Typ z)!(Error + (Typ z1)):

case (� :Error: in1 error)

(sigma rec (�z2 :Ztype: �x :Typ z2:

pre wrap z

(�y :Ztype:y)

(�y :Typ z: case (� :Error: in1 error)

(�v :Typ z1: in2 (z1; v))

(f y))

(z2; x)))

: � z; z1 :Ztype: ((Typ z)!(Error + (Typ z1)))!

((Error + small item)!(Error + small item))

Next we define a wrapper for predicates over Ztypes (i.e. functions of type

(Typ z)!Prop, for some Ztype, z). This wrapper returns the value absurd if the

wrapped predicate is applied to an argument of the wrong Ztype.

Appendix C. Function definitions 191

Definition 71 Pwrap.

Pwrap
def
= �z :Ztype: �P : (Typ z)!Prop: �x :Error + small item:

case (� :Error: absurd

(�p :Prop: p)

(wrap1 z P x))

: � z :Ztype: ((Typ z)!Prop)!((Error + small item)!Prop)

Finally, we define wrappers for two-argument and three-argument functions

on Ztypes.

Definition 72 double wrap.

double wrap
def
= �z; z1; z2 :Ztype:

�f : (Typ z)!(Typ z1)!(Typ z2):

�x; y :Error + small item:

case (� :Error: in1 error)

(�g : (Typ z1)!(Typ z2):wrap z1 z2 g y)

(wrap1 z f x)

: � z; z1; z2 :Ztype: ((Typ z)!(Typ z1)!(Typ z2))!

((Error + small item)!(Error + small item)!(Error + small item))

Definition 73 triple wrap.

triple wrap
def
= �z; z1; z2; z3 :Ztype:

�f : (Typ z)!(Typ z1)!(Typ z2)!(Typ z3):

�w; x; y :Error + small item:

case (� :Error: in1 error)

(�g : (Typ z1)!(Typ z2)!(Typ z3): double wrap z1 z2 z3 g x y)

(wrap1 z f x)

: � z; z1; z2; z3 :Ztype: ((Typ z)!(Typ z1)!(Typ z2)!(Typ z3))!

((Error + small item)!(Error + small item)!

(Error + small item)!(Error + small item))

Appendix C. Function definitions 192

C.2.1 Lemmas about wrapper functions

We show that when a wrapped version of a function is applied to an argument of

the correct Ztype, the value returned is indeed that computed by the unwrapped

version of the function. We prove similar results for all the wrappers.

Lemma 46. wrap lemma

8 z; z1 :Ztype: 8 f : (Typ z)!(Typ z1): 8 v :Typ z:

wrap z z1 f (in2 (z; v)) = in2 (z1; (f v))

Proof. Omitted.

C.2.2 Wrapped versions of functions

Definition 74 IS TRUE.

IS TRUE
def
= Pwrap bool ty is true

: (Error + small item)!Prop

Definition 75 IS FALSE.

IS FALSE
def
= Pwrap bool ty is false

: (Error + small item)!Prop

Definition 76 ALREADY KNOWN.

ALREADY KNOWN
def
= in2 (given ty Report ty; already known)

: Error + small item

Definition 77 LT.

LT
def
= double wrap nat ty nat ty bool ty lt

: (Error + small item)!(Error + small item)!(Error + small item)

Appendix C. Function definitions 193

Definition 78 PLUS.

PLUS
def
= double wrap nat ty nat ty nat ty plus

: (Error + small item)!(Error + small item)!(Error + small item)

Definition 79 NULL.

NULL
def
= � z jZtype: in2 (finset ty z;Null j z)

: � z jZtype: Error + small item

Definition 80 SINGLE.

SINGLE
def
= � z jZtype:wrap z (finset ty z) (Single j z)

: Ztype!(Error + small item)!(Error + small item)

Definition 81 EQUAL.

EQUAL
def
= � z jZtype:

double wrap z z bool ty (Equal z)

: � jZtype: (Error + small item)!(Error + small item)!(Error + small item)

Definition 82 PAIR.

PAIR
def
= � z; z0 jZtype:

double wrap z z0 (prod ty z z0)

(�x :Typ z: �y :Typ z0: (x; y))

: � z; z0 jZtype: (Error + small item)!(Error + small item)!(Error + small item)

Definition 83 UNION.

UNION
def
= � z jZtype: � eq j(Typ z)!(Typ z)!bool:

double wrap (finset ty z) (finset ty z) (finset ty z) (Union eq)

: � z jZtype: ((Typ z)!(Typ z)!bool)!

(Error + small item)!(Error + small item)!(Error + small item)

Appendix C. Function definitions 194

Definition 84 IN.

IN
def
= � z jZtype: � eq j(Typ z)!(Typ z)!bool:

double wrap z (finset ty z) bool ty (In eq)

: � z jZtype: ((Typ z)!(Typ z)!bool)!

(Error + small item)!(Error + small item)!(Error + small item)

Definition 85 FUN SINGLE.

FUN SINGLE
def
= � z1; z2 jZtype:

double wrap z1 z2 (fun ty z1 z2) (FunSingle j z1 j z j 2)

: Ztype!Ztype!

(Error + small item)!(Error + small item)!(Error + small item)

Definition 86 FUN UNION.

FUN UNION
def
= � z1; z2 jZtype:

� eq j(Typ z1)!(Typ z1)!bool: � eq j(Typ z2)!(Typ z2)!bool:

double wrap (fun ty z1 z2) (fun ty z1 z2) (fun ty z1 z2) (FunUnion eq1 eq2)

: � z1; z2 jZtype: ((Typ z1)!(Typ z1)!bool)!((Typ z2)!(Typ z2)!bool)

(Error + small item)!(Error + small item)!(Error + small item)

Definition 87 DOM.

DOM
def
= � z1; z2 jZtype:wrap (fun ty z1 z2)(finset ty z1) (Dom j z1 j z2)

: Ztype!Ztype!

(Error + small item)!(Error + small item)!(Error + small item)

Definition 88 FOR.

FOR
def
= � t jType: �x : t: �f :nat! t! t:wrap1 nat ty (nat rec x f)

: � t jType: t!(nat! t! t)!(Error + small item)!(Error + t)

Definition 89 NIL BIN.

NIL BIN
def
= in2 nil bin

: Error + Binding

Appendix C. Function definitions 195

Definition 90 PAIR BIN.

PAIR BIN
def
=

case (� :Error: � :Error + Binding: in1 error)

(�b1 :Binding: case (� :Error: in1 error)

(�b2 :Binding: in2 (b1; b2)))

: � t jType: (Error + Binding)!(Error + Binding)!(Error + Binding)

Definition 91 CONS BIN.

CONS BIN
def
=

case (� :Error: � :Error + Binding: in1 error)

(�x :bin item: case (� :Error: in1 error)

(�b :Binding: in2 (cons x l)))

: � t jType: (Error + bin item)!(Error + Binding)!(Error + Binding)

Definition 92 IF.

IF
def
= � t jType:

case (� :Error: � ; :Error + t: in1 error)

(�b :bool: �x; y :Error + t: if b x y)

: � t jType: (Error + bool)!(Error + t)!(Error + t)!(Error + t)

Definition 93 APPLY.

APPLY
def
=

� z; z0 jZtype: �eq : (Typ z)!(Typ z)!bool: �x; y :Error + small item:

case (� :Error: in1 error)

(�f : (Typ z)!(Error + small item):wrap2 z z0 f y)

(wrap1 (fun ty z z0) (Apply j z j z0 eq) x)

: � z1; z2 jZtype:� eq j(Typ z1)!(Typ z1)!bool:

(Error + small item)!(Error + small item)!(Error + small item)

Appendix D

LEGO library functions and lemmas

This appendix lists all the definitions and lemmas taken from the LEGO library

which are mentioned in this thesis. The LEGO library was collated from the

private libraries of the members of the LEGO club at the LFCS so it is impossible

to pinpoint the origins of these definitions.

trueProp
def
= 8 P :Prop: P) P

: Prop

bool rec
def
= [omitted] : � T jType: T!T!(bool!T)

is true
def
= �b :bool: b = true

: bool!Prop

is false is defined analogously to is true.

if
def
= � t jType: �b :bool: �x; y : t: bool rec x y b

: � t jType: bool! t! t! t

andalso
def
= �a; b :bool: if a b false

: bool!bool!bool

orelse
def
= �a; b :bool: if a true b

: bool!bool!bool

196

Appendix D. LEGO library functions and lemmas 197

inv
def
= �b :bool: if b false true

: bool!bool

nat iter
def
= [omitted] : � t jType: t!(t! t)!(nat! t)

nat rec
def
= [omitted] : � t jType: t!(nat! t! t)!(nat! t)

lt
def
= nat iter (nat iter false (� :bool: true))

(�f :nat!bool: nat rec false (�x :nat: � :bool: f x))

: nat!nat!bool

plus
def
= �m; b :nat: nat iter n suc m

: nat!nat!nat

list iter
def
= [omitted] : � s; t jType: t!(s! t! t)!((list s)! t)

list rec
def
= [omitted] : � s; t jType: t!(s!(list s)! t! t)!((list s)! t)

member
def
= [omitted] : � t jType: (t! t!bool)! t!(list t)!bool

case
def
= [omitted] : � s; t; u jType: (s!u)!(t!u)!((s + t)!u)

is in1
def
= � s; t jType: �x : s + t: 9 y :z: in1 y = x

: � s; t jProp: (s + t)!Prop

is in2 is defined analogously to is in1.

in1 not in2 : 8 s; t :Type: 8 x : s::(is in2 (in1 x))

sigma rec
def
= [omitted]

: � S jType:� F jS!Type:� T jType:

(� x :S: (F x)!T)!((� y :A: F y)!T)

Appendix D. LEGO library functions and lemmas 198

D.1 The logic of LEGO

The LEGO library provides an encoding an intuitionistic, higher-order logic into

the type theory UTT. For completeness, we show the definitions that make up

this encoding.

8 is encoded as �.

) is encoded as!.

9
def
= � T jType:� P :T!Prop: 8Q :Prop: (8 t :T: (P t)) Q)) Q

: � T jType: (T!Prop)!Prop

absurd
def
= 8 P :Prop: P

: Prop

^
def
= �P;Q :Prop: 8 R :Prop: (P) Q) R)) R

: Prop!Prop!Prop

_
def
= �P;Q :Prop: 8 R :Prop: (P) R)) (Q) R)) R

: Prop!Prop!Prop

:
def
= �P :Prop: P) absurd

: Prop!Prop

Appendix E

Correctness of the Representation

In this appendix we discuss the relationship between our representation of Z

and the semantics for Z proposed by Spivey [Spi88].

We have said that Z0 is a sublanguage of Z: we now make this statement

precise by showing how to embed the syntax of Z0 into (the sublanguage of)

Z that is treated in Spivey’s semantics. It is necessary for us to extend Z with

definitions of finite sets, natural numbers, and booleans. With the exception of

the latter, these are all part of the library described in the ZRM.

We then state what it means for our semantics for Z0 to be sound with respect

to Spivey’s semantics for Z. We conjecture that this is indeed the case, and

discuss what is involved in proving this result.

E.1 Translating Z0 to Z

The translation rules (figures E–1 and E–2) are straightforward. The Z0 phrase

classes PRELUDE, MAINSPEC and SPEC are all translated to the Z phrase class

SPEC. The Z0 phrase classes TYPE and TERM are both translated to the Z phrase

class TERM. All the other terms in Z0 remain the same when translated, except

for the include schema expression which must be treated specially.

199

Appendix E. Correctness of the Representation 200

Specification [] : SPECZ0 !SPECZ

[prelude in mainspec] = [prelude] in [mainspec]

Prelude [] : prelude
Z0
!SPECZ

[given ident1,: : : ,identn] = given ident1 ,: : : ,identn

Main specification [] : mainspec
Z0
!SPECZ

[let schema end] = let [schema] end

[let word = sexp] = let [word] = [sexp]

[mainspec in mainspec] = [mainspec] in [mainspec]

Schema [] : SCHEMAZ0!SCHEMAZ

[decl | pred] = [decl] | [pred]

Declaration [] : DECLZ0!DECLZ

[ident : type] = ident : [type]

[decl ; decl] = [decl] ; [decl]

Type [] : TYPEZ0!TERMZ

[N] = N

[B] = B

[ident] = ident

[F type] = F [type]

[type1�type2] = [type1]�[type2]

Term [] : TERMZ0!TERMZ

[ident] = ident

[; [type]] = ; [[type]]

[fterm1,: : :,termng] = f[term1],: : :,[termn]g

[(term1,term2)] = ([term1],[term2])

[term1(term2)] = [term1]([term2])

Figure E–1: Translating Z0 to Z

Appendix E. Correctness of the Representation 201

Schema expression [] : SEXPZ0!SEXPZ

[schema schema end] = schema [schema] end

[sdes] = sdes

[: sexp] = : [sexp]

[sexp1 ^ sexp2] = [sexp1] ^ [sexp2]

[sexp1 _ sexp2] = [sexp1] _ [sexp2]

[sexp1) sexp2] = [sexp1]) [sexp2]

[sexp n (ident1,: : :,identn)] = [sexp] n (ident1,: : :,identn)

[9 schema � sexp] = 9 [schema] � [sexp]

[8 schema � sexp] = 8 [schema] � [sexp]

[include sdes decl pred] = schema sdes : [decl] | [pred] end

Predicate [] : PREDZ0!PREDZ

[term1 = term2] = [term1] = [term2]

[term1 2 term2] = [term1] 2 [term2]

[true] = true

[false] = false

[: pred] = : [pred]

[pred1 ^ pred2] = [pred1] ^ [pred2]

[pred1 _ pred2] = [pred1] _ [pred2]

[pred1) pred2] = [pred1]) [pred2]

[9 ident : type � pred] = 9 ident : [type] � [pred]

[8 ident : type � pred] = 8 ident : [type] � [pred]

IDENT, WORD, DECOR and SDES are identical in Z and Z0 .

Figure E–2: Translating Z0 to Z

Appendix E. Correctness of the Representation 202

E.2 Soundness property

The following extract from [Spi88] explains how to give meaning to sequents

of the form SEXP ` PRED. (We have added the subscript “Spi” to Spivey’s

semantic brackets to distinguish them from our own.)

Given an environment � obtained by evaluating a Z specification,

we can say whether such a sequent is valid or invalid: the sequent

se ` p

is valid if and only if, in the environment � enriched with se, every

model of the global variety satisfies p. Formally, if

�1 = enrich(�; sexp � 1 [[se]]Spi);

then the sequent is valid in � if and only if

pred �1 1 [[p]]Spi = �1:global:models:

The objects and operations of Spivey’s semantics that are used here (varieties,

environments, enrich, sexp, pred, etc) are described in Section 3.3 and defined

fully in [Spi88].

In our semantics we also give a meaning to sequents. Given a UTT environ-

ment E, obtained by translating a Z specification, we say that a sequent

se ` p

is provable if and only if we can prove in UTT, using only the axioms of E, that

all restricting models of the Schema, S, obtained by evaluating se in E satisfy

the predicate obtained by evaluating p over the signature S:1. Formally this is

stated as follows:

Has prop [[se; E]] [[p; [[se; E]]:1]]

Soundness statement We believe that our semantics for Z0 is sound with

respect to Spivey’s semantics for Z, in the following sense:

Appendix E. Correctness of the Representation 203

For any Z0 MAINSPEC mainspec, SEXP sexp, and PRED pred, if the

sequent sexp ` pred is provable in the UTT environment obtained

by translating mainspec, then the sequent [sexp] ` [pred] is valid

in the environment obtained by evaluating [mainspec] according to

Spivey’s semantics.

We conjecture that the soundness statement above is true. We do not attempt

to give a complete formal proof of this because of the magnitude of the task; this

is an unfortunate consequence of our choice of a relatively shallow embedding

for Z. Instead, we shall sketch how this result might be proved, stating what

lemmas are required, proving some of these and giving intuitive arguments

why the others should be true.

E.2.1 A restricted class of semantic objects

We assume that we have a fixed set of given types.

We begin by defining restricted portions of the semantic objects Global,

Predicate, and Schema, which we shall call GoodGlobal, GoodPred, GoodPred-

Body, GoodSchema, etc. The definitions are shown in figure E–3.

These restricted semantic objects have the property that they can be mapped

back to phrase classes in Z0 . We shall define two such mappings, which we

shall name, simply, f and g.

For those elements of GoodPredBody which contain no lookups we can define

an inverse to the semantic operation [[]]top on PRED. Similarly, the inverse of [[]]top

on DECL gives us a function from Vars to DECL. Hence, given any GoodGlobal

G we can produce a SCHEMA, s, consisting of the DECL derived from the

Vars component of G, and the PRED obtained as described above from the

conjunction of all the GoodPreds in the image of the GoodAxioms component

of G (provided that none of these contain any lookups). We then use Spivey’s

semantic operations to obtain from this SCHEMA the following variety:

(spec � [[let [s] end]]Spi):global

Appendix E. Correctness of the Representation 204

GoodGlobal = Vars�GoodAxioms

GoodAxioms = UTTIdent 7 7! GoodPredBody

GoodSchemaDict = UTTIdent 7 7! GoodSchema

GoodSchema ::= “(” Signature “;” GoodPred “)”

GoodPred ::= “�b :Binding: ” GoodPredBody

GoodPredBody ::= “IS TRUE (EQUAL” Ztype GoodTerm GoodTerm “)”

| “IN (EQUAL” Ztype “)” GoodTerm GoodTerm

| “trueProp”

| “absurd”

| “�” GoodPredBody

| GoodPredBody “^” GoodPredBody

| GoodPredBody “_” GoodPredBody

| GoodPredBody “)” GoodPredBody

| “9 ” IDENT “ :Typ” Ztype “: ” GoodPredBody

| “8 ” IDENT “ :Typ” Ztype “: ” GoodPredBody

GoodTerm ::= “in2 (” Ztype “; ” IDENT “)”

| “(lookup (” IDENT “; ” Ztype “) b)”

| “NULL ” Ztype

| “ADD ONE (Equal ” Ztype “)” GoodTerm GoodTerm

| “PAIR” GoodTerm GoodTerm

| “APPLY (Equal” Ztype “)” GoodTerm GoodTerm

Figure E–3: Definitions of “Good” semantic objects

Appendix E. Correctness of the Representation 205

Here � is the environment produced by enriching the empty environment with

the assumed given types. The above procedure gives us a partial function f

from GoodGlobals to varieties.

Given any GoodPred P, we can form a Signature, sig by making a list of all

the sig items to which lookup is applied in P. We can then compute a PRED,

pred, such that [[pred; sig]] is identical to P. Hence, we have a mapping from

GoodPred to PRED. We can also define an inverse to the semantic function [[]]

on DECL. We use these two mappings to define a function g from GoodSchema

to SCHEMA.

E.2.2 Proof Strategy

Assume we have a set of given types, a MAINSPEC, mainspec, a SEXP, sexp

and a PRED, pred. Assume that in the Global E:1, where

E = [[mainspec; ;]]

we can prove

Has prop [[sexp; E]] [[pred; [[sexp; E]]:1]]

We claim (Statement 1) that there is a GoodSchema S which can be shown to

be logically equivalent to [[sexp; E]], and which has the same signature. We can

therefore prove

Has prop S [[pred; S:1]]

Now we consider the specification obtained by extending mainspec with

the schema g(S), treated as an axiomatic description. Consider the Global, G,

obtained by evaluating this specification:

G = ([[mainspec in let H: g(S) end; ;]]):1

(Here, H is a label chosen as described in the discussion of Statement 2.) Facts

3 and 4 tell us that G is a GoodGlobal.

Appendix E. Correctness of the Representation 206

We claim (Statement 2) that we can use the axioms of G to prove [[pred]]
top

.

We then claim (Statement 3) that this implies [pred] is valid in the variety f

(G). Finally, we claim that (Statement 4) this variety is the same as that derived

by using Spivey’s semantics to evaluate [sexp] in the environment obtained by

evaluating [mainspec].

Hence, Spivey’s semantics validates the sequent

[sexp] ` [pred]

E.2.3 Lemmas needed to prove soundness

Fact 1 For all TERMs term, [[term]]top is a GoodTerm.

Proof. By induction on the structure of TERM.

Fact 2 For all PREDs pred, [[pred]]
top

is a GoodPredBody.

Proof. By induction on the structure of PRED, using Fact 1 as needed.

Fact 3 For all MAINSPECs mainspec, the Global [[mainspec; ;]] is always a Good-

Global.

Proof. By induction on the structure of MAINSPEC, using Facts 1 and 2 as

needed.

Fact 4 For all GoodGlobals, g, and all GoodSchemas, S, and all labels, H the

Global

G
S
[[let H :(g S) end]]

is always a GoodGlobal.

Proof. By induction on the structure of GoodSchema.

Fact 5 For all TERMs term and all Signatures sig, [[term; sig]] is a GoodTerm.

Appendix E. Correctness of the Representation 207

Proof. By induction on the structure of TERM.

Fact 6 For all PREDs pred and all Signatures sig [[pred; sig]]
body

is a GoodPred-

Body.

Proof. By induction on the structure of PRED, using Fact 5 as needed.

Fact 7 For all PREDs pred and all Signatures sig [[pred; sig]] is a GoodPred.

Proof. This follows directly from Fact 6.

Fact 8 For all SCHEMAs schema, [[schema]] is a GoodSchema.

Proof. This follows directly from Fact 7.

Statement 1

Translating a SEXP gives a Schema which is not necessarily a GoodSchema.

However, from this Schema, we can systematically derive a GoodSchema which

has the same signature and is logically equivalent.

Why should this be true?

The translation rules for SEXP always produce GoodSchemas, except for the

following cases: hiding, existential and universal quantification, and primed

schemas. In all of these cases it is possible to give rules for systematically

constructing a GoodSchema and to prove in UTT that that GoodSchema is

logically equivalent to the one obtained by our translation. We shall explain

how this is done for the case of hiding by giving an example and informally

describing the general transformation.

Consider the following annotated schema expression:

schema x:T; y:T | x =T y end n (x:T)

Appendix E. Correctness of the Representation 208

By our translation rules, this will be represented by the Schema

Hide [([[x]];given ty T)]

([([[x]]; giventy T); ([[y]]; given ty T)];

�b :Binding: IS TRUE (EQUAL (given ty T)

(lookup ([[x]]; given ty T) b)

(lookup ([[y]]; given ty T) b)))

Expanding the definition of Hide, we see that this is the same as:

([([[y]]; given ty T)];

�b :Binding: 9 b0 :Binding:

(is true (matches [([[x]];given ty T)] b0)) ^

(IS TRUE (EQUAL (given ty T)

(lookup ([[x]]; given ty T) (join bin b b0))

(lookup ([[y]]; given ty T) (join bin b b0)))))

We obtain a GoodSchema by doing the following: for each sig item ([[i]]; z) in

the hidden signature, we insert an existential quantifier of the form 9 i :Typ z:

into the predicate. The sequence of existential quantifiers so obtained replaces

the single quantifier9 b0 :Binding: Every occurrence of (lookup ([[i]]; z) (join bin b b0))

in the body of the predicate is replaced by the wrapped form of the variable

bound in the existential quantifier, i.e., (in2 (given ty z; i)). All other lookups

of a sig item in (join bin b b0) are replaced by lookups of the same sig item in b.

For our example, this transformation has the following result:

([([[y]]; given ty T)];

�b :Binding: 9 x :Typ (given ty T):

IS TRUE (EQUAL (given ty T)

(in2 (given ty T; x))

(lookup ([[y]]; given ty T) b))))

In general, the transformation described above will always produce a Good-

Schema which can be shown in UTT to be logically equivalent to the Schema

Appendix E. Correctness of the Representation 209

produced by Hide, (provided that Hide is itself being applied to a GoodSchema)

This can be proved by induction on the list of sig items to be hidden. The

proof relies on the restricted structure of GoodPred — the only references to the

Binding argument b in a GoodPred are via lookup.

Similar transformations can be defined for the operations Exists and All. For

the Prime operation, the transformation is as follows: Suppose we have a a

GoodSchema S. The Prime operation gives us the following:

(prime sig S:1; �b :Binding: S:2 (post bin b))

For every sig item s in S:1, we replace all occurrences of (lookup s (post bin b))

in the above by (lookup (prime item s) b). We can prove that this gives us a

logically equivalent GoodSchema.

To prove Statement 1 formally we need to prove a more general statement

in order to deal with the case of schema designators, which are evaluated by

looking them up in the ambient UTTenv.

We first generalise the definition of “good” semantic objects so that it encom-

passes the whole of a UTTenv: a GoodUTTenv is one composed of a GoodGlobal

together with a SchemaDict whose image consists only of GoodSchemas.

Next, we generalise the definition of “logical equivalence” so that it applies

to UTTenvs: two UTTenvs E and E’ are logically equivalent if their Globals are

identical, their SchemaDicts have the same domain, and, given any UTTident,

i within this domain, the two Schemas E.SchemaDict(i) and E0.SchemaDict(i)

have the same signature and are logically equivalent.

We must then prove the following more general statement.

Translating a MAINSPEC gives a UTTenv, E, which is not necessarily

a GoodUTTenv. However, given this UTTenv, we can systematically

derive a GoodUTTenv, E’ which is logically equivalent to E.

This proof would be done by induction on the structure of MAINSPEC.

Appendix E. Correctness of the Representation 210

Next we will have to show, by induction on the structure of SEXP, that

Statement 1 is true, provided that the evaluation of the SEXP takes place within

a GoodUTTenv.

To complete the proof of statement 1, we will need to show that if a SEXP,

sexp, is translated within two logically equivalent UTTenvs, the resulting Schemas

are logically equivalent.

Statement 2

This states that given a GoodGlobal G, a GoodSchema S, and a PRED pred, if we

can show, using only the axioms of G and the rules of higher-order intuitionistic

logic, that

Has prop S [[pred; S:1]]

then there is a label H such that, in the GoodGlobal G
S
[[let H : (g S) end]]

we can prove [[pred]]
top

.

Why should this be true? Examine what happens when we prove

Has prop S [[pred; S:1]]

Let us suppose that the signature of S is [([[x1]]; t1); : : : ; ([[xn]]; tn)]. After ex-

panding the definition of Has prop and and then using the Intros tactic, we

obtain a proof context of the following form. (The names for the introduced

small items must be chosen carefully in order to be syntactically identical to the

Appendix E. Correctness of the Representation 211

Idents in the signature of S.

[b : Binding]

[H : restricts to model S b :]

[x1; : : : ; xn : small item]

[H1 : Eq x1 (lookup ([[x1]]; t1) b)]
...

[Hn : Eq xn (lookup ([[xn]]; tn) b)]

[HH : S:2 b]

? : [[pred; S:1]]
body

We then rewrite the goal and the hypothesis HH with the equalities H1 : : :Hn.

The resulting hypothesis and goal will contain no lookups. The salient part of

the proof context for the rest of the proof consists only of the declarations of

x1 : : : xn and the rewritten version of the HH. This part of the proof context

extends the original GoodGlobal, G, giving a new GoodGlobal, which is the

same as G
S
[[let HH : (g S) end]]. (The label is chosen to be the same as the

name of the hypothesis HH.) The goal is the same as [[pred]]
top

. We must then

show that the original goal can be proved if and only if the current goal can be

proved in the current context – this is true because of the particular UTT rules

that we have used to manipulate the proof up to this point.

The paragraph above conceals several non-trivial proof obligations. For

example, showing that the proof can always be completed using only a reduced

portion of the proof context would require complicated reasoning about the

rules of UTT and the behaviour of the LEGO system.

Statement 3

Given a GoodGlobal G and a Z0 PRED pred, if we can prove the statement

[[pred]]
top

using only the axioms in G and the rules of intuitionistic higher-order

logic, then [pred] is valid in the variety f (G).

Appendix E. Correctness of the Representation 212

Why should this be true? Intuitively, this is true because the proof rules

for intuitionistic logic are sound with respect to the classical model theory used

in Spivey’s semantics. A complete proof might be done by induction on the

structure of the proofs of [[pred]]
top

.

Statement 4

Given a MAINSPEC, mainspec, a SEXP, sexp, and a label, H, let S be a GoodS-

chema, obtained by the methods described in the proof of Statement 1, that is

logically equivalent to [[sexp; [[mainspec; ;]]]]. Then the variety

V = f (([[mainspec in let H : (g S) end; ;]]):2)

is the same as that derived by using Spivey’s semantics to evaluate [sexp] in the

environment obtained by evaluating [mainspec]. In the language of Spivey’s

semantics, if � is the environment obtained by evaluating [mainspec] then we

have that

V = (enrich(�; sexp � 1 [[[sexp]]]
Spi
)):global

Why should this be true? We believe that the proof of this statement should

be routine, since the major differences between Spivey’s semantics and our own

have been ironed out in Statement 1.

To prove this statement formally, we would first have to prove a more general

statement (as was necessary for Statement 1) relates environments and GoodUT-

Tenvs. First we must define a mapping h from GoodUTTenvs to environments.

The general statement is then the following:

Given a main specification MAINSPEC let E be a GoodUTTenv, ob-

tained by the methods described in the proof of Statement 1, that

is logically equivalent to [[MAINSPEC; ;]]. Then the environment

h(E) is the same as that obtained by evaluating MAINSPEC using

Spivey’s semantics.

The proof of this would be done by induction on the structure of MAINSPEC.

Bibliography

[1] [Acz82] Peter Aczel. The type theoretic interpretation of constructive

set theory: Choice Principles. In The LEJ Brouwer Centenary Symposium,

A.S. Troelstra and D. van Dalen, editors. North Holland, 1982.

[Abr84a] J-R. Abrial. Programming as a Mathematical Exercise. In Mathematical

Logic and Programming Languages, C.A.R. Hoare and J.C. Shepherdson,

editors. Prentice-Hall International, 1984.

[Abr84b] J-R. Abrial. The Mathematical Construction of a Program and its

Application to the Construction of Mathematics. In Science of Computer

Programming, 4, 1984.

[AHM87] Arnon Avron, Furio Honsell and Ian A. Mason. Using Typed Lambda

Calculus to Implement Formal Systems on a Machine. Technical Re-

port ECS-LFCS-87-31, LFCS, The University of Edinburgh, 1987.

[Alt93] Thorsten Altenkirch. Construction, Inductive Types and Strong Normal-

ization. PhD thesis, The University of Edinburgh, 1993.

[ASM79] J-R. Abrial, S.A. Schuman and B. Meyer. Specification Language Z. In

On the Construction of Programs, R.M. McKeag and A.M. Macnaghten,

editors. Cambridge University Press, 1979.

[BCJ84] H. Barringer and J.H. Cheng and C.B. Jones. A Logic Covering Un-

definedness in Program Proofs. In Acta Informatica, 21, 251-69.

213

Bibliography 214

[BG81] R.M. Burstall and J.A. Goguen. An informal introduction to specific-

ation using CLEAR. In The Correctness Problem in Computer Science,

R.S. Boyer and J.S. Moore, editors, Academic Press, 1981.

[BG+92] Richard Boulton and Andrew Gordon et al. Experience with em-

bedding hardware description languages in HOL. In V. Stavridou,

T.F. Melham, and R.T. Boute, editors, Theorem Provers in Circuit Design:

Theory, Practice and Experience, pages 129-156. IFIP TC10/WG 10.2,

North Holland, June 1992.

[BG94] Jonathan Bowen and Mike Gordon. Z and HOL, 1994. submitted to

the ’94 Z User Meeting.

[BM91] Rod Burstall and James McKinna. Deliverables: an approach to pro-

gram development in the Calculus of Constructions. . Technical Report

ECS-LFCS-91-133, LFCS, The University of Edinburgh, 1991.

[CH88] T. Coquand and G. Huet. The calculus of constructions. In Information

and Computation, vol 76, 1988.

[CO+95] Judy Crow, Sam Owre et al A tutorial introduction to PVS. Workshop

on Industrial-Strength Formal Specification Techniques, Florida, 1995.

[Con86] Robert L. Constable, et al. Implementing Mathematics with the NuPrl

Proof Development System. Prentice-Hall, 1986.

[CH89] Robert L. Constable, et al. NuPrl as a General Logic Technical Report

TR89-1021, Computer Science, Cornell University.

[Coq95] Coq: Formal Specifications and Program Validation.

http://zenon.inria.fr:8003/Equipes/COQ-eng.html

[DFH+93] Dowek, Felty, et al. The Coq proof assistant user’s guide, version 5.8.

Technical report, INRIA-Rocquencourt, 1993.

Bibliography 215

[Geo91] C. George. The RAISE Specification Language: A Tutorial. In Proceed-

ings of VDM ’91, Springer-Verlag LNCS 551, 1991.

[GGH93] Stephen J. Garland, John V. Guttag, and James J. Horning. An Over-

view of Larch. In Functional Programming, Concurrency, Simulation and

Automated Reasoning, Peter E. Lauer, editor. Springer-Verlag LNCS

693, 1993.

[Gog94] Healfdene Goguen. The Metatheory of UTT. In, Proceedings of the BRA

workshop on Types and Proofs, 1994.

[Gog95] Healfdene Goguen. A Typed Operational Semantics for Type Theory. PhD

thesis, The University of Edinburgh, 1995.

[Gor88] M.J.C. Gordon HOL: A Proof Generating System for Higher-Order

Logic. In VLSI Specification, Verification and Synthesis, edited by

G. Birtwhistle and P.A. Subrahmanyam, Kluwer, 1988.

[Har91] W. Harwood. Proof rules for Balzac. Technical Report WTH/P7/001,

Imperial Software Technology, Cambridge, 1991.

[Hay93] Ian Hayes, editor. Specification Case Studies. Prentice Hall, second

edition, 1993.

[HHP87] Robert Harper, Furio Honsell and Gordon Plotkin. A Framework

for Defining Logics. Technical Report ECS-LFCS-87-23, LFCS, The

University of Edinburgh, 1987.

[HJ88] C.A.R. Hoare and He, Jifeng. Data Refinement in a Categorical Setting.

Technical Report, Programming Research Group, Oxford University

Computing Laboratory, 1988.

[HOL95] The HOL Theorem Prover.

http://www.comlab.ox.ac.uk/archive/formal-methods/hol.html

Bibliography 216

[HST89] Robert Harper, Donald Sannella and Andrzej Tarlecki Structure and

Representation in LF. Technical Report ECS-LFCS-89-75, LFCS, The

University of Edinburgh, 1989.

[JHS86] He Jifeng, C.A.R. Hoare, and J.W. Sanders. Data Refinement Refined.

Lecture Notes in Computer Science 213, 1986.

[HJN93] I.J. Hayes, C.B. Jones and J.E. Nicholls. Understanding the differences

between VDM and Z. Technical Report UMCS-93-8-1, University of

Manchester, 1993.

[Hof92] Martin Hofmann. Formal Development of Functional Programs in

Type Theory — A Case Study. Technical Report ECS-LFCS-92-228,

LFCS, The University of Edinburgh, 199.

[How80] W.A. Howard. The formulæ-as-types notion of construction. In

J.Hindley and J.Seldin, editors, To H.B. Curry: Essays on Combinatory

Logic. Academic Press, 1980.

[JJ+91] C.B. Jones, K.D. Jones, et al. “Mural”: A Formal Development Support

System Springer-Verlag, 1991.

[JM94] Claire Jones and Savi Maharaj. The LEGO library. Available electron-

ically at http://www.dcs.ed.ac.uk/packages/lego/

[Jon86] Cliff B. Jones. Systematic Software Development Using VDM. Prentice-

Hall International, 1986.

[Jon92] R.B. Jones. Methods and Tools for the Verification of Critical Proper-

ties. In R. Shaw, editor, Proceedings of the 5th BCS-FACS workshop on

refinement. Springer-Verlag, 1992.

[KST94] Stefan Kahrs, Donald Sannella and Andrzej Tarlecki. The Definition

of Extended ML. Technical Report ECS-LFCS-94-300, LFCS, The Uni-

versity of Edinburgh, 1994.

Bibliography 217

[Lar94] Larch Home Page http://larch-www.lcs.mit.edu:8001/larch/

[LEG95] LEGO Home Page http://www.dcs.ed.ac.uk/packages/lego/

[LP92] Zhaohui Luo and Robert Pollack. LEGO Proof Development System:

user’s manual, Technical report ECS-LFCS-92-211, LFCS, The Uni-

versity of Edinburgh, 1992.

[Luo90] Zhaohui Luo. An Extended Calculus of Constructions. PhD thesis, The

University of Edinburgh, 1990.

[Luo91] Zhaohui Luo. Program Specification and Data Refinement in Type

Theory. Proc. of the Fourth Inter. Joint Conf. on the Theory and Practice

of Software Development (TAPSOFT), 1991.

[Luo92] Zhaohui Luo. A Unifying Theory of Dependent Types: the Schematic

Approach. Technical Report ECS-LFCS-92-202, LFCS, The University

of Edinburgh, 1992.

[Luo94] Zhaohui Luo. Computation and Reasoning: A Type Theory for Computer

Science. Oxford University Press, 1994.

[Mah90] Savitri Maharaj. Implementing Z in LEGO. Master’s thesis, University

of Edinburgh, 1990.

[Mah94] Savi Maharaj. Encoding Z-style schemas in UTT. In Types for Proofs and

Programs, Lecture Notes in Computer Science, 806. Springer-Verlag,

1994.

[MG94] Savi Maharaj and Elsa Gunter. Studying the ML module system in

HOL. In Higher Order Logic Theorem Proving and Its Applications, Lecture

Notes in Computer Science, 859. Springer-Verlag, 1994.

[Mar93] Andrew Martin. Encoding W: A logic for Z in 2OBJ. In FME ’93:

Industrial-Strength Formal Methods, Lecture Notes in Computer Science.

Springer-Verlag, 1993.

Bibliography 218

[McK92] James Hugh McKinna. Deliverables: A Categorical Approach to Program

Development in Type Theory. PhD thesis, The University of Edinburgh,

1992.

[Mil89] Robin Milner. Communication and Concurrency, Prentice-Hall Interna-

tional, 1989.

[Mor90] Carroll Morgan. Programming from specifications, Prentice-Hall Inter-

national, 1990.

[MT94] D.B. MacQueen and M. Tofte. A Semantics for Higher-Order Functors.

In European Symposium on Programming Springer-Verlag, 1994.

[Nes94] Monica Nesi. Value-Passing CCS in HOL. In Proceedings of the 6th

International Workshop on Higher Order Logic Theorem Proving and its

Applications, Springer-Verlag LNCS 780, 1994.

[Nup95] NuPrl 4 Automated Reasoning System Browser.

http://www.cs.cornell.edu/Info/Projects/NuPrl/nuprl.html

[Pol95] Robert Pollack The Theory of LEGO. PhD thesis, The University of

Edinburgh, 1995.

[Pro2] ProofPower server. Send email to ProofPower-server@win.icl.co.uk.

[Rai95] RAISE—Rigorous Approach to Industrial Software Engineering.

http://dream.dai.ed.ac.uk/raise/

[Saa91] M. Saaltink. Z and EVES. Technical Report TR-91-5449-02, Odyssey

Research Associates, 265 Carling Avenue, Suite 506, Ottawa, Ontario

E1S 2E1, Canada, 1991.

[San89] Donald Sannella. Formal program development in Extended ML for

the working programmer. In Proceedings of the 3rd BCS/FACS Workshop

on Refinement, Hursley Park, 1990.

Bibliography 219

[ST89] Donald Sannella and Andrzej Tarlecki. Toward formal development of

ML programs: foundations and methodology. In Proc. Colloq. on Cur-

rent Issues in Programming Languages, Joint Conference on Theory and

Practice of Software Development (TAPSOFT), Barcelona, Springer

LNCS, 1989.

[Sch95] Thomas Schreiber. An axiomatic approach to imperative programs in

type theory. Technical Report (forthcoming), LFCS, The University of

Edinburgh, 1995.

[Spi88] J.M. Spivey. Understanding Z: A Specification Language and its formal

semantics. Cambridge Tracts in Theoretical Computer Science 3, 1988.

[Spi92] J.M. Spivey. The Z Notation: A Reference Manual, second edition.

Prentice-Hall International, 1992.

[Sym93] Syme, D. (1994) Reasoning with the Formal Definition of Standard ML

in HOL. In: Higher Order Logic Theorem Proving and its Applications,

1993. Lecture Notes in Computer Science 780, Springer-Verlag.

[VG94] VanInwegen, M. and Gunter, E. (1994) HOL-ML. In: Higher Order Logic

Theorem Proving and its Applications, 1993. Lecture Notes in Computer

Science 780, Springer-Verlag.

Index

AK pred, 137

AK sig, 137

ALREADY KNOWN, 192

APPLY , 73, 74, 129, 148, 195

Abs (schema), 154

AddBirthday, 127, 128, 131, 132, 134,

138

AddBirthday (schema), 126, 127, 131,

137

AddBirthday1 (schema), 152

AddBirthday lemma, 132

AddBirthday prog, 146

AddBirthday prop, 134

AddBirthday well formed, 128

Add one, 70

All, 101

AlreadyKnown, 137, 138

AlreadyKnown (schema), 136, 137

AlreadyKnown well formed, 138

And, 50, 53, 84, 138

And model char, 85

And model commutes, 85

And preserves well formedness, 84, 161

And property, 88

And restricting model char, 85

And restricting model commutes, 87,

163

Apply, 72, 186

BB sig, 76

Binding, 51

BirthdayBook, 76

BirthdayBook (schema), 68

BirthdayBook1 (schema), 151

BirthdayBook well formed, 76

CONSBIN, 146

CONS BIN, 195

Compose, 123

DOM, 194

Date, 75

Date eq, 75

Delta, 118

Delta preserves well formedness, 118

Dom, 71

Dom Union lemma, 182

Dom resp Fun eq, 181

Down closed, 59

EQUAL, 193

Equal, 62

Equiv, 62

Equiv1, Equiv2, Equiv3, 60

Equiv1 implies Equiv2, 61, 160

220

Index 221

Equiv2 not Equiv1, 61

Equiv3 not Equiv1, 61

Equiv3 not Equiv2, 61

Error, 184

Exists, 102

Extend well formed, 82

FOR, 148, 194

FUN SINGLE, 194

FUN UNION, 194

FindBirthday, 129

FindBirthday (schema), 126

FindBirthday prog, 148

FindBirthday well formed, 129

FunSingle, 72

FunUnion, 72

Fun eq, 72

Fun eq sym, 181

GivenType eq, 75

Has prop, 60

Hide, 100

Hide preserves well formedness, 100,

170

IF, 148, 195

IN, 194

INV, 66

IS FALSE, 192

IS TRUE, 192

Ident, 44

Ident eq, 44

Implements, 153

Imply, 92

Imply model char, 93

Imply preserves well formedness, 93,

166

Imply restricting model elim, 94

Imply restricting model intro, 93, 167

In, 70

Include, 103

Include equals And1, 104

Include equals And2, 104, 171

Include model property, 105

Include restricting model property, 105

Include well formed, 105

InitBirthdayBook, 130

InitBirthdayBook (schema), 127

InitBirthdayBook1 (schema), 152

InitBirthdayBook prog, 149

InitBirthdayBook well formed, 130

Intersect, 70

LT, 67, 192

NIL BIN, 194

NULL, 193

Name, 75

Name eq, 75

Non contradiction, 96

Not, 94

Not down closed, 95

Not model cases, 96

Not model property1, 95

Not model property2, 95

Not restricting model cases, 98

Not restricting model property1, 96,

169

Not restricting model property2, 97

Index 222

Not restricting model property3, 97

Not restricting model property4, 98,

169

Not up closed, 95, 168

Null, 70

Or, 89, 138

Or model char, 90

Or model commutes, 90

Or preserves well formedness, 89, 163

Or property, 92

Or restricting model commutes, 91, 166

Or restricting model elim, 91, 165

Or restricting model intro, 90, 164

P, 131

PAIR, 193

PAIRBIN, 146

PAIR BIN, 195

PLUS, 193

Pre, 121

Pre preserves well formedness, 122

Predicate, 53

Prime, 115, 116

Prime down closed, 116, 172

Prime model char, 117

Prime restricting model char, 117, 172

Prime up closed, 116

Program, 141

Pwrap, 191

RAddBirthday, 138

RAddBirthday (schema), 137

RAddBirthday prop, 139

Refines, 155

RelIn, 71

RelUnion, 71

Rel eq, 71

Remind, 129

Remind (schema), 126

Remind well formed, 130

Report, 137

Report eq, 137

Report ty, 137

SINGLE, 193

Schema, 46, 53

Set eq, 70

Set eq refl, 181

Set eq sym, 181

Sig eq, 46

Signature, 46

Single, 70

Subset, 70

Success, 137, 138

Success (schema), 136

Success pred, 137

Success sig, 137

Typ, 45

Typ gtype, 75

UNION, 193

Union, 70

Union resp Set eq, 181

Up closed, 59

Well formed, 59

Xi, 120

Xi preserves well formedness, 121, 173

Ztype, 44

Index 223

Ztype dep enum, 183

Ztype elim, 45, 183

Ztype eq, 45

9, 198

8, 198

), 198

^, 198

_, 198

:, 198

absurd, 198

after sig, 121

already known, 137

andalso, 196

bin item, 51

birthday0 item, 127

birthday item, 76

birthday type, 76

bool rec, 196

bool ty, 44

cards item, 127

cards type, 127

case, 197

coerce, 50

compose consistent, 124

date item, 127

date type, 127

decorate item, 115

double wrap, 191

error, 184

exact models are models, 56

exact models are restricting models, 57

exactly models, 54

extract sig, 51

fails, 184

finset ty, 44

fun ty, 72

given ty, 44

hide sig, 99, 185

if , 196

in2 not in1, 197

inv, 197

is false, 196

is in1, 197

is in2, 197

is input, 152

is output, 152

is post state, 152

is pre state, 152

is true, 196

join, 49, 53

join bin, 100

join bin lemma1, 180

join bin lemma2, 180

join s nil, 177

join twice left, 177

known0 item, 127

known item, 76

known type, 76

list iter, 197

list rec, 197

lookup, 47, 52

lookup aux, 47

lookup member equiv, 175

Index 224

lookup orig is lookup undecorated post,

175

lookup restrict equals lookup orig, 177

lookup success lemma, 175

lookup x equals x, 175

lt, 197

matches, 52

matching vars, 123

mem and comp, 184

member, 197

member restrict implies member orig,

176

mk sum bin item, 146, 186

models, 55

msbi, 146, 186

name item, 127

name type, 127

nat elim, 13

nat eq, 14

nat ind, 14

nat iter, 14, 197

nat rec, 14, 197

nat ty, 44

nil bin, 51

nil sig, 46

ok, 137

orelse, 196

plus, 197

post bin, 115

post bin inverse decorate bin, 179

post bin lemma, 116

post bin restrict decorated lemma, 179

pre finset wrap, 188

pre nat wrap, 187

pre small item, 186

pre wrap, 189

prime sig, 115

prime sig preserves unique idents, 115

primed part, 115

prod ty, 44

rel ty, 71

remove occurs, 100, 185

restrict, 52

restrict equals sig, 176

restrict larger binding, 176

restrict matching sig, 177

restrict own sig, 176

restrict own sig2, 177

restrict post bin decorate lemma, 180

restrict split lemma, 179

restrict twice lemma, 179

restrict works then lookup works, 176

restricting models give exact models,

57

restriction matches, 177

restricts to model, 55

result item, 137

sig item, 46

sig item eq, 46

sig item ident eq, 56

sigma elim, 197

small item, 52

static sig, 118

static sig gives type compatibility, 118

Index 225

succeeds, 184

today item, 127

today type, 127

triple wrap, 191

trueProp, 196

type compatible, 82

type compatible fun, 82, 185

type compatible sym, 180

unequal sigs thm1, 180

unequal sigs thm2, 181

unique idents, 56

wrap, 189

wrap lemma, 192

wrap1, 190

wrap2, 190

AddBirthday, 145

FindBirthday, 147

InitBirthdayBook, 149

ZRM, 2

