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Abstract


We study the problem of representing a modular specification language in


a type-theory based theorem prover. Our goals are: to provide mechanical


support for reasoning about specifications and about the specification language


itself; to clarify the semantics of the specification language by formalising them


fully; to augment the specification language with a programming language in a


setting where they are both part of the same formal environment, allowing us


to define a formal implementation relationship between the two.


Previous work on similar issues has given rise to a dichotomy between “shal-


low” and “deep” embedding styles when representing one language within


another. We show that the expressiveness of type theory, and the high degree


of reflection that it permits, allow us to develop embedding techniques which


lie between the “shallow” and “deep” extremes. We consider various possible


embedding strategies and then choose one of them to explore more fully.


As our object of study we choose a fragment of the Z specification language,


which we encode in the type theory UTT, as implemented in the LEGO proof-


checker. We use the encoding to study some of the operations on schemas


provided by Z. One of our main concerns is whether it is possible to reason


about Z specifications at the level of these operations. We prove some theorems


about Z showing that, within certain constraints, this kind of reasoning is indeed


possible. We then show how these metatheorems can be used to carry out formal


reasoning about Z specifications. For this we make use of an example taken from


the Z Reference Manual (ZRM).


Finally, we exploit the fact that type theory provides a programming lan-


guage as well as a logic to define a notion of implementation for Z specifications.


We illustrate this by encoding some example programs taken from the ZRM.
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Chapter 1


Introduction


In the quest after formal methods, many expressive languages have been de-


veloped for use in writing program specifications. These languages often


provide specification-building operations which enable specifications to be con-


structed in a modular fashion. For effective use of specification languages it is


desirable to have automated support to facilitate reasoning about the properties


of specified systems. It is even better if this support incorporates some means


of exploiting the modularity in a specification in order to structure the proofs of


these properties.


Computerised proof checkers provide support — type-checking, environ-


ment management, tactics, etc — for carrying out proofs within specific formal


systems. One of the main areas of application for which these tools are intended


is assisting with the proof obligations engendered by the use of formal methods.


However, in order to do this, the logics supported by proof checkers must be


enriched with the concepts used in formal methods. The essential requirement


is a notion of “specification”. Even more can be achieved if is is possible to add


definitions of “program”, “implementation”, and “refinement”. Proof check-


ers which are based on type theory are equipped with a particularly rich and


versatile foundation upon which these concepts can be defined.


In this thesis we examine a specific combination of a specification language


with an automated proof-checker. The specification language is the well-known


and widely used Z notation. The tool with which it is combined is the LEGO


1







Chapter 1. Introduction 2


proof-checker, which implements an expressive and powerful type theory, the


Unifying Theory of dependent types (UTT). The concrete product of our work


is an encoding within UTT of a substantial fragment of the Z notation, together


with a large collection of theorems and lemmas about this encoding, all of which


have been formally verified using LEGO. Several of these theorems concern the


module-forming operations in Z, and provide a basis for using LEGO to prove


theorems about Z specifications in a modular fashion. We also investigate ways


of defining notions of “program”, “implementation” and “refinement” that are


appropriate to Z.


In the process of devising the encoding of Z in UTT we were led to consider


the general topic of representing one formalism within another, and the variety


of techniques available for doing so. The encoding process also entailed an


in-depth examination of the semantics of the Z notation. The encoding itself


may be viewed as an alternate presentation of the semantics of Z, using type


theory as the underlying foundation.


1.1 Example: The Z Notation


In this section we introduce the specification language which is the focus of our


work, and describe some of the goals which we aim to achieve by integrating


this specification language with a general-purpose proof checker.


The Z notation was invented by Abrial [Abr84a,Abr84b,ASM79] around


1979. It has since undergone a series of evolutions and the second draft of a


Base Standard for it is still under development. Several case studies have been


carried out in Z (e.g. [Hay93]) and it has attracted many users in industry. Mike


Spivey provided a theoretical foundation for Z in his PhD thesis [Spi88] and has


since produced a reference manual[Spi92] (the ZRM). We shall use both of these


works as our main references for Z.


Z allows us to construct specifications by putting together basic building


blocks called schemas. A schema consists of two parts: a signature, in which
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variables are declared, and a predicate which places a constraint on the declared


variables. Here is an example of a schema whose signature contains two vari-


ables x and y, both ranging over natural numbers. The predicate part of this


schema states that x is greater than y.


S


x; y : N


x > y


Following the informal discussion in the ZRM, the meaning of a schema is


given in terms of structures called bindings, which assign values to the variables


in the signature of that schema. A schema is considered to denote all the


bindings over the signature of that schema which make the schema predicate


true. For example, the schema S above denotes all bindings in which the value


assigned to x is greater than that assigned to y.


Our first goal in encoding Z in UTT is to provide support for reasoning


within the logic of Z. By this we mean that we want to be able to show that some


property is implied by a given schema. For example, we may wish to show that


the schema S implies that x + z > y + z, for all values of z.


The Z notation provides several operations which allow schemas to be put


together to build specifications. One example is the operation of schema con-


junction. If T is the following schema,


T


x; z : N


x < z


then the conjunction, S ^ T is a schema whose signature is obtained by joining


the signatures of S and T and conjoining their predicates:
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SandT


x; y; z : N


x > y ^ x < z


Our second goal is to support reasoning about specifications at the level


of modules. To achieve this we shall need theorems about the module-level


operations such as schema conjunction. For example, we would like to prove


that if two schemas both have some property P, then their conjunction also has


the property P.


The Z notation incorporates conventions for specifying state-changing op-


erations. The state after an operation is designated by variables decorated with


the symbol 0, while the state before is designated by undecorated variables.


For example, the following schema describes an operation which increments a


variable x:


Inc


x; x0 : N


x0 = x + 1


The increment operation can be implemented in a Pascal-like, imperative


programming language, as follows:


procedure inc (var x: nat);


begin


x := x + 1


end


The formalism of Z does not include any programming language. Our third


goal is to make specifications and programs a part of the same formalism, so


that it is possible to formally define an implementation relationship between the


two. We can hope to achieve this by using type theory because this provides a


notation in which both specifications and programs can be represented.
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1.2 Overview


Chapter 1 continues with a description of the tools used for the work in this


thesis (Section 1.3). These are the type theory UTT and its implementation in


the LEGO proof-checker. The chapter concludes with a description of related


work done by others (Section 1.4). This includes projects aimed at providing


support for reasoning about modular specifications, particularly where this


support involves the use of computerised tools for proof-checking. We also


look at projects which proceed in the opposite direction, starting with a general-


purpose proof-checker which is then adapted to the application of reasoning


about specifications.


In Chapter 2 we examine a variety of representation techniques that are


available for representing a language within the logic of a theorem-prover. We


see that the choice of technique for a particular application depends on several


things including: the expressive capabilities of the logic of the theorem-prover;


the style of the definition of the language to be embedded; the intended use of


the embedding.


The bulk of our embedding of Z in UTT is presented in Chapters 3, 5, and


6. The embedding is illustrated by a running example which is presented in


parallel, in Chapters 4 and 7.


Chapter 3 begins with the definition of a reduced version of Z, called Z0 , in


which it is possible to distinguish between a “core” language and a “module”


system. We then examine different techniques for representing Z0 in UTT,


bearing in mind the issues discussed in Chapter 2. The basic semantic object we


shall use, the schema is defined, and some of the details are worked out. These


include defining well-formedness conditions on schemas, and formalising a


notion of model which most closely captures the semantics of Z.


Our main specification example, introduced in Chapter 4, is adapted from an


example in the ZRM. To encode the example we see that we must first develop a







Chapter 1. Introduction 6


representation of finite set theory within UTT. The first schema of the example is


then encoded, and LEGO to verify that it satisfies the well-formedness condition


defined in Chapter 3.


Chapter 5 deals with the representation of the “logical” operations on schemas


provided in the Z notation (conjunction, disjunction, et c). These operations are


defined in UTT, and LEGO is then used to prove several theorems about them.


The key theorems concern the relationship between the operations and the no-


tions of model defined in Chapter 3. These results provide a means of reasoning


about (encoded) Z specifications at a modular level. Other results (or obser-


vations about non-results) show some of the consequences of our decision to


encode Z within a constructive type theory.


In Chapter 6 we discuss the Z conventions for specifying state-changing


operations. We explain these conventions and then show how they may be


encoded in UTT as operations upon schemas. We use LEGO to prove some


theorems about the encoded operations, mainly showing that they preserve the


well-formedness condition.


Chapter 7 continues the example introduced in Chapter 4. The encodings of


the schema operations are used to encode a number of compound schemas, and


LEGO is then used to prove several theorems about the encoded specification.


Some of these are routine proofs, showing that the schemas introduced are


well-formed. Two of the theorems (Theorems 55 and 57) illustrate how our


encoding can be used to support reasoning about Z specifications. The first is


a formalisation of a proof in the ZRM. The second is an example of a modular


proof which makes use of the metatheorems proved in Chapters 5 and 6.


In Chapter 8 we speculate about possible extensions of our work, laying


down the basis for definitions of “implementation” and refinement for (en-


coded) Z specifications. We begin by identifying a UTT type which provides a


notion of “program” compatible with the way in which Z schemas are repres-


ented. We describe a simple programming language and show how programs


may be translated into our chosen UTT type. Some examples are presented to il-


lustrate the translation. We then define an implementation relationship between
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specifications and programs, and compare this with the way that implementa-


tions are dealt with in the ZRM. We also examine the way that the ZRM handles


refinement of specifications, and speculate about a notion of refinement for Z


that is closer to that used in other specification languages such as VDM.


Concluding the main body of the thesis, Chapter 9 contains some observa-


tions about Z, UTT and LEGO.


Appendices A-D give the definitions and descriptions of LEGO proofs re-


ferred to in the main text. Appendix E discusses the relationship between the


semantics for Z defined by our encoding into UTT and the official semantics


presented in [Spi88].


1.3 Introduction to the tools: UTT and LEGO


The tools which we shall use are the type theory UTT ([Luo90,Luo94,Gog94,


Gog95]) and its implementation in the LEGO proof-checker ([LP92,Pol95,LEG95]).


In this section we shall briefly describe UTT and LEGO; the cited references


should be consulted for complete information.


1.3.1 UTT


The type theory UTT is an extension of the Calculus of Constructions ([CH88])


with dependent sum types and a predicative hierarchy of type universes and


inductive types. Our understanding of UTT is based on an interpretation sug-


gested by Luo, in which the type theory is thought of as consisting of two


layers. The first of these is a single type universe, named Prop. Types which lie


in the universe Prop are interpreted as propositions, using the “propositions as


types” paradigm described in [How80]. It is possible to encode an intuitionistic,


higher-order logic within the universe Prop. The encoding that is used in the


LEGO system is described in Appendix D.
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The second layer in UTT consists of an infinite hierarchy of type universes,


Typei. We shall think of this layer as representing all the objects in our universe of


discourse: e.g. datatypes, programs, specifications, sets et c. The type universes


are cumulative: all objects in Typei are also contained in Typei+1. In addition


Type0 contains the universe Prop. For simplicity of presentation, we shall use


the name Type to refer to the entire hierarchy.


Both layers of UTT can be extended by means of inductive type definitions.


We shall say more about this in Section 1.3.4.


1.3.2 LEGO


LEGO [Pol95] is a proof development system implemented by Randy Pollack.


The LEGO Reference Manual [LP92] is the main documentation for users of


this system. Figures 1–1, 1–2 and 1–3 show the notation which we use in this


thesis for representing LEGO terms. Figure 1–1 gives the notation used for those


LEGO terms which are concrete representations of the terms of UTT, plus other


useful features (such as local definitions and implicit argument designations)


some of which are described below. Figure 1–2 shows our notation for a number


of frequently-used inductively-defined types. The definitions of these types are


taken from the LEGO library and are described in Appendix D. Figure 1–3


shows the syntax that we used to represent the logic that is encoded in UTT. The


details of this encoding are described in Appendix D.


The salient functions of the LEGO system include the following:


� Type-checking and partial type inference for UTT terms.


� Automatic handling of definitions, contexts, substitutions, et c.


� Built in tactics and environment control to support the incremental defin-


ition of UTT terms of a desired type. This feature is the basis of the


proof-development function of the LEGO system, so we shall say more


about it below.
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Notation Explanation


Prop the universe Prop


Type the hierarchy of universes Typei


�x :T:M function with explicit argument


� x jT:M function with implicit argument


M N function application to explicit argument


MjN function application to implicit argument


� x :T1:T2 dependent function space


T1!T2 non-dependent function space


[x = M] local definition


[x : T] assumption (global � abstraction)


Figure 1–1: Notation used for LEGO terms


� Tactics for introducing inductive type definitions.


� Typical ambiguity. The LEGO system allows the user to refer to the hier-


archy of universes Typei as a single entity Type. The system computes


appropriate values of i and detects cycles if they occur.


� Argument synthesis. When a function is applied to several arguments, it


may be possible to infer the values of some of these arguments by looking


at the values of the others. The LEGO system allows the user to exploit


this fact by designating some arguments as implicit. This is done by using


a vertical stroke j rather than a colon : in the definition of terms which can


take an implicit argument. Figure 1–1 gives an example of what this looks


like for function definitions.


1.3.3 Working with LEGO


When we start up the LEGO system we find ourselves in a mode called LEGO


mode. In this mode we may do several things: add definitions to the LEGO
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Notation Explanation


� x :T1: T2 dependent sum type


(M;N) pairing


M:1 first projection


M:2 second projection


nat natural number type


0 zero


suc successor


nat rec, nat iter elimination operators (See Section 1.3.4)


bool boolean type


true true


false false


if See Appendix D.


M + N sum type


in1 left injection


in2 right injection


case See Appendix D.


unit one-element type


void element of unit


list T lists of elements of type T


cons cons


[x1; : : : ; x2] list construction


list rec See Appendix D.


Figure 1–2: Notation used for common inductively defined terms
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Notation Explanation


P1 ^ P2 conjunction


P1 _ P2 disjunction


:P negation


P1 ) P2 implication


8 x :T1: T2 universal quantifier


9 x :T1: T2 existential quantifier


Figure 1–3: Notation used for logic


context; add or discharge assumptions; load library files; enter proof mode by


using the command Goal.


In proof mode we have a goal, which is a type, and our job is to construct


a term of that type. To do this we may make use of the tactics provided by


the LEGO system. Most often we will use a powerful tactic called Refine. We


do not give a complete description of the behaviour of this tactic, but we will


illustrate its use in the small example below. In proof mode we can also add


definitions to the LEGO context but we cannot add new assumptions. When


the proof is completed the LEGO system re-enters LEGO mode, where the user


may then save the proof term as a definition in the LEGO context.


For example, let us look at one way of proving the following simple propos-


ition in LEGO.


8 T :Type: 8 P;Q :T!Prop: 8 x :T: ((P x) ^ (Q x))) ((Q x) ^ (P x))


We shall begin by adding some declarations to the LEGO context:


T : Type


P;Q : T!Prop


x : T


H : (P x) ^ (Q x)
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Now we use the Goal command and tell the system that we would like to prove


the term (P x) _ (Q x). The system enters proof mode and shows us our goal:


? : (Q x) ^ (P x)


We begin by using the and elimination tactic, applied to the assumption H. The


effect of this tactic is to introduce two new names into the LEGO context.


H1 : P x


H2 : Q x


Next we use the and introduction tactic. The effect of this is to replace our goal


by the following two subgoals:


?1 : Q x


?2 : P x


The current goal is the first one displayed (in this case, ?1.) (If we wish to work


on a different subgoal, we must explicitly change the current goal by using the


Next command.) To solve the current goal we use the Refine tactic applied to


H2. This checks that H2 is capable of proving the current goal. In general, Refine


may generate further subgoals but this is not the case in our simple example.


Goal ?2 becomes the new current goal, and is proved by refining by H1. This


completes the proof, so the LEGO system returns to LEGO mode.


The proof process has the effect of constructing a �-term, the proof object. In


our case, the proof object is the following:


pair (snd H) (fst H)


This can be stored in the LEGO context by using the Save command. We shall


store our little proof under the name And commutes.


Next, we discharge the assumptions we made before commencing the proof


by giving the command Discharge T. This removes from the LEGO context the


identifier T as well as all identifiers declared after the declaration of T. All defin-


itions made after the declaration of T are �- abstracted over those declarations
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on which they depend. In our case, the only definition is that of the proof object,


And commutes. Discharging T changes the definition of And commutes to the


following:


�T :Type: �P;Q :T!Prop: �x :T:


�H : (P x) ^ (Q x):


pair (snd H) (fst H)


The type of this term is the following:


8 T :Type: 8 P;Q :T!Prop: 8 x :T: ((P x) ^ (Q x))) ((Q x) ^ (P x))


This is the goal which we originally set out to prove.


The LEGO User’s Manual should be consulted for details about the tactics


available for doing proofs in LEGO. In general, there are introduction and


elimination tactics for all of the logical operators in Figure 1–3.


1.3.4 Inductive Types in LEGO


A theoretical foundation for adding inductive type definitions to UTT was


developed by Goguen and Luo [Gog94,Gog95,Luo92,Luo94]. This was then


implemented in LEGO by Claire Jones. As an example, the inductive type of


natural numbers is defined by issuing the following command:


Inductive[ nat : Type ]


Constructors[ zero : nat;


suc : nat!nat ]


This command has the effect of adding the names nat, zero, and suc to the context.


It also automatically produces an elimination schema for the new inductive type,


and computation rules which dictate the behaviour of the elimination schema. In


the example given, the elimination schema that is produced is the following:


nat elim


: � T :nat!Type: (T zero)!(� x :nat: (T x)!(T (suc x)))!(� x :nat: T x)
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The computational rules which are produced are as follows. These define the


behaviour of nat elim.


[T : nat!Type]


[H : T zero][H1 : � x :nat: (T x)!(T (suc x))]


[x : nat]


nat elim T H H1 zero =) H


nat elim T H H1 (suc x) =) H1 (nat elim T H H1 x)


So far, we have described what is automatically produced by the LEGO


system when a new inductive type is introduced. Generally, a user will wish to


make some additional definitions, as described below.


The elimination schema can be used to define an induction principle for the


new inductive type. For nat, the induction principle has the following type.


nat ind


: 8 P :nat!Prop: (P zero)) (8 x :nat: (P x)) (P (suc x)))) (8 x :nat: P x)


We can also define restricted versions of the elimination schema. These include


the recursor (nat rec) and the iterator (nat iter):


nat rec : � T :Type: T!(nat!T!T)!nat!T


nat iter : � T :Type: T!(T!T)!nat!T


Finally, the elimination schema may be used to define a decidable equality on


the inductive type:


nat eq
def
= nat iter (nat iter true (� :bool: false))


(�prev :nat!bool: nat rec false (�x :nat: � :bool: prev x))


: nat!nat!bool
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1.4 Related work


1.4.1 Tool support for modular specification languages


Other work aimed at providing proof support for Z includes: the ProofPower


system [Jon92,Pro2] which is based upon a deep embedding of Z in a HOL-like


theorem-prover with a user interface that closely resembles Z notation — this


embedding is not deep enough, however, to allow facts like the commutativity


of schema conjunction to be proved [BG94]; a shallow embedding of Z in the


HOL theorem-prover [HOL95] carried out by Bowen and Gordon [BG94]; the


work of Martin [Mar93] who has encoded W, a logic for Z, in the metalogical


framework 2OBJ; the Z/EVES project [Saa91] which uses a theorem prover for


ZF set theory; the Balzac project [Har91] at Imperial Software Technology.


The Vienna Development Method[Jon86] incorporates a specification lan-


guage which is similar to Z in that it is model-oriented (a specification is viewed


as a description of an abstract machine). However, the structuring mechanisms


of the two notations are very dissimilar. VDM and Z are compared entertain-


ingly in [HJN93]. The Mural system [JJ+91] provides a support system for


VDM.


Algebraic specification languages are based on a different approach in which


a specification is viewed as a collection of axioms describing the behaviour of


a set of operations. The specification language CLEAR [BG81] extends this


approach by providing a number of specification-building operations which


allow the modular construction of specifications. Harper, Sannella and Tarlecki


[HST89] have looked at using the Logical Framework to provide a support


system for specification languages similar to CLEAR. A different means of


achieving modularity is explored in Extended ML [San89,ST89,KST94], in which


specifications are structured using constructs inspired by the module system of


the programming language Standard ML.
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The Prototype Verification System [CO+95], developed at SRI International


Computer Science Laboratory, provides a specification language integrated with


support tools and a theorem-prover. The Larch system [GGH93,Lar94] incor-


porates a specification language together with interface languages which allow


translation to a variety of specific programming languages. The system includes


a theorem prover, LP.


The RAISE formal method [Geo91,Rai95] provides a specification language


RSL together with a development method. RSL is a “wide-spectrum” language


which supports a variety of specification styles, including that of Z. Tool support


includes a justification editor which provides assistance with formal proof.


1.4.2 Proof-checkers used for specification


Rod Burstall and James McKinna have worked on an approach to program


specification and verification in the type theory ECC (a precursor to UTT) using


constructs called “deliverables” [BM91,McK92]. Zhaohui Luo has looked at


methods for expressing structured specifications in ECC using the �-type as the


basic specification module [Luo91].


The Coq project [Coq95] centres upon the Coq proof assistant [DFH+93]


which implements a constructive type theory very similar to UTT. One of the


main applications to which this is being applied is the development of an envir-


onment for formal program development incorporating a specification language


(Gallina) and a modular programming language (FML).
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Representation Techniques


In this chapter we discuss the general topic of representing languages within


the logic of a theorem-prover. This is a subject which has been studied very


formally in work on Logical Frameworks [HHP87,AHM87]. Our treatment of


this topic will be more informal, because we wish to consider and compare a


very broad class of representation techniques. The issues which arise are related


to traditional issues in the logic of translation, but also include new concerns


created by the translation process itself, and by the intended use of the final


translation. (For example, we are interested in the applicability of automated


tools to mechanise parts of the translation process. The availability of automatic


type-checking, user-defined tactics, decision procedures, et c. all play a role


here.)


We shall begin by stating a number of criteria by which representation tech-


niques may be rated. We then give a small example of a language and discuss


several ways of representing this language within UTT, evaluating the pros


and cons of each method according to our defined criteria. In some cases we


shall use other examples which specifically illustrate the power of a particular


embedding technique, or the particular kind of language description for which


that technique is best suited. We shall also see how the expressive type theory


implemented in LEGO makes available to us embedding techniques that are


more powerful than those available in the HOL proof-checker.


17
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We focus our attention on representation techniques that involve only defin-


itional extensions of the logic of the theorem-prover, or conservative extensions


such as the introduction of a new inductive type. By avoiding axiomatisations


we avoid the possibility of introducing logical contradiction.


Mike Gordon et al have considered the problem of embedding hardware


description languages in the HOL theorem prover [Gor88] and have coined


the terms “shallow” and “deep” [BG+92] to describe two opposing styles of


representation. We shall consider how these terms may be interpreted with


respect to type theory. We shall see that these two terms are not adequate to


describe the gamut of representation styles possible in type theory.


We use the term “language definition” broadly and informally. A language


definition may consist of a syntax definition and perhaps an equational theory


on that syntax. There may be types and well-typedness rules as well. There may


be semantic objects and operational rules or denotation functions which relate the


syntax to the semantic objects. Or the language may be a logic, and there may


be a notion of model and rules giving the satisfaction relationship between models


and terms in the language. All of the highlighted terms are possible components


of a language description. In embedding a language we must decide how (or


whether) each of these components is to be represented in the embedding.


2.1 Rating embeddings


We state a number of informal criteria by which we can rate different embedding


techniques.


Adequacy Can the embedding technique capture all the aspects of the language


description? How accurate is the representation? For instance, suppose


we represent the syntax Syn of a language by some object Syn in the logic


of the theorem prover. Are the two classes Syn and Syn exactly equal? Are


there spurious objects in the representing class Syn, or are there not enough
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objects to represent all the terms in Syn? Similar questions about adequacy


may be asked about all the classes in any given language description.


Note that we do not intend to define the term adequacy as strictly as


the above example might suggest. The meaning of the term must be


decided ad hoc for any given embedding. However, certain combinations


of language description style and embedding technique make it easier to


define adequacy and to verify it.


Ease of use How easy is it for a user to translate terms of the object language


into the language of the embedding, and then to use the embedding to


reason about the relationships (e.g. equality, type-checking, evaluation, or


satisfaction) defined in the object language.


Expressiveness To what extent does the embedding make it possible to reason


about the meta-theory of the object language.


2.2 Examples of embedding techniques


We shall use as an example a very small typed programming language called L


which is defined in Figure 2–1.


2.2.1 Embedding 1: A “deep embedding”


In the paper [BG+92], the deep embedding approach to representing a hardware


description language (HDL) in the HOL theorem-prover is explained as follows:


Represent the abstract syntax of HDL programs by terms, then define


within the logic semantic functions that assign meanings to the pro-


grams.


This description can be applied to embedding the language L in the LEGO


theorem-prover. In a deep embedding all parts of the language description are
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Types


LType = nat | bool |( LType -> LType )


Terms


LTerm = true | false | 0 | suc | LTerm < LTerm | ( LTerm LTerm )


Typing rules


true:bool false:bool <:(nat->(nat->bool))


0:nat suc:nat->nat
tm1:(ty1->ty2) tm2:ty1


tm1 tm2:ty2


Semantic objects


Value = true | false | zero | suc Value


Evaluation rules


true)true false)false 0)0
tm) v


(suc tm))suc v


(0 < 0))false (0 < (suc tm)))true
tm1 < tm2)v


(suc tm1) < (suc tm2))v


Figure 2–1: Definition of the language L
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represented within the logic of the theorem prover. Concretely, this can be done


by defining inductive types in LEGO to represent the terms and types of L. The


evaluation rules and typing rules can be represented as inductive relations. Part


of such an embedding is shown in Figure 2.2.1. We think of this embedding as


a full, internal description of the language L in UTT.


Remarks


1. In embedding 1 all the entities that make up the language description


are represented by some aspect of the logic of the theorem prover. For


instance, the type-checking rules of L are represented within the logic


(by the relation has type) as opposed to being implemented outside the


logic by some pre-processor which would filter out ill-typed terms before


passing them to the theorem-prover.


2. The objects in the logic that represent L are all internal to the logic. By


this we mean that we can talk about these objects within the logic: we can


quantify over the types LType, LTerm, Eval t v (where t and v have types


LTerm and Value, respectively), etc. Being able to quantify over these things


allows us to express meta-theoretical statements about the language L. We


shall see that property 2 does not necessarily follow from property 1.


3. The internal objects that represent L are all inductively defined. This gives


us elimination rules which we can use for computing with these objects or


proving results about them.


4. This embedding is very cumbersome to set up, as Figure 2-2 shows. It


is also cumbersome to use, because even the simplest term in the em-


bedded language becomes very long and ugly when translated into the


embedding, since its abstract syntax must be written out in full. This


problem could be ameliorated, to some extent, by a helpful user interface.


However, when used in a theorem prover like LEGO which provides the


ability to type-check and normalise terms automatically, this embedding







Chapter 2. Representation Techniques 22


Representation of types, terms and values


Inductive [LType : Type]


Constructors [nat ty; bool ty : LType; arrow ty : LType!LType!LType]


Inductive [LTerm : Type]


Constructors [true sy; false sy; zero sy; suc sy; lt sy : LTerm;


app sy : LTerm!LTerm!LTerm]


Inductive [Value : Type]


Constructors [true v; false v; zero v : LTerm;


suc v : Value!Value]


Representation of evaluation relation


Relation [Eval : LTerm!Value!Prop]


Constructors [eval true : Eval true sy true v;


eval false : Eval false sy false v;


eval zero : Eval zero sy zero v;


eval app suc : 8 tm :LTerm: 8 v :Value:


(Eval tm v)) (Eval (app sy suc sy tm) (suc v v));


eval app lt1 :


Eval (app sy (app sy lt sy zero sy) zero sy) false v;


eval app lt2 : 8 tm :LTerm:


Eval (app sy (app sy lt sy zero sy) (app sy suc sy tm))


true v;


(�One rule omitted�)


The typing rules are represented in a similar way by a relation has type.


Figure 2–2: Embedding 1
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has a more serious disadvantage. The user must reason explicitly about


the typing and evaluation of terms rather than having this done for free


by the theorem-prover. Of course, this may not be seen as a disadvant-


age if the goal is to reason about the formal metatheory of the embedded


language, rather than to reason about the behaviour of specific programs.


5. An advantage of embedding 1 is that it is very easy to compare it with


the original definition of L in order to verify that L has been encoded


accurately. The inductive types and inductive relations of the embedding


mirror the original grammar and evaluation and typing rules of the op-


erational semantics account of L. This advantage depends on the style of


the language description and may be reduced for languages (such as Z)


whose description is not given in an inductive style.


Embedding 1 provides a great deal of expressiveness thanks to points 1, 2,


and 3. It is easy to be convinced of its adequacy. However, this embedding is


relatively difficult to use.


Examples of this embedding style


An example is Altenkirch’s encoding of Girard’s System F in LEGO [Alt93],


which he uses to formalise a proof of strong normalisation for System F.


Another example is an embedding in HOL of the dynamic semantics of


the programming language Standard ML (SML) [VG94,MG94]. (Donald Syme


[Sym93] has carried out a similar project using essentially slightly different tech-


niques.) In this embedding, the syntactic classes, semantic objects, and evalu-


ation relations of SML were all represented explicitly via inductive structures in


HOL. An extension of SML with higher-order functors[MT94] was encoded in a


similar fashion, and the encoding was then used to formally study the relation-


ship between the two languages. This example illustrates the great expressive


power of the deep embedding technique, and its usefulness when appropriately


applied.
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2.2.2 Embedding 2: A “shallow embedding”


The term “shallow embedding” is defined by Gordon et al as follows:


Only define semantic operators in the logic and arrange that the


user-interface parse input from HDL syntax directly to semantic


structures, and also print semantic representations in HDL syntax.


It is not so clear how to apply this description to embeddings of L in type


theory. One interpretation would be to represent only the semantic objects of L


within the type theory, while all other elements of the language description are


handled by an external user-interface. This interface would read LTerms, type-


check them according to the typing rules of L, evaluate them to obtain Values,


and then pass these values to the theorem-prover. The theorem-prover can only


be used to prove results about Values. This can be useful if the values are the


main object of interest. For instance we may be more interested in the functions


computed by programs written in some particular programming language than


in the syntax of the programs themselves.


We can think of this embedding as modelling the universe of discourse of the


language L within UTT.


It is instructive to look at a couple of possibilities for representing Values in


a shallow embedding of L, because they illustrate some of the issues around


adequacy.


1. One possibility is to embed Value as an inductive type, just as in the deep


embedding. In one sense this gives us the most “adequate” representation


of Value, because the representing object (the type Value) is isomorphic to


the class Value in the definition of the language L.


2. Another possibility is to use the LEGO types nat and bool to represent


Values:


Value
def
= nat + bool
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In one sense this embedding is not adequate since the representing type


nat+ bool does not contain representations of all possible Values. (Values


such as suc false are not represented.) However, the values represented


are exactly those obtained by evaluating well-typed expressions, so in this


sense this is an adequate representation.


2.2.3 Embedding 3: A grammatical translation


We now consider an embedding which has property 1 of Section 2.2.1 but not


property 2. This embedding can be thought of as a grammatical translation:


well-formed terms of the language L are translated to terms of UTT.


For this translation we do not make any definitions within the logic of the


theorem-prover. Rather we define, externally to the theorem prover, transla-


tion functions which translate individual LTerms, LTypes, and Values into the


logic of the theorem-prover. In theorem-provers like HOL or Coq, a program-


ming language is provided which acts as a meta-language to the logic of the


theorem-prover. This may be conveniently used for defining these translations.


Unfortunately, the LEGO proof-checker does not provide this facility.


Each type of L will be translated to a type in the logic. The type nat is


translated as nat, bool as bool et c. Terms are translated similarly: true is


translated as true, 0 as 0, < as<, function application in L by function application


in the logic, and so on. Type-checking in L is translated by type-checking in the


logic of the theorem-prover. Similarly, evaluation in L is translated by evaluation


in the theorem-prover.


Remarks


1. All the parts of the definition of the language L are represented within


the logic of the theorem-prover. However, the representing objects are not


necessarily internally named within this logic. This reduces the express-
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iveness of the embedding: for instance, we cannot express the statement


that zero does not have the LType bool.


2. The expressive power of this embedding depends on the capability of


the logic of the theorem-prover to reflect those aspects of itself that are


being used for the embedding. For instance, the logic of LEGO contains


type universes, which reflect the types in the logic. These types are our


representation of the types in L. Since the logic allows us to quantify over


type universes, the embeddings allow us to quantify over the types of L.


It is true that there are a lot of spurious types present (The type universe


Type contains far more than just nat, bool and the functional hierarchy over


these!) but we shall see in the next section that the ability to quantify over


types can be useful all the same.


3. From the point of view of adequacy, this style of embedding depends a


lot on there being a good match between the embedded language and


the logic of the theorem-prover. For instance, if we were to extend the


language L with an operator for general recursion, this kind of embedding


of L would no longer be possible in UTT.


4. This kind of embedding is easy to set up and to use. For languages that


are non-trivial, this can be a huge advantage over the “deep embedding”


technique. For instance, consider adding abstractions to L. The “deep” em-


bedding technique would now require us to explicitly define the handling


of substitution. With embedding style 3, the theorem prover automatically


handles substitution. (A similar point is raised by Constable and Howe


[CH89] with reference to the logic of the proof-checker NuPrl [Con86].).


2.2.4 An embedding example: value-passing CCS in LEGO


This embedding illustrates a point that was briefly mentioned in the previous


section: having type universes in UTT enables us to devise representation tech-


niques that are not possible in theories without type universes. We examine
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an embedding that was done in the HOL system (which lacks type universes)


and show how a deficiency in that embedding can be corrected by moving to a


system with type universes and dependent � types.


In [Nes94], Monica Nesi describes an embedding of value-passing CCS[Mil89]


in the HOL theorem-prover. This is a process algebra in which processes can


input and output values through named ports. A fragment of the grammar


of value-passing CCS expressions is shown below. Here the labels v, x, and e


range over constants, variables, and expressions, all taken from some domain


of values V. The label a stands for an input port, and the label a for an output


port. The symbol � is called the silent action and its meaning is irrelevant to


this discussion.


E ::= a(x):E j a(e):E j �:E


In the original definition of value-passing CCS, the values are restricted


to a single domain V, just as described above and as implemented in Nesi’s


work. However, Milner mentions that in real applications values of many


different types may be used. It is difficult to extend Nesi’s embedding to a


many-sorted version of value-passing CCS because of the inherent limitations


of HOL. However, this extension can be done easily if the embedding is done


in a type theory with universes and dependent types.


Nesi’s embedding of CCS in HOL is essentially a grammatical translation


(like embedding 3) in which the domain of values V is represented by a type


parameter �. The phrase classes of CCS are translated by defining appropri-


ate inductive types parameterised by �. For instance, labels and actions are


represented as follows:


labelv = in n j out n


actionv = tauv j labelv labelv �


(To simplify things slightly we have assumed that ports are to be named by


natural numbers, n.) The type labelv consists of input or output ports, named


by natural numbers. Actions are either the silent action or a label followed by a
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value expression of type �. The entire definition of CCS terms is parameterised


by the type variable � representing the type of values.


There are two possibilities for moving from this definition to a multi-sorted


value passing CCS. One method is to use the definition above, instantiating the


type � as the disjoint sum of all the types that are required. This embedding


is still essentially single-sorted: there can be no such thing as a port which


passes only natural numbers while another passes only booleans. Both ports


would have to pass values of the same type which would be whatever � is


instantiated to. The second alternative is to define a distinct class of labels for


each type that is required. This results in a huge and cumbersome embedding


where many functions must be duplicated for each type. Both methods also


have the deficiency that new types may not be introduced to the embedding


dynamically: once � is instantiated to a particular sum type, or a particular


class of typed labels has been chosen, no new types may be added.


Another possible way of representing the multi-sorted calculus in HOL


would be to move to a full internal description (like embedding 1). This would


require us to model the types and type-checking of value-passing CCS explicitly


in HOL. This approach gives us an embedding that is difficult and awkward to


use, because we are forced to reason explicitly about type-checking.


By contrast if we use UTT it becomes very easy to change the definition of


label slightly so that labels carry around the type of values that they are allowed


to pass. Here is a translation into UTT of the original, single-sorted definitions


of labels and actions:


Inductive [labelv : Type]


Constructors [in; out : nat! labelv]


Inductive [actionv : Type!Type]


Constructors [tauv : � a :Type: actionv a]


[labvv : � a :Type: labelv!a!(actionv a)]
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To extend this to a many-sorted system we simply tag labels with the type


that they are allowed to pass:


labelv2
def
= labelv� Type


Next, we define actions in the following way which specifies that the value


that passes through a particular port must be of the type with which that port


is tagged:


Inductive [actionv2 : Type]


Constructors [tauv2 : actionv2]


[labvv : � port : labelv2: port:2!actionv]


Now suppose we wish to represent agents which have some ports that pass


natural numbers and some that pass booleans. With the single-sorted system


we have to make all ports pass the type (nat + bool). Here is how we would


represent the actions a(true) and b(0). First we define the ports a and b:


a
def
= in zero


b
def
= in one


Next, here are the definition of the actions a(true) and b(0):


labv (nat + bool) a (in2 true)


labv (nat + bool) b (in1 zero)


There is nothing to prevent us from inputting in1 zero to the port a, or in2 true


to the port b.


With the multi-sorted version, here are the definitions of these two actions:


a2
def
= (in zero; bool)


b2
def
= (in one; nat)


labv2 a true


labv2 b zero


If we tried to input naturals to port a, or booleans to port b, the terms would fail


to type-check.







Chapter 2. Representation Techniques 30


Remarks


We first note that our embeddings of multi-sorted, value-passing CCS in LEGO


are all incomplete, since they do not show how the rules of the calculus (or


even its full syntax) are represented. We can extend our embedding to the full


language by copying the techniques used by Nesi in her encoding.


All of the embeddings discussed represent the syntax of the object language


“deeply”, as in embedding 1, and therefore provide the ability to quantify over


syntactic structures and to express metatheorems about the embedded language.


In all of the embeddings the class of types of the object language is represented


by the class of types of the metalanguage, as in embedding 3. The embeddings


done in LEGO are more expressive because UTT allows us to quantify over all


of its types. None of the embeddings allow us to express statements about the


typing relationship itself, since this is represented by the typing relationship of


the metalanguage, and neither of the metalanguages used provides an internal


reflection of its own typing judgements.


Our multi-sorted embedding identifies the types and type-checking of the


object language with those of the meta-language. This helps to make the em-


bedding easier to use: type-checking is provided for free, rather than being a


proof obligation.


2.2.5 An embedding example: Union types


Our final example is intended to illustrate the kind of embedding techniques


we shall develop for the Z notation. Consider the small language T described


in Figure 2.2.5. In this language we define a union type constructor
S


whose


behaviour is specified by three equations. We would like to embed this language


in LEGO in order to study its properties.


If we attempt a full internal description like embedding 1, we run into a


problem representing the equations on the types of T. The types of T are not


freely defined, so they cannot be adequately represented by an inductively
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Types


TType = bool | nat | Ttype
S


Ttype


Equations on Types


T
S


T = T


S
S


T = T
S


S


S
S


(T
S


U) = (S
S


T)
S


U


Terms


TTerm = true | false | 0 | suc


Typing rules


true:bool false:bool 0:nat suc:nat->nat
x:S


x:SST


Figure 2–3: A type theory with Union types


defined type. (We could devise an embedding in which the equality of the types


in the object language is represented explicitly, rather than being identified


with equality in UTT, but this would be very awkward to set up and to use.


Alternatively, we could use a type-theory with quotient types, such as NuPrl


[Con86].) If we attempt a grammatical translation in the style of embedding


3 we find that there are no objects in the logic that can provide a satisfactory


representation of the union type. The nearest thing that we can find is a disjoint


sum type, and this does not satisfy the equations of the Union type.


We observe, however, that a restricted version of the disjoint sum type would


provide the representation that we are looking for. If we could restrict ourselves


to disjoint sums whose summands contain no duplicates and are ordered in


some canonical way, then we would obtain a class of types that is isomorphic


to the types that we are trying to embed. We can think of this embedding as a


non-literal translation: the terms of T cannot all be represented directly as terms


of UTT, but must be translated indirectly in some cases.


We achieve such a translation by doing the following: First we define the
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syntax of types of T as an inductive type, just as we would for a deep embedding:


Inductive [TType : Type]


Constructors [bool ty; nat ty : TType]


[U ty : TType!TType!TType]


Next we define a function which maps these syntactic TTypes to the UTT


types which represent them. We shall call this function Typ. Its type is TType!


Type and its definition is described below:


First we define the base types of T:


Inductive [BType : Type]


Constructors [bool bty; nat bty : BType]


We define a computational equality BType eq : BType ! BType ! bool and a


total order BType lt : BType!BType!bool.


For convenience we shall define a type of non-empty lists:


Inductive [nelist : Type!Type]


Constructors [single : � t :Type: t!(nelist t)]


[more : � t :Type: t!(nelist t)!(nelist t)]


Now we can define a function get btypes which maps a TType to a non-


empty list made up of all the BTypes in that TType. We also define two functions


remove dup : (nelist BType) ! (nelist BType) and sort : (nelist BType) !


(nelist BType). As the names suggest, the first of these removes duplicates from


a non-empty list of BTypes, using BType eq for comparison, while the second


sorts a non-empty list of BTypes into, say, ascending order according to the


ordering BType lt.


Next we define a function which maps BTypes to types in the type theory. We


call this function Typ BType. Its type is BType! Type and its behaviour is very


simple: it maps nat bty to nat and bool bty to bool.
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We extend this function to a function Typ BType list which forms the disjoint


sum of all the types obtained by applying Typ BType to all the members of a


non-empty list of BTypes.


Finally we can define the function Typ:


Typ
def
= �t : TType :Typ BType list (sort (remove dup (get Btypes t))):


The range of the function Typ is our desired representation of the types of T.


We can verify that the equations on the types are satisfied: Typ (U ty T T) =


Typ T, and so on.


Next we must decide how to represent the terms of T. We shall simply


represent true by true, false by false, 0 by 0 and suc by suc. We can check


that these terms satisfy the first four typing rules: the type of true is Typ bool ty


and so on. However, the fifth typing rule presents a problem. Unions are


represented as disjoint sums — and an object of some type S is not going to have


the type S + T for any other T.


To get around this we must define a function which computes the combina-


tions of in1s and in2s required to coerce an object of type Typ S into the union


of S with any other TType T. We omit the definition of this function which we


shall name push. Its type is


� S; T :TTtype: (Typ S)!(Typ (U ty S T))


To embed the terms of T correctly, we shall have to use a pre-processor of


some kind which will compute correct TType arguments to give to the function


push in order to coerce a term into the desired type.


Properties of this embedding


The embedding provides an expressive language in which we can quantify over


types and terms in the object language. We can express statements about the


equality of specific object language types, but not about the rules by which


equality or typing relationships are judged.
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We shall not give a formal statement of adequacy for this embedding, but we


believe that it is possible to do so and to verify that this embedding is adequate


in a very strict sense.


This embedding is relatively easy to use compared to deep embeddings.


However, there is a need for an external interface to compute the appropriate


arguments to push when translating terms into the embedding, and to remove


the occurrences of push when translating terms out of the embedding.


2.3 Conclusion


In chosing an embedding technique, there are tensions between the various


desirable properties. Adequacy and expressivity are often traded off against


ease of use. The use of a theorem-prover which implements a powerful logic,


and which provides extensive automated support for that logic, can enable us


to develop embedding techniques which offer good compromises among these


properties.







Chapter 3


Encoding Z : Schemas


In this chapter we discuss our choice of representation technique for the Z


notation. In accordance with the ideas discussed in the previous chapter, we are


looking for an embedding style which will provide a reasonable compromise


among adequacy, expressiveness, and ease of use. We shall consider three


different encodings and discuss their advantages and drawbacks before we


settle on one of them to use for the rest of this work.


For several reasons, we shall not consider doing a full internal description


such as embedding 1 of Chapter 2. Such embeddings are difficult to set up and


to use, and there exist simpler embedding techniques which give satisfactory


results. In addition to these reasons, we do not consider the style of the definition


of Z, as presented in [Spi88] to be amenable to the deep embedding technique.


The definition of Z is itself presented as a Z specification: to represent this


faithfully in UTT via a deep embedding we need to have already defined a


translation from Z to UTT!


We shall use a reduced version of the Z notation which we call Z0 . One of


the main motivations behind the restrictions we impose is that we want to be


able to distinguish between a core language and a module system. This point


is discussed further in Section 3.1. In Section 3.2 we formally define the syntax


and semantics of Z0 . The remainder of the chapter deals with the technical


aspects of our representation in UTT of the basic specification module in Z0 , the


schema.


35
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3.1 Separate core and module languages


In the full Z language it is impossible to identify separate core and module


languages. This is because any term in Z, and in particular, any schema, can be


treated as a type. We shall not permit this in Z0 . Instead we introduce a separate


phrase class of types. This allows us to divide the syntax into separate core and


module languages. Such a separation is desirable for a number of reasons.


From the point of view of embedding Z in type theory, it allows us to embed


the core language independently of the representation of the module language.


As we shall see, this gives us greater flexibility in our choice of representation


technique. This advantage was our main motivation for making this change to


the Z notation. However, we believe that a separation of this kind is desirable


in general in the definition of any large language, because it allows both the


user and the metatheorist to understand the language in a piecewise fashion.


Another advantage is that it allows us to consider the possibility of using the


same module language with a different core language, or vice versa.


3.2 The syntax of Z0


Figures 3–1 and 3–2 show the abstract syntax of Z0 . This syntax is a modified


version of the syntax used in [Spi88]. Our syntax can be embedded into the


latter: the presentation of the rules for doing this is deferred until Appendix


E which discusses the relationship between our semantics for Z0 and Spivey’s


semantics for Z.


A specification (SPEC) consists of a PRELUDE, which lists the given types


over which that specification, followed by a main specification (MAINSPEC)


which contains axiomatic descriptions and schema definitions. The separation


of the PRELUDE is a departure from the syntax in [Spi88], where new given


types may be introduced at any point within a specification.
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A major difference between Z0 and the full Z notation is the reduced grammar


for declarations. In the full Z notation, any TERM can appear at the right of the


colon in a basic declaration. In Z0 , we introduce instead a special syntax class


called TYPE, representing the allowed types. These may be given types, the


type of finite sets over some other type, or the product of two types. (We restrict


ourselves to finite sets in order to avoid difficulties in dealing with set-theoretic


functions in type theory [Mah90].) We also add two primitive types N and B .


A related restriction involves the grammar of predicates (PRED). Whereas


in Z the existential and universal quantifiers are allowed to quantify over


SCHEMAs, in Z0 they quantify over an IDENT together with a TYPE.


The full Z notation also allows the use of schema designators (SDES) as


declarations. This is not allowed in Z0 , but is partially recaptured by the


addition of an include operation to the grammar of schema expressions. This


allows schema designators to be used a declarations within schema expressions,


but not within axiomatic descriptions.


Another big constraint is that our reduced syntax does not support schemas


that are parameterised over generic formal parameters. However, it will be


possible for whole specifications to be parameterised over generic given types


listed in the PRELUDE.


The grammar of terms (TERM) is reduced to reflect the fact that terms and


types have been separated. We also do not allow sets formed by comprehension,


�-terms, �-terms, or �-terms.


Minor restrictions include the following: we do not treat the operation of


projection on schemas; only primes can be used to decorate schema designators.


There is no theoretical difficulty in removing these restrictions.







Chapter 3. Encoding Z : Schemas 38


SPEC ::= PRELUDE in MAINSPEC


PRELUDE ::= given IDENT; : : : ;IDENT


MAINSPEC ::= let SCHEMA end


| let WORD = SEXP


| MAINSPEC in MAINSPEC


SEXP ::= schema SCHEMA end


| SDES


| : SEXP


| SEXP ^ SEXP


| SEXP _ SEXP


| SEXP ) SEXP


| SEXP n (IDENT,: : :,IDENT)


| 9 SCHEMA � SEXP


| 8 SCHEMA � SEXP


| include SDES DECL PRED


SCHEMA ::= DECL | PRED


DECL ::= IDENT : TYPE


| DECL ; DECL


Figure 3–1: Syntax of Z0 (part 1)
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PRED ::= TERM = TERM


| TERM 2 TERM


| true


| false


| : PRED


| PRED ^ PRED


| PRED _ PRED


| PRED ) PRED


| 9 IDENT : TYPE � PRED


| 8 IDENT : TYPE � PRED


TERM ::= IDENT


| ; [TYPE]


| fTERM,: : :,TERMg


| (TERM,TERM)


| TERM (TERM)


TYPE ::= IDENT


| N


| B


| F TYPE


| TYPE�TYPE


SDES ::= WORD PRIMES


IDENT ::= WORD DECOR


WORD - undecorated identifiers (alphanumeric strings)


DECOR - decorations (strings over f’,!,?g)


PRIMES - primes (strings over f’g)


Figure 3–2: Syntax of Z (part 2)
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3.3 The semantics of Z0


Here we present a short summary of the official semantics of Z proposed in


[Spi88]. This discussion is necessarily incomplete, and is intended simply to


give a flavour of the semantics of Z, and to introduce the names, though not the


formal definitions, of the semantic functions that will be referred to in Appendix


E.


For our reduced language Z0 , the corresponding semantics will be obtained


by first applying the embedding into Z defined in figures E–1 and E–2 of Ap-


pendix E.


The denotation of a Z specification in Spivey’s semantics is an environment.


This consists of two parts. The first is a variety, called the global variety, which


represents all the given types and axiomatic descriptions of the specification.


The second, the schema dictionary, is a mapping from names to varieties, and


represents all the schema definitions in the specification.


A variety consists of a signature, together with a set of models over that signa-


ture. A signature contains names of given types and variables, and associates


types with all the variables.


Several operations are then defined on these semantic objects. The join


operation, for example, combines two signatures to form a new signature con-


taining the union of the variables in the two argument signatures. This function


is defined only for signatures in which the common variables have the same


types. This operation is used to obtain the signature of the schema denoted by


any of the various binary schema expressions.


Another important operation, enrich takes as arguments a variety V and an


environment E whose global component must be a sub-variety of V (i.e. , the


signature of V must contain all variables in the signature of E:global, and all


models in V must also be models in E:global.) This operation then returns the


environment formed by replacing the global component of E with V. Intuitively,
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the environment E has been enriched by adding the variables and the constraints


of the variety V.


An example of the use of enrich is the semantics of a schema body (SCHEMA).


This is evaluated within an environment and denotes a variety. To obtain this


variety, the environment is first enriched with a variety obtained by evaluating


the declarations of the SCHEMA. Another semantic function called pred is then


used to evaluate the predicate of the SCHEMA within this new, enriched envir-


onment. The denotation of the predicate is a set of models. The denotation of


the SCHEMA is then the variety whose signature is that of the global variety of


the enriched environment, and whose models component is the denotation of


the predicate.


Several operations are defined on varieties. For example, the operations com-


bine is used in giving the meaning of schema expressions formed by conjunction.


The combine operation takes a pair of varieties as arguments and returns a new


variety. The signature of the result is formed by applying join to the signatures


of the argument. The models of the result are all models over the new signature


which, when suitably restricted, yield models of both of the argument varieties.


3.4 Choosing a Representation Technique


In this section we consider various possibilities for encoding the syntax and


semantics of Z0 in type theory. We must find suitable representations for all


the components of the definition of Z0 — the syntactic classes, the semantic


objects, and the relationships between them — bearing in mind that all these


parts must be capable of being put together to provide a representation of the


whole. This will impose a requirement of expressiveness on the representation


chosen for some components. We would also like to keep all the representations


as simple as possible, and to be able to identify measures of the adequacy of


each representation.
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Since our goal is simplicity, we shall begin by considering the simplest pos-


sible embedding style: the shallow embedding. This turns out to be unsatis-


factory, so we shall move to a slightly deeper embedding in the style of Section


2.2.5.


We shall look at how the following small Z0 specification can be represented.


This example is written in the concrete syntax of Z, and makes use of some


definitions from the Z library.


S


x; y : N


x < y


T


x; z : T


x + z = 0


U c= S ^ T


According to the definition of schema conjunction, the schema U denotes the


same variety as the following schema:


U


x; y; z : N


(x < y) ^ (x + z = 0)


3.4.1 Embedding 1: a shallow embedding


The obvious method of embedding Z0 shallowly in UTT, within a theorem-


prover such as LEGO, is as follows: The global part of a Z0 specification is


represented by assumptions added to the LEGO context. For each given set a
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type is assumed. For each variable within an axiomatic description, a LEGO


variable of the appropriate type is assumed. For each axiom within an axiomatic


description, a corresponding axiom is assumed in the LEGO context. Next, we


must decide how to represent the schema definitions. This can be represented by


a collection of definitions in LEGO: for each name defined in the Z0 specification,


a corresponding identifier is defined in LEGO. The value associated with that


identifier will be a UTT term which somehow represents the meaning of the


associated schema expression. This leaves us with the question of deciding


what UTT terms should be used to represent these meanings.


The obvious candidate for this is the �-types of UTT. This approach is


explored in [Mah90]. We can think of these�-types as representing the varieties


of Spivey’s semantics. The signature of the variety is represented by a UTT


type, formed by taking the product of all the types in the signature. The models


component of the variety is then represented by a UTT predicate over this


type. The two are combined to form a � type. As an example, here is the


representation of part of the example specification:


T : Type


S sig
def
= T�T


S pred
def
= �b :S sig: b:1 = b:2


S
def
= � b :S sig: S pred b


This encoding of varieties is reminiscent of other representations of modular


specifications in LEGO, such as the work of Luo [Luo91] and the “deliverables”


approach of Burstall and McKinna [BM91,McK92].


The shortcoming of this representation is that it provides a poor degree of


expressiveness. There is no way for us to capture, within UTT, the operations


on varieties which are used to give meaning to compound schema expressions.


The reason is that our embedding does not provide us with any object in the


type theory that represents the class of all varieties. The nearest thing to such


an object is the universe Type, since all varieties are represented as types, but


this universe also contains many types that are not representations of varieties.
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In order to define an operation on varieties we would need to extend that


operation somehow so that it applied to all types. There is no obvious way


of doing this meaningfully. What is more, even if such an extension could be


found, we would still be unable to define the combine operation because we


have no representation of the names of the identifiers in a signature, only of


their types.


Our challenge is to find a UTT type which is a more accurate representation


of varieties. This leads us to consider a slightly deeper embedding.


3.4.2 Embedding 2: Syntactic names and types in signatures


The problem with the previous embedding arose because of the way that sig-


natures were represented. Firstly, we kept no information about the names in a


signature. Secondly, the UTT type used to represent signatures (viz. Type) was


too general. Our second encoding addresses both of these problems.


We introduce a type to represent Z identifiers. For convenience, we shall use


the type of natural numbers:


Definition 1 Ident,Ident eq.


Ident
def
= nat : Type


Ident eq
def
= nat eq : Ident! Ident!bool


Similarly, we introduce a type to represent the names of the types in Z0 . We


shall assume that we have already defined a types GivenType representing the


given types used in some particular specification. We define an inductive type


called Ztype.
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Definition 2 Ztype.


Inductive[ Ztype : Type ]


Constructors[ nat ty; bool ty : Ztype


given ty : GivenType!Ztype


finset ty : Ztype!Ztype


prod ty : Ztype!Ztype!Ztype ]


This embedding represents the class TYPE exactly. The elimination rule,


Ztype elim, produced by the inductive definition gives us a lot of power to


define operations and prove theorems about TYPE. If we are able to define a


decidable equality on GivenType, or if we assume that such an equality exists,


then the elimination rule allows us to extend this to a decidable equality on


Ztype:


Definition 3 Ztype eq.


Ztype eq
def
= [omitted] : Ztype!Ztype!bool


We could, if we chose, develop this into a deep embedding of Z0 but we


prefer not to take this route. Deep embeddings, at least in the LEGO system,


are difficult and painful to use. As we have seen in the previous chapter, type


theory provides us with another possibility:


We adopt the approach used in for representing union types in Section 2.2.5.


We define an operation Typ which maps Ztypes to Types. Typ can be thought of


as mapping each TYPE to the semantic object that it denotes. (We shall assume


that we are able to define a similar operation Typ gtype on GivenType.)


Definition 4 Typ.


Typ
def
= Ztype rec (�g :GivenType: Typ gtype g)


(�z :Ztype: �Typ z :Type: finset Typ z)


(�z; z0 :Ztype: �Typ z; Typ z0 :Type: Typ z� Typ z0)


: Ztype!Type
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TYPEs are represented by the type Ztype and their denotations by the types in


the range of Typ. (The type Typ (fin set z) is defined as list z: the details of the


representation of finite sets are described in Chapter 4.)


We define signatures as lists of signature items, which are pairs consisting of


an Ident and a Ztype.


Definition 5 Signature.


sig item
def
= (Ident�Ztype) : Type


Signature
def
= list sig item : Type


nil sig
def
= nil j sig item : Signature


We can define decidable equalities on both of these types:


sig item eq : sig item! sig item!bool


Sig eq : Signature !Signature!bool


Next we extend Typ to a function Typify of type Signature!Type which forms


a product of the types obtained by applying Typ to all of the Ztypes in a given


signature, together with the unit type in the case of the empty signature. This


function can be defined easily using induction on lists. Typify sig can be seen as


representing the set of models over a signatures sig. Imitating the terminology


used in the ZRM, we shall call such objects bindings.


We can use this new definition of signatures to define a much better repres-


entation of the class of Schemas than that provided by the previous embedding.


A schema is defined as a Signature sig paired with a predicate over bindings of


type Typify sig:


Schema
def
= � sig :Signature: (Typify sig)!Prop


: Type
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To help us work with these syntactic signatures we shall use a function called


lookup which has the following somewhat complicated definition:


lookup aux
def
= �i : Ident:


[result type = �s :Signature:� t :Type: (Typify s)! t]


list elim result type


(Error; �x :Error: x)


(�hd : Ident � Ztype: �tl :Signature: �prev :� t : (Typify tl)! t: :


if (Ident eq i hd:1)


(Typ hd:2; �x :Typify (cons hd tl): x:1)


(prev:1; �x :Typify (cons hd tl): prev:2 x:2))


: Ident!� sig :Signature: (Typify sig)!� t :Type: t


lookup
def
= �i : Ident: �sig :Signature: (lookup aux i sig):2


When given an identifier i and a signature sig, lookup aux attempts to locate i in


sig. If i is found then lookup aux returns a dependent pair consisting of the type


t with which i is found to be associated and a function of type (Typify sig)! t.


When applied to a tuple of type Typify sig, this function projects the component


which corresponds to the position of i in sig. If i does not occur in sig then


lookup aux returns the pair (Error; �x : Error: x). The function lookup simply


extracts the second component of the result returned by lookup aux.


To understand the working of lookup let us look at the following example.


We first define some identifiers and syntactic signatures.


x
def
= 0


y
def
= 1


Sig1
def
= [(x;nat ty); (y; nat ty)]


Sig2
def
= [(y; nat ty); (x; bool ty)]


Sig3
def
= [(y; nat ty)]
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Next we define some bindings typed by the signatures above:


Bin1
def
= (2; 3; error) : Typify Sig1


Bin2
def
= (2; true; error) : Typify Sig2


Bin3
def
= (2; error) : Typify Sig3


The following table shows some of the results of applying lookup to these sig-


natures and bindings:


Term Type Value


(lookup x Sig1) Bin1 nat 2


(lookup x Sig1) Bin2 fails to typecheck


(lookup x Sig2) Bin2 bool true


(lookup x Sig3) Bin3 Error error


The main use of lookup is in writing schema predicates. This is illustrated


by the new definition of the schema S.


x
def
= 0


y
def
= 1


S sig
def
= [(x;nat ty); (y; nat ty)]


S pred
def
= �bin :Typify S sig: ((lookup x S sig) bin) < ((lookup y S sig) bin)


S
def
= (S sig; S pred)


Typechecking will detect when lookup fails since the value returned in the case


of failure will have the type Error, rather than the type required by the rest of


the predicate in which the lookup occurs. For example, in the above definition


of the schema S, if we remove the identifier x from S sig (or if we paired it with


some other Ztype), then the definition of S pred will fail to typecheck.


Encoding operations on schemas


This representation of schemas provides us with enough expressiveness to


define the operations on schemas. Let us look at the operation of conjoin-


ing two schemas S and T. Suppose S and T are represented by Schemas S and
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T, respectively. First we compute the new signature newsig by joining the sig-


natures of S and T. Having computed the new signature, we must somehow


conjoin the predicates of S and T, whose domains are Typify S:1 and Typify T:1,


respectively, to form a new predicate over the domain Typify newsig. To do this


we must be able to extract from objects of type Typify newsig the components


that make up objects of type Typify S and Typify T.


Whenever two signatures are joined, as they are for many of the schema


operations, it will be necessary to perform extractions such as that described


above. So, whenever we join two signatures we shall also compute coercion


functions which extract bindings of the type of the two argument signatures


from bindings of the type of the result signature.


join
def
= �s :Signature:


list rec (s; �b :Typify s: b)


(�h : sig item: �s0 :Signature: �prev :� v :Signature: (Typify v)!(Typify s):


if (member sig item eq h s)


prev


(cons h prev:1; �x :Typify (cons h prev:1): prev:2 x:2))


: � s; :Signature:� newsig :Signature: (Typify newsig)!(Typify s)


The join operation, as we define it above, takes two signatures s1 and s2 and


yields a new signature newsig together with a coercion back from newsig to s1.


The coercion takes a tuple of type Typify newsig and produces a tuple of type


Typify s2 by projecting only those components that correspond to identifiers


present in s1. No coercion back to the second signature s2 is computed since this


may not exist if s1 and s2 happen to be incompatible for joining. (For instance, if


s1 is [(x; bool ty)], and s2 is [(x;nat ty)], they are incompatible for joining. The


join operation, as defined, will use the Ztype obtained from s1 rather than s2 in


its result, so it returns the signature [(x; bool ty)].)


Another operation coerce attempts to find coercions between arbitrary signa-


tures. The type of coerce reflects the fact that it is partial: if no coercion exists it


returns in2 error. The definition of coerce is fairly long, though not conceptually
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difficult, so we shall not include it here.


coerce : � S; S0 :Signature: ((Typify S)!(Typify S0)) + Error


Next we define a trivial, unsatisfiable schema, Absurd:


Absurd
def
= (nil; � :Error: absurd)


Now we can represent schema conjunction. To conjoin S and S0 we first join


their signatures to form a new signature newsig. Then we attempt to coerce


newsig back to the signature of S0. This will fail if S and S0 happen to be type-


incompatible, in which case we return Absurd as our result. Otherwise we


return a schema made up of newsig and the predicates of S and S0 conjoined and


composed with coercions as appropriate. The definition is as follows:


And
def
= �S; S0 :Schema:


[tmp
def
= join S S0]


[newsig
def
= tmp:1]


[coercion1
def
= tmp:2]


[coercion2
def
= coerce newsig S0:sig]


case


(�f : (Typify newsig)!(Typify S0:sig):


(newsig; �s :Typify newsig: (S:pred (coercion1 s)) ^ (S0:pred (f s))))


(�x :Error:Absurd)


coercion2


: Schema!Schema!Schema


With this method it will be possible to define all the operations on schemas.


However, we have to deal with coercions. Whenever a schema operation makes


a change to a signature, or somehow combines two or more signatures, it may


be necessary to compute coercions between the new signature and the old


one(s). In practice, we found that reasoning about these coercions turns out


to be awkward. We therefore chose to explore a third method of representing


schemas, in which we have managed to avoid the need to talk about coercions


between signatures.
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3.4.3 Embedding 3: Syntactic names in bindings


In the previous embedding, the Z typing relationship between bindings and


Signatures was identified with the typing relationship between terms and types


in UTT. Each distinct Signature gave rise to a distinct type representing the


bindings over that signature. Whenever an operation caused a signature to be


changed in any way, it was necessary to compute coercions relating the new type


of bindings associated with the new signature to the type of bindings associated


with the old signature.


We shall now look at an embedding technique in which we do not make the


identification described above, but instead explicitly define the typing relation-


ship between bindings and signatures. This allows us to have a single, uniform


type to represent all bindings, rather than a different type for each Signature.


Schema Predicates, as a result, will also be represented by a single type, instead


of a different type for each Signature. As we shall see, this choice makes it much


easier to define operations on schemas. Because of the ease of use, this will be


the embedding technique that we shall adopt for the rest of this work.


We shall define a general type to represent bindings. Bindings are lists of


bin items, which are themselves triples in which a syntactic identifier and a


Ztype z are paired with a value of type Typ z:


Definition 6 Binding.


bin item
def
= � p : Ident�Ztype:Typ p:2 : Type


Binding
def
= list bin item : Type


nil bin
def
= nil j bin item : Binding


We shall write some functions to handle these syntactic bindings. First we


define a function which simply extracts a Signature from a Binding:


Definition 7 extract sig.


extract sig
def
= map �x :bin item: x:1


: Binding!Signature
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The next function, matches, checks whether a given Binding is typed by a


given Signature:


Definition 8 matches.


matches
def
= �S :Signature: �bin :Binding: is true (Sig eq S (extract sig bin))


: Signature!Binding!bool


We redefine lookup to work with our new representation of bindings.


Definition 9 lookup.


small item
def
= � z :Ztype: (Typ z) : Type


lookup
def
= �x : sig item:


list iter (in1 void)


(�y :bin item: �prev : (Error + small item):


if (sig item eq x y:1) (in2 (y:1:2; y:2)) prev)


: sig item!Binding!(Error + small item)


The next function restrict, attempts to cut down a Binding so that it has only


those components specified in a given Signature; restrict fails if the Signature


requires components that are not in the Binding.


Definition 10 restrict.


restrict
def
= �str :Binding:


list iter (in2 nil bin)


(�x : sig item: �prev : (Error + Binding):


case � :Error: in1 void


�s :Binding: case � :Error: in1 void


�si : small item: in2 (cons ((n:1; si:1); si:2) s)


(lookup x bin)


prev)


: Binding!Signature!(Error + Binding)
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An example of a Binding is the following:


x
def
= 0 : Ident


b
def
= 1 : Ident


B
def
= [(x;nat ty; 0); (b; bool ty; true)] : Binding


If we define sig to be the signature [(b; bool ty)] then (matches sig B) evaluates


to false and (restrict B sig) evaluates to the Binding [(b; bool ty; true)].


Schema predicates will be encoded by the following type:


Definition 11 Predicate.


Predicate
def
= Binding!Prop


Our new definition of the type Schema is:


Definition 12 Schema.


Schema
def
= Signature�Predicate : Type


The join operation for combining Signatures can be defined much more


simply than in embedding 2 because there is no need to keep track of coercions


between types:


Definition 13 join.


join
def
= �s; t :Signature:


list iter


t


(�x : sig item: �prev :Signature:


if (member sig item eq x prev) prev (cons x prev))


s


: Signature!Signature!Signature


Schema conjunction can then be represented as follows:


And
def
= �S; S0 :Schema:


(join S:sig S0:sig; �s :Binding: (S:pred s) ^ (S0:pred s))


: Schema!Schema!Schema
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3.5 Working out the details


In this section we discuss some of the technical issues that must be dealt with


in working out the details of our embedding technique.


3.5.1 Relating schemas and bindings


Embedding 2 provided only one possible relationship between bindings and


schemas. If S is of type Schema, as defined in embedding 2, then an object of type


S can be interpreted as a binding over the signature of S together with a proof


that the binding satisfies the predicate of S. With embedding 3, it is possible


to define several different relationships between schemas and bindings. It is


necessary to choose which of these best captures the Z notion of model. We


consider some of the possibilities and the relationships between them.


� Exact models


We say that a Binding is an exact model of a Schema if it matches the


Signature of that Schema and if we can prove that it satisfies the Predicate


of that Schema. This is essentially the same as the notion of model in


embedding 2, rephrased in the language of embedding 3. This definition


is closest to the satisfaction relationship between schemas and bindings


defined in Section 3.3.


Definition 14 exactly models.


exactly models
def
= �S :Schema: �b :Binding:


(is true (matches S:1 b)) ^ (S:2 b)


: Schema!Binding!Prop


� Restricting models


Exact models seem to capture the Z notion of model, so why should we


consider any other definitions? The reason is similar to the reason why
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we needed coercion functions in method 2 of encoding schemas. We are


often interested in the relationship between a single binding and various


different schemas with differering signatures. In embedding 2 we took


care of this need by finding coercions between the various signatures.


For embedding 3, we shall invent the notion of “restricting models” of


schemas. A binding is a restricting model of a schema S if it is capable of


being restricted to the signature of S, and the restricted binding satisfies


the predicate of S.


Another way of looking at this definition is to think of a schema as a min-


imal description: bindings must contain at least those identifiers present


in the schema signature. When restricted to this signature, the binding


must satisfy the schema predicate.


Definition 15 restricts to model.


restricts to model
def
= �S :Schema: �b :Binding:


9 b0 :Binding: (in2 b0 = restrict b S:1) ^ (S:2 b0)


: Schema!Binding!Prop


� Signature-independent models


Finally, we consider bindings which satisfy the predicate of a schema,


independently of their relationship with the signature of that schema. We


shall call such bindings “models” of a schema.


Definition 16 models.


models
def
= �S :Schema: S:2


: Schema!Binding!Prop


Now we shall look at the relationships among these three notions of model


for schemas.
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Exact models and models


All exact models of a Schema S are also models of S:


Theorem 1 exact models are models.


8 S :Schema: 8 b :Binding: (exactly models S b)) models S b


Proof. Trivial.


It is easily shown that the converse of the above statement is not true.


Exact models and restricting models


Bindings which are exact models of a schema are always capable of being


restricted to the signature of that schema. (This is implied by lemma 16 of


Appendix A). However, it is not the case that the binding produced by the


restriction must necessarily satisfy the predicate of the schema. The restricted


binding is not necessarily equal to the original binding: if a signature contains


more than one occurrence of the same identifier, a binding that matches this


signature will not necessarily contain the same values as its restricted form,


since the restriction function grabs the first occurence of each identifier. If


we restrict ourselves to schemas whose signatures do not contain repeated


identifiers, then we can show that the restricted binding does indeed satisfy the


schema predicate.


First we shall define a predicate unique idents on Signatures. As the name


implies, this is true of a signature if no identifier occurs more than once in that


signature. The definition makes use of a decidable equality sig item ident eq :


sig item ! sig item ! bool which simply judges two sig items to be equal if


their Ident components are equal under Ident eq.
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Definition 17 unique idents.


unique idents
def
=


list rec trueProp


(�x : sig item: �l :Signature: �prev :Prop:


(is false (member sig item ident eq x l)) ^ prev)


: Signature!Prop


Theorem 2 exact models are restricting models.


8 S :Schema: 8 b :Binding: (unique idents S:1))


(exactly models S b)) restricts to model S b


Proof. This follows easily from the Lemma 15 which says that a binding is equal


to the result of restricting it to its own signature, provided it has no duplicate


identifiers. ut


It is easy to show that the converse of the above result is false: not all


restricting models are exact models. However, all restricting models yield exact


models when restricted:


Theorem 3 restricting models give exact models.


8 S :Schema: 8 b :Binding: (restricts to model S b))


9 b0 :Binding: (in2 b0 = restrict b S:1) ^ (exactly models S b0)


Proof. This is an easy consequence of lemma 17 which states that any binding


obtained by restriction to a signature will match that signature. ut


Models and restricting models


The most interesting relationship to consider is that between models and restrict-


ing models. First of all, is it the case that a model of a schema S is necessarily


a restricting model of S? The following object of type schema gives us a neg-


ative answer to this question. (The operation lookup used in this definition is
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similar in function to the lookup that was defined for embedding 2. Its detailed


definition will be given later in this chapter.)


S
def
= (nil sig; �b :Binding: lookup x b = (nat ty; 0))


: Schema


This Schema arises as the translation of the following ill-formed Z schema:


S


x = 0


There are many Bindings which are models of this Schema, but there are none


which are restricting models. In general, any Schema whose predicate makes


reference to identifiers not found in its signature will fail to have restricting


models.


What about the converse situation? If a Binding is a restricting model of a


Schema, is it itself a model? Again the answer is no. Consider the following


term of type Schema:


T
def
= (nil sig; �b :Binding: length b = 0)


: Schema


All bindings are restricting models of this Schema, but only the empty binding


is a model. However, unlike the schema S above, this LEGO term does not arise


from the translation of any Z schema, even one that is ill-formed.


Finally, let us look at one more Schema:


U
def
= ([(x;nat ty); (y; nat ty)]; �b :Binding: lookup x b = (nat ty; 0))


: Schema


This Schema is the translation of the following Z schema:


U


x; y : N


x = 0
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Any Binding which is a restricting model of U will also be a model of U. However,


not all models of U are restricting models of U: the binding [(x; nat ty; 0)] is


a model of U but cannot be restricted successfully to the Signature of U, and


therefore cannot be a restricting model. However, all models of U that can be


successfully restricted to the Signature of U are indeed restricting models. This


leads us to our definition of well-formedness for schemas.


3.5.2 Well-formedness conditions


Many schemas exist which do satisfy the properties that restricting models are


models, and sufficiently large models are restricting models. Later on we shall


see that these properties are preconditions for some metatheorems about the


schema operations. We formalise these properties in LEGO by means of the


following definitions:


Definition 18 Down closed.


Down closed
def
= �S :Schema: 8 b :Binding:


(models S b)) (succeeds (restrict b S:sig))) (restricts to model S b)


Definition 19 Up closed.


Up closed
def
= �S :Schema: 8 b :Binding:


restricts to model S b ) models S b


: Schema!Prop


These two properties are independent of each other. The schema S is not


down-closed, as we have seen, but it is up-closed. The schema T is down-closed


but is not up-closed. We have verified these facts using LEGO.


Finally we shall define a well-formedness condition on schemas:
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Definition 20 Well formed.


Well formed
def
= �S :Schema:


(Up closed S) ^ (Down closed S) ^ (unique idents S:1)


: Schema!Prop


3.5.3 Properties of schemas


We define what it means for a schema to have a property:


Definition 21 Has prop.


Has prop
def
= �S :Schema: �P :Predicate:


8 b :Binding: (restricts to model b S)) (P b)


: Schema!Predicate!PropSchema!Prop


3.5.4 Logical equivalence of schemas


The three different relationships between Schemas and Bindings that we have


defined give rise to several possible ways in which we can define a logical


equivalence on schemas. Some of these are the following:


Definition 22. Schema equivalences


Equiv1
def
= �S; T :Schema: 8 b :Binding:


(exactly models S b)() (exactly models T b)


Equiv2
def
= �S; T :Schema: 8 b :Binding:


(restricts to model S b)() (restricts to model T b)


Equiv3
def
= �S; T :Schema: 8 b :Binding:


(models S b)() (models T b)


We can prove that these relationships are all different from each other.


If two schemas have signatures which are unequal permutations of each


other, then they can be equivalent under Equiv2, without being equivalent under


Equiv1.
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Theorem 4 Equiv2 not Equiv1.


9 S; T :Schema: (Equiv2 S T) ^ :(Equiv1 S T)


Proof. The Schemas ([(y; nat ty); (x; nat ty)]; trueProp) and


([(x;nat ty); (y; nat ty)]; trueProp) are equivalent under Equiv2 but not under


Equiv1. ut


However, all schemas which are equivalent under Equiv1 are also equivalent


under Equiv2:


Theorem 5 Equiv1 implies Equiv2.


8 S; T :Schema: (Equiv1 S T)) (Equiv2 S T)


Proof. See Proof 1 in Appendix A.


Two schemas with unequal signatures can be equivalent under Equiv3 if


they have logically equivalent predicates. Such schemas are not necessarily


equivalent under Equiv1 or Equiv2.


Theorem 6 Equiv3 not Equiv1.


9 S; T :Schema: (Equiv3 S T) ^ :(Equiv1 S T)


Proof. The Schemas ([ ]; trueProp) and ([(x;nat ty)]; trueProp) are equivalent


under Equiv3 but not under Equiv1. ut


Theorem 7 Equiv3 not Equiv2.


9 S; T :Schema: (Equiv3 S T) ^ :(Equiv2 S T)


Proof. The example used for Theorem 6 works here as well. ut
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Of the three relationships, Equiv2 seems closest to the notion of logical equi-


valence that is used in the ZRM. Equiv1 is too strong, since it requires equivalent


schemas to have their signature items listed in the same order. Equiv3 seems


too weak, since it does not take account of the schema signatures. We therefore


define:


Definition 23. Schema equivalence


Equiv
def
= Equiv2


3.5.5 Equality


We shall assume that all given types have computational equalities defined on


them. In other words, if we have G : GivenType, we shall assume an equality


G eq : (Typ (given ty G))!(Typ (given ty G))!bool


This enables us to define, by induction on GivenType and on Ztype, a general


computational equality.


Definition 24. Equal


Equal : � t :Ztype: (Typ t)!(Typ t)!bool


3.5.6 Handling failed lookups


Just as in embedding 2, it is possible for the lookup function to fail when asked


to look up an identifier in a signature. Unfortunately, dealing with the con-


sequences of failure is now a lot more difficult. The difficulty arises from the


fact that our notion of Binding is more general than that in embedding 2. In


embedding 2 Bindings were typed by schema predicates. This means that in


order to know whether a particular identifier can be looked up in a particular


Binding, it is sufficient to know the Signature that gives the type of that Binding.


This is the reason why the definition we have given for the schema S under
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embedding 2 can be successfully type-checked by LEGO. LEGO can check that


each identifier that is looked up actually occurs in the Signature S sig, and this


information is enough to show that that identifier can be successfully looked up


in any binding bin whose type is Typify S sig.


We cannot use the same trick to handle failed lookups in embedding 3. In this


embedding schema predicates need to look up identifiers in arbitrary Bindings,


unrelated to the associated schema signatures. We must therefore find some


other way of dealing with failed lookups.


Let us suppose we wish to encode the schema S under embedding 3. This


schema has as its predicate:


P c= x < y


We shall represent this predicate by a UTT predicate of the form:


�b :Binding: (lookup (x; nat ty) b) ?? (lookup (y; nat ty) b)


The question is what shall we use in place of the ?? to represent the < rela-


tion. The operation we need must have as its type something like (Error +


small item) ! (Error + small item) ! Prop. In the case where both of the


lookups succeed, this operation must behave like the < relation. In other cases


we must decide what this operation should do. There are two kinds of failure


that may happen. First, the lookup may fail entirely because an identifier-Ztype


pair is looked up in a binding in which it does not occur. Second, it is possible


to look up the wrong Ztype. Consider the term:


�b :Binding: (lookup (x; bool ty) b) ?? (lookup (y; nat ty) b)


We shall need to decide what the operation ?? should do when placed in such a


context. Let us consider the options for dealing with these two kinds of failure.


It seems desirable that we should never be able to prove that a predicate is


true of a binding b if the predicate looks up an identifier-Ztype combination that


is not present in b. There are several ways in which we can try to achieve this.
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One technique we can adopt is to explicitly add definedness conditions to


schema predicates when we translate them into Lego. For example, the predicate


P would become:


�b :Binding:


(succeeds (lookup (x; nat) b)) ^ (succeeds (lookup (y; nat) b)) ^


(lookup (x; nat) b ?? lookup (y; nat) b)


In this case it will not matter what the operation ?? does in the case of failed


lookups, since the definedness conditions will guarantee that the entire predicate


is false. However, this method is inelegant since it seems to be duplicating the


purpose of the schema signature.


Perhaps the most obvious solution is to treat the failure of lookup as an error


condition, and to propagate this error throughout the predicate. This requires


us to change the type of schema predicates from Binding! Prop to Binding!


(Prop+ Error). When a predicate is applied to a binding any failed lookups will


be propagated through the term and will result in a value of (in1 error).


Why should we want to consider other possibilities? The reason is that


dealing with sums is awkward, and makes our definitions and theorems more


clumsy. For instance we would need to redefine all our logical combinators


(such as ^, _, ), et c. ) so that they propagate errors. Theorems about these


combinators would need to be hedged by conditions stating that their arguments


must not be equal to in1 error.


We shall get around the need for sums by taking advantage of the fact that


there is an independent means of checking that a binding contains the identifiers


required by a schema predicate: we can check that it matches, or can be restricted


to, the schema signature. If we only care about the cases when the predicate


is applied to bindings that satisfy this condition, then it does not really matter


how we deal with the cases where lookup fails. So to simplify matters, we can


simply allow these cases to “collapse” to some arbitrarily chosen value of type


Prop. We use the value absurd.
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This method only works if the schema signature does in fact include all of the


identifiers looked up by the schema predicate. We cannot express this syntactic


condition within the type theory because our encoding of schema predicates is


not sufficiently “deep”. However, we have tried to capture the essence of this


condition by the well-formedness conditions (Definition 20) mentioned in the


previous section.


3.5.7 Wrapping functions


We shall now discuss the technicalities of handling failed lookups by “collapsing


to absurd”. What does this mean in practice? How is the operation ?? to be


defined?


When lookup fails it returns the value in1 error. So, clearly, one thing that


must be done is to perform a case analysis on the result of the lookup and


return the value absurd in the case where the result is in1 error. We shall define


a “wrapped” version of the equality predicate “=” which performs this case


analysis. In general, we must define similarly wrapped versions of all the UTT


terms which represent the Expressions and relations (Rel) of Z. More precisely,


whenever we have a predicate whose type is, say, (Typ z)! Prop, where z is


some Ztype, we shall define a wrapped version of type (Error + small item)!


Prop. For a function of type (Typ z1)! (Typ z2) we shall define a wrapped


version of type (Error + small item) ! (Error + small item). This can be


generalised for relations and functions of higher arity.


So far we have only discussed the possibility that lookup fails outright. In


order to define the wrapped version of functions we must also deal with the


possibility that the wrong type was looked up. To do this we must employ


another elaborate case-analysis which analyses the Ztype in a small item and


returns absurd (or in1 error, if appropriate) if this Ztype does not conform to


the type of the function or predicate that is being wrapped. To make this


more concrete, we shall display the wrapped version of the boolean negation
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function inv : (Typ bool ty)! (Typ bool ty). The wrapped version, INV has


type (Error + small item)!(Error + small item).


INV
def
= case � :Error: in1 error


(sigma rec


(Ztype elim (�x :Ztype: (Typ x)!(Error + small item))


(� :Typ nat ty: in1 error)


(�b :Typ bool ty: in2 (inv b))


(�g :GivenType: � :Typ (given ty g): in1 error)


(�x :Ztype: � : (Typ x)!Prop: � :Typ (finset ty x): in1 error)


(�x; y :Ztype:� : (Typ x)!Prop: � : (Typ y)!Prop:


� :Typ (prod ty x y): in1 error)))


Wrapped functions are very elaborate to define, even for a simple, unary


function like inv. The definition of the binary operation ?? is too long to display


here. Fortunately, it is possible to define UTT functions which will compute


these nestings for us. These functions exploit the fact that Ztype is an inductive


type: the nesting is computed by induction on the Ztypes of the arguments to


the nested function, and the Ztype of the value to which that function is being


applied. The definitions of these functions are given in Appendix C, together


with some lemmas about their behaviour.


We shall call these functions wrappers. We distinguish the wrapped versions


of constants by using the name of the constant written in ALL CAPITALS. The


wrapper for unary functions is called wrap and has the type:


� z1; z2 :Ztype: (Typ z1)!(Typ z2)!


(Error + small item)!(Error + small item)


The wrapped version of the function inv can be computed using wrap, as follows:


wrap bool ty bool ty inv


The value obtained is equal to INV.
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3.5.8 Representing the schema S


Here is the representation of the schema S under embedding 3. The wrapped


version of the < relation is represented by the term LT : (Error+ small item)!


(Error + small item)!Prop.


x
def
= 0


y
def
= 1


S sig
def
= [(x;nat ty); (y; nat ty)]


S pred
def
= �bin :Binding: ((lookup x S sig) bin) LT ((lookup y S sig) bin)


S
def
= (S sig; S pred)


3.6 Conclusion


We have considered a number of possibilities for representing (a reduced version


of) the Z schema in UTT, and decided upon one technique which provides a


good compromise between expressiveness and ease of use.







Chapter 4


A Specification Example


In this chapter we introduce a Z specification which we are going to use as a


running example through this thesis. The specification describes a system for


recording birthdays and is an adaptation of the BirthdayBook example from the


ZRM. We shall present the first schema of the specification, in which the basic


system is described, and show how this schema is encoded in LEGO. The rest


of the specification will be given in later chapters.


The specification is parameterised over two given sets: a set of names and a


set of dates:


[NAME;DATE]


The basic system is specified by the schema BirthdayBook. This describes


a state space in which two identifiers are defined: known, which is the set of


names known to the system, and birthday, which is a partial function giving the


birthdays associated with the names in its domain. The set known is specified


to be equal to the domain of the birthday function.


BirthdayBook


known : F NAME


birthday : NAME 7! DATE


known = dom birthday


68
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4.1 An encoding of finite set theory


The Z notation is based upon set theory, and the Birthday Book specification


makes use of various set-theoretical constructs such as sets, partial functions,


function domains, and equality of sets. We must therefore develop representa-


tions of all of these things within UTT.


There are several ways in which set theory can be encoded in type theory. See


for instance the encodings presented in the Lego library [JM94] and in previous


work on embedding Z in LEGO [Mah90]. Also of interest is Aczel’s encoding


of constructive set theory in Martin-Lof type theory [1].


As we have already explained, we are going to use an encoding of finite


sets represented via lists. An advantage of using finite sets is we can define


decidable membership and equality relations (provided we assume we are given


decidable equality relations on the types of members of sets.) It is easier to


reason about partial functions since membership of the domain of a partial


function is decidable.


However, we would like to emphasise that we do not consider this to be


the last word on encoding the set-theoretic aspect of Z in type theory. Our


encoding of the rest of the Z notation is not dependent on this choice of method


for encoding sets, so it is possible to use a more sophisticated representation of


sets if this is required.


The encoding of finite sets as lists is straightforward and is shown in Figure


4–1. It is assumed that there is a decidable equality eq on the type of elements,


z. The empty set is represented by the empty list nil, and the formation of a


singleton set is represented by cons. The function member is used to represent


the membership relation In. These definitions work correctly provided they are


applied to lists which contain no duplicate elements. The set-forming operations


(in particular, Union) are defined so as to never introduce duplicate elements.
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Assume z : Ztype; eq : (Typ z)!(Typ z)!bool


Null
def
= nil (Typ z)


Single
def
= �x :Typ z: cons x Null


In
def
= member eq


Subset
def
= �s; s0 :Typ (finset ty z):


list iter true (�x :Typ z: �prev :bool: andalso (In x s0) prev)


Set eq
def
= �s; s0 :Typ (finset ty z): andalso (Subset s s0) (Subset s0 s)


Add one
def
= �x :Typ z: �s :Typ (finset ty z): if (In x s) s (cons x s)


Union
def
= �s; s0 :Typ (finset ty z): list iter s0 Add one s


Intersect
def
= �s; s0 :Typ (finset ty z):


list iter Null


(�x :Typ z: �prev : (finset ty z): if (In x s0) (Add one x prev) prev)


s


Discharge z, eq.


Figure 4–1: Finite sets encoded as lists
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Assume z; z0 : Ztype


Assume eq : (Typ z)!(Typ z)!bool


Assume eq0 : (Typ z0)!(Typ z0)!bool


[eq2 = �x; y :Typ (prod ty z z0): andalso (eq x:1 y:1) (eq0 x:2 y:2)


rel ty
def
= finset ty (prod ty z z0)


RelIn
def
= In eq2


RelUnion
def
= Union eq2


Rel eq
def
= Set eq eq2


Dom
def
= map(�x :Typ (prod ty z z0): x:1


Discharge z, z0, eq, and eq0.


Figure 4–2: Finite relations encoded as lists


We use the wrapping functions described in the previous chapter to form


partial versions of these operations.


In order to reason about the Birthday Book, we have developed a small


library of lemmas and theorems about the set theoretic operations. Some of the


contents of this library is listed (without proofs) in Appendix B.2.


4.1.1 Relations and functions


In Figure 4–2 we give our encoding of set-theoretic relations, and various opera-


tions relating to them. Following Z, we shall represent set-theoretic functions as


relations which satisfy the property of being many-to-one. However, in Z0 we


do not allow such logical constraints to become part of the definition of types,


so we cannot define a type of set-theoretic functions. To encode schema signa-


tures which contain functions, we shall have to make the many-to-one property


an explicit part of the schema predicate. The definitions of union, singleton


formation, and equality on relations are used to represent the corresponding


operations on functions, again with the proviso that appropriate conditions are
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added to the predicates of schemas in which these operations are used.


fun ty
def
= rel ty


FunSingle
def
= RelSingle


FunUnion
def
= RelUnion


Fun eq
def
= Rel eq


4.1.2 Dealing with partial functions


In order to formalise partial set-theoretic functions within a total type theory


such as UTT, we must make explicit the way in which we handle the cases where


such functions are applied to arguments outside of their domain. The semantics


of partially defined terms is an aspect of Z that has raised many interesting


questions. While this topic is not a main focus of this thesis, it is one which we


cannot avoid completely, so we shall discuss it briefly here. Though we shall


phrase our discussion in terms of our formal encoding of Z, the issues that are


being discussed are really questions about the semantics of Z itself.


We define an operation Apply which applies a set-theoretic function. This


has the following type:


� z; z0 jZtype:� eq : (Typ z)!(Typ z)!bool:


(Typ (Rel z z0))!(Typ z)!(Error + (Typ z0))


(The full definition is given in Appendix C.1.) Here z and z0 are the Ztypes of the


domain and codomain of the function to be applied, and eq is a computational


equality on Typ z. Apply performs function application by searching the list that


represents the function until it finds the value to which the function is being


applied. The eq argument is needed for comparison during this searching. If the


search fails, then the value in1 error is returned. Dealing with partiality means,


in the context of this thesis, dealing with the cases in which Apply returns this


error value.


Suppose we wish to encode the following schema
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S


f ; g : N 7! N


x : N


f x < g x


In translating the predicate of this schema, we must decide what to do in the


cases where either f x or g x are undefined.


One possibility is to redefine the type of schema predicate so that a failed


function would result in an error value. (This approach was suggested in the


previous chapter as a means of handling failed lookups.) This is reminiscent


of suggestions for adopting a 3-valued logic for dealing with undefined terms


in specification languages (e.g.,[BCJ84]). For the reasons mentioned in Section


3.5.6 we shall not pursue this approach, but we believe it warrants further study.


The method we have adopted for dealing with partial functions is very


simple, and is essentially one of those suggested in Section 2.5 of the ZRM:


whenever we apply a function we also explicitly require that the value to which


it is applied must lie within the domain of the function. This allows us to keep


the type of schema predicate as Binding ! Prop. For instance the predicate


part of the schema S will be translated as follows. First we define the wrapped


version of Apply.


APPLY
def
= [See Appendix C.2.]


: � z1; z2 jZtype:� eq j(Typ z1)!(Typ z1)!bool:


(Error + small item)!(Error + small item)!(Error + small item)


We choose distinct natural numbers to represent the identifiers f , g, and x.


We pair these with the appropriate decorations and Ztypes to form the signature
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items used in encoding the signature of S:


f item
def
= ((0; blank); fun ty nat ty nat ty) : sig item


g item
def
= ((1; blank); fun ty nat ty nat ty) : sig item


x item
def
= ((2; blank);nat ty) : sig item


S sig
def
= [f item; g item; x item] : Signature


We now encode the predicate of S as follows:


S pred
def
= �b :Binding:


[f = lookup f item b]


[g = lookup g item b]


[x = lookup x item b]


(9 n1 :nat: EQUAL (APPLY f x) (in2 (nat ty; n1))) ^


(9 n2 :nat: EQUAL (APPLY g x)(in2 (nat ty; n2))) ^


(IS TRUE (LT (APPLY f x) (APPLY g x)))


The signature and predicate are paired to complete the encoding of S:


S
def
= (S sig; S pred) : Schema


4.2 Representing the given sets of the BirthdayBook


To represent the BirthdayBook specification in LEGO we first define the given


types that it uses. We do this by defining an inductive type GivenType whose


constructors are the names of the two given types. Using an inductive type like


this has the disadvantage that the pool of given types is fixed once GivenType


is defined. To add a new given type we must restart with a new definition of


GivenType. The advantage is that we are provided with an elimination rule for


GivenType. We cannot dispense with this, and simply declare or define new


given types as we need them, because we need to know the totality of all given


types in order to define the type Ztype (Definition 2).







Chapter 4. A Specification Example 75


Inductive[GivenType]


Constructors[Name ty;Date ty]


We use the elimination rule on GivenType to define a decidable equality:


GivenType eq
def
= [omitted] : GivenType!GivenType!bool


We also define an operation Typ gtype :which maps GivenTypes to Types. This


operation is needed in order to define Typ (Definition 4.) We shall introduce two


type parameters which we use as the range of Typ gtype.


Name;Date : Type


Typ gtype
def
= GivenType rec Name Date


: GivenType!Type


We shall assume that we have decidable equalities on these two types:


Name eq : Name!Name!bool


Date eq : Date!Date!bool


4.3 Putting it all together


Once the given types are defined we can load the definition of Ztype, which is


parameterized over GivenType, and then all the remaining definitions of signa-


tures, bindings, schemas, et c.


We then encode the signature items and signature of the BirthdayBook


schema. As we did for the schema S, we select distinct natural numbers to


represent the identifiers and pair these with the appropriate decorations and
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Ztypes:


known type
def
= finset ty (Given ty Name ty) : Ztype


known item
def
= ((0; blank); known type) : sig item


birthday type
def
= fun ty (Given ty Name ty) (Given ty Date ty) : Ztype


birthday item
def
= ((1; blank); birthday type) : sig item


BB sig
def
= [known item; birthday item] : Signature


We then define the predicate, making use of the wrapped versions of the


set-theoretical constants, and pair this with the signature to form the schema.


Definition 25 BirthdayBook.


BB pred
def
= �B :Binding:


[known
def
= lookup known item B]


[birthday
def
= lookup birthday item B]


IS TRUE (EQUAL known (DOM birthday))


BirthdayBook
def
= (BB sig; BB pred) : Schema


4.4 Proving well-formedness


Theorem 8 BirthdayBook well formed.


Well formed BirthdayBook


Proof. First we must show that BirthdayBook is Up closed:


8 b :Binding:


(restricts to model BirthdayBook b)) (models BirthdayBook b)
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By doing introductions and expanding definitions we transform the proof


context to the following:


b : Binding


H : 9 b0 :Binding: ((restrict b BB sig) = (in2 b0)) ^ (BB pred b0)


? : IS TRUE (EQUAL (lookup known item b)


(DOM (lookup birthday item b)))


We then do some eliminations on H and add the following to the context:


t : Binding


H2 : restrict b BB sig = in2 t


H3 : BB pred t


By using Lemma 18 we can show that the results of looking up known item and


birthday item in b are equal to those obtained by looking up these items in t.


Rewriting with these equalities we transform the goal to:


? : IS TRUE (EQUAL (lookup known item t)


(DOM (lookup birthday item t)))


This is the same as H3, so the proof of up-closure is complete.


Now we must tackle the proof of down-closure. Unfortunately, we have not


been able to refine this proof so as to make it as simple as that of up-closure.


Our goal is:


? : 8 b :Binding: (models BirthdayBook b))


(succeeds (restrict b BirthdayBook:sig)) )


(restricts to model BirthdayBook b)


We introduce a binding b, and then expand definitions to simplify the goal.


Next we do case analyses on the results of looking up the items known item and


birthday item in b. In the cases where one or other of these lookups returns the


value in1 error, by substituting this value into the goal we can reduce it to the
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form


absurd ) (succeeds (restrict b BirthdayBook:sig)) )


restricts to model BirthdayBook b


because the wrapped functions IS TRUE, EQUAL, and DOM collapse to absurd


when applied to an error value. This completes the proof in these cases.


In the case where both of the lookups succeed we derive the following proof


context:


t; t1 : small item


H1 : lookup known item b = in2 t


H2 : lookup birthday item b = in2 t1


H3 : IS TRUE (EQUAL (in2 t)) (DOM (in2 t1))


H3 : succeeds (restrict b BirthdayBook:sig)


? : restricts to model BirthdayBook b


We expand the definition of restricts to model, and then do an existential intro-


duction which gives us two goals:


?1 : Binding


?2 : (restrict b BB sig = in2 ?1) ^ (BB pred ?1)


The binding which we supply for goal ?1 is the following:


[(known item; t:2); (birthday item; t1:2)]


We must then show that this binding is that obtained by restricting b to BB sig,


and that it satisfies the predicate BB sig. We prove this by expanding the


definitions of restrict and BB pred and rewriting with the equalities H1 and


H2. ut


We have devoted so much attention to the proof of well-formedness for the


schema BirthdayBook because this is an example of a routine proof obligation


which will need to be discharged whenever a new schema is introduced. In
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proof-checkers which provide the ability to write user-defined tactics (such


as HOL, Coq, or NuPrl[Con86]) routine proofs like these can be completely


automated. The LEGO proof-checker, unfortunately, does not have this facility.


However, the work required can be reduced by finding simple, reusable proof


scripts for routine results. The proof of up-closure is simple, short, and easy to


reuse because most of its work is encapsulated in the main lemma that is used.


The proof of down-closure is less satisfactory, involving complicated equality


manipulations and uses of the “Equiv” command to rewrite the goal. These


make the proof less reusable. It seems likely that further analysis would enable


us to find a more elegant proof.







Chapter 5


Encoding Z : Logical schema
operations


In this chapter and the next we shall discuss the operations provided by Z


for putting schemas together in a modular fashion. This chapter is concerned


with the “logical” operations of schema conjunction, disjunction, universal and


existential quantification, et c. while Chapter 6 deals with the conventions used


for describing state changes in systems. The logical operations make up the


syntax class of schema expressions which is described in Figure 5–1.


We shall represent the constructors for schema expressions by operations on


Schemas. For instance, the operation of schema conjunction is represented by a


function of type Schema!Schema!Schema. This encoding technique allows


us to represent individual schema expressions, but does not provide the ability


to quantify over the class of all schema expressions. (Our embedding could


be extended to allow this, using techniques similar to those used in Sections


2.2.5 and 3.4.2, but we have not seen any pressing reasons for adding this extra


complexity.)


In the rest of this chapter we discuss the semantics of the logical operations,


give the details of their encodings, and use the encoding to prove some results


about their metatheoretic properties. These theorems have all been formally


verified using LEGO. A few of the proofs are described in this chapter, in order


80
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Schema-Exp ::= Schema Flat schema


| Schema-Exp ^ Schema-Exp Schema conjunction


| Schema-Exp _ Schema-Exp Schema disjunction


| Schema-Exp) Schema-Exp Schema implication


| Schema-Exp, Schema-Exp Schema equivalence


| : Schema-Exp Schema negation


| Schema-Exp n Declaration Hiding


| 8 Schema-Exp � Schema-Exp Universal quantification


| 9 Schema-Exp � Schema-Exp Existential quantification


Figure 5–1: The syntax of the logical schema operations


to illustrate the kinds of techniques used, while the remainder are described in


Appendix A.


Results such as Theorems 11 and 13, et c concern the relationship between


the operations on schemas and the different notions of model. Such results form


the basis for the intended use of our system for supporting modular reasoning


about Z specifications. The ability to state and to prove these theorems is a


consequence of the expressive power of the encoding technique that we have


used: these results cannot be stated in a “shallower” embedding such as that of


[BG94]. However, we shall see that the use of a constructive type theory places


some limitations on the results which can be proved.


5.1 The binary propositional operations


The semantics of the binary propositional operations (^;_;), and ,) is de-


scribed in the ZRM as follows:


For one of the binary operations to be allowed, its two arguments


must have type compatible signatures. The signatures are joined to


form the signature of the result. The truth of its property in any
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binding b is defined in terms of the truth in the argument schemas


of the restrictions of b to their signatures. For example, the property


of S _ T is true in a binding b if and only if either the property of


S is true in the restriction of b to the signature of S or the property


of T is true in the restriction of b to the signature of T (or both). The


other operations follow the rules for propositional connectives [not


shown].


5.1.1 Type compatibility


Two signatures are type compatible if each variable that is common to the two has


the same type in both. This is a decidable, syntactic condition so we shall write


a function in LEGO which checks it:


type compatible fun
def
= [See Appendix C.1] : Signature!Signature!bool


From this we derive a relation:


type compatible
def
= �s1; s2 :Signature: is true (type compatible fun s1 s2)


: Signature!Signature!Prop


The advantage of defining the predicate in terms of a computational procedure


for checking type compatibility is that in cases where we are required to prove


that two defined (as opposed to hypothetical) Signatures are type-compatible,


we can make the proof-checker do the work by checking whether the applica-


tion of type compatible fun normalises to true. (In LEGO parlance, we use the


command Refine Eq_refl.)


Well-formedness is preserved if a schema has its signature extended with a


type-compatible signature which contains no repeated identifiers:


Theorem 9 Extend well formed.


8 S :Schema: 8 Sig :Signature:


(Well formed S) ^ (unique idents Sig) ^ (type compatible S:1 Sig))


(Well formed (join S:1 Sig; S:2))







Chapter 5. Encoding Z : Logical schema operations 83


Proof. By doing introductions and expanding the definition of Well formed we


arrive at the following proof state:


S : Schema


Sig : Signature


H : (Up closed S) ^ (Down closed S) ^ (unique idents S:1)


H1 : unique idents Sig


? : Up closed (join S:1 Sig; S:2)


?1 : Down closed (join S:1 Sig; S:2)


?2 : unique idents (join S:1 Sig)


First we show up-closure. Some more introductions give us the context:


b : Binding


H2 : restricts to model (join S:1 Sig; S:2)b


?4 : models (join S:1 Sig; S:2)b


Since S is up-closed, we can prove this goal by showing


?4 : restricts to model (join S:1 Sig; S:2) b


Now, we can show from hypothesis H2 that the binding b can be successfully


restricted to the signature join S:1 Sig, yielding a binding t and a proof H3 : S:2 t.


Lemmas 27 and 26 then allow us to conclude the following:


H4


def
= succeeds (restrict b S:1) :


H5


def
= succeeds (restrict b Sig) :


We can then use Lemma 24 to derive:


H6


def
= : : : : restrict b S:1 = restrict t S:1


By rewriting the goal with this equality we get a new goal:


?5 : restricts to model (join S:1 Sig; S:2) t
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Next we apply the assumption that S is down-closed. This gives us the goals:


?5 : models S t


?6 : succeeds (restrict t S:1)


We have a proof of ?5 among our hypotheses (H3). To prove ?6 we write with the


equality H6 and then use H4. This completes the proof that (join S:1 Sig; S:2) is


up-closed.


The proof of down-closure is very similar to that of up-closure, so we omit


its description. To show the final subgoal, ?2, we simply apply Lemma 22 which


states that join preserves the property unique idents. ut


5.1.2 Schema conjunction


Schema conjunction was defined in the previous chapter. Here is that definition


once more:


Definition 26 And.


And
def
= �S; S0 :Schema:


(join S:sig S0:sig; �b :Binding: (S:pred b) ^ (S0:pred b))


: Schema!Schema!Schema


5.1.3 Theorems about schema conjunction


First we show that schema conjunction preserves well-formedness when applied


to type compatible schemas:


Theorem 10 And preserves well formedness.


8 S; T :Schema:


(Well formed S) ^ (Well formed T) ^ (type compatible S:1 T:1))


Well formed (And S T)
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Proof. See Proof 2 of Appendix A. This proof is very similar to that of Theorem


9.


Next comes our main metatheorem about the And operation with respect to


the model relationship between Schemas and Bindings. This theorem states that


a Binding is a model of S ^ T if and only if it is a model of both S and T.


Theorem 11 And model char.


8 S; T :Schema: 8 b :Binding:


(models S b) ^ (models T b)() models (And S T) b


Proof. We introduce S, T, and b into the context. By expanding the definition of


models we can reduce the remaining goal to the following:


? : ((S:2 b) ^ (T:2 b))() ((S:2 b) ^ (T:2 b))


which is easily proved. ut


Next we show that And is commutative with respect to the model relationship:


Theorem 12 And model commutes.


8 S; T :Schema: 8 b :Binding:


models (And S T) b ) models (And T S) b


Proof. This follows easily from Theorem 11. ut


Similar results can be proved about restricting models. They apply only to


schemas which are well-formed and type-compatible:


Theorem 13 And restricting model char.


8 S; T :Schema: 8 b :Binding:


(Well formed S) ^ (Well formed T) ^ (type compatible S:1 T:1))


(restricts to model S b) ^ (restricts to model T b)()


restricts to model (And S T) b
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Proof. By doing introductions we arrive at the following proof context:


S; T : Schema


b : Binding


W1 : Well formed S


W2 : Well formed T


C : type compatible S:1 T:1


? : ((restricts to model S b) ^ (restricts to model T b)))


(restricts to model (And S T) b)


?1 : (restricts to model (And S T) b))


((restricts to model S b) ^ (restricts to model T b))


We shall only describe the proof of the first subgoal since both subgoals have


very similar proofs. Our first step is to introduce the antecedent of the goal as a


new hypothesis H:


H : (restricts to model S b) ^ (restricts to model T b)


?3 : restricts to model (And S T) b


To prove goal ?3 we use the fact that And preserves down-closure (Theorem 10)


to reduce it to the following two subgoals:


?4 : models (And S T) b


?5 : succeeds (restrict b (And S T):1)


Theorem 11 (And model char) enables us to reduce the first goal to the following


two goals:


?6 : models S b


?7 : models T b


These subgoals can be proved using the facts that S and T are up-closed (by


hypotheses W1 and W2, respectively), and b is a restricting model of each of


these schemas (by hypothesis H.)
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To prove the outstanding subgoal, ?5, we use Lemma 23 which states that if


a binding can be successfully restricted to each of two signatures sig1 and sig2,


then it can be successfully restricted to the signature formed by joining sig1 and


sig2. ut


Theorems 11 and 13 are very useful because they allow us to prove results


about conjoined schemas in a modular fashion. For instance, if we know that


all restricting models of a schema S have some property P, Theorem 13 allows


us to conclude that, for all schemas T, all restricting models of S ^ T will also


have property P. We shall see an example of this kind of reasoning in Chapter


7.


We show that schema conjunction is commutative with respect to restricting


models:


Theorem 14 And restricting model commutes.


8 S; T :Schema: 8 b :Binding:


(Well formed S) ^ (Well fomed T) ^ (type compatible S:1 T:1))


(restricts to model (And S T) b ) restricts to model (And T S) b)


Proof. See Proof 3 in Appendix A


So far we have proved theorems about schema conjunction with respect


to the model relationship and the restricts to model relationship. We shall not


bother to show similar theorems about the exactly models relationship. This is


not because such theorems cannot be obtained, but because we believe they


are neither as elegant nor as useful as the theorems about restricting models.


As we have seen, these two definitions of the relationship between schemas


and bindings are more or less equivalent: exact models are restricting models


(Theorem 2) and restricting models yield exact models (Theorem 3). Restricting


models also seem to give us the best definition of logical equivalence on schemas


(Section 3.5.4). If we formulate the result of Theorem 13 in terms of exact models,


instead of restricting models, we find that we must still talk about restricting
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Bindings to Signatures, and the result is not so elegant. For example, here is one


possible reformulation:


8 S; T :Schema: 8 b :Binding:


(Well formed S) ^ (Well formed T) ^ (type compatible S:1 T:1))


(9 b1 :Binding: (restrict b S = in2 b1) ^ (exactly models S b1) ^


9 b2 :Binding: (restrict b T = in2 b1) ^ (exactly models T b1)) ()


(exactly models (And S T) b)


Now we give a result involving the Has prop relationship:


Theorem 15 And property.


8 S; T :Schema: 8 P :Predicate:


((Well formed S) ^ (Well fomed T)))


(type compatible S:1 T:1))


((Has prop S P) _ (Has prop T P)))


(Has prop (And S T) P)


Proof. By expanding definitions and using the introduction tactic, we arrive at


the following context:


S; T : Schema


P : Predicate


H : (Well formed S) ^ (Well formed T)


H1 : type compatible S:1 T:1


H2 : (Has prop S P) _ (Has prop T P)


b : Binding


H3 : restricts to model b (And S T)


? : P b


Using Theorem 13 we can conclude:


H4 : restricts to model b SH5 : restricts to model b T


We now apply or-elimination to hypothesis H2 and verify that the goal is satisfied


in each case. ut
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5.1.4 Schema disjunction


Schema disjunction is encoded as follows:


Definition 27 Or.


Or
def
= �S; S0 :Schema:


(join S:sig S0:sig; �b :Binding: (S:pred b) _ (S0:pred b))


: Schema!Schema!Schema


A consequence of this definition is that in order for a binding to be a re-


stricting model of a disjunction Or S T, it must contain the components listed in


the signatures of both S and T. At first sight, this seems to be at odds with the


description of Or given in the ZRM:


[...] the property of S _ T is true in a binding b if and only if either


the property of S is true in the restriction of b to the signature of S or


the property of T is true in the restriction of b to the signature of T


(or both).


The anomaly disappears if we recall that bindings in Z are typed by schema


signatures. The quoted extract does not explicitly state the type of the binding b


to which it refers, but this can only be derived from the signature of the schema


S _ T. Hence, the binding b must contain the components referred to in the


signatures of both S and T.


We show that Or preserves well-formedness.


Theorem 16 Or preserves well formedness.


8 S; T :Schema:


(Well formed S) ^ (Well formed T) ^ (type compatible S:1 T:1))


Well formed (Or S T)


Proof. See Proof 4 in Appendix A.
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5.1.5 Theorems about Schema disjunction


Our first theorem about schema disjunction is analogous to that about schema


conjunction, and is just as simple to prove.


Theorem 17 Or model char.


8 S; T :Schema: 8 b :Binding:


(models S b) _ (models T b)() models (Or S T) b


Proof. Trivial ut


As a consequence, we show that Or is commutative with respect to the model


relationship:


Theorem 18 Or model commutes.


8 S; T :Schema: 8 b :Binding:


models (Or S T) b () models (Or T S) b


Dealing with the restricts to model relationship is more difficult. We cannot


prove a simple “Or-introduction” result such as the following:


8 S; T :Schema: 8 b :Binding:


(restricts to model S b) _ (restricts to model T b)


) restricts to model (Or S T) b


This statement is false because a binding that is capable of being restricted to the


signature of one of the disjuncts will not in general contain enough identifiers


to allow it to be restricted to the signature of the disjunction. The best we can


do is to restrict ourselves to talking about bindings that are large enough to


allow both restrictions. We must also restrict ourselves to well-formed, type-


compatible schemas.
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Theorem 19 Or restricting model intro.


8 S; T :Schema: 8 b :Binding:


(Well formed S) ^ (Well formed T) ^ (type compatible S:1 T:1) ^


(succeeds (restrict b (join S:1 T:1))))


((restricts to model S b) _ (restricts to model T b))


restricts to model (Or S T) b)


Proof. See Proof 5 in Appendix A


We also show that restricting models of a disjunction are restricting models


of each disjunct:


Theorem 20 Or restricting model elim.


8 S; T :Schema: 8 b :Binding:


(Well formed S) ^ (Well formed T) ^ (type compatible S:1 T:1))


(restricts to model (Or S T) b))


(restricts to model S b) _ (restricts to model T b)


Proof. See Proof 6 in Appendix A


We show that Or is commutative with respect to the restricts to model inter-


pretation:


Theorem 21 Or restricting model commutes.


8 S; T :Schema: 8 b :Binding:


(Well formed S) ^ (Well formed T) ^ (type compatible S:1 T:1))


(restricts to model (Or S T) b )


restricts to model (Or T S) b)


Proof. See Proof 7 in Appendix A


Finally, we give a result involving the Has prop relationship:







Chapter 5. Encoding Z : Logical schema operations 92


Theorem 22 Or property.


8 S; T :Schema: 8 P :Predicate:


((Well formed S) ^ (Well fomed T))


(type compatible S:1 T:1))


((Has prop S P) ^ (Has prop T P)))


(Has prop (Or S T) P)


Proof. By expanding definitions and using the introduction tactic, we arrive at


the following context:


S; T : Schema


P : Predicate


H : (Well formed S) ^ (Well formed T)


H1 : type compatible S:1 T:1


H2 : (Has prop S P) ^ (Has prop T P)


b : Binding


H3 : restricts to model b (Or S T)


? : P b


Using Theorem 20 we can conclude:


H4 : (restricts to model b S) _ (restricts to model b T)


We apply or-elimination to hypothesis H4 and verify that the goal is satisfied in


each case. ut


5.1.6 Implication


We encode the implication operation on schemas:


Definition 28 Imply.


Imply
def
= �S; S0 :Schema:


(join S:sig S0:sig; �b :Binding: (S:pred b)! (S0:pred b))


: Schema!Schema!Schema
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5.1.7 Theorems about implication


We show that schema implicationpreserves the well-formedness property:


Theorem 23 Imply preserves well formedness.


8 S; T :Schema:


(Well formed S) ^ (Well formed T) ^ (type compatible S:1 T:1))


Well formed (Imply S T)


Proof. See Proof 8 in Appendix A.


We prove the following simple result about Imply and the model relationship:


Theorem 24 Imply model char.


8 S; T :Schema: 8 b :Binding:


((models S b)) (models T b))() (models (Imply S T) b)


Proof. This follows easily from the definition of Imply. ut


The analogous statement for restricting models is false. Given two schemas


S and T and a binding b, the hypothesis


H : (restricts to model S b)) (restricts to model T b)


is not sufficient to allow us to conclude that b is a restricting model of Imply S T.


The reason is that any binding which is not a restricting model of S will (vacu-


ously) fit the hypothesis H. Such a binding will not, in general, be capable of


being restricted to the signature of Imply S T. If we only consider bindings


which are large enough to be restricted to this signature, we can prove the


following result:
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Theorem 25 Imply restricting model intro.


8 S; T :Schema: 8 b :Binding:


(Down closed S) ^ (Up closed T))


(succeeds (restrict b (Imply S T):1)))


((restricts to model S b)) (restricts to model T b)))


(restricts to model (Imply S T) b)


Proof. See Proof 9 in Appendix A.


We also prove an elimination result:


Theorem 26 Imply restricting model elim.


8 S; T :Schema: 8 b :Binding:


(Up closed S) ^ (Down closed T))


(restricts to model (Imply S T) b))


((restricts to model S b)) (restricts to model T b))


Proof. Omitted, because it is very similar to the proof of Theorem 25.


5.2 Schema negation


The ZRM explains the semantics of schema negation as follows:


The negation :S of a schema S has the same signature as S but its


property is true in just those bindings where the property of S is not


true.


Here is our encoding of schema negation:


Definition 29 Not.


Not
def
= �S :Schema: (S:sig; �b :Binding::(S:pred b))


: Schema!Schema
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5.2.1 Theorems about schema negation


We show that Not preserves well-formedness. The unique idents property is


obviously preserved, since Not S has the same signature as S. Up-closure and


down-closure are also preserved:


Theorem 27 Not up closed.


8 S :Schema:Down closed S ) Up closed (Not S)


Proof. See Proof 10 in Appendix A.


Theorem 28 Not down closed.


8 S :Schema:Up closed S ) Down closed (Not S)


Proof. Omitted, because it is very similar to the proof of Theorem 27.


The next two theorems are simple results about models of negated schemas


which follow directly from the definition of Not.


Theorem 29 Not model property1.


8 S :Schema: 8 b :Binding:


(models S b)) :(models (Not S) b)


Proof. Trivial.


The converse of Theorem 29 is equivalent to the statement 8 P :Prop:::P )


P which is not provable in LEGO’s intuitionistic logic. (We have used LEGO to


verify that the two statements are equivalent.)


Theorem 30 Not model property2.


8 S :Schema: 8 b :Binding:


:(models S b)() (models (Not S) b)
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Proof. Trivial.


Next we show that a binding cannot model both a schema and its negation.


Theorem 31 Non contradiction.


8 S :Schema: 8 b :Binding::((models S b) ^ (models (Not S) b))


Proof. Trivial.


The next result is an intuitionistically provable version of the Law of the


Excluded Middle.


Theorem 32 Not model cases.


8 S :Schema: 8 b :Binding:::(models (Or S (Not S)) b)


Proof. By expanding the definitions of Or, Not, models, et c., we transform the


goal to:


::((S:2 b) _ :(S:2 b))


By expanding the definitions of_ and:, we can prove this goal. The technique


is well-known so we omit it here.


Now we come to some results about restricting models. First we show that


a restricting model of a schema S cannot be a restricting model of Not S.


Theorem 33 Not restricting model property1.


8 S :Schema: 8 b :Binding:


(restricts to model S b)) :(restricts to model (Not S) b)


Proof. See Proof 11 in Appendix A.


Next we show that if a binding is a restricting model of Not S then it cannot


be a restricting model of S.
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Theorem 34 Not restricting model property2.


8 S :Schema: 8 b :Binding:


(restricts to model (Not S) b)) :(restricts to model S b)


Proof. Omitted, since it is very similar to the proof of Theorem 33.


The converse of Theorem 33 is false, as we can prove in LEGO.


Theorem 35 Not restricting model property3.


:(8 S :Schema: 8 b :Binding:


:(restricts to model (Not S) b)) restricts to model S b)


Proof. By expanding the definition of : and doing an introduction we arrive at


the following proof context:


H : 8 S :Schema: 8 b :Binding:


:(restricts to model (Not S) b)) restricts to model S b


? : absurd


Take any schema S and any binding b which is not capable of being restricted to


the signature of S. An example might be S
def
= ([(x;nat ty)]; trueProp) and the


empty binding nil bin. First we prove, by computation, that nil bin cannot be


restricted to the signature of S:


H1


def
= : : : : fails (restrict nil bin S:1)


We use Lemma 38 to show that nil bin is not a restricting model of S. Hypothesis


H then allows us to conclude:


H1


def
= : : : : restricts to model S nil bin


Lemma 38 allows us to deduce from H1 that nil bin can be successfully restricted


to the signature of S. However, H1 shows that nil bin cannot be restricted to


the signature of S. We use the LEGO library theorem in1 not in2 to put these


pieces together to prove absurd. ut







Chapter 5. Encoding Z : Logical schema operations 98


To prove Theorem 35 we used a schema together with a binding which was


not capable of being restricted to the signature of that schema. If we disallow


such bindings, can we prove the converse of Theorem 33? We cannot, for the


same reason that we could not prove the converse of Theorem 29: the statement


we get is equivalent to 8 P :Prop:::P ) P.


Using a similar argument to that of Theorem 35 we prove that the converse


of Theorem 34 is also false. However, in this case, if we restrict ourselves to


bindings for which restriction is successful we get the following result:


Theorem 36 Not restricting model property4.


8 S :Schema: 8 b :Binding: (succeeds (restrict b S:1)))


:(restricts to model S b)) restricts to model (Not S) b


Proof. See Proof 12 in Appendix A.


Finally, we prove an intuitionistic version of the law of the excluded middle


for restricting models.


Theorem 37 Not restricting model cases.


8 S :Schema: 8 b :Binding: (succeeds (restrict b S:1)))


::(restricts to model (Or S (Not S)) b)


Proof. The proof is similar to that of Theorem 32.


5.3 The hiding operations


In this section we discuss the three operations n, 8, and 9, which all have in


common the feature that they hide some of the components of their argument


schemas.
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5.3.1 Hiding


The hiding operator n is described as follows in Section 2.2.3 of the ZRM.


If S is a schema, and x1; : : : ; xn are components of S then


S n (x1; : : : ; xn)


is a schema. Its components are the components of S, except for


x1; : : : ; xn, and they have the same types as in S. The property of


this schema is true under exactly those bindings that are restrictions


of bindings that satisfy the property of S.


5.3.2 Encoding the hiding operator


The ZRM states that the hiding operator can be written in terms of the existential


quantifier. For instance, if we have the following schema


S


x; y; z : N


x = y ^ z = 0


then the schema T c= S n (x; z) can be written as


T


y : N


9 x :N: 9 z :N: x = y ^ z = 0


We shall use this as the basis of our encoding of the hiding operator.


First, we define an auxiliary function hide sig : Signature ! Signature !


Signature. (See Appendix C.1 for the full definition of hide sig.) When applied to


two signatures s1 and s2, this function returns the signature formed by removing


from s2 all signature items which happen to be in s1. We use this to compute the


signatures of the schemas produced by the hiding operator.
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Next, we define another auxiliary function join bin which puts two bindings


together to form a new binding. This uses a third function remove occurs :


Signature ! Binding ! Binding which, when applied to a signature s and a


binding b, returns the binding formed by removing all components from b


whose identifier occurs in s. (The full definition of remove occurs is in Appendix


C.1.) We use this function to remove duplicate identifiers when we combine


two bindings:


Definition 30 join bin.


join bin
def
= �a; b :Binding: append a (remove occurs (extract sig a) b)


: Binding!Binding!Binding


Here is our encoding of the hiding operator:


Definition 31 Hide.


Hide
def
= �sig :Signature: �S :Schema:


(hide sig sig S:1;


�b :Binding: 9 b0 :Binding:


(is true (matches sig b0)) ^ (S:2 (join bin b b0)))


: Signature!Schema!Schema


We prove that the Hide operation preserves well-formedness:


Theorem 38 Hide preserves well formedness.


8 s :Signature: 8 S :Schema: (Well formed S)) (Well formed (Hide s S))


Proof. See Proof 13 in Appendix A


5.3.3 Universal and existential quantification


A schema may be formed by universally or existentially quantifying one schema


over another. These operations are described in the ZRM as follows:
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If D is a declaration, P is a predicate, and S is a schema, then


8D j P � S


is a schema. The schema S must have as components all the variables


introduced by D and they must have the same types. The signature of


the result contains all the components of S except those introduced


by D, and they have the same types as in S. The property of the


result is derived as follows: for any binding z for the signature of the


result, consider all the extensions z0 of z to the signature of S. If every


such extension z0 which satisfies [...] the predicate P also satisfies


the property of S, then the original binding satisfies the property of


8D j P � S,


The schema 9D j P � S has the same signature as 8D j P � S, but its


property is true under a binding z if at least one of the extensions of


z simultaneously satisfies [...] the predicate P and the property of S.


(We have removed references to the constraints associated with declarations


in Z because, in our reduced version of Z, declarations do not carry constraints.)


5.3.4 Encoding the quantifiers


We use the function hide sig to construct the signatures of the schemas formed


by the universal and existential quantifier.


The predicate produced by the universal quantifier is encoded as follows:


a binding b satisfies the predicate produced by All S T provided that, for all


bindings b0 which match the hidden signature S:1, if join bin b0 b satisfies the


predicate of S then it also satisfies the predicate of T.
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Definition 32 All.


All
def
= �S; T :Schema:


(hide sig S:1 T:1;


�b :Binding: 8 b0 :Binding: (is true (matches S:1 b0)))


(S:2 (join bin b0 b))) (T:2 (join bin b0 b)))


: Schema!Schema!Schema


The existential quantifier is encoded similarly:


Definition 33 Exists.


Exists
def
= �S; T :Schema:


(hide sig S:1 T:1;


�b :Binding: 9 b0 :Binding: ((is true (matches S:1 b0)) ^


(S:2 (join bin b0 b)) ^ (T:2 (join bin b0 b))))


: Schema!Schema!Schema


We conjecture that All and Exists preserve well-formedness.


5.4 Schema inclusion


In the grammar shown in Figure 3–1 we see that the declaration part of a


schema may contain schema references, that is, the names of previously defined


schemas. In this section we shall look at how to encode this kind of declaration.


We shall group this with the logical operations because, as we shall see, forming


declarations in this way is logically related to schema conjunction.


First let us look at the semantics of this kind of declaration. To give an


example, if we have defined a schema S,


S


x : N


x > 0
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then the name of this schema can be used in the declaration of another schema:


T


S


y : N


y = x


According to Section 3.4 of the ZRM,


[A schema reference] introduces the components of the schema as


variables, with the same types as they have in the schema, and


constrains their values to satisfy their property.


When several basic declarations are combined, as in the above example, repeated


occurrences of the same identifier are merged in the resulting signature. Any


identifier which appears more than once must be given the same type in every


basic declaration in which it occurs.


The schema T is logically equivalent to the following schema:


T


x; y : N


x > 0 ^ y = x


5.4.1 Encoding schema inclusion


The use of schema references as declarations can be thought of as a way of


defining new schemas which “include” previously defined schemas within their


definition. We shall represent such declarations by an operation Include which


puts together a Schema, a Signature, and a Predicate to form a new Schema.
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Definition 34 Include.


Include
def
= �S :Schema: �sig :Signature: �P :Predicate:


(join S:1 sig; �b :Binding: (S:2 b) ^ (P b))


: Schema!Signature!Predicate!Schema


This definition allows only one Schema to be included at a time. To include


several schemas, we first conjoin them all with And.


5.4.2 Theorems about schema inclusion


First we show two ways in which Includecan be defined in terms of And. The first


result shows that including a schema S within a signature sig with a predicate P


is the same as conjoining S with the schema (sig; P).


Theorem 39 Include equals And1.


8 S :Schema: 8 sig :Signature: 8 P :Predicate:


Include S sig P = And S (sig; P)


Proof. By conversion.


The second result shows that, under certain conditions, Include S sig P is the


same as conjoining S with the schema (join S:1 sig; P). This is more useful than


Theorem 39 because it will usually be the case that the predicate P will refer to


items in the signature of the included schema S. In such cases (sig; P) will not


be a well-formed schema, but (join S:1 sig; P) might be.


Theorem 40 Include equals And2.


8 S :Schema: 8 sig :Signature: 8 P :Predicate:


(unique idents S:1) ^ (unique idents sig) ^ (type compatible S:1 sig) )


Include S sig P = And S (join S:1 sig; P)


Proof. See Proof 14 in Appendix A.
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By using Theorem 40 to rewrite Include in terms of And, we can use our


metatheorems about And to prove the following metatheorems about Include:


Theorem 41 Include well formed.


8 S :Schema: 8 Sig :Signature: 8 P :Predicate:


(Well formed S) ^ (type compatible S:1 Sig))


(Well formed (join S:1 Sig; P))) (Well formed (Include S Sig P))


Proof. This follows from Theorems 40 and 10. ut


Theorem 42 Include model property.


8 S :Schema: 8 Sig :Signature: 8 P :Predicate: 8 b :Binding:


((models S b) ^ (P b))() (models (Include S Sig P) b)


Proof. The proof is the same as that of Theorem 11. ut


Theorem 43 Include restricting model property.


8 S :Schema: 8 Sig :Signature: 8 P :Predicate: 8 b :Binding:


(Well formed S) ^ (Well formed (join S:1 Sig; P)) ^


(type compatible S:1 Sig) ^ (unique idents (extract sig b)))


((restricts to model S b) ^ (restricts to model (join S:1 Sig; P) b))()


(restricts to model (Include S Sig P) b)


Proof. This follows from Theorems 40 and 13. ut


5.5 Formal description of our translation


At this point we have presented all the UTT definitions needed to give our


semantics of Z0 . We now complete the description of the semantics by describing


formally how to translate Z0 specifications into their representations in UTT.
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UTTenv = Global�SchemaDict


Global = Vars�Axioms


SchemaDict = UTTIdent 7 7! Schema


Vars = UTTIdent 7 7! Ztype


Axioms = UTTIdent 7 7! Prop


UTTIdent = allowed identifiers in UTT


Figure 5–2: Semantic objects


5.5.1 Definition of the semantic objects


First of all we must define some semantic objects to capture those aspects of the


representation which are not internally represented by definitions in UTT. All


the definitions are parameterised over a set of given types, G, obtained from the


prelude of a Z0 specification.


The definitions of the semantic objects are shown in figure 5–2, where, as in


Z, the symbol 7 7! is used to represent “finite, partial functions” in our informal


meta-language.


5.5.2 Syntax annotations


To simplify the presentation of the translation, we shall add some annotations


to the syntax of Z0 . Though we do not give the algorithms for doing so, these


annotations can all be automatically computed for well-typed Z0 specifications.


� All axiomatic descriptions are labelled with new, unique identifiers. In


other words, the first clause in the definition of the syntax of MAINSPEC


(figure 3–2) becomes:


let WORD : SCHEMA end


These identifiers will be used as the names of the assumptions in UTT by


which axiomatic descriptions are represented.
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� Terms are annotated with types as shown below:


TERM ::= IDENTTYPE (type of the identifier)


| ; [TYPE]


| fTERM1,: : :,TERMngTYPE (base type of the set)


| (TERM,TERM)


| (TERM (TERM))TYPE (argument type of first term)
These annotations will be used to compute the correct Ztype arguments to


give to lookup, Equal and Apply.


� In schema expressions formed by hiding, the identifiers to be hidden are


annotated with their expected types. We shall simply re-use the phrase


class DECL instead of introducing more syntax to represent these annot-


ated identifiers. The syntax of these schema expressions becomes:


SEXP n ( DECL )


� PREDs formed using = and 2 are annotated with types:


PRED ::= TERM =TYPE TERM


| TERM 2TYPE TERM


5.5.3 Translating the annotated syntax


We now show how to translate an annotated Z0 specification to a UTT environ-


ment. We shall assume that the prelude of the specification has been translated,


so that the definitions of GivenType and Ztype have already been created. The


rules in figures 5–3, 5–4, 5–5 and 5–6 show how to translate the main specification


to obtain a UTTenv. The symbols
S


and ; are generalised to mean, respectively,


the component-wise union of two tuples of sets, and a tuple of empty sets.


For the sake of readability, we have not used subscripts to distinguish the


semantic functions on different phrase classes, except for the cases where more


than one semantic function happen to operate on the same phrase class.
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Main specifications [[ ]] : MAINSPEC!UTTenv!UTTenv


[[let word:schema end; E]] = E
S
([[word; schema]]top; ;)


[[let word = sexp; E]] = E
S
((;; ;); fword 7! [[sexp; E]]g)


[[mainspec
1
in mainspec


2
; E]] = [[mainspec


2
; [[mainspec


1
; E]]]]


Axiomatic descriptions [[ ]]top : WORD!SCHEMA!Global


[[word;decl|pred]]
top
= ([[decl]]top; [[word; pred]]


top
)


Top declarations [[ ]]top : DECL!Vars


[[ident:type]]
top
= fident 7! Typ [[type]]g)


[[decl1 ; decl2]]top = [[decl1]]top


S
[[decl2]]top


Top-level predicates [[ ]]top : WORD!PRED!Axioms


[[ ]]top : PRED!Prop


[[word;pred]]
top
= fword 7! [[pred]]


top
g


[[term1 =type term2]]top
=


IS TRUE (EQUAL [[type]] [[term1]]top [[term2]]top)


[[term1 2type term2]]top
=


IS TRUE (IN (Equal [[type]]) [[term1]]top [[term2]]top)


[[true]]top = trueProp


[[false]]top = absurd


[[: pred]]
top
= �[[pred]]


top


[[pred
1
^ pred


2
]]


top
= [[pred


1
]]


top
^ [[pred


2
]]


top


[[pred
1
_ pred


2
]]


top
= [[pred


1
]]


top
_ [[pred


2
]]


top


[[pred
1
) pred


2
]]


top
= [[pred


1
]]


top
) [[pred


2
]]


top


[[9 ident : type � pred]]
top
= 9 ident :Typ [[type]]: [[pred]]


top


[[8 ident : type � pred]]
top
= 8 ident :Typ [[type]]: [[pred]]


top


Figure 5–3: Semantic rules (part 1)
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Top level terms [[ ]]top : TERM! small item


[[(ident : type)]]
top
= in2 ([[type]]; ident)


[[fterm1; : : : ; termngtype]]top
=


ADD ONE (Equal [[type]]) [[term1]]top


(: : : (ADD ONE (Equal [[type]]) [[term1]]top (NULL [[type]])))


[[; [type]]]
top
= NULL [[type]]


[[(term1; term2)]]top = PAIR [[term1]]top [[term2]]top


[[term1(term2)type]]top
=


APPLY (Equal [[type]]) [[term1]]top [[term2]]top


Schema expressions [[ ]] : SEXP!UTTenv!Schema


[[schema schema end; E]] = [[schema]]


[[sdes; E]] = [[sdes]]; Esdes


[[:sexp; E]] = Not schema [[sexp; E]]


[[sexp
1
^ sexp


2
; E]] = And [[sexp


1
; E]] [[sexp


2
; E]]


[[sexp
1
_ sexp


2
; E]] = Or [[sexp


1
; E]] [[sexp


2
; E]]


[[sexp
1
) sexp


2
; E]] = Imply [[sexp


1
; E]] [[sexp


2
; E]]


[[sexp n decl; E]] = Hide [[decl]] [[sexp; E]]


[[9 schema � sexp; E]] = Exists [[schema]] [[sexp; E]]


[[8 schema � sexp; E]] = All [[schema]] [[sexp; E]]


[[include sdes decl pred; E]] =


Include schema


[[decl]] [[pred; join [[decl]] [[sdes; E]]SDES:1]] [[sdes; E]]SDES


Schema designators [[ ]]SDES : SDES!UTTenv!Schema


[[word; E]]SDES = E:2 (word)


[[sdes0; E]]SDES = Prime ([[sdes]]SDES)


Schema bodies [[ ]] : SCHEMA!Schema


[[decl j pred]] = ([[decl]]; [[pred; [[decl]]]])


Figure 5–4: Semantic rules (part 2)
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Declarations [[ ]] : DECL!Signature


[[ident : type]] = [([[ident]]; [[type]])]


[[decl1; decl2]] = append [[decl1]] [[decl2]]


Predicates [[ ]] : PRED!Signature!(Binding!Prop)


[[pred; sig]] = �b :Binding: [[pred; sig]]
body


[[term1 =type term2; sig]]
body


=


IS TRUE (EQUAL [[type]] [[term1; sig]] [[term2; sig]])


[[term1 2type term2; sig]]
body


=


IS TRUE (IN (Equal [[type]]) [[term1; sig]] [[term2; sig]])


[[true; sig]]body = trueProp


[[false; sig]]body = absurd


[[: pred; sig]]
body


= �[[pred; sig]]
body


[[pred
1
^ pred


2
; sig]]


body
= [[pred


1
; sig]]


body
^ [[pred


2
; sig]]


body


[[pred
1
_ pred


2
; sig]]


body
= [[pred


1
; sig]]


body
_ [[pred


2
; sig]]


body


[[pred
1
) pred


2
; sig]]


body
= [[pred


1
; sig]]


body
) [[pred


2
; sig]]


body


[[9 ident : type � pred; sig]]
body


=


9 ident :Typ [[type]]: [[pred; sig � [[ident]]]]
body


[[8 ident : type � pred; sig]]
body


=


8 ident :Typ [[type]]: [[pred; sig � [[ident]]]]
body


Identifiers [[ ]] : IDENT! Ident


This can be any function giving an isomorphism between the identifiers of a


given Z0 specification and some finite subset of the UTT type Ident (= nat).


Figure 5–5: Semantic rules (part 3)
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Terms [[ ]] : TERM!Signature! small item


[[ident : type; sig]] =


(lookup ([[ident]]; [[type]]) b) [[ident]] 2 sig


[[ident : type; sig]] = in2([[type]]; ident) [[ident]] 62 sig


[[fterm1; : : : ; termngtype; sig]] =


ADD ONE (Equal [[type]]) [[term1; sig]]


(: : : (ADD ONE (Equal [[type]]) [[term1; sig]] (NULL [[type]])))


[[; [type]; sig]] = NULL [[type]]


[[(term1; term2); sig]] = PAIR [[term1; sig]] [[term2; sig]]


[[term1(term2)type]] =


APPLY (Equal [[type]]) [[term1; sig]] [[term2; sig]]


Types [[ ]] : TYPE!Ztype


[[N]] = nat ty


[[B ]] = bool ty


[[ident]] = given ty ident


[[F type]] = finset ty [[type]]


[[type
1
�type


2
]] = prod ty [[type


1
]] [[type


1
]]


Figure 5–6: Semantic rules (part 4)
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5.6 Conclusion


We have encoded several of the logical operations on schemas provided by the


Z notation. This allowed us, finally, to give a complete, formal definition of our


semantics for Z0 .


We used UTT to prove some meta-theoretical results about the relationship


between the logical operations and our different notions of model for Z schemas.


In chapter 7, we shall see how these theorems enable us to reason about Z


specifications in a modular fashion.







Chapter 6


Encoding Z: Specifying operations


All the schemas that we have looked at so far have contained only undecorated


identifiers in their signatures. Such schemas are conventionally understood as


specifying the state space of an abstract datatype. For instance, the following


schema specifies a state space containing two natural numbers, x and y:


Sch


x; y : N


x > y


Operations map one state to another and can take input and produce output.


They are specified by relationships between input and output variables and pairs


of states representing the states before and after the execution of the operation.


In Z, an operation upon the state space described by a schema S is specified by a


schema which contains two copies of S, one of which has had all of its identifiers


decorated with a ’, and which represents the state after the operation is executed.


In addition, the schema which specifies the operation may contain identifiers


decorated with the symbols ? or !, representing the inputs and outputs of the


operation. The notation S0 is used to represent the operation of decorating all


the identifiers in a schema S with a ’. As an example, here is a schema which


specifies an operation on the state space of the schema Sch. The operation takes


as input a value inc and increments both x and y by this value.


113







Chapter 6. Encoding Z: Specifying operations 114


Op


Sch


Sch0


inc? : N


x0 = x + inc?


y0 = y + inc?


In this chapter we shall look at a group of schema forming operations which


relate to the specification of operations. We shall describe these operations,


show how they may be encoded in type theory, and prove some theorems about


the encoded operations.


6.1 Schema decoration


The operation of schema decoration was applied to the schema Sch in the defin-


ition of the schema Op. The meaning of this operation is described in Section


2.2.2 of the ZRM as follows:


If S is a schema, then S0 is the same as S, except that all the component


names have been suffixed with the decoration ’. The signature of S0


contains a component x0 for each component x of S, and the type of


x0 in S0 is the same as the type of x in S.


From a binding z for this new signature, a binding z0 for the signature


of S can be derived. In z0, each component of S is given the value


that x0 takes in z, so that z0:x = z:x0. The property of S0 is true under


z exactly if the property of S is true under the derived binding z0.


Though it is possible to decorate schemas with decorations other than ’, only


the decoration with ’ is meaningful for the purposes of specifying operations,


so we shall look at this type of decoration only. There is no technical difficulty


in extending our encoding to all other types of decoration.
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6.1.1 Encoding schema decoration


We shall encode schema decoration as a function Prime : Schema!Schema. It


is easy to define a function to compute the signature of the new schema. First


we define a function decorate item : Decor char ! sig item! sig item which


decorates a single signature item. This simply appends the given decoration


character to the decoration of the identifier of the given signature item. We use


this to define an operation prime sig : Signature! Signature which decorates


all the identifiers in a signature with the decoration character pr. We prove that


prime sig preserves the property unique idents.


Lemma 1 prime sig preserves unique idents.


8 Sig :Signature: (unique idents Sig)) (unique idents (prime sig sig))


Proof. By induction on Sig. The details are straightforward. ut


We cannot compute the predicate of the primed schema in such a direct


fashion. This is because our encoding of schema predicates does not provide


us with access to the syntactic structure of these predicates. Schema predicates


are represented as terms of type Binding!Prop. The only way in which we can


compute with such a term is to apply it to a Binding. This means that the only


way in which we can modify a schema predicate is by modifying the Bindings


to which it is applied.


To define the new predicate we shall take advantage of the semantic property


of the Prime operation that was quoted above. The property of a primed schema


holds true of a binding b, if and only if the property of the original schema holds


true of the binding formed from b by removing a prime from the decoration of


each identifier in b. We shall use this as the basis of our definition of the new


predicate.


First we define a function primed part : Binding ! Binding which forms a


new binding from all of the primed components in a given binding. Next, we


define a function post bin : Binding!Binding which, when applied to a binding
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b, forms a new binding by stripping the final prime from the decorations of all


the components of primed part b. We prove that post bin produces a binding


which matches a signature s if it is applied to a binding which matches the


signature Prime s:


Lemma 2 post bin lemma.


8 S :Signature: 8 b :Binding:


(is true (matches (prime sig S) b))) (is true (matches S (post bin b)))


The converse of this result is not true, since the post bin operation discards


components which are not decorated with a prime.


Now we can define the Prime operation on schemas:


Definition 35 Prime.


Prime
def
= �S :Schema: (prime sig S:1; �b :Binding: S:2 (post bin b))


: Schema!Schema


6.1.2 Theorems about schema decoration


First we show that the Prime operation preserves well-formedness. We have


already shown that the unique idents property is preserved (Lemma 1), so now


we prove that down-closure and up-closure are also retained.


Theorem 44 Prime down closed.


8 S :Schema:Down closed S ) Down closed (Prime S)


Proof. See Proof 15 of Appendix A.


Theorem 45 Prime up closed.


8 S :Schema:Up closed S ) Up closed (Prime S)







Chapter 6. Encoding Z: Specifying operations 117


Proof. Omitted, since this proof is similar to that of Theorem 44


Next we prove two theorems which characterise the behaviour of the Prime


operation. The first relates to the model relationship and the second is the


equivalent result for the restricts to model relationship.


Theorem 46 Prime model char.


8 S :Schema: 8 b :Binding:models S (post bin b)() models (Prime S) b


Proof. This is a trivial consequence of the definition of Prime.


Theorem 47 Prime restricting model char.


8 S :Schema: 8 b :Binding:


restricts to model S (post bin b)() restricts to model (Prime S) b


Proof. See Proof 16 of Appendix A.


6.2 The� convention


The � convention is the basis for specifying state-changing operations in Z.


When applied to a schema S, � produces a new schema containing S and S0.


For example, the schema Op could equally well have been defined as:


Op


�Sch


inc? : N


x0 = x + inc?


y0 = y + inc?
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6.2.1 Encoding�


We encode � in terms of And and Prime:


Definition 36 Delta.


Delta
def
= �S :Schema:And S (Prime S)


: Schema!Schema


6.2.2 Theorems about Delta


We would like to prove that Delta preserves well-formedness. The simplest


way to prove this would be to use the facts that And and Prime preserve well-


formedness, since Delta is defined in terms of these operations. However, it


turns out that in order to use the result about And (Theorem 10) we need to place


an extra syntactic condition on schemas. Theorem 10 applies only to schemas


whose signatures are type compatible. The prime sig operation does not always


produce a signature which is type compatible with the signature to which it


is applied. If a signature s contains both primed and unprimed versions of


the same identifier, and these happen to be paired with unequal Ztypes, then s


will not be type compatible with prime sig s. We must exclude such signatures


if we want to guarantee type compatibility. To do so we define a predicate


static sig : Signature ! Prop which is true of a signature s if and only if no


identifier occurs both primed and unprimed in s.


Lemma 3 static sig gives type compatibility.


8 s :Signature: (unique idents s) )


(static sig s)) (type compatible s (prime sig s))


We prove that Delta preserves well-formedness when applied to schemas


whose signatures satisfy the static sig property:


Theorem 48 Delta preserves well formedness.


8 S :Schema: (static sig S:1)) (Well formed S)) (Well formed (Delta S))
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Proof. This follows easily from Lemma 3 and the facts that And and Prime pre-


serve well-formedness (Theorems 10, 44 and 45, and Lemma 1.) ut


Because of the way that Delta is defined, we can use the theorems about And


and Prime to reason in a modular fashion about schemas created by Delta.


6.3 Binding formation (�)


Before we go on to discuss the next schema-forming operation, �, we shall


say something about �-expressions (ZRM, p 60) because these are used in the


definition of � in the ZRM. We can think of the expression �S as denoting


an operation which captures the portion (if it exists) of a given binding that


matches the signature of a schema S. It is similar to the restrict operation that


we have defined. However, � differs from restrict in the way that it behaves


when applied to schemas decorated with a ’. When applied to such a schema, �


captures the matching portion of a binding and then strips off the ’ from every


identifier before returning the result. Hence the bindings returned by �S0 have


the same signature as those returned by �S. In the case of S0, � behaves like


restrict followed by post bin.


In our encoding we have no way to distinguish between schemas formed by


the Prime operation, and other schemas, so we cannot encode the � operation


directly. Instead we shall have to use the functions restrict or restrict followed


by post bin, as appropriate. We believe that being forced to separate the uses


of � into these two operations gives us a more perspicuous account of Z. We


preserve the intended function of � but we avoid such anomalies as the fact that


� is not preserved by schema renaming: if we define T = S0, where S is some


schema, then �T produces bindings that are different from those produced by


�S, because the primes are not stripped from the bindings produced by �T.
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6.4 The � convention


The � convention is used in Z for specifying operations which cause no change


in state. For example, these might be access operations which simply look up


the value of an identifier in the state. When applied to a schema S, � produces


a schema that is the same as � S with the additional predicate:


� S = � S0


6.4.1 Encoding �


In encoding�we are faced with the question of choosing an appropriate equality


predicate for bindings. This is not so much a question about encoding schemas


correctly as it is a decision about the correct theory of the core language of


Z. We have chosen to use the standard inductive equality, Eq, but this is by


no means the only possibility, nor do we believe that this choice is the final


word on equality for bindings. Further experimentation may well reveal that


inductive equality is too strong for this purpose. It is certainly stronger than the


set-theoretic equality that is used by Z, because this equates extensionally equal


functions, which the inductive equality does not.


We shall encode Xi in terms of Delta and Include. To represent � we use


restrict and post bin as described in Section 6.3.


Definition 37 Xi.


Xi
def
= �S :Schema: Include (Delta S) nil sig


(�b :Binding: restrict (post bin b) S:1 = restrict b S:1)


: Schema!Schema
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6.4.2 Theorems about Xi


We have proved that Xi preserves well-formedness under the same conditions


required for Delta to do so:


Theorem 49 Xi preserves well formedness.


8 S :Schema: (static sig S:1)) (Well formed S)) (Well formed (Xi S))


Proof. See Proof 17 of Appendix A.


6.5 Precondition schemas


When applied to a schema which specifies an operation, the precondition oper-


ator produces a schema which describes the precondition of that operation. It


is described in the ZRM as follows:


If S is a schema, and x0
1
; : : : ; x0m are the components of S that have


the decoration ’, and y1!; : : : ; yn! are the components that have the


decoration !, then the schema ‘pre S’ is the result of hiding these


variables of S:


S n (x0
1
; : : : ; x0m; y1!; : : : ; yn!):


To encode the precondition operator, we first define a function after sig :


Signature!Signature which, when applied to a signature s, forms a new signa-


ture by gathering all the signature items in s which have the decoration prime


or shriek as their final decoration. The precondition operator is then defined as


follows:


Definition 38 Pre.


Pre
def
= �S :Schema:Hide (after sig S:1) S


: Schema!Schema
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We show that Pre preserves well-formedness:


Theorem 50 Pre preserves well formedness.


8 s :Signature: 8 S :Schema: (Well formed S)) (Well formed (Pre S))


Proof. First we show that after sig produces a sub-signature of any signature


to which it is applied. We also show that after sig preserves the property


unique idents. We then use the fact that Hide preserves well-formedness (The-


orem 38) to complete the proof. ut


6.6 Sequential composition


Two schemas S and T which specify operations may be put together by se-


quential composition (o9) to form a new schema. The formal definition of this


operation is given as follows in the ZRM:


For the composition S o


9 T to be defined, for each word x such that


x0 is a component of S and x itself is a component of T, the types


of these two components must be the same. We call x a matching


state variable. Also, the types of any other components they share


(including inputs, outputs, and state variables that do not match)


must be the same.


The schema S o


9 T has all the components of S and T, except for the


components x of S and x0 of T, where x is a matching state variable.


If State is a schema containing just the matching state variables, then


S o


9 T is defined as


9 State00�


(9 State0 � [S; State00 j �State0 = �State00]) ^


(9 State � [T; State00 j �State = �State00]):
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We can understand this schema as follows: for a binding b1 to satisfy the


predicate of S o


9
T, there must exist another binding b2 which matches the hidden


state variables of S and T. The binding b2 may be thought of as the state in


which S terminates and T begins. If b2 is decorated with primes and combined


with b1, the result must satisfy the predicate of S. If b2 is combined with b1 the


result must satisfy the predicate of T.


6.6.1 Encoding sequential composition


We can encode the formal definition of sequential composition directly, using


the functions restrict and post bin to represent the � operation as required. First,


we define a function matching vars : Signature!Signature!Signature, which


computes the matching state variables of two signatures. In other words, when


applied to two signature s1 and s2, matching vars returns a signature containing


all the identifiers in s2 which appear primed in s1. Then, we define Compose as


follows:


Definition 39 Compose.


Compose
def
= �S; T :Schema:


[State = (matching vars S:1 T:1; � :Binding: trueProp)]


[State0 = Prime State]


[State00 = Prime State0]


Exist State00


(And (Exist State0


(Include (And S State00) nil sig


(�b :Binding:


restrict (post bin b) State:1 = restrict (post bin (post bin b)) State:1)))


(Exist State


(Include (And T State00) nil sig


(�b :Binding:


restrict b State:1 = restrict (post bin (post bin b)) State:1))))


: Schema!Schema!Schema
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The compose operation is meaningful only if applied to schemas whose


signatures are consistent for composition, as described in the quoted extract,


as well as being type-compatible. Two signatures S and T are consistent for


composition if any identifier that occurs primed in S and unprimed in T is


paired with the same type in both occurrences. We formalise this as a predicate


compose consistent : Signature!Signature!Prop. We conjecture that Compose


preserves well-formedness if applied to schemas which are type-compatible and


have the property compose consistent.


6.7 Conclusion


We have encoded some of the schema-forming operations conventionally used


in Z for the specification of operations. We have used LEGO to prove some


results about the metatheory of these operations, though much work remains


to be done in investigating this subject.







Chapter 7


A Specification Example Continued


In this chapter we present the rest of the Birthday Book specification which


was introduced in Chapter 4. The specification makes use of several of the


schema-forming operations discussed in Chapters 5 and 6. We show how this


specification can be encoded in LEGO and then use the encoding to formally


verify a result about one of the specified operations, AddBirthday. We then


encode an extension to the original specification, which specifies a robust version


of the AddBirthday operation in which failure conditions are taken into account.


We show that our theorem about AddBirthday can be carried over to the robust


operation.


This chapter shows examples of two kinds of formal reasoning about Z


specifications that are made possible by our encoding. Theorem 55 shows how


we can reason at the level of the core language and Theorem 57 shows how we


can take advantage of our metatheorems about the schema-level operators to


prove results about schemas in a modular style.


All of the Z code in this chapter is taken from the ZRM. The proof of Theorem


55 is a formalisation of a proof in the ZRM.
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7.1 The Z specification


The first schema specifies an operation which adds a new birthday to the set of


birthdays recorded by the system.


AddBirthday


�BirthdayBook


name? : NAME


date? : DATE


name? =� known


birthday0 = birthday [ fname? 7! date?g


The next operation looks up a name in the set of birthdays, and returns the


birthday associated with that name if it is in the set.


FindBirthday


�BirthdayBook


name? : NAME


date! : DATE


name? � known


date! = birthday(name?)


The next schema specifies an alarm operation which, when supplied with


the current date, returns the set of all birthdays which fall on that date.


Remind


�BirthdayBook


today? : DATE


cards! : F NAME


8 n :NAME: n 2 cards! , birthday(n) = today?
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The original version of this schema in the ZRM made use of set comprehension


in the predicate:


cards! = fn : known j birthday(n) = today?g


We have not allowed set comprehension in the syntax of Z0 because it is difficult


to see how to add this to our representation of finite sets as lists.


The initial state of the BirthdayBook system is specified by the schema:


InitBirthdayBook


BirthdayBook


known = ;


7.2 Encoding the specification


We first define all of the signature items needed to encode this specification:


name type
def
= Given ty Name ty : Ztype


name item
def
= ((2; query);name type) : sig item


date type
def
= Given ty Date ty : Ztype


date item
def
= ((3; shriek); date type) : sig item


today type
def
= Given ty Date ty : Ztype


today item
def
= ((4; query); today type) : sig item


cards type
def
= finset ty (Given ty Name ty) : Ztype


cards item
def
= ((5; shriek); cards type) : sig item


known0 item
def
= decorate item pr known item : sig item


birthday0 item
def
= decorate item pr birthday item : sig item


To encode the schema AddBirthday, we first define its signature and predic-


ate and then put all the parts together using the operations Include and Delta.
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Definition 40 AddBirthday.


AB sig
def
= [name item; date item]


AB pred
def
= �b :Binding:


[name = lookup name item b]


[date = lookup date item b]


[known = lookup known item b]


[birthday = lookup birthday item b]


[birthday0 = lookup birthday0 item b]


(IS FALSE (IN name known)) ^


(IS TRUE (EQUAL birthday0


(FUN UNION birthday (FUN SINGLE name date))))


AddBirthday
def
= Include (Delta BirthdayBook) AB sig AB pred


We prove that the schema AddBirthday is well-formed.


Theorem 51 AddBirthday well formed.


Well formed AddBirthday


Proof. We show first that the schema (AddBirthday:1; AB pred) is well-formed.


This is a flat schema, like the schema BirthdayBook, and the proof of its well-


formedness is basically similar to the proof that BirthdayBook is well-formed


(Theorem 8).


Since Delta preserves well-formedness (Theorem 48) and BirthdayBook is


well-formed, we can prove that Delta BirthdayBook is well-formed. By applying


the result that Include preserves well-formedness (Theorem 41) to these two facts


we complete the proof. ut


Next we define the schema FindBirthday. To handle the application of the


partial function birthday, we add an existence condition, as described in Section


4.1.2.
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Definition 41 FindBirthday.


FB sig
def
= [name item; date item]


FB pred
def
= �b :Binding:


[name = lookup name item b]


[date = lookup date item b]


[known = lookup known item b]


[birthday = lookup birthday item b]


(9 d :Date: APPLY birthday name = in2 (Given ty Date ty; d)) ^


(IS TRUE (IN name known)) ^


(IS TRUE (EQUAL date (APPLY birthday name)))


FindBirthday
def
= Include (Xi BirthdayBook) FB sig FB pred


Theorem 52 FindBirthday well formed.


Well formed FindBirthday


Proof. The proof is very similar to the proof of Theorem 51. First we show


that the schema (FindBirthday:1; FB pred) is well-formed. We then use the fact


that Xi preserves well-formedness to prove that Xi BirthdayBook is well-formed.


(To do this we are required to verify that the signature of BirthdayBook has the


property static sig.) We use Theorem 41 to complete the proof. ut


Here is our encoding of the schema Remind.
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Definition 42 Remind.


Remind sig
def
= [today item; cards item]


Remind pred
def
= �b :Binding:


[today = lookup today item b]


[cards = lookup cards item b]


[known = lookup known item b]


[birthday = lookup birthday item b]


8 n :Typ (givenT Name): [N = (givenT Name; n)]


(IS TRUE (IN N cards))()


((IS TRUE (IN N known)) ^


(IS TRUE (EQUAL (APPLY birthday N) today)))


Remind
def
= Include (Xi BirthdayBook) Remind sig Remind pred


Theorem 53 Remind well formed.


Well formed Remind


Proof. Omitted. The proof is similar to that of Theorem 52.


Definition 43 InitBirthdayBook.


Init BB pred
def
= �b :Binding:


[known = lookup known item b]


IS TRUE (EQUAL known NULL)


InitBirthdayBook
def
= Include BirthdayBook nil sig Init BB pred


Theorem 54 InitBirthdayBook well formed.


Well formed InitBirthdayBook


Proof. We prove that the schema (InitBirthdayBook:1; Init BB pred) is well-


formed, and then use the facts that Include preserves well-formedness (Theorem


41) and BirthdayBook is well-formed (Theorem 8) to complete the proof. ut
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7.3 A theorem about AddBirthday


The ZRM gives an informal proof of the following statement: the AddBirthday


operation causes the set of names known to the system to be augmented with


the new name supplied to the operation.


known0 = known[ fname?g


We shall prove this result formally in LEGO. First we formalise the statement


of what we want to prove. Our goal is to show that all bindings which are


restricting models of the schema AddBirthday satisfy the following predicate:


Definition 44 P.


P
def
= �b :Binding:


[known = lookup known item b]


[known0 = lookup known0 item b]


[name = lookup name item b]


IS TRUE (EQUAL known0 (UNION known (SINGLE name)))


: Binding!Prop


The formal proof goes in two stages. The first stage is essentially overhead


resulting from our encoding of Z while the main proof is in the second stage.


The first stage consists of proving Lemma 4. This states that if a binding


b is a restricting model of the BirthdayBook schema, then the signature items


known item and birthday item can be successfully looked up in b, and the values


so obtained satisfy the predicate BB pred if they are substituted in place of the


lookups. We anticipate that this kind of proof obligation — where we show that


a binding that is a restricting model of a schema does indeed provide witnesses


that make the predicate of that schema hold true — will arise frequently in the


use of this system. For this reason we have tried to streamline the proof script


so that it can be reused easily.
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Lemma 4 AddBirthday lemma. 1


8 b :Binding: (restricts to model AddBirthday b))


9 known v :Typ known type: 9 birthday v :Typ birthday type:


9 known0 v :Typ known type: 9 birthday0 v :Typ birthday type:


9 name v :Typ name type: 9 date v :Typ date type:


(lookup known item b = in2 (known type; known v)) ^


(lookup birthday item b = in2 (birthday type; birthday v)) ^


(lookup known0 item b = in2 (known type; known0 v)) ^


(lookup birthday0 item b = in2 (birthday type; birthday0 v)) ^


(lookup name item b = in2 (name type; name v)) ^


(lookup date item b = in2 (date type; date v)) ^


(is true (Set eq known v (Dom birthday v))) ^


(is true (Set eq known0 v (Dom birthday0 v))) ^


(is false (In name v known v)) ^


(is true (Fun eq birthday0 v


(FunUnion birthday v (FunSingle name v date v))))


Proof. We begin by introducing a binding b and the hypothesis:


H : restricts to model AddBirthday b


From H, we can easily show that b can successfully be restricted to the signature


AddBirthday:1:


b0 : Binding


H1 : restrict AddBirthday:1 b = in2 b0


H2 : AddBirthday:2 b0


1The use of unwrapped versions of core functions (Dom, rather than DOM, et c) in


the statement of this lemma may be confusing. The statement of the lemma is actually


computationally equivalent to the corresponding statement in which only wrapped


functions are used, because the wrapped functions are being applied to values of the


“correct” type. See Section 3.5.7 for explanations.
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We can then use Lemma 12 (restrict works then lookup works) to show that


known item, birthday item, et c. can all be successfully looked up in b. Then we


use Lemma 6 (lookup success lemma) to obtain witnesses for all the existentials


in the goal, and to prove the equalities. For example, by applying Lemma 6


to our proof that known item can be successfully looked up in b, we obtain the


following:


t : Typ known type


H3 : lookup known item b = in2 (known type; t)


Similarly, we obtain values t1; t2; t3; t4 and t5 and proofs that these are the


results of looking up birthday item, known0 item, birthday0 item, name item,


and date item, respectively, in b.


Now we must show that these values satisfy the predicate AddBirthday:2 if


they are substituted in place of the appropriate lookups:


? : (is true (Set eq t (Dom t1))) ^


(is true (Set eq t2 (Dom t3))) ^


(is false (In t4 t1)) ^


(is true (Fun eq t3 (FunUnion t1 (FunSingle t4 t5))))


By rewriting with the equalities such as H3 that were obtained in the last step,


we can transform the goal to:


?1 : (IS TRUE (EQUAL (lookup known item b)


(DOM (lookup birthday item b)))) ^


(IS TRUE (EQUAL (lookup known0 item b)


(DOM (lookup birthday0 item b)))) ^


(IS FALSE (IN (lookup name item b) (lookup known item b))) ^


(IS TRUE (EQUAL (lookup birthday0 item b)


(FUN UNION (lookup birthday item b)


(FUN SINGLE (lookup name item b)


(lookup date item b)))))


Lemma 18 (lookup restrict equals lookup orig) allows us to replace all of the


lookups in b by lookups in the binding b0 obtained by restricting b. Lemma 8 then
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allows us to replace both of the lookups in b0 of primed signature items (such


as known0 item) by lookups of the unprimed item in post bin t. These rewrites


bring the goal into a form where it matches the hypothesis H2. Refining by this


hypothesis completes the proof. ut


Now we can use this lemma to prove the main result.


Theorem 55 AddBirthday prop.


Has prop AddBirthday P


Proof. We introduce a binding b and a hypothesis:


H : restricts to model AddBirthday b


By applying Lemma 4 to this hypothesis, and then doing several existential


eliminations, introductions, and eliminations, we arrive at the following proof


context:


known v; known0 v : Typ known type


birthday v; birthday0 v : Typ birthday type


name v : Typ name type


date v : Typ date type


H1 : lookup known item b = in2 (known v known type)
...


H6 : lookup date item b = in2 (date v date type)


H7 : is true (Set eq known v (Dom birthday v))


H8 : is true (Set eq known0 v (Dom birthday0 v))


H9 : is false (In name v known v)


H10 : is true (Fun eq birthday0 v


(FunUnion birthday v (FunSingle name v date v)))


By rewriting with the equalities H1 : : :H6, we transform the goal to:


? : is true (Set eq known0 v (Union known v (Single name v)))
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We use the fact that Set eq (Lemma 41) is transitive to transform this to the


following two goals:


?1 : is true (Set eq (Union (Dom birthday v) (Single name v))


(Union known v (Single name v)))


?2 : is true (Set eq known0 v (Union (Dom birthday v) (Single name v)))


To prove ?1, we use the fact that Union respects set equality (Lemma 42). This


gives us two goals:


?3 : is true (Set eq (Dom birthday v) known v)


?4 : is true (Set eq (Single name v) (Single name v))


To prove ?3 we use hypothesis H7 and the fact that Set eq is symmetric (Lemma


40). To prove ?4 we use the fact that Set eq is reflexive (Lemma 39). This


completes the proof of subgoal ?1.


Now we work on subgoal ?2. Single name v is computationally identical to


Dom (FunSingle name v date v). We rewrite the goal using this fact, and then


use the transitivity of Set eq to transform it into the following two subgoals:


?5 : is true (Set eq (Union (Dom birthday v)


(Dom (FunSingle name v date v)))


(Dom (FunUnion birthday v (FunSingle name v date v))))


?6 : is true (Set eq (Dom (FunUnion birthday v (FunSingle name v date v)))


known0 v)


Goal ?5 is proved by refining by Lemma 45. To prove goal ?6 we again use the


fact that Set eq is transitive. Our new subgoals are:


?7 : is true (Set eq (Dom (birthday0 v)) known0 v)


?8 : is true (Set eq (Dom (FunUnion birthday v (FunSingle name v date v)))


(Dom (birthday0v)))


Goal ?7 is proved by refining by H8 and the fact that Set eq is transitive. To


prove goal ?8 we use Lemma 44 to reduce the goal to


?9 : is true (Fun eq (FunUnion birthday v (FunSingle name v date v)) birthday0 v)
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We prove goal ?9 by using H10 and the fact that Fun eq is symmetric (Lemma


43.) ut


7.4 Specifying a robust system


The ZRM gives a specification of a robust version of the BirthdayBook system,


in which allowances are made for the failure of the various operations. We shall


focus on the modified specification of the operation AddBirthday.


In the robust system, each operation produces an output result! which in-


dicates whether or not that operation was successful. The values that can be


assigned to this output come from a type REPORT which is defined as follows:


REPORT ::= ok j already known


The following schema, Success, specifies a state in which the result output


has the value ok.


Success


result! : REPORT


result! = ok


The next schema, AlreadyKnown, specifies an operation which acts upon the


state space of the birthday book and takes an input name?, and which produces


the result already known if name? is among the set of known names in the


birthday book.


AlreadyKnown


�BirthdayBook


name? : NAME


result! : REPORT


name? 2 known


result! = already known
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The robust version of the AddBirthday operation is defined as follows:


RAddBirthday c= (AddBirthday ^ Success) _ AlreadyKnown


7.4.1 Encoding the schema RAddBirthday


We represent the type REPORT by extending the type GivenType with a new


constructor Report ty, and defining a new inductive type Report, with construct-


ors ok and already known, to represent the semantics of this new GivenType. (In


other words, the function Typ maps given ty Report ty to the type Report.) We


also define a decidable equality Report eq : Report!Report!bool.


We define the signature item result item:


result item
def
= ((6; shriek); given ty Report ty) : sig item


We encode the schema Success as follows:


Definition 45 Success.


Success sig
def
= [result item] : Signature


Success pred
def
= �b :Binding: [result = lookup result item b]


IS TRUE (EQUAL result OK)


: Predicate


Success
def
= (Success sig; Success pred) : Schema


We can prove that Success is well-formed. The proof is obtained by slightly


modifying the proof of the fact that BirthdayBook is well-formed (Theorem 8).


Next we encode the schema AlreadyKnown:
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Definition 46 AlreadyKnown.


AK sig
def
= [name item; result item] : Signature


AK pred
def
= �b :Binding:


[name = lookup name item b]


[known = lookup known item b]


[result = lookup result item b]


(IS TRUE (IN name known)) ^


(IS TRUE (EQUAL result ALREADY KNOWN))


: Predicate


AlreadyKnown
def
= Include (Xi BirthdayBook) AK sig Ak pred : Schema


We prove that AlreadyKnown is well-formed.


Theorem 56 AlreadyKnown well formed.


Well formed AlreadyKnown


Proof. The proof is a slight modification of the proof of Theorem 52. ut


Finally, we encode the schema RAddBirthday:


Definition 47 RAddBirthday.


RAddBirthday
def
= Or (And AddBirthday Success) AlreadyKnown : Schema


Since this is composed of well-formed schemas (Theorems 51 and 56) and the


operations Or and And preserve well-formedness (Theorems 16 and 10), we can


easily show that it is well-formed.


7.4.2 RAddBirthday has property P


We use our metatheorems about schema operations to prove a version of The-


orem 55 for the robust version of the AddBirthday operation. We show that
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bindings which are restricting models of RAddBirthday either satisfy the prop-


erty P or represent failure as specified by AlreadyKnown. First, we define this


new property:


RobustP
def
= �b :Binding: (P b) _ (restricts to model b AlreadyKnown)


Theorem 57 RAddBirthday prop.


Has prop RAddBirthday RobustP


Proof. We refine by Theorem 22 which gives us the following subgoals:


?1 : Has prop (And AddBirthday Success) RobustP


?2 : Has prop AlreadyKnown RobustP


To prove the first subgoal we use Theorem 15:


?3 : (Has prop AddBirthday RobustP) _ (Has prop Success RobustP)


We prove this by using Theorem 55 to prove the first disjunct. We are then left


with subgoal ?2 which is trivial. ut







Chapter 8


Speculations


In this chapter we speculate on ways of extending our encoding with notions of


implementation and refinement.


The type theory UTT can be thought of as a rudimentary programming lan-


guage in which terms are evaluated by normalisation. This has been exploited


by others as a means of developing UTT and LEGO into a tool for reasoning


about programs ([Hof92,Sch95,McK92]). In this chapter we shall look at one


way in which this can be harnessed in order to define a notion of implementa-


tion for Z specifications. We first choose a UTT type which seems to provide a


notion of program that is complementary to our representation of Z schemas.


We call this type Program. We define an implementation relationship between


the types Schema and Program. We shall then give a more conventional syntax


for a simple programming language and show how terms in this language can


be translated into the type Program.


8.1 Defining a type to represent programs


As we have seen in Chapter 6, when an operation is specified by a Z schema, a


single signature is used to specify the inputs, outputs, and the state spaces before


and after that operation is executed. A binding which matches the signature of


such a schema will contain values representing all of these components. The


140
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decoration on an individual signature item (or binding item) identifies which of


these components that item belongs to.


This leads to a natural notion of “program”. A program can be thought


of as a computable function which, when supplied with bindings which rep-


resent its inputs and the state before its execution, returns two more bindings,


representing its outputs and the state after execution. In a type theory such as


UTT, where all functions are computable, this can be represented by the type


(Binding � Binding)!(Binding � Binding).


In practise, when we attempt to encode programs as terms of this type, we


shall need to use the lookup function in order to obtain the values associated


with identifiers in bindings. This means that we need to consider what happens


when a program is applied to a pair of bindings which do not contain all the


identifiers required by that program. In such a case some of the applications


of lookup will fail, and this must be handled somehow. This is essentially the


same issue which we dealt with in regard to schema predicates in Section 3.5.6.


Our solution there was to have predicates and relations “collapse” to the value


absurd when applied to a failed lookup. For programs, we shall adopt one of


the alternate approaches discussed in Section 3.5.6: when a lookup fails we shall


cause the program to return an error value. Hence we define the type Program


as follows:


Definition 48 Program.


Program
def
= (Binding � Binding)!Error + (Binding � Binding) : Type


It would be possible for us to use instead a solution analogous to that used for


schema predicates. We could have programs return some arbitrarily chosen pair


of bindings in the case where lookups fail. However, there is little advantage in


using this technique for programs. Schemas are combined in various ways by


a multitude of operations, so it quickly becomes tedious to have to deal with


error results when encoding these operations. In contrast, we do not anticipate


having many operations which combine programs so the cost of using error
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results to handle failure is not so great. The advantage of using error results is


that we have a more informative model: by looking at the result returned by


applying a program we can tell whether any lookups failed when that result was


computed. This information is lost if programs return binding pairs whether or


not their lookups succeed.


8.2 The programming language


We have identified a type Program which can serve as a model of a programming


language. Now we shall look at what this programming language might be,


and how it may be translated into terms of the type Program. Figure 8–1 gives


a syntax for a very simple, imperative programming language, which has been


devised so as to be easy to translate into type theory. (For this reason, we do


not have while loops, for example.) Our programming language is intended


only to give a taste of what is possible in formalising a notion of implementation


in Z. More sophisticated programming languages than this can be encoded in


type theory. (For example, it is possible to define a restricted form of general


recursion for programs which are provably terminating.)


A program in our language consists of a sequence of procedure declarations


and variable declarations, followed by a list of statements which make up the


program body. A procedure declaration begins with a procedure name followed


by two lists of declarations. The first list contains the names of the input and


output variables used by that procedure. Output variables are preceded by the


keyword var. (It is not possible for a variable to be simultaneously an input


and an output variable.) The second list of declarations contains the variables


declared locally to that procedure. The body of a procedure is a sequence of


statements which may be assignments (to variables or to array elements), for


loops, or if statements. A procedure is executed by being called with a list


of values which supply the inputs to that program. We shall not go into the


formalities of the semantics of the programming language.
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Program = Decl;...Decl;Body


ProcDecl =


procedureProcName (IoDecl;:::;IoDecl)


VarDecl;:::;VarDecl;


ProgBody


IoDecl = InputDecl | OutDecl


InputDecl = VarDecl


OutDecl = var VarDecl


VarDecl = Ident:Type


Decl = VarDecl | ProcDecl


Body = begin Statement;:::;Statement end


ProgBody = begin ProgStatement;:::;ProgStatement end


Statement = Ident := Expression |


Ident [Expression] := Expression


for Ident := Expression to Expression do Statement |


if Expression then Statement else Statement |


begin Statement;:::;Statement end|


ProcCall = ProcName (Expression;:::;Expression)


ProgStatement = Statement | ProcCall


Expression = Ident | Integer | Boolean |


(Op Expression)| (Expression BinOp Expression)|


Ident [Expression]


Op = not


BinOp = + | = | < | and | or


The definitions of Ident and Type, the typechecking rules and the evaluation


rules are all omitted.


Figure 8–1: The programming language
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Our programming language can be modelled in UTT via the type Program.


(Note that not all Programs correspond to terms in the programming language.)


Procedures and programs will both be represented by the type Program. Here


we describe the key points of the translation.


We shall re-use the types Ident and Ztype as representations of the identifiers


and types of our programming language. The type of arrays of elements of


some type t is translated as the Ztype, fun ty nat ty t, where t is the Ztype


representing t. Let us suppose that we have a procedure P, which we wish to


represent as a term of type Program. Suppose that some identifier i is used as


an Expression within the body of P. We shall call such an Expression an identifier


reference. The key to our translation of procedures lies in the way identifier


references are translated. Suppose that the i is translated as an Ident, i. The


translation of the identifier reference i depends upon where the identifier i is


declared in the procedure P. If i is among the input declarations of P, then the


reference i is translated by looking up i in the input binding. If i is a local


declaration in P then it is represented as a locally defined variable in UTT, and


the reference i is translated as a reference to that variable. Finally, if i is not


among the declarations of P, then the reference i is translated by looking up i in


the binding representing the state before the execution of P.


The rest of the encoding of Expressions, Statements, et c, follows naturally


from the way identifier references are encoded. Operations are encoded via


suitably wrapped (in the sense of Section 3.5.6) versions of the corresponding


operations in the LEGO library. For statements are encoded as wrapped versions


of nat rec or bool rec, as appropriate. If statements are encoded by wrapping the


LEGO library if operation. Assignments are encoded by the way in which the


output and post-state bindings are constructed. Some examples which illustrate


the process are given in Section 8.3.


It is straightforward to translate the composition of statements which make


up a procedure body. Doing the same for a program body is not so straightfor-


ward, since the class ProgStatement includes procedure calls, which are state-


changing operations. It is possible to define a composition operation in type
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theory, which computes the composition of two procedures. However, we shall


not discuss this any further.


8.3 Examples


The programs which we shall use as examples are based on code that is presented


in the ZRM as implementations of the operations of the Birthday Book system.


Later we shall look at defining an implementation relationship, but, for the


moment, we shall just consider the translation of these programs into terms of


type Program.


The programs operate within a global state which contains an integer vari-


able hwm (read as “high water mark”) and two arrays name, of type NAME and


date, of type DATE. (Let us assume that the programming language provides


some means of defining type abbreviations, and that NAME and DATE are two pre-


viously defined type abbreviations.) This state represents the Birthday Book.


The variable hwm records the number of birthdays currently in the system. The


array name holds all the names in the system: the birthday associated with


name[i] is found by looking up date[i].


The first program is intended to implement the AddBirthday operation:


procedure AddBirthday (name:NAME; date:DATE);


begin


hwm := hwm + 1;


names[hwm] := name;


dates[hwm] := date


end


To encode this program in UTT, we first encode the identifiers hwm, names, and


dates as Idents called hwm i, names i, and dates i, respectively. We pair these


with the appropriate Ztypes (nat ty, fun ty nat ty Name, and fun ty nat ty Date,


respectively) to form signature items called names item, dates item and hwm item.
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We also define primed versions of these signature items, and call them names0 item,


dates0 item, and hwm0 item.


The encoding makes use of a number of auxiliary functions. The first is


mk sum bin item (abbreviated as msbi) which has type Ident ! (Error +


small item)!(Error+bin item). This simply adds a given Ident to a small item


to produce a bin item, returning the value in1 error if it is applied to in1 error.


We also define partial versions of the cons and pairing operations applied to


bindings:


CONSBIN
def
= [SeeAppendixC:2]


: (Error + bin item)!(Error + Binding)!(Error + Binding)


PAIRBIN
def
= [SeeAppendixC:2]


: (Error + Binding)!(Error + Binding)!(Error + (Binding � Binding))


We shall also need to define an update operator on finite functions. The wrapped


version of this operator is called UPDATE.


The program AddBirthday is encoded as a Program, AddBirthday prog:
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Definition 49 AddBirthday prog.


AddBirthday prog
def
= �pre state; input :BInding:


[HWM = lookup hwm item pre state]


[NAME = lookup name item input]


[DATE = lookup date item input]


[NAMES = lookup names item input]


[DATES = lookup dates item input]


[HWM ITEM = msbi hwm i (PLUS HWM ONE)]


[NAMES ITEM = msbi names i


(UPDATE NAMES (PLUS HWM ONE) NAME)]


[DATES ITEM = msbi names i


(UPDATE DATES (PLUS HWM ONE) DATE)]


[post state = CONSBIN HWM ITEM (CONSBIN NAMES ITEM


(CONSBIN DATES ITEM NIL BIN))]


[output = NIL BIN]


(PAIRBIN post state output)


: Program


AddBirthday first looks up all of the input and pre-state identifiers in the ap-


propriate bindings. It then computes binding items for the post-state, using


wrapped operations as appropriate. The binding items are put together to form


the post-state binding and the output binding (which, in this case, is empty),


and these two bindings are returned as the result. In the case where any of the


lookups fail, the value in1 error will be returned instead.


This next program is intended to implement the FindBirthday operation.


(Note: this is not the program given in the ZRM, since that program uses a


while loop which is not part of our programming language.)


procedure FindBirthday (name:NAME; var date:Date);


var i : INTEGER;


begin


for i := 1 to hwm do
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begin


if names[i] = name then date := dates[i]


end


end


To encode the for-loop in FindBirthday we shall use a wrapped version of the


recursion operator nat rec:


FOR
def
= [See Appendix C.2]


: � t jType: t!(nat! t! t)!(Error + small item)!(Error + t)


The first argument taken by FOR is a starting value for recursion, and the second


argument is the step function. The third argument gives the number of iterations


to perform. If this argument is in1 error, or has a Ztype other than nat ty, then


the result returned is in1 error, otherwise the result is computed using nat rec.


The if statement in FindBirthday is encoded using a wrapped version of the


function if :


IF
def
= [See Appendix C.2]


: � t jTYPE: (Error + small item)!(Error + t)!(Error + t)!(Error + t)


Here is the encoding of the program FindBirthday:
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Definition 50 FindBirthday prog.


FindBirthday prog
def
= �pre state; input :Binding:


[NAMES = lookup names item pre state]


[DATES = lookup dates item pre state]


[HWM = lookup hwm item pre state]


[NAME = lookup name item input]


[preDATE =


FOR (in1 Error)


(�i :nat: �x :Error + small item:


IF (EQUAL NAME (APPLY NAMES (in2 (nat ty; i))))


(APPLY DATES (in2 (nat ty; i)))


x)]


[DATE = case (� :Error: in1 Error)


(�x :Error + small item: x)


preDATE]


[DATE ITEM = msbi date i DATE]


[post state = in2 pre state]


[output = CONSBIN DATE ITEM NIL BIN]


(PAIRBIN post state output)


: Program


The final program which we shall translate is the simplest. It initialises the


Birthday Book system:


procedure InitBirthdayBook;


begin


hwm := 0


end


This is encoded as follows:
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Definition 51 InitBirthdayBook prog.


InitBirthdayBook prog
def
= � ; :Binding:


[HWM ITEM = in2 (hwm item; zero)]


[post state = CONSBIN HWM ITEM NIL BIN]


[output = in2 NIL BIN]


(PAIRBIN post state output)


: Program


8.4 Refinement and implementations in the ZRM


Before we go on to discuss how to define an implementation relationship


between programs and schemas, we shall say something about how this is


handled in the ZRM. The Z notation itself does not incorporate a programming


language or a notion of implementation. However, the ZRM suggests, by means


of examples, a method of dealing with these concepts.


In brief, the method suggested in the ZRM goes like this. We begin with an


abstract specification. We formulate a concrete specification of the same system,


relating the state spaces and the operations in the two specifications by means


of abstraction relations defined as schemas. (Moving from the abstract to the


concrete specification may take place in a series of steps.) The concrete spe-


cification is written so as to be as close as possible to a programming language.


For instance, the only types used are ones that are available in programming


languages. The concrete schemas are then implemented directly by programs


written in some programming language.


The weakest step in this process is the final one. The programming language


is outside of the formalism of Z, so it is unclear how to verify that a program


correctly implements a concrete schema. In some cases (such as those given in


the ZRM) this will be obvious, but in other cases this may represent a significant


proof obligation.
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8.4.1 An example


This is an extract from the example used in the ZRM to illustrate how schemas


can be refined to implementations. Again, the system used for the example is


the Birthday Book.


First, a decision is made about how to implement the Birthday Book. The


system will be implemented via two arrays:


names : Array[1...] of NAME;


dates : Array[1...] of DATE;


The arrays used in the implementation can be modelled in Z by functions from


a set N1 of strictly positive integers to NAME or DATE:


names : N1 ! NAME


dates : N1 ! DATE


The ith element of the array is represented by the value of the appropriate


function applied to the argument i. Assignment to array elements is modelled


by function update.


Next, the ZRM gives a concrete specification of the state space of the Birthday


Book system. The types used in this schema model the types that will be used


in the implementation.


BirthdayBook1


names : N1 ! NAME


dates : N1 ! DATE


hwm : N


8 i; j : 1 : : : hwm � i == j ) names (i) == names (j)


The relationship between the schemas BirthdayBook1 and BirthdayBook is de-


scribed by an abstraction schema (See Section 8.6).


The next schema gives a concrete specification of the AddBirthday operation:
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AddBirthday1


�BirthdayBook1


name? : NAME


date? : DATE


8 i : 1 : : : hwm � name? == names(i)


hwm0


= hwm + 1


names0 = names� fhwm0


7! name?g


dates0 = dates� fhwm0


7! date?g


Again, this is related to the abstract schema, AddBirthday, by means of an


abstraction schema, which we shall not show.


The initial state of the concrete system is specified by the following schema.


InitBirthdayBook1


BirthdayBook1


hwm = 0


The ZRM then presents the programs AddBirthday and InitBirthdayBook


as implementations of the operations specified by the schemas AddBirthday1


and InitBirthdayBook1. However, no justification is given for this claim. In the


next section we shall see how this relationship can be formally defined using


UTT.


8.5 The implementation relationship


We shall define an implementation relationship between Schemas and Programs.


First, we define some simple predicates on Bindings. (The details of the defini-


tions are omitted.)


is pre state; is post state; is input; is output : Binding!Prop
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The predicate is pre state is true of a Binding provided that none of the identifiers


in that Binding are decorated in any way. The other predicates, is post state,


is input, and is output, check that all identifiers are decorated with, respectively,


prime, query, and shriek.


Definition 52 Implements.


Implements
def
= �S :Schema: �P :Program:


8 b; b1 :Binding:


((is pre state b) ^ (is input b1) ^


(restricts to model (pre S) (join bin b b1))))


9 b0; b2 :Binding:


(P b b1 = in2 (b0; b2)) ^


(restricts to model S


(join bin b (join bin b1 (join bin (decorate bin pr b0) b2))))


: Schema!Binding!Prop


This definition states that a program P implements a schema S provided that the


following conditions hold. Whenever P is applied to a pre-state binding b and


an input binding b1 which together satisfy the precondition schema pre S, the


application succeeds, producing a post-state binding b0 and an output binding


b2. If the output binding is decorated with primes, and all four bindings are


then joined together, the resulting binding is a restricting model of the schema


S.


Further work needs to be carried out to test whether this is a useful way


of defining the implementation relationship, and to discover how difficult it


is, in practice, to prove that a Schema and a Program are related under this


relation. Another important area of exploration is whether the proof of the


implementation relationship can be done in a modular fashion, exploiting the


modularity in the structure of both specifications and programs.
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8.6 Further Work: refinement


In the Birthday Book example, abstraction schemas are used to relate the ab-


stract and concrete specifications of the system. For example, the schemas


BirthdayBook and BirthdayBook1 are related by the following schema:


Abs


BirthdayBook


BirthdayBook1


known = fi : 1 : : : hwm � names (i)g


8 i : 1 : : : hwm � birthday (names (i)) = dates (i)


This schema describes a relationship between the state spaces described by the


two schemas BirthdayBook and BirthdayBook1. However, it is unclear from


examining the schema Abs what exactly needs to be proved in order to verify


that BirthdayBook1 is a correct refinement of BirthdayBook.


In the specification language VDM [Jon86], clearly defined proof obligations


are used to express a refinement (or reification) relationship between two data


types. For example, in order to show that a data type Rep is an adequate


representation of a more abstract datatype, Abs, the following proof obligation


must be met:


9 retr :Rep!Abs:


8 a 2 Abs: 9 r 2 Rep:retr(r) = a


Other proof obligations are used to express a refinement relationship between


operations on data types.


The VDM notion of refinement has been extensively studied ([HJ88,JHS86])


and is relatively well understood. It is therefore useful to see whether a similar


definition can be applied to specifications in Z. Expressed in the language of our


encoding, here is such a definition:
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Definition 53 Refines.


Refines
def
= �A; C :Schema:


9 retr :Binding!Binding:


(8 b :Binding: (exactly models b C)) (exactly models (retr b) A)) ^


(8 a :Binding: (exactly models a A))


(9 c :Binding: (exactly models c C) ^ (retr c = a)))


: Schema!Schema!Prop


This states that a schema C is a refinement of a schema A, provided that the


following conditions are satisfied. There must exist a retrieval function retr :


Binding ! Binding which maps exact models of C to exact models of A. For


every exact model a of A, there must exist a concrete representation c which is


an exact model of C, such that retr c = a.


Further work needs to be done to study this notion of refinement. For


example, are exact models the appropriate notion of model to use here, or should


we use restricting models instead? How are the two definitions different?


Another interesting question is what are the consequences of defining the


refinement relationship in a constructive type theory? How does this relate to


the set-theoretic definition used in VDM?


The proof obligations involved in refining operations should also be defined


and studied.


8.7 Conclusion


We have seen that it is possible to define a programming language in UTT in


such a way that programs and schemas become part of the same formalism. This


allows us to formally define an implementation relationship between the two.


The work in this chapter is intended only to suggest a way towards achieving


this goal; further work needs to be done to test the concepts that have been
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defined. It would also be interesting to see if the principles of [Mor90] could be


integrated into our work.







Chapter 9


Conclusions


9.1 Extending the encoding


The subset of Z which we have encoded contains a number of serious restric-


tions. How difficult would it be to remove these?


To enrich our core language, we would need a good encoding of set theory in


type theory. Unfortunately, this seems to be difficult to achieve. An alternative


strategy would be to dispense with the idea of set theory altogether, and to use a


core language more closely based on the type theory. This would take us rather


far from Z, but might be useful in its own right.


It is difficult to see how to reintroduce the free use of terms as types, and


of schemas as types without having to resort to a deep embedding. The latter


would, in any case, conflict with our desire to maintain separate core and module


languages.


In the Z notation, it is possible, and often useful, for schemas to be paramet-


erised over types. These parameters may then be used to build the types used


in the schema signature. Unfortunately, it is difficult to see how to add such a


feature to our encoding. We would need to incorporate parameterization and


parameter substitution into our syntactic types (Ztype) and into the semantic


function (Typ). It is not obvious to us how to do this.


157
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9.2 Comments about LEGO


To develop our work into a realistic tool for users, based upon the LEGO system


it would be nice to have: user-definable tactics to help discharge routine proof


obligations (type-compatibility, well-formedness, etc); an interface to implement


the translation of Z0 specifications to LEGO input; a search feature (like that of


HOL) to cut down the amount of time time spent searching for the names of


theorems and definitions within the libraries or within the user’s own files.


9.3 Comments about Z


The Z notation is modular, in the sense that one can prove theorems about


schemas in a compositional way, using metatheorems about the schema oper-


ators. (Modularity in the more traditional sense of “information hiding” is also


present, in the form of the hiding operator.) These metatheorems suggest that


the schema operators of Z provide a potentially useful mechanism for organising


theories.


The specification of operations, however, seems to be treated as an after-


thought. The decorations on variables make no difference to their treatment in


the official semantics even though these decorations have an important meaning


in terms of a user’s understanding of a Z specification.


The Z notation, therefore, seems to be composed of two separate languages


whose relationship with each other is difficult to understand. There is a static


language in which theories (schemas) may be combined using logical operators,


and there is a dynamic part consisting of the conventions for defining operations.


It is unclear how these two parts interact: more concretely, for example, it is not


obvious what theorems to prove relating, say, the Prime and the And operations.


As a consequence of the way in which Z deals with the specification of


operations , definitions of “refinement” and “implementation” do not seem to
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arise naturally, though, as we have seen, it is not impossible to define such


notions.


9.4 The main contributions of this thesis


� We have demonstrated that type theory is expressive and affords a variety


of representation techniques that is much richer than the shallow/deep


dichotomy provided by less expressive systems like HOL.


� A significant portion the Z notation has been formalised in type theory.


This provides a basis for reasoning formally about the Z notation and


about specifications expressed in Z.


� We have shown that, within certain constraints it is possible to reason


about Z specifications at a modular level. Evidence for this is provided by


various theorems about the schema operations. An example is given to


illustrate the kind of modular proof that is supported.


� Type theory provides a broad spectrum language incorporating a pro-


gramming language. We have used this to illustrate how the Z notation


can be enriched by means of a programming language that is within the


same formal system. This gives us a basis for formalising a notion of


implementation between programs and Z specifications.







Appendix A


Proof Descriptions


A.1 Proofs of theorems in Chapter 3


Proof 1 Equiv1 implies Equiv2.


Goal: 8 S; T :Schema: (Equiv1 S T)) (Equiv2 S T)


We introduce two schemas S and T. We then do a case analysis on whether S


and T have equal signatures. In the first case, we have:


H : is true (sig eq S:1 T:1)


By expanding definitions and doing introductions, we transform the proof con-


text to the following:


H1 : 8 b :Binding: (exactly models S b)() (exactly models T b)


b : Binding


?1 : (restricts to model S b)) (restricts to model T b)


?2 : (restricts to model T b)) (restricts to model S b)


The proofs of Goals ?1 and ?2 are similar so we shall only show the first of these.


We expand the definition of restricts to model and then do an introduction:


H2 : 9 t :Binding: (restrict b S:1 = in2 t) ^ (S:2 t)


?3 : 9 t :Binding: (restrict b T:1 = in2 t) ^ (T:2 t)
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By existential elimination on H2, we obtain a binding t which is the result of


restricting b to S:1 and which satisfies the predicate S:2. We use this binding t


as our witness to prove goal ?3. By doing and-introduction on the remaining


goal we obtain:


?4 : restrict b T:1 = in2 t


?5 : T:2 t


Since t is obtained by restricting b to S:1, and S:1 equals T:1 by hypothesis H,


we can prove goal ?4. To prove goal ?5, we observe that t is an exact model of


S because it was obtained by restriction (cf Theorem 3). By hypothesis H1, t is


therefore an exact model, and hence a model, of T.


Now we consider the case where S and T have unequal signatures. Lemmas


36 and 37 show that in this, case, neither S nor T can have any restricting models.


Hence they are equivalent under Equiv2. ut


A.2 Proofs of theorems in Chapter 5


A.2.1 The propositional operations


In this section, we shall assume that we have two schemas S and T with the


following properties:


H : Well formed S


H1 : Well formed T


H2 : type compatible S:1 T:1


Proof 2 And preserves well formedness.


Goal: Well formed (And S T)
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We must show the following three goals:


? : unique idents (And S T):1


?1 : Up closed (And S T)


?2 : Down closed (And S T)


Goal ? follows from the fact that join preserves unique idents (Lemma 22). The


proofs of goals ?2 and ?3 are very similar, so we shall only describe the first of


these. We introduce a binding b and a hypothesis H1 stating that b is a restricting


model of And S T. By existential elimination on this we obtain:


t : Binding


H3 : restrict b (join S:1 T:1) = in2 t


H4 : (S:2 t) ^ (T:2 t)


We use and introduction to reduce the remaining goal to the following:


?3 : S:2 b


?4 : T:2 b


To prove goal ?3 we use the assumption that S is up-closed, so that it is sufficient


to show that b is a restricting model of S:


?5 : 9 b0 :Binding: (restrict b S:1) ^ (S:2 b0)


We can show that restrict b S:1 is equal to restrict t S:1 (Lemmas 27, 26, and


24.) By rewriting with this equality we reduce the goal to showing that t is a


restricting model of S:


?6 : 9 b0 :Binding: (restrict t S:1) ^ (S:2 b0)


We can prove this because we know that t is a model of S (hypothesis H4 and


that S is down-closed. This concludes the proof of goal ?3. Goal ?4 is similar,


using the facts that T is up-closed and down-closed. We have therefore shown


that And S T is up-closed.


The proof of down-closure is very similar and is omitted. ut







Appendix A. Proof Descriptions 163


At this point we discharge the schemas S and T, and all the assumptions


listed at the beginning of this section. This has the effect of causing all the


theorems we have proved to be universally quantified over S and T, and to


have the discharged assumptions added to their hypotheses. (We shall need


these fully quantified theorems for the next proof.) We then make the same


declarations afresh:


H : Well formed S


H1 : Well formed T


H2 : type compatible S:1 T:1


Proof 3 And restricting model commutes.


Goal:


8 b :Binding: (restricts to model (And S T) b))


(restricts to model (And T S) b)


By doing introductions we obtain the following proof state:


b : Binding


H3 : restricts to model (And S T) b


? : restricts to model (And T S) b


Theorem 11 tells us that we can prove this goal by showing:


?1 : restricts to model S b


?2 : restricts to model T b


(We use the fact that the type-compatibility relationship is symmetric (Lemma


35).) Theorem 11 then enables us to obtain proofs of each of these goals from


hypothesis H3. ut


Proof 4 Or preserves well formedness.


Goal: Well formed (Or S T)
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Again, we know that Or preserves the unique idents property because join pre-


serves it (Lemma 22). The proofs that up-closure and down-closure are pre-


served are again very similar. We shall describe the latter this time. By doing


introductions, and expanding definitions, we transform the proof state to the


following:


b : Binding


H3 : (S:2 b) _ (T:2 b)


H4 : succeeds (restrict b (Or S T):1)


? : 9 b0 :Binding: (restrict b (Or S T):1 = in2 b0) ^ ((S:2 b0) _ (T:2 b0))


Hypothesis H4 gives us a binding b0 and a proof that this is obtained by restricting


b to (Or S T):1. We shall show that b0 is a model of Or S T.


We proceed by doing an or elimination on H3. In the first case:


H5 : S:2 b


we shall prove the goal by proving the left hand disjunct:


?1 : S:2 b0


Since S is up-closed, we can prove this by showing that b0 is a restricting model


of S.


?2 : 9 t :Binding: (restrict b0 S:1 = in2 t) ^ (S:2 t)


Lemmas 28 and 29 enable us to show that restrict b0 S:1 equals restrict b S:1.


(We omit the details of this part of the proof.) Rewriting with this equality leaves


us with the goal of showing that b is a restricting model of S. This follows from


the facts that S is down-closed, and b is a model of S (hypothesis H3).


In the case where b is a model of T, we show, by a similar argument, that b0


is a model of T. This completes the proof of down-closure. ut
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Proof 5 Or restricting model intro.


Goal:


8 b :Binding: (succeeds (restrict b (Or S T):1)))


((restricts to model S b) _ (restricts to model T b))


restricts to model (Or S T) b)


By doing introductions we arrive at the following proof state:


b : Binding


H3 : succeeds (restrict b (Or S T):1)


H4 : (restricts to model S b) _ (restricts to model T b)


? : restricts to model (Or S T) b


Since Or S T is down-closed our goal can be proved by showing:


?1 : (S:2 b) _ (T:2 b)


We do or-elimination on hypothesis H4. If b is a restricting model of S, then,


since S is up-closed, we can prove S:2 b. Similarly, if b is a restricting model of


T, we show T:2 b. ut


Proof 6 Or restricting model elim.


Goal:


8 b :Binding: (restricts to model (Or S T) b))


(restricts to model S b) _ (restricts to model T b)


We introduce a binding b and a proof H3 that b is a restricting model of Or S T.


Since Or S T is up-closed, b is also a model of Or S T. We shall prove the goal


by doing or-elimination on this fact. In the first case, we know that b is a model


of S:


H4 : S:2 b


? : (restricts to model S b) _ (restricts to model T b)


We use the fact that S is down-closed to prove the left hand disjunct. (We need


Lemma 27 to show that b can be restricted to the signature of S.)
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Similarly, in the case where we know that b is a model of T, we prove the


right hand disjunct of Goal ?, using Lemma 26 and the assumption that T is


down-closed. ut


Once more, we discharge and then reintroduce our global assumptions (S,


T, H, H1, and H2).


Proof 7 Or restricting model commutes.


Goal:


8 b :Binding: (restricts to model (Or S T) b ) restricts to model (Or T S) b)


We introduce a binding b and a proof H3 that b is a restricting model of Or S T.


Theorem 20 (Proof 6) enables us to split our proof into two cases. In the first


case, the proof state is as follows:


H4 : restricts to model S b


? : restricts to model (Or T S)


We use Theorem 19 (Proof 5) to prove this goal. In order to satisfy the con-


ditions for this theorem, we need Lemma 35 (to show that T:1 and S:1 are


type-compatible) and Lemmas 23, 26 and 27 (to show that b is capable of being


restricted to the signature (Or T S):1.


The proof of the second case is similar to that of the first. ut


Proof 8 Imply preserves well formedness.


Goal: Well formed (Imply S T)


We shall only describe the proof that Imply S T is up-closed. By expanding


definitions, and doing introductions and eliminations, we transform the proof


context to:


b; t : Binding


H3 : restrict b (Imply S T):1 = in2 t


H4 : (S:2 t)) (T:2 t)


H5 : S:2 b


? : T:2 b
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Since T is up-closed, we can prove the goal by showing that b is a restricting


model of T:


?1 : 9 b0 :Binding: (restrict b T:1 = in2 b0) ^ (T:2 b0)


Lemmas 25, 27 and 26 allow us to show that restrict b T:1 is equal to restrict t T:1.


We can therefore prove the goal by showing that t is a restricting model of T:


?2 : 9 b0 :Binding: (restrict t T:1 = in2 b0) ^ (T:2 b0)


Since T is down-closed, we can prove this by showing:


?3 : T:2 t


Hypothesis H4 enables us to prove this by showing:


?4 : S:2 t


Since S is up-closed, we can prove this by showing that t is a restricting model of


S. We use Lemmas 24, 27 and 26 to show that restrict t S:1 equals restrict b S:1.


Rewriting with this transforms our goal to:


?5 : restricts to model S b


Since S is down-closed, and we know (hypothesis H5) that b is a model of S, the


proof is complete. ut


Proof 9 Imply restricting model intro.


Goal:


8 b :Binding: (succeeds (restrict b (Imply S T):1)))


((restricts to model S b)) (restricts to model T b)))


(restricts to model (Imply S T) b)


We introduce hypotheses to obtain the following proof state:


b : Binding


H3 : succeeds (restrict b (Imply S T):1)


H4 : (restricts to model S b)) (restricts to model T b)


? : restricts to model (Imply S T) b
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Hypothesis H3 enables us to obtain a binding t which is the result of restricting


b to the signature of Imply S T. Our goal is reduced to showing that t is a model


of Imply S T:


H5 : S:2 t


?2 : T:2 t


Since T is up-closed, we can prove goal ?2 by showing that t is a restricting


model of T. Lemmas 27, 26 and 25 enable us to show that restrict t T:1 equals


restrict b T:1. So the goal can be rewritten as:


?6 : restricts to model T b


To prove this we use hypothesis H4. Now we must show that b is a restricting


model of S. Lemmas 27, 26 and 24 can be used to prove that restrict b S:1 equals


restrict t S:1. The goal then becomes:


?7 : restricts to model S t


This follows from hypothesis H5 and the assumption that S is down-closed. ut


Proof 10 Not up closed.


Goal: Well formed (Not S)


By doing introductions we transform the proof state to:


b : Binding


H3 : restricts to model (Not S) b


? : (S:2 b)) absurd


Hypothesis H implies that restricting b to the signature (Not S):1, which is the


same as S:1, yields a binding t and a proof:


H4 : (S:2 t)) absurd


To prove goal ?, we introduce its antecedent, and then use hypothesis H4 to


prove the remaining goal. This gives us the following proof state:


H5 : S:2 b


?1 : S:2 t
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Since S is down-closed, H5 implies that b is a restricting model of S. We know


that the binding obtained by restricting b to S:1 is t. We can therefore conclude


that t has the property S:2. ut


Proof 11 Not restricting model property1.


Goal:


8 b :Binding: (restricts to model S b)) :(restricts to model (Not S) b)


By expanding the definition of not and doing introductions we obtain the fol-


lowing proof context:


b : Binding


H3 : restricts to model S b


H4 : restricts to model (Not S) b


? : absurd


Since Not S and S have the same signature, the same binding t is obtained by


restricting b to each of them. Hypotheses H3 and H4 allow us to prove S:2 t and


:(S:2 t), respectively. Hence we can prove absurd. ut


Proof 12 Not restricting model property4.


Goal:


8 b :Binding: (succeeds (restrict b S:1)))


:(restricts to model S b)) restricts to model (Not S) b


Doing introductions, and expanding the definition of :, gives us the following


proof context:


b : Binding


H3 : succeeds (restrict b S:1)


H4 : (restricts to model S b)) absurd


? : restricts to model (Not S) b


From H3 we obtain a binding t that is the result of restricting b to the signature


of S. Since Not S has the same signature as S, our goal reduces to showing:


?1 : (S:2 t)) absurd
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To prove this we assume S:2 t. From this we can show that b is a restricting


model of S, since we know that t is obtained by restricting b to the signature of


S. Hypothesis H4 then allows us to prove absurd. ut


We discharge all our global assumptions at this point.


A.2.2 The hiding operations


Proof 13 Hide preserves well formedness.


Goal:


8 s :Signature: 8 S :Schema: (Well formed S)) (Well formed (Hide s S))


We introduce a signature s, a schema S, and a hypothesis H stating that S is


well-formed. We must now show the following:


? : unique idents (Hide S):1


?1 : Down closed (Hide S)


?2 : Up closed (Hide S)


It is easy to show that the hide sig operation preserves the property unique idents.


The proofs of subgoals ?1 and ?2 are similar, so we shall only describe the latter.


By expanding definitions, and doing introductions, we obtain the following


proof state:


b : Binding


H1 : 9 b0 :Binding: ((restrict b (hide sig s S:1)) = in2 b0) ^


(9 b00 :Binding: (is true (matches s b00)) ^ (S:2 (join bin b00 b0)))


?3 : 9 b0 :Binding: (is true (matches s b0)) ^ (S:2 (join bin b0 b))


By existential elimination on hypothesis H1, we obtain two bindings b0 and b00.


We use b00 as a witness in proving goal ?3. We must now show:


?4 : is true (matches s b00)


?5 : S:2 (join bin b00 b)
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We know from hypothesis H1 that b00 matches s, so goal ?4 is taken care of. Since


S is up-closed, we can prove goal ?5 by showing that join bin b00 b is a restricting


model of S:


?6 : 9 b1 :Binding: (restrict (join bin b00 b1) S:1 = in2 b1) ^ (S:2 b1)


We now use Lemma 33 which allows us to deduce from that join bin b00 b0 can


be successfully restricted to the signature of S. We then use the fact that S is


down-closed to show that the binding join bin b00 b0 is a restricting model of S.


By existential elimination on this we get:


b1 : Binding


H2 : restrict (join bin b00 b0) S:1 = in2 b1


H3 : S:2 b1


We use the binding b1 as a witness for proving goal ?6. We know from hypothesis


H3 that b1 satisfies the property of S. Lemma 34 enables us to prove the remaining


subgoal. ut


A.3 Include


Proof 14 Include equals And2.


Goal:


8 S :Schema: 8 sig :Signature: 8 P :Predicate:


(unique idents S:1) ^ (unique idents sig) ^ (type compatible S:1 sig) )


Include S sig P = And S (join S:1 sig; P)


We introduce a schema S, a signature sig, a predicate P, and three hypo-


theses H, H1, and H2. We must now show that Include S sig P is equal to


And S (join S:1 sig; P). These two schemas have exactly the same predicate


(�b : Binding: (S:2 b) ^ (P b)), so all that is required is to prove that their


signatures are the same. Lemma 19 shows that this is indeed the case. ut
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A.4 Proofs of theorems in Chapter 6


We assume that we have a well-formed schema, S which has a static signature:


S : Schema


H : Up closed S


H1 : Down closed S


H2 : unique idents S:1


H3 : static sig S:1


Proof 15 Prime down closed.


Goal: Down closed (Prime S)


By expanding definitions and doing introductions we transform the goal to:


b : Binding


H4 : S:2 (post bin b)


H5 : succeeds (restrict b (Prime S):1)


? : 9 b1 :Binding: (restrict b (Prime S):1) ^ (S:2 (post bin b1))


From H5 we obtain a binding b1 with at proof that this is equal to the restriction


of b to the signature of Prime S. We shall show that post bin b1 satisfies the pre-


dicate S:2. Since we know that S is down-closed, we can infer from hypothesis


H4 that post bin b is a restricting model of S. Lemma 31 enables us to prove that


post bin b1 is the binding obtained by restricting post bin b to the signature of


S. Since post bin b is a restricting model of S, its restriction to S:1 must satisfy


the predicate of S. ut


Proof 16 Prime restricting model char.


Goal:


8 b :Binding:


restricts to model S (post bin b)() restricts to model (Prime S) b
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We introduce a binding b. First we must show that if post bin b is a restricting


model of S, then b is a restricting model of Prime S. We transform the proof state


to:


b1 : Binding


H4 : restrict (post bin b) S:1 = in2 b1


H5 : S:2 b1


? : 9 b2 : (restrict b (decorate sig pr S:1) = in2 b2) ^ (S:2 (post bin b2)):


We shall use the binding decorate bin pr b1 as the witness to prove the goal ?.


Lemma 32 shows us that this binding is indeed obtained by restricting b to the


signature decorate sig pr S:1. We are left to show:


?1 : S:2 (post bin (decorate bin pr b1))


Lemma 30 tells us that decorate bin is the right inverse of post bin, so this


reduces to showing that b1 satisfies the predicate S:2. This is hypothesis H5.


This completes the forward half of the proof.


Next, we must show that if b is a restricting model of Prime S, then post bin b


is a restricting model of S. By means of introductions and eliminations we


transform the proof state to the following:


b1 : Binding


H4 : restrict b (Prime S):1 = in2 b1


H5 : (Prime S):2 b1? : 9 b2 :Binding: (restrict (post bin b) S:1 = in 2 b2) ^ (S:2 b2)


We use the binding post bin b1 as the witness in proving this goal. Lemma 31


tells us that this is the binding obtained by restricting post bin b to the signature


of S. Hypothesis H5 tells us that this binding has the property S:2. ut


Proof 17 Xi preserves well formedness.


Goal: Well formed (Xi S)


The Xi operation is defined in terms of Include. We shall prove the goal by


using Theorem 41, which gives conditions for Include to produce well-formed
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schemas. The proof is reduced to the following subgoals:


? : Well formed (Delta S)


?1 : type compatible (Delta S):1 nil sig


?2 : Well formed (join (Delta S:1) nil sig;


�b :Binding: restrict b S:1 = restrict (post bin b) S:1)


To prove goal ? we use Theorem 48 which states that Delta preserves well-


formedness. All signatures are type-compatible with nil sig, so goal ?1 is proved.


Since S:1 has unique identifiers, and Delta preserves this property, we can show


that the the signature join (Delta S:1) nil sig also has unique identifiers. We are


left with having to show down-closure and up-closure for the schema in Goal


?2. The proofs of both properties are similar, so we shall only describe the proof


of down-closure.


Since (Delta S):1 has unique identifiers, we can use Lemma 20 to simplify the


signature of the schema. We then do introductions and eliminations to obtain


the following proof context:


b; b1 : Binding


H4 : restrict (post bin b) S:1 = restrict b S:1


H5 : restrict b (Delta S):1 = in2 b1


? : 9 b2 :Binding: (restrict b (Delta S):1 = in2 b2) ^


(restrict (post bin b2) S:1 = restrict b2 S:1)


We use the binding b1 as a witness to prove this goal. The goal becomes:


?1 : restrict (post bin b1) S:1 = restrict b1 S:1


We prove this by rewritings and other manipulations involving Lemmas 24, 27,


26, 31 and 25. ut
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Lemmas


B.1 Functions used in the main encoding


B.1.1 Lemmas about lookup


Lemma 5 lookup x equals x.


8 b :Binding: 8 s : sig item: 8 z :Ztype: 8 v :Typ z:


(lookup s b = in2 (z; v))) (s:2 = z)


Lemma 6 lookup success lemma.


8 x : sig item: 8 b :Binding: (succeeds (lookup x b)))


9 y :Typ x:2: lookup x b = (x:2; y)


Lemma 7 lookup member equiv.


8 x : sig item: 8 b :Binding:


(succeeds (lookup x b))() (is true member sig item eq x (extract sig b))


Lemma 8 lookup orig is lookup undecorated post.


8 b :Binding: 8 x : sig item:


(last decoration x:1:2 = prime))


(lookup x b = lookup (undecorate item x) (post bin b))


175
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B.1.2 Lemmas about restrict


Lemma 9 restrict to tail.


8 sig :Signature: 8 x : sig item: 8 b :Binding:


succeeds (restrict b (cons x sig))) succeeds (restrict b sig)


Lemma 10 restrict equals sig.


8 sig :Signature: 8 b :Binding:


(case � :Error: trueProp


�b0 :Binding: extract sig b0 = sig


(restrict b sig))


Lemma 11 member restrict implies member orig.


8 sig :Signature: 8 b :Binding: 8 x : sig item:


case � :Error: trueProp


�b0 :Binding: (is true (member x (extract sig b0))))


(is true (member x (extract sig b)))


(restrict b sig)


Lemma 12 restrict works then lookup works.


8 sig :Signature: 8 b :Binding: 8 x :bin item:


(is true (member sig item eq x sig)))


(succeeds (restrict b sig)) ) (succeeds (lookup x b))


Lemma 13 restrict larger binding.


8 sig :Signature: 8 b :Binding: 8 x :bin item:


succeeds (restrict b S)) succeeds (restrict (cons x ) S)


Lemma 14 restrict own sig.


8 b :Binding: succeeds (restrict b (extract sig b))
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Lemma 15 restrict own sig2.


8 b :Binding: unique idents (extract sig b))


restrict b (extract sig b) = in2 b


Lemma 16 restrict matching sig.


8 sig :Signature: 8 b :Binding:


is true (matches sig b)) succeeds (restrict b sig)


Lemma 17 restriction matches.


8 sig :Signature: 8 b :Binding:


(succeeds (restrict b sig))) is true (case � :Error: false


�b0 :Binding:matches sig b0


(restrict b sig))


Lemma 18 lookup restrict equals lookup orig.


8 Sig :Signature: 8 x : sig item: 8 b; c :Binding:


(restrict b Sig = in2 c))


(is true (member sig item eq x Sig)))


lookup x b = lookup x c


B.1.3 Lemmas about join


Lemma 19 join twice left.


8 sig; sig0 :Signature: (type compatible sig sig0))


(unique idents sig)) (unique idents sig0))


join sig (join sig sig0) = join sig sig0


Lemma 20 join s nil.


8 sig :Signature: (unique idents sig)) join s nil sig = s
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Lemma 21 join cons cases.


8 sig; sig0 :Signature: 8 x : sig item:


(join (cons x sig) sig0 = join sig sig0) _


(join (cons x sig) sig0 = cons x (join sig sig0))


Lemma 22 join has unique idents.


8 sig; sig0 :Signature: (unique idents sig) ^ (unique idents sig0))


(unique idents (join sig sig0))


Lemma 23 restrict join.


8 sig; sig0 :Signature: 8 b :Binding:


(succeeds (restrict b sig))) (succeeds (restrict b sig0)))


succeeds (restrict b (join sig sig0))


Lemma 24 restrict join l.


8 sig; sig0 :Signature: 8 b :Binding:


(type compatible sig sig0))


(unique idents sig) ) (unique idents sig0))


(succeeds (restrict b sig))) (succeeds (restrict b sig0)) )


case (� :Error: absurd)


(�b0 :Binding: restrict b0 sig = restrict b sig)


(restrict b (join sig sig0))


Lemma 25 restrict join r.


8 sig; sig0 :Signature: 8 b :Binding:


(unique idents sig) ) (unique idents sig0))


(succeeds (restrict b sig))) (succeeds (restrict b sig0)) )


case (� :Error: absurd)


(�b0 :Binding: restrict b0 sig0 = restrict b sig0)


(restrict b (join sig sig0))
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Lemma 26 restrict join back r.


8 sig; sig0 :Signature: 8 b :Binding:


(succeeds (restrict b (join sig sig0)))) succeeds (restrict b sig0)


Lemma 27 restrict join back l.


8 sig; sig0 :Signature: 8 b :Binding:


(type compatible sig sig0))


(unique idents sig) ) (unique idents sig0))


(succeeds (restrict b (join sig sig0)))) succeeds (restrict b sig)


Lemma 28 restrict twice lemma.


8 s :Signature: 8 b :Binding: (unique idents s))


case (� :unit: trueProp)


(�b0 :Binding: restrict b0 s = restrict b s)


(restrict b S)


Lemma 29 restrict split lemma.


8 s; t :Signature: 8 b; b1; b2; b3 :Binding:


(restrict b s = in2 b1))


(restrict b1 t = in2 b3))


(restrict b t = in2 b2))


b2 = b3


B.1.4 Lemmas about post bin


Lemma 30 post bin inverse decorate bin.


8 b :Binding: post bin (decorate bin pr b) = b


Lemma 31 post bin restrict decorated lemma.


8 sig :Signature: 8 b1; b2 :Binding:


(restrict b1 (decorate sig pr sig) = in2 b2))


(restrict (post bin b) sig = in2 (post bin b0))
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Lemma 32 restrict post bin decorate lemma.


8 sig :Signature: 8 b1; b2 :Binding:


(restrict (post bin b) sig = in2 b2))


(restrict b1 (decorate sig pr sig) = in2 (decorate bin pr b2))


B.1.5 Lemmas about join bin


Lemma 33 join bin lemma1.


8 s; t :Signature: 8 b; b1; b2 :Binding:


(restrict b (hide sig s t) = in2 b1))


(is true (matches s b2)))


(succeeds (restrict (join bin b2 b1) t))


Lemma 34 join bin lemma2.


8 s; t :Signature: 8 b; b1; b2; b3 :Binding:


(restrict b (hide sig s t) = in2 b1))


(restrict (join bin b2 b1) t = in2 b3))


(restrict (join bin b2 b) t = in2 b3)


B.1.6 Other lemmas


Lemma 35 type compatible sym.


8 s; t :Signature: (unique idents s) ^ (unique idents t))


(type compatible s t () type compatible t s)


Lemma 36 unequal sigs thm1.


8 S; T :Schema: ((is false (sig eq S:1 T:1)) ^ (Equiv1 S T)))


8 b :Binding::(exactly models S b)
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Lemma 37 unequal sigs thm2.


8 S; T :Schema: ((is false (sig eq S:1 T:1)) ^ (Equiv1 S T)))


8 b :Binding::(exactly models T b)


Lemma 38 restricting models restrict.


8 S :Signature: 8 b :Binding:


(restricts to model S b)) (succeeds (restrict b S:1))


B.2 Sets and Functions


This file shows an extract from a library of lemmas about finite sets and relations


encoded as lists. The lemmas shown are those that have been used in proving


Theorem 51 of Chapter 7.


Assume z; z0 : Ztype; eq : (Typ z)!(Typ z)!bool;


eq0 : (Typ z0)!(Typ z0)!bool.


Lemma 39 Set eq refl. 8 s :Typ (finset ty z): is true (Set eq eq s s)


Lemma 40 Set eq sym. 8 s; t :Typ (finset ty z): (Set eq eq s t) = (Set eq eq t s)


Lemma 41 Set eq trans. 8 s; t; u :Typ (finset ty z):


(is true (Set eq eq s t))) (is true (Set eq eq t u))) (is true (Set eq eq s u))


Lemma 42 Union resp Set eq. 8 s; t; u; v :Typ (finset ty z):


(is true (Set eq eq s t))) (is true (Set eq eq u v)))


(is true (Set eq eq (Union eq s u) (Union eq t v)))


Lemma 43 Fun eq sym. 8 s; t :Typ (fun ty z z0): Fun eq eq eq0 s t = Fun eq eq eq0 t s


Lemma 44 Dom resp Fun eq. 8 s; t :Typ (fun ty z z0):


(is true (Fun eq eq eq0 s t))) (is true (Set eq eq (Dom s) (Dom t)))
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Lemma 45 Dom Union lemma. 8 s; t :Typ (fun ty z z0):


(is true (Set eq eq (Dom (FunUnion eq eq0 s t)) (Union eq (Dom s) (Dom t))))


Discharge z; z0; eq; eq0.







Appendix C


Function definitions


C.1 General function definitions


This is the elimination rule for the inductive type Ztype.


Definition 54 Ztype elim.


Ztype elim : � F :Ztype!Type:


(F nat ty)!


(F bool ty)!


(� x :GivenType: F (given ty x))!


(� z :Ztype: (F z)!(F (finset ty z)))!


(� z; z1 :Ztype: (F z)!(F z1)!(F (prod ty z z1)))!


(� z :Ztype: F z)


We define a reduced form of the elimination rule Ztype elim.
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Definition 55 Ztype dep enum.


Ztype dep enum
def
= [omitted]


: � F :Ztype!Type:


(F nat ty)!


(F bool ty)!


(� x :GivenType: F (given ty x))!


(� z :Ztype: F (finset ty z))!


(� z; z1 :Ztype: F (prod ty z z1))!


(� z :Ztype: F z)


Definition 56 Error.


Error
def
= unit : Type


error
def
= void : Error


Definition 57 succeeds,fails.


succeeds
def
= is in1 j Error : � t jType: (Error + t)!Prop


fails
def
= is in2 j Error : � t jType: (Error + t)!Prop


When applied to a signature item x, and a signature, sig, mem and comp


returns a pair of booleans. The first of these is equal to true if the identifier x:1


occurs in sig, and is false otherwise. The second boolean is equal to false if the


first occurence of x:1 in sig is paired with a Ztype that is unequal to x:2, and is


true otherwise.


Definition 58 mem and comp.


mem and comp
def
= �x : sig item:


list rec (false; true)


(�h : sig item: � :Signature: �prev :bool � bool:


if (Ident eq x:1 h:1)


(true;Ztype eq x:2 h:2)


prev)


: sig item!Signature!(bool � bool)
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Definition 59 type compatible fun.


tcf aux
def
= �s; t :Signature:


list iter (t; true)


(�n : sig item: �prev :Signature� bool:


[tmp = mem and comp n prev:1]


if tmp:1


(if tmp:2 prev (prev:1; false))


(cons n prev:1; prev:2))


type compatible fun
def
= �s; t :Signature: (tcf aux s t):2


: Signature!Signature!bool


Definition 60 hide sig.


hide sig
def
= �sig :Signature:


list iter nil sig


(�h : sig item: �prev :Signature:


if (member sig item eq h sig) prev (cons h prev))


: Signature!Signature!Signature


Definition 61 remove occurs.


remove occurs
def
= �sig :Signature:


list rec nil bin


(�h :bin item: � ; prev :Binding:


if (member sig item ident eq h:1 sig) prev (cons h prev))


: Signature!Binding!Binding
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Definition 62 Apply.


Apply
def
= � z1; z2 jZtype:� eq : (Typ z1)!(Typ z2)!bool:


�r :Typ (Rel z1 z2): �x :Typ z1:


list iter (in1 error)


(�h :Typ (prod ty z1 z2): �prev :Error + (Typ z2):


if (eq x h:1) (in2 h:2) prev)


r


: � z; z0 jZtype:� eq : (Typ z)!(Typ z)!bool:


(Typ (Rel z z0))!(Typ z)!(Error + (Typ z0))


Definition 63 mk sum bin item, msbi.


mk sum bin item
def
= �i : Ident: case (� :Error: in1 error)


(�n : small item: in2 ((i; n:1); n:2))


: (Error + small item)!(Error + small item)


msbi
def
= mk sum bin item


C.2 Wrapper functions


In this section we explain how to define the wrapper functions referred to in


Section 3.5.6. We first define a more general version of the type small item:


Definition 64 pre small item.


pre small item
def
= �F :Ztype!Ztype: (� z :Ztype:Typ (F z))


: (Ztype!Ztype)!Type


Next, we define wrappers specific to each of the various constructors for


Ztype. As examples, we display the wrappers for nat ty and for finset ty z.
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Definition 65 pre nat wrap.


pre nat wrap
def
= �F :Ztype!Ztype: � out jType:


�f : (Typ (F nat ty))!(Error + out):


sigma rec


(Ztype dep enum


(�z :Ztype: (Typ (F z))!(Error + out))


(�n :Typ (F nat ty): f n)


(� :Typ (F bool ty): in1 error)


(�g :GivenType: � :Typ (F (given ty g)): in1 error)


(�z :Ztype: � :Typ (F (finset ty z)): in1 error)


(�z; z1 :Ztype: � :Typ (F (prod ty z z1)): in1 error))


: � F :Ztype!Ztype:� out jType:


((Typ (F nat ty))!(Error + out))!((pre small item F)!(Error + out))
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Definition 66 pre finset wrap.


pre finset wrap
def
=


�z :Ztype:


�z wrap :� F :Ztype!Ztype:� out :Type:


((Typ (F z))!(Error + out))!((pre small item F)!(Error + out)):


�F :Ztype!Ztype: � out jType:


�f : (Typ (F (finset ty z)))!(Error + out):


sigma rec


(Ztype dep enum


(�z :Ztype: (Typ (F z))!(Error + out))


(�n :Typ (F nat ty): in1 error)


(� :Typ (F bool ty): in1 error)


(�g :GivenType: � :Typ (F (given ty g)): in1 error)


(�z1 :Ztype: � :Typ (F (finset ty z)):


z wrap (�x :Ztype: F (finset ty x)) f (z1; x))


(�z1; z2 :Ztype: � :Typ (F (prod ty z1 z2)): in1 error))


: � z :Ztype:


� z wrap :� F :Ztype!Ztype:� out :Type:


((Typ (F z))!(Error + out))!((pre small item F)!(Error + out)):


� F :Ztype!Ztype:� out jType:


((Typ (F nat ty))!(Error + out))!((pre small item F)!(Error + out))


The other wrappers, pre bool wrap, pre given wrap, pre fun wrap, and pre prod wrap


are defined in a similar manner.


We then define a general wrapper, which works for all Ztypes, which uses


the elimination rule on Ztypes to select the correct specific wrapper to be applied


in a given case.
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Definition 67 pre wrap.


pre wrap
def
= Ztype elim


(�z :Ztype: �F :Ztype!Ztype: � out jType:


((Typ (F z))!(Error + out))!(pre small item F)!(Error + out))


pre nat wrap


pre bool wrap


pre given wrap


pre finset wrap


pre prod wrap


: � z :Ztype:� F :Ztype!Ztype:� out jType:


((Typ (F z))!(Error + out))!((pre small item F)!(Error + out))


The general wrapper, pre wrap, is then used to define various wrapper


functions for specific situations. For example, the following is the wrapper


which is commonly used for unary functions on Ztypes.


Definition 68 wrap.


wrap
def
= �z; z1 :Ztype: �f : (Typ z)!(Typ z1):


case (� :Error: in1 error)


(sigma rec


(�z2 :Ztype: �x :Typ z2:


pre wrap


z (�y :Ztype: y) (�y :Typ z: in2 (z1; (f x))) (z2; x)))


: � z; z1 :Ztype: ((Typ z)!(Typ z1))!


((Error + small item)!(Error + small item))


The next function is a more general wrapper for unary functions, Here, only


the domain of the wrapped function is required to be a Ztype.
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Definition 69 wrap 1.


wrap1
def
= �z :Ztype: � out jType: �f : (Typ z)!out:


case (� :Error: in1 error)


(sigma rec


(�z1 :Ztype: �x :Typ z1:


pre wrap z (�y :Ztype: y) (�y :Typ z: in2 (f x)) (z1; x)))


: � z :Ztype:� out jType: ((Typ z)!out)!


((Error + small item)!(Error + out))


Next, we define a wrapper for partial, unary functions on Ztypes. Failure


of the wrapped function, when applied to an argument of the correct Ztype, is


identified with the case where the wrapped function is applied to an argument


of the wrong Ztype.


Definition 70 wrap2.


wrap2
def
= �z; z1 :Ztype: �f : (Typ z)!(Error + (Typ z1)):


case (� :Error: in1 error)


(sigma rec (�z2 :Ztype: �x :Typ z2:


pre wrap z


(�y :Ztype:y)


(�y :Typ z: case (� :Error: in1 error)


(�v :Typ z1: in2 (z1; v))


(f y))


(z2; x)))


: � z; z1 :Ztype: ((Typ z)!(Error + (Typ z1)))!


((Error + small item)!(Error + small item))


Next we define a wrapper for predicates over Ztypes (i.e. functions of type


(Typ z)!Prop, for some Ztype, z). This wrapper returns the value absurd if the


wrapped predicate is applied to an argument of the wrong Ztype.
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Definition 71 Pwrap.


Pwrap
def
= �z :Ztype: �P : (Typ z)!Prop: �x :Error + small item:


case (� :Error: absurd


(�p :Prop: p)


(wrap1 z P x))


: � z :Ztype: ((Typ z)!Prop)!((Error + small item)!Prop)


Finally, we define wrappers for two-argument and three-argument functions


on Ztypes.


Definition 72 double wrap.


double wrap
def
= �z; z1; z2 :Ztype:


�f : (Typ z)!(Typ z1)!(Typ z2):


�x; y :Error + small item:


case (� :Error: in1 error)


(�g : (Typ z1)!(Typ z2):wrap z1 z2 g y)


(wrap1 z f x)


: � z; z1; z2 :Ztype: ((Typ z)!(Typ z1)!(Typ z2))!


((Error + small item)!(Error + small item)!(Error + small item))


Definition 73 triple wrap.


triple wrap
def
= �z; z1; z2; z3 :Ztype:


�f : (Typ z)!(Typ z1)!(Typ z2)!(Typ z3):


�w; x; y :Error + small item:


case (� :Error: in1 error)


(�g : (Typ z1)!(Typ z2)!(Typ z3): double wrap z1 z2 z3 g x y)


(wrap1 z f x)


: � z; z1; z2; z3 :Ztype: ((Typ z)!(Typ z1)!(Typ z2)!(Typ z3))!


((Error + small item)!(Error + small item)!


(Error + small item)!(Error + small item))







Appendix C. Function definitions 192


C.2.1 Lemmas about wrapper functions


We show that when a wrapped version of a function is applied to an argument of


the correct Ztype, the value returned is indeed that computed by the unwrapped


version of the function. We prove similar results for all the wrappers.


Lemma 46. wrap lemma


8 z; z1 :Ztype: 8 f : (Typ z)!(Typ z1): 8 v :Typ z:


wrap z z1 f (in2 (z; v)) = in2 (z1; (f v))


Proof. Omitted.


C.2.2 Wrapped versions of functions


Definition 74 IS TRUE.


IS TRUE
def
= Pwrap bool ty is true


: (Error + small item)!Prop


Definition 75 IS FALSE.


IS FALSE
def
= Pwrap bool ty is false


: (Error + small item)!Prop


Definition 76 ALREADY KNOWN.


ALREADY KNOWN
def
= in2 (given ty Report ty; already known)


: Error + small item


Definition 77 LT.


LT
def
= double wrap nat ty nat ty bool ty lt


: (Error + small item)!(Error + small item)!(Error + small item)
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Definition 78 PLUS.


PLUS
def
= double wrap nat ty nat ty nat ty plus


: (Error + small item)!(Error + small item)!(Error + small item)


Definition 79 NULL.


NULL
def
= � z jZtype: in2 (finset ty z;Null j z)


: � z jZtype: Error + small item


Definition 80 SINGLE.


SINGLE
def
= � z jZtype:wrap z (finset ty z) (Single j z)


: Ztype!(Error + small item)!(Error + small item)


Definition 81 EQUAL.


EQUAL
def
= � z jZtype:


double wrap z z bool ty (Equal z)


: � jZtype: (Error + small item)!(Error + small item)!(Error + small item)


Definition 82 PAIR.


PAIR
def
= � z; z0 jZtype:


double wrap z z0 (prod ty z z0)


(�x :Typ z: �y :Typ z0: (x; y))


: � z; z0 jZtype: (Error + small item)!(Error + small item)!(Error + small item)


Definition 83 UNION.


UNION
def
= � z jZtype: � eq j(Typ z)!(Typ z)!bool:


double wrap (finset ty z) (finset ty z) (finset ty z) (Union eq)


: � z jZtype: ((Typ z)!(Typ z)!bool)!


(Error + small item)!(Error + small item)!(Error + small item)
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Definition 84 IN.


IN
def
= � z jZtype: � eq j(Typ z)!(Typ z)!bool:


double wrap z (finset ty z) bool ty (In eq)


: � z jZtype: ((Typ z)!(Typ z)!bool)!


(Error + small item)!(Error + small item)!(Error + small item)


Definition 85 FUN SINGLE.


FUN SINGLE
def
= � z1; z2 jZtype:


double wrap z1 z2 (fun ty z1 z2) (FunSingle j z1 j z j 2)


: Ztype!Ztype!


(Error + small item)!(Error + small item)!(Error + small item)


Definition 86 FUN UNION.


FUN UNION
def
= � z1; z2 jZtype:


� eq j(Typ z1)!(Typ z1)!bool: � eq j(Typ z2)!(Typ z2)!bool:


double wrap (fun ty z1 z2) (fun ty z1 z2) (fun ty z1 z2) (FunUnion eq1 eq2)


: � z1; z2 jZtype: ((Typ z1)!(Typ z1)!bool)!((Typ z2)!(Typ z2)!bool)


(Error + small item)!(Error + small item)!(Error + small item)


Definition 87 DOM.


DOM
def
= � z1; z2 jZtype:wrap (fun ty z1 z2)(finset ty z1) (Dom j z1 j z2)


: Ztype!Ztype!


(Error + small item)!(Error + small item)!(Error + small item)


Definition 88 FOR.


FOR
def
= � t jType: �x : t: �f :nat! t! t:wrap1 nat ty (nat rec x f)


: � t jType: t!(nat! t! t)!(Error + small item)!(Error + t)


Definition 89 NIL BIN.


NIL BIN
def
= in2 nil bin


: Error + Binding
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Definition 90 PAIR BIN.


PAIR BIN
def
=


case (� :Error: � :Error + Binding: in1 error)


(�b1 :Binding: case (� :Error: in1 error)


(�b2 :Binding: in2 (b1; b2)))


: � t jType: (Error + Binding)!(Error + Binding)!(Error + Binding)


Definition 91 CONS BIN.


CONS BIN
def
=


case (� :Error: � :Error + Binding: in1 error)


(�x :bin item: case (� :Error: in1 error)


(�b :Binding: in2 (cons x l)))


: � t jType: (Error + bin item)!(Error + Binding)!(Error + Binding)


Definition 92 IF.


IF
def
= � t jType:


case (� :Error: � ; :Error + t: in1 error)


(�b :bool: �x; y :Error + t: if b x y)


: � t jType: (Error + bool)!(Error + t)!(Error + t)!(Error + t)


Definition 93 APPLY.


APPLY
def
=


� z; z0 jZtype: �eq : (Typ z)!(Typ z)!bool: �x; y :Error + small item:


case (� :Error: in1 error)


(�f : (Typ z)!(Error + small item):wrap2 z z0 f y)


(wrap1 (fun ty z z0) (Apply j z j z0 eq) x)


: � z1; z2 jZtype:� eq j(Typ z1)!(Typ z1)!bool:


(Error + small item)!(Error + small item)!(Error + small item)
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LEGO library functions and lemmas


This appendix lists all the definitions and lemmas taken from the LEGO library


which are mentioned in this thesis. The LEGO library was collated from the


private libraries of the members of the LEGO club at the LFCS so it is impossible


to pinpoint the origins of these definitions.


trueProp
def
= 8 P :Prop: P ) P


: Prop


bool rec
def
= [omitted] : � T jType: T!T!(bool!T)


is true
def
= �b :bool: b = true


: bool!Prop


is false is defined analogously to is true.


if
def
= � t jType: �b :bool: �x; y : t: bool rec x y b


: � t jType: bool! t! t! t


andalso
def
= �a; b :bool: if a b false


: bool!bool!bool


orelse
def
= �a; b :bool: if a true b


: bool!bool!bool
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inv
def
= �b :bool: if b false true


: bool!bool


nat iter
def
= [omitted] : � t jType: t!(t! t)!(nat! t)


nat rec
def
= [omitted] : � t jType: t!(nat! t! t)!(nat! t)


lt
def
= nat iter (nat iter false (� :bool: true))


(�f :nat!bool: nat rec false (�x :nat: � :bool: f x))


: nat!nat!bool


plus
def
= �m; b :nat: nat iter n suc m


: nat!nat!nat


list iter
def
= [omitted] : � s; t jType: t!(s! t! t)!((list s)! t)


list rec
def
= [omitted] : � s; t jType: t!(s!(list s)! t! t)!((list s)! t)


member
def
= [omitted] : � t jType: (t! t!bool)! t!(list t)!bool


case
def
= [omitted] : � s; t; u jType: (s!u)!(t!u)!((s + t)!u)


is in1
def
= � s; t jType: �x : s + t: 9 y :z: in1 y = x


: � s; t jProp: (s + t)!Prop


is in2 is defined analogously to is in1.


in1 not in2 : 8 s; t :Type: 8 x : s::(is in2 (in1 x))


sigma rec
def
= [omitted]


: � S jType:� F jS!Type:� T jType:


(� x :S: (F x)!T)!((� y :A: F y)!T)
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D.1 The logic of LEGO


The LEGO library provides an encoding an intuitionistic, higher-order logic into


the type theory UTT. For completeness, we show the definitions that make up


this encoding.


8 is encoded as �.


) is encoded as!.


9
def
= � T jType:� P :T!Prop: 8Q :Prop: (8 t :T: (P t)) Q)) Q


: � T jType: (T!Prop)!Prop


absurd
def
= 8 P :Prop: P


: Prop


^
def
= �P;Q :Prop: 8 R :Prop: (P ) Q ) R)) R


: Prop!Prop!Prop


_
def
= �P;Q :Prop: 8 R :Prop: (P ) R)) (Q ) R)) R


: Prop!Prop!Prop


:
def
= �P :Prop: P ) absurd


: Prop!Prop







Appendix E


Correctness of the Representation


In this appendix we discuss the relationship between our representation of Z


and the semantics for Z proposed by Spivey [Spi88].


We have said that Z0 is a sublanguage of Z: we now make this statement


precise by showing how to embed the syntax of Z0 into (the sublanguage of)


Z that is treated in Spivey’s semantics. It is necessary for us to extend Z with


definitions of finite sets, natural numbers, and booleans. With the exception of


the latter, these are all part of the library described in the ZRM.


We then state what it means for our semantics for Z0 to be sound with respect


to Spivey’s semantics for Z. We conjecture that this is indeed the case, and


discuss what is involved in proving this result.


E.1 Translating Z0 to Z


The translation rules (figures E–1 and E–2) are straightforward. The Z0 phrase


classes PRELUDE, MAINSPEC and SPEC are all translated to the Z phrase class


SPEC. The Z0 phrase classes TYPE and TERM are both translated to the Z phrase


class TERM. All the other terms in Z0 remain the same when translated, except


for the include schema expression which must be treated specially.
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Specification [ ] : SPECZ0 !SPECZ


[prelude in mainspec] = [prelude] in [mainspec]


Prelude [ ] : prelude
Z0
!SPECZ


[given ident1,: : : ,identn] = given ident1 ,: : : ,identn


Main specification [ ] : mainspec
Z0
!SPECZ


[let schema end] = let [schema] end


[let word = sexp] = let [word] = [sexp]


[mainspec in mainspec] = [mainspec] in [mainspec]


Schema [ ] : SCHEMAZ0!SCHEMAZ


[decl | pred] = [decl] | [pred]


Declaration [ ] : DECLZ0!DECLZ


[ident : type] = ident : [type]


[decl ; decl] = [decl] ; [decl]


Type [ ] : TYPEZ0!TERMZ


[N] = N


[B ] = B


[ident] = ident


[F type] = F [type]


[type1�type2] = [type1]�[type2]


Term [ ] : TERMZ0!TERMZ


[ident] = ident


[; [type]] = ; [[type]]


[fterm1,: : :,termng] = f[term1],: : :,[termn]g


[(term1,term2)] = ([term1],[term2])


[term1(term2)] = [term1]([term2])


Figure E–1: Translating Z0 to Z
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Schema expression [ ] : SEXPZ0!SEXPZ


[schema schema end] = schema [schema] end


[sdes] = sdes


[: sexp] = : [sexp]


[sexp1 ^ sexp2] = [sexp1] ^ [sexp2]


[sexp1 _ sexp2] = [sexp1] _ [sexp2]


[sexp1 ) sexp2] = [sexp1]) [sexp2]


[sexp n (ident1,: : :,identn)] = [sexp] n (ident1,: : :,identn)


[9 schema � sexp] = 9 [schema] � [sexp]


[8 schema � sexp] = 8 [schema] � [sexp]


[include sdes decl pred] = schema sdes : [decl] | [pred] end


Predicate [ ] : PREDZ0!PREDZ


[term1 = term2] = [term1] = [term2]


[term1 2 term2] = [term1] 2 [term2]


[true] = true


[false] = false


[: pred] = : [pred]


[pred1 ^ pred2] = [pred1] ^ [pred2]


[pred1 _ pred2] = [pred1] _ [pred2]


[pred1 ) pred2] = [pred1]) [pred2]


[9 ident : type � pred] = 9 ident : [type] � [pred]


[8 ident : type � pred] = 8 ident : [type] � [pred]


IDENT, WORD, DECOR and SDES are identical in Z and Z0 .


Figure E–2: Translating Z0 to Z
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E.2 Soundness property


The following extract from [Spi88] explains how to give meaning to sequents


of the form SEXP ` PRED. (We have added the subscript “Spi” to Spivey’s


semantic brackets to distinguish them from our own.)


Given an environment � obtained by evaluating a Z specification,


we can say whether such a sequent is valid or invalid: the sequent


se ` p


is valid if and only if, in the environment � enriched with se, every


model of the global variety satisfies p. Formally, if


�1 = enrich(�; sexp � 1 [[se]]Spi);


then the sequent is valid in � if and only if


pred �1 1 [[p]]Spi = �1:global:models:


The objects and operations of Spivey’s semantics that are used here (varieties,


environments, enrich, sexp, pred, etc) are described in Section 3.3 and defined


fully in [Spi88].


In our semantics we also give a meaning to sequents. Given a UTT environ-


ment E, obtained by translating a Z specification, we say that a sequent


se ` p


is provable if and only if we can prove in UTT, using only the axioms of E, that


all restricting models of the Schema, S, obtained by evaluating se in E satisfy


the predicate obtained by evaluating p over the signature S:1. Formally this is


stated as follows:


Has prop [[se; E]] [[p; [[se; E]]:1]]


Soundness statement We believe that our semantics for Z0 is sound with


respect to Spivey’s semantics for Z, in the following sense:
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For any Z0 MAINSPEC mainspec, SEXP sexp, and PRED pred, if the


sequent sexp ` pred is provable in the UTT environment obtained


by translating mainspec, then the sequent [sexp] ` [pred] is valid


in the environment obtained by evaluating [mainspec] according to


Spivey’s semantics.


We conjecture that the soundness statement above is true. We do not attempt


to give a complete formal proof of this because of the magnitude of the task; this


is an unfortunate consequence of our choice of a relatively shallow embedding


for Z. Instead, we shall sketch how this result might be proved, stating what


lemmas are required, proving some of these and giving intuitive arguments


why the others should be true.


E.2.1 A restricted class of semantic objects


We assume that we have a fixed set of given types.


We begin by defining restricted portions of the semantic objects Global,


Predicate, and Schema, which we shall call GoodGlobal, GoodPred, GoodPred-


Body, GoodSchema, etc. The definitions are shown in figure E–3.


These restricted semantic objects have the property that they can be mapped


back to phrase classes in Z0 . We shall define two such mappings, which we


shall name, simply, f and g.


For those elements of GoodPredBody which contain no lookups we can define


an inverse to the semantic operation [[ ]]top on PRED. Similarly, the inverse of [[ ]]top


on DECL gives us a function from Vars to DECL. Hence, given any GoodGlobal


G we can produce a SCHEMA, s, consisting of the DECL derived from the


Vars component of G, and the PRED obtained as described above from the


conjunction of all the GoodPreds in the image of the GoodAxioms component


of G (provided that none of these contain any lookups). We then use Spivey’s


semantic operations to obtain from this SCHEMA the following variety:


(spec � [[let [s] end]]Spi):global
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GoodGlobal = Vars�GoodAxioms


GoodAxioms = UTTIdent 7 7! GoodPredBody


GoodSchemaDict = UTTIdent 7 7! GoodSchema


GoodSchema ::= “(” Signature “;” GoodPred “)”


GoodPred ::= “�b :Binding: ” GoodPredBody


GoodPredBody ::= “IS TRUE (EQUAL” Ztype GoodTerm GoodTerm “)”


| “IN (EQUAL” Ztype “)” GoodTerm GoodTerm


| “trueProp”


| “absurd”


| “�” GoodPredBody


| GoodPredBody “^” GoodPredBody


| GoodPredBody “_” GoodPredBody


| GoodPredBody “)” GoodPredBody


| “9 ” IDENT “ :Typ” Ztype “: ” GoodPredBody


| “8 ” IDENT “ :Typ” Ztype “: ” GoodPredBody


GoodTerm ::= “in2 (” Ztype “; ” IDENT “)”


| “(lookup (” IDENT “; ” Ztype “) b)”


| “NULL ” Ztype


| “ADD ONE (Equal ” Ztype “)” GoodTerm GoodTerm


| “PAIR” GoodTerm GoodTerm


| “APPLY (Equal” Ztype “)” GoodTerm GoodTerm


Figure E–3: Definitions of “Good” semantic objects
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Here � is the environment produced by enriching the empty environment with


the assumed given types. The above procedure gives us a partial function f


from GoodGlobals to varieties.


Given any GoodPred P, we can form a Signature, sig by making a list of all


the sig items to which lookup is applied in P. We can then compute a PRED,


pred, such that [[pred; sig]] is identical to P. Hence, we have a mapping from


GoodPred to PRED. We can also define an inverse to the semantic function [[ ]]


on DECL. We use these two mappings to define a function g from GoodSchema


to SCHEMA.


E.2.2 Proof Strategy


Assume we have a set of given types, a MAINSPEC, mainspec, a SEXP, sexp


and a PRED, pred. Assume that in the Global E:1, where


E = [[mainspec; ;]]


we can prove


Has prop [[sexp; E]] [[pred; [[sexp; E]]:1]]


We claim (Statement 1) that there is a GoodSchema S which can be shown to


be logically equivalent to [[sexp; E]], and which has the same signature. We can


therefore prove


Has prop S [[pred; S:1]]


Now we consider the specification obtained by extending mainspec with


the schema g(S), treated as an axiomatic description. Consider the Global, G,


obtained by evaluating this specification:


G = ([[mainspec in let H: g(S) end; ;]]):1


(Here, H is a label chosen as described in the discussion of Statement 2.) Facts


3 and 4 tell us that G is a GoodGlobal.
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We claim (Statement 2) that we can use the axioms of G to prove [[pred]]
top


.


We then claim (Statement 3) that this implies [pred] is valid in the variety f


(G). Finally, we claim that (Statement 4) this variety is the same as that derived


by using Spivey’s semantics to evaluate [sexp] in the environment obtained by


evaluating [mainspec].


Hence, Spivey’s semantics validates the sequent


[sexp] ` [pred]


E.2.3 Lemmas needed to prove soundness


Fact 1 For all TERMs term, [[term]]top is a GoodTerm.


Proof. By induction on the structure of TERM.


Fact 2 For all PREDs pred, [[pred]]
top


is a GoodPredBody.


Proof. By induction on the structure of PRED, using Fact 1 as needed.


Fact 3 For all MAINSPECs mainspec, the Global [[mainspec; ;]] is always a Good-


Global.


Proof. By induction on the structure of MAINSPEC, using Facts 1 and 2 as


needed.


Fact 4 For all GoodGlobals, g, and all GoodSchemas, S, and all labels, H the


Global


G
S
[[let H :(g S) end]]


is always a GoodGlobal.


Proof. By induction on the structure of GoodSchema.


Fact 5 For all TERMs term and all Signatures sig, [[term; sig]] is a GoodTerm.
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Proof. By induction on the structure of TERM.


Fact 6 For all PREDs pred and all Signatures sig [[pred; sig]]
body


is a GoodPred-


Body.


Proof. By induction on the structure of PRED, using Fact 5 as needed.


Fact 7 For all PREDs pred and all Signatures sig [[pred; sig]] is a GoodPred.


Proof. This follows directly from Fact 6.


Fact 8 For all SCHEMAs schema, [[schema]] is a GoodSchema.


Proof. This follows directly from Fact 7.


Statement 1


Translating a SEXP gives a Schema which is not necessarily a GoodSchema.


However, from this Schema, we can systematically derive a GoodSchema which


has the same signature and is logically equivalent.


Why should this be true?


The translation rules for SEXP always produce GoodSchemas, except for the


following cases: hiding, existential and universal quantification, and primed


schemas. In all of these cases it is possible to give rules for systematically


constructing a GoodSchema and to prove in UTT that that GoodSchema is


logically equivalent to the one obtained by our translation. We shall explain


how this is done for the case of hiding by giving an example and informally


describing the general transformation.


Consider the following annotated schema expression:


schema x:T; y:T | x =T y end n (x:T)
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By our translation rules, this will be represented by the Schema


Hide [([[x]];given ty T)]


([([[x]]; giventy T); ([[y]]; given ty T)];


�b :Binding: IS TRUE (EQUAL (given ty T)


(lookup ([[x]]; given ty T) b)


(lookup ([[y]]; given ty T) b)))


Expanding the definition of Hide, we see that this is the same as:


([([[y]]; given ty T)];


�b :Binding: 9 b0 :Binding:


(is true (matches [([[x]];given ty T)] b0)) ^


(IS TRUE (EQUAL (given ty T)


(lookup ([[x]]; given ty T) (join bin b b0))


(lookup ([[y]]; given ty T) (join bin b b0)))))


We obtain a GoodSchema by doing the following: for each sig item ([[i]]; z) in


the hidden signature, we insert an existential quantifier of the form 9 i :Typ z:


into the predicate. The sequence of existential quantifiers so obtained replaces


the single quantifier9 b0 :Binding: Every occurrence of (lookup ([[i]]; z) (join bin b b0))


in the body of the predicate is replaced by the wrapped form of the variable


bound in the existential quantifier, i.e., (in2 (given ty z; i)). All other lookups


of a sig item in (join bin b b0) are replaced by lookups of the same sig item in b.


For our example, this transformation has the following result:


([([[y]]; given ty T)];


�b :Binding: 9 x :Typ (given ty T):


IS TRUE (EQUAL (given ty T)


(in2 (given ty T; x))


(lookup ([[y]]; given ty T) b))))


In general, the transformation described above will always produce a Good-


Schema which can be shown in UTT to be logically equivalent to the Schema
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produced by Hide, (provided that Hide is itself being applied to a GoodSchema)


This can be proved by induction on the list of sig items to be hidden. The


proof relies on the restricted structure of GoodPred — the only references to the


Binding argument b in a GoodPred are via lookup.


Similar transformations can be defined for the operations Exists and All. For


the Prime operation, the transformation is as follows: Suppose we have a a


GoodSchema S. The Prime operation gives us the following:


(prime sig S:1; �b :Binding: S:2 (post bin b))


For every sig item s in S:1, we replace all occurrences of (lookup s (post bin b))


in the above by (lookup (prime item s) b). We can prove that this gives us a


logically equivalent GoodSchema.


To prove Statement 1 formally we need to prove a more general statement


in order to deal with the case of schema designators, which are evaluated by


looking them up in the ambient UTTenv.


We first generalise the definition of “good” semantic objects so that it encom-


passes the whole of a UTTenv: a GoodUTTenv is one composed of a GoodGlobal


together with a SchemaDict whose image consists only of GoodSchemas.


Next, we generalise the definition of “logical equivalence” so that it applies


to UTTenvs: two UTTenvs E and E’ are logically equivalent if their Globals are


identical, their SchemaDicts have the same domain, and, given any UTTident,


i within this domain, the two Schemas E.SchemaDict(i) and E0.SchemaDict(i)


have the same signature and are logically equivalent.


We must then prove the following more general statement.


Translating a MAINSPEC gives a UTTenv, E, which is not necessarily


a GoodUTTenv. However, given this UTTenv, we can systematically


derive a GoodUTTenv, E’ which is logically equivalent to E.


This proof would be done by induction on the structure of MAINSPEC.
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Next we will have to show, by induction on the structure of SEXP, that


Statement 1 is true, provided that the evaluation of the SEXP takes place within


a GoodUTTenv.


To complete the proof of statement 1, we will need to show that if a SEXP,


sexp, is translated within two logically equivalent UTTenvs, the resulting Schemas


are logically equivalent.


Statement 2


This states that given a GoodGlobal G, a GoodSchema S, and a PRED pred, if we


can show, using only the axioms of G and the rules of higher-order intuitionistic


logic, that


Has prop S [[pred; S:1]]


then there is a label H such that, in the GoodGlobal G
S
[[let H : (g S) end]]


we can prove [[pred]]
top


.


Why should this be true? Examine what happens when we prove


Has prop S [[pred; S:1]]


Let us suppose that the signature of S is [([[x1]]; t1); : : : ; ([[xn]]; tn)]. After ex-


panding the definition of Has prop and and then using the Intros tactic, we


obtain a proof context of the following form. (The names for the introduced


small items must be chosen carefully in order to be syntactically identical to the







Appendix E. Correctness of the Representation 211


Idents in the signature of S.


[b : Binding]


[H : restricts to model S b :]


[x1; : : : ; xn : small item]


[H1 : Eq x1 (lookup ([[x1]]; t1) b)]
...


[Hn : Eq xn (lookup ([[xn]]; tn) b)]


[HH : S:2 b]


? : [[pred; S:1]]
body


We then rewrite the goal and the hypothesis HH with the equalities H1 : : :Hn.


The resulting hypothesis and goal will contain no lookups. The salient part of


the proof context for the rest of the proof consists only of the declarations of


x1 : : : xn and the rewritten version of the HH. This part of the proof context


extends the original GoodGlobal, G, giving a new GoodGlobal, which is the


same as G
S
[[let HH : (g S) end]]. (The label is chosen to be the same as the


name of the hypothesis HH.) The goal is the same as [[pred]]
top


. We must then


show that the original goal can be proved if and only if the current goal can be


proved in the current context – this is true because of the particular UTT rules


that we have used to manipulate the proof up to this point.


The paragraph above conceals several non-trivial proof obligations. For


example, showing that the proof can always be completed using only a reduced


portion of the proof context would require complicated reasoning about the


rules of UTT and the behaviour of the LEGO system.


Statement 3


Given a GoodGlobal G and a Z0 PRED pred, if we can prove the statement


[[pred]]
top


using only the axioms in G and the rules of intuitionistic higher-order


logic, then [pred] is valid in the variety f (G).
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Why should this be true? Intuitively, this is true because the proof rules


for intuitionistic logic are sound with respect to the classical model theory used


in Spivey’s semantics. A complete proof might be done by induction on the


structure of the proofs of [[pred]]
top


.


Statement 4


Given a MAINSPEC, mainspec, a SEXP, sexp, and a label, H, let S be a GoodS-


chema, obtained by the methods described in the proof of Statement 1, that is


logically equivalent to [[sexp; [[mainspec; ;]]]]. Then the variety


V = f (([[mainspec in let H : (g S) end; ;]]):2)


is the same as that derived by using Spivey’s semantics to evaluate [sexp] in the


environment obtained by evaluating [mainspec]. In the language of Spivey’s


semantics, if � is the environment obtained by evaluating [mainspec] then we


have that


V = (enrich(�; sexp � 1 [[[sexp]]]
Spi
)):global


Why should this be true? We believe that the proof of this statement should


be routine, since the major differences between Spivey’s semantics and our own


have been ironed out in Statement 1.


To prove this statement formally, we would first have to prove a more general


statement (as was necessary for Statement 1) relates environments and GoodUT-


Tenvs. First we must define a mapping h from GoodUTTenvs to environments.


The general statement is then the following:


Given a main specification MAINSPEC let E be a GoodUTTenv, ob-


tained by the methods described in the proof of Statement 1, that


is logically equivalent to [[MAINSPEC; ;]]. Then the environment


h(E) is the same as that obtained by evaluating MAINSPEC using


Spivey’s semantics.


The proof of this would be done by induction on the structure of MAINSPEC.
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