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Abstract

We consider the problem of sampling “unlabelled structures”, i.e., sampling
combinatorial structures modulo a group of symmetries. The main tool
which has been used for this sampling problem is Burnside’s lemma. In
situations where a significant proportion of the structures have no non-
trivial symmetries, it is already fairly well understood how to apply this
tool. More generally, it is possible to obtain nearly uniform samples by
simulating a Markov chain that we call the Burnside process; this is a
random walk on a bipartite graph which essentially implements Burnside’s
lemma. For this approach to be feasible, the Markov chain ought to be
“rapidly mixing”, i.e., converge rapidly to equilibrium. The Burnside pro-
cess was known to be rapidly mixing for some special groups, and it has
even been implemented in some computational group theory algorithms.
In this paper, we show that the Burnside process is not rapidly mixing
in general. In particular, we construct an infinite family of permutation
groups for which we show that the mixing time is exponential in the degree
of the group.
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1 Introduction

The computational task considered in this article is that of sampling “unlabelled
structures”, i.e., sampling combinatorial structures modulo a group of symmet-
ries. We work within the framework of Pólya theory: “Structures” are taken to
be length-m words over a finite alphabet Σ , and the group of symmetries is taken
to be a permutation group G of degree m which acts on the words by permuting
positions. (See Section 2 for precise definitions.) The image of α ∈ Σm under
g is conventionally denoted αg. Words α and β are in the same orbit if there
is a permutation g ∈ G which maps α to αg = β. The orbits partition the set
of words into equivalence classes, and the computational problem is to sample
words in such a way that each orbit is equally likely to be output.1

The main tool which has been used for sampling orbits is Burnside’s Lemma,2

which says that each orbit comes up |G| times (as the first component) in the set
of pairs

Υ(Σ , G) := {(α, g) | α ∈ Σm, g ∈ G and αg = α}. (1)

Thus, we are interested in the computational problem of sampling uniformly at
random from Υ(Σ , G), given (an efficient representation of) G.

Wormald [16] has shown how to solve this sampling problem for rigid struc-
tures. That is, he has given an efficient random sampling algorithm that works
whenever a high fraction of the pairs in Υ(Σ , G) have g equal to the identity per-
mutation. Wormald’s method does not extend to the case in which the identity
permutation contributes only a small fraction3 of the pairs in Υ(Σ , G). However,
Jerrum proposed a natural approach based on Markov chain simulation which
does extend to this case [7].

We give the details of the Markov chain simulation approach in Section 2. In
brief, the idea is to consider the following bipartite graph: The vertices on the
left-hand side are all words in Σm. The vertices on the right-hand side are all
permutations in G. There is an edge from word α to permutation g if and only
if αg = α. This graph essentially implements Burnside’s Lemma: The lemma
shows that the stationary distribution of a random walk on the graph assigns
equal weight to each orbit, i.e., to each unlabelled structure. The Markov chain
that we consider, which we refer to as the “Burnside process”, is the random walk
on this graph observed on alternate steps.

We may obtain a nearly uniform unlabelled sample by simulating the Burnside

1Here is a concrete example: Let Σ be a binary alphabet. Encode the adjacency matrix of
an n-vertex graph as a word of length m =

(
n
2

)
. The relevant permutation group is the group

(acting on words) which is induced by the group of all permutations of the n vertices. Note
that two graphs are in the same orbit if and only if they are isomorphic.

2Although this lemma is commonly referred to as “Burnside’s Lemma”, it is really due to
Cauchy and Frobenius [13].

3Specifically, Wormald’s approach can be used when the fraction of pairs in Υ (Σ , G) which
are due to the identity is at least the inverse of some polynomial in m.
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process from a fixed initial state for sufficiently many steps, and returning the final
state. The efficiency of this sampling method is dependent on the so-called mixing
time of the Burnside process: in rough terms, how many steps is “sufficiently
many”? The aim of this article is to show that the mixing time of the Burnside
process is sometimes very large. We now make that statement precise.

For any two probability distributions π and π′ on a finite set Ψ , define the
total variation distance between π and π′ to be

Dtv(π, π′) := max
A⊆Ψ
|π(A)− π′(A)| = 1

2

∑
x∈Ψ

|π(x)− π′(x)|.

Suppose M is an ergodic Markov chain with state space Ψ and stationary distri-
bution π, and let the t-step distribution of M , when started in state x0, be πt. The
mixing time of M , given initial state x0, is a function τx0 : (0, 1)→ N, from toler-
ances δ to simulation times, defined as follows: for each δ ∈ (0, 1), let τx0(δ) be the
smallest t such that Dtv(πt′, π) ≤ δ for all t′ ≥ t. If the initial state is not signific-
ant or is unknown, it is appropriate to define τ (δ) = maxx τx(δ), where the max-
imum is over all x ∈ Ψ . By rapid mixing, we mean that τ (δ) ≤ poly(m, log δ−1),
where m is the input size—in our case the degree of the group G—and δ the
tolerance. Stuart Anderson has suggested the phrase torpid mixing to describe
the contrasting situation where mixing time is exponential in the input size.

The Burnside process was shown to be rapidly mixing for some very special
groups G [7]. However, it was an open question whether it is rapidly mixing in
general. The precise result of this article (Theorem 11) is a construction of an
infinite family of permutation groups G for which we show that the mixing time
τ (1

3) is exponential in the degree of G. Thus, if we use the t-step distribution to
estimate the probability π(A) of some event A ⊂ Ψ in the stationary distribution,
the result may be out by as much as 1

3 , unless we take t exponentially large.
The main idea of the proof is to relate the mixing time of the Burnside pro-

cess to the “Swendsen-Wang process”, a particular dynamics for the Potts model
in statistical physics. The Swendsen-Wang process was shown by Gore and Jer-
rum [5] to have exponential mixing time at a certain critical value of a parameter
called “temperature”. It turns out that the Swendsen-Wang process defined on
a graph Γ at a different (lower, non-critical) temperature has exactly the same
dynamics as the Burnside process on a derived permutation group G3(Γ ). Thus
we only have to relate the Swendsen-Wang process at the two different temper-
atures, which we do using the “l-stretch” construction used by other authors [6].
The dynamics of the Swendsen-Wang process is not perfectly preserved by the l-
stretch construction, but the correspondence is close enough to yield the claimed
result.

Sections 2 and 3 describe the Burnside and Swendsen-Wang processes; Sec-
tion 4 describes the relationship between the two; Section 5 relates the Swendsen-
Wang process at two different temperatures via the l-stretch construction, thus
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completing the “torpid mixing” proof; finally, Section 6 concludes with some open
problems.

2 The Burnside process

Let Σ = {0, . . . , k−1} be a finite alphabet of cardinality k, and G a permutation
group on [m] = {0, . . . , m− 1}. For g ∈ G and i ∈ [m], denote by ig the image
of i under g. The group G has a natural action on the set Σm of all words
of length m over the alphabet Σ , induced by permutations of the “positions”
0, . . . , m− 1. Under this induced action, the permutation g ∈ G maps the word
α = a0a1 . . . am−1 to the word αg = β = b0b1 . . . bm−1 defined by bj = ai for all
i, j ∈ [m] satisfying ig = j. The action of G partitions Σm into a number of
orbits, these being the equivalence classes of Σm under the equivalence relation
that identifies α and β whenever there exists g ∈ G mapping α to β. The orbit
{αg : g ∈ G} containing the word α ∈ Σm is denoted αG. As we indicated in the
introduction, Burnside’s Lemma says that each orbit comes up |G| times in the
set Υ(Σ , G) defined in equation (1). Thus, we are interested in the problem of
uniformly sampling elements of Υ(Σ , G).

A standard attack on combinatorial sampling problems [9] is to design a
Markov chain whose states are the structures of interest (in this case the state
space is G) and whose transition probabilities are chosen so that the stationary
distribution is the required sampling distribution. The following natural Markov
chain was proposed by Jerrum [7]. As we noted in the introduction, it is es-
sentially a random walk on the bipartite graph which corresponds to Burnside’s
Lemma. The state space of the Markov chain MB = MB(G, Σ ) is just G. The
transition probabilities from a state g ∈ G are specified by the following concep-
tually simple two-step experiment:

(B1) Sample α uniformly at random (u.a.r.) from the set Fixg := {α ∈ Σm :
αg = α}.

(B2) Sample h u.a.r. from the point stabiliser Gα := {h ∈ G : αh = α}.

The new state is h. Algorithmically, it is not difficult to implement (B1). However,
Step (B2) is apparently difficult in general. (It is equivalent under randomised
polynomial-time reductions to the Setwise Stabiliser problem, which includes
Graph Isomorphism as a special case.) Nevertheless, there are significant classes
of groups G for which an efficient (polynomial time) implementation exists. Luks
has shown that p-groups—groups in which every element has order a power of p
for some prime p—is an example of such a class [10].

Returning to the Markov chain itself, we note immediately that MB is er-
godic, since every state (permutation) can be reached from every other in a
single transition, by selecting the word α = 0m in step (B1). Let π : G → [0, 1]
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denote the stationary distribution of MB. Then π(g) is proportional to the degree
of vertex g in the bipartite graph corresponding to Burnside’s Lemma, which is
|Fix g| = kc(g), where c(g) denotes the number of cycles in the permutation g.
We have therefore established the following Lemma from [8]:

Lemma 1 Let π be the stationary distribution of the Markov chain MB(G, Σ ).
Then π(g) = kc(g)/|Υ(Σ , G)| for all g ∈ G.

Although the Markov chain MB on G is the most convenient one for us to
work with, it is clear that we can invert the order of steps (B1) and (B2) to
obtain a dual Markov chain M ′

B(G, Σ ) with state space Σm. The dual Markov
chain4 has greater practical appeal, as it gives a uniform sampler for orbits (i.e.,
unlabelled structures):

Lemma 2 Let π′ be the stationary distribution of the Markov chain M ′
B(G, Σ ).

Then

π′(α) =
|G|

|αG| |Υ(Σ , G)|

for all α ∈ Σm; in particular, π′ assigns equal probability to each orbit αG.

The result again follows from a consideration of the random walk on the bipartite
graph, using the elementary group-theoretic fact that |Gα| × |αG| = |G|.

Peter Cameron has observed that a Markov chain similar to M ′
B may be

defined for any group action, not just the special case of a permutation group G
acting on Σm by permutation of positions. In the general setting: given a point
α, select u.a.r. a group element g that fixes α, and then select a point that is
fixed by g. Thus, the generalisation of M ′

B to arbitrary group actions provides a
potentially efficient procedure for uniformly sampling unlabelled structures (i.e.,
sampling structures up to symmetry). This procedure has been implemented in
certain algorithms for determining the conjugacy classes of a finite group [15].

Of course, the effectiveness of M ′
B (equivalently MB) as a basis for a general

purpose sampling procedure for unlabelled structures depends on its mixing time.
It was known that MB mixes rapidly in some special cases (see Jerrum [7]), but it
was not previously known whether MB mixes rapidly for all groups G. Specifically,
it was not known whether the mixing time of MB(G, Σ ) is uniformly bounded by
a polynomial in m, the degree of G. The result in this article is a construction of
an infinite family of permutation groups for which we show that the mixing time
of MB grows exponentially in the degree m.

4In references [7] and [8], the primed and unprimed versions are reversed.
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3 The Swendsen-Wang process

As noted in the Introduction, our strategy is to relate the mixing time of the
Burnside process to that of the Swendsen-Wang process. In this section we de-
scribe the latter process, which provides a particular dynamics for the q-state
Potts model. In fact, we need only consider the special case q = 3. See Martin’s
book [12] for background on the Potts model.

A (3-state) Potts system is defined by a graph Γ = (V, E) and a real number
(“inverse temperature”) β. For compactness, we will sometimes denote an edge
(i, j) ∈ E by ij. A configuration of the system is an assignment σ : V → {0, 1, 2}
of “spins” or colours to the vertices of Γ . The set of all 3|V | possible configurations
is denoted by Ω . We associate each configuration σ ∈ Ω with an energy H(σ) :=∑

ij∈E
[
1 − δ(σ(i), σ(j))

]
, where δ is the Kronecker-δ function which is 1 if its

arguments are equal, and 0 otherwise. Thus the energy of a configuration is
just the number of edges connecting unlike colours. The (Boltzmann) weight of
a configuration σ is exp(−β H(σ)). The partition function of the 3-state Potts
model is

Z = Z(Γ , β) :=
∑
σ∈Ω

exp
(
− β H(σ)

)
; (2)

it is the normalising factor in the Gibbs distribution on configurations, which as-
signs probability exp(−β H(σ))/Z to configuration σ. To avoid the exponentials,
we will define the edge weight λ of the Potts system to be e−β, so the partition
function (2) may be rewritten as

Z = Z(Γ , λ) =
∑
σ∈Ω

∏
ij∈E

λ[1−δ(σ(i),σ(j))]. (3)

Thus the weight of a configuration is λb, where b is the number of bichromatic
edges.

The Swendsen-Wang process specifies a Markov chain MSW(Γ , λ) on Ω . Let
the current Potts configuration be denoted by σ. The next configuration σ′ is
obtained as follows.

(SW1) Let A = {ij ∈ E : σ(i) = σ(j)} be the set of monochromatic edges.
Select a subset A ⊆ A by retaining each edge in A independently with
probability p = 1− λ.

(SW2) The graph (V, A) consists of a number of connected components. For
each connected component, a colour is chosen u.a.r. from {0, 1, 2}, and
all vertices within the component are assigned that colour.

That the Markov chain with transitions defined by this experiment is ergodic is
immediate; that it has the correct (i.e., Gibbs) distribution is not too difficult to
show. (See, for example, Edwards and Sokal [3].)
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4 The relationship between the Burnside pro-
cess and the Swendsen-Wang process

Let Σ be a finite alphabet of size k, and let Γ = (V, E) be an undirected graph
defining a 3-state Potts system with edge weight λ = k−2. We will construct
an associated permutation group G3(Γ ) such that the dynamics of the Burnside
process on (G3(Γ ), Σ ) is essentially the same as the Swendsen-Wang dynamics
on (Γ , λ). This construction generalises a construction from [7], which deals with
the case k = 2 (i.e., the binary alphabet case).

The permutation group G3(Γ ) acts on the set ∆ =
⋃
e∈E ∆e, which is the

disjoint union of three-element sets ∆e. Arbitrarily orient the edges of Γ , so that
each edge e ∈ E has a defined start-vertex e− and end-vertex e+. For e ∈ E and
v ∈ V , denote by he some fixed permutation that induces a 3-cycle on ∆e and
leaves everything else fixed, and denote by gv the generator

gv :=
∏

e:e+=v

he ×
∏

e:e−=v

h−1
e .

Finally, define G3(Γ ) = 〈gv : v ∈ V 〉, the group generated by {gv}.
Observe that the generators of G3(Γ ) commute and have order three, so each

permutation g ∈ G3(Γ ) can be expressed as

g = g(σ) :=
∏
v∈V

gv
σ(v) =

∏
e∈E

he
σ(e+)−σ(e−), (4)

where σ : V → {0, 1, 2}. Provided the graph Γ is connected, this expression is
essentially canonical, in that σ is uniquely determined up to addition (mod 3)
of a constant function. To see this, note that g uniquely determines the expo-
nent of he in expansion (4), which in turn determines the difference between the
colours (viewed as integers) at the endpoints of edge e. Note that all three of
the configurations associated with g induce the same set A in (SW1). Thus, the
transition probabilities from the three configurations are the same, and we can
therefore think of g as being associated with all three configurations.

Lemma 3 Suppose Γ is a graph, Σ a finite alphabet, and let k = |Σ |. Then

MB(G3(Γ ), Σ ) ∼= MSW(Γ , k−2);

that is to say, each permutation g in the state space of MB(G3(Γ ), Σ ) can be
associated with exactly three configurations in the state space of MSW(Γ , k−2) in
such a way that transition probabilities are preserved.

Proof. We associate each permutation g ∈ G3(Γ ) with three configurations as
described above. As we observed, the transition probabilities of the three config-
urations in SW are identical.
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Perhaps the easiest way to show that these transition probabilities are the
same as those in MB is to combine the experiment defining the Burnside process
(see (B1) and (B2)) with that defining the Swendsen-Wang process (see (SW1)
and (SW2)) into a single coupled version. Start with the pair (g, σg), where σg
is one of the three configurations associated with g.

(C1) Sample α u.a.r. from the set Fix g = {α ∈ Σm : αg = α} of words fixed
by g. Let A := {e ∈ E : α is not constant on ∆e}. The pair (α, A) is the
intermediate state.

(C2) Sample h u.a.r. from the point stabiliser Gα = {h ∈ G : αh = α}.

The new pair is (h, σh) (again, choose σh arbitrarily from the three configurations
associated with h.).

By construction, the transitions g → α → h occur with the probabilities
dictated by (B1) and (B2). We must check that the induced transitions σg →
A → σh match (SW1) and (SW2) in probability. Let e = uv ∈ E be any edge,
and consider the action of g on ∆e. If σg(u) = σg(v) then the action of g on ∆e is
the identity, and probability that α is constant on ∆e is k−2. Thus the probability
that e ∈ A is 1−k−2, independent of the other edge choices, as required by (SW1),
where λ = k−2. Otherwise, σg(u) 6= σg(v) and the action of g on ∆e is a 3-cycle.
Necessarily, α is constant on ∆e, and e /∈ A, again as required by (SW1). So the
distribution of A ⊆ E is correct.

To verify the second step, again let e = uv ∈ E be any edge. If e ∈ A then
α is not constant on ∆e, entailing that the action of h on ∆e is the identity and
σh(u) = σh(v). Conversely, if e /∈ A then α is constant on ∆e, and σh(u)− σh(v)
is unconstrained. Thus h 7→ σh is a bijection from Gα to configurations that
are constant on connected components of (V, A), and the distribution of σh is as
demanded by (SW2).

5 Torpid mixing

We have seen that the Burnside process is equivalent to the Swendsen-Wang
process at a particular edge-weight λ; and it is known that the Swendsen-Wang
process at a different edge weight (which is approximately 1− (4 ln 2)/|V |, where
V is the vertex set of Γ ) has exponential mixing time [5]. In this section we
bridge the gap between the different edge weights.

Denote by Pl the path of length l or l-path, i.e., the graph with vertex set
[l + 1] and edge set {{i, i + 1} : 0 ≤ i < l}.

Lemma 4 Consider a randomly sampled configuration of the 3-state Potts model
on Pl with edge weight λ. The induced distribution of colours on the two end
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vertices of Pl is identical to the distribution of configurations of the 3-state Potts
model on P1 (= K2) with edge weight

λ̂(l) :=
(1 + 2λ)l − (1− λ)l

(1 + 2λ)l + 2(1− λ)l
. (5)

Proof. Define w(l) ∈ R2 to be the vector whose first (respectively, second) com-
ponent w

(l)
0 (respectively, w

(l)
1 ) is the total weight of those configurations on Pl

whose (ordered) endpoints have colours (0, 0) (respectively, (0, 1)). Clearly, there
is nothing special in the particular choice of colours; the pair (0, 0) could be re-
placed by any pair of like colours, and (0, 1) by any pair of unlike ones. Introduce
the matrix

T :=
(

1 2λ
λ 1 + λ

)
;

a straightforward induction on l establishes

w(l) = T l

(
1
0

)
.

The matrix T has eigenvalues 1−λ and 1+2λ. Introduce two further matrices

D :=
(

1− λ 0
0 1 + 2λ

)
and S :=

(
2 1
−1 1

)
.

Then T = SDS−1 and hence T l = SDlS−1. Noting that

S−1 =
1
3

(
1 −1
1 2

)
,

we obtain

w(l) = SDlS−1
(

1
0

)
=

1
3

(
(1 + 2λ)l + 2(1− λ)l

(1 + 2λ)l − (1− λ)l

)
. (6)

Since Pl is equivalent—in the sense of the statement of the lemma—to a single
edge with effective weight w(l)

1 /w(l)
0 , the result follows immediately.

Denote by Kn ⊗ Pl the graph obtained from the complete graph on n vertices
by subdividing each edge by l − 1 intermediate vertices of degree two. Thus
each edge of Kn becomes in Kn ⊗ Pl a copy of the l-path Pl. We refer to the
vertices of degree n − 1 as exterior vertices and those of degree two as interior.
(Assume n > 3 to avoid trivialities.) We remark that this construction is just
the “l-stretch”, used in related situations by Jaeger, Vertigan and Welsh [6]. The
l-stretch operation allows us to move between different edge weights, at least if
we forget for a moment the specific dynamics imposed by the Swendsen-Wang
process.

8



Lemma 5 Consider a randomly sampled configuration of the 3-state Potts model
on Kn⊗Pl with edge weight λ. The induced distribution of colours on the exterior
vertices of Kn ⊗ Pl is identical to the distribution of configurations of the 3-state
Potts model on Kn with edge weight λ̂, where λ̂ = λ̂(l) is as in (5).

Proof. Suppose σ is any Potts configuration on the graph Kn ⊗ Pl, and S is any
subset of its vertices. Denote by σ|S ∈ {0, 1, 2}|S| the restriction of σ to the set S.
Through some elementary algebraic manipulation, we may express the partition
function of a Potts system on Kn ⊗ Pl in terms of the partition function of a
Potts system on Kn with edge weight closer to 1. In the following manipulation,
we assume that the vertices of Kn ⊗ Pl are numbered 0, . . . , N − 1 and that
the exterior vertices receive numbers in the range 0, . . . , n − 1. Furthermore,
Uij ⊂ [N ] denotes the set of l − 1 interior vertices lying on the l-path between
exterior vertices i and j, and Eij denotes the set of edges on that path.

Z(Kn ⊗ Pl, λ)

=
∑
σ

∏
uv∈E

λ[1−δ(σ(u),σ(v))]

=
∑
σ|[n]

∑
σ|U0,1

· · ·
∑

σ|Un−2,n−1

( ∏
uv∈E0,1

λ[1−δ(σ(u),σ(v))] · · ·
∏

uv∈En−2,n−1

λ[1−δ(σ(u),σ(v))]

)

=
∑
σ|[n]

( ∑
σ|U0,1

∏
uv∈E0,1

λ[1−δ(σ(u),σ(v))]

)
· · ·
( ∑

σ|Un−2,n−1

∏
uv∈En−2,n−1

λ[1−δ(σ(u),σ(v))]

)

=
∑
σ|[n]

∏
0≤i<j≤n−1

C λ̂[1−δ(σ(i),σ(j))]

= Cn(n−1)/2 Z(Kn, λ̂),

where C is a constant (actually w(l)
0 ). The penultimate equality above uses

Lemma 4.
Let σ̂ ∈ {0, 1, 2}n be any configuration on Kn. From the above manipulation,

we see that the weight of the configuration σ̂ on Kn is equal—modulo the constant
factor Cn(n−1)/2—to the sum of the weights of configurations σ of Kn ⊗ Pl that
agree with σ̂ on the exterior vertices or, symbolically, σ|[n] = σ̂.

Lemma 6 There exists an infinite sequence of pairs (n, l) = {(n(l), l) : l =
1, 2, . . .} such that ∣∣∣∣(1− λ̂(l)

)
− 4 ln 2

n(l)

∣∣∣∣ ≤ 3
n(l)2

for all pairs, where λ̂(l) is defined as in (5).
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Proof. The function 1 − λ̂(l) decreases monotonically to 0, as l → ∞. Given l,
choose n to be the unique natural number satisfying

4 ln 2
n(l) + 1

< 1− λ̂(l) ≤ 4 ln 2
n(l)

.

The upper and lower bounds differ by less than 3n(l)−2.

Let Ω be the set of configurations of the 3-state Potts model on Kn⊗Pl. For
each configuration σ ∈ Ω , define γ(σ) ∈ R3 be the 3-vector whose ith component
is the proportion of exterior vertices of Kn ⊗ Pl given colour i by σ. Then let
Ω1:1:1(ε) (respectively, Ω4:1:1(ε)) denote the set of configurations σ such that γ(σ)
lies within an ε-ball centred at (1

3 ,
1
3 ,

1
3) (respectively, one of the three ε-balls

centred at (2
3 ,

1
6 ,

1
6), (1

6 ,
2
3 ,

1
6), or (1

6 ,
1
6 ,

2
3)).

Lemma 7 Let a configuration σ be sampled from the 3-state Potts model on
Kn ⊗ Pl with edge weight λ, and suppose that 1 − λ̂(l) = (4 ln 2)/n + O(n−2).
Then, for any ε > 0:

(i) Pr(σ ∈ Ω1:1:1(ε)) = Ω(n−2);

(ii) Pr(σ ∈ Ω4:1:1(ε)) = Ω(n−2); and

(iii) Pr(σ /∈ Ω1:1:1(ε)∪ Ω4:1:1(ε)) = e−Ω(n).

The implicit constants depend only on ε.

Proof. By Lemma 4, we may equivalently work with the Potts model on Kn with
edge weight λ̂(l).

When 1− λ̂(l) = (4 ln 2)/n, i.e., the error term is 0, this is precisely the result
of Gore and Jerrum [5, Prop 3]. See also Bollobás, Grimmett and Janson [1]. The
validity of the proof given in [5] is unaffected by the error term: an additive error
O(n−2) in λ̂(l) translates to an additive perturbation O(n−1) in the function f
in [5, eq. (2)]. This perturbation may be absorbed into the error term ∆ appearing
in that equation, which is Ω(1).

We now need to compare the dynamics of the Swendsen-Wang processes
on Kn ⊗ Pl and Kn, more precisely, the Markov chains MSW(Kn ⊗ Pl, λ) and
MSW(Kn, λ̂). The correspondence will not be exact, as in Proposition 3, but it
will be close enough for our purposes.

Let Gν,p denote the standard random graph model in which an undirected
ν-vertex graph is formed by adding, independently with probability p, for each
unordered pair of vertices (i, j), an edge connecting i and j. Suppose that p <
d/ν, with d < 1 a constant, and Γ is selected according to the model Gν,p. It is
a classical result that, with probability tending to 1 as ν → ∞, the connected
components of Γ all have size O(log ν). We require a (fairly crude) large deviation
version of this result.

10



Lemma 8 Let Γ be selected according to the model Gν,p, where p < d/ν and
0 < d < 1 is a constant. Then the probability that Γ contains a component of
size exceeding

√
ν is exp(−Ω(

√
ν )).

Proof. This result in exactly this form appears as [5, Lemma 4]. See O’Con-
nell [14, Thm 3.1] for a much more precise large-deviation result for the “giant
component” of a sparse random graph.

We also need:

Lemma 9 (Hoeffding) Let Z1, . . . , Zs be independent r.v’s with ai ≤ Zi ≤ bi,
for suitable constants ai, bi, and all 1 ≤ i ≤ s. Also let Ẑ =

∑s
i=1 Zi. Then for

any t > 0,

Pr
(
|Ẑ − Exp Ẑ| ≥ t

)
≤ exp

(
−2t2

/ s∑
i=1

(bi − ai)2
)

Proof. See McDiarmid [11, Thm 5.7].

Lemma 10 Let a configuration σ ∈ Ω be sampled from the 3-state Potts model
on Kn ⊗ Pl with edge weight λ, and suppose that 1− λ̂(l) = (4 ln 2)/n + O(n−2).
Let σ′ ∈ Ω be the result of applying one step of the Swendsen-Wang process,
starting at σ. Then, for any ε > 0,

Pr(σ′ ∈ Ω1:1:1(ε) | σ ∈ Ω1:1:1(ε)) = 1− e−Ω(
√
n ),

and
Pr(σ′ ∈ Ω4:1:1(ε) | σ ∈ Ω4:1:1(ε)) = 1− e−Ω(

√
n ).

The implicit constants depend only on ε.

Proof. For i, j exterior vertices of Kn ⊗ Pl satisfying σ(i) = σ(j).

Pr(Path i↔ j is monochromatic) =
1

w
(l)
0

=
3

(1 + 2λ)l + 2(1− λ)l
,

where the second equality is from (6). After step (SW1),

Pr(Path i↔ j is contained in A)
= Pr(Path i↔ j is monochromatic)× (1− λ)l

=
3(1− λ)l

(1 + 2λ)l + 2(1− λ)l

= 1− λ̂(l).

For convenience, set p̂ = 1 − λ̂(l). Consider the set of exterior vertices of
some given colour, and let ν ≤ (1

3 + ε)n be the size of that set. Provided ε

11



is small enough (ε = 1/40 will do), p̂ν ≤ d < 1. By Lemma 8, with probability
1 − exp(−Ω(

√
ν )), the maximum number of exterior vertices in any connected

component of the graph ([N ], A) restricted to this colour-class is at most
√

ν.
(Recall that [N ] is the vertex set of Kn ⊗ Pl.) Combining this observation for
all three colours, and noting ν = Θ(n), we obtain the following: with probability
1− exp(−Ω(

√
n )), the number of external vertices in any connected component

of ([N ], A) is at most
√

n.
Let s be the number of such components, and n1, . . . , ns be their respective

sizes. The expected size of a colour-class constructed in step (SW2) is n/3, and
because there are many components (at least

√
n ) we expect the actual size of

each colour-class to be close to the expectation. We quantify this intuition by
appealing to the Hoeffding bound. Fix a colour, say 0, and define the random
variables Y1, . . . , Ys and Ŷ by

Yi =
{

ni, if the ith component receives colour 0 in step (SW2);
0, otherwise,

and Ŷ =
∑s

i=1 Yi. Then Exp Ŷ = n/3 and, by Lemma 9, for any t > 0,

Pr
(
|Ŷ − Exp Ŷ | ≥ t

)
≤ exp

(
−2t2

/ s∑
i=1

n2
i

)
≤ exp(−2t2n−3/2),

since
s∑
i=1

n2
i ≤

s∑
i=1

ni
√

n = n3/2.

Similar bounds apply, of course, to the other colours. Choosing t = εn/
√

3 we see
that, with probability 1−exp(−Ω(

√
n )), the size of every colour class in σ′ lies in

the range
(
(1

3 − ε/
√

3 )n, (1
3 + ε/

√
3 )n

)
; but this condition implies σ′ ∈ Ω1:1:1(ε).

This proves the first part of the result, concerning Ω1:1:1(ε); the second part
follows from the first by Proposition 7 and time-reversibility. In particular, it
follows from the fact that MSW satisfies the detailed balance condition:

Pr(σ = σ1 ∧ σ′ = σ2) = Pr(σ = σ2 ∧ σ′ = σ1),

for all configurations σ1 and σ2, where σ is sampled from the stationary distribu-
tion.

It is now a short step to the main theorem. Recall that τ (1
3) denotes the number

of steps t before the t-step distribution is within variation distance 1
3 of the

stationary distribution (maximised over the choice of starting state).

12



Theorem 11 Let Σ be a finite alphabet of size at least two. There exists an
infinite family of permutation groups G such that the mixing time of the Burn-
side process MB(G, Σ ) is exponential in the degree m of G; specifically τ (1/3) =
Ω(exp(m1/(4+ε))) for any ε > 0.

Proof. By Proposition 3, it is enough to exhibit an infinite family of graphs Γ
such that MSW(Γ , λ) has exponential mixing time, where λ = k−2. This family
of graphs will of course be (Kn(l) ⊗ Pl : l ∈ N) where n(l) is as defined in
lemma 6. The family of permutation groups promised by the theorem will then
be (G3(Kn(l) ⊗ Pl) : l ∈ N).

Consider a trajectory (σt : t ∈ N) of MSW(Kn⊗Pl, λ) starting in the stationary
distribution. We say that the trajectory escapes at step t if

(σt ∈ Ω1:1:1(ε) ∧ σt+1 /∈ Ω1:1:1(ε)) ∨ (σt ∈ Ω4:1:1(ε) ∧ σt+1 /∈ Ω4:1:1(ε)).

For each t, by Proposition 10, the probability of escape at time t is bounded by
exp(−Ω(

√
n )). Furthermore, by Proposition 7 the probability of the event

σ0 /∈ Ω1:1:1(ε) ∪ Ω4:1:1(ε)

is also bounded by exp(−Ω(
√

n )).
Thus there is a function T = T (n) = exp(Ω(

√
n )) such that, with probability

at least 9
10 , the initial segment of the trajectory (σt : 0 ≤ t ≤ T ) lies either

entirely within Ω1:1:1(ε) or entirely within Ω4:1:1(ε). Hence there is an initial
state s ∈ Ω1:1:1(ε) such that Pr(σT /∈ Ω1:1:1(ε) | σ0 = s) ≤ 1

10 , and similarly
for s ∈ Ω4:1:1(ε). Choose such an initial state s from whichever of Ω1:1:1(ε) or
Ω4:1:1(ε) has the smaller total weight in the stationary distribution. Then the
variation distance of the T -step distribution from the stationary distribution is
at least 1

2 − e−Ω(n) − 1
10 ≥

1
3 . Finally note that m = O(n2l) = O(n2 log n). (It is

straightforward to see from Lemma 6 that l = O(log n).)

Although the definition of τ contains an existential quantification over initial
states, it will be seen that Theorem 11 is not very sensitive to the initial state:
τ (1

3) can be replaced by τs(1
3), where s ranges over almost every state in Ω1:1:1(ε)

or Ω4:1:1(ε), as appropriate (“almost every” being interpreted with respect to the
stationary distribution).

6 Open problems

In this paper, we have shown that the Burnside process is not rapidly mixing in
general. It remains an open question whether there is some other polynomial-
time method which achieves the same distribution as the Burnside process, either
on permutations (as in Lemma 1) or on words (as in Lemma 2). Since (B1) is
easy to implement in polynomial-time, a polynomial-time sampling algorithm for

13



the stationary distribution π of Lemma 1 would yield a polynomial-time sampler
for the stationary distribution π′ of Lemma 2 (i.e., the uniform distribution on
orbits). If there is a polynomial-time sampling algorithm for the distribution π
this will imply [8] that there is a fully polynomial randomised approximation
scheme for the single-variable cycle index polynomial for every integer k (see [2]).
Such a result would be a striking contrast to the result of the authors (see [4])
which shows that, unless NP = RP, no such approximation algorithm exists for
any fixed rational non-integer k.
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