




Abstract

This dissertation investigates the suitability of the formalism of stochastic process alge-

bras as framework for modelling biological systems in the context of Synthetic Biology

discipline. Synthetic Biology is an emergent field of bio-engineering research with the

goal of re-design functional aspects of living organisms by embedding synthetic gene

networks in the host cells. These gene networks are constructed using composable

DNA regions that are present in a open and public genetic component library, called

the Registry of Standard Biological Parts. The development of frameworks based on

mathematical and computational abstract modelling is considered to be of fundamen-

tal importance to support the design and analysis construction phases of such synthetic

biological systems.

To demonstrate the applicability of the process algebra approach, we firstly develop

a formal graphical notation able to represent Synthetic Biology unicellular systems and

then we define an automatic conversion to stochastic process algebra models written in

the PEPA language (Performance Evaluation Process Algebra). The models are con-

structed following the ‘cell-as-computation’ paradigm and a mechanistic approach,

meaning that we represent individual components and processes as abstraction of real

biological mechanisms. The use of process algebras brings benefits such as support

for compositionality and abstraction in model construction. The PEPA description of

systems specifies an underlying mathematical model in the form of Continuous Time

Markov Chain stochastic processes, with a discrete representation of populations and

a probabilistic specification of time aspects. We discuss the major physical, biolog-

ical and mathematical assumptions that regard the application of such mathematical

models.

We show, using pattern examples and a real case study, that the approach allows the

representation and analysis of several fundamental biological mechanisms involved in

metabolic, signalling pathways, gene regulatory, and membrane networks. Analysis is

carried out using stochastic simulations based on the Gillespie’s Algorithm and prob-

abilistic model checking. We present the derivation and analysis steps using pseudo-

code definitions as guidelines for a future implementation of the modelling workbench.

Our work is presented as a first tutorial definition of a structured mapping between pro-

cess algebras and Synthetic Biology systems. We believe that our work may help to

attract the attention of research groups working on process algebra formalism to the

fertile ground represented by the Synthetic Biology discipline.
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Chapter 1

Introduction

Synthetic Biology is a multidisciplinary field of research that investigates experimental

techniques and theoretical methodologies with the goal to re-design functional aspects

of biological entities. The approach is being used for two main purposes: to reproduce

emergent biological behaviours in order to study their characteristics and to exploit the

potential of living organisms as programmable machines in order to perform useful

functions [1].

Fundamental biological discoveries over the last decades contributed in the formu-

lation of paradigms explaining how internal living organisms function, such as the Cen-

tral Dogma information flow or the biomolecules structure composition. Combined

with the insights given by the genome projects, this knowledge highlighted the essen-

tial role of the genetic code in a cell’s behaviour [2]. With the more recent development

of powerful and widespread techniques in bioengineering for the extraction, sequenc-

ing and insertion of DNA fragments, this opened the door to the re-programming of

cell’s behaviour. Therefore, efforts particularly concentrated on the genetic engineer-

ing of cells by the modification and extensions of their DNA information in order to

construct new synthetic gene networks. Advances in our ability to control the operating

principles that govern living organisms is expected to create new methodologies in bi-

ological experiments as well as bring great benefits in a variety of fields such as human

therapeutics, molecular fabrication of biomaterials, biosensors and cell computation.

In the current state-of-the-art, the construction of a Synthetic Biology system is still

a “unique, expert-driven research problem with uncertain times to completition, cost

and probabilities of success” [3]. Much research is therefore directed to implement-
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2 Chapter 1. Introduction

ing foundational technologies to transform design and construction of devices into a

practical, reliable and useful engineering discipline. This shift demands an engineer-

ing approach at all levels, with use of concepts such as abstraction, standardization

and decoupling as fundamental paradigms. In this context, the Library of Standard

Biological Parts is a recent attempt to construct a collection of functional and compos-

able DNA parts that offer a wide range of basic biological functions. The problem of

understanding the complex biological behaviour induced by synthetic genome modi-

fications can be addressed by the application of abstract models, therefore calling for

mathematics and computer science. The development of a model of biological entities

and processes is now considered an essential conceptual and computational tool for

the design and analysis of biological systems [4]. The motivations are several, such

as the support for accurate description of the components, evaluation of the alterna-

tives, prediction of the time behaviour, study of causality relations between processes,

simulation of in-silico experimentations and other kinds of reasoned analysis. A cru-

cial point is the development of modelling frameworks that offer to modellers suitable

primitives and features for a successful representation and investigation of the system.

Due to the similar scenarios of interests, it comes naturally for Synthetic Biology to

turn to the modelling solutions proposed for the (relatively) older discipline of Systems

Biology [5]. In the latter the systems that are investigated belong to a broader and less

defined class of biological phenomena, but much research deals with the molecular

cells’ internal mechanisms that are of interest to Synthetic Biology modelling. In the

Systems Biology context, (stochastic) process algebra formalisms have been proposed

by several authors as valid modelling tools for molecular biological networks [6], [7].

The Process algebra proposition is sustained by the observation that the formalism

supports both qualitative and quantitative analysis as well as primitives for a modular

and abstract representation of entities and processes.

These characteristics highlight process algebras as an interesting candidate for the

particular Synthetic Biology scenario but an explicit mapping between the two worlds

is as yet lacking. This work therefore aims to establish a formal relation between

Synthetic Biology constructs (composed of standard DNA parts) and process algebra

modelling, in order to evaluate its suitability and to create a first tutorial base for further

investigations.
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1.1 Motivations

The work presented in this dissertation is motivated by the necessity of developing

computational techniques for the representation and analysis of systems that are con-

structed using standard biological DNA parts defined in the Synthetic Biology disci-

pline. The choice of a suitable framework for Synthetic Biology modelling must pass

through an accurate comparison between the characteristics of the candidates and the

particular need of the discipline. There are several reasons why process algebras seem

to be valid candidates:

• Formal: the biological approach usually clarifies the fundamental aspects of

systems but its often far from being formally defined. Instead, process algebra

models are given as program-like source codes whose interpretion, according to

defined syntax-driven rules (operational semantics), is exact and precise.

• Qualitative: biological systems contain intricate networks of entities and inter-

actions whose structure is often difficult to represent and analyse. Having been

originally developed for concurrency systems analysis, the process algebra for-

malism supports the representation and reasoning about complex interactions

between components.

• Quantitative: biological investigation requires the ability to reason in reference

to quantitative information. The expressiveness of process algebras permits the

representation of populations of entities, thus supporting cardinality of elements.

Moreover stochastic process algebras enable specification of the timing aspects

of models.

• Probabilistic: there is a general consensus that stochastic and noise effects are

essential building elements of biological mechanisms, in particular for gene reg-

ulatory networks. Stochastic process algebras map models to stochastic pro-

cesses thus supporting probabilistic representation and reasoning.

• Abstraction: in general, when constructing a model there is the need to avoid

unuseful or complex details. For the Synthetic Biology approach this is a central

aspect and the different levels of details have been formalised in the abstraction

hierarchy [3] for biological systems. Process algebras have few but powerful op-

erators that represent basic actions and elements, thus permitting the modellers

to tune the level of detail of the representation.
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• Compositionality: biological systems are composed of entities and often exper-

imentation relies on the ability to remove or add individuals, or merge separate

functional modules. Using process algebras it is possible to first design indi-

vidual components and then construct modules as their union, thus supporting

compositionality.

• Tools: for answering biological questions the systems might need to be observed

using different approaches. Since from its use in computer science, process alge-

bras have been equipped with steady-state and transient model analysis tools, as

well as applications for simulation and (probabilistic) model checking of models.

• Experience: biological mechanisms are often not completely understood or dif-

ficult to characterise qualitatively, leaving to the modeller the problem of iden-

tifying the right modelling abstraction. Experience gained from previous work

in the area can be of immense help in dealing with new situations. In the recent

past variants of stochastic process algebras have been used for modelling several

types of molecular biological systems such as metabolic reactions, signalling

patways, compartments structures and regulatory gene networks.

1.2 Objectives and methods

The purpose of this work is to show the suitability of the process algebra formalism for

the modelling of Synthetic Biology systems. The intent is mainly tutorial and seeks to

highlight the possibility offered from the approach by developing the theoretical basis

of a first small workbench. The objectives of the work can be summarized as follows:

• Formal mapping: to establish a formal mapping between systems constructed

using DNA parts taken from the Library of Standard Biological Parts [3] and

stochastic process algebra models.

• Representative: to undertake a modelling approach that uses fundamental shared

characteristics among the process algebra family in order to be representative for

the formalism class. Moreover to enable access to the most important kind of

reasoning tools to show the full analysis potential.

• Tutorial: to present real modelling examples of the most common biological

scenarios in Synthetic Biology.



1.3. State-of-the-art 5

• Theoretical: to discuss the physical, biological and mathematical assumptions

underlying the application of the formalism and its analysis tools.

• Implementable: to present the work formally, using pseudo-code definitions in

order to provide precise implementation guidelines for a future realization of the

workbench.

The steps that were identified in order to achieve the objectives are as follows:

• Graphical notation: to develop a formal graphical notation for representing sys-

tems that are composed of standard biological parts (taken from the Registry of

Standard Biological Parts). Consider the most important elements and relations,

explain their biological meaning and define their representation as a structured

data type.

• Automatic translation: to develop an automatic translation from the graphical

notation to process algebra models. To use the typed structure of visual objects

to implement an automatic derivation of the components and rules to construct

the global systems’s model.

• PEPA: to use the Performance Evaluation Process Algebra (PEPA) language

as representative of the process algebra class. PEPA was selected among others

because of its concise but powerful syntax composed of few operators, the ability

to handle multi-way synchronizations, some previous interesting works related

to the topic and supervisor expertise.

• PRISM: to develop an automatic translation from PEPA models to PRISM mod-

els, in order to enable analysis with stochastic simulation, steady state and tran-

sient analysis and probabilistic model checking.

• Examples: to identify the most important classes of biological networks in Syn-

thetic Biology and show how the modelling approach can be used to model their

fundamental biological mechanisms and patterns. To test the defined modelling

approach on a real case study.

1.3 State-of-the-art

In Synthetic Biology, the most widespread approach to modelling is without doubt

based on ordinary differential equations (or ODEs). Due to ODEs versatility in rep-
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resenting time and space properties of dynamical systems, the formalism has been

widely adopted in modelling the main aspects of molecular biological systems, such

as gene regulatory networks, metabolic networks and others. The models are generally

in the form of a set of reaction-rate equations expressing the dependency of a entity’s

quantity, i.e. population of protein, as a function of other quantities present in the sys-

tem. The main quantities are in general depending on time (and sometimes on space).

By solving the set of equations it is possible to study the time behaviour of the sys-

tem. Because of the usual non-linear nature of the functions, analytical solutions of

the equations are often not possible and they need to be solved by numerical integra-

tion methods with approximations of the infinitesimal time. A major objection against

the ODE approach is the representation of systems as a continuous and deterministic

process. These assumptions may be questioned at the molecular level, where pyshical

mechanisms are thought to be discrete and probabilistic. Another criticism concerns

the inherent difficulty in modifying the model because of the poor compositionality of

mathematical syntax.

In order to account for probabilistic aspects and discrete quantities, some stochas-

tic alternatives have been developed. Stochastic differential equations are differential

equations in which some of the terms are stochastic processes. This approach is a vari-

ant of the ODE method in order to count for randomly distributed events and can be

used to model discrete quantities. Unfortunately in this framework model construction

is quite a specialist process, in which complex stochastic effects are difficult to build

and the resulting set of equations is often time-consuming to simulate.

Other stochastic approaches are in general based on the existence of a Master Equa-

tion, an equation that describes the time evolution of the probability to occupy one state

from a discrete set of states. Although providing a rigorous stochastic account of the

system behaviour, the Master Equations is usually very difficult to be solved [8].

For this reason, practical analysis usually relies on directly simulating the stochas-

tic time evolution of the system, calculations that are termed stochastic simulations.

They are usually fairly simple algorithms that in time update the system’s state ac-

cording to the probability of leaving the current state. Investigation of the models can

then be calculated as statistical analysis of a sufficient number of simulations. The

first application of stochastic simulation to biological systems was developed by Gille-
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spie (see Section 2.6 for details) in the context of biochemical reaction systems and is

based on a rigorous derivation of the Chemical Master Equation (CME). Although in

general not supported by a similar firm physical derivation, stochastic simulations have

been widely applied to other kinds of biological mechanisms, i.e. membrane networks.

In this approach models are usually expressed using the notation proper of chemical

reactions with interacting entities as ‘reagents’ and resulting entities’ modifications as

‘products’. The drawbacks of such a simple notation is the difficulty in complex model

design, along with poor support for compositionality and abstraction.

1.4 Structure of the dissertation

Including this introductory chapter which also surveys the-state-of-the-art situation,

the dissertation consists of six chapters. The next chapter reviews the background

material needed to understand this work. Chapter 3 proposes the graphical notation that

has been developed in order to represent Synthetic Biology systems. Chapter 4 presents

rules for the automatic conversion from graphical representations of systems to PEPA

models and highlights the modelling assumptions. Chapter 5 discusses the application

of the modelling approach within a wide class of molecular biological networks and

presents examples of some common scenarios. Finally, in Chapter 6 conclusions are

drawn and future directions of the work are discussed.





Chapter 2

Background

This chapter presents the background material needed to understand and place in con-

text the work. Section 2.1 presents an overview of the most important aspects of Syn-

thetic Biology discipline. Section 2.2 proposes a brief review on the use of stochastic

process algebra formalism for biological modelling in the discipline of Systems Biol-

ogy. Section 2.3 introduces the process algebra PEPA and Section 2.4 presents the

characteristic of the probabilistic model checker software tool PRISM. In Section 2.5

is introduced and explained the concept of Continuous Time Markov Chain stochas-

tic process. Finally in Section 2.6 is presented the Gillespie’s algorithm, used for the

simulation of biochemical reaction systems.

2.1 Synthetic Biology

The term Synthetic Biology was firstly introduced in the 80’s in the context of re-

combinant DNA technology to describe bacteria that had been genetically engineered

and therefore were not anymore natural, but synthetical, in their DNA arrangement

[1]. During the last decade, the term has found new life with reference to efforts to

‘redesign life’, and now it identifies the growing research area that deals with the en-

gineering of biological systems that do not exist in nature and the re-engineering of

existing biological ones.

Due to the complexity of such tasks, Synthetic Biology has become one of the first

research fields in which strong multidisciplinarity is needed and in which the goals

vary widely with the respect of the groups’ interests. Biologists seek to test their

understanding of natural biological systems through the design and construction of

synthetic replications. Chemists aim to exploit the capability of novel molecules and

9



10 Chapter 2. Background

molecular systems to develop diagnostic assay and drugs, to name just two examples.

Engineers consider biology as a technology and seek to combine a broad expanse of

biotechnology applications with the development of fundamental technologies [3]. For

computer scientists, Synthetic Biology research is a generator of a huge amount of data

that need to be stored, reasoned and shared, and systems that need to be designed, mod-

elled and predicted. Due to the novelty of the field and the complexity of biological

systems, it is really difficult to trace the borders of Synthetic Biology by defining how

a synthetical biological system is constructed. The most used procedure is the trans-

formation of organisms, called hosts, by the insertion of plasmids containing genetic

recombinant DNA or the modification of (parts of) their original chromosomes, using

recombinase techniques. The introduced sequence exploits the genetic machinery of

the host and causes the occurrence of unnatural processes of transcription, translation

and proteins interactions with host pathways. The physical design and realization of

synthetic biological systems thus relies on the application of state-of-art gene recom-

binant technologies, the fundamental ones being:

• DNA Sequencing: are a set of methods for determining the order of the nu-

cleotide bases (sequence) in DNA oligonucleotide. Since DNA sequences con-

tain the genetic instructions used in the development and functioning of living

organisms, the ability to ‘read’ it permits the creation of libraries of functional

parts.

• Restriction enzymes: are enzymes able to cut double-stranded DNA by making

two incisions at the site of a specific DNA sequence. They are used to extract

existing functional DNA sequences from living organisms. The DNA pieces are

usually left with ‘sticky ends’ that, in presence of ligase, enzymes that catalyse

the joining of complementary strands, permit the composition of new sequences.

• Polymerase Chain Reaction (PCR): is a technique which is able to amplify a

double-stranded DNA oligonucleotide by performing an in vitro enzymatic repli-

cation. By applying PCR technique to a few copies of DNA pieces it is possi-

ble to replicate them to several orders of magnitude. This fundamental method

that can be used to amplify DNA fragments containing any interesting DNA

sequence, for example containing genes, promoters, binding regions and so on.

On the top of these technologies, the Synthetic Biology approach proposes and

defines engineering paradigms in order to increase the reliability, efficiency and re-



2.1. Synthetic Biology 11

usability of system construction. Borrowed from the past engineering experience

emerged from other natural sciences, there are three main ideas that seem most rel-

evant and form the ‘Foundations for engineering biology’ [3]:

• Abstraction: is a theoretical tool for managing the complexity of concepts and

objects by retaining only the information relevant for the particular purpose.

Since natural biological systems are thought to be complex on several aspects

(huge amount of objects, different levels of view, non-linear interactions), it be-

comes evident the usefulness of an approach able to simplify their handling.

• Standardization: is an aspect that facilitated modern life in several fields and

consists mainly in the agreement of individuals on definitions, protocols and

methodology. In the context of Synthetic Biology is proposed to “support the

definition, description and characterization of the basic biological parts, as well

as standard conditions that support the use of parts in combination” [3]. It also

permits an easier sharing of information and methodology of work between re-

search teams and thus helps the creation of a sustainable community.

• Decoupling: is a paradigm stating that it is useful to separate bigger problems in

many independent simpler ones in order to exploit specialization and expertise

on individual tasks and then combine the intermediate results to obtain the final

outcome.

The application of these three paradigms by the community of Synthetic Biology

researchers have found notable results in the formalization and construction of the

Registry of Standard Biological Parts, the development of the BiobrickTMconcept, the

definition of an abstraction hierarchy for biological systems and the decoupling be-

tween DNA design and fabrication.

The Registry of Standard Biological Parts (Figure 2.1), hosted by the MIT, is a free

accessible database that provides a list of basic biological functional parts that can be

used to construct synthetic biology systems. The parts are stored according to function-

alities and abstraction hierarchy layers and are furnished with information regarding

design consideration, source organism, work experience and other relevant informa-

tion. Moreover all parts are physically stored in the form of standard BiobricksTMon

well source plates and thus ready to be used in wet laboratories. The registry is main-

tained by the community on a free-open policy that allows everyone to contribute and

it is enriched with help pages, software tools and support to communication.
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Figure 2.1: Screenshot of the Registry of Standard Biological Parts
(http://parts.mit.edu): the main page with the hierarchical divisions of parts.

BiobricksTM[9] is a standard for interchangeable parts, developed in order to facil-

itate the construction of complex biological parts and based on the concept of compo-

sitionality: parts are compatible so that they can be connected in any order and in any

number, still forming a BiobrickTM[9]. The concept relies on a formalized structure

of suffix and prefix in the DNA sequence so that the parts can be assembled in labs

through a process called Standard Assembly.

In order to manage the complexity of the biological systems, an abstraction hier-

archy has been defined with the aim of allowing individuals to work independently at

each level of the hierarchy (Figure 2.2). The current structure presents four layers:

DNA, Parts, Devices and Systems. Each layer focuses on different aspects: the DNA

layer regards genetic material, the Parts layer refers to basic biological functions, the

Device layer concerns composition of parts having standard input and output signals

and the System layer identifies systems made of close functional device composition.

Layers communicate through interfaces that limit and specify the exchange of infor-

mation.

Notable results related to Synthetic Biology have been achieved in topics such

as drug discovery and production, construction of engineering devices and biological

computation [10],[11].

The annual International Genetically Engineered Machines (iGEM) competition,
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Figure 2.2: The abstraction hierarchy that supports the engineering of integrated ge-
netic systems. From [3].

held at the MIT, is a worldwide competition that challenges (under)graduate students

in the design and construction of Synthetic Biology systems. Provided with the Reg-

istry of Standard Biological parts, the teams from various Universities try practically

to prove the possibility to “enable the systematic engineering of biology, promote the

open and transparent development of tools for engineering biology and to help con-

struct a society that can productively apply biological technology” [12].

2.2 Stochastic Process Algebras in Systems Biology

The Systems Biology [5] discipline aims to get an insight into the system-level of bio-

logical networks by developing suitable methodologies and paradigms of investigation.

Over the last ten years, in the context of Systems Biology, formal techniques developed

in computer science have gained increasing attention as conceptual tools for modelling

analysis. Among them, the family of stochastic process algebras (or stochastic pro-

cess calculi) has been proposed as a sound qualitative and quantitative framework for

the representation and analysis of complex biochemical structured systems, such as

the cell. Much, if not all the research, is driven by the ‘cell-as-computation’ approach

[13], in which the biological elements are modelled as computable entities called pro-
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cesses (see Table 2.1 for the mapping). Processes are formal descriptions with internal

states and interaction capability. Their interactions can lead to internal state changes

that represent the system’s dynamic behaviour.

Biology Process Algebra
Entity Process

Interaction capability Channel
Interaction Communication

Modification-Evolution State Change

Table 2.1: The process algebra abstraction for Systems Biology.

Several characteristics of process calculi motivated their application in modelling

biological systems. Process algebra is a formalism with well-defined syntactical and

semantics rules, therefore the interpretation of models is unambiguous. The language

is usually composed of few but powerful operators and this permits to modellers to

easily change the level of detail of the components, thus supporting abstraction. Com-

ponents can be specified separately and then joined in a modular component, thus

supporting compositionality. In their representation of systems they can handle quanti-

tative information such as stochastic time behaviours and cardinality of entities. More-

over they are equipped with a whole range of tools for model reasoning such as equiv-

alence relations, model checking and stochastic simulation. Languages that were

adapted or extend from languages original conceived for distributed systems mod-

elling, such as π-calculus, PEPA, BioAmbient and CCS-R, are termed as bottom-up

calculi [14]. They can rely on past experience and tools but usually lacks of special-

ization for handling specific biological details. Other process algebra dialects have

been developed in recent years in order to specialize on particular biological aspects,

they are termed top-down languages [14]. Since it was the first area of application, in

general all algebras support the representation of biochemical reaction networks. Few

of them such as Brane Calculus and BioAmbient propose extensions for dealing with

compartments: the former focused on computation on membranes, the second on the

location of molecules in specific compartments. The Beta-Binders, inspired by enzyme

theory, introduces the concept of interface thus permitting the interaction of entities not

completely matching but affine. Interesting applications of process algebras can also

be found in the modelling of metabolic networks [15]. Gene regulatory networks,

fundamental actors in Synthetic Biology systems, were not studied specifically until

recently in the works of Cardelli et al. [16],[17].
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2.3 PEPA: process algebra for systems modelling

Process algebras are formal languages that have been widely used in the last thirty

years to model various types of concurrent systems, especially in the context of com-

municating and interacting processes. The first process algebras developed in the 70’s,

such as Calculus of Communicating Systems (CCS)[18] and Communicating Sequen-

tial Processes (CSP) [19], proved the usefulness of a structured and firm mathematical

approach for reasoning about models’ behaviour. Afterwards, based on the same core

principles, several different process algebra formalizations have been proposed with

the aim to refine the expressional power of the language or enhance it with additional

analysis features. In this category we find the family of Timed Extended Process Alge-

bras.

Since in pure process algebras the time aspects of models are abstracted away by

assuming an instantaneous realization of events, these process algebras enhanced the

language by adding duration attributes to their actions. In this family, Hillston’s Perfor-

mance Evaluation Process Algebra (PEPA) [20], was the first to associate with each

action a stochastic duration according to an exponential distribution. This leads to

the possibility of deriving from each process algebra system definition a mathematical

model in the form of a Continuous Time Markov Chain (CTMC) and thus to perform

a qualitative and quantitative set of analyses.

In this section we introduce PEPA by presenting its syntax and semantics rules as

well as an overview of its tools and properties. We also discuss its relation to CTMCs

in the context of systems analysis.

The original work on PEPA was motivated by the need for performance analysis in

large communication systems and thus the expressiveness of the language is focused

on parallel behaviours and synchronized activities. PEPA systems are represented as a

collection of components able to perform activities and that can be composed by using

operators such as cooperation and choice. Each activity is assumed to have a stochas-

tic duration that is defined by a random variable with an exponential distribution. The

syntax of PEPA components, called processes, P is formally defined as:

P = (α,r).P | P+Q | A def= P | P ¤¢
L

Q | P/L

Prefix: (α,r).P. This is the basic term by which components are constructed. It de-

fines a component which can perform an action of type α. The action has a stochastic
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duration governed by an exponential distribution with parameter r. After having per-

formed α the component behaves as P.

Choice: P + Q. This represents a component that can behave either as component P

or Q and thus enables all concurrent activities of the two components. The component

that first completes an activity is chosen and the other is discarded.

Constant: A def= P. A constant is a component whose behaviour is defined as equal to

an expression of already defined components. It allows us to associate names to pre-

defined behaviour patterns.

Hiding: P/L. This states that the activities in L are internal and private to component

P and thus cannot be synchronized or be seen by external components.

Cooperation: P ¤¢
L

Q. This denotes the cooperation between components P and Q

over the set of activities L. The set L lists the activities on which the two components

are forced to synchronize. For activities outside L the components proceed in an in-

dependent and concurrent fashion. Multiway cooperation is supported, meaning that

the activity resulting from a synchronization of two components can be synchronized

again with another component. In the original PEPA definition, the synchronization

rate of an activity is defined as the minimum rate of the synchronizing activities. For

our purposes in the context of Synthetic Biology modelling (and in general for bio-

chemical systems), PEPA semantics have been modified in order to calculate the syn-

chronization rate as the product of the rates of synchronizing activities (see Figure 2.4).

The dynamic and formal interpretation of PEPA expressions is given by its structured

operational semantics (see Figure 2.3).

By applying the structural operational semantics rules to a PEPA component defi-

nition P, it is possible to generate a representation of the system as a stochastic process

in the form of a Continuous Time Markov Chain (CTMC). Firstly, the labelled tran-

sition system called the derivation graph is obtained. This is a multigraph in which

each node is one of the possible subsequent derivatives of the component defining the

model and in which nodes are connected by arcs representing the activities that lead

from one component to the other. The arcs are labelled with the action type and ac-

tivity rate and the root node is the component defining the model. In order to derive
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Prefix

(α,r).E
(α,r)
−−−→ E

Choice

E
(α,r)
−−−→ E ′

E +F
(α,r)
−−−→ E ′

F
(α,r)
−−−→ F ′

E +F
(α,r)
−−−→ F ′

Hiding

E
(α,r)
−−−→ E ′

E/L
(α,r)
−−−→ E ′/L

(α /∈ L)

E
(α,r)
−−−→ E ′

E/L
(τ,r)
−−−→ E ′/L

(α ∈ L)

Cooperation

E
(α,r)
−−−→ E ′

E ¤¢
L

F
(α,r)
−−−→ E ′ ¤¢

L
F

(α /∈ L)

F
(α,r)
−−−→ F ′

E ¤¢
L

F
(α,r)
−−−→ E ¤¢

L
F ′

(α /∈ L)

E
(α,r1)−−−→ E ′ F

(α,r2)−−−→ F ′

E ¤¢
L

F
(α,R)
−−−→ E ′ ¤¢

L
F ′

(α ∈ L)

where R =
r1

rα(E)
r2

rα(F)
min(rα(E),rα(F))

Constant

E
(α,r)−→ E ′

A
(α,r)−→ E ′

(A def= E)

Figure 2.3: PEPA Structured Operational Semantics. Details in [20].

the stochastic process, a state is associated with each node in the graph and a transition

between states is defined for each arc. Under the assumption that the model is finite

it is proved that the generated stochastic process is a CTMC [20]. The CTMC under-

lying every PEPA model is time homogeneous and irreducible, and for such CTMCs,

it is possible to calculate a equilibrium probability distribution. This probability gives

information about the CTMC in the long run or steady state. From this probability

distribution, it is possible to calculate performance measures of the model such as util-

isation and throughput. The CTMCs can also be used to obtain other analyses such as

transient and passage-time analyses, which allow study of the system at any instant of

time before it reaches the steady state discussed earlier. The PEPA Workbench [21]

is an available software tool that permits the automated analysis of PEPA generated

CTMCs but unfortunately it implements the original PEPA semantics and thus could

not be used for our model analysis. For this reason, and also for enabling probabilistic

model checking, we developed a translation from PEPA models to PRISM [22] models
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Cooperation

E
(α,r1)−−−→ E ′ F

(α,r2)−−−→ F ′

E ¤¢
L

F
(α,R)
−−−→ E ′ ¤¢

L
F ′

(α ∈ L)

where R = r1 ∗ r2

Figure 2.4: The modification to the PEPA cooperation rule in order to calculate the
cooperation rate as the moltiplication of the partecipant rates.

in order to use PRISM analysis support tool. Details of the probabilistic model checker

PRISM are presented in Section 2.4.

2.4 PRISM: probabilistic model checker and simulator

PRISM is a probabilistic model checking tool used for analysing quantitative proper-

ties of systems which exhibit stochastic behaviour [22]. The tool offers facilities to

“manually explore models, Monte-Carlo discrete-event simulation techniques for ap-

proximate model analysis (including support for distributed simulation) and the ability

to compute cost- and reward-based measures” [23]. We are interested in PRISM be-

cause it offers the specification of continuous time Markov chains (details in Section

2.5) through a simple state-based language and enables their Monte-Carlo simulation,

as well as analysis via temporal logic CSL with extensions for quantitative specifica-

tions and costs-rewards. The tool is equipped with a graphical user interface for the

managing of models’ code, model checking queries and graph-plotting functionalities.

Operator CSL Syntax
True true
False f alse

Conjunction φ∧φ
Disjunction φ∨φ

Negation ¬φ
Implication φ⇒ φ

Operator CSL Syntax
Next P./p[Xφ]

Unbounded Until P./p[φUφ]
Bounded Until P./p[φU≤tφ]
Bounded Until P./p[φU≥tφ]
Bounded Until P./p[φU[t1,t2]φ]
Steady State S./p[φ]

Table 2.2: Continuous Stochastic Logic operators.

The logic CSL (Continuous Stochastic Logic) is used to define probabilistic for-

mulae which validity can be checked, or probabilities can be computed, by the model
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checker module implemented in PRISM. Using CSL it is possible to express proba-

bility measures about temporal properties to be satisfied either in steady state or in

transient behaviour. The operator S./p[φ] specifies properties φ that hold in the long

run (steady state), the operator P./p[φ] defines properties φ that depend on time (tran-

sient). The value p specifies a probability bound on the property. Using the temporal

logic it is possible to express temporal queries on generic model characteristics such

as state reachability or deadlock, or on specific characteristics representing particular

aspects of the considered scenario. The operators of CSL are listed in Table 2.2, for a

detailed discussion see [22].

We give here an informal and brief explanation of PRISM simple modelling lan-

guage, for a more detailed definition see [23]. Modules, variables and commands (an

example is shown in Figure 2.5) are the fundamental components of the PRISM lan-

guage. A model is composed by global variable definitions and several modules. Each

module contains a list of commands and a set of local variables. Variables are typed

(they can be integers, reals and booleans). A command is composed of a name, a

boolean guard, a rate specification and a set of instructions that may change variable

values.

module A \\name of the module
x : [0..3] init 0; \\local variable of integer type
[action] (x<3) \\command called "action" with boolean guard
: x -> x’=x+1; \\x is the rate, then variable x is incremented

endmodule \\end of the module

Figure 2.5: A simple example of a PRISM module definition, with comments.

The values of global and local variables at any given time define the state of the model.

When the boolean guard of a command is satisfied, the commands can synchronize

with other enabled commands with the same name. This causes the execution of their

instruction, possibly leading to a change of state in the system. An exponential rate,

calculated as the multiplication of each single synchronizing command’s rate, is as-

sociated with the enabled transition. Each model thus specifies a CTMC (see Section

2.5) as a direct mapping of model states and transition sets.
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2.5 Continuous Time Markov Chains

As explained in Section 2.3, the stochastic models specified using PEPA generate a

system representation in the form of a particular type of stochastic processes: contin-

uous time Markov chains (or CTMCs). Formally, a stochastic process is defined as a

set of random variables {X(t), t ∈ T} where T is called the index set. The set of all

possible values that variable X(t) can assume is called the state space. Each of these

values is called a state of the process. A Markov process is a process for which the

memoryless property holds. Formally:

Definition {X(t)} is a Markov Process if and only if:

Pr(X(t +h) = y|X(s) = xs,∀s < t) = Pr(X(t +h) = y|X(s) = xt),∀h > 0

This property reads as “the distribution of time until the next state change is indepen-

dent of the time that has elapsed since the last state change”. CTMCs are Markov

processes with a countable state space and for which the index set is assumed to rep-

resent a continuous time (T = R+). A Markov process is time homogeneous if the

transition rates are independent of the time of occurrence of each transition, such that:

P(X(t + s) = j|X(t) = i) = P(X(s) = j|X(0) = i).

Our interest will be limited only to time homogeneous Markov chains. Because of the

memoryless property, the probability of no transitions occurring from state i in some

time r is governed by an exponential distribution of parameter qi (called exit rate):

Pr(X(s) = i,∀s ∈ (t, t + r]|X(t) = i) = qi ∗ e−qi∗r

Thus the probability of an instantaneous transition from state i to state j is:

Pr(X(t +dt) = j|X(t) = i) = qi j ∗dt +o(dt)

where qi j is the instantaneous transition rate from state i to state j and qi = ∑ j 6=i qi j.

CTMCs can be described by the infinitesimal generator matrix Q for which each el-

ement qi j with j 6= i is the transition rate between states i and j. Diagonal elements

qii are defined as −∑i6= j qi j. Markov chains can be also described as a directed graph,

where the edges are labeled by the exponential probabilities of going from one state

to the other state. The infinitesimal matrix is used in the calculi for the transient and

steady state analysis. The time dependent probability is the solution of the following

differential equations, called Chapman-Kolmogorov equations:
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dπ(t)
dt = π(t)∗Q

where the stationary probability distribution π, normalized to ∑ j π j = 1, is the solution

of the linear system π ∗Q = 0. The steady state probability distribution is the proba-

bility of being in a state in the long run. If a Markov chain is irreducible and positive

recurrent, the steady state corresponds to the stationary probability. A Markov chain

is irreducible if all states can be reached from all other states and is positive recurrent

if starting in any state the expected time to return to that state is finite. In this case the

stationary probability distribution is the solution of the linear system:

limt→∞ π(t) = π

In general the whole infinitesimal generator matrix Q is needed for such analysis but

unfortunately for large and complex systems the underlying CTMC is too big to be

computationally tractable. One possibility is to introduce an approximation and statis-

tically study the behaviour of some samples of the process. A sample path, or realiza-

tion of the process, is any set of instances of {X(t), t ∈ T} and can be calculated using

Monte Carlo algorithms without generating the complete CTMC state space.

2.6 The Gillespie’s Algorithm

The Gillespie algorithm [24] is a stochastic exact procedure used to simulate the course

time behaviour of spatial homogeneous chemical systems. It is a fairly simple Monte

Carlo algorithm that numerically simulate the behaviour of molecule populations in a

system of elementary chemical reactions. The chemical system is usually given in the

form of M chemical reactions:

Chemicalsystem =





R1 : c1
1X1 + . . .+ cN

1 →k1 c1
1X1 + . . .+ cN

1

. . .

RM : c1
MX1 + . . .+ cN

M →kM c1
MX1 + . . .+ cN

M

where X1, . . . ,XN are N chemical species, R1, . . . ,RM are M elementary reactions, k1, . . . ,kM

are M stochastic constants for the reactions, c j
i are N*M reagent stoichiometric coef-

ficients (possibly with value zero) and c j
i are N*M product stoichiometric coefficients

(possibly with value zero). The algorithm is a rigorous mathematical derivation of the

Master equation and thus has firmer physical basis than the equivalent deterministic
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formulation [24] with Ordinary Differential Equations. The Master equation identifies

the evolution of the system as a continuous-time Markov process, with the integrated

master equation obeying a Chapman-Kolmogorov equation. In this sense, the Gillespie

algorithm calculates a sample path (see Section 2.5) of that CTMC without explicitly

storing its often intractable state space. Each state in the CTMC derived from the

Master Equation represents the current species populations and can be expressed as a

vector v = (X1, . . . ,Xn). The transitions from state to state represents possible reactions

and are associated with an exponential rate calculated following the mass action law.

The steps of the algorithm are [24]:

• Step 0 (Initialization): the input is given as the stoichiometric coefficients for the

reactions, the vector of the initial molecular populations v1 = (x1, . . . ,xn) and the

stochastic reaction constants k1,. . . ,kM. Set the time variable t and the reaction

counter n both to zero. Initialize the random number generator.

• Step 1. Calculate and store the M stochastic reaction rates (a1, . . . ,aM) each

one being the product of the molecular reactant combinations according to stoi-

chiometry and the stochastic reaction constants for that reaction. Calculate a0 as

the sum of ai.

• Step 2. Using the random number generator, calculate a random number π ac-

cording to the probability density function P1(π) = a0 ∗ e(−ao∗π), and a integer µ

according to the probability density function P2(µ) = aµ
ao .

• Step 3. Using the π and µ values obtained in step 2, increase t by π, and adjust

the molecular population levels to reflect the occurrence of one Rµ reaction.

• Step 4 if the time t is less than the maximal simulation time wanted, return to

Step 1.

The Gillespie’s Algorithm is of particular importance in the analysis of biochemical

reaction networks, where often the state space of the stochastic process is intractable

if not using simulation techniques.
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A graphical notation for Synthetic

Biology

This chapter presents a graphical notation suitable for representing systems that have

been constructed using standard biological parts, as defined in the Synthetic Biology

approach. Section 3.1 explains which are characteristics considered in designing the

notation. Section 3.2 presents the symbols of our graphical notation and their mapping

with biological entities and processes. Section 3.3 specifies the way in which symbols

can be composed and Section 3.4 gives additional system constraints.

3.1 Design objectives

In this chapter we introduce a graphical notation that can be used for describing sys-

tems constructed using Synthetic Biology standard parts. A graphical notation is useful

because it helps us to represent, in a compact and intuitive format, complex biologi-

cal elements and phenomena. In order to be effective, we seek to define a graphical

notation with the following design objectives:

• Intuitive: The notation should be intuitive to a reader with a biology back-

ground. This means it should represent the entities and the interactions using

symbols that are common in biology literature.

• Quantitative: The notation should carry quantitative information regarding time-

course aspects and cardinality of entities involved, e.g. size of the molecular

populations.

23
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• Formal: The notation should be consistent with some formal rules in order to

be used as input for an automatic derivation of the corresponding model.

• Limited: it should be limited to few but expressive symbols, able to represent

the systems at the level of Parts (according to the definition in the Registry of

Standard Biological Parts).

There is a general agreement that a standard graphical notation for biological system

definition should be adopted to facilitate the understanding of drawings, and some

works are currently investigating promising solutions [25], [26]. But a unified con-

vention has not yet emerged from the research community and so in the literature it

is common to find very different notations. Nevertheless, some symbols are generally

well recognised in the scientific community and are a sort of de-facto standard. The

graphical notation we propose here merges together two of these de-facto standards.

For the definition of chemical reactions, we propose the circles-connections-and-boxes

notation used by computer scientists working with Petri Nets. For promoters, coding

regions, promoter repression and activation, we used the shapes-and-arrows notation

usually found in bioengineering for representing DNA sequences and regulatory ef-

fects. Among many other dialects, we propose the version used in the Registry of

Standard Biological Parts (see Section 2.1), as it should be very intuitive to the Syn-

thetic Biology community.

We add alphanumerical and numerical attributes to the symbols: qualitative and

quantitative information that are used to correctly manage time course behaviour and

cardinalities when translating the model into the process algebra formalism.

Along with the graphical symbols and their biological explanation, we introduce

a formal structured definition using the concepts of type, attribute and object. Their

meaning should be quite obvious to computer scientists, we give here a brief definition.

In our context a type is a name that defines the set of values that one object can assume.

There are three primitive types: the type Id with values in the set of alphanumeric

identifier, the type Real which allows values in the positive real numbers (R+) and

the type Nat which allows values in the natural positive numbers (N+). We can also

define structured types (or records) by giving a list of attribute names and types in

between brackets, as in Figure 3.1. Structured type names begin with the letter T

and are written in italics. An object is associated with a type by the colon operator,

object:Type. This formal definition can be also of help as precise low-level pseudo-

code for a future data structure implementation. We want to stress one point: the
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TypeName: {
AttributeName1 : Type1;
. . .
AttributeNameN : TypeN;
}

Figure 3.1: A tutorial example of structure of a type definition.

graphical notation we propose here is not meant to be a generally applicable notation

for all possible Synthetic Biology systems. Due to the variety and complexity of those

systems, designing a notation with such a goal is a huge task. We seek only to define

a limited exact notation that permits us to show that it is possible to generate process

algebra model templates from an intuitive graphical schema.

3.2 Symbols

In this section we introduce the nine symbols that are unitary elements of the graphi-

cal notation. For each element we present its graphical representation and discuss the

biological class that it represents in the context of Synthetic Biology. Moreover, we as-

sociate with each symbol a formal definition by creating a new Type. The symbols are

divided in three broader categories: symbols used to represent reactions (Table 3.1),

symbols used to represent DNA parts taken from the Registry of Standard Biological

Parts (Table 3.2), symbols used to represent interactions between species and DNA

parts (Tabel 3.3).

SPECIES: a species (Table 3.1) is a biological entity that can be used as reagent and/or

product in a reaction, like a protein, an enzyme, a molecule or a currency metabolite.

With each species is associated an alphanumeric identifier (attribute id). In the models

the species’ molecular population is constrained by a lower bound (attribute min) and

an upper bound (attribute max). The initial population is given by the attribute init.

REACTION: the reaction (Table 3.1) is an abstraction for whatever interactions be-

tween species that behaves according to the mass action law. Typical reactions in which

we are interested are metabolite transformation, phosphorylation and de-phosphorylation,

cleavage, complex formation, enzymatic reaction and many more. Each reaction is as-
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a)

TSpecies:
{
id : Id;
max: Nat;
min: Nat;
init: Nat;
}

b)

TReaction:
{
id : Id;
k: Real;
}

c)

TReactionPart:
{
c : Nat;
}

Table 3.1: Symbols that are used for the representation of reactions, with their formal
defintion. a) Species object. b) Reaction object. c) Participation in a reaction object.

sociated with an alphanumeric identifier (attribute id) and a stochastic reaction constant

(attribute k).

PARTICIPATION IN A REACTION: the participation arrow (Table 3.1) is used to

connect species with reactions, and is used to define which are the inputs and which are

the outputs. Since a reaction could require more than a single molecule of a species in

order to happen, the attribute c indicates the stoichiometric coefficient for the species.

PROMOTER: the promoter symbol (Table 3.2) represents a regulatory element in-

volved in the initiation of the process of transcription of the DNA in RNA. It can be

constitutively active or inactive and it could be regulated by transcriptional factors that

can repress or excite its activity. The attribute e is the rate of constitutive expression

of the protein coding regions placed in its downstream region. The attribute id is an

unique alphanumeric identifier. The role of the promoter in the graphical notation is to

control the expression of rows of downstream coding regions. It can be influenced by

activation and repression effectors binding.
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a)

TPromoter:
{
id : Id;
e : Real;
}

b)

TProteinCod:
{
id : Id;
}

c)
TTerminator:
{
}

Table 3.2: Symbols that represent DNA functional parts, with their formal defintion.
a) Promoter object. b) Protein Coding Region object. c) Terminator object.

PROTEIN CODING REGION: a protein coding region box (Table 3.2) represents

a piece of double strand DNA that codes for a specific functional protein. It can be

placed downstream to a promoter or another protein coding. The attribute id is its al-

phanumeric identifier.

TERMINATOR: the terminator symbol (Table 3.2) represents a double-strand DNA

segment that causes the end of the transcription process when encountered by the tran-

scripting polymerase. It has no attribute since it serves only to graphically close the

coding region sequence.

CODING CONNECTION: the coding connection arrow (Table 3.3) is used to con-

nect a coding region to a species in order to specify that the region codes for that

species. It has no attributes because it is simply a graphical connector to the species

object.

ACTIVATION CONNECTION: the activation arrow (Table 3.3) is used to connect a

species to a promoter in order to specify that the species can bind the promoter region

and therefore enhance its expression rate. The two attributes of the arrow are: the rate

of binding between the transcriptional factor and the promoter b, and the rate of addi-

tional expression a to the constitutive expression of the gene.
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a)
TCodingConn:
{
}

b)

TActivationConn:
{
b : Real;
a : Real;
}

c)

TRepressionConn:
{
b : Real;
r : Real;
}

Table 3.3: Symbols that represent interactions between DNA parts and species, with
their formal defintion. a) Coding Connection object. b) Activation Connection object. c)
Repression Connection object.

REPRESSION CONNECTION: the promoter repression arrow (Table 3.3) is used

to connect a species to a promoter in order to specify that the species can bind the

promoter region and therefore decrease its expression rate. The two attributes of the

arrow are: the rate b of binding between the transcriptional factor and the promoter,

and the rate a at which the expression of the constitutive expression in repressed.

3.3 Composition rules

The symbols defined in Section 3.2 are the basic elements of our notation. In order to

express biochemical interactions, they should be composed. To avoid the creation of

connections without a biological meaning, a set of rules defining the allowed connec-

tions among the symbols given above is defined.

REACTION INPUT: a species (attribute S) can be connected using a reaction par-

ticipation arrow (attribute Rp) to a reaction (attribute R), see Table 3.4. It means that

the species is a reagent for the reaction and that, when an individual reaction occurs,



3.3. Composition rules 29

a)

TReactionInput:
{
S : TSpecies;
Rp : TReactionPart;
R : TReaction;
}

b)

TReactionOutput:
{
S : TSpecies;
Rp : TReactionPart;
R : TReaction;
}

Table 3.4: Patterns for the compositions of symbols in representing reactions, with their
formal definition. a) Reaction Input object. b) Reaction Output object.

the species population decreases by a number of elements equal to the stoichiometric

coefficient defined on the arrow.

REACTION OUTPUT: a reaction (attribute R) can be connected using a reaction par-

ticipation arrow (attribute Rp) to a species (attribute S), see Table 3.4. It means that

the species is a product for the reaction and that, when a individual reaction occurs,

the species population increases by a number of elements equal to the stoichiometric

coefficient defined on the arrow.

OPERON STRUCTURE: the term operon identifies a DNA structure in which a set

of n coding regions (attributes Pc1, . . . ,Pcn) are sequentially placed downstream of a

promoter region (attribute P), see Table 3.5. Since the mRNA-polymerase binds to the

promoter region, the expression of the coding regions is controlled by the promoter

state. A gene can be represented as an operon with a single coding region.

PROTEIN EXPRESSION: a protein coding region (attribute Pc) is connected to a

species (attribute S) by a coding connection (attribute Cc), see Table 3.5. It represents

the fact that the coding region codes for that particular species and thus when the re-

gion is expressed the species population is replenished.

PROMOTER ACTIVATION: a species (attribute S) can be connected using a pro-
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a)

TOperon:
{
P : TPromoter;
Pc1 : TProteinCod;
. . .
Pcn : TProteinCod;
T :TTerminator;
}

b)

TProteinCodExp:
{
Pc : TProteinCod;
Cc: TCodingConn;
S : TSpecies;
}

Table 3.5: Patterns for the composition of symbols in representing operon expression,
with their formal definition. a) Operon Structure object. b) Protein Expression object.

a)

TPromoterAct:
{
P : TPromoter;
Pa: TActivationConn;
S : TSpecies;
}

b)

TPromoterRep:
{
P : TPromoter;
Pr: TRepressionConn;
S : TSpecies;
}

Table 3.6: Patterns for the compositions of symbols in representing transcriptional reg-
ulation effects, with their formal definition. a) Promoter Activation object. b) Promoter
Repression object.

moter activation connection (attribute Pr) to a promoter (attribute P), see Table 3.6.

The activation happens as the result of a physical mechanism of binding of the tran-

scriptional factors (the species’ molecules) to the promoter region, attracting the mRNA-

polymerase. Thus the transcription of the downstream regions is hastened. This can
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lead to a speed up of the expression process.

PROMOTER REPRESSION: a species (attribute S) can be connected using a pro-

moter repression connection (attribute Pr) to a promoter (attribute P), see Table 3.6.

The repression happens as the result of a physical mechanism of binding of the tran-

scriptional factors (the species’ molecules) to the promoter region, preventing the bind-

ing of mRNA-polymerase. Thus the transcription of the downstream regions is blocked

for the time the molecule is binded. This can cause a delay or a complete shut down of

the expression process.

3.4 System’s definition and constraints

A system is defined by the set of its elementary objects (instances of symbols) and the

set of connection objects (instances of patterns). The elementary objects are specified

following rules given in Section 3.2. The connection objects are specified following

rules given in Section 3.3. Formally, a system Sys is defined as a pair of sets (Elements,

Connections) where:

• Elements is a set of objects of type TSpecies, TReaction, TReactionPart, TPro-

teinCod, TPromoter, TCodingConn, TActivationConn, TRepressionConn and TTer-

minator which represent the elements in the system.

• Connections is a set of objects of type TReactionInput, TReactionOutput, TOperon,

TProteinCodExp, TPromoterRep, TPromoterAct where the attributes of these

objects are taken from the Elements set according to type definition.

In order to be sound a system should respect the following additional constraints:

• All the identifier values of type Id are different. This means that it is possible to

use the identifier attributes as unique names for these elements.

• Each object in the Elements set should appear at least once as an attribute of

an object in the set Connections, meaning that there cannot exist completely

disconnected elements.

• An object of type TProteinCod in Elements should be once and only once an

attribute of an instance of type TOperon in Connections. Meaning that a protein

coding region can be regulated by only one upstream promoter.
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• An object of type TPromoter in Elements should be once and only once an

attribute of an object of type TOperon in Connections, meaning that a promoter

can regulate only one set of coding regions.

• An object of type TSpecies in Elements and an object of type TReaction in Ele-
ments can be only once attributes together of an object of type TReactionInput

in Connections, meaning that the participation of more individuals of a species

as reagents in a reaction should be represented by using the stoichiometric coef-

ficient.

• An object of type TSpecies in Elements and an object of type TReaction in Ele-
ments can be only once attributes together of an object of type TReactionOutput

in Connections, meaning that the participation of more individuals of a species

as product in a reaction should be represented by using the stoichiometric coef-

ficient.

The rules we have given above should make intuitive the passage from the graphical

specification of a system to its formal definition and vice versa. From the graphical

definition it is possible to construct the sets of the formal definition by populating

instances of the correct type and by composing the Conn set according to the graphical

connections. From a formal definition it is possible to follow the picture examples

in order to draw the correct symbols and to connect them. The two formulations are

indeed carrying the equivalent amount of information. In Section 4 we show how to

derive a process algebra model from the system’s formal definitions.
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The PEPA model

This chapter proposes an automatic translation from a system, represented in the graph-

ical notation for Synthetic Biology (see Section 3), to a model expressed using the

process algebra PEPA (Section 2.3). Section 4.1 explains the concepts at the base of

the modelling approach. Section 4.2 defines the formal rules for the translation of

components and their composition in the final PEPA model. Section 4.3 discusses the

properties of the resulting stochastic process with respect to biological mechanisms.

Finally Section 4.4 explains how to automatically convert PEPA models into PRISM

models in order to enable various type of system analysis.

4.1 A quantitative mechanistic approach

The biological systems we seek to model and analyse are cells. In general the as-

signment of a model to a system is not unique. Models can be different for various

motivations: the choice of alternative mathematical frameworks, the study of different

biological instances, the need to highlight different aspects of the same instance or the

application of one particular experimental method of investigation [27].

We utilise the process algebra PEPA as an intermediate modelling language in

between the graphical notation and the mathematical framework of continuous time

Markov chains (see Section 2.5). We decided to undertake a mechanistic approach,

meaning that we generate models whose internal descriptions match the molecular

mechanisms by which biological processes act or are supposed to act [4]. Such a map-

ping is necessary when the aim is not only to predict and study the system behaviour,

but also to use the comparison with lab experiments as feedback for refining our un-

derstanding of the real processes, i.e. for hypotesis testing support. In this way it is

33
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also possible to incorporate quantitative knowledge obtained from wet lab experiments,

such as the number of objects involved or the temporal rates at which the entities react.

In order to be sound with respect to real processes, our model needs to be consistent

with the known physical laws. We aim to model at a system level and considering

the current body of knowledge in molecular and cell biology, this “system-level un-

derstanding has to be grounded onto molecular-level so that a continuous spectrum of

knowledge can be established” [27]. The minimal entities that are explicitly repre-

sented are the populations of chemical species that can be micro or macro molecules

such as proteins, carbohydrates, lipids and so on. We represent the DNA level in func-

tional modular parts, dissociating promoter regions from protein coding regions and

establish the rules for their composition into functional operon regions. The biochem-

ical processes that we model are elementary chemical reactions between species, gene

expression in which translation and transcription are abstracted in a single process and

transcriptional factors regulating gene expression. We treat explicitly the mechanisms

of promoter repression and promoter activation through the representation of transcrip-

tional factor bindings.

We follow the way opened by the influential work of Regev et al. [6], [13] on

the ’cells-as-computation’ abstraction. The approach suggests that the cell can be ab-

stracted as a system of interacting computational entities. The computational entities

are specified using the process algebra formalism. In Table 4.1 we present the classical

mapping adapted to our approach.

Biology Process Algebra
Entity Process

Interaction capability Enabled Action
Interaction Multi-way Synchronization

Modification-Evolution State Change

Table 4.1: The process algebra abstraction for systems biology adapted to PEPA.

In particular, as firstly suggested by Priami et al. [7], we apply a process algebra

enriched with stochastic exponentially distributed time durations in order to add time

course aspects. Below we present in words the intuitive mapping of biological entities

and activities to computational entities and activities.

• Molecular populations: a species population S is represented by a family of

PEPA component S(i). Only one of the individual processes S(i) is active in the

model at each time representing i molecules of that species.
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• Chemical reactions: chemical reactions are abstracted as a synchronization be-

tween processes. The processes, that represent reagent and product species cur-

rent populations, synchronize on an action called as the reaction name. When

the action occurs, the processes change their internal state in order to represent

a new species population, according to the reaction definition.

• Operon structure: an operon structure Op is represented as a process. The

process can undertake an expression action in cooperation with all the processes

representing the proteins for which it codes. The action causes a replenish of the

protein populations. It also maintains, in its internal state, eventual information

regarding activation or repression influences on its promoter region.

• Transcriptional factors regulations: a transcriptional factor regulation is rep-

resented by a synchronized action between the component representing the tran-

scriptional factor population and the PEPA component representing the regulated

protein coding region.

In Section 4.2 we firstly give the proper formal definition of the computational enti-

ties and activities in the form of PEPA components. Secondly we define how to merge

these individual components in order to construct the complete PEPA component rep-

resenting the final model.

4.2 Construction of the PEPA model

In this section we propose the automatic derivation rules for generating a PEPA model

starting from a system expressed in the graphical notation. The input is a formal system

definition Sys=(Elements,Connections) expressed according to the constraints given

in Section 3.4. The output is a PEPA model, given as a set of PEPA components

definitions and the initial component configuration.

All the components we generate follow the structure specified in Figure 4.1. Each

component has a name and a body, and the body is made of a list of PEPA processes,

each element separated from the others by the choice operator.

During the automatic derivation, component names and component processes are

constructed in different phases, thus we need to introduce supporting notations to keep

track of their associations. We write list〈Components〉.add〈Cname〉 to add a new com-

ponent with name Cname in the special list Components of the defined components.
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Figure 4.1: The syntactical structure of the automatically generated PEPA components.

We write list〈Cname〉.add〈process〉 when we want to add process to the process list of

Cname component.

We need some meta-notation when writing the syntactical structure of the PEPA

processes. They are constructed as concatenation of plain text and values taken from

the objects in the Elements and Connections sets. The former are written in standard

characters, the latter in bold. The lists’ support commands are underlined.

4.2.1 Defining a species

For each object S ∈ Elements of type TSpecies we generate (S.max− S.min) process

names. Given the identifier of the species S.id, the processes are called S.id(i) with

S.min ≤ i ≥ S.max. Each process represents a possible number of molecules of the

species S, i.e. S.id(i) represents a population of i individuals.

list〈Components〉.add〈S.id(i)〉 where S.min≤ i≥ S.max

In the PEPA model dynamics, only one of these processes is present at each time,

representing the current species population.

4.2.2 Defining a reaction

For each object R ∈ Elements of type TReaction we generate a process definition with

name R.id.

list〈Components〉.add〈R.id〉;
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The process is able to synchronize on an action with name R.id and participate with

a rate equal to the propensity coefficient R.k. After, the process returns to its original

state.

list〈R.id〉.add〈(R.id, R.k).R.id〉;

4.2.3 Defining a operon (or gene) expression

For each object Op ∈ Connections of type TOperon we generate a process name that

represents the operon region state. We construct the name of the process adding the

suffix Op at the promoter P=Op.P identifier.

list〈Components〉.add〈P.idOp〉;

At this step we generate also part of the body. We add an action called P.idExp, that

represents the expression of the proteins for which the operon region codes. The expo-

nential rate related to this is given by the attribute P.e. The process then returns to the

initial state.

list〈P.idOp〉.add〈 (P.idExp, P.e).P.idOp〉

For each species S there can exist objects PcE ∈ Connections of type TProteinCod-

Exp where PcE.S=S. For object PcE there must exist one and only one object Op ∈
Connections of type TOperon. We add to the population processes of S an action by

which its population is increased, caused by protein coding region expression.

list〈S.id(i)〉.add〈(Op.P.idExp,1).S.id(i+1)〉, where i < S.max

4.2.4 Defining a reaction input

For each object Ri ∈ Connections of type TReactionInput we add body parts to the

processes representing the species S=Ri.S that is reagent of the reaction R=Ri.R. We

add in the body of each process level of species S an action that represents the partic-

ipation as reagent to the reaction R and thus moves the species population to a state

representing a lower population. The action is named after the reaction identifier R.id
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and the exponential rate is the number of possible combinations of elements of species

S for that level of population with regard to the stoichiometric coefficient. The stoichio-

metric coefficient is an attribute of the object Rp=Ri.Rp. The number of combinations

for level i is called Comb and it is given by the formula:

Comb =
(

i
Rp.c

)

we add a process definition to each component representing a level of S with enough

substrate for enabling the reaction:

list〈S.id(i)〉.add〈 (R.id,Comb).R.id(i-Rp.c) 〉 where i≥ Rp.c.

In the special case in which S is both input and output of the reaction see the Section

4.2.6.

4.2.5 Defining a reaction output

For each object Ro ∈ Connections of type TReactionOutput we add body parts to the

processes representing the species S=Ro.S that is product of the reaction R=Ro.R. We

add in the body of each process level of species S an action that represents the partic-

ipation as product of the reaction R and thus moves the species population to a state

representing an increased population. The action is named after the reaction identifier

R.id and the exponential rate is 1 because products do not influece the rates of reac-

tions governed by the mass action law. The stoichiometric coefficient is an attribute of

the object Rp=Ro.Rp. We define the PEPA body definition:

list〈S.id(i)〉.add〈 (R.id,1).R.id(i+Rp.c)〉 where i≤ (S.max−Rp.c).

In the special case in which S is both input and output of the reaction see the Section

4.2.6.
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4.2.6 Defining a reaction input-output

In the case of two objects Ri∈Connections of type TReactionInput and Ro∈Connections
of type TReactionOutput having the same species and reaction attributes (Ri.S=Ro.S
and Ri.R=Ro.R) it is necessary to define a special conversion. This is because the

species is both input and output of the reaction and so the increase and decrease in

the species population need to be managed in a single PEPA action. The number of

reagent combinations for level i is called Comb and it is given by the formula:

Comb =
(

i
Ri.Rp.c

)

We add a process definition to each component representing a level of S with enough

substrate for enabling the reaction but less than the species upper bound:

list〈S.id(i)〉.add〈 (R.id,Comb).R.id(i-Ri.Rp.c+Ro.R.c) 〉, where i ≥ Ri.Rp.c and

(i−Ri.Rp.c+Ro.R.c)≤ (S.max)

4.2.7 Defining a promoter repression

For each object Pr ∈ Connections of type TPromoterRep there exists only one object

Op ∈Connections of type TOperon such that Pr.P=Op.P. We modify the body of the

process representing the operon state that is called Op.P.idOp. We add two sequen-

tial actions. The first is an action representing the binding of a molecule of Species

Op.S.id to the promoter region; the second representing the unbinding of the same

molecule. P=Op.P is the promoter controlling the operon expression.

list〈P.idOp〉.add〈 (P.id bind Pr.S.idRep,Op.Rc.b).(P.id unbind Pr.S.idRep,Op.Rc.r).P.idOp〉

Then we add a part to the body of the species component S=Op.S:

list〈 S.id(i) 〉.add〈 (P.id bind Pr.S.idRep,i).S.id(i)〉 where i 6= 0
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4.2.8 Defining a promoter activation

For each object Pa ∈ Connections of type TPromoterAct there exists only one object

Op ∈Connections of type TOperon such that Pa.P=Op.P. We modify the body of the

process representing the operon state that is called Op.P.idOp. We add two sequen-

tial actions. The first is an action representing the binding of a molecule of Species

Op.S.id to the promoter region; the second representing the unbinding of the same

molecule associated with an additional expression of the operon region. P=Op.P is the

promoter controlling the operon expression.

list〈P.idOp〉.add〈 (P.id bind Pa.S.idAct,Op.Rc.b).(P.idExp,Op.Rc.r).P.idOp〉

Then we add a part to the body of the species component S=Op.S:

list〈 S.id(i) 〉.add〈 (P.id bind Pa.S.idAct,i).S.id(i)〉 where i 6= 0

4.2.9 Defining the final components

When all the objects in the Elements and Connections sets have been derived, it is

necessary to construct the PEPA components. For all the component names Cname in

list(Components) we construct the component:

Cname= process1+. . . +processn

where process1,. . . ,processn are the entries in the list(Cname).

If the list is empty, the process is associated with the reserved action name null and

defined having a simple circular behaviour:

Cname= (null,1).Cname

4.2.10 Defining the root component

The previous instructions explained how to generate the PEPA component definitions

by deriving them from the graphical representation of the system. Here we give the

rules to compose them into the initial configuration, also called the PEPA root com-
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ponent. The root component is used as initial model definition from which the system

dynamics are derived. It is therefore the first node of the derivation graph automatically

generated by applying the PEPA semantics rules.

The set of the component definitions can be partitioned by separating the compo-

nents into three mutually exclusive sets:

• OP, the set of components representing operon regions.

• RP, the set of components representing reactions.

• SP, the set of components representing the species populations.

For each species Si we insert in the initial configuration the component definition

Si.id(S.init) that represents the initial population species. We insert also the com-

ponents {Op1, . . . ,Opm} ∈OP, and the components {R1, . . . ,Rs} ∈ RP. The compo-

nents in the initial configuration I are connected with cooperation operators:

I=Op1 ¤¢
F()

. . . ¤¢
F()

Opm ¤¢
F()

R1 ¤¢
F()

. . . ¤¢
F()

Rs ¤¢
F()

S1.id(S.init) ¤¢
F()

. . . ¤¢
F()

Sn(S.init)

F() is the function that defines on which actions two cooperating components A ¤¢
F

B

can synchronize:

A ¤¢
F()

B = A ¤¢
L

B, where L = (A(A)∩A(B))\{null}

where A(C) is a function, defined in Figure 4.2, that returns the set of the actions

the PEPA component C is capable of. This set construction can also be stated as

“components A and B cooperate only on the actions they are both capable of with the

exception of the reserved action null”. It should be noticed that since the cooperation

operator associates to the left, in the A ¤¢
F()

B construct the term A is usually not a single

component but a cooperation of components.

4.3 Mechanistic interpretation of the stochastic process

Starting from the PEPA root component we can derive a continuous time Markov chain

stochastic model by applying the PEPA semantics rules (details in Section 2.3). We

therefore formally generate a state space set S, that represents all the possible config-

urations that the system can assume during time, and a transition rate matrix Q, that

specifies how much time the system takes to transit from one state to another.
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A((α,r).P) = {α}∪A(P)
A(P+Q) = A(P)∪A(Q)
A(P ¤¢

L
Q) = A(P)∪A(Q)

A(P\L) = A(P)\L

Figure 4.2: Definition of the function A . The function returns the set of the actions that
a component is capable of.

For construction, each state si (apart from intermediate configurations treated later)

in the state space set (si ∈ S) can be written in the form:

si = Op1 ¤¢
F()

. . . ¤¢
F()

Opm ¤¢
F()

R1 ¤¢
F()

. . . ¤¢
F()

Rs ¤¢
F()

S1(i1) ¤¢
F()

. . . ¤¢
F()

Sn(in)

where Op are components representing operon regions, R are components representing

reactions and S(i) are components representing species (with population i). Three

kind of transitions can happen from such a configuration: a reaction, a operon region

expression, a transcriptional regulation process. In the next subsection, we formally

derive for each possible transition the resulting arrival system state and we discuss the

meaning of the associated exponential rate.

4.3.1 Reactions

We assume that in state si a reaction R j has enough molecules of the substrates to occur.

For simplicity we assume it to be between reagents S1 and S2 in order to make product

S3 (the derivation for higher orders of reagent and products comes straightforwardly

from this simplified case). Given the reaction in the chemical form:

R j : c1
jS1 + c2

jS2 →k j c3
jS3

we know that for construction the current state si is in the form:

si = . . . ¤¢
F()

S1(i1) ¤¢
F()

S2(i2) ¤¢
F()

S3(i3) ¤¢
F()

R j

and the components representing the species and the reaction that has to occur are in

the form:
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S1(i1) = . . . +(R j,r1).S1(i1− c1
j), where r1 =

(i1
c1

j

)

S2(i2) = . . . +(R j,r2).S2(i2− c2
j), where r2 =

(i2
c2

j

)

S3(i3) = . . . +(R j,1).S3(i3 + c3
j)

R j = (R j,k j).R j

and they can synchronize on action R j since {R j} ⊆ A(S1)∩A(S2)∩A(S3)∩A(R j).

The four components can therefore join in a multi-way cooperation that generates a

transition to the state s j:

s j = . . . ¤¢
F()

S1(i1− c1
j) ¤¢F() S2(i2− c2

j) ¤¢F() S3(i3 + c3
j) ¤¢F() R j

and according to cooperation semantics rule the rate of the transition from si to s j is

qi j = r1 ∗ r2 ∗ k j. This means that we associate to each reaction to occur a probabil-

ity (and duration) that is distributed according to an exponential distribution with rate

proportional to the combinations of the involved reagents. Moreover the arrival state

represents a molecular population rigorously defined from the stoichiometric coeffi-

cients of the occurred reaction.

This result is of great interest when we consider models of elementary reactions as

in the Gillespie Algorithm (see Section 2.6) scenario. Under the same fundamental

assumptions, if we set the constant k j as the stochastic constants for the reaction, the

CTMC underlying the model happens to be exactly the one that identifies the evolution

of the system’s Master equation. This can be easily seen when comparing the transi-

tion matrix Q entries with the propensity coefficients calculated at each run in step 2

by the Gillespie Algorithm (details in Section 2.6). From the theoretical point of view,

this assures us that our model is sound with the rigorous and exact derivation of the

Master equation. From the practical point of view, this says that if we perform a prob-

abilistic random walk on the CTMC , we are basically running an algorithm equivalent

in calculation to the Gillespie one.
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4.3.2 Operon (or gene) expressions

We assume that in state si the expression of the operon region Op1 can occur, meaning

that it is enabled and the species for which it codes are not at the maximal level. We

assume for simplicity that the operon codes for only one protein S1. Therefore the

current state si is in the form:

si = . . . ¤¢
F()

S1(i1) ¤¢
F()

Op1

and the components representing the species and the gene expression that has to occur

are in the form:

S1(i1) = . . . +(Op1Exp,1).S1(i1 +1)

Op1 = . . . +(Op1Exp,e).Op1

and they can synchronize on action Op1Exp since {Op1Exp} ⊆ A(S1)∩A(Op). The

two components can therefore join in a cooperation that generates a transition to the

state s j:

s j = . . . ¤¢
F()

S1(i1 +1) ¤¢
F()

Op1

and according to the cooperation semantics rule the rate of the transition from si to s j

is qi j = e. Therefore the underlying assumption of this approach is that a coding region

expresses a protein with a duration following an exponential distribution with parame-

ter e. To the best of our knowledge, there is no scientific evidence of such a behaviour

of the actual biology entity. However the exponential assumption is mandatory for the

construction of a CTMC stochastic process and it is usually accepted when no better

characterization is known. A similar approach for modelling gene expression has been

firstly proposed by Cardelli et al. [16] in a work limited only to gene networks and

using π-calculus (see Section 2.2).

4.3.3 Transcriptional regulation processes

A transcriptional regulation process can be a promoter activation or repression. Firstly

we consider the repression scenario. S1 is a species defined as transcriptional regula-
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tion factor for the operon region Op1. Therefore current state si is in the form:

si = . . . ¤¢
F()

S1(i1) ¤¢
F()

Op1

and the components representing the species and the operon region are in the form:

S1(i1) = . . . +(P bind SRep, i).S1(i1)

Op1 = . . . +(P bind SRep,b).(P unbind SRep,r).Op1

and they can synchronize on action P bind SRep since {P bind SRep} ⊆ A(S1)∩
A(Op). The two components can therefore join in a cooperation that generates a tran-

sition to the state s j:

s j = . . . ¤¢
F()

S1(i1) ¤¢
F()

(P unbind SRep,r).Op1

and according to the cooperation semantics rule the rate of the transition from si to s j

is qi j = b ∗ i. Therefore the underlying assumption of this approach is that each tran-

scription factor molecule in population S has a independent exponential instantaneous

probability b of binding to the free operon region. When the binding occurs, the operon

regions enter in an inhibited state in which expression is disabled. This state lasts until

an action P unbind SRep occurs. That action represents the unbinding of the molecule

and has exponential rate r.

The activation scenario follows the same structure except that the subsequent action

to the binding is an operon expression, thus replenishing the species for which it codes,

in addition to the constitutive expression.

A similar approach for modelling gene repression and activation has been firstly

proposed by Cardelli et al. [16] in a work limited only to gene networks and using

π-calculus (see Section 2.2).

4.4 Translation from PEPA to PRISM

In this section we propose an automatic translation from a model developed in the

PEPA language to a model in the PRISM language. The conversion is merely syntac-

tical such that the probabilistic process defined is the same continuous time Markov
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chain. PRISM is a probabilistic symbolic model checker that provides support for the

analysis of probabilistic models, such as continuous time Markov chains (see Section

2.4). There are several reasons for which we choice to convert the models to PRISM.

Firstly, as explained in Section 2.3, the analysis tools developed for the PEPA lan-

guage (i.e. the PEPA Workbench) are not suitable for our purpose. They implement

the original PEPA semantics (Figure 2.3) and are not easily extendible to the slightly

modified one that we defined (Figure 2.4). Secondly, PRISM permits state-of-the-art

CTMCs analysis features such as Monte-Carlo simulation, probabilistic model check-

ing, transient and steady state analysis, manual debugging and offers a graphical user

interface. Moreover, PRISM already offers the function to compile models written in

PEPA to its format. Again only the original PEPA semantics is implemented, but the

theoretical mapping between the two languages is established. Therefore we do not

need to prove the existence of such a mapping, and we simply present in Table 4.2

some pseudo-code translation rules. Informally, each PEPA component is translated

into a PRISM module and each PEPA action into a PRISM command. The compo-

nents that represent reactions are translated as actions in the module Rates. PRISM

modules run in parallel and act like cooperative PEPA components. PRISM variables

are used to replicate the sequential structure of PEPA processes.



4.4. Translation from PEPA to PRISM 47

Entity in PEPA in PRISM
Molecules A(minA) module A
definitions . . . levelA[minA..maxA] init initA;
for protein A A(maxA) endmodule
Molecules population in module A:
increasing of A(i) = . . .+(act,rate).A(i+ j) [act] (levelA+j≤maxA) :
j molecules. rate→levelA’=levelA+j;
Molecules population in module A:
decreasing of A(i) = . . .+(act,rate).A(i− j) [act] (levelA-j≥minA) :
j molecules. rate→levelA’=levelA-j;
Protein A in module A:
repressor for A(i) = . . .+(bind rep,rate).A(i) [bind rep] (levelA>0) :
operon region Op. rate→levelA’=levelA;
Protein A in module A:
activator for A(i) = . . .+(bind act,rate).A(i) [bind act] (levelA>0) :
operon region Op. rate→levelA’=levelA;
Expression of module Op
operon region Op = . . .+(OpExp,rate).Op [OpExp] (check=0) :
Op. rate→true;

endmodule
Activation of Op = . . .+(bind act,rate). in module Op:
operon region Op (OpExp,rate2).Op [bind act] (check=0) :
by protein A. rate→check=1;

[OpExp] (check=1) :
rate2→check=0;

Repression of Op = . . .+(bind rep,rate). in module Op:
operon region Op (unbind rep,rate2).Op [bind rep] (check=0) :
by protein A. rate→check=1;

[unbind rep] (check=1) :
rate2→check=0;
in module Rates

Reaction R. R = (act,rate).R [act] (true) : rate→true;
endmodule

Table 4.2: Rules for the conversion from PEPA syntactical structures to PRISM code.





Chapter 5

Modelling and Analysis in Synthetic

Biology

The current Synthetic Biology ability to handle organisms is arguably focused at the

molecular level of the cell. Therefore, a valid modelling framework must offer prim-

itives able to easily represent the molecular fundamental processes that regulate the

living organisms’ building-block internal and external behaviours. These processes are

inherently complex because they are the results of complicated biological networks, in

which functional and multifunctional entities interact in a selective and often non-linear

fashion [5]. In this complicated scenario, human understanding tries to categorise net-

works according to patterns and functionalities: regulatory gene networks, metabolic

networks, signalling pathway networks, membrane networks and so on. On the top of

current biological knowledge, in the discipline of Systems Biology the paradigms of

the individual mechanisms underlying these networks’ behaviours have been recently

identified. In Section 5.1, Section 5.2 and Section 5.3 we aim to show that the stochas-

tic process algebra approach is suited to representing these fundamental mechanisms.

In the first we focus on biochemical reaction networks, in the second on gene regu-

latory networks and in the last on membrane and transport networks. In Section 5.4

we present the model of a real synthetic system that was realized in the context of the

iGEM 2006 competition.

For each example we report the automatically generated PEPA model and time-

course plots of the system behaviour calculated using stochastic simulations. When

meaningful, we analyse the models using probabilistic model checking techniques.

The PRISM codes can be found in the Appendix.

49
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5.1 Common patterns in biochemical reactions’ networks

Some living organisms’ main processes, such as metabolism and signalling response,

rely on a constant dynamical flux of material and information propagated by highly in-

terconnected networks of chemical reactions [28]. In these contexts, the term reaction

identifies processes with possibly very different physical mechanisms.

Metabolic networks consist mainly of chemical transformation of one type of molecules

into another type: catabolic reactions are breakdowns of complex compounds to ob-

tain energy and raw material, anabolic reactions are constructions of complexes of

smaller molecules for cellular functioning needs. In both, the reactions are usually

catalyzed by enzymes that act as central regulatory nodes in the reagents-to-products

fluxes. Enzymatic reactions can be activated or inactivated by particular molecules

called effectors.

Reactions in Signalling pathway networks involve the same type of mechanisms as

in metabolic networks but the substrate modifications are usually achieved by activation-

inactivation through phosphotransfer systems, resulting in phosphorylations, methyla-

tions or acetylations.

In the next subsections we show how the principal type of reactions can be mod-

elled in the Synthetic Biology framework we are proposing.

5.1.1 Proteins’ Degradation

Proteins are polypeptide chains made of amino acids that are essential parts of the or-

ganisms and participate in every process within the cell. The concentrations at which

they are present in the cytosol or in the cell’s other regions is therefore a fundamen-

tal aspect for understanding biomolecular mechanisms. The compounds’ concentra-

tions in time are the result of synthesis and degradation processes. At the steady-state

level the concentration is maintained by the balance between synthesis and degrada-

tion rates. In nature, the degradation process is the result of a series of complicated

interactions with enzymatic pathways. In modelling, the process is usually abstracted

as a single reaction representing the destruction of the polypeptide chain. Each single

protein is thought to have an independent probability of undertaking degradation, as in

Figure 5.1.

Here we discuss the simple example of protein A present in the cell in the number of

one hundred molecules. Each individual has an exponentially distributed probability

with parameter kDeg of being degraded. The automatically derived process algebra
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Figure 5.1: Graphical representation of the Protein’s Degradation pattern.

PEPA processes definitions
Name Body Conditions
A(0) = (null,1).A(0)
A(i) = (Deg, i).A(i−1) 1≤ i≤ 100
Deg = (Deg,kDeg).Deg

PEPA system definition
A(100) ¤¢

{Deg}Deg

Number of states: 101
Number of transitions: 101

Table 5.1: PEPA model definition and information about the associated CTMC for the
Protein’s Degradation pattern.

model is composed of one hundred and two simple processes that could cooperate on

the degradation action Deg (PEPA code in Table 5.1, PRISM code in Appendix A.0.1).

Of the one hundred processes representing A population, only one is active at each

time. An occurrence of the action leads to the decrease of A’s population by one unit.

The resulting stochastic process is a continuous time Markov chain with few states

and transitions. Each state represents a possible population of A (from 0 to 100) and

from each state (except for A(0)) there is a degradation transition. Intuitively, the

velocity of degradation of the protein population is faster when the population is bigger

and slower when it reaches few elements. In Figure 5.2 there are stochastic simulations

that show the behavioural change when the degradation probabilistic rate constant is

changed. The first plot presents the time course of a single simulation run where the

latter presents the average behaviour of five hundred simulation runs.

Using model checking techniques is possible to calculate exact probabilities of the

behaviour of the system, instead of relying on approximate information given by av-

erages of simulation runs. For example we may ask “what is the probability of there

being i molecules of A at time T?”. The corresponding CSL query is given by the

formula P./?[trueU[t,t](A = i)]. Figure 5.3 reports the resulting distribution of A popu-
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Figure 5.2: Stochastic simulations for the Protein’s Degradation pattern with InitA=100
and different values for kDeg. a) Single simulation run. b) Average of 500 simulation
runs.

lation with i ranging from 0 to 100 and time ranging from 0 to 100 with a discretized

step of 1 unit.

5.1.2 Irreversible and Reversible Reactions

In living cells, biochemical reactions are fundamental processes that help to sustain

life and allow cells to function. The term refers to the broad range of chemical re-

actions which take place in all living organisms. Examples of mechanisms for which

biochemical reactions occur are oxidation, reduction, movement of functional groups,

bond-breaking and bond-forming reactions. To name only a few of thousands, in the

organisms they are responsible of processes such as conversion of food into energy,

respiration and nerve impulse reaction. Reactions happen at the molecular level as

collection of elementary processes (also called elementary steps or elementary reac-

tions) that contribute to the overall reaction occurrence. The sequence of elementary

processes explain to us the actual physical flow of the reaction.

Since it is very difficult to identify the actual elementary processes of a reaction,

proposals of mechanisms are usually derived from experimental observation. A mech-

anism is a rationalization of a chemical reaction. In our modelling scenario we suppose

to have mechanisms for all the reactions we seek to represent. Therefore we represent

them as networks of elementary reactions in which substrates interact in order to form

products. Under this assumption our modelling framework generates time rates for the

reaction according to the law of mass action. An irreversible reaction is a chemical
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Figure 5.3: Plot representing the probabilistic distribution of A protein population in time
in the Protein’s Degradation pattern (initA=100, kDeg=0.8). The probability of having i
molecules in time t has been calculated using model checking techniques. Time has
been discretized with a unitary step from 0 to 100.

Figure 5.4: Graphical representation of the Reversible Reaction pattern.



54 Chapter 5. Modelling and Analysis in Synthetic Biology

PEPA processes definitions
Name Body Conditions
A(0) = (R2,1).A(1)
A(i) = (R1, i).A(i−1)+(R2,1).A(i+1) 1≤ i≤ 499
A(500) = (R1, i).A(499)
B(0) = (R2,1).B(1)
B(i) = (R1, i).B(i−1)+(R2,1).B(i+1) 1≤ i≤ 499
B(500) = (R1,500).B(499)
C(0) = (R1,1).C(1)
C(i) = (R2, i).C(i−1)+(R1,1).C(i+1) 1≤ i≤ 499
C(500) = (R2, i).C(499)
R1 = (R1,kR1).R1
R2 = (R2,kR2).R2

PEPA system definition
(A(350) ¤¢

{R1,R2}B(200) ¤¢
{R1,R2}C(250) ¤¢

{R1} R1) ¤¢
{R2} R2

Number of states: 351
Number of transitions: 700

Table 5.2: PEPA model definition and information about the associated CTMC for the
Reversible Reaction pattern.

reaction that takes place in only one direction and thus proceeds finally to completion.

On the contrary, a reversible reaction can proceed from substrate to products and vice

versa. In Figure 5.4 we present an example considering species A and B that can per-

form reaction R1 to form species C (for example as complexation) and considering

species C that can perform reaction R2 to form the species A and B (for examples as

decomplexation).

The PEPA model in Table 5.2 represents the reversible reaction R modelled as

combination of reaction R1 and R2. Figure 5.5 shows the simulated behaviour of the

reaction when only the forward reaction R1 is considered active and compares it when

also the backward reaction R2 is considered. As expected, in the first case the reaction

proceed until consuming of substrates A and B. In the latter case, since the rate of

reaction R2 is faster, the steady-state is reached at the concentrations’ levels where

forward and backward reaction rates are at the equilibrium (PRISM code in Appendix

A.0.2).

It is possible to use CSL logic in order to investigate the probability of a protein

population to be in a certain numeric range. For example we may ask ‘what is the
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Figure 5.5: Stochastic simulations for the Irreversible and Reversible Reaction pattern.
a) Single simulation run of the irreversible reaction R1 (R2 is not cosidered). b) Aver-
age of 500 simulation runs of the irreversible reaction R1 (R2 is disabled). c) Single
simulation run of the reversible reaction R (R1 and R2 considered). d) Average of 500
simulation runs of the reversible reaction R (R1 and R2 considered).

probability that the population of protein X will be in between a lower bound lb and an

upper bound ub at time T?”. The question can be translated as the probabilistic logic

formula P./?[trueU[t,t](lb < X < ub)]. Figure 5.6 shows the probabilities of protein A,B

and C populations being respectively in between 430 and 470, 290 and 310, 145 and

155 molecules, in the time interval from 0 to 100 (time discretized with unitary step).

5.1.3 Enzymatic Reactions

Enzymes are large protein molecules that act as biological catalysts, occurring in reac-

tions as chemical accelerator without being consumed. The enzymes’ concentrations

and activities inside the cell are fundamental aspects for the velocity and regulation
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Figure 5.6: Plot representing the probabilities of A,B and C protein populations to be in
a particular range in time period 0 to 100 (time discretized with unitary step).

of chemical transformation fluxes. Enzymes’ activity is specific for a certain set of

reactions and chemical substrates and depends in efficiency on external factors such as

pH and temperature. The common mechanism rationalization for enzymatic reactions

proposes them as the combination of two elementary reactions: the reversible binding

of a substrate molecule to an enzyme molecule and the irreversible transformation of

such complex into a product individual and the enzyme itself. In our modelling frame-

work we represent such reactions as in Figure 5.7. The automatically generated PEPA

model (in Table 5.3) is composed of the processes representing the enzyme molecules

E, the reagent molecules A, the complex A-E and the product P. Reactions R1 and

R2 represent the reversible reaction between E and A, reaction R3 represent the irre-

versible reaction between A-E and P. The stochastic simulation graphs (Figure 5.8)

help in understanding the time-course of the reaction. The binding rate of enzyme and

substrate is faster by several degrees than the production rate, thus in the system the

formation of complex A-E builds up early. The production of P is thus regulated by

the available maximal amount of E and leads to a complete transformation of A in P

with a linear behaviour. The PRISM code is listed in Appendix A.0.3.

In addition to their effect of speeding up reactions, enzymes are also involved in

metabolic regulation in various way. Effectors, that are proteins or other molecules,

can bind with different species involved in the enzymatic reaction causing a reaction

inhibition. The mechanisms of inhibition can be several, for example the irreversible

binding of effectors to enzymes or to the enzyme-substrate complex. These inhibition

regulations can be modelled in our framework by adding to the template representation

the effector species and its interaction with the regulated species.
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Figure 5.7: Graphical representation of the Enzymatic Reaction pattern.

PEPA processes definitions
Name Body Conditions
A(0) = (R2,1).A(1)
A(i) = (R1, i).A(i−1)+(R2,1).A(i+1) 0 < i < 300
A(300) = (R1,300).A(299)
E(0) = (R2,1).E(1)+(R3,1).E(1)
E(i) = (R1, i).E(i−1)+(R2,1).E(i+1)+(R3,1).E(i+1) 0 < i < 100
E(100) = (R1,100).E(99)
AE(0) = (R1,1).AE(i+1)
AE(i) = (R2, i).AE(i−1)+(R3, i).AE(i−1)+(R1,1).AE(i+1) 0 < i < 300
AE(300) = (R2,300).AE(299)+(R3,300).AE(299)
P(i) = (R3,1).P(i+1) 0≤ i < 300
P(300) = (null,1).P(300)
R1 = (R1,kR1).R1
R2 = (R2,kR2).R2
R3 = (R3,kR3).R3

PEPA system definition
(((A(300) ¤¢

{R2,R1}E(100) ¤¢
{R1,R2,R3}AE(0) ¤¢

{R3} P(0) ¤¢
{R1} R1) ¤¢

{R2} R2) ¤¢
{R3} R3)

Number of states: 25351
Number of transitions: 75151

Table 5.3: PEPA model definition and information about the associated CTMC for the
Enzymatic Reaction pattern.
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Figure 5.8: Stochastic simulations for the Enzymatic Reaction pattern with kR1=1,
kR2=0.01, kR3=0.1. a) Single simulation run. b) Average of 500 simulation runs.

5.2 Common patterns in gene regulatory networks

In living organisms, the genome is involved in controlling fundamental cellular pro-

cesses such as response to external stimulus, the replication of genetic information be-

fore the division, the regulation of metabolic fluxes and cell’s differentiation [8]. Gene

regulatory networks (GRNs) are therefore of immense importance for understanding

and controlling the cell’s behaviour. The DNA structures made of nucleotide sequence

regions contain the information used to synthesize proteins, which in turns might be

transcription regulation factors for other proteins’ synthesis or might participate in

metabolic and signalling networks. The synthesis of a protein is a complex process

compose of several steps that start with the transcription of the DNA nucleotide se-

quence in RNA, which in turn is transformed in mRNA and finally into the protein.

In between each step, various forms of regulation occur in order to control the final

expression efficiency for the particular protein, therefore regulating the functions in

which it is involved. For Synthetic Biology, the study of gene expression regulation

caused by gene regulatory network interactions is of fundamental importance, because

the extent to which we can modify organisms is at the moment limited to introduction

of synthetic gene sequences (see Section 2.1).

The data obtained from the sequencing projects combined with experimental and

system oriented analysis permits the characterization of DNA sequencing with func-

tional abilities. The Registry of Standard Biological Parts is a library of functional parts

such as promoters, protein coding regions and terminators. In the next subsections we
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present our modelling approach when functional parts are composed to obtain gene

regions expression and transcriptional factor gene regulations. In the last subsection

we propose a specific representation for the transcription and translation phases.

5.2.1 Gene Expression

A gene is a DNA sequence composed of functional and non functional parts. Broadly

speaking, a gene usually contains a promoter region, which controls the activity of

a gene, and coding and non-coding sequences. The coding sequences determine the

product of gene expression while the non-coding sequences might regulate other as-

pects of expression. Using the graphical notation it is possible to represent a operon

structure or a gene structure. The operon structure, usually found in prokaryotes, con-

sist of a promoter region followed by several regions that code for different proteins.

In the common definition of gene, the protein coding regions are limited to one.

In Figure 5.9 we represent a gene composed of a promoter region P that controls the

expression of the protein coding region PCA. PCA codes for protein A. The degradation

of the protein A is also considered as reaction Deg. In this representation the promoter

does not have any transcriptional factor interactions. Therefore, it is supposed to be

constitutively expressing the downstream region with an exponentially distributed rate

eP. The automatically generated PEPA model (in Table 5.4, PRISM code in Appendix

A.0.4) is composed of three processes representing the gene region, the degradation

reaction and the protein population. Stochastic simulations of the systems can be seen

in Figure 5.10. Leaving the degradation stochastic constant rate unchanged, we vary

the expression stochastic constant in order to investigates the population size at the

steady state and during the building up phase.

Using model checking formula P./?[trueU[t,t](A = i)] it is possible to investigate

“what is the probability of there being i molecules of A at time T”. Figure 5.11 shows

the resulting distribution of A population with i ranging from 0 to 100 and time ranging

from 0 to 100 with a discretized step of 1 unit.

5.2.2 Gene Activation and Repression

The mechanisms of gene regulation operates at several levels. One fundamental is

the binding of regulatory proteins, called transcriptional factors, to specific sites on

the promoter region in order to change the transcriptional rate of the downstream cod-

ing regions. An activator is a transcriptional factor that causes a speed up of the rate
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Figure 5.9: Graphical representation of the Gene Expression pattern.

PEPA processes definitions
Name Body Conditions
A(0) = (PExp,1).A(1)
A(i) = (Deg, i).A(i−1)+(PExp,1).A(i+1) 1≤ i≤ 299
A(300) = (Deg,300).A(299)
Deg = (Deg,kDeg).Deg
POp = (PExp,eP).POp

PEPA system definition
(A(0) ¤¢

{PExp}POp) ¤¢
{Deg}Deg

Number of states: 301
Number of transitions: 600

Table 5.4: PEPA model definition and information about the associated CTMC for the
Gene Expression pattern.
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Figure 5.10: Stochastic simulations for the Gene Expression pattern with kDeg=0.01
and different values for eP. a) Single simulation run b) Average of 500 simulation runs.
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Figure 5.11: Plot representing the probabilistic distribution of A protein population in
time in the Gene Expression pattern (initA=0, kDeg=0.01, kP=0.8). The probability of
having i molecules in time t has been calculated using model checking techniques.
Time has been discretized with a unitary step from 0 to 100
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Figure 5.12: Graphical representation of the Gene Repression and Inducible System
pattern.

by enhancing the attraction of RNA polymerase (positive control). On the contrary,

a repressor is a transcriptional factor that causes a slow down of the rate by disturb-

ing the bind of RNA polymerase on the promoter site (negative control). In general

prokaryotic cells are controlled by negative control systems, meaning that prokaryotic

genes are expressing by default and RNA polymerase does not require any factor to

initiate transcription. Eukaryotic organisms generally are governed by positive con-

trol systems, meaning that eukaryotic genes are not expressing by default and RNA

polymerase requires general and specific transcription factors to initiate transcription.

The actual biological mechanisms can be very different but such categorization is

useful for description and analysis purposes.

The effect of the transcriptional factor population on the transcription rate is in-

fluenced by characteristics such as the affinity with the binding region site, the con-

centration of the factors, the presence of co-factors and so on. In the context of Syn-

thetic Biology, activator and repressor effects play a major role in designing on and off

switches of protein region expression. At the time of this writing, in the Registry of

Standard Biological Parts are present 22 coding regions for repressors and activators

proteins together with more than 50 promoter sequences than might be composed in

order to obtain complex regulatory behaviours. Examples for the repressor category

are Lac and Tet while Lamba Cl is an exponent for the activation category.

In Figure 5.12 is presented a simply regulatory scenario with a constitutively on

promoter P that can be repressed by protein Rep (xEff initial population is set to zero)

and in Table 5.5 the corresponding PEPA code (PRISM code in Appendix A.0.6). In

Figure 5.14 are depicted stochastic simulations of the system with different concentra-
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Figure 5.13: Graphical representation of the Gene Activation and Repressible System
pattern.

tions of the repressor Rep. The incidence of the repressor population on the expression

rate of the downstream coding regions is defined by the binding stochastic constant

bP and repression stochastic constant rP. Intuitively, a higher binding rate makes the

repressor population more influential in its repressive effect and a higher repression

rate enhances the duration of the repressor effect on the promoter.

In Figure 5.13 it is depicted a regulatory scenario with a constitutively off promoter

P activated by protein Act (xEff initial population is set to zero) and in Table 5.6 is pre-

sented the corresponding PEPA code (PRISM code in Appendix A.0.6). The stochastic

simulations in Figure 5.15 represent the system behaviour at different concentrations

of the activator Act. The incidence of the activator population on the expression rate

of the downstream coding regions is defined by the binding stochastic constant bP and

the activation stochastic constant aP. The binding rate has the same effect as in the

repressor case, a higher activator rate causes an increase in the transcriptional rate.

5.2.3 Inducible and Repressible Systems

One form of regulation of the gene transcription is given by the existence of effectors

for the repressor and activator proteins. These effectors are molecules that can bind

with the transcriptional regulators and change their functions. Two type of effects are

possible: the effector can bind the non-active form of the transcriptional regulator and

activate it (positive co-factor) or the effector can bind the active form and inactivate it

(negative co-factor). These forms are present in nature for both repressor and activator

transcriptional factors thus determining the existence of two type of systems: inducible
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and repressible. In an inducible system the gene expression is off (because repressed

or not activated), unless there is the presence of an effector molecule (called inducer)

that can activate the gene expression (by activating the activator or inactivating the re-

pressor). In a repressible system the gene expression is on (because not repressed or

activated), unless there is the presence of an effector molecule (called corepressor) that

deactivate the gene expression (by deactivating the activator or activating the repres-

sor). Therefore, there exist repressible and inducible systems both in negative and in

positive control scenarios.

In Figure 5.12 we present an inducible system in a negative control scenario: the

repressor molecule is usually active and it is inactivated by binding with the inducer.

The PEPA code is detailed in Table 5.5 (PRISM code in Appendix A.0.5) and some

stochastic simulations in Figure 5.14. The stochastic simulations permit us to analyse

the behaviour of the repressible system under different conditions: with no presence

of the repressor, with small presence of the repressor, with consistent presence of the

repressor, with consistent presence of the repressor and few of the inducer, with the

consistent presence of the repressor and the inducer. Here we do not report the model

of an inducible system in a positive control scenario, but the model is intuitively similar.

In Figure 5.13 we present a repressible system in a positive control scenario: the ac-

tivator molecules is usually active and it is inactivated by binding with the co-repressor.

The PEPA code is detailed in Table 5.6 (PRISM code in Appendix A.0.6) and stochas-

tic simulations are depicted in Figure 5.15. From the time-course plotting of protein

concentration it is possible to compare the system behaviour under different conditions:

with no presence of the activator, with small presence of activator, with consistent pres-

ence of the activator, with consistent presence of activator and few of the co-repressor,

with the consistent presence of the activator and the co-repressor. Here we do not re-

port the model of a repressible system in a negative control scenario, but the model is

intuitively similar.

In biology an example of repressible systems is the Trp operon and of inducible

systems is the Lac operon.

5.2.4 Transcription and Translation Processes

Gene expression is a complex process composed of several sub-steps in between the

initiation of transcription and the synthesis of the final functional proteins. Commonly

the mechanism is regarded as the sequence of two macro-steps: the transcription phase
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PEPA processes definitions
Name Body Conditions
A(0) = (PExp,1).A(1)
A(i) = (PExp,1).A(i+1)+(Deg, i).A(i−1) 0 < i < 300
A(300) = (Deg,300).A(299)
E f f (0) = (null,1).E f f (0)
E f f (i) = (Ind, i).E f f (i−1) 0 < i≤ 300
Rep(0) = (null,1).Rep(0)
Rep(i) = (P bind RepRep, i).Rep(i)+ 0 < i≤ 300

(Ind, i).Rep(i−1)
POp = (PExp,eP).POp+

(P bind RepRep,bP).POp+
(P unbind RepRep,rP).POp

Ind = (Ind,kInd).Ind
Deg = (Deg,kDeg).Deg

PEPA system definition
((((POp ¤¢

{PExp}A(0)) ¤¢
{P bind RepRep}Rep(xRep)) ¤¢

{Ind}E f f (xE f f )) ¤¢
{Ind} Ind) ¤¢

{Deg}Deg

Number of states: 121002 (xEff=300, xRep=200)
Number of transitions: 422001 (xEff=300, xRep=200)

Table 5.5: PEPA model definition and information about the associated CTMC for the
Gene Repression and Inducible System pattern.
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PEPA processes definitions
Name Body Conditions
A(0) = (PExp,1).A(1)
A(i) = (PExp,1).A(i+1)+(Deg, i).A(i−1) 0 < i < 300
A(300) = (Deg,300).A(299)
E f f (0) = (null,1).E f f (0)
E f f (i) = (CoRep, i).E f f (i−1) 0 < i≤ 300
Act(0) = (null,1).Act(0)
Act(i) = (P bind ActAct, i).Act(i)+ 0 < i≤ 300

(CoRep, i).Act(i−1)
POp = (PExp,eP).POp+

(P bind ActAct,bP).
(PExp,rP).POp

CoRep = (CoRep,kCoRep).CoRep
Deg = (Deg,kDeg).Deg

PEPA system definition
((((POp ¤¢

{PExp}A(0)) ¤¢
{P bind ActAct}Act(xAct)) ¤¢

{CoRep}E f f (xE f f )) ¤¢
{CoRep}CoRep) ¤¢

{Deg}Deg

Number of states: 121002 (xEff=250, xRep=200)
Number of transitions: 421800 (xEff=250, xRep=200)

Table 5.6: PEPA model definition and information about the associated CTMC for the
Gene Activation and Repressible System pattern.
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Figure 5.14: Stochastic simulations (single run) for the Gene Repression and Inducible
System pattern with kDeg=0.005, kInd=0.00005, eP=0.8, bP=0.05 and rP=0.8. a) Re-
pressor and effector population is zero. b) Repressor population is 50 molecules. c)
Repressor population is 200 molecules. d) Repressor population is 200 molecules and
effector population is 180 molecules. e) Repressor population is 200 molecules and
effector population is 300 molecules.
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Figure 5.15: Stochastic simulations (single run) for the Gene Activation and Repressible
System pattern with kDeg=0.005, kCoRep=0.00005, eP=0.009, bP=0.01 and aP=0.8.
a) Activator and effector population is zero. b) Activator population is 30 molecules.
c) Activator population is 200 molecules. d) Activator population is 200 molecules and
effector population is 170 molecules. e) Activator population is 200 molecules and
effector population is 250 molecules.
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and the translation phase. Transcription is the process by which the genetic informa-

tion contained in a stable DNA molecule is copied by specific enzymes into a com-

plementary, more volatile, nucleotide RNA strand. The RNA information is then con-

verted into an intermediate mRNA form, with biological mechanisms that vary widely

between prokaryotes and eukaryotes. Translation is the process, occuring in the cy-

tosol, by which the ribosome complexes interact with the mRNA molecules in order to

assemble the proteins. Ribosomes use mRNA genetic information as a template for re-

cruiting the right sequence of amino acids entities, according to specific Genetic Code

rules.

Important forms of gene expression control involve mechanisms at the level of

mRNA populations, therefore it might be necessary to consider them in systems’ mod-

elling. Among others, aspects that regulate mRNA populations are the degradation

rate, the affinity of binding with the ribosome, the velocity of translation and the inter-

action with other RNA molecules (for example RNA interference mechanisms).

In Figure 5.16 is depicted the situation of two protein coding regions controlled

by the same promoter region in which the transcription and translation processes have

been modelled specifically. The direct products of the protein coding regions are re-

spective mRNA populations, subjected to an individual degradation and translation

process. Therefore the mRNA populations are replenished at the same rate by the

promoter control, but differences in the final proteins concentrations can be obtained

setting different degradation and translation stochastic constants. In Table 5.7 is pre-

sented the automatically generated PEPA code (PRISM code in Appendix A.0.7). In

Figure 5.17 are shown differences in mRNA and protein populations’ behaviour under

different settings of the degradation and translation constants. Note that, in this mod-

elling approach, RNA interference mechanisms might be modelled as reagent-product

reactions among mRNA populations.

5.3 Common patterns in membrane and transport net-

works

The cell structure is composed of several subarea units that are separated by mem-

branes. The plasma membrane surrounds the cell and separates its internal environ-

ment from the external world. Other membranes divide the internal area defining

enclosed spaces or compartments. Compartments’ primary function is to maintain
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PEPA processes definitions
Name Body Conditions
A(0) = (TransA,1).A(1)
A(i) = (TransA,1).A(i+1)+(DegA, i).A(i−1) 0 < i < 100
A(100) = (DegA,100).A(99)
B(0) = (TransB,1).B(1)
B(i) = (TransB,1).B(i+1)+(DegB, i).B(i−1) 0 < i < 100
B(100) = (DegB,100).B(99)
mA(0) = (PExp,1).mA(1)
mA(i) = (PExp,1).mA(i+1)+(DegmA, i).mA(i−1)+ 0 < i < 100

(TransA, i).mA(i−1)
mA(100) = (DegmA,100).mA(99)+(TransA,100).mA(99)
mB(0) = (PExp,1).mB(1)
mB(i) = (PExp,1).mB(i+1)+(DegmB, i).mB(i−1)+ 0 < i < 100

(TransB, i).mB(i−1)
mB(100) = (DegmB,100).mB(99)+(TransB,100).mB(99)
POp = (PExp,eP).POp
DegA = (DegA,kDegA).DegA
DegB = (DegB,kDegB).DegB
DegmA = (DegmA,kDegmA).DegmA
DegmB = (DegmB,kDegmB).DegmB
TransA = (TransA,kTransA).TransA
TransB = (TransB,kTransB).TransB

PEPA system definition
(((((((((POp ¤¢

{PExp}mA(0)) ¤¢
{PExp}mB(0)) ¤¢

{TransA}A(0)) ¤¢
{TransB}B(0)) ¤¢

{TransA}TransA)
¤¢

{TransB}TransB) ¤¢
{DegmA}DegmA) ¤¢

{DegmB}DegmB) ¤¢
{DegA}DegA) ¤¢

{DegB}DegB

Number of states: 104060401
Number of transitions: 718150400

Table 5.7: PEPA model definition and information about the associated CTMC for the
Transcription and Translation Processes pattern.
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Figure 5.16: Graphical representation of the Transcription and Translation Processes
pattern.

a biochemical environment different from the external in order to provide particular

favorable conditions for specific reactions or mechanisms. Membranes function is

not only to divide spaces but also to act as selective filter for molecules passage. A

membrane is usually a semipermeable lipid bilayer, made of a double layer of lipid-

class molecules with the possible presence of particular structures that act as channels.

Different mechanisms for the passage of molecules across membrane structures are

known, such as osmosis or vesicular transport. Moreover, processes that occur on the

membrane might be of fundamental importance, as in the case of interactions between

external molecules and membrane receptors.

In certain biological scenarios, it might be necessary to include compartments in-

formation in the cell models. In the context of our modelling framework, the presence

of compartments can be modelled intuitively by defining different species for the same

kind of protein placed in different ambients. Since the compartments act as close areas

for biochemical reactions, this solution permits us to specify reactions for individual

molecules that are in one compartment instead of another one. This approach permits

the representation of static compartment structures. In Section 5.3.1 is presented the

modelling pattern for passive transport among compartments, in Section 5.3.2 is re-
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Figure 5.17: Stochastic simulations for the Transcription and Translation pat-
tern with (if not explicitly stated on the top of each graph) kDegA=KDegB=0.01,
kDegmA=kDegmB=0.02, kTrasA=kTrasB=0.01. a) Single simulation run with the two
proteins having different mRNA degradation rates. b) Average of 500 simulation run
with the two proteins having different mRNA degradation rates. c) Single simulation run
with the two proteins having different translation rates. d) Average of 500 simulation run
with the two proteins having different translation rates.
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Figure 5.18: Graphical representation of the Passive Transport pattern.

ported the approach for the transport using vesicles. In Section 5.3.3 are described

guidelines for representing interactions between receptors and ligands.

5.3.1 Passive Transport

The lipid bilayer that composes membranes is usually permeable to external and inter-

nal small molecules that can cross compartments by osmosis. This transport system is

termed passive because the cell does not spend energy in the process. This is the most

simple mechanism by which external signals and nutrients can enter into and exit from

the cell. Sometimes the process is selective and permits passage only to molecules that

bind with special polarised proteins. These proteins are able to separate the bilayer

structure and carry (on) the targeting molecule.

In Figure 5.18 we present a simple modelling scenario in which protein A can be

present in two different compartments, C1 and C2. The protein populations are repre-

sented as two different species and a reaction is responsible of simulating the osmosis

transfer of individuals from one compartment to the other. The probability of crossing

is higher when the population is higher. In Table 5.8 there is the automatically gen-

erated PEPA code and in Appendix A.0.8 the corresponding PRISM code. In Figure

5.19 are shown stochastic simulations of population behaviour when the transport rate

is changed.

5.3.2 Vesicular Transport

An important mechanism for transport inside and outside the cell is the ability of mem-

branes to expell and engulf vesicles carrying proteins. The exocytosis process start with

the formation of a cavity in the membrane that then pinches off a spherical vesicle con-

taining the material to be transported. The complementary process is called phagocy-

tosis or endocytosis and proceeds by the attachment of the vesicles with the membrane

border and concludes with the taking up of the contained material by the internal en-

vironment. The vesicular transport is particularly important for large molecules (i.e.
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PEPA processes definitions
Name Body Conditions
AC1(0) = (null,1).AC1(0)
AC1(i) = (Transp, i).AC1(i−1) 1≤ i≤ 500
AC2(i) = (Transp,1).AC2(i+1) 0≤ i≤ 499
AC2(500) = (null,1).AC2(500)
Transp = (Transp,kTransp).Transp

PEPA system definition
(AC1(500) ¤¢

{Transp}AC2(0)) ¤¢
{Transp}Transp

Number of states: 201
Number of transitions: 201

Table 5.8: PEPA model definition and information about the associated CTMC for the
Passive Transport pattern.
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Figure 5.19: Stochastic simulations for the Passive Transport pattern. a) Single sim-
ulation run with different values for kTransp. b) Average of 500 simulation runs with
different values for kTransp.
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Figure 5.20: Graphical representation of the Vesicular Transport pattern.
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Figure 5.21: Stochastic simulations for the Vesicular Transport pattern with kExo=0.1,
kPagho=0.005. a) Single simulation run with different values for parameter c. b) Aver-
age of 500 simulation runs with different values for parameter c.

proteins) that cannot cross the membrane by osmosis. The process is termed active

because the cell spends energy in performing the transport.

In Figure 5.20 we present a possible approach in modelling this kind of transport

mechanism. The same protein present in two different compartments C1 and C2 is

represented by two different species. The movement through a vesicles is modelled

as a third species Ves, in which each individual of the population represents a vesicles

traveling from C1 to C2 and carrying c A proteins. The automatically generate PEPA

model (in Tabel 5.9) has been slightly modified because the mass action law is not a

reasonable assumption for the rate of vesicles creation. The creation rate is controlled

only by the stochastic constant kExo.

Using the model checking formula P./?[trueU[t,t](ves = i)] it is possible to investi-

gate “what is the probability of there being i vesicles travelling from A to B at time T”.

Figure 5.22 shows the resulting distribution of Ves population with i ranging from 0 to

15 and time ranging from 0 to 500 with a discretized step of 50 units.
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Figure 5.22: Plot representing the probabilistic distribution of the number of vesicles
travelling from compartment A to compartment B in time in the Vesicular Transport pat-
tern (kExo=0.1, kPagho=0.005, c=10). The probability of having i vesicles travelling at
time t has been calculated using model checking techniques. Time has been discretized
with a step of 50 units from 0 to 500.
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PEPA processes definitions
Name Body Conditions
AC1(0) = (null,1).AC1(0)
AC1(i) = (Exo,1).AC1(i− c) c≤ i≤ 500
AC2(i) = (Pagho,1).AC2(i+ c) 0≤ i≤ 500− c
AC2(500− i) = (null,1).AC2(500− i) 0 < i≤ c
Ves(0) = (Exo,1).Ves(1)
Ves(i) = (Exo,1).Ves(i+1)+(Pagho, i).Ves(i−1) 0≤ i≤ 499
Ves(500) = (Pagho,500).Ves(499)
Exo = (Exo,kExo).Exo
Phago = (Phago,kPhago).Pagho

PEPA system definition
(AC1(500) ¤¢

{Exo})Ves ¤¢
{Pagho}AC2(0)

Number of states: 1326
Number of transitions: 2551

Table 5.9: PEPA model definition and information about the associated CTMC for the
Vesicular Transport pattern.

5.3.3 Receptor-Ligand Interactions

Cells have developed several mechanisms for handling external signals and process-

ing the appropriate response. Two are the broad categories in which the signals are

carried inside the cell: molecules carrying the information may penetrate the cell by

passive transport and bind to internal receptors or they can be perceived by external

transmembrane receptors. The latter case is of principal importance in the modelling

of signalling pathway networks. The molecule carrying information is called ligand

and it can bind specifically with a particular receptor domain. When the interaction

occurs, the transmembrane receptor is affected by a conformation change in its inter-

nal part. This change triggers an activation signal inside the cell through a reaction

cascade. Finally the receptor comes back to the susceptible form. In order to increase

or decrease the sensitivity to signals during stimulations, cells are able to regulate the

population of their receptors and their state of activity.

In Figure 5.23 we propose a model of these dynamics. The susceptible receptor

population is represented by Rs and the active receptor population by Ra. A suscep-

tible receptor can switch to an active state by binding to a ligand individual L. When

active, a receptor can carry on the signal by activating several protein PAct. With a
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Figure 5.23: Graphical representation of the Receptors-Ligand Interactions pattern.

PEPA processes definitions
Name Body Conditions
Rs(0) = (ProRs,1).Rs(1)+(DeAct,1).Rs(1)
Rs(i) = (ProRs,1).Rs(i+1)+(DegRs, i).Rs(i−1)+ 1≤ i≤ 49

(Act, i).Rs(i−1)+(DeAct,1).Rs(i+1)
Rs(50) = (DegRs,50).Rs(49)+(Act, i).Rs(49)
Ra(0) = (Act,1).Ra(1)
Ra(i) = (Act,1).Ra(i+1)+(Sig, i).Ra(i)+ 1≤ i≤ 49

(DeAct, i).Ra(i−1)
Ra(50) = (Sig,50).Ra(50)+(DeAct,50).Ra(49)
L(0) = (null,1).L(0)
L(i) = (Act, i).L(i−1) 1≤ i≤ 20
PAct(i) = (Sig,1).PAct(i+1) 0≤ i≤ 299
PAct(300) = (null,1).PAct(300)
ProRs = (ProRs,kProsRs).ProRs
DegRs = (DegRs,kDegRs).DegRs
Act = (Act,kAct).Act
DeAct = (DeAct,kDeAct).DeAct
Sig = (Sig,kSig).Sig

PEPA system definition
((((((((Rs(4) ¤¢

{Act} )Ra(0)) ¤¢
{Act}L(20)) ¤¢

{Sig} PAct(0)) ¤¢
{ProRs}ProRs)

¤¢
{DegRs}DegRs) ¤¢

{Act}Act) ¤¢
{DeAct}DeAct) ¤¢

{Sig} Sig

Number of states: 8048565
Number of transitions: 37907700

Table 5.10: PEPA model definition and information about the associated CTMC for the
Receptor-Ligand Interactions pattern.
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Figure 5.24: Stochastic simulations for the Receptor-Ligand Interactions pattern with
kProRs=0.04, kDegRs=0.01, kAct=0.008, kSig=0.8, kDeAct=0.08. a) Single simulation
run. b) Average of 500 simulation runs.

certain probability each receptor can switch back to the inactive form. The susceptible

population is in constant fluctuation, the number regulated by a creation and degrada-

tion rate. In Table 5.10 is presented the automatically generate PEPA model (PRISM

code in Appendix A.0.10). In Figure 5.24 are shown stochastic simulations of the

receptor response when ligands are available for binding.

5.4 Case study

In this section, our modelling approach is applied to a real case study, the Synthetic

Biology device designed and constructed by the Edinburgh Team for the iGEM 2006

competition (see Section 2.1). Along with the graphical notation representation and

the process algebra model, we present the biological description and characterisation

of the standard biological parts (from the Registry of Biological Standard Parts) that

have been used in the construction.

5.4.1 Edinburgh iGEM 2006: the Arsenic Biosensor

As part of the International Genetically Engineered Machine competition (iGEM)

2006, several students from the University of Edinburgh developed a Synthetic Bi-

ology system able to sense and report the presence of arsenic in the water [29]. The

problem of poisoning caused by the presence of arsenic in the drinking water is a
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Figure 5.25: Graphical representation of the Arsenic Biosensor system. The concen-
tration of Urease depends on the arsenate initial concentration xArsenite.

Part (code) Description
PArs (BBa J15301) This part is the promoter region of the Escherichia coli chro-

mosomal ars promoter. It is repressed by ArsR in the absence
of arsenate or arsenite.

PCArsR
(BBa J15101)

This part is the Escherichia coli chromosomal arsR coding
sequence, which encodes the ArsR repressor. The repressor
molecule binds to the ars promoter and represses it in the
absence of arsenate or arsenite.

PCCLI
(BBa C0051)

This is the coding region part for the cI repressor based on cI
repressor from bacteriophage lambda. cI repressor binds to
the cI regulator.

PLCeLac
(BBa J33205)

This part is a hybrid promoter designed to be repressed by
either lambda cI or LacI.

PCUrease (n/a) This part has not been yet characterised in the form of bio-
brick. It is the urease gene cluster containing ureABC gene
regions. It codes for proteins that are able to increase the pH
of cells’ solution.

Term1,2
(BBa B0015)

This part is a transcription terminator, used to stop the tran-
scription of a DNA region.

Table 5.11: The table presents the Registry description of each one of the seven stan-
dard DNA parts used in constructing the Arsenic Biosensor system. The first attribute
is the name we used in the graphical description, in between brackets is reported their
identifier code in the Registry of Standard Biological Parts.
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major issue in several third world countries. Therefore, the system construction was

undertaken in order to produce a cheap and reliable detection system. The output of

the system is a pH change, as response to a dangerous concentration of arsenic in the

water.

This whole-cell arsenic biosensor relies upon the chromosomal arsenic detection

system of Escherichia coli, consisting of the ars promoter and the ArsR repressor pro-

tein, which respond to arsenic in the form of arsenate or arsenite anions. To generate a

pH change, the system relies on the expression of urease by the ureABC gene cluster.

In its internal circuit design, the biosensor uses the lambda repressor system of λ phage

to activate or inactivate the production of urease. The system was constructed as com-

position of several standard biological parts, parts that were taken from the Registry of

Biological Standard Parts or biobricked by the team. A description of the biological

characteristics and functions of each part is given in Table 5.11.

Figure 5.25 presents the internal circuit design of the system. There are two operon

structures, called Device 1 and Device 2. Device 1 is composed of the ars promoter

region followed by a Ars repressor coding region and a cI repressor coding region.

When there is no presence of arsenate, the promoter region is continuously repressed

by the ArsR repressor. Therefore, the concentration of cI repressor is minimal. When

arsenate is present in the water, the ArsR repressor binds with higher affinity to arsenite

molecules, therefore allowing the expression of cI repressor. Device 2 responds to

changes in cI concentration. Under the assumption that there is no lac in the system,

the promoter is on (active) and therefore urease is present in great quantity in the

system. When cI concentration builds up, the hybrid Lac and cI promoter is repressed,

therefore the expression of Urease is blocked and finally the pH decreases.

The system reported here was constructed as a proof of concept example since

the exact calibration in the lab to tune every biological process properly is supposed

to take a minimum of several months of work. We therefore propose here a model

for which rates and population quantities have been taken as reasonable assumptions

or inferred from the onces in the ODE model realised by the Edinburgh team. The

aim of this modelling example is mainly to prove the expressiveness of our modelling

approach, more than to produce an exact quantitative and temporal prediction of the

system behaviour. Table 5.12 presents the PEPA model (PRISM code in Appendix

A.0.11). Figure 5.26 presents the time-course behaviour of populations under three

different initial concentrations: with no, few and high level of arsenic present in the

water. As the graphs show, the model predicts correctly the behaviour of repressor
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proteins and their effects on the promoter regions, as well as in predicting the change

in Urease population.
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PEPA processes definitions
Name Body Conditions
PLCIeLacOp = (PLCIeLacExp,0.08).PLCIeLacOp+

(PLCIeLac bind LCIRep,0.001).
(PLCIeLac unbind LCIRep,0.02).PLCIeLacOp

PArsOp = (PArsExp,0.1).PArsOp+
(PArs bind ArsRRep,0.6).
(PArs unbind ArsRRep,0.2).PArsOp

ArsR(0) = (PArsRExp,1).ArsR(1)
ArsR(i) = (Bind, i).ArsR(i−1)+ 1≤ i≤ 149

(DegArsR, i).ArsR(i−1)+
(PArsRExp,1).ArsR(i+1)+
(PArs bind ArsRRep, i).ArsR(i)

ArsR(150) = (Bind,150).ArsR(149)+
(DegArsR,150).ArsR(149)+
(PArs bind ArsRRep,150).ArsR(150)

LCI(0) = (PCCLIExp,1).LCI(1)
LCI(i) = (PCCLIExp,1).LCI(i+1)+ 1≤ i≤ 149

(DegLCI, i).LCI(i−1)+
(PCCLI bind LCIRep, i).LCI(i)

LCI(150) = (DegLCI,150).LCI(149)+
(PCCLI bind LCIRep,150).LCI(150)

Urease(0) = (PLCIeLacExp,1).Urease(1)
Urease(i) = (PLCIeLacExp,1).Urease(i+1)+ 1≤ i≤ 149

(DegUre, i).Urease(i−1)
Urease(150) = (DegUre,150).Urease(149)
Arsenite(xArsenite) = (Bind,xArsenite).Arsenite(xArsenite)
DegArsR = (DegArsR,0.001).DegArsR
DegLCI = (DegLCI,0.001).DegLCI
DegUre = (DegUre,0.001).DegUre
Bind = (Bind,0.005).Bind

PEPA system definition
(((((((((Arsenite(xArsenite) ¤¢

{Bind}ArsR(0)) ¤¢
{PArs bind ArsRRep,PArsExp}PArsOp) ¤¢

{PArsExp}LCI(0))
¤¢

{PLCIeLac bind LCIRep}PLCIeLac) ¤¢
{PLCIeLacExp}Urease(0))

¤¢
{DegArsR}DegArsR) ¤¢

{DegLCI}DegLCI) ¤¢
{DegUre}DegUre) ¤¢

{Bind}Bind)

Number of states: 13771804
Number of transitions: 82129504

Table 5.12: PEPA model definition and information about the associated CTMC for the
Arsenic Biosensor system.
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Figure 5.26: Stochastic simulations for the Arsenic Biosensor systems model. a) Ar-
senite concentration is zero (single run). b) Arsenite concentration is zero (average of
250 runs). c) Arsenite concentration is low (single run). d) Arsenite concentration is
low (average of 250 runs). e) Arsenite concentration is high (single run). f) Arsenite
concentration is high (average of 250 runs)



Chapter 6

Conclusions

In this final chapter we summarise the outcomes of this thesis work. Section 6.1

presents an overview of the performed work and a critical discussion of the results

obtained. Section 6.2 proposes directions for future work. Section 6.3 concludes with

some final considerations.

6.1 Concluding remarks and critical discussion

This project focused on proposing and evaluating the stochastic process algebra for-

malism as a suitable framework for the design and analysis of biological systems in

the context of Synthetic Biology [1].

The first part of the work consisted of the developing of a graphical notation able to

represent unicellular biological systems whose genome has been synthetically modi-

fied using standard and composable DNA parts. The notation is composed of nine sym-

bols that can be linked together in order to form pattern compositions. The symbols

represent biological entities (biochemical species, promoters, protein coding regions,

transcription terminators) and biological interactions among them (promoter repres-

sion, promoter activation, participation in a reaction, coding for a specific species).

Symbols are enriched with quantitative information about the cardinality of biologi-

cal entities, i.e. size of the populations, and time rate values for processes, i.e. gene

expression. Symbols that represent DNA parts and transcriptional regulatory effects

are identical to the ones adopted in the Library of Standard Biological Parts [3], and

therefore intuitive for the discipline’s research community. Symbols adopted for reac-

tions specification are similar to the ones in the Petri Nets graphical notation, therefore

85
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intuitive for computer scientists. The graphical notation elements have been mapped

into a typed data structure and thus can be saved and accessed in a formal fashion. We

have shown the notation to be informative enough for the representation of important

Synthetic Biology scenarios.

The second part regarded the definition of an automatic conversion from the graph-

ical representation of systems to models written using the stochastic process algebra

PEPA (Performance Evaluation Process Algebra). The adopted modelling solution fol-

lows the ’cells-as-computation’ [6] paradigm and a mechanistic approach. This means

that we represent individual components and processes as abstractions of real biologi-

cal mechanisms and then we derive the system behaviour as a property emerging from

the interactions between elements. This approach brings some characteristic advan-

tages of process algebras to our work, such as flexibility in selecting the correct level

of detail and compositionality of elements, properties that facilitate the design and

hypothesis testing of systems [16]. In this paradigm, we modelled biological entities

as discrete quantities and their behaviour as probabilistic processes, according to the

emerging general consensus that regards stochasticity and noise as important charac-

teristics of biochemical systems mechanisms. In modelling species populations, we

adopted an hybrid (and novel) approach in between the individual representation of

each single molecules, as adopted by the majority of process algebra modelling solu-

tions [14], and the discrete level concentration solutions applied in past PEPA works

[30], [31]. We represented populations as discrete levels of molecules with a unitary

step (a single molecule), therefore facilitating a possible future introduction of our

work in both approaches.

In developing the models, we relied on features common to most process algebra

dialects (sequences of exponentially distributed timed actions, choice operator and co-

operation operator) in order to be representative for the formalism family. Our model

style relies on multi-way synchronization of processes, a feature of PEPA that is not

available in some process algebras but that can usually be mimicked as sequences of

pairwise interactions.

We showed that each PEPA model defines an underlying Continuous Time Markov

Chain stochastic process and discussed the generated state and transition space with

regards to biological mechanisms they represent in the system. In particular we showed

that, when limited to elementary biochemical systems, the underlying CTMC is sound,

as exact derivation of the Master Equation, in the terms firstly proposed by Gillespie
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[24]. In handling gene expression and transcriptional factor regulation aspects, the

resulting stochastic process shows simplified assumptions on DNA-molecules binding

mechanism and time rates. The level of detail appears to be in any case sufficient for

representing the macro effects of such regulatory processes and can be refined in future

works.

The definition of an additional automatic conversion from PEPA models to proba-

bilistic model checker PRISM models was developed in order to enable various types

of system analysis, such as steady state analysis, probabilistic model checking and

stochastic simulations.

Finally, the modelling approach has been applied in the representation and analysis

of several biological examples. We showed how to represent patterns that compose

some of the most important biological networks usually of interest of Synthetic Bi-

ology investigation. In the context of biochemical signalling networks we presented

modelling solutions for protein degradation, reversible and irreversible reactions and

enzymatic reactions. Regarding synthetic gene networks we presented solutions for

the modelling of gene expression, transcriptional regulation effects of activation and

repression, repressible and inducible systems and the specification of transcriptional

and translational processes. In considering membrane and transport networks we con-

structed models for passive and active (vesicular) transport between compartments and

a model of receptors-ligand interactions. For each example we reported its graphi-

cal representation, the automatic generated PEPA model and the related translation in

PRISM language. For each example we ran stochastic simulations of the systems us-

ing the Gillepsie’s Algorithm and showed the behaviour of species populations in time

under different model settings (i.e. varying initial populations or reaction rates). When

meaningful, we showed how to investigate system properties using the logic CSL for

probabilistic model checking. The behaviour of the systems predicted by these analysis

techniques appeared generally to be in accordance with biology literature and results

of others modelling approaches. Moreover, we applied the modelling approach to a

real case study, the Arsenic Biosensor synthetic system developed by the Edinburgh

Team for the iGEM 2006 competition. With these examples we believe to have shown

that our approach, and in general the process algebra formalism, is suitable for repre-

senting fundamental mechanisms and systems of Synthetic Biology interest.

From the definition of the graphical notation to the final translation in PRISM,
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all steps have been presented in a formal fashion, using pseudo-code like definitions

where possible, therefore representing precise implementation guidelines for a future

construction of the modelling workbench.

6.2 Future works

We list here some broad future work tracks that if accomplished can move us forward

to the creation of a more complete modelling framework.

• Implementation: in order to test the applicability of the modelling process here

presented to a wide range of scenarios, the first step is mandatory to be the actual

implementation of a software workbench. The use of pseudo-code instructions

in defining this work should make the construction of the graphical interface and

its conversion to PEPA and PRISM quite a trivial programming task.

• Extensions of symbols: the symbols that we have taken from the Registry of

Standard Biological Parts are a representative subset of the existing onces (at

level of Parts abstraction). For accomplishing a complete mapping, there should

be included support to other kinds of biological entities such as ribosome binding

site parts.

• Connection with the Registry: the MIT hosts the Registry of Standard Biolog-

ical Parts as a free, open and shared public database. The modelling framework

software tool can be programmed to interact with the online database and there-

fore provide the modellers with a complete list of the available parts. The in-

formation can contain important characterisations such as quantitative data and

mechanism details, as well as previously developed models.

• Support to other process algebras: in the ongoing work to define a better

formalism for representing biological systems, several different dialects of the

(stochastic) process algebra formalism have been proposed [14]. Synthetic Biol-

ogy will benefit from these innovations by the application of such novel solutions

to our approach, i.e. the Beta Binders support to species affinity or the compart-

ment dynamics modelling solutions proposed in Brane Calculi.

• Support to the abstraction hierarchy: Synthetic Biology defines a layered

structured abstraction hierarchy for facilitating the construction of synthetic sys-
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tems. It would be interesting to define a formal mapping between these levels

and the abstraction levels used in modelling.

6.3 Final observations

The work proposed in this thesis report is, to the best of our knowledge, the first at-

tempt to define a specific structured relation between the in developing and emerging

discipline of Synthetic Biology and the application of stochastic process algebras to

biological systems modelling. We believe that this first investigation could lead to a

two-fold result. Firstly, it may help in attracting the interest of biologists in adopting

this formalism for systems investigations: the graphical notation that we developed

permits the generation of formal models even to users not familiar with mathematical

and computational languages. Although being in general a correct abstraction, the au-

tomatically generated process algebra model usually needs to be refined with respect to

particular characteristics by a modeler (expert). In this sense, we envisage for process

algebras a role of intermediate language between biologist and bioinformatic profiles

in multidisciplinar research teams.

Secondly, with our work we hope to attract the attention of research groups work-

ing on process algebra formalisms to the fertile ground represented by the Synthetic

Biology discipline. In the usually poorly defined and complex field of biology, formal

language approaches to modelling find major problems in characterising the entities

and processes involved, as well as in finding the related quantitative information. In

this context, Synthetic Biology emerges as one of the few biological fields profoundly

influenced by engineering paradigms. For this reason, the application of process al-

gebras should find a strong affinity with the increasing centrality of concepts such as

standard characterised parts, compositional properties, (sub)systems modularity and

well defined abstraction layers.
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Appendix

A.0.1 PRISM Code for the Protein’s Degradation example

ctmc

//stochastic constant for degradation

const double kDeg =0.05;

//settings for protein A

const int minA=0;

const int maxA=100;

const int initA=100;

module A

levelA:[minA..maxA] init initA;

[Deg] (levelA>minA) -> levelA : levelA’=levelA-1;

endmodule

module Rates

[Deg] (true) -> kDeg : true;

endmodule

//reward definitions for graph plotting

rewards "levelA" true : levelA; endrewards

A.0.2 PRISM Code for the Reversible Reaction example

ctmc

//stochastic constant for R1

const double kR1=0.0001;

//stochastic constant for R2

const double kR2=0.1;
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//settings for protein A

const int minA=0;

const int maxA=500;

const int initA=350;

//settings for protein B

const int minB=0;

const int maxB=500;

const int initB=200;

//settings for protein C

const int minC=0;

const int maxC=500;

const int initC=250;

module A

levelA:[minA..maxA] init initA;

[R1] (levelA>=minA+1) -> levelA : levelA’=levelA-1;

[R2] (levelA<=maxA-1) -> 1 : levelA’=levelA+1;

endmodule

module B

levelB:[minB..maxB] init initB;

[R1] (levelB>=minB+1) -> levelB : levelB’=levelB-1;

[R2] (levelB<=maxB-1) -> 1 : levelB’=levelB+1;

endmodule

module Ci

levelC:[minC..maxC] init initC;

[R1] (levelC<=maxC-1) -> 1 : levelC’=levelC+1;

[R2] (levelC>=minC+1) -> levelC : levelC’=levelC-1;

endmodule

module Rates

[R1] (true) -> kR1 : true;

[R2] (true) -> kR2 : true;

endmodule

//reward definitions for graph plotting

rewards "levelA" true : levelA; endrewards

rewards "levelB" true : levelB; endrewards

rewards "levelC" true : levelC; endrewards
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A.0.3 PRISM Code for the Enzymatic Reaction example

ctmc

//stochastic constant for R1

const double kR1=1;

//stochastic constant for R2

const double kR2=0.01;

//stochastic constant for R3

const double kR3=0.1;

//settings for protein A

const int minA=0;

const int maxA=300;

const int initA=300;

//settings for enzyme E

const int minE=0;

const int maxE=100;

const int initE=100;

//settings for complex AE

const int minAE=0;

const int maxAE=300;

const int initAE=0;

//settings for protein P

const int minP=0;

const int maxP=300;

const int initP=0;

module A

levelA:[minA..maxA] init initA;

[R1] (levelA>=minA+1) -> levelA : levelA’=levelA-1;

[R2] (levelA<=maxA-1) -> 1 : levelA’=levelA+1;

endmodule

module E

levelE:[minE..maxE] init initE;

[R1] (levelE>=minE+1) -> levelE : levelE’=levelE-1;

[R2] (levelE<=maxE-1) -> 1 : levelE’=levelE+1;

[R3] (levelE<=maxE-1) -> 1 : levelE’=levelE+1;

endmodule

module AE

levelAE:[minAE..maxAE] init initAE;

[R1] (levelAE<=maxAE-1) -> 1 : levelAE’=levelAE+1;



94 Appendix A. Appendix

[R2] (levelAE>=minAE+1) -> levelAE : levelAE’=levelAE-1;

[R3] (levelAE>=minAE+1) -> levelAE : levelAE’=levelAE-1;

endmodule

module Pi

levelP:[minP..maxP] init initP;

[R3] (levelP<=maxP-1) -> 1 : levelP’=levelP+1;

endmodule

module Rates

[R1] (true) -> kR1 : true;

[R2] (true) -> kR2 : true;

[R3] (true) -> kR3 : true;

endmodule

//reward definitions for graph plotting

rewards "levelA" true : levelA; endrewards

rewards "levelE" true : levelE; endrewards

rewards "levelAE" true : levelAE; endrewards

rewards "levelP" true : levelP; endrewards

A.0.4 PRISM Code for the Gene Expression example

ctmc

//stochastic constant for Deg

const double kDeg=0.01;

//stochastic constant for A expression

const double eP=0.8;

//settings for protein A

const int minA=0;

const int maxA=300;

const int initA=0;

module A

levelA:[minA..maxA] init initA;

[Deg] (levelA>minA)-> levelA : levelA’=levelA-1;

[PExp] (levelA<maxA)-> 1 : levelA’=levelA+1;

endmodule

module POp

[PExp] (true)-> eP : true;

endmodule
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module Rates

[Deg] (true) -> kDeg : true;

endmodule

//reward definitions for graph plotting

rewards "levelA" true : levelA; endrewards

A.0.5 PRISM Code for the Gene Repression and Inducible System

example

ctmc

//stochastic constant for Deg

const double kDeg=0.005;

//stochastic constant for Ind

const double kInd=0.00005;

//stochastic constant for A expression

const double eP=0.8;

//repressor binding rate

const double bP=0.05;

//repression rate

const double rP=0.8;

//settings for protein A

const int minA=0;

const int maxA=300;

const int initA=0;

//settings for protein Eff

const int minEff=0;

const int maxEff=300;

const int initEff=300;

//settings for protein Rep

const int minRep=0;

const int maxRep=300;

const int initRep=200;

module Eff

levelEff:[minEff..maxEff] init initEff;

[Ind] (levelEff>minEff)-> levelEff : levelEff’=levelEff-1;

endmodule

module Rep
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levelRep:[minRep..maxRep] init initRep;

[Ind] (levelRep>minRep)-> levelRep : levelRep’=levelRep-1;

[P_bind_RepRep] (levelRep>0) -> levelRep : levelRep’=levelRep;

endmodule

module A

levelA:[minA..maxA] init initA;

[Deg] (levelA>minA)-> levelA : levelA’=levelA-1;

[PExp] (levelA<maxA)-> 1 : levelA’=levelA+1;

endmodule

module POp

check:[0..1] init 0;

[PExp] (check=0)-> eP : true;

[P_bind_RepRep] (check=0) -> bP : check’=1;

[P_unbind_RepRep] (check=1) -> rP : check’=0;

endmodule

module Rate

[Deg] (true) -> kDeg : true;

[Ind] (true) -> kInd : true;

endmodule

//reward definitions for graph plotting

rewards "levelA" true : levelA; endrewards

rewards "levelEff" true : levelEff; endrewards

rewards "levelRep" true : levelRep; endrewards

A.0.6 PRISM Code for the Gene Activation and Repressible Sys-

tem example

ctmc

//stochastic constant for Deg

const double kDeg=0.005;

//stochastic constant for CoRep

const double kCoRep=0.00005;

//stochastic constant for A expression

const double eP=0.009;

//activator binding rate

const double bP=0.01;

//activation rate
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const double aP=0.8;

//settings for protein A

const int minA=0;

const int maxA=300;

const int initA=0;

//settings for protein Eff

const int minEff=0;

const int maxEff=300;

const int initEff=250;

//settings for protein Act

const int minAct=0;

const int maxAct=300;

const int initAct=200;

module Eff

levelEff:[minEff..maxEff] init initEff;

[CoRep] (levelEff>minEff)-> levelEff : levelEff’=levelEff-1;

endmodule

module Act

levelAct:[minAct..maxAct] init initAct;

[CoRep] (levelAct>minAct)-> levelAct : levelAct’=levelAct-1;

[P_bind_ActAct] (levelAct>minAct) -> levelAct : levelAct’=levelAct;

endmodule

module A

levelA:[minA..maxA] init initA;

[Deg] (levelA>minA)-> levelA : levelA’=levelA-1;

[PExp] (levelA<maxA)-> 1 : levelA’=levelA+1;

endmodule

module POp

check:[0..1] init 0;

[PExp] (check=0)-> eP : true;

[P_bind_ActAct] (check=0) -> bP : check’=1;

[PExp] (check=1) -> aP : check’=0;

endmodule

module Rates

[Deg] (true) -> kDeg : true;

[CoRep] (true) -> kCoRep : true;

endmodule
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//reward definitions for graph plotting

rewards "levelA" true : levelA; endrewards

rewards "levelEff" true : levelEff; endrewards

rewards "levelAct" true : levelAct; endrewards

A.0.7 PRISM Code for the Transcription and Translation Processes

example

ctmc

//stochastic constant for reactions

const double kDegmA=0.02;

const double kDegmB=0.02;

const double kDegA=0.01;

const double kDegB=0.01;

const double kTrasA=0.05;

const double kTrasB=0.01;

//constant for Operon transcription

const double eP=0.8;

//settings for mRNA for protein A

const int minmA=0;

const int maxmA=100;

const int initmA=0;

//settings for mRNA for protein B

const int minmB=0;

const int maxmB=100;

const int initmB=0;

//settings for protein A

const int minA=0;

const int maxA=100;

const int initA=0;

//settings for protein B

const int minB=0;

const int maxB=100;

const int initB=0;

module A

levelA:[minA..maxA] init initA;

[DegA] (levelA>minA)-> levelA : levelA’=levelA-1;

[TrasA] (levelA<maxA)-> 1 : levelA’=levelA+1;

endmodule
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module B

levelB:[minB..maxB] init initB;

[DegB] (levelB>minB)-> levelB : levelB’=levelB-1;

[TrasB] (levelB<maxB)-> 1 : levelB’=levelB+1;

endmodule

module mA

levelmA:[minmA..maxmA] init initmA;

[DegmA] (levelmA>minmA)-> levelmA : levelmA’=levelmA-1;

[TrasA] (levelmA>minmA)-> levelmA : levelmA’=levelmA-1;

[PExp] (levelmA<maxmA) -> 1 : levelmA’=levelmA+1;

endmodule

module mB

levelmB:[minmB..maxmB] init initmB;

[DegmB] (levelmB>minmB)-> levelmB : levelmB’=levelmB-1;

[TrasB] (levelmB>minmB)-> levelmB : levelmB’=levelmB-1;

[PExp] (levelmB<maxmB) -> 1 : levelmB’=levelmB+1;

endmodule

module POp

[PExp] (true)-> eP : true;

endmodule

module Rates

[DegA] (true) -> kDegA : true;

[DegB] (true) -> kDegB : true;

[DegmA] (true) -> kDegmA : true;

[DegmB] (true) -> kDegmB : true;

[TrasA] (true) -> kTrasA : true;

[TrasB] (true) -> kTrasB : true;

endmodule

//reward definitions for graph plotting

rewards "levelA" true : levelA; endrewards

rewards "levelB" true : levelB; endrewards

rewards "levelmA" true : levelmA; endrewards

rewards "levelmB" true : levelmB; endrewards
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A.0.8 PRISM Code for the Passive Transport example

ctmc

//stochastic constant for kExo

const double kTransp=0.005;

//settings for protein AC1

const int minAC1=0;

const int maxAC1=200;

const int initAC1=200;

//settings for protein AC2

const int minAC2=0;

const int maxAC2=200;

const int initAC2=0;

module AC1

levelAC1:[minAC1..maxAC1] init initAC1;

[Transp] (levelAC1>=minAC1+1) -> levelAC1 : levelAC1’=levelAC1-1;

endmodule

module AC2

levelAC2:[minAC2..maxAC2] init initAC2;

[Transp] (levelAC2<=maxAC2-1) -> 1 : levelAC2’=levelAC2+1;

endmodule

module Rates

[Transp] (true) -> kTransp : true;

endmodule

//reward definitions for graph plotting

rewards "levelAC1" true : levelAC1; endrewards

A.0.9 PRISM Code for the Vescicle Transport example

ctmc

//stochastic constant for kExo

const double kExo=0.1;

//stochastic constant for kPagho

const double kPagho=0.005;

//stoichiometric Vesicle

const int cV=50;

//settings for protein AC1

const int minAC1=0;
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const int maxAC1=500;

const int initAC1=500;

//settings for protein AC2

const int minAC2=0;

const int maxAC2=500;

const int initAC2=0;

//settings for protein Ves

const int minVes=0;

const int maxVes=500;

const int initVes=0;

module AC1

levelAC1:[minAC1..maxAC1] init initAC1;

[Exo] (levelAC1>=minAC1+cV) -> 1 : levelAC1’=levelAC1-cV;

endmodule

module Ves

levelVes:[minVes..maxVes] init initVes;

[Exo] (levelVes<=maxVes-1) -> 1 : levelVes’=levelVes+1;

[Pagho] (levelVes>=minVes+1) -> levelVes : levelVes’=levelVes-1;

endmodule

module AC2

levelAC2:[minAC2..maxAC2] init initAC2;

[Pagho] (levelAC2<=maxAC2-cV) -> 1 : levelAC2’=levelAC2+cV;

endmodule

module Rates

[Pagho] (true) -> kPagho : true;

[Exo] (true) -> kExo : true;

endmodule

//reward definitions for graph plotting

rewards "levelAC1" true : levelAC1; endrewards

rewards "levelAC2" true : levelAC2; endrewards

rewards "levelVes" true : levelVes; endrewards

A.0.10 PRISM Code for the Receptor-Ligand Interactions example

ctmc

//stochastic constant for kProRs
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const double kProRs=0.04;

//stochastic constant for kDegRs

const double kDegRs=0.01;

//stochastic constant for kAct

const double kAct=0.008;

//stochastic constant for kSig

const double kSig=0.8;

//stochastic constant for kDeAct

const double kDeAct=0.08;

//setting for Rs

const int minRs=0;

const int maxRs=50;

const int initRs=0;

//setting for L

const int minL=0;

const int maxL=20;

const int initL=20;

//setting for Ra

const int minRa=0;

const int maxRa=50;

const int initRa=4;

//setting for Rs

const int minPAct=0;

const int maxPAct=500;

const int initPAct=0;

module Rs

levelRs:[minRs..maxRs] init initRs;

[ProRs] (levelRs<maxRs) -> 1 : levelRs’=levelRs+1;

[DegRs] (levelRs>minRs) -> levelRs : levelRs’=levelRs-1;

[Act] (levelRs>minRs) -> levelRs : levelRs’=levelRs-1;

[DeAct] (levelRs<maxRs) -> 1 : levelRs’=levelRs+1;

endmodule

module L

levelL:[minL..maxL] init initL;

[Act] (levelL>minL) -> levelL : levelL’=levelL-1;

endmodule

module Ra

levelRa:[minRa..maxRa] init initRa;

[Act] (levelRa<maxRa) -> 1 : levelRa’=levelRa+1;
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[Sig] (levelRa>minRa) -> kSig : levelRa’=levelRa;

[DeAct] (levelRa>minRa) -> levelRa : levelRa’=levelRa-1;

endmodule

module PAct

levelPAct:[minPAct..maxPAct] init initPAct;

[Sig] (levelPAct<maxPAct) -> 1 : levelPAct’=levelPAct+1;

endmodule

module Rates

[ProRs] (true) -> kProRs : true;

[DegRs] (true) -> kDegRs : true;

[Act] (true) -> kAct : true;

[DeAct] (true) -> kDeAct : true;

[Sig] (true) -> kSig : true;

endmodule

//reward definitions for graph plotting

rewards "levelRs" true : levelRs; endrewards

rewards "levelL" true : levelL; endrewards

rewards "levelRa" true : levelRa; endrewards

rewards "levelPAct" true : levelPAct; endrewards

A.0.11 PRISM Code for the Arsenic Biosensor system

ctmc

//stochastic constants

const double kDegArsR=0.001;

const double kDegCl=0.001;

const double eArs=0.1;

const double bArs=0.6;

const double rArs=0.2;

const double kArseniteArsR=0.005;

//stochastic constant

const double kDegUrease=0.001;

//stochastic constants

const double eCl=0.08;

const double rCl=0.02;

const double bCl=0.001;

//settings for Urease

const int minUrease=0;

const int maxUrease=150;
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const int initUrease=0;

//settings for Cl

const int minCl=0;

const int maxCl=150;

const int initCl=0;

//settings for ArsR

const int minArsR=0;

const int maxArsR=150;

const int initArsR=0;

//settings for Arsenite

const int minArsenite=0;

const int maxArsenite=150;

const int initArsenite=0;

module Rates

[DegArsR] (true) -> kDegArsR : true;

[DegCl] (true) -> kDegCl : true;

[bind] (true) ->kArseniteArsR : true;

[DegUrease] (true) -> kDegUrease : true;

endmodule

module ArsOp

check:[0..1] init 0;

[ArsExp] (check=0) -> eArs : true;

[Ars_bind_ArsRRep] (check=0) -> bArs : check’=1;

[Ars_unbind_ArsRRep] (check=1) -> rArs : check’=0;

endmodule

module Cl

levelCl:[minCl..maxCl] init initCl;

[DegCl] (levelCl>minCl) -> levelCl : levelCl’=levelCl-1;

[ArsExp] (levelCl<maxCl) -> 1 : levelCl’=levelCl+1;

[Cl_bind_ClRRep] (levelCl>0) -> levelCl : true;

endmodule

module ArsR

levelArsR:[minArsR..maxArsR] init initArsR;

[DegArsR] (levelArsR>minArsR) -> levelArsR : levelArsR’=levelArsR-1;

[ArsExp] (levelArsR<maxArsR) -> 1 : levelArsR’=levelArsR+1;

[Ars_bind_ArsRRep] (levelArsR>0) -> levelArsR : true;

[bind] (levelArsR>minArsR) -> levelArsR : levelArsR’=levelArsR-1;

endmodule
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module Arsenite

levelArsenite:[minArsenite..maxArsenite] init initArsenite;

[ArseniteArsR] (levelArsenite>minArsenite) -> levelArsenite : true;

endmodule

module Urease

levelUrease:[minUrease..maxUrease] init initUrease;

[DegUrease] (levelUrease>minUrease) -> levelUrease : levelUrease’=levelUrease-1;

[ClExp] (levelUrease<maxUrease) -> 1 : levelUrease’=levelUrease+1;

endmodule

module ClOp

check1:[0..1] init 0;

[ClExp] (check1=0) -> eCl : true;

[Cl_bind_ClRRep] (check1=0) -> bCl : check1’=1;

[Cl_unbind_ClRep] (check1=1) -> rCl : check1’=0;

endmodule

//reward definitions for graph plotting

rewards "levelArsR" true : levelArsR; endrewards

rewards "levelCl" true : levelCl; endrewards

rewards "levelArsenite" true : levelArsenite; endrewards

rewards "levelUrease" true : levelUrease; endrewards
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