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Abstract. In the new era of wireless, mobile connectivity the possibilities of anything, anytime,
anywhere access are becoming a reality. In order to deliver services and content to users in a variety of
contexts, content adaptation strategies need to be developed and assessed. In this paper we present an
approach to performance evaluation and capacity planning, based on a high-level system description
formalism, which can be readily extracted from a system design. We demonstrate its usefulness in
assessing the design of a content adaptation framework being developed under the auspices of the
virtual centre in mobile communications.
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1. Introduction

As networks become more sophisticated, both in terms of their underlying technology
and the applications running upon them, it is crucial that users’ expectations and
requirements are anticipated and met. In particular, users are not concerned with the
technological aspects of communications per se, however at present they need to be
aware of a multitude of detail about equipment and benefits of one communication
strategy over another, as well as how to connect systems together to achieve the
communication that they desire. As the number of possible communication strategies
increases, so does the complexity of negotiating the most appropriate method of de-
livering content that the user wishes to access. Enabling users to access services in the
future requires a means of hiding the complexity involved in the communication of
the content, and its delivery mechanism, from the user, empowering the user to access
anything at anytime from anywhere.

The virtual centre of excellence in mobile communications (MobileVCE) is ad-
dressing this area in the programme entitled “Removing the Barriers to Ubiquitous
Services”. The programme is investigating the tools and techniques essential to hiding
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complexity in the heterogeneous communications environment that is becoming a real-
ity. In particular, the work makes use of agents that manage personal preferences, and
control the adaptation of content to meet the system requirements for a user to view
content they have requested. Interaction between the entities in the user-controlled
devices and the network that are required to achieve this then becomes a significant
issue.

One important set of expectations are those relating to performance and the respon-
siveness of applications. However, designing a system to ensure that it will perform
satisfactorily can be difficult. Of course, the users’ demands on the design must be
balanced by the requirements of the system manager, who will seek to develop a system
which is robust with well-used resources, without over-provisioning. Thus there is a
trade-off between capacity planning and application performance engineering.

In this paper we present an approach to performance evaluation and capacity
planning, based on a high-level system description formalism, which can be readily
extracted from system design. This allows early analysis of potential designs and con-
figurations to assess their ability to satisfy user expectations with respect to measures
such as throughput and response time. From the other perspective, system managers
are keen to ensure that resources within a system are efficiently utilised. We will
show how the same system model can be analysed to study the degree of replication
which may be needed within a network to balance effective use of resources and user
satisfaction.

Models are constructed using the stochastic process algebra PEPA [10]. A process
algebra is a compositional description technique which allows a model of system to be
developed as a number of interacting components which undertake actions. In addition
to the system description aspects the process algebra is equipped with techniques for
manipulating and analysing models, all implemented in tools. Thus analysis of the
model becomes automatic once the description is completed. In a stochastic process
algebra additional information is incorporated into the model, representing the ex-
pected duration of actions and the relative likelihood of alternative behaviours. This
is done by associating an exponentially distributed random variable with each action
in the model. This quantification allows quantified reasoning to be carried out on
the model. Thus, whereas a process algebra model can be analysed to assess whether
it behaves correctly, a stochastic process algebra model can be analysed both with
respect to correctness and timeliness of behaviour.

Once such a model has been constructed a variety of different analysis approaches
are accessible from the single model:

− The model may be used to derive a corresponding (discrete state) continuous time
Markov chain (CTMC) which can be solved for both transient and equlibrium
behaviour, allowing the calculation of measures such as expected throughput,
utilisation and response time distributions.

− The model may be subjected to scalability analysis in which large numbers of
users are injected into the system and a continuous approximation of the CTMC
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is made and solved as a set of nonlinear ordinary differential equations. This
analysis will test the impact of heavy load on the ability of the system to respond
to users. Such experiments can be used to investigate the appropriate level of
replication of components of the system to cope with anticipated demand.

− Desirable properties of the system can be expressed as logical formulae which
may be automatically checked against the formal description of the system, to
test whether the property holds. This can be particularly useful in checking that
protocols behave appropriately and that certain desired properties of the system
are not violated.

In this paper we illustrate the use of PEPA modelling, and the first two analysis
approaches, on the content adaptation framework being developed within the project
to enable content to be appropriately formatted and sized for a particular users’ needs.

The remainder of this paper is organised as follows. In Section 2 we present some
background material about the MobileVCE project and the PEPA modelling formal-
ism, its analysis techniques and supporting tools. The architecture of the proposed
content adaptation framework is introduced in Section 3 together with its PEPA
model. In Section 4 we detail the experiments which have been conducted on the
model, assessing the sensitivity of the framework to the performance of individual
components, and the scalability of the framework under increasing loads. We discuss
the work and future directions and present some conclusions in Section 5.

2. Background

2.1. MobileVCE Project

MobileVCE is the operating name of the Virtual Centre of Excellence in Mobile and
Personal Communications Ltd, a collaborative partnership of around 20 of the world’s
most prominent mobile communications companies and 7 UK universities each having
long standing specialist expertise in relevant areas. MobileVCE engages in industrially-
led, long term, research in mobile and personal communications [6].

The third programme of the MobileVCE, core 3, developed the concept of a personal
distributed environment (PDE)[9]. This concept is a user-centric view of communica-
tions in a heterogeneous environment, and is defined as those nodes over which a user
has control. The devices need not reside in the same place, or all be connected to the
same network, but they cooperate together to fulfil user requests. The PDE concept
defines techniques for discovering services and capabilities of devices, determining
appropriate routes for communication, implementing security and establishing trust
relationships, and negotiation for the provision of services.

Ubiquitous service represents a major future revenue stream for service providers,
telecommunication operators and pervasive technology manufacturers, since Blue-
tooth, WiFi, WiMAX, UWB and more, are bringing the dream of ubiquitous access
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closer to reality. The “Removing the Barriers to Ubiquitous Services” programme
(hereafter called the Ubiquitous programme) aims to build on the personal networking
capabilities provided by the PDE and develops this further from three perspectives —
user, network and content/service[6].

This paper presents the use of PEPA to analyse the performance of the mechanisms
used to adapt content and services to the users’ needs. The system is based, primarily,
on the use of a personal assistant agent to specify and control what the users needs
and constraints are to receive a particular service or content. This interacts with a
content adaptation mechanism that resides in the network. Performance of the system
depends upon an efficient negotiation, content adaptation, and delivery mechanism.
The analysis will benefit the system not only in seeking the most efficient operation
pattern but also the construction and setting of the framework itself. Before turning
to the content adaptation, we first give a brief introduction to PEPA in the following
subsection.

2.2. Introduction to PEPA

Performance Evaluation Process Algebra (PEPA)[10], developed by Hillston in the
1990s, describes a system as an interaction of the components and these components
engage in activities. PEPA is both a timed and stochastic extension of classical process
algebras such as CCS [13] or CSP[1]. It can be regarded as a high-level model specifi-
cation language for low-level stochastic models, which makes it suitable for extracting
performance measures as well as deducing functional properties of the system. In this
subsection, we represent a brief introduction to PEPA; more details about PEPA can
be found in [10].

We assume that there is a set of possible types of action, denoted A. Each activity
in PEPA can be defined as a pair (α, r) where α ∈ A is the action type and r is
the activity rate. This rate specifies the parameter of an exponential distribution so
r ∈ R+. If a component P completes an activity (α, r) and then behaves as Q, it is

denoted P
def= (α, r).Q and the transition may be denoted as P

(α,r)−→Q.
The following presents the name and interpretation of combinators used in the

PEPA language, which express the individual activities and interactions of the com-
ponents.

2.2.1. Syntax
Prefix: (α, r).P
Such a component will subsequently behave as P after it carries out the activity (α, r),
which has action type α and a duration which satisfies exponential distribution with
parameter r.

Choice: P + Q
The component P + Q represents a system which may behave either as P or as Q.
The activities of both P and Q are enabled. If one of them is chosen, which depends
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on whether its activity is completed first, the other will be discarded and the system
will then behave as the derivative resulting from the evolution of the chosen one.

Cooperation: P ��
L

Q
The cooperation combinator is in fact an indexed family of combinators, one for each
possible set L of visible action types. L, the cooperation set, determines the interaction
between P and Q. For any activity whose action type is contained in L, P and Q
must cooperate to achieve the activity. However, they will proceed independently and
concurrently with any activity whose action type is not included in L.

Parallel: P ||Q
The component P ||Q represents two concurrent but completely independent compo-
nents, meaning the cooperation set is empty. This is simply a shorthand notation for
P ��∅ Q.

Hiding: P/L
Hiding makes the activities whose action types in L invisible for external observer.
The component P/L behaves as P except that any activities of types within the set
L are hidden.

Constant: A
def= P

Constants are components whose meaning is given by a defining equation such as
A

def= P , which gives the constant A the behavior as the component P .

2.2.2. Underlying Markov Process and Performance Measures
Like all process algebras, PEPA is given a formal semantics. This is a set of transition
rules which define the evolution rules for each combinator of the language (see Ap-
pendix A for details). From these, given any PEPA expression it is possible to derive
all possible states of the model and the transitions between them, the derivation graph.
From this derivation graph the underlying stochastic process is readily extracted. Due
to the memoryless property of the exponential distributions, and since all transitions
have an exponential distribution, it is straightforward to see that this stochastic process
is a discrete state space, continuous time Markov chain.

In order to facilitate analysis of this underlying model it is stored in the form of its
infinitesimal generator matrix. This is extracted automatically by the PEPA tools. By
solving the matrix equation characterising the global balance equations we are able to
derive the steady state probability distribution for the Markov chain, which the tool
relates back to the original PEPA structures. Similarly the matrix may be used as the
basis for transient analysis, allowing measures such as response time distributions to be
calculated. Such measures can facilitate model verification and system optimization.
This will be illustrated in the following sections.
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3. Content Adaptation

Users, requesting content from a provider, wish that content to be usable in a specific
device or devices. Currently a content provider may provide a number of formats of
a particular content to suit a selection of devices, or they may only provide a single
format of the data. With the rapidly growing variety of devices that a user may
expect to use for delivering a particular content, providing content tailored to each
device becomes an infeasible task for the content provider [14]. Thus, in order for a
user, who needs the content in a different format, to be able to make use of that
content, a transformation needs to take place. In the wider context, not only may
transformation from one format to another be required, but additionally the content
may need to be modified, for example its bit-rate reduced, in order to meet quality of
service constraints. This process is called content adaptation. The adaptation, itself,
may take place within the domain of the service provider, the domain of the user, or
may take place within the network as a third party service.

C.Canali et al. proposed several distributed architectures for the efficient delivery
of content adaptation services, based on which some performance analysis, especially
the distribution of the response time are presented [2–4]. The performance evaluation
of the adaptation management system is important, not only because it can measure
the efficiency of the system’s operation and help to seek an efficient working pattern,
but also it may direct the modification and improvement of the adaptation framework
construction.

3.1. Logical Architecture and Working Cycle

3.1.1. Logical Architecture
Figure 1 ([7]) depicts the logical architecture of the content/service adaptation man-
agement framework for the MobileVCE Ubiquitous programme. It contains high level
representations of the main functional units.

At the User side, there are two key functions: the Personal Assistant Agent (PAA)
and the Personal Content Manager (PCM). The PAA is proposed to reduce the
perceived complexity of future multi-device personal area networks by proactively
managing the modes, the functions, the applications, and the connectivity of user’s
devices. In addition, employing the PCM can effectively store content throughout
user’s environments, maximising availability and efficiency as well as retrieving the
content in the most appropriate manner. The Device Management Entity (DME) was
conceived as part of the MVCE Core 3 PDE program and acts as a platform for the
PAA and PCM to operate over.

The Adaptation Manager(AM) consolidates the various types of context not only
from the user but also from the Content/Service Provider (CSP), and then assimilates
and distils the contexts into relevant rules so that actions may be determined by the
decision logic.
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The Content Adaptor (CA) organises that actual adaptation processes based on
maintaining a profile of all of the available adaptation mechanisms, contacting exter-
nal adaptation mechanism providers and consolidating their capabilities to meet the
adaptation requests, passed down from the AM.

The Dispatcher acts as a buffer, transporting the context information from the PAA
to the AM, and delivering the adapted content from the CA to the PDE, which forms
the logical interface between the PDE (and Personal Entities) and the Content and
Service Adaptation Framework as a whole.

The above introduction is based on [7, 8, 12]. For details, please refer to them.

Content and Service Adaptation

Personal Distributed
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User Interfaces

Output

Modality 1

Output
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Output
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Control Flow

Content Flow
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CA DECISION

LOGIC

Adaptation
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Adaptation
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Routing

Content/Service

Adaptation Manager

CONTEXT

ASSIMILATION

ADAPTATION

ENGINE

Content

&

Service

Provider

Figure 1. Logical Architecture of Content Adaptation Management

3.1.2. Working Cycle
Figure 2 illustrates the operation of the adaptation management - The AM receives
the requests for adaptation (with the user’s context) from the PAA via the Dispatcher,
and the context from the CSP, and ascertains appropriate options for content/service
translation from the available options and constraints. The choices or parameters for
translation are then given to the CA for adaptation. The newly adapted content or
service is then delivered to the user through the Dispatcher. More details are specified
in the following working cycle based on Figure 2 (for convenience, we omit the compo-
nent of the Dispatcher and only use the PDE to represent the all entities of the user’s
side).

Working Cycle

1. The User makes a content request.

2. The PDE decides whether the request is reasonable (suitable) or not. If not, then
return the request, go back to 1. If yes, then it encapsulates it into a context which
is expressed as an “Internal Content/Service Request” and sends it to the AM.
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3. After receiving the request from the PDE, the AM asks for and receives the
“Content/Service Context” from the CSP.

4. The AM assimilates and distills the contexts both from the PDE and the CSP,
and subsequently makes a request, called an “Adapted Request”, to the CSP.
This adapted request asks for the content in an appropriate form, by taking into
account the PDE’s satisfaction, network conditions, the CSP’s repository, and even
the competence and capacity of the CA.

5. After receiving this adapted request from the AM, the CSP will make a decision of
whether and what kind of C/S should be provided, and then send the C/S source
or the information of “no C/S available” to the AM.

6. If the source is received, the Adaptation Decision Engine of the AM will deter-
mine the adaptation parameters and then pass them with the source to the CA.
Otherwise, in the case of no source available, the Adaptation Decision Engine will
forward this information directly to the PDE, then go to 8.

7. The CA starts its “Adaptation” after it receives the parameters and source from
the AM, and then passes the adapted content to the user when the adaptation is
finished.

8. After receiving the adapted content from the CA or the information that no source
is available from the AM, the PDE forwards it to the user’s interface. A working
cycle is completed and then returns to 1.

3.2. PEPA Model

In this subsection we define the PEPA model based on the architecture and working
cycle presented in the previous subsection. The model is comprised of four compo-
nents, corresponding to the four major components of the architecture, i.e., the PDE,
the AM, the CA and the CSP. It is important to note that not all aspects of the
components behaviour are represented in detail. The level of abstraction is chosen to
be sufficient to capture the time/resource consuming activities and to ensure that the
correct interactions between components are maintained.

Each of the components has a repetitive behaviour, reflecting its role within the
working cycle. These are represented diagrammatically in Figures 3 and 4. Below we
show the PEPA definitions for the PDE and AM components. The CA and CSP
components are defined similarly.

PDE : The behaviour of the PDE begins with the generation of a request for content
adaptation, represented as activity pde ext cs req (working cycle step 1). The rate
here reflects the expected rate at which the user will submit requests for content
adaptation. The next event is the decision about the feasibility of this request
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(working cycle step 2). The subsequent activity depends on the outcome of the
decision. In PEPA this is represented as two competing activities, both of type
pde decision, with rates which reflect their relative probabilities. If a request is
passed to the AM (pde int cs req), it is assumed to be synchronous request and
the PDE waits for a response PDE3. The model reflects that there are two possible
responses, by having two possible activities of receiving the information that no
source is available or receiving the adapted content, csp no cs and ca adapted cs
respectively. In either case the final action of the PDE is to send appropriate
information to the user interface, pde interface (working cycle step 8).

PDE0
def= (pde ext cs req, rpde ext cs req).PDE1

PDE1
def= (pde decison, rpde decison).PDE2

PDE2
def= (pde return, rpde return).PDE0 + (pde int cs req, rpde int cs req).PDE3

PDE3
def= (csp no cs, rcsp no cs).PDE4 + (ca adapted cs, rca adapted cs).PDE4

PDE4
def= (pde interface, rpde interface).PDE0

Adaptation Manager : After receipt of a request from the PDE, pde int cs req, the
AM goes through a sequence of activities corresponding to steps 3 and 4 in the
working cycle. The request to the CSP is synchronous and the AM waits for a
response. As in the PDE there are two possible response actions, depending on
the response from the CSP. If “no C/S available” this is communicated immedi-
ately from the CSP to both the AM and the PDE through the shared activity
csp no cs (working cycle step 5). Alternatively the AM will make its determina-
tion, am determination, and pass the parameters with the content source to the
CA, am cs source para (working cycle step 6).

AM0
def= (pde int cs req, rpde int cs req).AM1

AM1
def= (csp context req, rcsp context req).AM2

AM2
def= (csp context res, rcsp context res).AM3

AM3
def= (am context assimilation, ram context assimilation).AM4

AM4
def= (am adapted cs req, ram adapted cs req).AM5

AM5
def= (csp no cs, rcsp no cs).AM0

+ (csp cs source, rcsp cs source).AM6

AM6
def= (am determination, ram determination).AM7

AM7
def= (am cs source para, ram cs source para).AM0

The other two components are defined similarly and can be found in Appendix B.
The final part of the definition of the model is the system equation which specifies

how the complete model is constructed from the defined components. It specifies how
many copies of each entity there are present in the system, and how the components
interact, by forcing cooperation on some of the activity types. For our model the system
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equation is as shown below, where we indicate that the exact number of independent
copies of the PDE component is a variable of some of our experiments.

System
def=

(
(PDE‖ · · · ‖PDE) ��

L1
(AM ��

L2
CA)

) ��
L3

CSP,

where

L1 = {pde int cs req, csp no cs, ca adapted cs, }, L2 = {am cs source para},

L3 = {csp context req, csp context res, am adapted cs req, csp no cs, csp cs source}.

3.3. Parameters Setting

As in all quantitative modelling it is important that the parameters used within the
model are as realistic as possible if the analysis is to generate useful results. In our
model each of the activities in the model must be assigned an appropriate activity rate.
In order to do this we used published results in the literature, where similar systems
have been constructed or modelled [2–4]. The resulting parameter values are shown
in Table I, together with the intuitive explanation of each parameter. Note the rate
represents how many activities can be completed in unit time, which in our case is
one second. The probabilities of the PDE returning the request and the CSP choosing
the “no C/S available” response, are both set to 0.1. The final additional parameter
is the number of independent PDE entities active within our system. In these initial
experiments we assume that this parameter has value 1, unless otherwise stated.
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Table I. Parameters Setting

Type Role Average Rate

Time(ms)

pde ext cs req user inputs an C/S request 1000 1

pde decision PDE judges whether the request is reasonable 30 33.3

pde return PDE returns the request 25 40

pde int cs req PDE forwards the internal C/S request 60 16.7

pde interface PDE forwards the adapted C/S to user’s
interface

100 10

am adapt cs req AM sends adapted C/S request to CSP 40 25

am context assimilation AM’s context assimilation 160 6.25

am determination AM determines adaptation parameters 50 20

am cs source para AM sends source and adaptation parameters
to CA

100 10

ca adaptation CA’s adaptation process 800 1.25

ca adapted cs CA forwards adapted C/S to PDE 150 6.7

csp context req AM asks for CSP’s context 40 25

csp context res CSP sends the context to AM 40 25

csp decision CSP determines what should be provided 40 25

csp no source information of no source available 40 25

csp cs source CSP provides C/S Source to AM 100 10

4. Performance Evaluation

Experiments have been conducted using the PEPA Workbench and associated tools.
More details on these tools can be found at http://www.dcs.ed.ac.uk/pepa.

4.1. Response Time

Response time is the interval between the input of a request by the user and the return
of the adapted content, i.e., the user’s waiting time for the content. Many papers in
the literature consider this measure as important since it has a major impact on the
user’s satisfaction. The response time is determined by a number of factors, namely:
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the device capabilities and operating speed of each element in the connection; the
interactions between devices; the complexity of the adaptation task; and the network
characteristics and status (including network latency and bandwidth).
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Figure 5. Response Time Changes with the Rate

We give the cumulative distribution function of the system’s response time un-
der our previous parameter setting. These results are similar to the ones in [2–4].
Figure 5(a) shows that the response time has a strong dependence on the content
adaptation rate, when the adaptation rate is less than 1, corresponding to an average
adaptation time of 1 second. Conversely, Figure 5(b) shows that the AM’s rate of
selecting adaptation parameters, with average latency in the process of between 40 ms
and 200 ms, has little effect on the response time of the system. From a systems
perspective, if complexity in the AM can be traded off with complexity in the CA,
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perhaps by a more involved process of selecting adaptation parameters, the response
time could be lowered.

4.2. System’s Adaptation Speed and Utilisation Efficiency

4.2.1. Adaptation Throughput

Figure 6. Impact of the Adaptation Rate on Its Throughput

Figure 7. Impact of the AM Determination Rate on the Adaptation Throughput

Following [5, 10], the definition of throughput of an activity is the average number
of the activities completed by the system during one unit time (1 second). Thus, the
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throughput of the CA’s “Adaptation” reflects how fast the system runs the adaptation.
Obviously, increasing the rate of adaptation or decreasing its delay can improve its
throughput. From Figure 6 and Figure 7, it can be observed that the throughput
of adaptation is sensitive not only to its own rate but also to the rate of AM’s
determination when the latter approaches lower rates. At rates of less than 5, which is
significantly different from its normal rate of 20, AM’s determination has as strong an
influence on throughput as the adaptation rate itself. Since the AM’s two activities,
“Context Assimilation” and “Determination”, are sequential and have similar dura-
tions, it can be concluded that the AM’s context assimilation has a similar influence
on the adaptation throughput and response time. Thus, we only focus on the AM’s
determination and the CA’s activities.

4.2.2. CA’s Utilisation
The system manager’s interests include not only the speed of the system’s operation
but also the system’s utilisation efficiency. Increasing the adaptation rate speeds up
the running of the whole system, however this does not imply that the system is more
efficiently utilised. To illustrate, we introduce the definition of utilisation[10], i.e., the
proportion of time that a component spends in different states. For the CA, there
are 3 states, CA0, CA1 and CA2. CA0 is the state of waiting for and receiving the
content source and adaptation parameters from the AM while CA1 and CA2 are the
states corresponding to the adaptation process and sending the adapted content to the
PDE, respectively. If there are no synchronisation points, the proportion of time spent
in these 3 states is proportional to their average time for completing the respective
activities. In this case we would expect CA0’s occupancy to be small. However, the CA
has to synchronise with other events, which means that CA0 corresponds to the longest
time in this component with a proportion of about 72% (see Figure 8 (a)). Moreover,
the smaller the adaptation’s duration is, the bigger CA0’s proportion (see Figure 8
(b)). When the CA operates without any synchronisation delays, CA0’s proportion
could be 9.5% (or 100

100+800+150), thus the CA has sufficient capacity to serve more
requests, and be better utilised.

4.3. Capacity planning

Figure 9(a) illustrates the effect of increasing the adaptation rate. As adaptation
rate increases, the adaptation throughput increases, while the response time and the
utilisation efficiency decrease. Thus, an improved user experience, as measured by
response time, can be obtained through improving the adaptation rate, at the expense
of increased redundancy in the content adaptor.

A full network would comprise many PDEs that co-exist and share system resources.
This has the effect of changing the load on system components, altering throughput and
waiting times. Figure 10(a) shows that the CA’s waiting time decreases as the number
of the PDEs increases, due to more frequent requests being received, while Figure
10(b) illustrates that the throughput of adaptation is increasing, due to the number
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(a). Utilisation of the CA(r ca adaptation = 1.25)
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Figure 8. Utilisation of the CA

of requests that are being served. For example, four PDEs result in 0.7 adaptations
per second being completed compared with less than 0.3 adaptations in the case of 1
PDE.

On the other hand, more PDEs, which make other components more busy, results
in longer user waiting times or the system’s response time in general (see Figure 11).
Figure 9(b) illustrates the effect of increasing the number of PDEs being supported
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Figure 9. Adaptation Rate and the Number of PDEs’ Impact on the System Performance
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Figure 10. Throughput and Utilisation Changes with the Number of PDEs

by a system on adaptation throughput, response time and utilisation of the CA. It
shows that there is a trade-off between the response time that can be achieved and
the loading placed on the adaptation process in terms of achieved throughput and
utilisation. This information can be used in the planning process to appropriately
dimension a system to achieve its potential.

Unfortunately, the size of the state space of the underlying Markov chain increases
sharply with the number of the PDEs (see Table II). If 5 PDEs are involved in the
system, there will be 24064 states in the system and the steady state probability
distribution (from which the throughput and utilisation originate) cannot be computed
easily due to the computational complexity. So, to avoid the state space explosion
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Figure 11. Response Time Changes with the Number of PDEs (r ca adaptation = 0.8)

Table II. Size of State Space of Underlying
Markov Chains

Number of PDEs Size of the State Space

1 14

2 112

3 736

4 4352

5 24064

problem of the large scale system we follow the technique in [11], using the ODEs
(ordinary differential equations) to approximate the PEPA model.

Consider the case that there are 100 PDEs, 100 AMs, 100 CSPs involved in the
system. By varying the number of CAs in the system, the effect on performance can be
observed. 20 CAs are enough for the adaptation task where the time spent in the idle
state is about 30% (see Figure 12(a)). It seems that 10 CAs are not enough because
there is no spare capacity for those CAs since the percentage of time in CA0 is 9.5%
(see Figure 12(b)).

Other experiments (see Table III) show that the number of the AMs has a significant
impact on the idle time of the CA while the number of the CSPs does not, except when
it is below 20.
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Figure 12. Asymptotic Equilibrium of the CA’s Utilisation

Table III. Percentage of Time Spent in CA0 for
Large Scale Systems

PDEs AMs CAs CSPs Percentage time

100 10 20 10 70%

100 10 20 20 70%

100 10 20 30 70%

100 10 20 40 70%

100 20 20 10 61%

100 20 20 20 40%

100 20 20 30 40%

100 20 20 40 40%

100 30 20 10 61%

100 30 20 20 34%

100 30 20 30 34%

100 30 20 40 34%

5. Conclusions and Future Work

In this paper we have presented the high-level modelling formalism PEPA and demon-
strated its application to the content adaptation framework being developed under
the auspices of the MobileVCE’s “Removing the Barriers to Ubiquitous Services”
programme. The constructed model was used as the basis for a number of experiments

PerformanceModelling.tex; 15/03/2007; 15:16; p.19



20

investigating aspects of the design and how well users’ expectations might be met,
particularly as the system scaled. Of course, content adaptation is just representative
of a whole class of meta-services which may be introduced into the network, offering
enhanced value for existing services and content. As applications become more sophis-
ticated in this way it is important to ensure that users’ non-functional as well as their
functional requirements are met. Performance modelling can play an essential role in
making those assessments, before too much commitment is made to one particular
framework or architecture, i.e., before an implementation is in place.

On-going work is considering additional analysis techniques which may be brought
to bear on models constructed in this way, to enhance the experimentation which
can be carried out and the insight gained. For example, expected response time can
currently only be calculated based on the discrete state space Markovian models, which
limits the size of system which can be considered. We are working to extend this to
the ODE models used in the scalability analysis.

As for the content adaptation, the framework presented here is based on a cen-
tralised (server-side) perspective of the logical architecture, and this has been reflected
in the described working cycle and the PEPA model representing it. However, more
sophisticated distributed architectures are also under investigation. For example, the
adaptation may be carried out at the users’ side, using a combination of server and
user-side computation, or elsewhere in the network; it may, in some circumstances be
possible to carry out some aspects of the adaptation in parallel, rather than sequen-
tially. In all these cases the PEPA model can be readily adapted to reflect the new
configuration and similar experiments to those already presented can be conducted.
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Appendix A

The operational semantics of PEPA are presented as follows.
Prefix:

(α, r).E
(α,r)−→E

Choice:
E

(α,r)−→E
′

E + F
(α,r)−→E′

,
F

(α,r)−→ F
′

E + F
(α,r)−→ F ′

Cooperation:

E
(α,r)−→E

′

E ��
L

F
(α,r)−→E′ ��

L
F

(α /∈ L),
F

(α,r)−→ F
′

E ��
L

F
(α,r)−→E ��

L
F ′

(α /∈ L)
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E
(α,r1)−→ E

′
F

(α,r2)−→ F
′

E ��
L

F
(α,R)−→ E′ ��

L
F ′

(α ∈ L), where R =
r1

rα(E)
r2

rα(F )
min(rα(E), rα(F )),

where rα(E), the apparent rate of action of type α in the component E, i.e. the sum
of the rates of all activities of type α in Act(E). Similarly, for rα(F ).

Hiding:

E
(α,r)−→E

′

E/L
(α,r)−→E′/L

(α /∈ L),
E

(α,r)−→E
′

E/L
(τ,r)−→E′/L

(α ∈ L)

Constant:
E

(α,r)−→E
′

A
(α,r)−→E′

(A def= E)

Appendix B

Here, for completeness, we present the remaining components of the PEPA model
presented in Section 3.2. These components are the Content Adaptor (CA) and the
Content/Service Provider (CSP) and their behavior was shown diagrammatically in
Figure 4.

CA0
def= (am cs source para, ram cs source para).CA1

CA1
def= (ca adaptation, rca adaptation).CA2

CA2
def= (ca adapted cs, rca adapted cs).CA0

CSP0
def= (csp context req, rcsp context req).CSP1

CSP1
def= (csp context res, rcsp context res).CSP2

CSP2
def= (am adapted cs req, ram adapted cs req).CSP3

CSP3
def= (csp decision, rcsp decision).CSP4

CSP4
def= (csp no cs, rcspno cs).CSP0 + (csp cs source, rcsp cs source).CSP0
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