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Abstract. Currently compilers contain a large number of optimisations
which are based on a set of heuristics that are not guaranteed to be ef-
fective to improve the performance metrics. In this paper, we propose a
strategy which allows us the analysis and the choice of the best optimi-
sation, by focusing on the hot part of an assembly code. In our approach,
for each optimisation applied, the code of the hot loop is extracted and
its dependency graph generated. Finally, and in order to select the best
optimisation, the generated graphs are analytically analysed using sto-
chastic process algebra.
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1 Introduction

Due to complex interactions between hardware mechanisms and software dy-
namic behaviours, scientific code optimisation at compile time is an extremely
difficult task. State-of-the-art compilers are still challenged to achieve high per-
formance independently from runtime or micro-architectural parameters. As re-
gard the application, the knowledge of its behaviour implies a serious effort and
a high degree of expertise.

Currently compilers contain a large number of optimisations which are based
on a set of heuristics that are not guaranteed to be effective to improve the
performance metrics. Achieving high performance relies heavily on the ability of
the compiler to exploit the underlying architecture and the quality of the code it
produces. This requires a full understanding and a full control of the application
behaviour the compiler has when compiling the application to provide a precise
diagnostic about the success or failure of an optimisation if applied. It also re-
quires the ability to transmit to the compiler certain architecture characteristics
to make it choose the right optimisation to apply.

Before starting to optimise an application, the programmer must identify the
main factors limiting the performances of its application. For that, two types of
code analysis techniques can be used: static and dynamic techniques.

Static techniques extract opportune information from the program analysis
(source, assembly or binary code). These techniques are usually faster than
dynamic analysis but less precise.
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Dynamic techniques require a dynamic execution of the program (real exe-
cution or simulation). Profiling a program consists in collecting opportune in-
formation during its execution in order to guide efficient optimisations (dead
code elimination, prefetching, instruction scheduling, memory layout transfor-
mation, . . . ). These optimisations can be applied either by transforming the
initial source code or the assembly code, or by re-compiling it guided by the
collected information. Several dynamic techniques can be used, among which we
have instrumentation and sampling.

– Instrumentation inserts instructions to collect information. Several instru-
mentation methods exist: source modification, compiler injected instrumen-
tation, binary rewriting to get an instrumented version of an executable,
and binary translation at runtime. Instrumentation adds code to increment
counters at entry/exit function, reading hardware performance counters, or
even simulate hardware to get synthetic event counts. The instrumentation
runtime can dramatically increase the execution time such that time mea-
surements become useless. It may also result in a huge code. Moreover it
does not help in finding the bottlenecks if there are any. MAQAO[4] and
EEL[10] are examples of tools which are based on the instrumentation.

– Sampling consists in taking measuring points during short time intervals.
The validity of the results depends on the choice of the measures and their
duration. Prof [11] and GProf [7] are examples of sampling-based tools.

Obtaining dynamic information on the behaviour of a program is relatively com-
plex. In one hand the application size is increased and on the other hand the
number, the complexity and the interactions of the transformations (optimisa-
tions) to apply are important. Moreover the validity of these information depends
on the input parameters of the program.

However certain information like the execution time or the iteration number
can be obtained only dynamically and they have an impact on the effectiveness
of the optimisations. As a large application may execute for hours and sometimes
even days, if a developer is focusing on the implementation or the tuning of a
key computation, it will be far more efficient and less cumbersome to run just
the key computation, isolated from the rest of the program.

In this paper, we propose a strategy which allows the analysis and the choice
of the best transformation, by focusing on the hot part of a code. It is well known
that loop optimisation is a critical part in the compiler optimisation chain. A
routinely stated rule is that 90% of the execution time is spent in 10% of the
code. The main characteristic of our strategy is the assembly code isolation.
We isolate the hot loop from a large application for the purpose of performance
tuning. We are interested in the assembly code because it is the natural place
to observe performance. It is close enough to the hardware and it is possible to
check the job done by the compiler.

Our approach is based on: (1) a static analysis of the code to predict the
data dependency, (2) a dynamic analysis to select the hot loop in code, (3) a
code isolation to extract the hot loop from a large application in order to apply
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different transformations with different input data and finally (4) an analytical
modelling to select the best transformation.

While we use the MAQAO tool for code analysis, we have chosen to use
PEPA [8] as the performance modelling technique. Our objective is the inves-
tigation of the impact of each of the transformations on the execution time of
the code. The results obtained are compared to those obtained when executing
the code and it is shown that our approach based on PEPA achieves comparable
results, but at a much lower cost.

Structure of the paper: in Section 2, we give a brief overview of the tool
MAQAO and the formalism PEPA before describing our approach. In Section 3,
we present a case study and show how to apply our approach. Section 4 is
dedicated to the numerical results. We finally conclude, in Section 5, with a
discussion about the possible extensions of our work.

2 The Approach

The approach we propose allows bridging the gap between the code analysis
provided by MAQAO and the PEPA-based analytical modelling for a formal
analysis of the code performances. Before developing this approach, we present
the main characteristics of MAQAO and give a brief overview of PEPA.

2.1 MAQAO

MAQAO [4] stands for Modular Assembly Quality Analyzer and Optimizer. The
concept behind this tool is to centralise all low level performance information and
build correlations. As a result, MAQAO produces more and better results than
the sum of the existing individual methods. Additionally, being based after the
compilation phase allows a precise diagnostic of compiler optimisation successes
and/or failures. MAQAO provides several options among which we have:

– MAQAOPROFILE[5] is an option which allows us to give a precise weight
to all executed loops, therefore underscoring hotspots. Correlating this in-
formation provides the relevant metrics:
(i) the hotpath at run-time which passes through the whole program and
where the application spends the most of its time.
(ii) the monitoring trip count is very rewarding. By default most of compiler
optimisations target asymptotic performance. Knowing that a loop is sub-
jected to a limited number of iterations allows us to choose the optimisations
characterised by a cold-start cost.

– Static Analyser: MAQAO’s static module extracts the entire code structure
and expresses it using a set of graphs: Call Graphs (CGs), Control Flow
Graphs (CFGs) and Data Dependencies Graphs (DDGs). Computing the
DDGs is a key issue to determine critical path latency in a basic block
and perform instructions re-scheduling or any code manipulation technique.
It also allows an accurate understanding of dynamic performance hazards
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and determines the shortest dependency that corresponds to the overlapping
bottleneck.

– MAQAOADVISOR proposes different transformations to apply on the hot
loops, at the code source level, to improve the performances of the code. The
program is then compiled again and the new assembly code is resubmitted
to MAQAO for a new analysis of the code.

2.2 PEPA

In PEPA a system is described as an interaction of components which engage, ei-
ther singly or multiply, in activities. These basic elements of PEPA, components
and activities, correspond to states and transitions in the underlying Markov
process. Each activity has an action type. Activities which are private to the
component in which they occur are represented by the distinguished action type,
τ . The duration of each activity is represented by the parameter of the associated
exponential distribution: the activity rate. This parameter may be any positive
real number, or the distinguished symbol � (read as unspecified). Thus each
activity, a, is a pair (α, r) consisting of the action type and the activity rate
respectively. We assume a countable set of components, denoted C, and a count-
able set, A, of all possible action types. We denote by Act ⊆ A × R

+, the set
of activities, where R

+ is the set of positive real numbers together with the
symbol �.

PEPA provides a small set of combinators which allow expressions to be con-
structed defining the behaviour of components, via the activities they undertake
and the interactions between them.

Prefix (α, r).P : This is the basic mechanism for constructing component be-
haviours. The component carries out activity (α, r) and subsequently behaves as
component P .

Choice P +Q: This component may behave either as P or as Q: all the current
activities of both components are enabled. The first activity to complete, deter-
mined by a race condition, distinguishes one component, the other is discarded.

Cooperation P ��
L

Q: Components proceed independently with any activi-
ties whose types do not occur in the cooperation set L (individual activities).
However, activities with action types in the set L require the simultaneous in-
volvement of both components (shared activities). When the set L is empty, we
use the more concise notation P ‖ Q to represent P ��

∅
Q.

The published stochastic process algebras differ on how the rate of shared ac-
tivities are defined. In PEPA the shared activity occurs at the rate of the slowest
participant. If an activity has an unspecified rate, denoted �, the component is
passive with respect to that action type. This means that the component does
not influence the rate at which any shared activity occurs.

Hiding P/L: This behaves as P except that any activities of types within the
set L are hidden, i.e. they exhibit the unknown type τ and can be regarded as
an internal delay by the component. These activities cannot be carried out in
cooperation with another component.
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Constant A
def= P : Constants are components whose meaning is given by a

defining equation. A
def= P gives the constant A the behaviour of the component

P . This is how we assign names to components (behaviours).
The evolution of a model is governed by the structured operational seman-

tics rules of the language. This gives rise to a continuous-time Markov chain
which can be solved to obtain a steady-state probability distribution from which
performance measures can be derived.

2.3 The Proposed Approach

When the assembly code of an application is submitted to MAQAO for instru-
mentation, the hot loops of the program are selected and the corresponding Data
Dependencies Graphs (DDGs) are generated, one for each hot loop. These graphs
are computed with intra and inter iteration dependencies and are enriched with
static cycles estimated by compiler.

In our approach, and in order to investigate the impact of each transforma-
tion on the code performances, we propose to extract, after each transformation
applied, the hot loops of an application using the DDGs. Based on these graphs
which provide only static information on the transformation applied, we build a
PEPA model for each new version of a selected loop.
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Source
Transformations

Fig. 1. Building PEPA models from the DDGs of a selected loop

In this paper, three code transformations are investigated. Each time the DDG
of the selected loop is extracted and the corresponding PEPA model built. The
first transformation, called noUnroll transformation, consists in adding to the
hot loop, at the source level, a command which forces the compiler to not unroll
the code. The second transformation consists in reducing the definition interval
of the loop index. We call it the index inversion transformation. Finally the
last transformation investigated consists in breaking the data dependencies of
the code. In this case, an instruction of the hot loop is decomposed in several
instructions to execute several iterations separately.

In the following, using a case study we show how we apply each of the trans-
formations on the original code of a selected loop, the corresponding generated
DDG and the PEPA model.
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3 Case Study

To investigate the impact of the selected transformations on the execution time
of the code, we consider the CX3D application. CX3D is an MPI application
used to simulate Czochralski crystal growth [2], a method applied in the silicon-
wafer production to obtain a single crystal from semiconductors, metals, . . . . It
covers the convection processes occurring in a rotating cylindrical crucible filled
with liquid melt.

The program of the C3XD application contains several hot loops. The one
we select and extract is the inner loop of the following code where Imax = 31,
Kmax = 91 and Nmax = 41.
DO I = 2, Imax

DO K = 2, Kmax
DO N = 2, Nmax

Pnew = Max(Pnew,DP(I,K,N))
CONTINUE

In the following we apply each of the three transformations described above on
the inner loop of this code. In each case, we present the generated DDG of this
loop and for each graph, we describe its corresponding PEPA model.

3.1 The Original Code

To start, we consider the original version of the loop and generate its corre-
sponding DDG using MAQAO (Figure 2). Each node of the graph contains the
assembly instruction to be executed and a number.

Three types of instructions are used: add, ldfd and fmax. Instruction ldfd
represents a floating point memory access instruction. It is an 8−byte float point
load instruction. Instruction fmax determines the maximum numeric value of
its arguments (floating-point maximum) [9].

The numbering in the graph specifies the order in which the instructions have
to be executed. According to this numbering, several instructions have to be
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DO I=2, Imax

    DO K=2, Kmax

DO N=2, Nmax

 Pnew = MAX (Pnew, DP(I,K,N)

      CONTINUE

The original code The DDG of the inner loop

Fig. 2. The original code and the DD Graph of selected loop
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executed at the same time. For example, all loading instructions ldfd have to be
executed at the same time, at stage 1 of the execution process. Similarly, four
add instructions are to be executed simultaneously at stage 2 and stage 3. Unlike
the loading instructions, instructions fmax have to be executed sequentially.

In the following, we present the PEPA model of the graph of the selected loop.

The PEPA Model. This model consists of five components types. These com-
ponents are built such that their activities match the instructions in the graph
and their ordering. Note that because some instructions appear several times
in the graph and to avoid any ambiguity in the PEPA model, we number the
corresponding activities.

– Component Register plays the role of an instruction register which speci-
fies the next instruction to execute. It allows us to respect the instruction
order given by the graph as well as the simultaneous execution of certain in-
structions. Action type load models the loading instruction ldfd and action
fmax4 models the first fmax instruction to be executed at stage 4 of the
graph. Actions addi, i = 2, 3, model the instructions add to be executed at
stages 2 and 3 respectively.

Register
def= (load, r).Register1 Register2

def= (add3, �).Register3

Register1
def= (add2, �).Register2 Register3

def= (fmax4, s4).Register

– Component Maxi models the left path of the graph, from (ldfd, 1) to
(fmax, 7). Action types fmaxi, i = 5, 6, 7 model the three last fmax in
the path.

Maxi
def= (load, �).Maxi1 Maxi3

def= (fmax6, s6).Maxi4
Maxi1

def= (fmax4, �).Maxi2 Maxi4
def= (fmax7, s7).Maxi

Maxi2
def= (fmax5, s5).Maxi3

– Components Compi, i = 5, 6, each of these components models a branch,
Comp1 for branch (ldfd, 1) to (fmax, 5) and Comp2 for (ldfd, 1) to
(fmax, 6).

Compi
def= (load, �).Comp′i Comp′i

def= (fmaxi, �).Compi

– Component Compj,k, j = 1, . . . , Nmax and k = 1, 2 models the last branch
of the main part of the graph, that is from (ldfd, 1) to (fmax, 7). As this
fmax is the last instruction to be executed in the whole graph, Compj,k

allows us to model also the iteration process of the inner loop in the code.
If 1 ≤ j ≤ Nmax − 1, we have:

Compj,1
def= (load, �).Compj,2 Compj,2

def= (fmax7, �).Compj+1,1

Finally when j = Nmax, we have:

CompNmax,1
def= (load, �).CompNmax,2

CompNmax,2
def= (fmax7, �).Comp1,1
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– Component Adder models the behaviour of a sequence (add, 2) to (add, 3) in
the graph. The four sequences of this type in the graph have to synchronise
on both instructions. Therefore, these sequences are aggregated in the PEPA
model to a single component with the same activities and the same rate.

Adder
def= (add2, a2).Adder′ Adder′ def= (add3, a3).Adder

The whole model equation is:

CodeO
def= (Adder ��

K1
(Register ��

K2
(Maxi ��

K3
(Comp1 ��

K4
(Comp2 ��

K4
Comp1,1)))))

where the cooperation sets are defined as K1 = {add2, add3}, K2 = {load,
fmax4}, K3 = {load, fmax5, fmax6, fmax7} and K4 = {load}.

3.2 The noUnroll Transformation

The noUnroll transformation consists in introducing a command to force the
compiler to not unroll the program. We use command “Cdir$ nounroll” as
shown in Figure 3. The consequence of such a command is the generation of a
much smaller dependency graph. Like in the previous graph, each node consists
of the assembly instruction and a number specifying its position in the execu-
tion process. This graph specifies that two instructions, add and ldfd, must be
executed simultaneously at stage 2.

The PEPA Model. As the DDG of the selected loop is simpler in this case,
the corresponding PEPA model is also simpler. It consists of three components.

– Component Registeri 1 ≤ i ≤ Nmax: as in the previous model, this compo-
nent plays the role of an instruction register. However, it also allows mod-
elling the Nmax iterations of the modelled loop. For 1 ≤ i < Nmax, we
have:

Registeri
def= (add, �).Register′i Register′i

def= (fmax,�).Registeri+1

2add

1add

2ldfd

3fmax

DO I=2, Imax

    DO K=2, Kmax

DO N=2, Nmax

 Pnew = MAX (Pnew, DP(I,K,N)

Cdir$ nounroll

      CONTINUE

The DDG of the inner loopNounroll transformation

Fig. 3. The code with no unroll and the DD Graph of selected loop
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The last iteration of the loop is given by i = Nmax, such that:

RegisterNmax
def= (add, �).Register′Nmax

Register′Nmax
def= (fmax,�).Register1

– Component Process1 models the sequence of add instructions. However, as
the second add in the sequence has to be executed at the same time as ldfd,
both are modelled using activity add load.

Process1
def= (add, a).P rocess′1 Process′1

def= (add load, l).P rocess1

– Component Process2 models the ldfd and fmax sequence of instructions.

Process2
def= (add load, �).P rocess′2 Process′2

def= (fmax, f).P rocess2

The whole model equation is given by:

CodeN
def= (process1 ��

{add load}
process2) ��

{add,fmax}
Register

3.3 Index Inversion Transformation

This transformation consists in exchanging the inner loop index with the outer
loop index which is smaller. Thus the number of iterations of the inner loop
becomes smaller (31 instead of 41). Consequently, the generated graph is a simple
two node graph. This dramatic reduction in the graph size, compared to the one
of the original code, is due to the fact that as Nmax is now smaller, the CPU
does not need to use the L3 memory cache, it uses the L2 memory cache only.

The PEPA Model. For this version of the program, the PEPA model consists
of two components Process and Registeri, 1 ≤ i ≤ Nmax.

– Component Process models the behaviour described by the graph. That is
loading the data before executing instruction fmax.

Process
def= (load, l).P rocess1 Process1

def= (fmax, f).P rocess

2

1

fmax

ldfd

DO N=2, Nmax

DO I=2, Imax

 Pnew = MAX (Pnew, DP(I,K,N)

      CONTINUE

    DO K=2, Kmax

Indices I and N inversion The DDG of the inner loop

Fig. 4. Code with index inversion and the DD Graph of selected loop
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– Component Registeri models the iteration process.

Registeri
def= (fmax,�).Registeri+1 if 1 ≤ i < Nmax

Registeri
def= (fmax,�).Register1 if i = Nmax

The model equation consists of the cooperation of the two components of the
model over activity fmax.

CodeI
def= Process ��

{fmax}
Register1

3.4 Breaking the Dependencies

The last transformation investigated consists in breaking the data dependencies
of the code. In this case, the instruction of the inner loop is decomposed in four
instructions in order to execute four iterations in one (see Figure 5).

Note that lfetch instruction is used to explicitly prefetch data into the L1,
L2, or L3 caches [9].

The PEPA Model. As the DDG generated after this transformation is bigger
than the previous one, the PEPA model is also bigger. It consists of eleven
components in which a combined name for an activity implies the simultaneous
execution of the instructions behind this name.

– Component Register plays the role of the instruction register which states
the next instruction to be executed in a program. Following the numbering
used in the graph, the order of instructions is the following.

Register
def= (ldfd add1, l).Register1

Register1
def= (lfetch add2, d2).Register2

Register2
def= (lfetch add3, d3).Register3

Register3
def= (lfetch add4, d4).Register4

Register4
def= (lfetch add5, d5).Register5

add

ldfd

add

add add

ldfd

add

fmax fmax

fmax

ldfd add

lfetch

lfetch

add

lfetch

ldfd

fmax

add

lfetch addadd

add

1

2

3

4

5

6

7

add add add

Code with broken dependencies The DDG of the inner loop

DO I=2, Imax
    DO K=2, Kmax

DO N=2, Nmax

      CONTINUE

Pnew=MAX(Pnew1,Pnew2,Pnew3,Pnew4)

Pnew4 = MAX (Pnew, DP(I,K,N+3))

Pnew3 = MAX (Pnew, DP(I,K,N+2))

Pnew2 = MAX (Pnew, DP(I,K,N+1))

Pnew1 = MAX (Pnew, DP(I,K,N))

Fig. 5. The code with broken dependencies
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Register5
def= (fmax6, f6).Register6

Register6
def= (fmax7, f7).Register

Note that the index of an activity refers to the execution stage number.
– Component Process1 models sequence (ldfd, 1) to (fmax, 6) which appears

twice in the graph. As both sequences must synchronise on both instructions,
a single component models both sequences.

Process1
def= (ldfd add1, �).P rocess′

1 Process′
1

def= (fmax 6, �).P rocess1

– Component Process2 models sequence (add, 1) to (lfetch, 2).

Process2
def= (ldfd add1, �).P rocess′

2 Process′
2

def= (lfetch add2, �).P rocess2

– Component Process3 models sequence (ldfd, 1) to (fmax, 7) which appears
twice in the graph. As both sequences must synchronise on both instructions,
a single component models both sequences.

Process3
def= (ldfd add1, �).P rocess′

3 Process′
3

def= (fmax7, �).P rocess3

– Component Process4 models sequence (add, 1) to (lfetch, 3).

Process4
def= (ldfd add1, �).P rocess′

4 Process′
4

def= (lfetch add3, �).P rocess4

– Component Process5 models sequence (add, 2) to (add, 3).

Process5
def= (lfetch add2, �).P rocess′

5 Process′
5

def= (lfetch add3, �).P rocess5

– Component Process6 models sequences starting with (add, 2) and finishing
with add or lfetch at stage 4. The three sequences can be modelled using a
single component.

Process6
def= (lfetch add2, �).P rocess′

6 Process′
6

def= (lfetch add4, �).P rocess6

– Component Process7 models sequence (add, 2) to (lfetch, 5).

Process7
def= (lfetch add2, �).P rocess′

7 Process′
7

def= (lfetch add5, �).P rocess7

– Component Process8 models sequence (add, 3) to (lfetch, 4).

Process8
def= (lfetch add3, �).P rocess′

8 Process′
8

def= (lfetch add4, �).P rocess8

– Component Process9 models sequence (add, 3) to (add, 5).

Process9
def= (lfetch add3, �).P rocess′

9 Process′
9

def= (lfetch add5, �).P rocess9

– Component Iterationi, 1 ≤ i ≤ Nmax: it models the iteration process of
the loop. If 1 ≤ i < Nmax, we have:

Iterationi
def= (ldfd add1, �).Iterationi,1 Iterationi,1

def= (fmax7, �).Iterationi

When i = Nmax, we have

IterationNmax
def= (ldfd add1, �).IterationNmax,k

IterationNmax,1
def= (fmax7, �).Iteration1
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The complete model equation is:
CodeC

def= Iteration1 ��
M1

(Register ��
M2

(Process1 ��
M3

(Process2 ��
M4

(Process3

��
M3

(Process4 ��
M3

(Process5 ��
M6

(Process6 ��
M7

(Process7

��
M8

(Process8 ��
M5

Process9)))))))))

where the cooperation sets are defined as M1 = {ldfd add1, fmax7},
M2 = {ldfd add1, lfetch add2, lfetch add3, lfetch add4, lfetch add5, fmax6,
fmax7}, M3 = {ldfd add1}, M4 = {ldfd add1, lfetch add2},
M5 = {lfetch add3}, M6 = {lfetch add2, lfetch add3}, M7 = {lfetch add2,
lfetch add4} and M8 = {lfetch add5}.

4 Numerical Results

As one of the sensitive performance measures for our application is the time
required to complete the execution of the selected loop, we have used the HYDRA
analyser [3] to compute the cumulative passage-time distribution function for
completing a hot loop. To translate the PEPA model into an HYDRA input file,
we have used Imperial PEPA Compiler (IPC) [1].

The parameters values we have used in our experiments are reported in Ta-
ble 6. For these values, the cumulative passage-time distribution function for
completing the execution of the selected loop is given in Figures 7 and 8.

Original NoUnroll Inversion Breaking Dep.
Rates Values Rates Values Rates Values Rates Values
s1, s2, s 3 l 1.25 f 7.5 d1, d2, d3, f1, l 7.5
s3 2.143 f 15 l 1.25 d4 1.667
a1, r 7.5 a 7.5 f2 3
a2 1.5

Fig. 6. The parameters values (nanoseconds−1)

Figures 7 and 8 show that, on the three transformations investigated, only the
index inversion transformation has a positive impact on the execution time of
the selected loop. For all values of the iteration number Nmax, the time required
to complete the execution is smaller when applying this transformation. Thus,
when Nmax = 12 (Figure 7 left), we can see that, in the worst case, with the
original code the loop will be completed in 10 nanoseconds while when using
the index inversion, the completion time is only 5 nanoseconds.

Similarly, when Nmax = 40 (Figure 8 right), it will require about 30.10−9

seconds to complete the loop in the the worst, instead of 10 nanoseconds with
the index inversion.

These figures show also that it is far much better to keep the loop in its original
version than using any other transformation as both the noUnroll and breaking
dependencies transformations may increase the execution time, the worst being
the breaking dependencies transformation.
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Fig. 7. Cumulative passage-time distribution function for Nmax = 12 and Nmax = 20
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Fig. 8. Cumulative passage-time distribution function for Nmax = 32 and Nmax = 40

In the following we compare these results of the analytical model to the exe-
cution times of the loop on a BULL Itanium 2 Novascale system, 1.6GHz, 3MB
of L3. The codes were compiled using Intel ICC/IFORT 9.1.

As specified by the DDGs seen in Section 3, some instructions have to be
executed at the same time. This is possible on a non parallel machine like Itanium
2 because its processor is built around the EPIC (Explicitly Parallel Instruction
Computing) architecture which main feature is the coupling between software
and hardware. In this case the compiler is given the task of arranging the code
in a certain way to benefit from the parallelism in order to simplify the hardware
architecture of the processor.

Table 9 summarises the execution times obtained for our loop. The results are
given for different values of the iteration number Nmax and the three transfor-
mations. The times reported in this table are higher than the ones obtained with
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Loop trip Original NoUnroll Inversion Breaking Dep.
12 134 135 61 309
20 404 405 132 689
32 787 788 265 1279
40 938 1052 372 1739

Fig. 9. Execution times (nanoseconds)

the analytical model. The main reason is related to the rates used in the PEPA
models. These rates are computed using the number of cycles the compiler has
estimated for each assembly instruction before the code execution. During the
execution these estimated numbers may not be the ones used, and be higher be-
cause of the processor speed, its availability, the inputs/outputs, or the memory
size.

However, like the results of the analytical model, the results in Table 9 show
that the index inversion transformation leads to the best execution times. More-
over, like previously, they show that it is better to use the original code than the
breaking dependencies or the noUnroll transformation.

Clearly these results lead to the same conclusions as the ones obtained using
our approach. However, our approach allows us to investigate the impact of
different transformations on a selected loop quicker than a direct execution of
the code. Indeed, if the results reported in Table 9 are the execution times of
just the loop, the whole program of the CX3D application had to be executed.
And the execution of this program takes several minutes using MAQAO.

5 Conclusions

In this paper we have proposed an approach which allows investigating the ef-
fectiveness of several optimisations on the execution time of the code.

The stem of our work is the diagnostic that in scientific computing a conse-
quent fraction of the execution time is the time spent in loops with a limited
number of iterations. We come out with a novel method for quickly evaluating
different transformations in order to select the best one. The technique is faster
than simulation and instrumentation because we isolate and evaluate just the
hot loops.

In the future, we plan to extend our approach in two important ways. First,
we are interested in developing an interface between MAQAO and PEPA, in
order to provide the user with an automatic formal approach. We also plan to
propose an infrastructure to cooperate with dynamic analysis when we have
large input data that lead to cache misses. Indeed, while our approach is fairly
straightforward, it does rely on a host of program analysis available in Itanium
2 compiler. In the case of large input data, performance may be unpredictable
even if only two parameters are taken into account. In the future, we propose to
combine analytical modelling with the tracing of cache behaviour.
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