
DOI 10.1007/s00165-006-0011-6
BCS © 2006
Formal Aspects of Computing (2007) 19: 3–33

Formal Aspects
of Computing

Formal techniques for performance analysis:
blending SAN and PEPA
Jane Hillston1 and Leı̈la Kloul2

1Laboratory for Foundations of Computer Science, School of Informatics, University of Edinburgh, Edinburgh EH9 3JZ, UK
2 PRiSM, Université de Versailles, 45, Avenue des Etats-Unis, 78035 Versailles Cedex, France

Abstract. In this paper we consider two performance modelling techniques from the perspectives of model con-
struction, generation of an underlying continuous time Markov process, and the potential for reduction in the
Markov process. Such careful comparison of modelling techniques allows us to appreciate the strengths and
weaknesses of different approaches, and facilitates cross-fertilization between them. In the present case we take
a characteristic of one formalism, functional rates in Stochastic Automata Networks, and introduce it to the
other formalism, Performance Evaluation Process Algebra. We investigate the benefits of this cross-fertilization,
particularly from the perspectives of Markov process generation and reduction.

1. Introduction

Performance analysis is the study of system dynamics from the, often conflicting, perspectives of timeliness of
behaviour and efficient use of resources. Such study can be carried out by direct experimentation, monitoring
and measurement. However, in the domain of computer systems, it is often important that the analysis is carried
out before the system is constructed or configured and therefore modelling is widely employed.

Historically, stochastic performance models have been, essentially, informal, as witnessed by the predominance
of queueing networks through the 1960s, 1970s and 1980s. Queueing networks give a very compact representa-
tion of systems with resource contention between independent customers. Moreover, analytical methods and well
known algorithms may be used to obtain either analytical or numerical results. However, whilst conventions exist,
there is no formal interpretation: correct analysis and solution of models rely on the expertise of the modeller
both in terms of the notation and the system under study.

The evolution of computer systems in the last twenty years has introduced several features which are difficult
to capture in queueing networks. In particular, queueing networks are inefficient whenever complex synchroni-
sation constraints need to be taken into account. Addressing these concerns, a new generation of performance
modelling techniques have been introduced over the last two decades. The majority of these seek to provide a high
level model description technique from which a continuous time Markov chain can be derived as the underlying
stochastic model. Since this has coincided with the growth of “formal methods” for system specification it is
unsurprising that many of these new techniques have been formed by incorporating stochastic information into
existing formal methods. Thus now we can consider there to be two broad classes of performance modelling
techniques: those which seek to address the shortcomings of queueing networks but which retain the informal
characteristic, and those which are based on incorporation of stochastic information into existing formal methods.

Correspondence and offprint requests to: Leı̈la Kloul, PRiSM, Université de Versailles 45, Avenue des Etats-Unis 78035 Versailles Cedex,
France. E-mail: kle@prism.uvsq.fr

4 J. Hillston, L. Kloul

In the former category, for example, we can include Plateau’s Stochastic Automata Networks (SANs) [Pla85]
and various queueing network extensions e.g. [HPTvD90, HT90, JL82]. There are many examples of formal sto-
chastic performance modelling approaches in the latter category. For example, stochastic Petri nets [Mol82] and
generalized stochastic Petri nets [ACB84], Stochastic Activity Networks [SM91] and stochastic process algebras
[Hil94, BG98, GHR93, Her99, DHKK01]. In all cases the objective is to have a high-level modelling formalism
from which it is possible to automatically generate the underlying continuous time Markov chain. This stochastic
model is characterised by a matrix termed the generator matrix.

Stochastic process algebras emerged as a new performance modelling technique in the early 1990s. Several
languages have been published and these can be broadly categorised into those in which activity and time/delay
are combined and those in which they are treated as orthogonal. The stochastic process algebra which we con-
sider, Hillston’s Performance Evaluation Process Algebra (PEPA) [Hil94], falls into the former category. PEPA
extends classical process algebra by associating a random variable, representing duration, with every action.
These random variables are assumed to be exponentially distributed and this leads to a clear mapping from the
process algebra model to the continuous time Markov process.

This can be regarded as a fully fledged formal method, since the language includes a calculus for model
manipulation and analysis, based on formally defined equivalence relations. Considerable effort has been applied
to studying the relationship between the process algebra structure and techniques and the underlying Markov
process, and the extent to which the former can be exploited in the latter [Hil05b]. For example, in PEPA there
is a model reduction technique, termed aggregation, which can be used to reduce the state space of the Markov
process via a behaviour preserving equivalence to partition the state space at the process algebra level [Hil95].

PEPA is supported by several software tools including PRISM [KNP02] and the PEPA Workbench [CGHT99],
which incorporates procedures to carry out automatic aggregation [GHR01].

Unlike PEPA, the SAN modelling approach is best described as semi-formal since it is based on automata
theory but relies on informal annotation by the modeller. SANs are based on graphical models in conjunction
with an underlying stochastic hypothesis. The dynamic behaviour of a component is represented by a transition
from one state to another; each state is represented by a node, each transition by an arc between states. A label
on the transition specifies the instant and the occurrence probability of the action. This label specifies also the
type of the action. Again, the objective is to derive an underlying continous time Markov process. The informal
annotations are required in order to make the specification complete with respect to this stochastic process. There
appear to be some moves towards making SAN more formal since recent changes [BBF+03] to the PEPS tool
which supports the approach, oblige the modeller to declare explicitly the automata states and the network events.

The principal strength of SAN lies in their efficient solution technique which avoids the construction of the
monolithic generator matrix representing the underlyng Markov process. Under adequate probabilistic hypoth-
eses, the behaviour of a SAN is represented by a multi-dimensional Markov process whose states are those of the
product space. Using a technique based on tensor or Kronecker algebra, it has been proved [Pla85, PF91] that
this method automatically provides an analytic derivation of a decomposed form of the generator matrix called
the descriptor. Compared to a monolithic description of the generator, the structure of this descriptor leads to
a considerable reduction in memory requirements during model solution. Moreover, solution techniques have
been adapted to this representation [FPA98].

In this paper, after presenting the strengths and weaknesses of each of the formalisms, we propose an enhanced
version of PEPA in which we adopt a system description feature of SAN which was not previously available to
PEPA modellers. SAN allows functional dependencies to be expressed between automata, which mean that the
timing behaviour of one component (or indeed the activities it is able to undertake) may depend on the current
state of another component. It is this feature that we introduce into PEPA. This introduces some modelling
flexibility into PEPA and in some cases can lead to a reduction of the model’s size. Furthermore, we study its
impact on the current state space reduction techniques based on bisimulation.

Contribution of this paper We present two contrasting approaches to performance analysis and demonstrate the
benefits which can be gained by importing a characteristic of one formalism, functional dependencies, into the
other. Whilst the use of functional dependencies is well-established in untimed process algebras, this is novel in
the context of a stochastic process algebra used for performance modelling. Moreover, we focus on the benefits
of this extension with respect to the expression and solution of the underlying Markov chain. By necessity when
working at this level of detail we focus on the particulars of the two chosen formalisms, SAN and PEPA, but these
may be regarded as representative of their respective wider classes of performance modelling approaches. Thus the
current work serves to illustrate the benefits which may be gained by cross-fertilisation between formalisms and
from developing a single framework in which multiple model reduction techniques can be studied and compared.

Formal techniques for performance analysis: blending SAN and PEPA 5

Structure of the paper Some related work which helps to establish the context of the current paper is presented in
Sect. 2 before Sect. 3 briefly introduces the PEPA and SAN formalism, and demonstrates their modelling style on
a small example. Section 4 is devoted to a case study in which we show the interest of the functional dependencies.
In Sect. 5 we show how to introduce these dependencies in PEPA. Section 6 explains the methods used to tackle
the state space explosion problem in SAN and PEPA and Sect. 7 considers the impact of the introduction of
functional rates and explains how a tensor representation for PEPA models can be developed. Using a second
case study, we show, in the first part of Sect. 8, how to build the different matrices required for the descriptor of
PEPA models. In the second part of the same section we show how to apply the simplification technique on the
PEPA model. We finally conclude with some remarks and possible future works.

2. Related work

Stochastic process algebras (SPAs) emerged in the early 1990s as a performance modelling formalism. In contrast
to classical process algebras they incorporate probabilistic choice and random timings, although in many cases
the choice is implicit as in PEPA, arising from the race condition between different timed actions. For SPAs sup-
porting synchronised communication the timing may be incorporated in the actions as in PEPA, EMPA, TIPP
and Stochastic π -calculus [Hil94, BG98, GHR93, Pri95], or regarded as orthogonal to it as in IMC and MoDeST
[Her99, DHKK01]. There are also process algebras in which communication is via asynchronous message passing
and these have also recently been given stochastic extensions [DLM05, DHW04, Bor06].

In this paper we are advocating the usefulness of detailed comparisons between formalisms, and if appropriate,
the extension of one formalism with characteristics of another. Previously, the relationship between stochastic
Petri nets and stochastic process algebras has been extensively studied from both a pragmatic and a theoretical
perspective [Rib95, DHR95, DHHR95, HRRS01]. That study has resulted in fruitful cross-fertilization between
the formalisms [GHKR03].

The characteristic we import from SAN to PEPA is functional dependencies. Such dependencies have previ-
ously been used in untimed process algebras such as μCRL [GP95] and LOTOS [ISO98]. However our particular
focus here is that the functional dependent is a rate and we explore the implications of this with respect to the
generation and solution of the continuous time Markov chain underlying the stochastic process algebra model.
We believe that this is the first time that functional dependencies have been developed for a synchronising sto-
chastic process algebra, whilst a proposal for the asynchronous interaction stochastic process algebra SCCP has
been made by Bortolussi contemporaneously [Bor06].

One of the consequences of introducing functional rates into PEPA is that it facilities a tensor, or Kronecker,
representation of the underlying Markov chain. Kronecker algebra representations have been used for some time
as a means to address the state space explosion problem arising in the numerical solution of Markov chains. The
pioneering work in this area was carried out by Plateau in the context of SANs [Pla84].

More recently, Kronecker-based solution techniques have been developed for various Petri net based-
formalisms. In [Don94], the approach developed is based on finding a partition of the GSPN. The resulting
GSPNs synchronize on timed transitions. In this approach no immediate transitions are allowed and firing the
synchronizing transitions must lead to tangible states. Whilst the approach used in [Kem96] is similar, the class of
GSPN considered is more general; the constraint on the firing the synchronizing transitions is relaxed. Moreover,
Kemper presents an algorithm which generates the reachability set which profits from the Kronecker form. In
[CM96], no particular structure of the net is assumed and a more general marking behaviour is allowed. The
approach developed by the authors consists of obtaining the Kronecker representation for individual places,
which results in small matrices, and then compacting the places into “macro-places” which correspond to the
sub-GSPNs. The final expression for the places contains a matrix inverse which cannot be expressed using Kro-
necker operators on small matrices. This disappears when no immediate transitions are considered. Moreover,
the size of the transition matrix is enormous, potentially leading to inefficiency because of the large number
of unreachable states. In a more recent work [DK01], synchronisation with priority has been integrated into a
Kronecker representation of GSPNs.

In all these works, the Kronecker representations of the generator matrix do not avoid the unreachable states.
In [Buc99], an approach which avoids the unreachable states of the Markov chain is investigated. However, this
approach seems to be incompatible with the standard solution algorithms because of the structure of the matrix.

In [CM99], the data structure to store the reachable states and the generator matrix is studied. A matrix
diagram which is a combination of Kronecker and BDD-based approach is used to store the generator.

6 J. Hillston, L. Kloul

With their explicit compositional structure, SPAs would appear to be natural candidates for Kronecker rep-
resentation. In 1994 Buchholz proposed an SPA called MPA, for which the mapping to an underlying Markov
process is only defined in terms of a tensor expression [Buc94]. However, in MPA the interpretation of both basic
actions and shared actions is quite different to that in PEPA, as it was chosen specifically to facilitate the tensor
representation and without a natural modelling interpretation.

The tensorial representation of the Markov process underlying a PEPA model has some similarities to those
previously developed for SAN and SPN; nevertheless it also has novel features. In particular capturing the correct
timing behaviour of cooperating PEPA activities relies on functional dependencies.

3. PEPA and SAN

In this section we give brief introductions to each of the formalisms we consider, and then informally compare
them on the basis of small examples. More details of PEPA can be found in [Hil94], whilst more details of SAN
can be found in [Pla85].

3.1. PEPA

The basic elements of PEPA are components and activities, corresponding to states and transitions in the under-
lying Markov process. Each activity has an action type (or simply type). Activities which are private to the
component in which they occur are represented by the distinguished action type, τ . The duration of each activity
is represented by the parameter of the associated exponential distribution: the activity rate (or simply rate) of the
activity. This parameter may be any positive real number, or the distinguished symbol � (read as unspecified).
Thus each activity, a, is a pair (α, r) where α is the action type and r is the activity rate. We assume that there is a
countable set of components, which we denote C, and a countable set, A, of all possible action types. We denote
by Act ⊆ A× R

+, the set of activities, where R
+ is the set of positive real numbers together with the symbol �.

The combinators, together with their names and interpretations, are presented informally below; the structured
operational semantic rules for the language are included in Appendix A.

Prefix: (α, r).P Prefix is the basic mechanism by which the behaviours of components are constructed. The
component carries out activity (α, r) and subsequently behaves as component P.

Choice: P + Q The component represents a system which may behave either as component P or as Q: all the
current activities of both components are enabled. The first activity to complete, determined by a race condition,
distinguishes one component, the other is discarded. The choice combinator represents competition between
components.

Cooperation: P ��
L

Q The components proceed independently with any activities whose types do not occur in the
cooperation set L (individual activities). However, activities with action types in the set L require the simultaneous
involvement of both components (shared activities). These activities are only enabled in P ��

L
Q when they are

enabled in both P and Q. Thus one component may become blocked, waiting for the other component to be ready
to participate. The shared activity occurs at the rate of the slowest participant. If an activity has an unspecified
rate in a component, the component is passive with respect to that action type. This means that the component
does not influence the rate at which any shared activity occurs. The cooperation combinator associates to the left
but brackets may also be used to clarify the meaning. When the set L is empty, we use the more concise notation
P ‖ Q to represent P ��

∅
Q.

Hiding: P/L The component behaves as P except that any activities of types within the set L are hidden, i.e. such
an activity exhibits the unknown type τ and the activity can be regarded as an internal delay by the component.
Such an activity cannot be carried out in cooperation with any other component: the original action type of
a hidden activity is no longer externally accessible, to an observer or to another component; the duration is
unaffected.

Constant: A
def� P Constants are components whose meaning is given by a defining equation: A

def� P gives the
constant A the behaviour of the component P. This is how we assign names to components (behaviours). There

Formal techniques for performance analysis: blending SAN and PEPA 7

is no explicit recursion operator but components of infinite behaviour may be readily described using sets of
mutually recursive defining equations.

From the SOS rules (see Fig. 8 in the Appendix) each PEPA model can be regarded as a labelled multi-tran-

sition system (C, Act, {| (α,r)−−−→ | (α, r) ∈ Act |}) where C is the set of components, Act is the set of activities and

the multi-relation
(α,r)−−−→ is given by the rules. Note that the multiplicity is important in order to keep the sto-

chastic information contained in the model intact. This transition system, or derivation graph, also characterises
the Markov process represented by the model. The nodes of the graph (states of the Markov process) are the
syntactic terms exhibited by the model, and arcs represent the possible transitions between them.

Necessary (but not sufficient) conditions for the ergodicity of the Markov process in terms of the structure
of the PEPA model have been identified and can be readily checked [Hil94, GHR97]. Ergodicity implies that
the model must give rise to a strongly connected derivation graph. If we consider the layering imposed on a
component by cooperation combinators, this implies that choice combinators may only be introduced at the
lowest level of a cyclic component since syntactic terms are associated with states.

This leads us to formally define the syntax of PEPA expressions in terms of sequential components S and
model components P:

P ::� S | P ��
L

P | P/L

S ::� (α, r).S | S + S | A

3.2. Stochastic Automata Networks

In the SAN approach, a system is represented by a number of automata, each automaton capturing the dynamic
behaviour of an element of the system. These elements are assumed to work more or less independently of one
another, with only limited interaction. Within an individual automaton, the behaviour of a component or aspect
of the system is captured as a set of states and rules that govern the events causing movement from one state
to another. Automata are defined in terms of state transition diagrams in which each node represents a state
and each arc represents a state change. Arcs are labelled in such a way as to capture information about the rate
at which an event occurs and possibly synchronisation between events [PFL88]. Thus transitions can be of two
types: local or synchronised. A local transition occurs only in the automaton whereas a synchronised transition
occurs in several automata at the same time.

More formally, a Stochastic Automata Network (SAN) is a set of N automata in which each automaton Ai
is defined by the tuple (Si, L, Qi) where

• Si is the set of states of the automaton,
• L is the set of labels. A label l is a list that may contain either a function τ , or a list of tuples (e, τe, pe) with

different symbols e, or both of them such that:

– e is the name of the synchronising event or synchronisation,
– τ and τe are the transition rates, functions defined from �N

i�1Si to R
+,

– pe is the probability transition function defining a conditional routing probability between local states given
that the synchronising event occurs.

• Qi is the transition function which associates a label from L with every arc of Ai .

A label on an edge allows us to specify the type and the rate of the transition as follows:

• If Qi(xi, yi) contains a function τ , then we have a transition local to automaton Ai between states xi and yi . If
τ is not a constant, the transition is still local to automaton Ai , but its rate depends on the state of the other
automata of the network.
• If (e, τe, pe(xi, yi)) ∈ Qi(xi, yi), then the transition between states xi and yi is a synchronised transition, e and

τe being the name and the rate of the transition of the synchronising event. pe(xi, yi) is the routing probability
between local states xi and yi . The name of the event allows us to define the automata and the transitions con-
cerned by this event. The distinction between the rate and the probability is required because the first must be

8 J. Hillston, L. Kloul

Fig. 1. A single buffer system model

unique for a given synchronising event, thus the same on all concerned automata i.e. the rate of synchronising
transitions are determined at the global level, whilst the probabilities may (and generally will) differ.

Thus synchronising transitions, which are made up of events from two or more automata, provide a direct
form of interaction between automata in a SAN. However, automata are also able to influence each other in a
less direct way using the mechanism of functional rates. It is possible for the rate of a local transition within one
automaton to be influenced by the local states of one or more other automata. Both these forms of interaction
will be illustrated by the example in the following subsection.

3.3. High-level model abstractions for representation

We begin our investigation of the relationship between the two formalisms by considering how they model sys-
tems, i.e. the high-level model abstractions used in each case. We do this via a small example: a single buffer
system, as depicted in the left-hand side of Fig. 1. This is a buffer queue1 with three places (capacity C1 � 3).
When the buffer is empty only an arrival is possible. When the buffer is full arrivals are suspended and only a
departure, representing the completion of some service, may occur. In other states an arrival or a departure may
occur. We assume that the arrival rate is λ1 and the departure rate is μ1. This example will also serve to clarify
the descriptions of SAN and PEPA given in the previous sections.

Both SAN and PEPA aim to provide a compositional framework for model construction, allowing the mod-
eller to focus on the behaviour of individual components within a system and the interactions between them
rather than tackling the complexity of the whole system all at once.

Events vs activities Using SAN the behaviour of the buffer is modelled using an automaton A1 composed of four
states (0, . . . , 3), each one corresponding to the number of customers that may be present in the buffer after the
occurrence of an event. In this single buffer system, the events that may occur are the arrival of a new customer
and the service completion. In automaton A1 (Fig. 1), the effect of the first event is represented by the transitions
with rate λ1 and the effect of the second by the transitions with rate μ1.

In PEPA, the buffer would be represented by a model composed of one sequential component Buffer0 with
three derivatives Bufferi where i, i � 1..3, is the number of customers in the buffer.1 We consider two activities
with types in and service. The first one is used to describe the arrival of a new customer in the buffer and the
second the service completion. As we can see, only the prefix and choice combinators are used in the construction
of sequential components (Fig. 1). When the buffer is empty, only activity in is enabled, whereas when the buffer
is full, only activity service can be performed. However, in all other cases both activities are enabled since we can
have either the arrival of a new customer or the service completion of one in the buffer.

1 Note that the constants used to distinguish the derivatives are given suggestive names, e.g. Bufferi when there are i customers in the buffer,
but they are not formally parameterised.

Formal techniques for performance analysis: blending SAN and PEPA 9

(a) (b)

Fig. 2. Automata interactions

Based on this simple example, we can see that PEPA may be regarded as a more explicit formalism than SAN.
In PEPA, each part of the behaviour of a system is explicitly modelled. In SAN models, the system behaviour is
implicitly represented since the transitions are the result of the implicit occurrence of events. The following will
confirm this observation.

Components interaction Now we consider the single buffer system described above but assume that it accepts
arrivals from a distinct arrival process which is a simple on/off source. The system must be represented as the
interaction of two components, the source and the buffer.

In a SAN model of the system we use two automata A0 and A1, the first to model the source behaviour and
the second to model queue1 (Fig. 2 (a)). The events that may occur in such a system are the following:

1. The source switches to state on. This event is represented by the transition with rate η in automaton A0.
2. The generation of a customer by the source and its arrival in queue1. As this event concerns both the source and

queue1, this is represented by synchronisation transitions labelled s1 on both automata. This synchronisation
is at rate λ1 and its routing probability is 1. Note that when it is not specified on the automaton, it is equal by
default to 1.

3. The source switches to state off. This event is represented by the transition with rate ν in automaton A0.
4. The service completion of a customer in queue1. It is represented by the transitions with rate μ1 on auto-

mata A1.

Events 1, 3 and 4 concern only one automaton. These events are local events whereas event 2 is a synchronising
event.

We can also illustrate the less direct form of interaction in SAN, based on functional rates, using the same
example as above but taking a different representation of the arrival process. Now we capture only whether the
process is currently “on” or not. So, the transitions in automaton A1 which capture the arrival of a new customer
are no longer synchronising transitions, but functional transitions (Fig. 2 (b)). If variable x0 denotes the local state
of automaton A0 then we can define a function f as

f (x0) �
{

1 if x0 � on

0 otherwise

The rate of a transition labelled f (x0) depends on the state of A0, i.e. there is a functional dependency between
the two automata.

Note that in SAN there is little sense of identity within the model. Individual states and events are not named
in any explicit sense. Identities are only explicitly associated with automata and synchronisations. However, when
a functional rate is used, as in the example above, there is an implicit assumption that the local states of the influ-
encing automaton are labelled, although this labelling need not be unique. This is necessary for the definition of
the function which determines the transition rate in the influenced automaton.

In contrast, in PEPA, only one form of component interaction is allowed, that provided by cooperation.
Similar to synchronising events in SAN, activities carried out in cooperation require the synchronous partici-
pation of two or more components. For example, consider the system composed of the three place-buffer and
the on/off source. To model this system we need two components Buffer0 and Arrivalon. Thus, when we wish
to model the arrival process to the buffer separately, with the in activity shared, the components are defined as

10 J. Hillston, L. Kloul

Fig. 3. A finite capacity queueing network

shown below.

Buffer0
def� (in,�).Buffer1 Arrivalon

def� (in, λ).Arrivalon
+(off, ν).Arrivaloff

Buffer1
def� (in,�).Buffer2 + (service, μ).Buffer0 Arrivaloff

def� (on, η).Arrivalon

Buffer2
def� (in,�).Buffer3 + (service, μ).Buffer1

Buffer3
def� (service, μ).Buffer2

The rate of activity in is undefined (�) in component Buffer0 since the value of this rate depends on the state
of component Arrivalon in which it is specified. Moreover, as this activity requires the synchronous participation
of both components Buffer0 and Arrivalon, in addition to the mutually recursive sets of equations defining the
behaviour of each sequential component, we also need a system equation which defines the cooperation between
the two components:

System
def� Buffer0 ��

{in}
Arrivalon

The set decorating the cooperation combinator �� specifies which activities require the synchronous par-
ticipation of the two arguments of the combinator, in this case Buffer0 and Arrivalon. Other activities of the two
components, such as service and off can be carried out independently.

In PEPA the cooperation is the only form of component interaction. There is no mechanism for setting func-
tional rates for PEPA activities, analogous to that in SAN. In the following, we show, using a case study, that
these functional dependencies provide the SAN modeller with a certain flexibility in building their model which
would be advantageous to introduce into the PEPA formalism.

4. Case study 1: a finite capacity queueing network

Consider an open queueing network composed of three finite capacity queues called queue1, queue2 and queue3
(Fig. 3). We denote by Ci the finite buffer capacity at queuei , i � 1 . . . 3. The customers of this network are of
two classes. Class 1 customers arrive from outside the network to queue1 according to a Poisson process with
rate λ1. An arriving customer is considered lost if queue1 is full when it arrives. Similarly, class 2 customers arrive
from outside the network to queue2 according to a Poisson process with rate λ2. If queue2 is full when a class 2
customer arrives, it is considered lost also. The servers at queue1 and queue2 provide exponential service at rate
μ1 and μ2 respectively.

After its service in queue1, a class 1 customer tries to join queue3. If this buffer is full, the customer is blocked
in the server until a slot becomes available in queue3. Similarly, on its service completion in queue2, a class 2
customer tries to join queue3. However if the buffer is full, the class 2 customer is discarded.

The server at queue3 provides an exponential service at rate μ31 to class 1 customers and at rate μ32 to class 2
customers. We assume that class 1 customers have a preemptive priority over class 2 customers for the service.
Customers completing service at queue3 leave the network.

Formal techniques for performance analysis: blending SAN and PEPA 11

Fig. 4. The SAN Model 1

In the following we show how to model this system using both our chosen formalisms. When presenting the
SAN model we will show that there are alternatives, made possible by the use of functional rates, which do not
exist for the PEPA model.

4.1. The SAN models

To capture the behaviour of the whole network, we need to capture the behaviour of each of the queues and the
interactions between them. We model queue1 and queue2 using automaton A1 and A2 respectively, and establish a
one-to-one correspondence between the number of customers in the buffer and the state of the associated autom-
aton. Representing queue3 requires two automata because the customers in its buffer are of two classes and one
class has a preemptive priority service over the other. In our model the first automaton (A31) provides the number
of class 1 customers in queue3, whereas the second (A3) provides the total number of customers of both classes
(Fig. 4).

To understand the different automata of the SAN model presented in Fig. 4 let us consider what are the events
that may occur in the corresponding queueing network.

1. The arrival of a new customer in queue1 (queue2). This is a local event since it has no effect on the other queues
of the network. It is represented by a local transition in automaton A1 (A2) with rate λ1 (λ2).

2. The service completion in queue1. Either there is an available slot in queue3 and the customer joins it, or the
buffer is full and therefore the customer is blocked in the server of queue1. In both cases, both queue1 and
queue3 are involved by this event. This is modelled using synchronisation s1 which appears in automata A1,
A3 and A31 with rate μ1.

3. The service completion in queue2. In this case, either there is an available slot in queue3 and the customer joins
it, or the buffer is full and then the customer is lost. This event is represented using synchronisation s2 with
rate μ2 in automata A2 and A3. The case of the loss of the customer is represented by the loop on the last
state of A3.

4. The service completion in queue3. If the customer is of class 1 this event is represented using synchronisation
s3 with rate μ31 in automata A31 and A3. The service completion of a class 2 customer is represented by the
transitions in A3 with the functional rate μ3 g(x31) where g(x31) � 0 if there is at least one class 1 customer in
queue3, otherwise g(x31) � 1.

12 J. Hillston, L. Kloul

Fig. 5. The SAN Model 2

The functional rates in SAN permit alternative models of this system to be developed. In the model described
above (Fig. 4), queue3 is modelled considering two aspects of this buffer: the total number of class 1 customers
and the total number of customers. An alternative is to consider the total number of class 1 customers and the
total number of class 2 customers in the buffer. The corresponding SAN model is given in Fig. 5.

As in the first model, automata A1 and A2 model the total number of customers in queue1 and queue2 respec-
tively. A31 provides the total number of class 1 customers in queue3 and A32 provides the total number of class 2
in the same queue.

The events in this model are as listed above. The external arrivals and service completion at queue1 are
represented as previously in the automata concerned. The other events are represented as follows:

• The service completion in queue2. This event is represented using synchronisation s2 with rate μ2 in automaton
A2. In automaton A32, the rate is μ2 with the routing probability h(x31) for the transitions from state i to i + 1.
Here h is a function defined as h(x31) � 1 if the number of class 1 customers in queue3 is less than C3. Otherwise
this function is null. The service completion of a class 2 customer and its loss is represented by the loops on
the states with a routing probability 1− h(x31) for all states except for state C3 where it is by default equal to 1.
• The service completion in queue3. In this model, as we represent the customer number of each class in queue3,

we have to make a distinction between the service completion of both classes. The service completion of a
class 1 customer is represented by a transition with rate μ31 in automaton A1. The service completion of class 2
customer is represented by a transition with rate μ32 g(x31), g being the same function as in the first model.

4.2. The PEPA model

The PEPA model is composed of four components Buffer(1)
0 , Buffer(2)

0 , Buffer(3)
0 and Class1(3)

0 . The two first com-
ponents describe the behaviour of queue1 and queue2 respectively. As in the SAN model, two components are
required to describe the behaviour of queue3; Buffer(3)

0 describes the total number of customers of both classes
and Class1(3)

0 the number of class 1 customers in queue3.
Component Buffer(1)

0 : To capture the behaviour of queue1, we need to use four activities types: in1 describes the
arrival of a new customer in the buffer, service1 models a customer’s service, blocking represents the blocking after
service possibility and finally loss1 models the case where the buffer is full and therefore an arriving customer is

Formal techniques for performance analysis: blending SAN and PEPA 13

lost. The complete behaviour of component Buffer(1)
0 is as follows:

Buffer(1)
0

def� (in1, λ1).Buffer(1)
1

Buffer(1)
1

def� (in1, λ1).Buffer(1)
2 + (service1, μ1).Buffer(1)

0 + (blocking, μ1).Buffer(1)
1

...
...

Buffer(1)
C1

def� (loss1, λ1).Buffer(1)
C1

+ (service1, μ1).Buffer(1)
C1−1 + (blocking, μ1).Buffer(1)

C1

Component Buffer(2)
0 : This component is similar to the one above with the activities in2, service2 and loss2 playing

analogous roles. Additionally, loss′2 represents the loss of a class 2 customer, when it tries to join queue3, whose
buffer is full. The complete behaviour of component Buffer(2)

0 is as follows:

Buffer(2)
0

def� (in2, λ2).Buffer(2)
1

Buffer(2)
1

def� (in2, λ2).Buffer(2)
2 + (service2, μ2).Buffer(2)

0 + (loss′2, μ2).Buffer(2)
0

...
...

Buffer(2)
C2

def� (loss2, λ2).Buffer(2)
C2

+ (service2, μ2).Buffer(2)
C2−1 + (loss′2, μ2).Buffer(2)

C2−1

Component Buffer(3)
0 : This component describes the behaviour of queue3 for both customer classes. The arrival

of a customer to this queue means the end of service either in queue1 (activity service1) or in queue2 (activity
service2). These activities are synchronising activities whose rate in this component is unspecified. The service
completion of a customer in queue3 is modelled using activity service31 or service32 according to the class of the
customer. Component Buffer(3)

0 must synchronise with Buffer(1)
0 on the activity blocking when queue3 is full and

with Buffer(2)
0 on activity loss ′2. The complete behaviour of component Buffer(3)

0 is as follows:

Buffer(3)
0

def� (service1,�).Buffer(3)
1 + (service2,�).Buffer(3)

1

Buffer(3)
1

def� (service1,�).Buffer(3)
2 + (service2,�).Buffer(3)

2 + (service31, μ31).Buffer(3)
0

+ (service32, μ32).Buffer(3)
0

Buffer(3)
2

def� (service1,�).Buffer(3)
3 + (service2,�).Buffer(3)

3 + (service31, μ31).Buffer(3)
1

+ (service32, μ32).Buffer(3)
1

...
...

Buffer(3)
C3

def� (service31, μ31).Buffer(3)
C3−1 + (service32, μ32).Buffer(3)

C3−1 + (loss ′2,�).Buffer(3)
C3

+ (blocking,�).Buffer(3)
C3

Component Class1(3)
0 : This component models the total number of class 1 customers in queue3. The arrival of a

class 1 customer to queue3, means service completion in queue1. This is modelled here by activity service1 on which
this component must synchronise with components Buffer(3)

0 and Buffer(1)
0 . When a class 1 customer is served in

queue3, activity service31 is performed. A class 2 customer is served in this queue only if no class 1 customers are
in the buffer. This is modelled by activity service32 in Class1(3)

0 . Below is the complete definition of component
Class1(3)

0 .

Class1(3)
0

def� (service1,�).Class1(3)
1 + (service32,�).Class1(3)

0

Class1(3)
1

def� (service1,�).Class1(3)
2 + (service31,�).Class1(3)

0
...

...
Class1(3)

C3

def� (service31,�).Class1(3)
C3−1

The complete system: The complete behaviour of the system is given by the following equation:

System
def�
((

Buffer(1)
0 ��

K
Buffer(3)

0

)
��

L
Buffer(2)

0

)
��

M
Class1(3)

0

14 J. Hillston, L. Kloul

where K � {service1, blocking} is the cooperation set on which Buffer(1)
0 and Buffer(3)

0 must synchronise,
L � {service2, loss ′2} the cooperation set on which Buffer(3)

0 and Buffer(2)
0 must synchronise and finally

M � {service1, service31, service32} is the set on which Class1(3)
0 , Buffer(1)

0 and Buffer(3)
0 must synchronise.

4.3. Summary of case study

In a SAN, functional rates imply that some transitions rates of an automaton will depend on the state of one
or several automata of the network. The use of such rates is a means to avoid explicitly modelling all parts of a
system’s behaviour. Modelling a system component implicitly in this way means that less automata are needed
to model the complete system. In some cases, this may lead to a reduction in the size of the model. Moreover,
benefits of this reduction can be appreciable when building/solving the underlying Markov chain.

Furthermore, the use of the functional rates within SAN appears to offer the modeller greater flexibility with
respect to model construction. We saw this when we considered the two alternative representations of queue3. In
the second representation we were able to implicitly capture the local state of one component (A31) within another
(A32) using the functional dependency. In the PEPA model a component representing only the local state of class
1 customers nevertheless needs access to the total number of customers. This can only be achieved by giving the
complementary component, Class2(3)

0 say, intended to represent class 2 customers, the ability to witness all state
changes within the queue, i.e. the representation of Class2(3)

0 is forced to become Buffer(3)
0 .

In the following, we investigate the introduction of the functional rates in PEPA and their impact on building
the models not only in terms of flexibility, but also in terms of model size reduction and compact representation
of the underlying Markov chain.

5. Functional dependencies in PEPA

In this section we define a modified version of PEPA in which functional dependencies are included and outline
the benefits which can be gained by this addition. The modification, whilst fundamental, in fact stems from the
modification of a single basic definition of PEPA: the range of values which may be used as activity rates in PEPA
activities. Other modifications are largely syntactic.

The benefits can be summarised as follows:

• the modification results in greater modelling flexibility. This is demonstrated by considering again the previous
example.
• a more elegant tensor representation of the generator of the underlying Markov process is possible when

functional rates are available.

In the context of PEPA, a functional dependency may involve one or several components. In a functional
dependency involving a single component, the rate value of an activity of the component depends on the current
state of the component itself. This translates into the presence of several apparent rates for the activity in the
component. Since each activity is represented explicitly in each local state it has always been possible to capture
this form of dependency in PEPA. When this is expressed as a functional dependency, the rate value expressed
as a function of the current component state is still a positive real number and can never be zero. While adding
nothing new to the expressiveness of the language, it is this use of functional rates which leads to the compact
tensor representation.

In contrast the ability to have an activity rate which is dependent on the local state of another component has
not been possible (except in the special circumstance of cooperation). When this form of functional dependency is
introduced into PEPA we may wish to allow the dependent rate to include the value zero, indicating that an activ-
ity is blocked by the local state of another component (as in the on/off source in the second example in Sect. 3.3).
When the dependency is between two or more components it implies that either the activity to be performed by
the first component and/or its rate value will be determined by the current state of the other component(s). The
rate value may then be any non-negative real number including zero, particularly when the choice of the activity
to be performed is done according to the state of another component.

In PEPA the set of activities Act is defined as Act ⊆ A × R
+ where R

+ is the set of positive real numbers
defined as follows:

R
+ � {r | r > 0; r ∈ R} ∪ {�}

Formal techniques for performance analysis: blending SAN and PEPA 15

The introduction of functional dependencies in PEPA therefore requires us to relax the constraint on the
definition domain of an activity rate. Thus, the set of activities Act is now defined as Act ⊆ A× R

∗ where R
∗ is

the set of non-negative real numbers defined as follows:

R
∗ � {r | r � 0; r ∈ R} ∪ {�}

The syntax of sequential components is modified to allow an activity to defined in terms of an action type
and an expression e, which can be either a rate, or a function, or a product of a rate and a function.

S ::� (α, e).S | S + S | A
e ::� r | f | r × f

where f : 2C −→ R
∗ is a function from one or more components to the non-negative reals.

In Appendix A we show the operational semantics for PEPA, assuming that the duration of activities are
specified via expressions. These rules are unchanged from the original rules when all expressions are assumed to
be simple rates.

In the following, we show that, as in SAN, the functional dependencies in PEPA provide a flexibility in building
the model. This is shown using the queueing network of the case study.

5.1. Modelling flexibility

Making use of functional rates, the system in Fig. 3 may now be modelled differently. The PEPA model is
composed of four components: Buffer(1)

0 , Buffer(2)
0 , Class1(3)

0 and Class2(3)
0 .

Let f be a function of x1, the current derivative of Class1(3)
0 and x2 the current derivative of Class2(3)

0 as
follows:

f (x1, x2) �
{

0 if x1 ≡ Class1(3)
C3
∨ (x1 ≡ Class1(3)

C3−1 ∧ x2 ≡ Class2(3)
1) ∨ . . . ∨ Class2(3)

C3

1 otherwise

where≡ denotes syntactic equivalence. Let g(x1, x2) � 1− f (x1, x2). To simplify, in the following we use f and g
instead of f (x1, x2) and g(x1, x2). As in the previous PEPA model, queue1 and queue2 are modelled using Buffer(1)

0

and Buffer(2)
0 respectively as follows.

Component Buffer
(1)
0 :

Buffer(1)
0

def� (in1, λ1).Buffer(1)
1

Buffer(1)
1

def� (in1, λ1).Buffer(1)
2 + (service1, μ1×f).Buffer(1)

0 + (blocking, μ1×g).Buffer(1)
1

...
...

Buffer(1)
C1

def� (loss1, λ1).Buffer(1)
C1

+ (service1, μ1×f).Buffer(1)
C1−1 + (blocking, μ1×g).Buffer(1)

C1

Component Buffer
(2)
0 :

Buffer(2)
0

def� (in2, λ2).Buffer(2)
1

Buffer(2)
1

def� (in2, λ2).Buffer(2)
2 + (service2, μ2×f).Buffer(2)

0 + (loss ′2, μ2×g).Buffer(2)
0

...
...

Buffer(2)
C2

def� (loss2, λ2).Buffer(2)
C2

+ (service2, μ2×f).Buffer(2)
C2−1 + (loss ′2, μ2×g).Buffer(2)

C2−1

Opting for functional dependencies, queue3 may now be represented by components Class1(3)
0 and Class2(3)

0 .
The first one models the total number of class 1 customers in queue3 and the second the total number of class 2
customers in this queue. It is not necessary to explicitly represent information about the total number of customers
in this queue. The information provided by components Class1(3)

0 and Class2(3)
0 is now sufficient.

16 J. Hillston, L. Kloul

Component Class1(3)
0 :

Class1(3)
0

def� (service1,�).Class1(3)
1 + (service32,�).Class1(3)

0 + (blocking,�).Class1(3)
0

Class1(3)
1

def� (service1,�).Class1(3)
2 + (service31, μ31).Class1(3)

0 + (blocking,�).Class1(3)
1

...
...

Class1(3)
i

def� (service1,�).Class1(3)
i+1 + (service31, μ31).Class1(3)

i−1 + (blocking,�).Class1(3)
i

...
...

Class1(3)
C3

def� (service31, μ31).Class1(3)
C3−1 + (blocking,�).Class1(3)

C3

Component Class2(3)
0 :

Class2(3)
0

def� (service2,�).Class2(3)
1 + (loss ′2,�).Class2(3)

0

Class2(3)
1

def� (service2,�).Class2(3)
2 + (service32, μ32×h).Class2(3)

0 + (loss ′2,�).Class2(3)
1

...
...

Class2(3)
j

def� (service2,�).Class2(3)
j+1 + (service32, μ32×h).Class2(3)

j−1 + (loss ′2,�).Class2(3)
j

...
...

Class2(3)
C3

def� (service32, μ32×h).Class2(3)
C3−1 + (loss ′2,�).Class2(3)

C3

Here h is a function which depends on the current derivative of Class1(3)
0 , representing the class 1 customers

in queue3 as follows:

h(x1) �
{

1 if x1 ≡ Class1(3)
0

0 otherwise

The complete system:

System
def� ((Buffer(1)

0
��

K′
Class1(3)

0) ��
M′

Class2(3)
0) ��

L′
Buffer(2)

0

where K′ � {service1, blocking}, L′ � {service2, loss ′2} and M′ � {service32}.
Thus we now have the same modelling flexibility in PEPA as was previously apparent in SAN.

5.2. Reduction of model size

Besides the flexibility provided by the functional dependency, we may now be able to reduce the PEPA model
size in some cases because parts of a system can be implicitly modelled. For example, consider a resource sharing
system. In this system, N processors share M resources with M � N . We assume that the processors use and
free the resources with different rates. Let λi and μi be the use and liberation rates respectively, characterising a
processor i, 1 � i � N .

To model the system, we may either use the functional dependencies or build a model in which explicit
component interaction in the form of cooperation is used. To see the impact of the functional rates on model
size, we consider both alternatives.

• PEPA model without functions

The behaviour of each processor i is modelled using component Processor(i)
0 . Moreover, we use component

NumberR0 to model the number of resources occupied by the processors. Two types of activities are considered:
usei and f reei . The former specifies that a processor i is using a resource whereas the latter specifies that it
frees it. Formally these components are defined as follows.

Component Processor
(i)
0 , 1 � i � N

Processor(i)
0

def� (usei, λi).Processor(i)
1

Processor(i)
1

def� (f reei, μi).Processor(i)
0

Formal techniques for performance analysis: blending SAN and PEPA 17

Component NumberR0

NumberR0
def� ∑N

i�1(usei,�).NumberR1

NumberR1
def� ∑N

i�1(usei,�).NumberR2 +
∑N

i�1(f reei,�).NumberR0
.

NumberRM
def� ∑N

i�1(f reei,�).NumberRM−1

The complete system is then modelled as N components (Processor(i)
0 , i � 1 . . . N) which evolve independently,

but which synchronise with component NumberR0 as follows:

System
def�
(

Processor(1)
0 || . . . || Processor(N)

0

)
��

K
NumberR0

where K � {use1, . . . , useN , f ree1, . . . , f reeN }
• PEPA model with functions

In this model, where the functional rates are used, only components Processor(i)
0 , 1 � i � N , are needed to

capture the behaviour of the complete system. These are defined as follows:

Processor(i)
0

def� (usei, λi ×f (x1, . . . , xN)).Processor(i)
1

Processor(i)
1

def� (f reei, μi).Processor(i)
0

where xi is a variable whose value is 1 if the current derivative of the ith processor is Processor(i)
1 , and 0 otherwise.

The function f is then defined as follows:

f (x1, . . . , xN) �
{

1 if
∑N

j�1 xj < M xj ∈ {0, 1}
0 otherwise

The complete system is then modelled as N components (Processor(i)
0 , i � 1 . . . N) that evolve apparently in an

independent manner. However this independence is only superficial because of the presence of function f .

System
def� Processor(1)

0 || . . . || Processor(N)
0

This example illustrates how, in addition to increased modelling flexibility, the introduction of functional rates
can reduce a model with respect to the number of components needed to express it. The model with functional
rates has fewer components (N) than the one without (N + 1). The product state space of the former model has
2N ∗ (N + 1) states whereas the latter has 2N states. However, both models have the same reachable state space;
the underlying CTMC has same in both cases. Nevertheless, as we will see it later in Sect. 7.1, the reduction of
the model’s size remains an important gain.

In the remainder of the paper we will focus on another benefit of functional rates—that they facilitate a
compact representation of the state space using tensor algebra. This can be regarded as an alternative abstraction
of the model which has benefits for the quantitative analysis.

6. Tackling state space explosion

All state-based modelling formalisms, including SAN and PEPA, are prone to problems of state space explo-
sion: the number of states generated in the underlying Markov process makes solution of the resulting matrix
intractable.

There are several general approaches to overcoming the state space explosion problem; for example:

• The matrix representation may be decomposed so that the state space of the model, and its dynamics, are not
represented by a single matrix but by a number of smaller matrices. Nevertheless the model is solved as a single
entity.
• The model itself may be decomposed into a number of submodels, each of which is treated as a separate sys-

tem generating a separate, smaller matrix. These matrices are solved separately, possibly in combination with
a representation of the aggregate model which captures the interactions between submodels. In general this
approach will give rise to approximate solution of the original model.

18 J. Hillston, L. Kloul

• The model may be replaced by another which is equivalent in some sense but which is more amenable to efficient
solution, typically because its state space is smaller. This is termed model simplification and the accuracy of the
approach depends on the model-model equivalence used to make the substitution.
• The mapping from model to matrix may be refined, based on an equivalence relation, so that one state at

the Markov process level corresponds to an equivalence class of states in the model. This is termed model
aggregation. This approach can result in a significant reduction in the size of the matrix, for example in models
which exhibit symmetry due to repeated components. Whether this approach gives rise to exact or approximate
solution with respect to the “complete” model will depend on the equivalence relation used.

In SAN a version of the first approach, based on tensor representation, has been incorporated into the for-
malism and this is presented in more detail in the following subsection. The use of a tensor representation of the
underlying Markov process is not a state space reduction method. It is an alternative approach to state space
explosion which handles the model solution in a decomposed form. Recently, a state space reduction technique
has been developed for SANs [BBFP03]. This technique exploits aggregation based on replicated automata.

PEPA has developed equivalence relations for both model simplification and model aggregation. The inter-
ested reader is referred to [Hil94] for details. In Sect. 6.2 we present the bisimulation-based strong equivalence
relation which is used as a basis for aggregation in PEPA.

6.1. Tensor representation

In the seminal paper [Pla85], Plateau proved that the generator matrix of the Markov process underlying a SAN
model can be analytically represented using Kronecker algebra. Thus the generator matrix is stored as an expres-
sion involving the tensor sum and tensor product of smaller matrices (an introduction to tensor sum and tensor
product can be found in Appendix C). The solution of the model can then be achieved via this tensor expression
of submatrices—the complete matrix does not need to be generated.

The generator matrix Q is automatically derived from the SAN description, using the individual automata to
generate the submatrices in the tensor expression (see [PFL88] for more details and proofs). It has been proved
in [PFL88] that, if the states are in a lexicographic order, then the generator matrix Qsan of the Markov process
associated with a continuous-time SAN is given by

Qsan �
N⊕

i�1

Fi +
∑
e∈ε

τe

(
N⊗

i�1

Si,e −
N⊗

i�1

Si,e

)

where

• N is the total number of automata in the network and ε is the set of synchronisations.
• Fi is the transition matrix of automaton Ai without synchronisations.
• Si,e is the transition matrix of automaton Ai due to synchronisation e whose rate is τe.
• Si,e is a matrix representing the normalisation associated with the synchronisation e on automaton Ai .
• ⊕ and

⊗
denote tensor sum and product, respectively.

Unlike the local transition matrices Fi , the synchronising matrices Si,e are not generators (i.e. their rows do not
sum to zero). The diagonal corrector matrices Si,e have been introduced to normalise the synchronising matrices.

The tensorial representation of the generator matrix has an impact on both the memory requirements and
the computation time of the matrix–vector multiplication. The space efficiency of this representation is obtained
at the expense of an increased computation time. Therefore, an efficient vector–tensor product multiplication
algorithm has been developed, vector–descriptor multiplication [FPA98] to be used when solving the stationary
distribution. This algorithm is the basic step in iterative methods such as the Power method and Generalized
Minimum Residual (GMRES) method [SAP95]. In [Day98], iterative methods based on splittings, such as Jacobi
and Gauss–Seidel, are proved to be better than the Power method.

Formal techniques for performance analysis: blending SAN and PEPA 19

6.2. Aggregation based on strong equivalence

Strong equivalence2 is a bisimulation-based equivalence relation for PEPA and when it is applied to the states
within a single model it induces a partition over the state space of the model. When aggregation based on this
partition is carried out, a matrix representation for the model is constructed so that there is one row (column) of
the matrix for each equivalence class of states in the process algebra model.

In PEPA, two derivatives are strongly equivalent if there is an equivalence relation between them such that,
for any action type α, the total conditional transition rates from those derivatives to any equivalence class are
the same. The conditional transition rate between two derivatives P and P′, via a given action type α, denoted
q(P, P′, α), is the sum of the activity rates associated with transitions between P and P′ in the derivation graph
which are labelled by α. The total conditional transition rate from a derivative P to a set of derivatives S via a
given action type α, denoted q[P, S, α] is defined to be

q[P, S, α] �
∑
P′∈S

q(P, P′, α)

Definition 6.1 An equivalence relation R ⊆ C × C is a strong equivalence if whenever (P, Q) ∈ R then for all
α ∈ A and for all S ∈ C/R

q[P, S, α] � q[Q, S, α]

In general, if the states of a Markov process are partitioned and a new stochastic process constructed with
one state for each partition, the resulting process does not have the Markov, or memoryless, property. For this
to be the case the partition must satisfy a condition on transition rates which is termed lumpability. In [Hil94] it
is proved that a partition induced by strong equivalence is always lumpable and consequently results calculated
via this aggregation are exact. Furthermore, because strong equivalence is a congruence, the technique can be
applied compositionally, replacing cooperating components by strongly equivalent (lumped) ones—it has been
proved that each component is equivalent to its lumped version and that lumped components can be substituted
one at a time. Note that this compositional application of the aggregation procedure does not necessarily give
the maximal lumping but for very large models it avoids the construction of the complete state space before
aggregation can begin (which would otherwise be the case).

7. Exploiting functional rates in PEPA

In this section we consider how we can exploit the introduction of functional dependencies in PEPA with respect
to techniques for tackling state space explosion introduced in the previous section.

7.1. The tensor representation for PEPA

In [HK01], we have shown that PEPA models can be represented analytically using Kronecker algebra and solved
without constructing the complete generator matrix. Moreover, the translation from the model to the compact
representation is automatic.

Firstly, we capture local transitions for each constituent component in an appropriate generator matrix. Then
we represent each type of interaction by the tensor product of matrices capturing each component’s capacity to
participate in this shared activity. In order to ensure that the rate of the shared activity is represented correctly
we need to exercise a little care in constructing this set of tensor products. Finally, and analogously to the SAN
case, we need to introduce diagonal corrector matrices which normalise the cooperation matrices.

In PEPA without functional dependencies the tensor product capturing component interactions needs to
distinguish each apparent rate of each action type in each component, in order to correctly calculate the rate of
a shared activity. Furthermore, we need to introduce a new tensorial operator, the minimum tensor product, to
capture the interaction between two components. This operator, denoted

⊗
min

, is based on the Kronecker product

and operates on (scalar, matrix) pairs.

2 Sometimes termed Markovian bisimulation.

20 J. Hillston, L. Kloul

Definition 7.1 Consider two scalars s1 and s2, and two matrices M1 and M2. The minimum tensor product of (s1, M1)
and (s2, M2) is defined as follows:

(s1, M1)
⊗

min

(s2, M2) � min(s1, s2) (M1 ⊗M2)

This form of product is used to capture shared activities and so the scalar represents the apparent rate of an
activity in one component, with the corresponding matrix capturing the associated possible state transitions as
a probability transition matrix. If an action type is passive within a component its apparent rate is � and for all
real values s, min(s,�) � s.

The generator matrix Q′pepa of the Markov process associated with a PEPA model is given by

Q′pepa �
N⊕

i�1

P′i +
∑
α∈Z

⊗
min

N

i�1

∑
rα,j∈Ri (α)

(rα,j, P′i,α,rα,j
)−

∑
α∈Z

⊗
min

N

i�1

∑
rα,j∈Ri (α)

(rα,j, P′i,α,rα,j) (7.1)

where

• Ri(α) is the set of apparent rates for α enabled by derivatives of Ci .
• P′i,α,rα,j

is the probability transition matrix of component Ci due to activities of type α when the apparent rate
of α is rα,j .
• P′i,α,rα,j is a matrix representing the normalisation associated with the shared activity α at apparent rate rα,j in

component Ci .

However, when we have functional dependencies within PEPA we can capture the different apparent rates
that a component may express with respect to an action type using a functional dependency on the state of that
component. This allows the tensor representation to be more direct and similar to the one obtained by Plateau
for the SANs. If Qpepa is the generator matrix of the Markov process associated with a PEPA model, its tensor
expression is defined as follows:3

Qpepa �
N⊕

i�1

Pi +
∑
α∈Z

rα

(
N⊗

i�1

Pi,α −
N⊗

i�1

Pi,α

)
(7.2)

where

• N is the total number of components in the PEPA model and Z is the set of cooperating action types.
• Pi is the transition matrix of component Ci relating solely to its individual activities.
• rα is the minimum of the functional rates of action type α over all components Ci , i � 1 . . . N : rα � mini�1...N

(rα(Ci)).
• Pi,α is the probability transition matrix of component Ci due to activity of type α. Its elements values are either

1 or 0.
• Pi,α is a matrix representing the normalisation associated with the shared activity α in component Ci .

As previously, the local transition matrices Pi , the cooperation matrices Pi,α are not generators. So we need
to introduce diagonal corrector matrices Pi,α to normalise the cooperation matrices.

Note that in order to achieve the greater simplicity of this expression, in [HK01] functional rates were intro-
duced into PEPA purely to facilitate the tensor representation. They were used only in this underlying repre-
sentation; they were not incorporated at the modelling level, i.e. in the syntax of the language as in Sect. 5.

In models with a tensor representation, the “size” of the state space is open to several interpretations:

1. the physical space needed to store the model using the tensor representation;
2. the size of the state space of the cartesian product of the model components;
3. the size of the space of the reachable states.

3 There is an implicit assumption that an action type uniquely defines a synchronisation event at the transition system level. This will not
generally be the case without restrictions on the use of types within cooperation sets. These are not terribly strong restrictions and can be
achieved by pre-processing (see [HK01] for full details).

Formal techniques for performance analysis: blending SAN and PEPA 21

From previous work on SAN, we know that the use of functions has a positive effect on both the size of the
tensor representation and the size of the product state space. In particular if we remove a function it is generally
necessary to introduce an additional component. If the new component has two or more states then we increase
both spaces (1) and (2). However this should not change the reachable state space (3). To do so would funda-
mentally change the model considered but note that in the tensor representations for SAN the cartesian product
space is represented, not the reachable state space.

7.2. Functional strong equivalence and aggregation

As explained in Sect. 6.2 model aggregation in PEPA is governed by the equivalence relation strong equivalence.
Thus in order to consider the impact of functional rates on the aggregation technique we must first consider the
impact of functional rates on strong equivalence.

Firstly, we must extend the definition of conditional transition rate to include the possibility that the transition
rate concerned may be a function.

Definition 7.2 The conditional transition rate between two derivatives Ci and Cj, via a given action type α, denoted
q(Ci, Cj, α), is defined to be the sum of the constant and the functional activity rates associated with transitions
between Ci and Cj in the derivation graph which are labelled by α.

Note that the evaluation of a function is unequivocal because we are considering the transition rates from
a particular derivative. Each derivative corresponds to a particular set of local states for each component, thus
determining the appropriate value of the function. As a consequence the conditional transition rate and total
conditional transition rate from any derivative has a literal value even if it is expressed via a function.

Properties of the Strong Equivalence: By a similar argument—that in any given state the functions can be evalu-
ated unequivocally—we are able to establish that functional strong equivalence ∼� is a congruence for PEPA; the
relation is preserved by the combinators and the recursive definitions.

Proposition 7.1 If P ∼� Q then

1. (a, e).P ∼� (a, e).Q
2. P + S ∼� Q + S
3. P ��

L
S ∼� Q ��

L
S

4. P/L ∼� Q/L

Proof. The proof is omitted as it is similar to the one developed in [Hil94]. �

Proposition 7.2 Let Ẽ and F̃ be two indexed sets of components which contain the indexed set of variables X̃ at
most. Let Ã def� Ẽ{Ã/X̃ } and B̃ def� F̃ {B̃/X̃ }. If Ẽ ∼� F̃ then Ã ∼� B̃.

Proof. Again, the proof is similar to the one developed in [Hil94] and is omitted here. �
The consequence of these results is that the aggregation technique based on strong equivalence which has been
developed for PEPA models can equally be applied to PEPA models with functional rates.

In the following section we consider a PEPA case study in which we include functional rates and demonstrate
the construction of the tensor representation and the application of the aggregation technique, and discuss the
interplay between these two techniques.

8. Case study 2: hierarchical cellular network

This case study is inspired by the work presented in [FKV02]. Fourneau et al. investigate the performance of
a hierarchical cellular network using PEPA. They do not use functional dependencies in their model. Here we
show how the network may be modelled using functional rates to avoid several apparent rates for an action type
in a component; we demonstrate how the model should be pre-processed in order to build the PEPA descriptor
of the model using equation 7.2; and finally, we apply the aggregation technique as in [FKV02].

We consider a hierarchical cellular network based on the Manhattan model of a city. This model consists
of square blocks, representing buildings, with streets in between them. Thus, the reuse pattern is composed of a

22 J. Hillston, L. Kloul

Fig. 6. The reuse pattern

Fig. 7. The handoff activities graph

macro-cell overlying a cluster of N � 5 micro-cells: a central micro-cell surrounded by four peripheral micro-cells
(see Fig. 6).

In this study we assume that the macro-cell and all the micro-cells have the same capacity, ci � 3, i� 0 . . . 5.
We consider two types of customers inside the cluster, the new calls and the handover requests (ongoing calls).
External arrivals to the cluster consist of the handover requests coming from other clusters and the new calls
initiated in that cluster. The handover requests coming from other clusters may occur only in the macro-cell or
the peripheral micro-cells. They may never occur in the central micro-cell.

We consider that the new calls can be assigned only to the macro-cell level. Moreover, we assume that a request,
either a new call or a handover request, initiated at the micro-cell level is served in its originating micro-cell if a
channel is available. Otherwise, according to the overflow strategy, the request is overflowed to the upper level.
In the case where all channels are busy at both levels, the request is dropped (handover) or blocked (new call).

8.1. The PEPA model

In the model, the external arrival process is represented by an in activity by the cells. The arrival rate is assumed
to be λ1 in the macro-cell, λ2 in the peripheral micro-cells and λ3 in the central micro-cell.

Because of the different types of cells (macro-cell, peripheral micro-cell, central micro-cell) and the topology
of the network, we make a distinction between the handover requests generated inside the cluster. This distinction
is based on the cell type the call originated from and the cell type the call has to be transferred to. Thus we have
the following activities:

• activity handoffup represents the process which transfers a call from a micro-cell to the macro-cell. This call (a
new call or a handover call) comes from outside the cluster to the micro-cell and because all channels in the
micro-cell are busy, it has to be transferred to the macro-cell. The rate of this activity is the external arrival rate
to the micro-cell;
• activity handoffin.c represents the transfer of an ongoing call from one of the peripheral micro-cells to the central

micro-cell;
• in contrast, activity handoffout.c represents the transfer of an ongoing call from the central micro-cell to one of

the four peripheral micro-cells;
• activity handoffin−up.c models the process in which an ongoing call coming from a peripheral micro-cell and

entering the central micro-cell, is then transferred to the macro cell because all channels of the central micro-cell
are busy;
• activity handoffout−up.c models the arrival of an ongoing call from the central micro-cell to a peripheral micro-cell

when all channels of this cell are busy, and which is overflowed to the macro cell.

As the process behind the four last handoff activities is the same, the rate of these activities is also the same
and it is denoted δ (representing the mean dwell-time in a micro-cell). In all cells, the service process is represented

Formal techniques for performance analysis: blending SAN and PEPA 23

by activity service. As the service rate in each cell is assumed to be μ, when there are i, 1 � i � ck, customers in
a cell, it will engage in a service activity at rate i μ.

Now, let us give the behaviour details of the different components of the system.

Component macro When the channels of the macro-cell are not all busy, if external handover calls arrive at rate
λ1, then macro will engage in an in activity at rate λ1. If handover calls arrive from the micro-cells, then macro
will engage in either a handoffup activity, or a handoffin−up.c activity, or a handoffout−up.c activity. In all cases, the
rate of the activity is unspecified (�) in component macro because these activities synchronise with activities
of micro-cells generating the handover calls. The rate will be determined by the micro-cell which generates the
handover calls.

When all channels are busy, if handover calls arrive from the micro-cells, macro will engage in the handoff
activity but the ongoing call will be dropped and thus lost. Similarly, if external handover calls arrive when all
channels are busy, macro will engage in the in activity but the call will be blocked and lost.
If macroi describes the component behaviour when there are i customers in the macro-cell, this behaviour is as
follows:

macro0
def� (in, λ1).macro1 + (handoffup,�).macro1 + (handoffin−up.c,�).macro1

+ (handoffout−up.c,�).macro1

macro1
def� (in, λ1).macro2 + (service, μ).macro0 + (handoffup,�).macro2

+ (handoffin−up.c,�).macro2 + (handoffout−up.c,�).macro2

macro2
def� (in, λ1).macro3 + (service, 2 μ).macro1 + (handoffup,�).macro3

+ (handoffin−up.c,�).macro3 + (handoffout−up.c,�).macro3

macro3
def� (in, λ1).macro3 + (service, 3 μ).macro2 + (handoffup,�).macro3

+ (handoffout−up.c,�).macro3 + (handoffin−up.c,�).macro3

Component microj : 1 � j � 4 As for the macro component, external arrivals to peripheral micro cells (new calls
or handover calls) are modelled by an in activity at rate λ2.

When handover requests from the central micro-cell arrive, if channels are not all busy, microj will engage in
a handoffout.c activity at an unspecified rate. If all channels are busy, microj will then engage in a handoffout−up.c
activity. Component microj may also engage in a handoffup activity at rate λ2, if external calls arrive when all
channels are busy.

A peripheral micro-cell may generate handover calls which will ask for channels from the central micro-cell.
microj will engage in a handoffin.c activity at rate iδ where i is the number of customers in this cell.
If microji denotes the component behaviour when there are i customers in the peripheral micro-cell j, this behav-
iour is as follows:

microj0
def� (in, λ2).microj1 + (handoffout.c,�).microj1

microj1
def� (in, λ2).microj2 + (handoffout.c,�).microj2 + (service, μ).microj0

+ (handoffin.c, g × δ).microj0 + (handoffin−up.c, g × δ).microj0

microj2
def� (in, λ2).microj3 + (handoffout.c,�).microj3 + (service, 2 μ).microj1

+ (handoffin.c, g × δ).microj1 + (handoffin−up.c, g × δ).microj1

microj3
def� (service, 3 μ).microj2 + (handoffin−up.c, g × δ).microj2 + (handoffin.c, g × δ).microj2

+ (handoffup, λ2).microj3 + (handoffout−up.c,�).microj3

Here g is a function whose value depends on the current derivative of the same peripheral micro-cell, microji :
g(microji) � i, 1 � i � 3.

24 J. Hillston, L. Kloul

Component microC The microC component differs from the other micro-cells only by the fact that it can receive
handover calls generated by the four peripheral cells. So, it engages in the same type of activities and the same
reasoning is used to describe its behaviour.

Let microCi denote the component behaviour when there are i customers in the central micro-cell. And let f
be a function whose value depends on the current derivative of this micro-cell, f (microCi) � i, 1 � i � 3. The
behaviour of the central micro-cell is as follows:

microC0
def� (in, λ3).microC1 + (handoffin.c,�).microC1

microC1
def� (in, λ3).microC2 + (service, μ).microC0 + (handoffin.c,�).microC2

+ (handoffout−up.c, f × δ).microC0 + (handoffout.c, f × δ).microC0

microC2
def� (in, λ3).microC3 + (service, 2 μ).microC1 + (handoffin.c,�).microC3

+ (handoffout−up.c, f × δ).microC1 + (handoffout.c, f × δ).microC1

microC3
def� (service, 3 μ).microC2 + (handoffup, λ3).microC3 + (handoffout.c, f × δ).microC2

+ (handoffin−up.c,�).microC3 + (handoffout−up.c, f × δ).microC2

The system is formed by the cooperation of macro and the different micro-cells. Since the four peripheral
micro-cells proceed independently, and cooperate with the central micro-cell, the system is defined as follows:

System
def�
(

(micro10 || micro20 || micro30 || micro40) ��
L

microC0

)
��

K
macro0

where L � {handoffin.c, handoffout.c} is the set of activities on which the central micro-cell and the peripheral
micro-cells must synchronise. The set K � {handoffup, handoffin−up.c, handoffout−up.c} contains the activities on
which the macro-cell and the micro-cells must synchronise.

This model has 4096 states and 81920 transitions.

8.2. The model descriptor

In this section, we show how to build, according to the generator expression 7.2, the different matrices corre-
sponding to the hierarchical cellular network model.

The local transition matrices Pi :

• Component macro0

P0 �

⎛
⎜⎝
− λ1 λ1 0 0

μ −(λ1 + μ) λ1 0
0 2 μ −(λ1 +2 μ) λ1
0 0 3 μ −3 μ

⎞
⎟⎠

• Components microj0, j � 1 . . . 4

Pj �

⎛
⎜⎝
− λ2 λ2 0 0

μ −(λ2 + μ) λ2 0
0 2 μ −(λ2 +2 μ) λ2
0 0 3 μ −3 μ

⎞
⎟⎠

• Component microC0

P5 �

⎛
⎜⎝
− λ3 λ3 0 0

μ −(λ3 + μ) λ3 0
0 2 μ −(λ3 +2 μ) λ3
0 0 3 μ −3 μ

⎞
⎟⎠

The cooperation matrices Pi,α: Before building the cooperation matrices, we need to rename the cooperation
action types in which microj is involved. This model pre-processing is due to the fact that only one peripheral

Formal techniques for performance analysis: blending SAN and PEPA 25

micro-cell may cooperate with the macro-cell or the central micro-cell at once. Therefore the set of cooperating
action types Z, which initially is defined as Z � L ∪K, becomes as follows:

Z � {handoffin.cj
, handoffout.cj

, handoffup, handoffupj
, handoffin−up.cj

, handoffout−up.cj
}

where j � 1, . . . , 4. Now, we build the cooperation matrices where we define k as k � 1, . . . , 4.

• Action type α1 � handoffin.cj
. For each value of j, j � 1 . . . 4, rα1 � g × δ and

P0,α1 � Pk,α1 � Id , k �� j, Pj,α1 �

⎛
⎜⎝

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎠ , P5,α1 �

⎛
⎜⎝

0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞
⎟⎠

where Id is the Identity matrix.

• Action type α2 � handoffout.cj
with rα2 � f × δ. For each value of j, j � 1 . . . 4, we have:

P0,α2 � Pk,α2 � Id , k �� j, Pj,α2 �

⎛
⎜⎝

0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞
⎟⎠ , P5,α2 �

⎛
⎜⎝

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎠

• Action type α3 � handoffup with rα3 � λ3

P0,α3 �

⎛
⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

⎞
⎟⎠ , Pj,α3 � Id , j � 1, . . . , 4, P5,α3 �

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎠

• Action type α4 � handoffupj
with rα4 � λ2. For each value of j, j � 1, . . . , 4, we have:

P0,α4 �

⎛
⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

⎞
⎟⎠ , Pj,α4 �

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎠ , Pk,α4 � P5,α4 � Id , k �� j

• Action type α5 � handoffin−up.cj
. For each value of j, j � 1, . . . , 4, rα5 � g × δ and

P0,α5 �

⎛
⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

⎞
⎟⎠ , Pj,α5 �

⎛
⎜⎝

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎠

Pk,α5 � Id , k �� j, P5,α5 �

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎠

• Action type α6 � handoffout−up.cj
with rα6 � f × δ. For each value of j, j � 1, . . . , 4, we have:

P0,α6 �

⎛
⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

⎞
⎟⎠ , Pj,α6 �

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎠

26 J. Hillston, L. Kloul

Pk,α6 � Id , k �� j, P5,α6 �

⎛
⎜⎝

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎠

Using these matrices, we can then build the generator matrix as follows:

Q �
5⊕

i�0
Pi +

4∑
j�1

gδ

(
5⊗

i�0
Pi,α1 −

5⊗
i�0

Pi,α1

)
j

+
4∑

j�1
f δ

(
5⊗

i�0
Pi,α2 −

5⊗
i�0

Pi,α2

)
j

+
∑4

j�1 λ2

(
5⊗

i�0
Pi,α4 −

⊗5
i�0 Pi,α4

)
j

+ λ3

(
5⊗

i�0
Pi,α3 −

5⊗
i�0

Pi,α3

)
+
∑4

j�1 gδ

(
5⊗

i�0
Pi,α5 −

5⊗
i�0

Pi,α5

)
j

+
∑4

j�1 f δ

(
5⊗

i�0
Pi,α6 −

5⊗
i�0

Pi,α6

)
j

8.3. The model aggregation

In this section we show how to apply the aggregation technique to this model. The top-level components in
this model are the parallel composition of the peripheral micro-cells, the central micro-cell and the macro-cell.
The atomic components are the individual cells. The components which exhibit the same behaviour are the four
peripheral micro-cells. Consider the component representing these micro-cells in the system:

micro � micro10 ‖ micro20 ‖ micro30 ‖ micro40

We illustrate the approach applying the technique to the component micro10 ‖ micro20. Applying the tech-
nique subsequently to micro30 ‖ micro40 we obtain two strongly equivalent, lumped components, on which we
again apply the aggregation technique to obtain the final strongly equivalent, lumped component of the original
component.

Consider the component micro10 ‖ micro20. The derivation set, denoted ds(micro10 ‖ micro20), of this com-
ponent is as follows:

ds(micro10 ‖ micro20) � { micro10 || micro20, micro1k || micro20, micro10 || micro2k, micro1k || micro2l ,
micro13 || micro20, micro10 || micro23, micro13 || micro2l , micro1l || micro23,
micro13 || micro23, 1 � k, l � 2}

Partitioning the derivative set of our component by strong equivalence results in the following set of equiva-
lence classes:

ds(micro10 || micro20)/∼� � { [micro10 || micro20], [micro1k || micro20, micro10 || micro2k], [micro13 || micro23]
[micro1k || micro2l , micro1l || micro2k], [micro13 || micro20, micro10 || micro23],
[micro13 || micro2l , micro1l || micro23], 1 � k, l � 2}

We now form the lumped component, denoted mm. We associate one derivative of mm with each node of the
lumped derivation graph as follows:

mm00 ←→ [micro10 || micro20] mmk0 ←→ [micro1k || micro20, micro10 || micro2k]
mmkl ←→ [micro1k || micro2l , micro1l || micro2k] mm30 ←→ [micro13 || micro20, micro10 || micro23]
mm3l ←→ [micro13 || micro2l , micro1l || micro23] mm33 ←→ [micro13 || micro23]

Formal techniques for performance analysis: blending SAN and PEPA 27

The derivative component mmkl models the behaviour of the lumped component mm when there are k cus-
tomers in one of the two micro-cells and l in the other. Using the lumped activity sets, we can define the behaviour
of these lumped components:

For 1 � k, l � 2

mm00
def� (in, λ2).mm10 + (handoffout.c,�).mm10

mmk0
def� (in, λ2).mmk1 + (in, λ2).mm(k+1)0 + (service, k × μ).mm(k−1)0

+ (handoffin.c, h× δ).mm(k−1)0 + (handoffin−up.c, h× δ).mm(k−1)0

+ (handoffout.c,�).mmk1 + (handoffout.c,�).mm(k+1)0

mmkl
def� (in, λ2).mmk(l+1) + (in, λ2).mm(k+1)l

+ (service, k × μ).mm(k−1)l + (service, l × μ).mmk(l−1)
+ (handoffin.c, h× δ).mmk(l−1) + (handoffin.c, h× δ).mm(k−1)l
+ (handoffout.c,�).mmk(l+1) + (handoffout.c,�).mm(k+1)l
+ (handoffin−up.c, h× δ).mmk(l−1) + (handoffin−up.c, h× δ).mm(k−1)l

For k � 3 and 1 � l � 2

mm30
def� (in, λ2).mm31 + (service, 3× μ).mm20 + (handoffout.c,�).mm31

+ (handoffin.c, h× δ).mm20 + (handoffup, λ2).mm30

+ (handoffin−up.c, h× δ).mm20 + (handoffout−up.c,�).mm30

mm3l
def� (in, λ2).mm3(l+1) + (service, l × μ).mm3(l−1) + (service, 3× μ).mm2l

+ (handoffin.c, h× δ).mm3(l−1) + (handoffin.c, h× δ).mm2l
+ (handoffin−up.c, h× δ).mm3(l−1) + (handoffin−up.c, h× δ).mm2l

+ (handoffout−up.c,�).mm3l + (handoffout.c,�).mm3(l+1) + (handoffup, λ2).mm3l

mm33
def� (service, 2× 3× μ).mm32 + (handoffin.c, h× δ).mm32

+ (handoffup, 2× λ2).mm33 + (handoffout−up.c,�).mm33

+ (handoffin−up.c, h× δ).micro32

This component, mm00, now replaces component micro10 || micro20 in the complete model. Function h
depends on both the current state of the component and its next state. We define this function as follows:

h(mmkl , mmk′l ′) �
{

k if k′ � k − 1
l if l ′ � l − 1
2× 3 if k � l � 3

where mmkl and mmk′l ′ are respectively the current state and the next state of the component.
We can proceed similarly for the component micro30 ‖ micro40 leading to a lumped component mm∗ analo-

gous to component mm. Component, mm∗00, now replaces component micro30 || micro40 in the complete model
and the system is modelled as follows:

System def�
(

(mm00 ‖ mm∗00) ��
L

microC0

)
��

K
macro0

The last step of the reduction of the model is to consider component mm00 ‖ mm∗00 and replace it by an aggre-
gate which we denote micro0000. The complete aggregation technique applied to this model (without functional
rates) may be found in detail in [FKV00].

After applying the aggregation technique, we obtain a model composed of only three components: macro0,
microC0 and micro0000. A derivative microijkl , 0 � i, j, k, l, � 3 models the behaviour of the lumped component
micro when there are i customers in one of the microcells, j customers in another microcell, k customers in another
and l in the last one. All combinations of i, j, k and l are considered.

The new system component is the following:

System∗ def�
(

micro0000 ��
L

microC0

)
��

K
macro0

This model has now 2560 states and 46016 transitions instead of 4096 states and 81920 transitions.

28 J. Hillston, L. Kloul

8.4. The aggregated model descriptor

Applying the aggregation technique to our model component System reduces the number of components by half;
the resulting model System∗ has only three components: macro0, micro0000 and microC0. In the following we will
refer to these components using numbers 0, 1 and 2 respectively.

The local transition matrices P∗i , i � 0, 1, 2:

• Component macro0: as the aggregation technique had no effect on this component, its corresponding local
transition matrix does not change, P∗0 � P0.
• Component micro000: the number of derivatives of this component is 45, thus its independent behaviour is

captured by a 45× 45 transition matrix P∗1 . We omit to represent this matrix because of its size.
• Component microC0: as for the component modelling the macro cell, applying the aggregation technique had

no impact on component microC0 and therefore its local transition matrix remains unchanged P∗2 � P5.

The cooperation matrices P∗i,α: The set of cooperation action types Z is defined as follows:

Z � {handoffin.c, handoffout.c, handoffup, handoffup, handoffin−up.c, handoffout−up.c}
The cooperation matrices for the macrocell and the central microcell components remain the same. However,

as our peripheral microcell components have been aggregated into one component micro000, we have only one
cooperation matrix P∗1,αk

for each action type αk, k � 1, . . . , 6 in Z. As for the local matrix, these matrices are of
size 45× 45.

Using these matrices, we can then build the generator matrix as follows:

Q∗ �
2⊕

i�0
P∗i + g∗δ

(
2⊗

i�0
P∗i,α1
−

5⊗
i�0

P
∗
i,α1

)
+ f δ

(
2⊗

i�0
P∗i,α2
−

2⊗
i�0

P
∗
i,α2

)

+ λ2

(
2⊗

i�0
P∗i,α4
−

2⊗
i�0

P
∗
i,α4

)
+ λ3

(
2⊗

i�0
P∗i,α3
−

2⊗
i�0

P
∗
i,α3

)

+ g∗δ
(

2⊗
i�0

P∗i,α5
−

2⊗
i�0

P
∗
i,α5

)
+ f δ

(
2⊗

i�0
P∗i,α6
−

2⊗
i�0

P
∗
i,α6

)

Unlike f , g∗ is a function which depends not only on the current state of component micro000, but also on its
next state. It is defined as follows:

g∗(microijkl , microi′j ′k′l ′) �

⎧⎪⎨
⎪⎩

i if i′ � i − 1
j if j ′ � j − 1
k if k′ � k − 1
l if l ′ � l − 1

where microijkl and microi′j ′k′l ′ are respectively the current and the next state of the component. Note that in this
case the rates could be explicitly incorporated into the expression. We use them only as a notational convenience
to keep the expression concise.

8.5. Summary of case study

The introduction of a function into the initial model allows for a more concise model expression in which different
apparent rates are captured using a function. It also enables the simpler generator expression, 7.2, to be used.

It is important to recognise that one of the impacts of the application of the aggregation technique is to reduce
the number of matrices which form the tensor representation of the model. Thus, in general, the dimension of the
product state space captured by the tensor representation will be reduced. This follows since our tensor represen-
tation is directly related to the number of components in the model and the aggregation typically amalgamates
components. In general the resulting matrices will be larger than the individual ones they replace, but they will
still be sparse. This suggests that it is beneficial, whenever possible to apply the aggregation technique and pos-
sibly reduce the number of components, before generating the tensor representation of the underlying generator
matrix.

Formal techniques for performance analysis: blending SAN and PEPA 29

Fig. 8. The operational semantics of PEPA

9. Discussion and conclusions

We have compared SAN and PEPA from the perspectives of model construction and Markov process generation.
From both perspectives the functional dependencies of SAN offer clear advantages. We subsequently extended
PEPA with functional dependencies and demonstrated that these advantages are preserved in the new formalism.
Our extension has been kept as conservative as possible, requiring only minimal changes to the definitons of
PEPA. For example, we currenly only allow multiplication within rate expressions rather than a more complete
set of arithmetic operators. Our reason for this is that the usual mechnisms for manipulating exponential flows
within Markov processes (decomposition and superposition) are expressed via multiplication.

Like all state-based modelling techniques, both formalisms still suffer from the state space explosion prob-
lem. Considerable effort in the performance modelling community has been applied to solutions of this problem.
Indeed both our formalisms had established ways of meeting its challenges. The Kronecker representation, of
SAN, and the aggregation technique, of PEPA, allow us to deal with larger models but by no means all models.
Each is particularly powerful with respect to a specific class of models. By providing a spectrum of techniques
within a single formalism we are able to offer the modeller a much greater possibility of being able to handle their
model since we can choose an optimal technique, or even apply a number of techniques in appropriate combina-
tion. Little work has been carried out to study the implications of this latter strategy. Giving PEPA the capability
of using both the aggregation technique and the Kronecker representation makes it a suitable framework for
studying the interactions between them.

Both these techniques, in common with other model reduction techniques, can be viewed as shifting the
problem rather than avoiding it, in the sense that there are still fundamental limits on the size of model which
can be analysed. A radically different approach has recently been proposed for PEPA in which a continuous
approximation of the discrete state space is made and analysis is carried out via a set of coupled non-linear
ordinary differential equations [Hil05a].

30 J. Hillston, L. Kloul

Within this work PEPA can be considered to be representative of all the stochastic process algebras with inte-
grated time and action (cf. Sect. 1). What distinguishes each of these formalisms is principally their
mechanisms for synchronisation, but the characteristics of PEPA’s cooperation are not important here. Thus
the same extension could have been taken for any of these formalisms. One of the reasons for choosing PEPA was
because it already has well-established, tool-supported model reduction techniques, thus providing a framework
in which the interplay between the tensor representation and other techniques could easily be studied.

This work has opened several avenues of possible future work. We would like to undertake a more systematic
study to investigate how the strategic use of aggregation may be used to reduce the size of selected components,
as well as the number of components. It has already been suggested by Plateau [FPS96] that functional rates may
be used to remove components from SAN models. However, this relies on the judgement and expertise of the
modeller. In contrast, preliminary results show that for PEPA models it is possible to automatically recognise and
replace candidate components [HK06]. Such components are closely related to the previously defined resource
components [HT99] which were developed in the context of decomposed (product form) solution of the underlying
Markov process. The full implications of this relationship are yet to be explored.

Like the tensor representation for SAN models, the tensor representation for PEPA currently does not avoid
the representation of unreachable states. These are combinations of local states which, given the semantics of the
model, could never be exhibited, but which nevertheless are represented because all combinations of local states
are considered. Substantial effort has been applied in the area of Kronecker representation of stochastic Petri
nets to avoid the consideration of these states [BK02]. In the future we will seek to modify these algorithms to
apply to the state space exploration of PEPA models.

Acknowledgments

This work has been supported by project “Enhanced techniques for PEPA and their application to software per-
formance modelling” funded by the CNRS and The Royal Society, and the DEGAS(Design Environments for
Global ApplicationS) project IST-2001-32072 funded by the FET Proactive Initiative on Global Computing.
The authors would like to thank the anonymous referees whose comments helped to improve the paper.

A. Structured operational semantics for PEPA

The semantic rules, in the structured operational style, are presented in Fig. 8; the interested reader is referred
to [Hil94] for more details. The rules are read as follows: if the transition(s) above the inference line can be inferred,
then we can infer the transition below the line. The notation fα(E) which is used in the third cooperation rule
denotes the apparent rate of α in E.

These rules, depicted with rates specified by expressions are valid for both the case PEPA with functional rates
and the case of PEPA with fixed rates. In the latter case, the rate expressions e, e1 and e2 should be replaced by
constant rates r, r1 and r2. Note that when expressions are used the semantics are symbolic as this contributes
to the space saving of the Kronecker expression. Expressions for rates in the matrices for individual components
may depend on the local state of other components but may be compactly expressed via a function.

B. Representing the PEPA combinators in SAN

In this section, we investigate the translation of a PEPA model to a SAN model and how to build the PEPA model
from a given stochastic automata network. For that, we consider the different combinators of PEPA described
above and for each one of them find its equivalent representation in the stochastic automata network formalism.

Prefix: Given the two level grammar imposed on PEPA models by ergodicity considerations, prefix comb-
inator only appears within sequential components. Consequently its translation will be to a local event within
single automata. As the prefix combinator captures the possibility of performing an activity in the individual
components, this would be translated into an event or transition between states.

Choice: As for the prefix combinator, the choice combinator only appears within sequential components and
its translation will be to local events within single automata. The choice combinator reflects competition between
two possible activities in the PEPA component. In the SAN this will be represented by having two transitions
emanating from the same state.

Formal techniques for performance analysis: blending SAN and PEPA 31

Cooperation: Cooperating activities will be clearly represented by synchronising events. However these are
not entirely the same because of the way that rates are assigned to shared transitions in the two formalisms. In
SAN each contributed event is treated as representing only the capability of the automaton involved to participate
in such an event. It does not carry any information about the rate at which the automaton would be willing to
carry out the event. Instead the rate of the synchronisation is set once and globally. In contrast in PEPA each
contributing activity has a representation within the component containing it. This representation again captures
the capability of participating in the event. If the activity is passive this is all that it represents. However it is also
possible that the local representation of the activity in the component includes a rate specification, which captures
the maximum speed at which this component could undertake this activity. The rate of the activity synchronised
across all the participating components is calculated using the semantic rule:

E
(α,f1)−−−→ E ′ F

(α,f2)−−−→ F ′

E ��
L

F
(α,R)−−−→ E ′ ��

L
F ′

(α ∈ L), R � f1

fα(E)
f2

fα(F)
min(fα(E), fα(F))

Thus if we have a system of three components, each capable of carrying out a single activity of type α, but
each with its own idea of the rate for the activity, this would be represented in PEPA as the components:

P
def� (α, r).P Q

def� (α, r/2).Q R
def� (α, r/4).R

If we model the system as

System
def� (P ��

{α}
Q) ��

{α}
R

the rate of the synchronised activity α is r/4. Dismantling the system we get the apparent activity rates shown in
the table below:

rα(P) r rα(Q) r/2 rα(R) r/4
rα(P ��

{α}
Q) r/2 rα(P ��

{α}
R) r/4 rα(Q ��

{α}
R) r/4

rα(P ��
{α}

Q) ��
{α}

R) r/4

Representing this system as a SAN we would choose three simple automaton each with a single state and a
self-loop, labelled with the synchronising event α. Globally this would be attributed the rate r/4 to reflect the
behaviour of the PEPA model. However, starting from this model and removing one of the automaton would
result in a new system in which two automaton synchronise but with the same rate which has been set globally:
r/4.

Hiding/Constant: These two PEPA combinators have no equivalent in SAN formalism.

C. Kronecker algebra

Let A be a matrix of size n× n and B a matrix of size p× p such that

A � (ai1j1) i1, j1 ∈ [1..n] and B � (bi2j2) i2, j2 ∈ [1..p]

Definition C.1 The tensor product of A and B, noted as A
⊗

B, is a matrix C of size np× np defined as follows:

C � A⊗ B and C � (cij) i, j ∈ [1..np]

where cij � ai1j1 bi2j2 , i � (i1, i2) and j � (j1, j2).

Definition C.2 The tensor sum of A and B, noted A
⊕

B, is a matrix D of size np× np defined as

D � A⊕ B � A⊗ IB + IA ⊗ B

where IM is the identity matrix with the dimension of matrix M.

32 J. Hillston, L. Kloul

Example Let A and B be two matrices such that A �
[

a11 a12
a21 a22

]
and B �

[
b11 b12
b21 b22

]
then

C � A⊗ B �
[

a11B a12B
a21B a22B

]
�

⎡
⎢⎣

a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22

⎤
⎥⎦

and

D � A⊕ B �
[

a11IB a12IB
a21IB a22IB

]
+
[

B 0
0 B

]

�

⎡
⎢⎣

a11 + b11 b12 a12 0
b21 a11 + b22 0 a12
a21 0 a22 + b11 b12
0 a21 b21 a22 + b22

⎤
⎥⎦

Remark Note that the sum and the product are associative and distributive operators over addition, but they are
not commutative.

References

[ACB84] Ajmone Marsan M, Conte G, Balbo G (1984) A class of generalised stochastic petri nets for the performance evaluation of
multiprocessor systems. ACM Trans Comput Syst 2(2):93–122

[BBF+03] Benoit A, Brenner L, Fernandes P, Plateau B, Stewart W (2003) The PEPS software tool. In: Proceedings of the 13th inter-
national conference on modelling techniques and tools for computer performance evaluation, Illinois, September 2–7 2003,
pp 215–234

[BBFP03] Benoit A, Brenner L, Fernandes P, Plateau B (2003) Aggregation of stochastic automata networks with replicas. In: Proceed-
ings of the international conference on the numerical solution of markov chains (NSMC’03), Illinois, September 2–7 2003,
pp 215–234

[BG98] Bernardo M, Gorrieri R (1998) A tutorial on EMPA: a theory of concurrent processes with nondeterminism, priorities, prob-
abilities and time. Theor Comput Sci 202:1–54

[BK02] Buchholz P, Kemper P (2002) Efficient computation and representation of large reachability sets of composed automata. Dis
Event Dynam Syst: Theor Appl 12:265–286

[Bor06] Bortolussi L (2006) Stochastic concurrent constraint programming. In: Proceedings of workshop on quantitative analysis of
programming languages (QAPL) Vienna, April 2006

[Buc94] Buchholz P (1994) Compositional analysis of a markovian process algebra. In: Herzog U, Rettelbach M (eds) Proceedings of
the 2nd process algebra and performance modelling workshop

[Buc99] Buchholz P (1999) Hierarchical structuring of superposed GSPNs. IEEE Trans Softw Eng 25(2):166–181
[CGHT99] Clark G, Gilmore S, Hillston J, Thomas N (1999) Experiences with the PEPA performance modelling tools. IEE Softw 146(1):

11–19
[CM96] Ciardo C, Tilgner M (1996) On the use of Kronecker operators for the solution of generalized stochastic Petri nets. Technical

Report 96-35, Institute for Computer Applications in Science and Engineering, Hampton, VA, May 1996
[CM99] Ciardo G, Miner AS (1999) A data structure for the efficient kronecker solution of gspns. In: In P. Buchholz editor, Proc. of

the 8th International Workshop on Petri Nets and Performance Models (PNPM’99), Saragoza, Spain, pp 22–31
[Day98] Dayar T (1998) Iterative methods based on splittings for stochastic automata networks. Eur J Oper Res 110:166–186
[DHHR95] Donatelli S, Hermanns H, Hillston J, Ribaudo M (1995) GSPN and SPA compared in practice: modelling a distributed mail sys-

tem. In: Baccelli F, Jean-Marie A, Mitrani I (eds) Quantitative methods in parallel systems, p 38–51. Springer, Berlin Heidelberg
New York

[DHKK01] D’Argenio P, Hermanns H, Katoen J-P, Klaren R (2001) MoDeST – a modelling and description language for stochastic timed
systems. In: Process algebra and probabilistic methods, performance modeling and verification: Joint international workshop,
PAPM-PROBMIV, Aachen, Germany, September 2001. LNCS, vol 2165, pp 87–104. Springer, Berlin Heidelberg New York

[DHR95] Donatelli S, Hillston J, Ribaudo M (1995) A comparison of performance evaluation process algebra and generalized stochas-
tic Petri nets. In: Proceedings of the 6th Petri Nets and Performance Models Workshop, October 1995, pp 158–168. IEEE
Computer Society Press

[DHW04] DiPierro A, Hankin C, Wiklicky H (2004) Continuous-time probabilistic KLAIM. In: Proceedings of SECCO 2004, Electronic
Notes in Theoretical Computer Science

[DK01] Donatelli S, Kemper P (2001) Integrating synchronization with priority into a kronecker representation. Perform Evaluat
44(1–4):73–96

[DLM05] DeNicola R, Latella D, Massink M (2005) Formal modelling and quantitative analysis of KLAIM-based mobile systems. In:
Proceedings of SAC’05

[Don94] Donatelli S (1994) Superposed generalised stochastic Petri nets: definition and efficient solution. In: Silva M (ed) Proceedings
of the 15th international conference on application and theory of Petri nets

Formal techniques for performance analysis: blending SAN and PEPA 33

[FKV00] Fourneau JM, Kloul L, Valois F (2000) Performance evaluation of a hierarchical cellular network using PEPA. Technical
Report RR 2000/2, Laboratoire PRiSM, University of Versailles

[FKV02] Fourneau JM, Kloul L, Valois F (2002) Performance evaluation of a hierarchical cellular network using PEPA. Perform Evaluat
50:83–99

[FPA98] Fernando P, Plateau B, Atif K (1998) Efficient descriptor–vector multiplications in stochastic automata networks. JACM
3:381–414

[FPS96] Fernando P, Plateau B, Stewart WJ (1996) Numerical iusses for stochastic automata networks. In: Ribaudo M, (ed) Proceedings
of the fourth process algebra and performance modelling workshop, pp 215–234. CLUT

[GHKR03] Gilmore S, Hillston J, Kloul L, Ribaudo M (2003) PEPA nets: a structured performance modelling formalism. Perform. Evaluat
54(2):79–104

[GHR93] Götz N, Herzog U, Rettelbach M (1993) Multiprocessor and distributed system design: the integration of functional specifica-
tion and performance analysis using stochastic process algebras. In: Performance’93

[GHR97] Gilmore S, Hillston J, Recalde L (1997) Elementary structural analysis for PEPA. Technical Report ECS-LFCS-97-377, Lab-
oratory for Foundations of Computer Science, Department of Computer Science, The University of Edinburgh

[GHR01] Gilmore S, Hillston J, Ribaudo M (2001) An efficient algorithm for aggregating PEPA models. IEEE Trans Softw Eng 27(5):
449–464

[GP95] Groote JF, Ponse A (1995) The syntax and semantics of μ CRL. In: Ponse A, Verhoef C, van Vlijmen SFM (eds) Algebra of
communicating processes ’94, workshops in computing series, pp. 26–62. Springer, Berlin Heidelberg New York

[Her99] Hermanns H (1999) Interactive Markov chains. PhD thesis, Erlangen-Nurnberg University
[Hil94] Hillston J (1994) A Compositional Approach to Performance Modelling. Phd. Thesis, University of Edinburgh, 1994
[Hil95] Hillston J (1995) Compositional Markovian modelling using a process algebra. In: Stewart WJ, (ed) Numerical solution of

Markov chains. Kluwer
[Hil05a] Hillston J (2005) Fluid flow approximation of pepa models. In: Second international conference on the quantitative evaluation

of systems, Torino, Italy, September 2005, pp 33–42. IEEE Computer Society Press
[Hil05b] Hillston J (2005) Tuning systems: from composition to performance. Comput J. The Needham Lecture
[HK01] Hillston J, Kloul L (2001) An efficient kronecker representation for pepa models. In: Proceedings of the joint international

workshop, PAPM-PROBMIV 2001, LNCS, vol 2165, pp 120–135, Aachen, Germany. Springer, Berlin Heidelberg New York
[HK06] Hillston J, Kloul L (2006) A function-equivalent components based simplification technique for pepa models. In: Horváth A,

Telek M (eds) Formal methods and stochastic models for performance evaluation, Third European performance engineering
workshop (EPEW) Budapest, Hungary, June 21–22 2006. LNCS, vol 4054, pp 16–30. Springer, Berlin Heidelberg New York

[HPTvD90] Henderson W, Pearce CEM, Taylor PG, van Dijk NM (1990) Closed queueing networks with batch services. Que Sys 6:59–70
[HRRS01] Hillston J, Recalde L, Ribaudo M, Silva M (2001) A comparison of the expressiveness of SPA and bounded SPN models.

In: Haverkort B, German R (eds) Proceedings of the 9th international workshop on Petri nets and performance models,
Aachen, Germany, September 2001. IEEE Computer Science Press

[HT90] Henderson W, Taylor PG (1990) Product form in networks of queues with batch arrivals and batch services. Que Syst 6:71–88
[HT99] Hillston J, Thomas N (1999) Product form for a class of PEPA models. Perform Evaluat 35:171–192
[ISO98] ISO/IEC JTCI/SC33. ISO/IEC FCD 15437—Enhancements to LOTOS, May 1998
[JL82] Jacobson S, Lazowska E (1982) Analysing queueing networks with simultaneous resource possession. Commun ACM,

25(2):142–151
[Kem96] Kemper P (1996) Numerical Analysis of Superposed GSPNs. IEEE Trans Softw Eng 22(9):615–628
[KNP02] Kwiatkowska M, Norman G, Parker D (2002) PRISM: Probabilistic symbolic model checker. In: Proceedings of 12th inter-

national conference on modelling tools and techniques for computer and communication system performance evaluation,
London, UK, April 2002. LNCS, vol 2324, pp 200–204. Springer, Berlin Heidelberg New York

[Mol82] Molloy MK (1982) Performance analysis using stochastic petri nets. IEEE Trans Comput 31(9):913–917
[PF91] Plateau B, Fourneau JM (1991) A methodology for solving markov models of parallel systems. J Parallel Distrib Comput
[PFL88] Plateau B, Fourneau JM, Lee KH (1988) PEPS: a package for solving complex Markov models of parallel systems. In:

Proceedings of the 4th international conference on modelling techniques and tools for computer performance evaluation
[Pla84] Plateau B (1984) De l’Evolution du Parallélisme et de la Synchronisation. PhD Thesis, Université de Paris-Sud, Orsay
[Pla85] Plateau B (1985) On the stochastic structure of parallelism and synchronisation models for distributed algorithms. In: Proceed-

ings of the ACM sigmetrics conference on measurement and modelling of computer systems
[Pri95] Priami C (1995) Stochastic π -calculus. Comput J 38(6). Special Issue: Proceedings of the 3rd process algebra and performance

modelling workshop
[Rib95] Ribaudo M (1995) On the relationship between stochastic petri nets and stochastic process algebras. PhD Thesis, Dipartimento

di Informatica, Università di Torino, May 1995
[SAP95] Stewart WJ, Atif K, Plateau B (1995) The numerical solution of stochastic automata networks. Euro J Oper Res 86:503–525
[SM91] Sanders WH, Meyer JF (1991) Reduced base model construction methods for stochastic activity networks. IEEE J Select Areas

Commun 9(1):25–36

Received 25 November 2002
Revised 4 August 2006
Accepted 16 August 2006 by J. Parrow
Published online 9 November 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

