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Abstract

Performance modelling is concerned with the capture and analysis of the dynamic beha-
viour of computer and communication systems. The size and complexity of many modern
systems result in large, complex models. A compositional approach decomposes the system
into subsystems that are smaller and more easily modelled. In this thesis a novel com-
positional approach to performance modelling is presented. This approach is based on a
suitably enhanced process algebra, PEPA (Performance Evaluation Process Algebra). The
compositional nature of the language provides benefits for model solution as well as model
construction. An operational semantics is provided for PEPA and its use to generate an
underlying Markov process for any PEPA model is explained and demonstrated. Model
simplification and state space aggregation have been proposed as means to tackle the prob-
lems of large performance models. These techniques are presented in terms of notions of
equivalence between modelling entities.

A framework is developed for analysing such notions of equivalence and it is explained
how the bisimulation relations developed for process algebras fit within the framework. Four
different equivalence relations for PEPA, two structural and two based on bisimulation, are
developed and considered within this framework. For each equivalence the implications for
the underlying Markov process are studied and its potential use as the basis of a model
simplification technique is assessed. Three of these equivalences are shown to be congru-
ences and all are complementary to the compositional nature of the models considered. As
well as their intrinsic interest from a process algebra perspective, each of these notions of
equivalence is also demonstrated to be useful in a performance modelling context. The
strong structural equivalence, isomorphism, generates equational laws which form the basis
of model transformation techniques. This is weakened to define weak isomorphism. This
equivalence, together with judicious use of the PEPA abstraction mechanisms, forms the
basis of a model simplification technique, provided certain insensitivity conditions are satis-
fied. Strong bisimilarity is shown to exhibit no clear relationship to the underlying Markov
process although it may be used to replace one component of a model by another which
will have the same apparent behaviour. Finally, strong equivalence, provides an alternative
method of formulating the Markov process capturing the stochastic behaviour of the model.
This equivalence is the basis of an aggregation technique based on lumpability.

Throughout the thesis the concepts introduced are illustrated by examples modelling
multi-server multi-queue (MSMQ) systems. These systems, an extension of classical polling
systems, have been shown to be useful representations of many local area network architec-
tures, with ring topologies and scheduled access, in which more than one node may transmit
simultaneously.
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Chapter 1

Introduction

Performance modelling is concerned with the capture and analysis of the dynamic behaviour
of computer and communication systems. The size and complexity of many modern systems
result in large, complex models. A compositional approach decomposes the system into
subsystems that are smaller and more easily modelled. In this thesis a novel compositional
approach to performance modelling is presented. This chapter presents an overview of the
thesis. The major results are identified.

A significant contribution is the approach itself. It is based on a suitably enhanced process
algebra, PEPA (Performance Evaluation Process Algebra). As this represents a new depar-
ture for performance modelling, some background material and definitions are provided in
Chapter 2 before PEPA is presented. The chapter includes the motivations for applying pro-
cess algebras to performance modelling, based on three perceived problems of performance
evaluation. The recent developments of timed and probabilistic process algebras are unsuit-
able for performance modelling. PEPA, and related work on TIPP [1], represent a new area
of work, stochastic process algebras [2]. The extent to which work on PEPA attempts to ad-
dress the identified problems of performance evaluation is explained. The chapter concludes
with a brief review of TIPP and other related work.

Chapter 3 presents PEPA in detail. The modifications which have been made to the lan-
guage to make it suitable for performance modelling are explained. An operational semantics
for PEPA is given and its use to generate a continuous time Markov process for any PEPA
model is explained. Thus it is demonstrated that PEPA may be used as a paradigm for
specifying Markov models. At the end of the chapter the relationship between PEPA and
established performance modelling paradigms is discussed.

A compositional approach offers potential for complex systems to be modelled systemat-
ically. Separate aspects or components of a system may be considered in detail individually,
but subsequently in a more abstract form as the interactions between them are developed.
The benefits of the compositional approach to model construction provided by PEPA are
demonstrated in Chapter 4. The modelling study presented investigates the characterist-
ics of various multi-server multi-queue (MSMQ) systems. These systems, an extension of
classical polling systems, have been shown to be useful representations of many local area
network architectures, with ring topologies and scheduled access, in which more than one
node may transmit simultaneously. However, they are not readily amenable to queueing
theory solution. These systems are straightforward to model using PEPA and exact analysis
based on solution of the underlying Markov process is carried out in each case. These case
studies also demonstrate how the size of the state space of this underlying process grows
rapidly as the dimensions and complexity of the modelled system increase. The remainder
of the thesis addresses this problem. It is demonstrated that the compositional structure of

1



2 CHAPTER 1. INTRODUCTION

PEPA models can also benefit model simplification techniques.
Model simplification and state space aggregation have been proposed as means to tackle

the problems of large performance models. These techniques, particularly aggregation, are
typically applied at the level of the Markov process rather than the modelling paradigm.
This means that the whole state space of the process must be constructed before it can be
reduced. In Chapter 5 these techniques of model simplification and aggregation are presented
in terms of notions of equivalence between modelling entities. A framework is developed for
analysing such notions of equivalence. It is explained how this framework may also be applied
to the bisimulation relations defined for process algebras.

A process algebra incorporates an apparatus for reasoning about the structure and beha-
viour of the model. Such an apparatus is not usually available in Markovian based modelling
paradigms. The next three chapters of the thesis present three model simplification tech-
niques for PEPA models which take advantage of this apparatus together with the compos-
itional nature of the language. These techniques avoid the construction of the state space
of the original model. In each case the integrity of the performance measures to be derived
from the model can be guaranteed. They represent the major contribution of the thesis.
Each is illustrated using one of the MSMQ models presented in Chapter 4.

Based on the operational semantics of the language four different notions of equivalence
for PEPA are developed. These are considered within the framework presented in Chapter 5.
For each equivalence its properties in the context of a process algebra, and its implications
for the underlying Markov process, are studied. Three of these equivalences are shown to be
congruences and all are complementary to the compositional nature of the models considered.

The strongest notion of equivalence for PEPA components, isomorphism, is presented in
Chapter 6. This is a structural equivalence, similar to the equivalence between Markov pro-
cesses discussed in Chapter 5. Nevertheless it is the basis of equational laws which may be
used to transform the presentation of a model, and so make it amenable to simplification. A
weaker form of this equivalence, weak isomorphism, is the basis of one of the model simplifica-
tion techniques—state space reduction via the amalgamation of states. This takes advantage
of judicious use of PEPA abstraction mechanisms, provided certain insensitivity conditions
are satisfied. Although weak isomorphism is not a congruence for PEPA it is shown to be
preserved by some combinators of the language. This means that the model simplification
technique it provides can be applied compositionally in some circumstances. These circum-
stances are identified. It is proved that the integrity of the performance measures to be
derived from the model is guaranteed.

The other two equivalence relations developed are based on the process algebra notion of
bisimulation. The first, strong bisimilarity, is presented in Chapter 7. A strong bisimulation
aims to capture the notion of indistinguishability under observation used in many process
algebras. Two components are strongly bisimilar if they are able to perform the same
activities, resulting in derivatives which are strongly bisimilar. Strong bisimilarity is the
largest relation satisfying the conditions of a strong bisimulation relation. It is shown that
the relation does not ensure exact equivalence of behaviour. However, circumstances in
which a strongly bisimilar component may be substituted within a model, resulting in a
simpler model, are identified.

The other notion of equivalence in the bisimulation style, strong equivalence, is presented in
Chapter 8. This is developed analogously to a probabilistic bisimulation used in probabilistic
extensions of process algebras. However, transition rates, already embedded in the PEPA
labelled transition system as activity rates, are used instead of probabilities. The relation
again aims to capture a notion of equivalent observed behaviour, but the observation is now
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assumed to be less detailed than in strong bisimilarity. The resulting relation is closely allied
to the notion of lumpability in the underlying Markov process. The use of strong equivalence
to partition the state space as a basis of exact aggregation is outlined. The conditions under
which the integrity of the performance measures is guaranteed are discussed.

Finally, in Chapter 9, the results of the thesis are summarised. The direction for further
work and the future development of PEPA are discussed as they appeared at the end of the
thesis. The book concludes with a review of the extent to which these outlined objectives
have been addressed by more recent work, and a summary of current work on stochastic
process algebras and their application to performance modelling.
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Chapter 2

Background

2.1 Introduction

This chapter presents the background material for the thesis. The field of performance
modelling is introduced and the standard paradigms for specifying stochastic performance
models, queueing networks and stochastic Petri nets, are reviewed. In Section 2.3 process
algebras are introduced, and some of the extensions into timed and probabilistic processes
are considered in the following subsections. In particular we describe the Calculus of Com-
municating Systems (CCS), and various extended calculi based upon it.

We present the motivation for applying process algebras to performance modelling in
Section 2.4. This outlines the objectives of the work presented in the remainder of the
thesis. Finally, in Section 2.5, some related work, involving process algebras and performance
evaluation, is discussed.

2.2 Performance Modelling

Performance evaluation is concerned with the description, analysis and optimisation of the
dynamic behaviour of computer and communication systems. This involves the investigation
of the flow of data, and control information, within and between components of a system.
The aim is to understand the behaviour of the system and identify the aspects of the system
which are sensitive from a performance point of view.

In performance modelling an abstract representation, or model, of the system is used to
capture the essential characteristics of the system so that its performance can be reproduced.
A performance study will address some objective, usually investigating several alternatives—
these are represented by values given to the parameters of the model. The model will be
evaluated to determine its behaviour and performance measures under the current set of
parameter values. Evaluation may take place via the solution of a set of equations by some
analytical, possibly numerical, technique or via the simulation of the model. Analytical
models are usually based on stochastic models and throughout the rest of the thesis the term
performance modelling will apply to stochastic models solved analytically unless otherwise
stated. There are two established notations for constructing such models—queueing networks
and stochastic Petri nets. These are described in Sections 2.2.1 and 2.2.2 respectively. In
many cases these underlying stochastic models are assumed to be Markov processes.

The size and complexity of many modern systems result in large complex models. This is
problematical for both model construction and model solution, and has led to an interest in

5
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compositional approaches to performance modelling. These approaches decompose a system
into subsystems that are smaller and more easily modelled. Several authors have advocated
the adoption of software engineering style structuring techniques for performance model
construction [3, 4, 5, 6].

Finding techniques for the solution of large Markov chains, whose state spaces are finite but
exceedingly large, has been a major preoccupation of performance analysis research for many
years [7]. Standard numerical techniques cannot cope with such models—a problem often
referred to as state space explosion. Compositional approaches which would be applicable to
model solution as well as model construction, allowing separate solution of submodels, have
been sought.

In this thesis we offer a technique which allows subsystems to be modelled separately al-
though the model must be considered as a single entity for the purposes of solution. However,
we also present some approaches to model simplification which may be applied to the sub-
system models in isolation but which are guaranteed not to affect the integrity of the whole
model. Thus, although compositional solution is not, in general, feasible, a large model may
be tackled in a systematic way and formally manipulated to reduce it to a manageable size.

2.2.1 Queueing Networks

The use of queueing networks for performance modelling is well-established. In this section
we briefly introduce the main ideas and some terminology which will be useful later in the
thesis. More details can be found in any one of the many books written on the subject, for
example [8, 9, 10, 11, 12].
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Figure 2.1: A Simple Open Queueing Network

A queue consists of an arrival process, a buffer where customers await service and one or
more servers representing a resource which must be retained by each customer for some period
before leaving the queue. The queue may be characterised by five factors: the arrival rate,
the service rate, the number of servers, the capacity of the buffer and the queueing discipline.
The first four of these characteristics may be concisely represented using Kendall’s notation
for classifying queues. In this notation a queue is represented as A/S/c/m/N :

A denotes the arrival process; usually M , to denote Markov (exponential), G, general, or
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D, deterministic distributions. Identifiers for other distributions, such as Hk (hyper-
exponential with parameter k), may also be used.

S denotes the service rate and uses the distribution identifiers as above.

c denotes the number of servers available to provide service to the queue.

m denotes the capacity of the buffer, infinite by default. Customers who arrive when the
buffer is full may be lost or blocked.

N denotes the customer population, also infinite by default.

The last two classifiers may be omitted in the default case. The queueing discipline de-
termines how a server selects a customer from the queue for next service. For example,
the discipline might be first-come-first-served (FCFS) in which the customer who has been
waiting longest is served next, or processor sharing (PS) in which the service capacity is
shared by all the customers present at the queue.

A queueing network is a directed graph in which the nodes are queues, often called service
centres in this context, each representing a resource in the system being modelled. Cus-
tomers, representing the jobs in the system, flow through the system and compete for these
resources. The arcs of the network represent the topology of the system, and together with
routing probabilities, determine the paths that customers take through the network. De-
pending on the demand for the resources and the service rate that the customers experience,
contention over a resource may arise leading to the formation of a queue of waiting customers.

The state of the system is typically represented as the number of customers currently
occupying each of the service centres. There may be a number of different classes of customers
each exhibiting different characteristics within the network. In this case the state is the
number of customers of each class at each service centre. A network may be closed, open
or mixed depending on whether a fixed population of customers remain within the system;
customers may arrive from, or depart to, some external environment; or there are classes of
customers within the system exhibiting open and closed patterns of behaviour respectively.

A large class of queueing networks have been shown to have a straightforward and compu-
tationally efficient solution [13]. Although this class excludes some interesting and important
system features, when applicable they allow performance measures to be derived without re-
sorting to the underlying Markov process. The solution of these models, often termed a
product form solution, allows individual queues within a network to be considered separ-
ately. Based on this, relatively simple algorithms exist for computing most performance
measures based directly on the parameters of the queueing network.

2.2.2 Stochastic Extensions of Petri Nets

Petri nets are directed graphs with two types of node, places and transitions, and unidirec-
tional arcs between them. Tokens move between places according to the firing rules imposed
by the transitions. A transition can fire when each of the places connected to it has at
least one token; when it fires, the transition removes a token from each of these places and
deposits a token in each of the places it is connected to.

The state of the system is denoted by the number of tokens at each place in the network.
This is termed the marking of the net. A Petri net is defined by its structure and an initial
marking which is the initial placement of tokens. The reachability set is the set of all possible
markings that a net may exhibit, starting from the initial marking and following the firing
rules. This is used to form the reachability graph in the natural way.
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Figure 2.2: A Simple Petri Net Firing

Various timed and stochastic extensions of Petri nets have been proposed for performance
modelling [14, 15, 16, 17, 18, 19, 20, 21]. Amongst the most influential have been the
stochastic Petri nets (SPNs) proposed by Molloy [22] and their subsequent refinement by
Ajmone Marsan et al., generalised stochastic Petri nets (GSPNs) [17].

In SPNs an exponentially distributed firing rate (possibly dependent on the marking) is
associated with each transition. Once a transition is enabled (each input place is marked)
a drawing is made on the distribution to define a delay before the transition will fire; if
the transition is still enabled at the end of that time it then fires. Molloy showed that the
reachability graph underlying such nets is isomorphic to a Markov process when this delay
is exponentially distributed [16]. Thus SPNs provide an alternative means of specifying the
stochastic models used for performance modelling. Moreover they are able to easily express
some of the features not readily modelled in queueing networks such as multiple resource
usage. Performance measures are usually extracted from the models via numerical solution
of the underlying Markov process. There has been some work on product form solutions for
SPNs, for example [23], but these rely on restrictive conditions on the structure of the net.

In GSPNs the transitions of the net are partitioned into two subsets—timed transitions
which behave like the transitions in SPNs, each with an exponentially distributed firing
time, and immediate transitions which fire immediately upon being enabled. It is assumed
that all enabled immediate transitions fire before any timed transitions. Consequently the
reachability graph of a GSPN can be partitioned into tangible and vanishing markings.
Ajmone Marsan et al. showed that since no time elapses in vanishing markings they can be
eliminated prior to the solution of the embedded Markov chain. Thus immediate transitions
are disregarded during model solution. GSPN models have been used widely for performance
analysis, for example [24, 25, 26]. As well as immediate transitions GSPNs also sometimes
include inhibitor arcs. Such extensions to the notation often make it possible to express
a model more concisely but they have been shown not to increase the modelling power of
GSPNs [27].

Stochastic activity networks (SAN), introduced by Movaghar and Meyer [19], are also of
interest because, like PEPA, they place emphasis on the activities of the system. Although
similar to GSPNs these nets, intended for performability modelling (joint consideration of
the performance and the availability of a system), have more structure. As well as immediate
transitions and inhibitor arcs they include gates and cases which introduce more sophisticated
firing rules into the net. In [28] the authors introduce an abstract underlying model, the
stochastic activity system, which may be used to reason about the SAN. In [5] the use of
compositional techniques for SAN is investigated. Work on SAN is discussed in more detail
in Section 5.3.
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2.3 Process Algebras

Process algebras are mathematical theories which model concurrent systems by their al-
gebra and provide apparatus for reasoning about the structure and behaviour of the model.
Examples include the Calculus of Communicating Systems (CCS) [29], Communicating Se-
quential Processes (CSP) [30], and the Algebra of Communicating Processes (ACP) [31]. A
system is characterised by its active components and the interactions, or communications,
between them. Unlike queueing networks or Petri nets there is no notion of entity or flow
within a model. However, in recompense, compositional reasoning is an integral part of the
language.

In CCS the active components of a system are called agents or processes and these under-
take actions, representing the discrete actions of the system. Any action may be internal to
an agent or may constitute the interaction or communication between neighbouring agents.
Agents may proceed with their internal actions simultaneously, but it is important to note
that this behaviour is given an interleaving semantics. Combinators of the language make
it possible to construct an agent which has a designated first action (prefix); has a choice
over alternatives (choice); or has concurrent possibilities (composition). In PEPA prefix and
choice are retained but composition is replaced by cooperation.

Like many other process algebras, CCS is given an operational semantics, in the style of
Plotkin [32], using a labelled transition system. From this a derivative tree, or graph, in
which language terms form the nodes and transitions are the arcs, may be constructed. This
structure is a useful tool for reasoning about agents and the systems they represent. It is
the basis of the bisimulation style of equivalence. The actions of an agent characterise it,
so two agents are considered to be equivalent if they are observed to perform exactly the
same actions. Strong and weak forms of equivalence are defined depending on whether the
internal actions of an agent are also considered to be observable. Bisimulation and related
notions of equivalence are presented in more detail in Section 5.2.

CCS models have been used extensively to establish the correct behaviour of systems, both
with respect to a given specification and in the more abstract sense. This is sometimes termed
functional or qualitative modelling. Behavioural properties such as fairness and freedom from
deadlock are investigated, in contrast to the quantitative values extracted from performance
models.

In the following sections we discuss some of the extensions which have been made to
process algebras to incorporate time and probability. Most of these can be exemplified by
an extension of CCS. When we want to refer to a process algebra without such extensions
we will sometimes find it convenient to refer to it as a pure process algebra.

2.3.1 Timed Extensions of Process Algebras

In pure process algebras time is abstracted away within a process so that all actions are
assumed to be instantaneous and only relative timing is represented via the traces of the
process. The simplest way in which time may be incorporated into such an algebra is by
making it synchronous. In synchronous calculi, such as SCCS [33], it is assumed that there
is an implicit global clock, and one action must occur at each clock tick. However in order
to model the real time behaviour of systems a more sophisticated representation of time is
needed.

Time may be represented explicitly in a process algebra by allowing an agent to witness
periods of delay, of specified lengths, in addition to witnessing actions, as in Temporal
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CCS (TCCS) [34]. In TCCS actions are still assumed to be instantaneous, and the time
domain is taken to be the natural numbers. The language is given an operational semantics
with two different types of transition: action transitions and time transitions. Observation
equivalence may be defined as before but with the additional condition that any period of
delay experienced by one agent must also be possible for the other agent.

An alternative approach is taken in Real Time ACP [35]. Here an absolute time is associ-
ated with each event, where an event is the completion of an action by a process. It is also
possible to specify a relative time for each action, or an interval during which an event must
occur. Such intervals lead to the introduction of an integration operator since it represents
a choice over a continuum of alternatives.

2.3.2 Probabilistic Process Algebras

Process algebras will often be used to model systems in which there is uncertainty about the
behaviour of a component but, like time, this uncertainty will be abstracted away so that
all choices become nondeterministic. Probabilistic extensions of process algebras allow this
uncertainty to be quantified because nondeterministic choice is replaced by a probabilistic
choice. In this case a probability is associated with each possible outcome of a choice.

The operational semantics for probabilistic process algebras are given in terms of prob-
abilistic labelled transition systems, labelled transition systems in which probabilities are
associated with the transitions. These systems may be classified as being reactive or gener-
ative . In a reactive system the probabilities of the transitions of an agent may depend on the
environment in which the agent is placed. In a generative system the transition probabilities
are independent of the environment. In effect, in the reactive case a probability distribution
is defined over the possible derivatives of an agent given that a particular action is performed
and in the generative case a probability distribution is defined over the possible actions of
the agent.

In [36] Jou and Smolka describe a language PCCS which is similar to SCCS but with
probabilistic choice replacing nondeterministic choice. Another extension of SCCS is Tofts’
WSCCS [37] which uses weights to assign probabilities. Here nondeterministic choice is
replaced by probabilistic and prioritised choice.

Probabilistic process algebras have been proposed as a more suitable way of testing equi-
valence between a system’s specification and its implementation [38]. Two processes are
probabilistically bisimilar, or equivalent, if their visible behaviour will be the same with
probability 1 − ε, where ε is an arbitrary small number. Another alternative is the use
of preorders which express the idea that one process may be probabilistically better than
another [39]. In this case it is necessary to show that a system’s implementation improves
on its specification. Thus if the specification allows 0.05 probability of breakdowns, an
implementation which ensures that the probability of breakdown is less than 0.04 will be
satisfactory.

2.4 Process Algebra for Performance Modelling

In this section we present some of the motivations for investigating the use of process algebras
for performance modelling. These can be regarded as arising from three distinct problems
of performance analysis which have been identified in recent years.
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Integrating Performance Analysis into System Design: Several authors have poin-
ted out the importance of the timely consideration of performance aspects of a planned
system [40, 41, 42, 3, 43, 6, 2]. However, most have also highlighted the limited extent
to which this occurs in practice.

Representing Systems as Models: The restricted expressiveness of queueing networks
has been highlighted by recent developments in computer and telecommunication
systems.

Model Tractability: Solving models of the size and complexity necessary to model many
modern systems is often beyond the capabilities of contemporary techniques and equip-
ment. This has led to considerable interest in model simplification and aggregation
techniques, for example [25, 7, 44, 45].

The adoption of a process algebra as a performance modelling paradigm has implications
for each of these problems, as explained below. We consider the use of process algebras as a
design methodology; the style in which process algebras express systems; and the apparatus
provided by process algebras for manipulating models.

2.4.1 Process Algebras as a Design Methodology

The process algebra style of system description is close to the way that designers think about
systems, and is gaining acceptance as a design methodology [46, 47], particularly in the area
of communication system and protocol design. Using a process algebra based language
for performance modelling introduces the possibility of a closer integration of performance
analysis into design methodologies. Performance models can be formed by the annotation of
existing system descriptions for design, as recent work with LOTOS has shown [42, 48]. This
has clear implications for both the practice of performance evaluation and the verification
of models against designs.

The use of system description formalisms for performance modelling has been investigated
by several researchers. Examples include SDL (Specification and Description Language) in
[49, 42], ACP in [50] and Estelle in [51, 42, 52].

Not only does the use of such a formal description language allow the integration of
performance modelling into the design process but, as most of the authors point out, it
presents the possibility of qualitative (or functional) and quantitative modelling using the
same system description. An alternative approach to this integration of modelling aspects
is presented by Pooley [53] (Section 2.5.4). This is similar to earlier work within the CUPID
project [54, 55] (Section 2.5.1), in which CCS is used as a canonical representation language.

2.4.2 The “Cooperator” Paradigm and Hierarchical Models

A process algebra description represents a system as a collection of active agents who co-
operate to achieve the behaviour of the system. This cooperator paradigm (as opposed to
operator and operand) is appropriate for modelling many modern computer systems. These
systems do not readily fit the traditional models of sequential flow of control and resource
allocation, as captured by the established performance modelling paradigms. For example,
in distributed systems and communications networks components have autonomy and the
framework is one of cooperation. In a process algebra model all system elements have equal
status; the model defines their individual behaviours and how they interact.
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Similar expressiveness is offered by the stochastic extensions of Petri nets [17, 18, 28].
However, in addition process algebras include mechanisms for composition and abstraction,
as well as apparatus for compositional reasoning, which are missing from performance mod-
elling techniques [56, 4]. These mechanisms, which are an integral part of the language,
facilitate the systematic development of large models with hierarchical structure.

The process algebra style of system description will be fully illustrated by a case study
introduced in Chapter 4. The system studied, a polling system with multiple servers, cannot
be solved exactly using conventional queueing network models. Moreover we will see in
subsequent chapters that the structure introduced in the system description, reflecting the
structure of the system itself, has useful implications for solution of the underlying Markov
process.

2.4.3 Structure within Models

Model simplification and aggregation techniques are often based on conditions phrased in
terms of the underlying Markov process or its generator matrix. For very large systems
the size of the state space may prohibit the generation and storage of the complete Markov
process [44].

The structure inherent in process algebra models offers the possibility of introducing model
simplification and aggregation techniques based on the system description rather than the
underlying stochastic model. Moreover the compositionality of the process algebra allows
these techniques to be applied to part of the model whilst maintaining the integrity of the
model as a whole.

The formal definition of the process algebra provides the basis for comparing and ma-
nipulating models within a formal framework. In particular we will develop notions of
equivalence based on this formal definition which will allow one model, or part of a model,
to be substituted for another whilst retaining the same observable behaviour. These notions
of equivalence will be presented in Chapters 6, 7 and 8 and form the main results of the
thesis.

2.4.4 The Work Presented in This Thesis

The work presented in this thesis concentrates on the compositionality offered by a partic-
ular process algebra, PEPA, and its benefits for performance modelling. It is shown that
this language supports a compositional approach to model construction, resulting in models
which are easy to understand and readily modified. Moreover, it is also demonstrated that
the structure provided within a model can be exploited for model manipulation and sim-
plification. In particular model simplification techniques which avoid the generation of the
complete state space of the underlying stochastic process are presented. As these techniques
are formally defined, in terms of the operational semantics of PEPA, they offer potential for
automation or machine-assistance of model simplification.

The thesis does not address the problem of using the compositional structure of a model
during its solution although this appears to be a promising area for future research.

2.5 Related Work

Some related work is now reviewed, showing how process algebras have been applied to per-
formance modelling. The approaches adopted vary considerably. Most of the work presented
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has originated in the area of performance modelling, and has been motivated by the attract-
ive features of process algebras.

2.5.1 Early Work on Protocol Specification

Early work arose from the consideration of correctness of communication protocols and the
recognition that timing behaviour was often disregarded during protocol design only to cause
problems subsequently [54].

Columbia’s Unified Protocol Implementation and Design (CUPID) environment was an
ambitious project, started in the early 1980’s, aiming at the integration and automation of
protocol design and implementation tools [54]. Central to the approach was a single repres-
entation of the system, developed in an algebraic form, based on value passing CCS. From
this canonical representation alternative views of the system could be developed to address
different objectives during the development process. Moreover the translation into a differ-
ent representation was formally defined and consistency between different representations
guaranteed.

For example, in order to carry out performance analysis, in [54] the authors define a
formal procedure to map each port of an agent to a distribution function specifying the
delay corresponding to the associated action. Sequential composition (prefix) is mapped
onto convolution and choice is mapped onto the convex combination of the respective dis-
tributions. In order to calculate performance measures an execution tree (derivative tree)
is formed and the appropriate distribution is associated with each branch together with the
probability that the branch is executed. An alternative approach to performance evaluation
is via the use of a simulation model developed by associating suitable terms from an algebra
of routines with each agent in the canonical representation. In subsequent work, [55], the
canonical representation was revised to be a variant of CCS, in which a strict one-to-one
correspondence between conjugate ports is enforced and synchronising τ actions are labelled
by the action they replace.

Later work by Zic, [57], advocates the use of a variant of Timed CSP for performance
analysis of protocol specifications. In this approach stochastic determinism is introduced as
an operator over the traces generated by Timed CSP processes. This generative probabilistic
choice ensures fairness and allows reasoning about the probability of event sequences such
as breakdowns and failures. In this way it is proposed that designers may specify acceptable
error probabilities and use the specification to ensure that these are not exceeded.

2.5.2 TIPP

The work on the language TIPP (TImed Process for Performance Evaluation), developed
in Herzog’s group at Erlangen, is the closest to the work presented in this thesis. This
work has been motivated by a desire to encourage the timely consideration of performance
characteristics of developing systems, particularly distributed systems [4]. Herzog recog-
nised that process algebras are well-suited to modelling such systems due to their inherent
compositionality.

The initial work was carried out with a process algebra EXL which was a variant of CSP
in which a random variable is associated with each event and a probabilistic choice operator
replaces non-deterministic choice [4]. This language evolved into TIPP.

The language captures three basic patterns of interaction of behaviours—sequential execu-
tion, rivalry and concurrent execution—and these are represented by the combinators of the
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language—prefix, choice and parallel composition respectively. A distribution function Fa is
associated with each action a, and is regarded as a fixed property of the action, i.e. all in-
stances of a have the same distribution function. In general no assumptions are made about
the nature of the distribution function but in later papers a subset of the language, in which
all times are assumed to be exponentially distributed, is discussed [1]. The core language
also includes a hiding operator and a recursion operation. Extended versions of the language
have also been studied and these included probabilistic choice, sequential combination (;)
and asymmetric synchronisation.

The operational semantics of the language is given in terms of transitions labelled by
the action, the distribution of its delay and a natural number called the start reference
counter. This is used to indicate the number of completed lifetimes an interrupted process
has witnessed. These additional labels are unnecessary when the restriction to exponential
distributions is made. Unlike work with PEPA, it is assumed that the semantic rules generate
a graph as in CCS, rather than a multigraph. Thus in order to maintain the correct behaviour
with respect to the probability distributions simultaneous instances of the same action are
distinguished by supplementary labels [2]. When necessary these left and right labels may
be concatenated in the natural way.

For the general language, the approach to performance analysis is similar to CUPID.
Timing information is extracted from an execution graph of the model. Time distributions
are attached to the arcs of this execution graph which is derived from the operational se-
mantics. The execution time for any subtree can be calculated from the probability of the
corresponding trace and the execution time for each branch, using the convolution and the
convex combination of the distribution functions. A steady state analysis of an underlying
stochastic process may be used when the distributions are all assumed to be exponential.

Work on TIPP has demonstrated the practicality of the process algebra approach to
performance modelling. It has been shown that models developed in TIPP can be successfully
used to derive functional and timing properties of systems such as a communication protocol
and a multiprocessor system [1, 2].

2.5.3 CCS+

In [58] an extension of CCS is developed with the objective of reasoning about simulation
models representing the performance of a system. This language, CCS+, is intended to give
the semantics of simulation models thus providing more support for the rigorous development
of simulation models than has been previously available.

The language is given an operational semantics in terms of three transition systems repres-
enting probabilistic, action and time evolution. Probabilistic evolution resolves probabilistic
choices and assigns values to random variables representing delays within the system by
drawing from appropriate distributions. Action evolution, resulting in labelled transitions,
represents the computation of the system. The real time variables in the language represent
simulation time, not computation time, and this is updated by time evolution.

It is intended that the language may be used to establish properties of a simulation once
it has been written or to transform it into some more desirable form using formal rules at
the syntactic level. Strong and weak bisimulation are defined for the language and are used
for these purposes. A relationship between CCS+ expressions and generalised semi-Markov
processes (GSMP) , a low-level representation sometimes used to reason about simulations,
has been established.
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2.5.4 Relating DEMOS to TCCS and WSCCS

Another use of process algebras in relation to discrete event simulation models is exemplified
in the work of Pooley [59] and Birtwistle et al. [60]. This work aims at incorporating the
analysis of functional properties of systems into the development of discrete event simulation
models. In Pooley’s approach a concise graphical notation is used as a high level represent-
ation of the system. This graph may then be automatically transformed into a program in
the process interaction simulation language DEMOS [61], suitable for simulating the system
and deriving performance characteristics. Alternatively it may be transformed into a TCCS
expression which can be analysed to investigate the functional properties of the system,
such as liveness. In Birtwistle et al.’s work, a more direct approach is taken deriving CCS
expressions from simulation programs.

2.5.5 Performance Equivalence as a Bisimulation

A recent paper by Gorrieri and Rocetti [62] reports some preliminary work using a timed
process algebra for performance modelling. A fixed time, specified as a natural number, is
associated with each action. It is assumed that each agent has a local clock which it updates
each time an action is completed. Whenever a synchronisation action occurs between two
agents their clocks are brought into agreement. This corresponds to an assumption that
the first agent arriving at the synchronisation will wait for the second. A bisimulation is
defined if they are capable of the same actions in the same period of time—this is termed
performance equivalence. Unfortunately this relation is not a congruence.
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Chapter 3

Performance Evaluation Process
Algebra

3.1 Introduction

This chapter presents the Performance Evaluation Process Algebra (PEPA). This language
has been developed to investigate how the compositional features of process algebra might
impact upon the practice of performance modelling. Section 3.2 outlines the major design
objectives for the language. Most of the rest of the chapter is taken up with the subsequent
informal and formal descriptions of the language, and a description of its use as a paradigm
for specifying Markov models. Some simple examples are presented to introduce the reader
to the language and its use in describing systems. This establishes PEPA as a formal system
description technique. Presentation of more complex examples is postponed until Chapter 4.

The use of PEPA for performance modelling is based on an underlying stochastic process.
It is shown that, under the given assumptions, this stochastic process will be a continuous
time Markov process. Generating this Markov process, solving it and using it to derive
performance results are presented and illustrated by a simple example. The relationship
between PEPA and established performance modelling paradigms is discussed in Section 3.6.

3.2 Design Objectives for PEPA

An objective when designing a process algebra suitable for performance evaluation has been
to retain as many as possible of the characteristics of a process algebra whilst also incorpor-
ating features to make it suitable for specifying a stochastic process. The aim is to develop
a language in which the performance evaluation features can be regarded as an extension,
offering the potential for the “basic” process algebra to be used as a design formalism with
the performance model being developed by annotation of the design.

Several features of process algebras are regarded as being essential:

Parsimony: Process algebras are simple languages with only a few elements. This parsi-
mony means that it is easy to reason about the language and provides a great deal of
flexibility to the modeller. In PEPA the basic elements of the language are components
and activities—these correspond to states and transitions in the underlying stochastic
model.

Formal Definition: The language is given a structured operational semantics, provid-
ing a formal interpretation of all expressions. The notions of equivalence which are
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subsequently developed are based on these semantic rules. This gives a formal basis
for the comparison and manipulation of models and components, and introduces the
possibility of developing tools to automate, or semi-automate, these tasks.

Compositionality: The model structure provided by the compositional nature of process
algebras, and the ability to reason about that structure, have already been highlighted
in Section 2.4.3 as a major motivation for investigating the use of such a language
for performance modelling. In PEPA the cooperation combinator forms the basis of
composition. In the later chapters of the thesis we show that model simplification and
aggregation techniques can be developed which are complementary to this combinator.
This means that part of a model can be simplified in isolation, if its interaction with
the rest of the system is modelled by such a combinator, and replaced by the simplified
component without jeopardising the integrity of the whole model.

The main attribute which is missing from a process algebra such as CCS, and which is
necessary for performance evaluation, is the quantification of time and uncertainty. The time
associated with actions in CCS, for example, is implicit and the models are nondetermin-
istic. In performance models, in order that performance measures can be extracted from
the model, it is important that timing behaviour and uncertainty be quantifiable. This is
achieved in PEPA by associating a random variable with each activity, representing its dur-
ation. This is presented in more detail in Section 3.3 when the language is described. A
delay is thus inherent in each activity in the model and the timing behaviour of the system
is captured. Moreover since the duration is a random variable, temporal uncertainty [28],
the uncertainty of how long an action will take, is represented. As in probabilistic process
algebras, nondeterministic branching is replaced by probabilistic branching—here the prob-
abilities are determined by a race condition between the enabled activities. This represents
so-called spatial uncertainty, the uncertainty about what will happen next within a system.

Thus adapting the process algebra to make it suitable for performance modelling is
achieved by introducing a random variable for each activity within the system. Clearly,
this may be regarded as an annotation of the pure process algebra model. The construction
is analogous to the association of a duration with the firing of a timed transition in GSPNs
and the other stochastic extensions of Petri nets.

3.3 The PEPA Language

In this section we describe the language PEPA in some detail, starting with an informal
outline of the language and the syntax. Some examples of PEPA terms and their intended
interpretation are presented.

3.3.1 Informal Description

In PEPA a system is described as an interaction of components and these components engage,
either singly or multiply, in activities. The components will correspond to identifiable parts
in the system, or roles in the behaviour of the system. They represent the active units within
a system; the activities capture the actions of those units. For example, a queue may be
considered to consist of an arrival component and a service component which interact to
form the behaviour of the queue.

A component may be atomic or may itself be composed of components. Thus the queue
in the above example may be considered to be a component, composed of the atomic arrival
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and service components. We assume that there is a countable set of possible components, C.
Each component has a behaviour which is defined by the activities in which it can engage.
Actions of the queue might be accept, when a customer enters the queue, service, or loss,
when a customer is turned away from a full buffer.

When talking about PEPA we use the term activity to distinguish it from the usual process
algebra notion of an instantaneous action. Every activity in PEPA has an associated duration
which is a random variable with an exponential distribution. In this thesis the term action
will relate to the behaviour of the system.

Each activity has an action type (or simply type). We assume that each discrete action
within a system is uniquely typed and that there is a countable set, A, of all possible such
types. Thus the action types of a PEPA term correspond to the actions of the system being
modelled. If there are several activities within a PEPA model which have the same action
type then they represent different instances of the same action by the system.

There are situations when a system is carrying out some action (or sequence of actions)
the identity of which is unknown or unimportant. To capture these situations there is
a distinguished action type, τ , which can be regarded as the unknown type. Activities
of this type will be private to the component in which they occur. These activities are
not instantaneous—each instance of an activity with action type τ will have an associated
duration, as with any other type. However, unlike all other types, multiple instances of τ
type activities within a PEPA model do not necessarily represent the same action by the
system.

Since an exponential distribution is uniquely determined by its parameter, the duration
of an activity, an exponentially distributed random variable, may be represented by a single
real number parameter. This parameter is called the activity rate (or simply rate) of the
activity; it may be any positive real number, or the distinguished symbol >, which should
be read as unspecified.

Throughout the thesis we adopt the following conventions:

• Components will be denoted by names which start with a large roman letter; for
example, P , System or Cj.

• Activities will be denoted by single roman letters taken from the beginning of the
alphabet; for example, a, b, or c.

• Action types will be denoted by small greek letters, such as α, β, etc., or by names
which start with a small roman letter, such as task, serve or use2.

• Activity rates will be denoted by single roman letters taken from towards the end of
the alphabet, typically r, but also ri, s, t etc. Occasionally the greek letters µ and λ
will designate rates when a queue is being considered (the service rate and arrival rate
respectively).

• The characters L, K, and M will typically be used to denote subsets of A.

Thus each activity, a, is defined as a pair (α, r) where α ∈ A is the action type and r is
the activity rate. It follows that there is a set of activities, Act ⊆ A× R+, where R+ is the
set of positive real numbers together with the symbol >.

Some Terminology

When the behaviour of the system is determined by a component P the system is said to
behave as P . The action types which the component P may next engage in are the current
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action types of P , a set denoted A(P ). The activities which the component P may next
engage in are the current activities of P , a multiset denoted Act(P ).

Note the distinction we make between action types and activities: the dynamic behaviour
of a component depends on the number of instances of each enabled activity and therefore
we consider multisets of activities as opposed to sets of action types. Throughout the rest of
the thesis we will assume that collections of action types are sets, and collections of activities
are multisets, unless otherwise stated.

When enabled an activity, a = (α, r), will delay for a period determined by its associated
distribution function, i.e. the probability that the activity a happens within a period of time
of length t is Fa(t) = 1−e−rt. We can think of this as the activity setting a timer whenever it
becomes enabled. The time allocated to the timer is determined by the rate of the activity.
If several activities are enabled at the same time each will have its own associated timer.
When the first timer finishes that activity takes place—the activity is said to complete or
succeed. This means that the activity is considered to “happen”: an external observer will
witness the event of an activity of type α. An activity may be preempted, or aborted, if
another one completes first.

For each a ∈ Act(P ) there is some component P ′ which describes the behaviour of the
system when P has completed a. This component P ′ is not necessarily distinct from P . We

write P
a−→ P ′, or P

(α,r)
−−−→ P ′ to denote the completion of activity a and the subsequent

behaviour of the system as P ′. A more precise definition of a−→ will be given in Section 3.3.7.

3.3.2 Syntax

Components and activities are the primitives of the language PEPA; the language also
provides a small set of combinators. As explained in the previous section the behaviour
of a component is characterised by its activities. However, this behaviour may be influenced
by the environment in which the component is placed. The combinators of the language
allow expressions, or terms, to be constructed defining the behaviour of components, via the
activities they undertake and the interactions between them.

The syntax for terms in PEPA is defined as follows:

P ::= (α, r).P | P + Q | P BC
L

Q | P/L | A

The names of these language constructions and their intended interpretations are presented
in some detail below.

Prefix: (α, r).P

Prefix is the basic mechanism by which the behaviours of components are constructed. The
component (α, r).P carries out activity (α, r), which has action type α and a duration which
is exponentially distributed with parameter r (mean 1/r). The time taken for the activity
to complete will be some ∆t, drawn from the distribution. The component subsequently
behaves as component P . If the component is (α, r).P at some time t, the time at which it
completes (α, r) and becomes P , enabling all the activities in Act(P ), will be t + ∆t. When
a = (α, r) the component (α, r).P may be written as a.P .

It is assumed that there is always an implicit resource, some underlying resource facilitating
the activities of the component which is not modelled explicitly. Thus the time elapsed before
activity completion represents use of this resource by the component. For example, this
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resource might be bandwidth on a communication channel, processor time or CPU cycles
within a processor, depending on the system and the level at which the modelling takes
place.

Choice: P + Q

The component P + Q represents a system which may behave either as component P or
as Q. P + Q enables all the current activities of P and all the current activities of Q,
i.e. Act(P + Q) = Act(P ) ] Act(Q) (where ] denotes multiset union). Whichever enabled
activity completes it must belong to either Act(P ) or Act(Q). Note that this is true even
if P and Q are capable of the same activity since we distinguish between instances of an
activity. In this way the first activity to complete distinguishes one of the components, P or
Q. The other component of the choice is discarded. The continuous nature of the probability
distributions ensures that the probability of P and Q both completing an activity at the
same time is zero. The system will subsequently behave as P ′ or Q′ respectively, where P ′

is the component which results from P completing the activity, and similarly Q′.
It is important to note that there is an underlying assumption that P and Q are competing

for the same implicit resource. Thus the choice combinator represents competition between
components.

Cooperation: P BC
L

Q

The cooperation combinator is in fact an indexed family of combinators, one for each possible
set of action types, L ⊆ A. The set L, the cooperation set, determines the interaction between
the components P and Q. Thus it is possible that the component P BC

L
Q will have quite

different behaviour from the component P BC
K

Q, if L 6= K.
The cooperation set defines the action types on which the components must synchronise

or cooperate. In contrast to choice, it is assumed that each component in a cooperation
has its own implicit resource and that they proceed independently with any activities whose
types do not occur in the cooperation set L. However activities with action types in the set
L require the simultaneous involvement of both components (both resources) in an activity
of that type. The unknown action type, τ , may not appear in any cooperation set.

All activities of P and Q which have types which do not occur in L will proceed unaffected.
These are termed individual activities of the components. In contrast shared activities,
activities whose type does occur in L, will only be enabled in P BC

L
Q when they are enabled

in both P and Q. Thus one component may become blocked, waiting for the other component
to be ready to participate. These activities represent situations in the system when the
components need to work together to achieve an action. In general both components will need
to complete some work, corresponding to their own representation of the action. This means
that a new shared activity is formed by the cooperation P BC

L
Q, replacing the individual

activities of the individual components P and Q. This activity will have the same action
type as the two contributing activities and a rate reflecting the rate of the slower participant,
i.e. the expected duration of a shared activity will be greater than or equal to the expected
durations of the corresponding activities in the cooperating components.

If an activity has an unspecified rate in a component, the component is passive with
respect to that action type. This means that although the cooperation of the component
may be required to achieve an activity of that type the component does not contribute to the
work involved. An example might be the role of a channel in a message passing system: the
cooperation of the channel is essential if a transfer is to take place but the transfer involves
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no work (consumption of implicit resource) on the part of the channel. This may be regarded
as one component coopting another.

When the set L is empty, BC
L

has the effect of parallel composition, allowing components
to proceed concurrently without any interaction between them. This situation will arise
quite frequently, especially in systems with repeated components. Therefore we introduce
the more concise notation P ‖ Q to represent P BC

∅
Q. We will refer to ‖ as the parallel

combinator. Note, however, that this is only a syntactic convenience—no expressiveness is
added to the language by its inclusion.

Hiding: P/L

The component P/L behaves as P except that any activities of types within the set L are
hidden, meaning that their type is not witnessed upon completion. Instead they appear as
the unknown type τ and can be regarded as an internal delay by the component.

Hiding does not have any effect upon the activities a component may engage in individu-
ally, but it does affect whether these activities can be fully witnessed externally. Normally,
when an activity is completed an external observer can see the type of the completed activ-
ity. The observer will also have been aware of the delay while the activity took place, the
length of time since the previous activity completed. A hidden activity is witnessed only
by its delay and the unknown type, τ . Moreover such an activity cannot be carried out in
cooperation with any other component. In effect the action type of a hidden activity is no
longer externally accessible, to an observer or to another component. However the duration
of an activity is unaffected if it is hidden.

Constant: A
def= P

We assume that there is a countable set of constants. Constants are components whose
meaning is given by a defining equation such as A

def= P which gives the constant A the
behaviour of the component P . This is how we assign names to components (behaviours).

Suppose E is a component expression which contains a variable X. Then E{P/X} denotes
the component formed when every occurrence of X in E is replaced by the component
P . More generally an indexed set of variables, X̃, may be replaced by an indexed set of
components P̃ , as in E{P̃ /X̃}.

The precedence of the combinators provides a default interpretation of any expression.
Hiding has highest precedence with prefix next, followed by cooperation. Choice has the
lowest precedence. Brackets may be used to force an alternative parsing or simply to clarify
meaning.

Brackets may also be used to clarify the meaning of a combination of components such as
P BC

L
Q BC

K
R. Here the intended scope of the cooperation sets, L and K, is unclear. If the

component is (P BC
L

Q)BC
K

R, R may then proceed independently for any action types in
L \K and P and R must cooperate for any action types in K. However if the component is
P BC

L
(Q BC

K
R), R must cooperate with P to achieve action types in L and P may proceed

independently for action types in K \ L. Thus brackets delimit the intended scope of the
cooperation set. When brackets are missing we assume that the cooperation combinator
associates to the left.

Consequently the cooperation between several different components using differing cooper-
ation sets may be regarded as being built up in layers or levels, each cooperation combining
just two components, those components possibly being formed from cooperations between
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components at a lower level. For example, the component(
(P1 BC

L
P2)BC

M
P3

)
BC
K

(
P4 BC

N
P5

)

can be regarded at the top level as Q1 BC
K

Q2 where, at the lower level, if ≡ denotes syntactic
equivalence, Q1 ≡ Q3 BC

M
P3 and Q2 ≡ P4 BC

N
P5, and at the lowest level Q3 ≡ P1 BC

L
P2.

Components at the lowest level, which do not contain a cooperation will sometimes be
referred to as atomic components. Those at the top level will be referred to as top-level
components.

3.3.3 Execution Strategies and the Exponential Distribution

A race condition governs the dynamic behaviour of a model whenever more than one activity
is enabled. This means that we may think of all the activities attempting to proceed but
only the “fastest” succeeding. Of course which activity is fastest on successive occasions will
vary due to the nature of the random variables determining the durations of activities.

The race condition has the effect of replacing non-deterministic branching (as in CCS)
with probabilistic branching. The probability that a particular activity completes will be
given by the ratio of the activity rate of that activity to the sum of the activity rates of
all the enabled activities. We may take advantage of this to represent a single action in a
system by more than one activity in the corresponding PEPA model, if the action has more
than one possible outcome.

For example, a component engaging in an action of type α with mean duration 1/r,
may have two different possible outcomes resulting from the action. In the PEPA model
of the component this single action would be represented by two separate activities. The
activity rates of these activities would be adjusted to capture the probabilities of the different
outcomes. Thus a system which will perform an action of type α at rate r and then, with
probability 1/3, behave as component P , and with probability 2/3, behave as component Q,
will be represented by a PEPA component enabling two type α activities:

(α,
r

3
).P + (α,

2r
3

).Q

Whenever an activity completes, the behaviour of the model may change, as it takes on
the behaviour of the resulting component. Any other activities which were simultaneously
enabled will be preempted. This may have the effect of aborting the activity, or merely
interrupting it, if it is also enabled in the new component.

Where the simultaneously enabled activities were sharing the same implicit resource the
effect of the completion of one activity can be regarded as preemptive restart with resampling.
In a preemptive restart strategy an activity which is preempted by the completion of another
activity abandons its spent lifetime and starts another lifetime whenever it is next enabled
(possibly at once). Without resampling the restarted activity will retain information about
the abandoned lifetime and when next enabled restart another lifetime with exactly the
same duration. If there is resampling whenever the activity is restarted it will make a fresh
drawing from the distribution governing the lifetime, starting a lifetime with a new, randomly
selected duration1. This means that any subsequent enabling of a preempted activity must

1Throughout the rest of the thesis preemptive restart will mean preemptive restart with resampling unless
otherwise stated.
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be regarded as a fresh attempt by that activity to acquire the resource and complete its
work. An example of this would be activities which compete within a choice.

On the other hand the effect of preemption on simultaneously enabled activities working
on different implicit resources will be preemptive resume. In a preemptive resume strategy a
preempted activity will remember its spent lifetime and whenever it is next enabled it will
resume from that point, only completing the remaining portion of its lifetime. The progress
of the activity may be regarded as being interrupted by the completion of an activity in
another component. However, whenever the activity is re-enabled it will continue from the
point at which it was interrupted. This implies that information about the remaining lifetime
of each such preempted activity must be retained. This strategy is applicable to the case of
activities which are simultaneously enabled by different components within a cooperation.

Fortunately we can take advantage of the memoryless property of the exponential dis-
tribution: the time to the next event is independent of when the last event occurred. In
other words how much longer the activity will wait before completing is independent of how
long it has waited already. This allows a blurring of the distinction between the preemptive
restart and the preemptive resume execution strategies and means that it is not necessary
to retain information about the remaining lifetime of an activity in either case, as long as
exponentially distributed delays are assumed for all activities.

3.3.4 Examples

In this section we present three simple examples, illustrating how the language may be used
to describe systems.

Multiple Server Queue as a Single Component

Consider an M/M/c/N queue, a queue with c servers and a buffer with capacity N , where
N > c. We assume that customers arrive at a rate λ. As the queue is modelled as a single
component we do not represent the customers directly but we assume that, when it is not
full, the queue will engage in an accept activity at rate λ, representing the acceptance of
a customer into the queue. When the queue is full, since the arrival process will not be
suspended, the queue will be involved in a loss activity, losing a customer at rate λ. The
service rate of each server is assumed to be µ so that when there are i customers in the queue,
it will engage in a serve activity at rate i µ, if i ≤ c, and rate cµ, when c ≤ i < N . Let Qi

denote the component representing the behaviour of the queue when there are i customers
present (including those in service).

Q0
def= (accept, λ).Q1

...
...

Qi
def= (accept, λ).Qi+1 + (serve, iµ).Qi−1 1 ≤ i < c

...
...

Qj
def= (accept, λ).Qj+1 + (serve, cµ).Qj−1 c ≤ j < N − 1

...
...

QN
def= (loss, λ).QN + (serve, cµ).QN−1
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Single Server Queue as Two Cooperating Components

Consider an M/M/1/N/N queue, a single server queue with buffer capacity N , and customer
population N . As in the previous example we assume that customers arrive at a rate λ.
However the arrival process will be suspended when the queue is full as all the customers
will already be present in the queue. We represent the queue as two interacting components:
a Server and a Line. The behaviour of the Server is very simple. Whenever it is able it
will engage in a serve activity at rate µ.

Server
def= (serve, µ).Server

The Line models the buffer. When the buffer is not full customers will arrive at rate λ so the
Line will engage in an accept activity at rate λ. When the buffer is non-empty a customer
will be available for service at a rate determined by the server, so the Line will engage in
a serve activity at an unspecified rate. Linei will denote the behaviour of the Line when
there are i customers in the buffer.

Line0
def= (accept, λ).Line1

...
...

Linei
def= (accept, λ).Linei+1 + (serve,>).Linei−1 1 ≤ i ≤ N − 1

...
...

LineN
def= (serve,>).LineN−1

The Queue is formed by the cooperation of the Line and the Server for the serve activity:

Queue0
def= Line0 BC{serve}Server

Simple Resource Usage System as Cooperating Components

Consider a simple system in which a process repeatedly carries out some task. In order to
complete its task the process needs access to a resource for part, but not all, of the time. Thus
the task can be regarded as being in two stages: the first requiring access to the resource, the
second involving only the process. The resource meanwhile is continuously available except
for a short period after it has been used during which it is reset and therefore unavailable.

We model the process and the resource as two components: Process and Resource re-
spectively. The process will undertake two activities consecutively: use with some rate r1,
in cooperation with the resource, and task at rate r2, representing the remainder of its pro-
cessing task. Similarly the resource will engage in two activities consecutively: use, at a rate
r3 and update, at rate r4.

Process
def= (use, r1).(task, r2).Process

Resource
def= (use, r3).(update, r4).Resource

System
def= Process BC

{use}
Resource

In this case it would be straightforward to model this as a single component:

System′
def= (use, r13).

(
(task, r2).(update, r4).System′ + (update, r4).(task, r2).System′

)
where r13 = min(r1, r3)
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However, note that this does not reflect what is happening in the system as clearly as
the first representation. Moreover, representing the components of the system as separate
components in the model means that we can easily extend the model to represent a system
in which there are two processes, independent of each other but competing for the use of the
resource.

System2 def= (Process ‖ Process) BC
{use}

Resource

3.3.5 Passive Activities

When the cooperation between components is unequal, possibly representing cooption or
coercion, one component may be passive with respect to an action type. This will mean that
all activities of that type enabled by the component will have an unspecified activity rate.
These activities must be shared with another component, the other component determining
the rate of this shared activity. A model will be termed incomplete if it has a component
which is passive with respect to an individual action type, i.e. a passive action type is not
shared or restricted by a cooperation set.

If more than one activity of a given passive type can be simultaneously enabled by a
component, each unspecified activity rate must also be assigned a weight. These weights are
natural numbers used to determine the relative probabilities of the possible outcomes of the
activities of that action type. For example, if a component is passive with respect to action
type α and if, when α is completed, the component may, with probability w1/(w1 + w2),
subsequently behave as P , or with probability w2/(w1 + w2), subsequently behave as Q, the
component will be represented as

(α, w1>).P + (α, w2>).Q

We assume that (α,>) is an abbreviation for (α, 1>). Also, if no weights are assigned we
assume that multiple instances have equal probabilities of occurring.

The following inequalities and equations define the comparison and manipulation of un-
specified activity rates:

r < w> for all r ∈ R+ and for all w ∈ N

w1> < w2> if w1 < w2 for all w1, w2 ∈ N

w1>+ w2> = (w1 + w2)> for all w1, w2 ∈ N

w1>
w2>

=
w1

w2
for all w1, w2 ∈ N

(3.2)

3.3.6 Some Further Definitions

Apparent Rate

As explained in Section 3.3.3, it may be convenient within a model to represent a single action
of the system by more than one activity in the model. However to an external observer of
the system or the model the apparent rate of activities of that type will be the same, since
in the model the race condition ensures that the rate at which an α activity is done is the
sum of the rates of all the enabled type α activities.
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Alternatively a system may have multiple capacity to perform an action, as in the case of
a queue with multiple servers and n customers waiting (n > 1). This would have the same
apparent rate for the serve action type as a PEPA component enabling a single type serve
activity which has a rate n times the actual service rate, as in the first example presented
above. Thus we can see that the apparent rate at which an action type occurs will be of
importance when comparing models with systems, and models with models.

Definition 3.3.1 The apparent rate of action of type α in a component P , denoted rα(P ),
is the sum of the rates of all activities of type α in Act(P ).

1. rα((β, r).P ) =
{

r if β = α
0 if β 6= α

2. rα(P + Q) = rα(P ) + rα(Q)

3. rα(P/L) =
{

rα(P ) if α /∈ L
0 if α ∈ L

4. rα(P BC
L

Q) =
{

min(rα(P ), rα(Q)) if α ∈ L
rα(P ) + rα(Q) if α /∈ L

Note that an apparent rate may be unspecified: if P is defined as,

P
def= (α, w1>).P1 + (α, w2>).P2

then, by Definition 3.3.1 and Equation 3.2 the apparent rate of α in P is rα(P ) = (w1+w2)>.
In contrast the apparent rate will be undefined for component expressions containing

unguarded variables, i.e. variables which are not prefixed by an activity. Consequently we
do not allow a component to be defined by such an expression.

Current Action Types

It will be convenient to refer to the set of action types enabled by a component P , denoted
A(P ). When the system is behaving as component P these are the action types which may
be observed when an activity next completes. The following definition shows how the set
may be constructed for any PEPA component.

Definition 3.3.2 (Set of Current Action Types)

1. A((α, r).P ) = {α}

2. A(P + Q) = A(P ) ∪A(Q)

3. A(P/L) =
{
A(P ) if A(P ) ∩ L = ∅
(A(P ) \ L) ∪ {τ} if A(P ) ∩ L 6= ∅

4. A(P BC
L

Q) =
(
A(P ) \ L

)
∪
(
A(Q) \ L

)
∪
(
A(P ) ∩A(Q)∩ L

)
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Current Activities

The multiset of current activities of P , denoted Act(P ), will also play an important part
in the analysis of a component P . When the system is behaving as component P these are
the activities which are enabled. The following definition defines how this multiset may be
constructed. We adopt the following abbreviations:

Act\L(P ) = {| (β, r) ∈ Act(P ) | β /∈ L |}

Act∩L(P ) = {| (β, r) ∈ Act(P ) | β ∈ L |}.

Definition 3.3.3 (Activity Multiset)

1. Act((α, r).P ) = {| (α, r) |}

2. Act(P + Q) = Act(P ) ] Act(Q)

3. Act(P/L) = Act\L(P ) ] {| (τ, r) | (α, r) ∈ Act∩L(P ) |}

4. Act(P BC
L

Q) = Act\L(P ) ] Act\L(Q)]
{| (α, r) | α ∈ L, ∃ (α, r1) ∈ Act∩L(P ), ∃ (α, r2) ∈ Act∩L(Q),

r =
r1

rα(P )
r2

rα(Q)
min(rα(P ), rα(Q)) |}

3.3.7 Formal Definition: Operational Semantics

The semantics of PEPA, presented in the structured operational semantics style of [32], are
shown in Figure 3.1. The operational rules are to be read as follows: if the transition(s)
above the inference line can be inferred, then we can infer the transition below the line.
The rules outline the activities which a component can witness—each activity completion
brings about a transition in the system. Time is not represented explicitly in the rules but
it is assumed for each one that an activity takes some time to complete and consequently
each transition represents some advance of time. All activities are assumed to be (time)
homogeneous meaning that the rate and type of an activity are independent of the time at
which it occurs. Also the activity set of a component is assumed to be independent of time,
i.e. Act(P ) does not depend upon the time at which it is considered.

The rules are straightforward and are presented without comment except for the third
rule for cooperation, the rule defining shared activities. The apparent rate of a shared action
type (i.e. α ∈ L) in the component E BC

L
F is taken to be the slower of the apparent rates of

that action type in E and F . It is assumed that in general both components of a cooperation
will need to complete some work, as reflected by their own version of the activity, for the
shared activity to be completed. In the case where the apparent rate is unspecified in one
component the apparent rate will be completely determined by the other component.

Recall that multiple instances of the same action type within a component may be used
to represent different possible outcomes. We assume independence between the choice of
outcome made by each of the cooperating components and choose the rate of each shared
activity to maintain the same probability of outcome in each of the components. For example,
for an instance of action type α in Act(E), say (α, r1), the probability, given that an α type
activity occurs, that this is the activity that completes, is r1/rα(E). Similarly for an instance
of action type α in Act(F ), say (α, r2), the probability, given that an α type activity occurs,
that this is the activity that completes, is r2/rα(F ). Given that a shared α type activity
has occurred in E BC

L
F then, assuming independence of choice in E and F , the probability

these two instances combined to form the shared activity is: r1/rα(E)× r2/rα(F ).
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Prefix

(α, r).E
(α,r)
−−−→ E

Choice

E
(α,r)
−−−→ E′

E + F
(α,r)
−−−→ E′

F
(α,r)
−−−→ F ′

E + F
(α,r)
−−−→ F ′

Cooperation

E
(α,r)
−−−→ E′

E BC
L

F
(α,r)
−−−→ E′ BC

L
F

(α /∈ L)
F

(α,r)
−−−→ F ′

E BC
L

F
(α,r)
−−−→ E BC

L
F ′

(α /∈ L)

E
(α,r1)
−−−→ E′ F

(α,r2)
−−−→ F ′

E BC
L

F
(α,R)
−−−→ E′ BC

L
F ′

(α ∈ L) where R =
r1

rα(E)
r2

rα(F )
min(rα(E), rα(F ))

Hiding

E
(α,r)
−−−→ E′

E/L
(α,r)
−−−→ E′/L

(α /∈ L)
E

(α,r)
−−−→ E′

E/L
(τ,r)
−−−→ E′/L

(α ∈ L)

Constant

E
(α,r)−→ E′

A
(α,r)−→ E′

(A def= E)

Figure 3.1: Operational Semantics of PEPA

For any activity instance its activity rate is the product of the apparent rate of the action
type in this component and the probability, given that an activity of this type occurs, that
it is this instance that completes. This leads to the following rule:

E
(α,r1)
−−−→ E′ F

(α,r2)
−−−→ F ′

E BC
L

F
(α,R)
−−−→ E′ BC

L
F ′

(α ∈ L) where R =
r1

rα(E)
r2

rα(F )
min(rα(E), rα(F ))

On the basis of the semantic rules PEPA can be defined as a labelled multi-transition
system. In general a labelled transition system (S, T, { t→ | t ∈ T}) is a system defined by
a set of states S, a set of transition labels T and a transition relation t→ ⊆ S × S for each
t ∈ T . In a multi-transition system the relation is replaced by a multi-relation in which
the number of instances of a transition between states is recognised. Thus PEPA may be
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regarded as a labelled multi-transition system (C,Act, {
(α,r)
−−−→ | (α, r) ∈ Act}) where C is the

set of components, Act is the set of activities and the multi-relation
(α,r)
−−−→ is given by the

rules in Figure 3.1.

3.3.8 Examples

Following these rules we can construct transition diagrams representing the possible beha-
viours of a component. The transitions are labelled by the activities which they represent.
This is often a useful representation of a component, initially more illuminating than the
defining equations. We consider each of the examples presented in Section 3.3.4 to illustrate.

Example 1 - M/M/c/N queue

Q0 Q1
6

(accept, λ)
?

(serve, µ)

-(accept, λ)

6
(serve, 2µ)

· · ·

(accept, λ)

(serve,
(c− 1)µ)
�

?
Qc−1

-(accept, λ)

6
(serve, cµ)

· · ·

(accept, λ)

(serve, cµ)
�

?
QN−1

?
(accept, λ)

6
(serve, cµ)

QN
6

(loss, λ)

Example 2 - M/M/1/N/N queue

Server
6
(serve, µ)

Line0 Line1

6

(accept, λ)
?

(serve,>)

-(accept, λ)

6
(serve,>)

· · ·

(accept, λ)

(serve,>)
�

?
LineN−1

?

(accept, λ)

6
(serve,>)

LineN

Queue0 Queue1

6

(accept, λ)
?

(serve, µ)

-(accept, λ)

6
(serve, µ)

· · ·

(accept, λ)

(serve, µ)
�

?
QueueN−1

?

(accept, λ)

6
(serve, µ)

QueueN

Example 3 - Processor/Resource System
ProcessBC

{use}
Resource

Process′ BC
{use}

Resource′

Process BC
{use}

Resource′ Process′ BC
{use}

Resource

?

(use, r13)

	

(task, r2)

R

(update, r4)

�

(update, r4)

K

(task, r2)

r13 = min(r1, r3)

where Process′ and Resource′ are defined as follows:

Process′
def= (task, r2).Process Resource′

def= (update, r4).Resource



3.4. BASIC PROPERTIES 31

3.4 Basic Properties

If we envisage a graph in which language terms form the nodes and where arcs represent
the possible transitions between them, then the operational rules define the form of this
graph. We have already remarked that we distinguish between different instances of the
same activity. As a result, the graph we consider is a multigraph—if there is more than
one instance of an arc between terms we distinguish between them. This underlying graph,
the derivation graph, describing the possible behaviour of any PEPA component, provides a
useful way to reason about the behaviour of a model. First we make precise the notion of a
derivative informally introduced in Section 3.3.1.

Definition 3.4.1 If P
(α,r)
−−−→ P ′, then P ′ is a (one-step) derivative of P . More generally, if

P
(α1,r1)
−−−→ · · ·

(αn,rn)
−−−→ P ′, then P ′ is a derivative of P .

These derivatives are the states of the labelled multi-transition system. We will often
find it convenient to expand the definition of a component and name all the derivatives
individually. For any PEPA component the set of derivatives (behaviours) which can evolve
from the component can be defined recursively.

Definition 3.4.2 The derivative set of a PEPA component C is denoted ds(C) and defined
as the smallest set of components such that

• if C
def= C0 then C0 ∈ ds(C);

• if Ci ∈ ds(C) and there exists a ∈ Act(Ci) such that Ci
a−→ Cj then Cj ∈ ds(C).

Thus the derivative set is the set of components which capture all the reachable states of the
system. We have already seen that the transition graph of a system can be a useful tool for
visualising the possible states of the system and the relationships among them. This can be
defined in terms of the derivative set of a system as the derivation graph.

Definition 3.4.3 Given a PEPA component C and its derivative set ds(C), the derivation
graph D(C) is the labelled directed multigraph whose set of nodes is ds(C) and whose multiset
of arcs A is defined as follows:

• The elements of A are taken from the set ds(C)× ds(C)×Act;

• 〈Ci, Cj, a〉 occurs in A with the same multiplicity as the number of distinct inference
trees which infer Ci

a−→ Cj.

The initial component C0, where C
def= C0, is taken to be the initial node of the graph.

The derivative set and derivation graph of a component expression, E, ds(E) and D(E)
respectively, can be defined in the intuitive way. Note that variables in the expression will
form leaves of the derivation graph, and when the variable is instantiated the appropriate
derivation graph is attached at that point.

It is occasionally necessary to refer to the complete set of action types which are used
within the derivation graph of a system, i.e. all the possible action types which may be
witnessed as a component evolves. This set will be denoted ~A(C).

Definition 3.4.4 The complete action type set of a component C is

~A(C) =
⋃

Ci∈ds(C)

A(Ci).
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3.5 The Underlying Stochastic Model

In this section we explain how the derivation graph of a PEPA model may be used to
generate a representation of the system as a stochastic process. Moreover we show that
when the activity durations are assumed to be exponentially distributed random variables
the resulting stochastic model is a continuous time Markov process.

The relationship between the structure of the PEPA model and the ergodicity of the
Markov process is discussed, and assuming that a steady state solution exists, a method
for solving the process is presented. In Section 3.5.6 we show how performance measures
can be derived from a PEPA model. This is illustrated by an example in Section 3.5.7.
In the following section, Section 3.6, we discuss the relationship between PEPA and other
paradigms for specifying Markov models used for performance modelling.

3.5.1 Generating the Markov Process

For any finite PEPA model we take a näıve approach to generating the underlying stochastic
process based on the derivation graph of the model. Recall that the derivation graph is a
multigraph which has the component defining the model as its initial node. Each subsequent
component, or derivative, is a node in the graph and there is an arc between nodes, labelled by
the action type and the activity rate, for each possible transition between the corresponding
components. To form the stochastic process a state is associated with each node of the
graph, and the transitions between states are defined by the arcs of the graph. We assume
that the model is finite so that the number of nodes in the derivation graph is finite.

Since all activity durations are exponentially distributed, the total transition rate between
two states will be the sum of the activity rates labelling arcs connecting the corresponding
nodes in the derivation graph, as shown in the following theorem. This use of the derivation
graph is analogous to the use of the reachability graph in stochastic extensions of Petri nets
such as GSPNs [17].

Theorem 3.5.1 For any finite PEPA model C
def= C0, if we define the stochastic process

X(t), such that X(t) = Ci indicates that the system behaves as component Ci at time t, then
X(t) is a Markov process.

Proof By definition, X(t) is a Markov process, if and only if, for t0 < t1 < · · · < tn < tn+1,
the joint distribution of (X(t1), X(t2), . . . , X(tn), X(tn+1)) is such that

Pr(X(tn+1) = Cjn+1 | X(t0) = Cj0, . . . , X(tn) = Cjn) =
Pr(X(tn+1) = Cjn+1 | X(tn) = Cjn)

In other words, the past behaviour, and the future behaviour, conditional on the present
behaviour, are independent. This can also be stated as follows:

The distribution of time until the next state change is independent of the time
that has elapsed since the last state change. (∗)

For an arbitrary, finite PEPA model C, with underlying stochastic process X(t), consider
the sojourn time in an arbitrary state X(ti) = Cji, that is the duration of a period spent
behaving as component Cji. Let Si(t) denote the sojourn time distribution. Then Si(t) is
the probability that a sojourn in the state corresponding to Cji has duration less than or
equal to t. Recall that for each component Cji , Act(Cji) is the multiset of activities which
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are enabled when the system is behaving as component Cji . For each a ∈ Act(Cji), we
define Sia(t) to be the conditional sojourn time distribution. Sia(t) is the probability that a
sojourn in the state corresponding to Cji has duration less than or equal to t and ends by
the completion of activity a. Note that the unconditional sojourn distribution is the sum of
conditional sojourn time distributions:

Si(t) =
∑

a∈Act(Cji)
Sia(t)

We assume that the duration of each activity a is exponentially distributed with some
parameter ra, i.e. the distribution function for the duration of a is Fa(t) = 1− e−rat, which
has density function fa(t) = rae

−rat.
The enabled activities of component Cji are Act(Cji) = {| a1, a2, . . . an |}. Without loss of

generality we assume that each activity in Act(Cji) is uniquely named, i.e. the multiplicity
of each ak in Act(Cji) is one. Then,

Siak(t) =

Z t

0

 ∏
1≤`≤n
6̀=k

(1− Fa`(x))

dFak =

Z t

0

 ∏
1≤`≤n
6̀=k

(1− Fa`(x))

 fak(x) dx

=

Z t

0

 ∏
1≤`≤n
6̀=k

(e−ra` x)

 rak e−rak x dx = rak

∫ t

0
e−Σxdx =

rak
Σ

(1− e−Σt)

where Σ =
n∑
`=1

ra`. Hence,

Si(t) =
∑

aj∈Act(Ci)
Siaj(t) =

1− e−Σt

Σ

n∑
`=1

ra` = 1− e−Σt.

Therefore, the sojourn time in any state corresponding to a component Cji is exponentially
distributed with mean 1/Σ, where Σ is the sum of the rates of the current activities.

The memoryless property of the exponential distribution implies that the time until the
system, behaving as component Cji, completes some activity, and starts to behave as some
derivative Cjk , is independent of the time that has elapsed since it started behaving as Cji.
Thus the system satisfies condition (∗)—the distribution of the time until the next state
change is independent of the time that has elapsed since the last state change. Hence the
stochastic process based on the derivation graph of a finite PEPA model is a Markov process.

�

3.5.2 Some Definitions

In this section we introduce the notation and terminology which will be used throughout the
rest of the thesis to describe the Markov process underlying a PEPA model.

Exit Rates and Transition Rates

The sojourn time of a component C is an exponentially distributed random variable, whose
parameter is the sum of the activity rates of the activities enabled by C. The mean, or
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expected, sojourn time will therefore be

 ∑
a∈Act(C)

ra

−1

.

We will generally find it more convenient to consider the related notion of the exit rate
from C. This is the rate at which the system leaves the state corresponding to the component
C. It is denoted, q(C), and is defined as,

q(C) =
∑

a∈Act(C)

ra

This can be regarded as the rate at which the component C does something, or equivalently,
the rate at which it completes an arbitrary activity.

The transition rate between two components Ci and Cj is denoted by q(Ci, Cj). This is
the rate at which the system changes from behaving as component Ci to behaving as Cj, or
the rate at which transitions between the states corresponding to Ci and Cj occur. It will
be the sum of the activity rates labelling arcs which connect the node corresponding to Ci

to the node corresponding to Cj in the derivation graph, i.e.

q(Ci, Cj) =
∑

a∈Act(Ci|Cj)
ra

where Act(Ci|Cj) = {|a ∈Act(Ci) | Ci
a−→ Cj|}. Typically this multiset will only contain

one element. Clearly if Cj is not a one-step derivative of Ci, q(Ci, Cj) = 0.
The q(Ci, Cj), or qij, are the off-diagonal elements of the infinitesimal generator matrix of

the Markov process, Q.

Pr(X(t + δt) = Cj | X(t) = Ci) = q(Ci, Cj) δt + o(δt), i 6= j

Diagonal elements are formed as the negative sum of the non-diagonal elements of each row,
i.e. qii = −q(Ci). A steady state probability distribution for the system, Π(·), if it exists,
can be computed by solving the matrix equation,

ΠQ = 0

subject to the normalisation condition,
∑

Π(Ci) = 1.
The conditional transition rate from Ci to Cj via an action type α is denoted q(Ci, Cj, α).

This is the sum of the activity rates labelling arcs connecting the corresponding nodes in
the derivation graph which are also labelled by the action type α. It is the rate at which
a system behaving as component Ci evolves to behaving as component Cj as the result of
completing a type α activity.

The conditional exit rate will also sometimes be considered. This is the rate of leaving a
component C via an activity of a given action type α. It is denoted q(C, α). It will be the
sum of all activity rates for type α activities enabled in C. It is clear that the conditional
exit rate of C via α is the same as the apparent rate of α in C, i.e. q(C, α) = rα(C).

Probabilities and the Embedded Markov Chain

The conditional probabilities of a component C ending a sojourn by completing a given
activity a, or any activity of a given action type α, are denoted by p(C, a) and p(C, α)
respectively. These are defined in the natural way; for example, given that C completes an
activity, p(C, a) is the probability that the activity is an instance of activity a:

p(C, a) =
ra∑

b∈Act(C)

rb
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Transition probabilities may also be defined: p(Ci, Cj) denotes the probability, given that
Ci completes an activity, that the resulting derivative is Cj.

p(Ci, Cj) =
q(Ci, Cj)

q(Ci)
=

∑
a∈Act(Ci|Cj)

ra∑
b∈Act(Ci)

rb

If we disregard the period spent as component Ci and consider only those points in time
when an activity completes we can define a (discrete time) Markov chain associated with
the model. The p(Ci, Cj), or simply pij , are the transition probabilities of this embedded
Markov chain. Note that in general the equilibrium distribution of this Markov chain, if it
exists, will differ from that of the Markov process from which it was derived, because the
Markov chain disregards the amount of time the process remains in each state.

3.5.3 Stochastic Processes with an Equilibrium Distribution

Performance analysis is usually concerned with the behaviour of systems over an extended
period of time. The system should have settled into some “normal” pattern of behaviour.
The analogous statistical notion is the idea of steady state or equilibrium. This is expressed
by the global balance equations ΠQ = 0 : the rate of flow out of any state is balanced by
the rate of flow into the state.

To clarify when a PEPA model represents a system which has such a regular pattern of
behaviour in the next section we establish the necessary condition which must be satisfied
by the model if the underlying Markov process is to have an equilibrium distribution. First,
some terminology is introduced.

A Markov process is finite if the number of states in the state space is finite. This does
not restrict the behaviour of the process to be finite in the sense of operating for only a finite
time. On the contrary the processes in which we will be interested exhibit infinite behaviour
over a finite number of states. Similarly a PEPA model is finite if its derivative set contains
a finite number of components.

A state in a Markov process, Xi, is called persistent or recurrent if the probability that
the process will eventually return to Xi is one. Otherwise the state is called transient. In
terms of a system, the recurrent states correspond to the behaviour which is repeatedly
exhibited by the system whereas transient states correspond to a behaviour which will be
no longer exhibited after a certain time. For example, in a queue in which arrivals occur
more frequently than service, the empty state is transient as the queue length will grow
unboundedly, never returning to this state after a certain time. A recurrent state Xj is
termed positive-recurrent, or sometimes ergodic, if the expected number of steps until the
process returns to Xj is less than infinity.

A Markov process is time homogeneous if the transition rates are independent of the time
at which the transitions occur, i.e. Pr(X(t + τ ) = Ck | X(t) = Cj) does not depend on t.
This implies that the behaviour of the system does not depend on when it is observed.

A Markov process is called irreducible if all states can be reached from all other states.
If the process is not irreducible the state space may be split into separate classes of states;
states within each class communicating with each other only. An initial choice by the process
determines which class is entered and which set of behaviours will be exhibited. These classes
of states, or sets of behaviours, can be studied separately as distinct processes. Further
explanations of these terms, and the following theorem, can be found in Feller [63].
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Theorem 3.5.2 (Feller) A stationary or equilibrium probability distribution, Π(·), exists
for every time homogeneous irreducible Markov chain whose states are all positive-recurrent.
Moreover this distribution is the same as the limiting distribution

lim
t→∞

Pr(X(t) = Ck | X(0) = C0) = Π(Ck).

3.5.4 PEPA Models with Equilibrium Behaviour

We assume that all PEPA models are time homogeneous since the rate and type of an activity
are independent of time, as are the activities available within a component. Irreducibility is
easily expressed in terms of the derivation graph of the PEPA model.

Definition 3.5.1 A PEPA component is cyclic, or irreducible, if it is a derivative of all the
components in its derivative set.

C ∈ ds(Ci) for all i such that Ci ∈ ds(C)

A cyclic component is one in which behaviour may always be repeated—how ever the
model evolves from this component it will always eventually return to this component and
this set of behaviours. In particular this means that for every choice, whichever component
is chosen the model must eventually return to the point where the choice can be made again,
possibly with a different outcome. If we consider the layering imposed on a component
by cooperation combinators, this implies that choice combinators may only be introduced
at the lowest level of a cyclic component. In other words, a component which involves a
choice combinator may subsequently be used in a cooperation, but a component involving a
cooperation may not be subsequently used in a choice.

For example, consider the component C
def= C1 + C2 in which C1 is P0 BC

L
Q0 and C2 is

R0 BC
K

S0. Whichever component Ci first completes an activity the component will then
behave as Ci, C1 say. All derivatives of C1 must have the form C ′1 ≡ Pi BC

L
Qj for some

Pi ∈ ds(P0) and Qj ∈ ds(Q0).
The component C is cyclic only if C1 + C2 ∈ ds(C). This implies that there is some

derivative of C1 which is syntactically equivalent to (P0 BC
L

Q0) + (R0 BC
K

S0), i.e. some Pi
and Qj such that Pi BC

L
Qj ≡ (P0 BC

L
Q0) + (R0 BC

K
S0). However this is not possible and it

follows that C cannot be cyclic. Thus we deduce the following proposition.

Proposition 3.5.1 If a PEPA component is irreducible then all choices must occur within
cooperating components.

This is as we would expect if we consider the implicit resources implied by the combinators.
A component P +Q in which the choice cannot be revisited, i.e. P +Q /∈ (ds(P ) ∩ ds(Q)),

may be considered to generate two separate models corresponding to P and Q respectively.
Clearly there is a strong relationship between irreducibility in PEPA components and

irreducibility in the underlying Markov processes. This is formalised in the following theorem.

Theorem 3.5.3 The Markov process underlying a PEPA model is irreducible if, and only
if, the initial component of the model is cyclic.
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Proof By the definitions whether the underlying Markov process is irreducible, and whether
the initial component of a PEPA model is cyclic, both rely on the connectivity of the deriv-
ation graph of the model. Thus it follows that the Markov process will be irreducible if, and
only if, the derivation graph is strongly connected, and this will be the case if, and only if,
the initial component of the model is cyclic. �

If a Markov process that is irreducible has a finite state space all its states are positive-
recurrent. Thus it follows from Theorem 3.5.3 that a finite irreducible PEPA model repres-
ents a system with steady state behaviour.

NB: Throughout the rest of the thesis we will only consider cyclic PEPA components
unless otherwise stated.

3.5.5 Solving the Markov Process

As explained in Section 3.5.2, the component-to-component transition rates q(Ci, Cj), or qij,
are the off-diagonal elements of the infinitesimal generator matrix of the underlying Markov
process, Q. Assuming that the PEPA model is finite and irreducible, this process will have
a steady state distribution Π(·), which may be found by using the normalisation condition
and global balance equations: ∑

Ci∈ds(C0)

Π(Ci) = 1 (5.5)

ΠQ = 0 (5.6)

This distribution Π(·) is interpreted at the PEPA level as the equilibrium probability
(or the long run relative frequency) of the model behaving as each of its derivatives. The
probability that the model is behaving as derivative Ci is Π(Ci).

The models presented in this thesis have been numerically solved using the computer
algebra package Maple2 [64]. The Equations 5.6 and 5.5 are combined by replacing a column
of Q by a column of 1s and placing a 1 in the corresponding row of 0. Moreover, since Maple
deals with row vectors instead of column vectors, this modified Q is transposed. The package
solves this system of linear equations using algorithms based on Gaussian elimination. These
algorithms are intended to cope with sparse systems, such as these Markov processes.

Since Maple allows symbols to be included in the matrix to be solved, it is easy to study
the effect that varying the value of an activity rate has on performance characteristics. The
use of computer algebra packages such as Maple and Mathematica for solving performance
models has been advocated by several authors [65, 66, 67].

3.5.6 Derivation of Performance Measures: Reward Structures

We have shown in the previous sections how an underlying Markov process may be derived
for any PEPA model, and how this process may be solved to find a steady state, or equi-
librium, distribution Π(·). This distribution allows us to derive the probability, when the
system has settled into a regular pattern of behaviour, that the system is behaving in the
way characterised by some component of the PEPA model, Ci. We can regard this as the

2Maple is a registered trademark of Waterloo Maple Software.
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probability that the system, observed at random when it has been running for some time,
will be exhibiting the behaviour, or set of behaviours, characterised by Ci. Alternatively,
this can be interpreted as the proportion of time that the system will spend behaving as
component Ci.

Most performance studies are concerned with characteristics of the system which are not
directly expressed in terms of the behaviour of a single component. However, performance
measures such as throughput, average delay time and queue lengths can be derived from
the steady state distribution, possibly considering a set of components or behaviours. In
this thesis we will use the notion of reward structures to define the performance measures in
which we are interested.

In the framework for reward structures introduced by Howard [68], rewards are associated
with states of a Markov (or semi-Markov) process or with transitions between states. Re-
wards which accumulate continuously while a process is resident within a state are termed
yield functions. The discrete rewards made when the process changes states are termed
bonuses. We will adapt the reward structure based on yield functions to fit into the PEPA
model world.

Reward structures are commonly used in the context of performability modelling, where
reliability and performance aspects of a system are considered together [69]. However such
structures may also be present, perhaps implicitly, in performance models. In queueing net-
works the extraction of performance measures is well-understood and can often be achieved
without resorting to the underlying Markov process. In stochastic Petri nets several authors
attribute a reward to certain markings in order to derive performance results from models,
although this is not necessarily done explicitly. Examples of the explicit use of reward struc-
tures with stochastic Petri nets are stochastic Reward nets [70, 21], GSPN reward models
[71] and stochastic activity networks (SANs) [72, 5].

As the emphasis of PEPA is on behaviour in terms of activities, rather than states, we
associate rewards with certain activities within the system. The reward associated with a
component, and the corresponding state, is then the sum of the rewards attached to the
activities it enables. Performance measures are then derived from the total reward based on
the steady state probability distribution. If ρi is the reward associated with component Ci

(Act(Ci)), and Π(·) is the steady state distribution, then the total reward R is

R =
∑
i

ρi Π(Ci). (5.7)

In this way, the rewards can be defined at the level of the PEPA model, rather than at the
level of the underlying Markov process.

Many performance measures of interest may be phrased in terms of some identifiable
aspect of system behaviour. Therefore, since the behaviour of the system is associated with
activities, many performance measures can be expressed by associating a reward with an
activity or set of activities.

3.5.7 Example

To demonstrate the solution of a PEPA model and the derivation of performance results we
consider one of the examples introduced earlier—the simple resource usage system.

Process
def= (use, r1).(task, r2).Process

Resource
def= (use, r3).(update, r4).Resource

System
def= Process BC

{use}
Resource



3.5. THE UNDERLYING STOCHASTIC MODEL 39

ProcessBC
{use}

Resource

Process′ BC
{use}

Resource′

Process BC
{use}

Resource′ Process′ BC
{use}

Resource

?

(use, r13)

	

(task, r2)

R

(update, r4)

�

(update, r4)

K

(task, r2)

where r13 = min(r1, r3) and Process′ and Resource′ are the one-step derivatives of
Process and Resource respectively.
Let the states of the underlying process be labelled X0, . . . , X3, identified as follows:

X0 ↔ Process BC
{use}

Resource

X1 ↔ Process′ BC
{use}

Resource′

X2 ↔ Process BC
{use}

Resource′

X3 ↔ Process′ BC
{use}

Resource

The generator matrix,Q, has the following form:

Q =


−r13 r13 0 0

0 −(r2 + r4) r2 r4

r4 0 −r4 0
r2 0 0 −r2


Solving the global balance equations, with the normalisation condition, using Gaussian elim-
ination, we obtain:

Π(X0) =
r2r4(r2 + r4)

(r2 + r4)r2r4 + r13r2r4 + r13r2
2 + r13r2

4

Π(X1) =
r2r4r13

(r2 + r4)r2r4 + r13r2r4 + r13r2
2 + r13r2

4

Π(X2) =
r13r

2
2

(r2 + r4)r2r4 + r13r2r4 + r13r2
2 + r13r2

4

Π(X2) =
r13r

2
4

(r2 + r4)r2r4 + r13r2r4 + r13r2
2 + r13r2

4
(5.8)

Suppose the activities have the following rates:

(use, r1) : r1 = 2 (task, r2) : r2 = 2
(use, r3) : r3 = 6 (update, r4) : r4 = 8
(use, r13) : r13 = min(2, 6) = 2

With these values substituted into the equations 5.8 we obtain:

Π(X0) =
20
41

Π(X1) =
4
41

Π(X2) =
1
41

Π(X3) =
16
41

Suppose we wish to find the utilisation of the resource and the expected throughput of the
process. The resource will be utilised whenever it is engaged in a use activity or an update
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activity. Therefore to derive the utilisation we associate a reward of 1 with each of these
activities. Then, if ρi denotes the reward associated with state Xi, we see that

ρ0 = 1 ρ1 = 1 ρ2 = 1 ρ3 = 0

The utilisation, U , of the resource will be equal to the total reward:

U = ρ0 × Π(X0) + ρ1 × Π(X1) + ρ2 ×Π(X2) =
25
41

= 60.98%

The throughput of the process will be the expected number of completed (use, task) pairs
of activities to be completed per unit time. Since each activity is visited only once, this
throughput will be the same as the throughput of either of the activities. The throughput
for activity use is found by associating a reward equal to the activity rate with each instance
of the activity. Thus, in this case, the rewards associated with states will be

ρ0 = 2 ρ1 = 0 ρ2 = 0 ρ3 = 0

Therefore the throughput, T , of the process is

T = ρ0 × Π(X0) =
40
41

= 0.975

3.6 Comparison to other Modelling Paradigms

In this section we present a comparison of PEPA with the standard paradigms for specifying
stochastic performance models. These paradigms, queueing networks and stochastic Petri
nets, were reviewed in Section 2.2.1 and Section 2.2.2 respectively. More detail can be found
in the literature: queueing networks are described in detail in [8, 9, 11, 12], while descriptions
of stochastic extensions of Petri nets can be found in [22, 73] (SPNs), [17, 74] (GSPNs), and
[19, 28] (SANs).

In order to compare the paradigms we will consider three aspects of the modelling cap-
abilities which each offers: expressiveness and modelling power; techniques of model manip-
ulation, transformation and comparison; and facilities for model solution and performance
measure derivation. We will generally consider the whole class of stochastic Petri nets but
in some of the following discussion it will be useful to distinguish between SPNs, GSPNs
and SANs.

The most important difference between PEPA and both queueing networks and stochastic
Petri nets is the notion of flow. In the standard paradigms the flow of entities within a system
is represented explicitly as the flow of customers or jobs in queueing networks, and tokens
in Petri nets. There is no corresponding notion of flow within PEPA models. Instead the
focus is upon the activities of the system and the flow of jobs/information/control associated
with these activities is implicit within the model. This difference pervades all aspects of the
modelling process and is responsible for many of the differences outlined below.

3.6.1 Model Construction

Queueing networks are a compact notation in which many systems may be represented con-
cisely. Models are described in terms of entities with embedded meaning. For example, single
server queue with preemptive restart priority queueing discipline, service rate µ. Thus each
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modelling entity encodes a great deal of information. The variety of such entities is based on
the six characteristics which define the behaviour of a queue: arrival rate, queueing discipline,
service discipline, service rate, number of servers and buffer capacity. The sophistication of
the notation has resulted in queueing network analysis, and consequently performance mod-
elling, being regarded as a specialised topic.

The penalty for the compact notation is the limited expressiveness of the language. Most
notably, queueing models cannot represent systems in which more than one resource must
be simultaneously retained or in which there is internal concurrency. Work has been done
to extend queueing networks to such systems [75, 76, 77], but the results have not been
generally applicable.

In contrast Petri net notation and PEPA notation are much simpler, with only a few
primitives in each case. These notations can be regarded as being at a lower level, closer to
the Markov process they specify. As a result they are capable of representing a much larger
class of systems.

In SPNs the entities of the notation are places, transitions and tokens. Markings and
transitions correspond to the PEPA primitives, components and activities. In GSPNs there
are additional language features—immediate transitions, and sometimes inhibitor arcs—but
recent work has concluded that although these features offer a modelling convenience they
do not increase the expressiveness of the language [27]. In SANs there are also gates and
cases which modify the effect of transitions in state dependent ways. Such state dependent
behaviour is modelled explicitly in PEPA activities.

The structure of a queueing network will often bear a close resemblance to the physical
structure of the system being modelled. For example, the CPU and the disk subsystem will
be modelled by separate servers, and the flow of jobs between them will be captured by
the routing behaviour of jobs in the network. Thus the queueing network, although largely
schematic in terms of the detailed execution of the model, provides a good representation of
the structure and the dynamic behaviour of the system.

In contrast the graphical representation of Petri nets presents a clear image of the dynamic
behaviour of the model but it provides little insight into the structure of the system. In the
more complex notation of SAN, some of the intuitive appeal of the graphical notation is lost.
PEPA does not provide a graphical notation but the component structure within the model
will reflect the structure of the system being modelled.

A consequence of the lower level of model expression employed in Petri nets and PEPA
compared to queueing networks, is that these notations are relatively verbose. This is par-
ticularly a problem in PEPA models where repeated components within a system and state
dependent behaviour will be modelled explicitly. However the ability to define the compon-
ents separately, compositional construction and abstraction mechanisms, help to alleviate
this problem.

3.6.2 Model Manipulation

The facilities available for manipulating and reasoning about models vary widely. In queueing
networks there is very little support for structuring models or developing them systematically.
Some work has been carried out on hierarchical modelling based on queueing networks.
However, this is largely intended to improve model tractability, rather than being a means
of introducing structure into models (see Section 3.6.3). There is no well-established notion of
when two models may be considered to be equivalent. Similarly, model validation, ensuring
that the model is an accurate representation of the system, is often a problem.
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Although the situation with stochastic Petri nets is slightly better, the support for reas-
oning about models is generally poor. There has been a great deal of interest in model
decomposition, and hierarchical modelling but, as with queueing networks, this is largely
motivated by tractability issues. Some work has been done on compositional model con-
struction for SAN [5]. This approach is based on repeated structures within the system being
modelled. Such subsystems are modelled as basic units which are subsequently combined to
form complex models using the replicate and join operators. But in general, stochastic Petri
nets do not support such a structured approach.

Recent work on stochastic well-formed nets (SWN) with symbolic markings has investig-
ated the relationship between coloured Petri nets which have the same structure but different
initial markings [78]. Otherwise there has been little work on when nets may be considered
to be equivalent, except when the role of immediate transitions was under investigation [27].

In contrast PEPA, being based on a process algebra, is equipped with many facilities for
manipulating, and reasoning about models. These facilities have been shown to allow models
to be developed in a compositional way, complex models being systematically developed from
smaller ones. Abstraction, as provided by the hiding operator, allows the internal details of
components to be hidden and their interactions to be limited.

Comparing models is based on notions of equivalence defined in terms of the operational
semantics. These formal rules also form the basis of model transformation techniques, based
on term rewriting. The circumstances under which one component within a more com-
plex component may be replaced by another without affecting the overall behaviour are
established in this thesis. Since these model transformations are based on the operational
semantics this suggests the possibility of tool support for model simplification.

3.6.3 Model Solution

As described in Section 2.2.1, a large class of queueing network models exhibit product form
solutions. Based on this solution simple algorithms exist for computing most performance
measures directly from the model parameters. Although this class is by no means compre-
hensive it provides the means for computationally efficient solution and is largely responsible
for the popularity of queueing networks for performance modelling.

In contrast Petri net models are generally solved numerically at the level of the underlying
Markov process. Some recent work has considered product form solution for SPNs [73, 23, 79,
80] and the direct derivation of performance measures such as throughput [81]. These results
rely on restricting the synchronisations which can occur within the system. Under similar
restrictions, PEPA models may exhibit a product form solution. However the modelling
capabilities of such a restricted language are anticipated to be few.

The reliance on numerical solution means that stochastic Petri net models are prone to
state space explosion—the large number of states needed to represent the underlying Markov
process makes the model intractable. PEPA models may be expected to suffer from similar
problems. However, we will show in Chapters 6, 7 and 8 that techniques exist to reduce
the number of states required in the underlying Markov process to represent the model.
Moreover these techniques do not require the generation of the original state space.

An alternative approach to the problem of state space explosion is the use of tensor algebra
techniques for state space representation, as originally proposed by Plateau [82], and more
recently by Buchholz [83].

Structure may be introduced in queueing networks using the technique of hierarchical
decomposition. Here a structure is imposed after the model has been constructed to simplify
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model solution by solving subnetworks separately. This technique may be used to reduce a
non-product form model to a product form one, by the use of a flow equivalent server, or
other aggregation techniques. Similar techniques have been applied to GSPNs [24].

Unlike the situation in queueing networks, in stochastic Petri net models and PEPA mod-
els the performance measures are derived from the steady state solution of the underlying
Markov chain. In GSPNs and SANs, as in PEPA, performance measures may be character-
ised by a reward structure [5, 27]. This reward structure relates possible behaviour of the
process to specified performance measures. Typically this means associating a reward rate
with each state. In a GSPN model these states will be the markings of the Petri net. In a
SAN model the states are defined to be (activity, marking) pairs, where the activity is the
last transition to have fired.

Queueing network models are only used for analysis of the performance related behaviour
of systems. Stochastic Petri nets and PEPA are based on formal system description tech-
niques: Petri nets and process algebra respectively. Consequently these models may also be
analysed to investigate the functional, or qualitative, aspects of system behaviour.
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Chapter 4

Modelling Study: Multi-Server
Multi-Queue Systems

4.1 Introduction

In this chapter we present a modelling study demonstrating the use of PEPA for perform-
ance evaluation. Examples drawn from the modelling study will be used to exhibit the model
simplification techniques developed later in the thesis. This study considers and compares
various multi-server multi-queue systems. Such systems, an extension of the traditional
polling system, have been used to model applications in which multiple resources are shared
among several users, possibly with differing requirements. Examples include local area net-
works with multiple tokens, and multibus interconnection networks in distributed systems.
Similar systems have been investigated in [26, 84, 85, 86, 87, 88].

A polling system consists of several queues and a single server which moves round the
queues in cyclic order. These systems have been found to be good models of many sys-
tems which arise in computer network and communication scenarios, and consequently they
have been extensively studied. A recent survey by Takagi [89] references over four hundred
contributions.

A variety of extensions and modifications to the traditional polling system have been
investigated [89], including non-cyclic polling, priority queues, and queues with feedback.
One extension which is particularly suited to modelling innovative local area networks is the
introduction of additional servers, each of which moves around the queues providing service
where it is needed. These systems, sometimes known as multi-server multi-queue systems,
are not readily amenable to queueing theory solution. Several suggested approximation
techniques, based on queueing theory, and exact solutions based on GSPNs are reviewed in
Section 4.3.1.

Multi-server multi-queue systems were chosen as the basis for the modelling study presen-
ted in this thesis because they are simply stated and easy to understand, although the
extraction of performance measures is not a trivial problem. The subtlety of these sys-
tems lies in the dependencies that exist between queues—the congestion at each queue is
dependent on the congestion at the other queues in the system—and between servers.

In the rest of the chapter we present the background of polling and multi-server multi-
queue systems, and several models developed in PEPA illustrating some of their character-
istics. Section 4.2 describes the major characteristics of polling systems and briefly reviews
their solution. In Section 4.2.2, as an illustration, a PEPA model of a simple polling system
is given, together with some numerical results. The additional characteristics of multi-server

45
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Figure 4.1: Schematic Representation of a Polling System

multi-queue systems are outlined in Section 4.3, which goes on to present an overview of the
related literature. Finally in Section 4.4 various PEPA models of multi-server multi-queue
systems exhibiting different characteristics are presented.

4.2 Polling Systems

The term polling system has evolved from the polling scheme used for data transfer between
terminals and a central computer, using multi-drop lines. The central computer would
approach each terminal in turn to ascertain whether it had any data to transmit. If so, the
terminal would transmit the data and the computer would then interrogate the next terminal;
if not, the computer would move on to the next terminal immediately. Subsequently polling
systems have been used to model a wide range of applications characterised by scheduled,
or demand-based, multiple access to a shared resource. In the example above each terminal
has a scheduled opportunity to transmit data to the central computer.

In general, a polling system consists of a collection of nodes or queues, and a single server
which circulates between them in cyclic order. Within each node customers requiring service
are accumulated in a buffer. The server will visit each node in turn, providing service if the
buffer is non-empty, but otherwise moving straight on to the next node. The time required
by the server to move from one node to the next is known as the walk or switchover time.

It is important to make the distinction between polling systems and synchronous time
division multiplexing (STDM) systems. In the latter the server will spend a predetermined
amount of time at each node regardless of whether service is required, or completed, before
moving on to the next node. As a result the congestion at each node in a STDM system
is independent of the congestion at the other nodes, and each can be analysed separately
as a single queue with server vacations. This is not the case in polling systems because the
duration of a server’s visit to a node will be dependent on the characteristics of the node,
and the time until the server returns to the node will depend on the characteristics of the
other nodes in the system.

The characteristics of a polling system fall into three categories: customer characteristics,
polling characteristics and service characteristics.
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Customer Characteristics

The behaviour of the customers is determined by the rate at which they arrive in the node,
the arrival rate, and the amount of service that they require from the server when they are
served, the service demand. These are standard characteristics of any queueing model. The
interarrival time is usually taken to be exponentially distributed although other distributions
have also been considered. Service demand has been variously assumed to be deterministic,
exponentially distributed and generally distributed.

We also consider the number of customers who might be waiting for service at any time—
this is determined by the buffer capacity. The two cases which have been treated extensively
in the literature are infinite buffer and single buffer nodes, in which an unlimited number
of customers may be waiting or only a single customer, respectively. However K-capacity
buffers, in which K customers may wait, where K is some finite constant, have been studied.
In the case of finite buffers, including single buffers, it is assumed that the arrival process is
suspended when the buffer is full, or that any subsequent customers, who arrive before there
is space in the buffer, are lost.

In some models it is assumed that a customer occupies a place in the buffer until service
is complete, restricted buffering, while others consider a customer in service to have left the
buffer, relaxed buffering. If the buffer is finite the distinction is important since the arrival
process is suspended when the buffer is full.

Polling Characteristics

The characteristics of the polling are the amount of time that the server takes to move
between nodes, the walk time, and the discipline that the server follows in deciding which
node to visit next. Deterministic, exponentially distributed and generally distributed walk
times have all been considered by various authors.

In general the polling discipline is assumed to be cyclic. However, several alternatives,
motivated by applications, appear in the literature [89]. The polling discipline may be
deterministic, probabilistic or state-dependent.

In deterministic polling disciplines each node has scheduled access to the server as in the
cyclic discipline. However, how the schedule is formed may vary. For example the following
have all been studied: systems in which the server alternates the direction in which it
circulates between nodes after each visit to a fixed node; systems in which a base node is
visited between each visit to the other nodes; and systems in which the server moves around
the nodes according to some fixed order looked up in a polling table.

In probabilistic polling disciplines the route taken by the server is not pre-determined.
Instead, when the server is leaving one node it will move according to some probability
distribution. In the random discipline at each polling step the next node will be node i
with probability pi, where

∑N
i=1 pi = 1, if N is the number of nodes. In the Markovian

polling discipline routing probabilities between nodes are given in the form pij—this is the
probability that when the server leaves node i the next node it will visit will be node j. The
walk time between nodes may also be dependent on i and j.

In state-dependent polling the scheduling is in some sense demand-based—when the server
moves from a node its decision of which node to visit will be based on the current state of
the system. For example in the greedy server discipline a server will move to the closest node
in which there is a customer waiting, and if the system is empty it will remain stationary.
This is based on the shortest-seek-time-first discipline for moving arm disks. In the threshold
switching discipline for two queue systems the server will stay at a queue until the number of
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messages waiting at the other queue passes a given threshold, or the difference in the queue
lengths reaches a specified size.

A system is considered to be symmetric if all the nodes have the same customer character-
istics (the nodes are statistically identical) and all walk times between nodes in the system
are the same.

Service Characteristics

In all cases a server arriving at a node and finding an empty buffer will immediately walk
on to the next node. If it finds a non-empty buffer it will immediately start serving the
first customer in the buffer. The number of waiting customers which will be served during
this visit to the node depends upon the service discipline. Possibilities which have been
investigated in the literature are exhaustive, gated, limited and decrementing service.

In exhaustive service the server will remain at a node until there are no customers remain-
ing to be served and the buffer is empty. In gated service the server will remain at the node
until all the customers which were present at the instant when it arrived at the node have
been served. Any customers which subsequently arrived will remain in the buffer until the
next visit of the server. These are the more straightforward cases from a queueing theory
point of view.

In k-limited service the server will remain at the node until k customers have been served,
for some constant k, or until the buffer is empty, whichever occurs first. For example, in the
case of 1-limited service, often termed simply limited service, the server will serve a single
customer only before leaving the node. For k-limited, where k > 1, the discipline must be
further qualified to be exhaustive or gated.

In the decrementing service discipline the server will remain at a node until the number of
customers waiting in the buffer is one less than the number present when the server arrived at
the node. A variation is the consideration of k-decrementing service, which must be further
qualified, as above, to be either exhaustive or gated.

4.2.1 Solution of Polling System Models

The performance measure usually required from a polling system is the mean, or the distri-
bution, of the customer waiting time. This is the time a customer spends in the system prior
to starting service. If the system is asymmetric this measure will differ for different nodes
and must be calculated separately for each node. Other measures of interest are the mean
polling time (the average time it takes the server to complete a circuit of the system), the
mean customer sojourn time (the mean time the customer spends in the system including
time in service), the system throughput and the mean queue length.

Most of the work carried out on polling systems has involved queueing networks and
direct manipulation of stochastic processes. There are many variations in the characteristics
of polling systems and as a result many different techniques have been applied to their
solution with varying degrees of success. In the last decade many complex and sophisticated
techniques have been applied to the exact and approximate solution of these models.

Exact closed form solutions, solutions in which expressions for the performance measures
are given in terms of the system parameters, have been found for symmetric infinite buffer
systems with limited, exhaustive or gated service. Exact solutions based on the numerical
solution of systems of linear equations have been given for single buffer systems (symmetric
and asymmetric), and asymmetric infinite buffer systems with exhaustive or gated service.
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Several approximation techniques have been proposed for systems which have not yielded
to exact solution or for which exact solution is computationally expensive. These have gen-
erally been based on the independent analysis of each node as a queue with server vacations,
the length of the vacations being found by analysis of the interaction between the queues.
This interaction is estimated using the expected cycle time and the probability that the
server finds each queue empty. Several authors have proposed iterative solution schemes
based on these techniques.

There has been some work recently applying the GSPN modelling technique to polling
systems [90, 91, 26]. In this approach a GSPN model of the polling system is used to generate
a continuous time Markov process. This process is solved numerically to find the steady state
solution, from which the performance measures are derived.

Limitations of this approach have been identified [91, 90, 89]—all buffers must be finite;
all random variables used within the model must be exponentially distributed; and the state
space of the underlying model grows very rapidly. The restriction to finite buffers, although
in contrast to the established queueing theory approach, is often a more accurate depiction
of the application being studied. Previously only approximate analysis of such systems had
been carried out [91]. Using the method of stages it would be possible to use phase type
distributions for walk times, interarrival times, and service demands within GSPN models. In
contrast, the problem of state space explosion is a serious one and, without the application of
simplification techniques, only moderately sized systems can be solved. The GSPN approach
has the advantage that asymmetric systems are as readily handled as symmetric ones.

4.2.2 Example: A PEPA Model of a Polling System

In this section we present a PEPA model of a simple symmetric single-buffer polling sys-
tem with relaxed buffering and limited service. The model is shown in Figure 4.2. The
components of the model are the server and the nodes.

Sj denotes the server when it is present at the jth node in the system. On arriving at
a node the server will query the node to see if there is a customer to be served. If so, it
will remove the customer from the buffer in the node and service it before walking on to
the next node; if not, it will walk on to the next node. Each node j has two distinct states
depending on whether the buffer in the node is empty or full. These are represented by
the two derivatives of the node component, Nodej0 and Nodej1. An arrival may occur only
when the node is empty; in either state the node will respond appropriately to the server.

The activities represented in each node component are in, representing the arrival of a

Nodej0
def= (in, λ).Nodej1 + (emptyj,>).Nodej0 1 ≤ j ≤ N

Nodej1
def= (removej, rN).Nodej0

Sj
def= (removej, rS).(serve, µ).(walk, w).Sj⊕1 + (emptyj, e).(walk, w).Sj⊕1

where j ⊕ 1 = 1 when j = N

Polling
def= (Node10 ‖ Node20 ‖ Node30) BC

{emptyj,removej}
S1 where 1 ≤ j ≤ N

Figure 4.2: PEPA model of a symmetric polling system with relaxed buffering
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in remove (N) remove (S) remove (Polling) empty serve walk
λ rN rS r = min(rN , rS) e µ w

0.1–0.9 50 100 50 100 1 10, 15, 20

Table 4.1: Parameter values assigned to the PEPA polling model, Polling

customer to fill the buffer, empty, a response to a query from the server indicating that the
buffer is empty, and remove, again in response to a query from the server but now occurring
when there is a customer in the buffer and resulting in the removal of the customer by
the server. The activities of the server include walk which moves it to the next node, and
querying the node which is seen as an empty or a remove activity depending on whether there
was a customer present at the node when the query takes place. If a customer is removed
then the next activity is a serve activity—the server services the customer, before walking
on to the next node.

The system we consider comprises three nodes, so that when the server leaves Node3 it
walks on to Node1. The nodes are independent of each other, but each must cooperate with
the server for any empty or remove activity. We assume that the rate of the emptyj activity
at Nodej is determined by the server, (the rate is unspecified in the node). In contrast the
removej activity is assumed to require some work by both the server and Nodej, and its
rate will be r = min(rN , rS).

The model has 72 states and 180 transitions. The values which were assigned to the
parameters are shown in Table 4.1. The effect of varying the arrival rate of customers at
the node on the mean customer waiting time, with three different rates for the walk activity,
was investigated. The resulting graph is shown in Figure 4.3.

Since the system is symmetric we can use any one of the nodes to calculate the mean
customer waiting time, W , as it will be the same in all the nodes. W is found by applying
Little’s Law to Node1 to find the mean time to complete the activity remove1. Little’s Law
states that the average number of entities in a system is equal to the product of the average
rate at which entities arrive to the system and the average time an entity is resident in the
system. This law holds for all systems in which these averages exist. The mean number of
customers in the buffer, N , is found by attaching a reward of 1 to the activity in to calculate
Rin. Then N = 1 − Rin : a customer is present whenever the in activity is not enabled.
The throughput of the node is the throughput of the remove1 activity, Xremove1, and this
is found by attaching a reward r to the activity remove1. In effect this associates a reward
of r with all states in which the buffer in Node1 is occupied and the server is present at
the node. As the service takes place outside the node, unlike restricted buffering systems,
the sojourn time of customers within the node is equal to the mean customer waiting time.
Thus it follows from Little’s Law that W = N/Xremove1 = (1−Rin)/Xremove1.

4.3 Multi-server Multi-queue Systems

Polling systems in which there is more than one server concurrently active, multi-server
polling systems, or multi-server multi-queue (MSMQ) systems, have been identified as a
challenging area of further work on polling systems [92]. As yet there has been only limited
work in this area [26, 84, 85, 86, 87, 88, 93].

A common application of these systems is to local area network architectures, based on ring
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Figure 4.3: Mean customer waiting time plotted against customer arrival rate
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topologies with scheduled access, in which more than one node may transmit simultaneously.
These facilities are offered by slotted rings [86, 87], rings with multiple tokens [87] and
insertion rings [86]. These models have also been used to study dynamic load sharing in
distributed systems [85] and a multibus interconnection network in [84].

The additional features of the MSMQ system compared to a standard polling system
provide additional service characteristics, relating to the interaction between servers within
the system—the service interaction characteristics. We will assume that there are S servers
present in the system.

Service Interaction Characteristics

The service interaction characteristics of a system are determined by the number of servers
present in the system, how many of these may simultaneously attend a node, and whether
overtaking is permitted.

Different policies have been considered in the literature for how many servers may be
simultaneously occupied at a node, arising from the different system characteristics. In
some cases only one server is allowed to be present at a queue at any given time, sometimes
called the Q× 1 policy. Alternatively there may be no restriction on the number of servers
which may be occupied at a node, with any number, up to S, providing service to different
customers at the node at the same time—the Q × S policy (in this case K ≥ S for buffer
capacity K). Other policies, Q×m, may also be considered where 1 < m < S, 1 < m ≤ K.

When a server arrives at a node there is the possibility that it will find another server
already present and will not be able to provide service to the node: either due to the
simultaneous service policy or because there are no customers in the buffer needing service.
If overtaking is allowed the second server will immediately poll the next node, starting a
fresh walk as soon as it realises that there is nothing for it to do at the current node. If
overtaking is not allowed the second server will remain blocked at the node until the first
has finished, at which time it will either provide service or walk on, depending on whether
there is a customer present to be served.

The final feature which may be considered is the positional relationship between servers.
Most authors have considered the movement of each server to be independent of other servers
in the system except when blocked, if overtaking is not allowed. An alternative is suggested
by Bunday and Khorran [94]. They consider a system of N machines served cyclically by
two robot repairmen whose movement maintains constant, equal separation between them.

An MSMQ system is symmetric with respect to nodes if all the nodes have the same cus-
tomer characteristics; it is symmetric with respect to servers if all the servers are statistically
identical; and the system is symmetric if it is symmetric with respect to both nodes and
servers.

Modified Kendall Notation for MSMQ Systems

Ajmone Marsan et al. [26] propose a compact notation for classifying MSMQ systems, derived
from Kendall’s notation for queueing systems. We will adopt this notation, with some minor
variations, when describing the MSMQ systems considered in the rest of this chapter. Six
short descriptors, A/S/W/K/Q × c/SD, arranged in a set order are used to classify the
system. These descriptors are:

1. The distribution of customer interarrival times. As in queueing systems the indicators
M , D or G are used to signify exponential, deterministic or general distributions
respectively. A subscript i is used to indicate that the rate is dependent on the node.
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2. The service time distribution (M , D, or G). As with interarrival time this may vary
between nodes and if so a subscript will be used.

3. The walk time distribution (M , D, or G). This also may differ between nodes, and
this will be indicated in the usual way.

4. The capacity of the nodes, K. If the nodes have differing buffer capacities this will
be a vector ~K, the ith element of which indicates the capacity of the buffer in the ith
node.

5. The simultaneous service policy, for example Q× 1, or Q× S.

6. The service discipline determining how many customers are serviced by each visit of
each server to each node. We use L, E, and G to signify limited, exhaustive, and gated
service respectively.

Thus, for example, Mi/G/D/ ~K/Q × 1/L identifies an MSMQ system with N nodes, with
limited capacity depending on the node, Poisson arrival with node-dependent rates, S servers
with general node-independent service times, constant walk times and a limited service
discipline with the Q× 1 simultaneous service policy. Other characteristics, such as whether
overtaking is allowed, will be stated in words.

4.3.1 Solutions of Multi-Server Multi-Queue Systems

Models of MSMQ systems have proved difficult to analyse because, as well as the interaction
noted between nodes in polling systems, interaction between servers must also be taken into
account. The performance measures of interest for these systems are the same as in polling
systems. The only exact results for the mean customer waiting time have been recently
derived by Ajmone Marsan et al. [26] using a GSPN model. In that paper GSPN models
of Mi/Mi/Mi/ ~K/Q×S/L systems with overtaking are discussed, but the models solved are
of the form Mi/M/M/{1, 2, K}/Q × {1, S}/L. The Markov process underlying the SPN is
solved numerically to find the steady state probability distribution, from which the average
throughput, and the average number of waiting customers, for each node are derived. Thus,
applying Little’s Law, the mean customer sojourn time, and the mean customer waiting time
are calculated. The authors show that the number of states in the underlying Markov process
grows very rapidly. For example, for a system with two servers and four nodes the number
of states is 312, whereas doubling the number of nodes, while keeping just two servers, the
number of states is increased to 19200.

Other authors have proposed various approximation techniques for finding the mean wait-
ing time for customers in MSMQ models. However these models have all differed in their
detailed operation and so it is difficult to compare the approaches. Most make some assump-
tion of independence in the behaviour of the servers within the system. In each case the
results are compared to the results obtained from a simulation of the same model. In general
the results obtained by analysis are within 10–15% of the simulation results for low to me-
dium loads. The notable exception is the technique suggested by Kamal and Hamacher [86]
for which the results fall within the confidence interval of the simulation. The model they
study is a M/G/G/∞/Q × 1/L system which allows overtaking. It is intended to represent
slotted ring or partial insertion ring local area networks.

The authors consider three distinct “cycles” within the system: the server cycle, the node
cycle and the server-node cycle. Approximate expressions are derived, relating the server
and node cycles to the server-node cycle and then an iterative procedure with these two
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expressions is used to find the node cycle time. This is then used in the solution of a M/G/1
system with vacations to find the mean waiting time at an arbitrary node.

Morris and Wang [85], also base their analysis of a Mi/G/G/∞/Q × S/{L, G} system
on expressions for the cycle times within the system. Their system, intended to model
dynamic load sharing in a distributed system, has relaxed buffering. A server arriving at a
node removes at once from the buffer all the customers that it will serve at this visit. These
customers are kept together until all the service is completed, at which point they depart the
system together. Conservation of work arguments and an assumption of server independence
are used to derive an expression for the mean cycle time in terms of the mean walk time
and the offered load. By a similar argument the mean inter-visit time is also derived. The
average customer sojourn time in the system is then estimated, using an approximation
based on the distribution of the inter-visit times. Both symmetric and asymmetric systems
are considered.

The papers by Yang et al. [87], and Yuk and Palais [88], present similar approaches to the
solution of MSMQ systems. In both cases assumptions about the independent movement
of servers are made. The mean sojourn time of a customer is derived by consideration of
the separate components of the time—latency until a server returns to the node; the service
time of the customers ahead in the buffer; and the service of the customer. A gated M/G/1
queueing model is used. The system considered by Yang et al. is a M/G/D/∞/Q × 1/L
MSMQ system. It is used to represent multiple token ring and multiple slotted ring local
area networks. The authors investigate the single buffer/single transmission protocol for
these rings. In the paper by Yuk and Palais an M/M/D/∞/Q × S/E MSMQ system is
considered. This represents a token ring local area network with multichannel topology.
The model is used to assess different strategies for token release within the ring. In the first
case the token is released by the receiving station. In the second the token is released by the
transmitting station when the transmitted message returns.

The system considered by Raith [84], falls within the Mi/G/G/ ~K/Q× 1/L classification
but is unusual as each node contains an input and an output buffer. The system models
the multibus interconnection network in a distributed system, the nodes representing the
communicating units, the servers representing the buses and the customers representing the
messages. A node may simultaneously transmit on one bus and receive on another but it is
limited to only one interaction of each type at once. If the input buffer of the receiving node
is full the transmission will be blocked and the model is used to investigate two possible
strategies in this case. In the first strategy the transmission is abandoned; in the second
the server remains occupied at the transmitting node until it is possible to complete the
transmission. Assuming independent movement of servers around the system, the inter-visit
time to an arbitrary node is approximated. This is then used to form an embedded Markov
chain which is solved numerically.

Several authors note that the assumption of independent movement of servers, or equival-
ently uniform distribution of servers within the system, is a poor one [85, 87]. Observation of
simulation models reveals that the servers tend to coalesce and progress around the system
together. Morris and Wang show that if cyclic polling is replaced by dispersive scheduling
the results of their model compares more favourably with simulation.

4.4 Examples: PEPA Models of MSMQ Systems

In the final section of this chapter we present PEPA models of several MSMQ systems
exhibiting different characteristics. For ease of presentation the systems considered are
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relatively small, comprising of only three or four nodes and two servers in each case. However,
it is straightforward to generalise these models to larger systems. In each case we consider the
average waiting time (excluding service time) experienced by a customer in the system. The
models all have several characteristics in common which are discussed in Section 4.4.1. The
following subsections contain the detailed information about the operation of each model,
the parameter values which were applied and one or more graphs showing how the mean
waiting time varies as the conditions within the system are changed.

4.4.1 Introduction

Although the detailed characteristics of the systems considered differ, they all have the same
components—nodes and servers. In addition in the model in Section 4.4.5 we introduce a
component external to the node to represent the generation of customers.

In all the models the arrival process is represented by an in activity by the node, and
it is assumed that the arrival process is suspended whenever the buffer is full. Buffering is
assumed to be restricted in all the models, so customers continue to occupy a place in the
buffer until service is completed. In most cases the nodes have only a single place buffer,
but in Section 4.4.4 a two place buffer is considered.

All the node components have separate derivatives depicting the different states of the
node, as characterised by the activities it may undertake. For example, a single buffer node
may only perform an in activity when it is empty, and a serve activity when it is occupied,
and a server is present. Three of the models are symmetric with respect to servers, and two
of them are symmetric with respect to nodes.

For each of the models we calculate the mean waiting time of a customer at each node. As
with the polling model presented in Section 4.2.2 this is found by applying Little’s Law to
the node. As the buffering is restricted the throughput of the node will be the throughput
of the serve activity, calculated by attaching a reward equal to the activity rate to the serve
activity. For a single buffer node the mean number present in the node, N , can be found by
associating a reward of 1 with the in activity, as previously, to form Rin. Then N = 1−Rin.
For the two place buffer the mean number of customers is found by finding the probability
that the node is empty, or only singly occupied in a similar way.

4.4.2 MSMQ System with Cyclic Polling, Without Overtaking

First we consider a symmetric MSMQ system in which polling is cyclic but where servers
cannot overtake each other. Thus a server which arrives at a node to find the other server
already serving a customer must wait until the service is complete before moving on to the
next node. This system can be classified as an M/M/M/1/Q × 1/L system. The PEPA
model is shown in Figure 4.4.

Sj denotes a server when it is ready to approach Nodej, Sj1 denotes a server present at
Nodej. When it arrives at the node the server will either pass, if the buffer is unoccupied,
or engage, if there is a customer requiring service. Note that at most one of these activities
will be enabled at any given time.

The system we consider has three nodes. The nodes are independent of each other but
each must cooperate with a server for any passj, engagej or servej activity. The two servers
are independent of each other, in the sense that there is no cooperation between them.

The model has 444 states and 1446 transitions. The values which were assigned to the
parameters are shown in Table 4.2. As for the polling model presented in Section 4.2.2, the
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Nodej0
def= (in, λ).Nodej1 + (passj, e).Nodej0 1 ≤ j ≤ N

Nodej1
def= (engagej, e).(servej, µ).Nodej0

Sj
def= (walk, ω).Sj1

Sj1
def= (passj,>).Sj⊕1 + (engagej, e).(servej,>).Sj⊕1

where j ⊕ 1 = 1 when j = N
when N = 3:
MSMQ1 def= (Node10 ‖ Node20 ‖ Node30) BC{engagej,

passj,servej}

(S1 ‖ S1) where 1 ≤ j ≤ N

Figure 4.4: PEPA model of a symmetric MSMQ system without overtaking

in serve walk pass engage
λ µ ω e e

0.1, 0.2, 0.3, 0.4, 0.5 1.0 10 50 50

Table 4.2: Parameter values assigned to the models, MSMQ1 and Poll

effect of varying the arrival rate on the mean waiting time experienced by customers was
investigated, and this was compared with the mean waiting time experienced in the related
polling model:

Poll
def= (Node10 ‖ Node20 ‖ Node30) BC{engagej ,

passj,servej}

S1

Since the system is symmetric the performance characteristics of all the nodes will be the
same. A graph showing how the mean waiting time increases as the arrival rate at each of the
nodes is increased, for both the MSMQ model and the polling model, is given in Figure 4.5.
We see that even when overtaking is not allowed, for a system of this size, the second server
has the effect of reducing the mean waiting time of customers within the system.

4.4.3 Asymmetric MSMQ System with Cyclic Polling

In [26] the authors consider a system of N nodes in which one node has capacity K and
arrival rate Kλ while all other nodes have capacity one and arrival rate λ. This represents
a network in which one node has high traffic and the other nodes have light traffic, such as
a LAN connecting several diskless workstations and one file server. It was shown that the
presence of the heavily loaded node did not greatly affect the mean waiting time of customers
at lightly loaded nodes.
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Figure 4.5: Mean customer waiting time, W , plotted against customer arrival rate, λ, for
the models MSMQ1 and Poll

Nodej0
def= (in, λ).Nodej1 + (walk Ej,>).Nodej0 1 ≤ j ≤ N

Nodej1
def= (walk Fj,>).Nodej2

Nodej2
def= (servej , µj).Nodej0 + (walk Ej ,>).Nodej2

where µj =
{

µ if j = 1
mµ if 1 < j ≤ N

Sj
def= (walk Fj, ω).(servej ,>).Sj⊕1 + (walk Ej, ω).Sj⊕1

where j ⊕ 1 = 1 when j = N
when N = 4:
Asym

def= (Node10 ‖ Node20 ‖ Node30 ‖ Node40) BC
{walk Fj ,

walk Ej ,servej}

(S1 ‖ S1)

where 1 ≤ j ≤ N

Figure 4.6: PEPA model of an asymmetric MSMQ system

Here we consider a system of N nodes each with capacity 1 and arrival rate λ but with
customers at one node placing a larger service requirement on the server. Polling is cyclic
and overtaking is allowed. The system may be classified as M/Mi/M/1/Q×1/L. The PEPA
model of this system is shown in Figure 4.6.

We investigate the effect of the larger service requirement at Node1 on the average waiting
time of customers at each of the nodes. We assume that the arrival process at each node
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in servej (j = 2, 3, 4) servej (j = 1) walk E walk F
λ µ mµ ω ω

0.1 1 1 ≤ 1/m ≤ 5 10 10

Table 4.3: Parameter values assigned to the model, Asym

is Poisson with parameter λ, and that normal service, heavy service and walk times in the
system are exponentially distributed with rates µ, mµ and ω respectively.

As previously, Sj denotes a server ready to approach the jth node in the system. In this
model there is no separate activity representing the interaction between the server and the
node to determine whether there is a customer present in the buffer. This action is subsumed
into the walk action, resulting in two activities, walk Ej and walk F j, representing a futile
and a successful walk to Nodej respectively. These activities cannot be simultaneously
enabled.

Note that as overtaking is now permitted an occupied node which is currently being served
will respond to the approach of a second server as if empty. The rate at which service occurs
is determined by the node, and is dependent on the node. The rate of each walk activity is
determined by the server.

The system we consider has four nodes, which do not interact with each other, and two
servers which similarly do not directly interact. The cooperation of a node and a server is
required for all walk E, walk F and serve activities. The values which were assigned to the
parameters are shown in Table 4.3. The effect of varying the service rate of customers at
Node1 was investigated with respect to the mean customer waiting time at the other nodes.

1/m

Node 1

Node 2
Node 3
Node 4

54321

W

0.25

0.24

0.23

0.22

0.21

0.2

0.19

Figure 4.7: Expected customer waiting time plotted against service demand
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The model has 560 states and 2064 transitions. The mean waiting time, Wj, is calculated
for each node using Little’s Law. These values, plotted against the service demand at Node1,
are shown in the graph in Figure 4.7.

The expected waiting time for customers at Node1 increases slightly as the service demand
at the node increases. At the other nodes the expected customer waiting time grows signific-
antly as the service demand at the Node1 increases. It is interesting to note that this rate of
growth is slightly slower at the node immediately downstream from the distinguished node
(Node2) as it is able to take advantage of the second server overtaking the server occupied
at Node1.

4.4.4 Asymmetric MSMQ System with Random Polling

We now consider an asymmetric system in which the capacities of the nodes within the
system differ. There are three nodes within the system, one with capacity two and two
with capacity one. Polling in the system is random, which means that on leaving a node
the server may then approach any node, even the same node again. Service is limited
so that a server arriving at Node1 when it is full may only serve one of the customers
present before departing. However if the second server later arrives while the first service
is still in progress it may simultaneously occupy the node. The system may be classified as
Mi/Mi/M/(2, 1, 1)/Q × S/L. “Overtaking” is allowed in the sense that a server arriving at
a node and finding no customer to serve will just move on.

The PEPA model of this system is shown in Figure 4.8. We assume that Node1 is a high
performance node, distinguished not only by its larger capacity but also by a faster response
to queries from servers. These queries are now represented separately by the activities pass
or engage. We also assume that there is a process generating customers for each place in
the buffer in the node so that the arrival rate when the buffer is empty is twice the arrival
rate when one place in the buffer is already occupied.

Node100
def= (in, 2λ).Node110 + (pass1, 2e).Node100

Node110
def= (in, λ).Node111 + (engage1, 2e).Node120

Node111
def= (engage1, 2e).Node121

Node120
def= (in, λ).Node121 + (pass1, 2e).Node120 + (serve,>).Node100

Node121
def= (engage1, 2e).Node122 + (serve,>).Node110

Node122
def= (pass1, 2e).Node122 + (serve,>).Node120

Nodej0
def= (in, λ).Nodej1 + (passj, e).Nodej0 j = 2, 3

Nodej1
def= (engagej, e).Nodej2

Nodej2
def= (serve,>).Nodej0 + (passj , e).Nodej2

S
def= (walk, ω/3).S1 + (walk, ω/3).S2 + (walk, ω/3).S3

Sj
def= (passj ,>).S + (engagej,>).(serve, µ).S 1 ≤ k ≤ 3

MSMQff
def= (Node100 ‖ Node20 ‖ Node30) BC{engagej,

passj ,serve}

(S ‖ S)/{passj, engagej}

where 1 ≤ j ≤ 3

Figure 4.8: Asymmetric MSMQ model with distinguished Node1
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Node′100
def= (in, 2λ).Node′110 + (pass1, 2e).Node′100

Node′110
def= (in, λ).Node′111 + (engage1, e).Node′120 + (pass1, e).Node′110

Node′111
def= (engage1, 2e).Node′121

Node′120
def= (in, λ).Node′121 + (pass1, 2e).Node′120 + (serve,>).Node′100

Node′121
def= (engage1, e).Node′122 + (pass1, e).Node′121 + (serve,>).Node′110

Node′122
def= (pass1, 2e).Node′122 + (serve,>).Node′120

MSMQwf
def= (Node′100 ‖ Node20 ‖ Node30) BC{engagej ,

passj,serve}

(S ‖ S)/{passj , engagej}

where 1 ≤ j ≤ 3

Figure 4.9: A modified version of Node1, with faulty interface

in passj or engagej serve walk
λ or 2λ e or 2e µ ω

λ = 0.1 e = 50 1.0 3, 6, 9, 12, 15

Table 4.4: Parameter values assigned to MSMQff and MSMQwf

In the server component S the walk action is represented by three distinct activities, each
with activity rate ω/3, since there is a 1/3 probability of each of the outcomes. Sj now
denotes the server present at Nodej, when it might engage or pass depending on whether
the node has a customer requiring service or not.

In Figure 4.9 a modified version of Node1 is shown. In this second version we assume that
there is a fault in Node1 so that it is only guaranteed to respond correctly to a server when
the buffer is completely empty or completely full. In the case when only one place in the
buffer is occupied, with probability 1/2 it will respond as if the buffer were empty. In the case
when one customer is already in service but the other place in the buffer is also occupied it
will similarly fail with probability 1/2, allowing the second server to leave without providing
service. We investigate the effect of this fault on the mean waiting time for customers at
this node, and at the other nodes. In all the nodes, when a server is engaged the rate at
which service occurs is determined by the server.

There is no cooperation between the three nodes in the system, nor between the two
servers. However the activities passj, engagej and serve are achieved by cooperation between
a node and a server. The values which were assigned to the parameters are shown in Table 4.4.

The model of the fault free system has 368 states and 1570 transitions. The model of the
faulty system has the same number of states but 1618 transitions. The mean waiting time
at each node was calculated using Little’s Law for each of the models as the average walk
time was varied. These results, shown in Figures 4.10 and 4.11, were compared to assess the
effect of the faulty connection. Node2 and Node3 exhibit the same characteristics, so only
Node2 is shown in the graphs.

In the fault free system MSMQff we can see that although the expected waiting time
is similar in all of the nodes, the customers in Node1 experience slightly longer delays. For
all the nodes the mean waiting time is reduced when the mean walking time of the servers
is reduced, as we would expect. In the case of the faulty system MSMQwf the expected
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Figure 4.10: Expected customer waiting time in fault-free system plotted against walk
rate (ω)

waiting time for customers at Node2 or Node3 is not greatly affected by the fault. However
the expected waiting time for customers at Node1 is drastically increased, especially when
the rate of the walk activity is slow.
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Figure 4.11: Expected customer waiting time in faulty system plotted against walk rate (ω)
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4.4.5 MSMQ System with Detailed Nodes

The last model considered in this chapter recognises that a MSMQ system is usually em-
bedded within a larger system, and gives an indication of how easily this is modelled within
a PEPA model. In [89] Takagi highlights the embedding of a polling model within a global
model as an area for future research.

We consider a symmetric MSMQ system, with capacity 1 nodes and limited service, in
which overtaking is permitted. This could be classified as a M/M/M/1/Q×1/L system, and
is similar to the asymmetric model presented in Section 4.4.3 in the case m = 1. However
we now also consider the components of the system responsible for generating the customers
which arrive at the nodes. We assume that each customer is in fact a packet, and part of
a message. Several packets may be necessary to transmit each message. The model of this
enhanced system is shown in Figure 4.12.

Nodej0
def= (in,>).Nodej1 + (walk Ej, e).Nodej0 1 ≤ j ≤ N

Nodej1
def= (walk Fj, e).Nodej2

Nodej2
def= (servej,>).Nodej0 + (walk Ej , e).Nodej2

Genj0
def= (accept, λ).(pack, p).Genj1

Genj1
def= (in, d). ((servej , w1>).Genj1 + (servej , w2>).Genj0)

where w1 = M − 1, w2 = 1 (M is mean no. of packets/message)

Compj
def= Nodej0 BC

{in,servej}
Genj0

Sj
def= (walk Ej, ω).Sj⊕1 + (walk Fj, ω).(servej, µ).Sj⊕1

where j ⊕ 1 = 1 when j = N
when N = 3:
System

def= (Comp1 ‖ Comp2 ‖ Comp3) BC
{walk Ej ,

walk Fj,servej}

(S1 ‖ S1)/L where 1 ≤ j ≤ N

L = {accept, pack, walk Ej, walk Fj}

Figure 4.12: PEPA model of the enhanced MSMQ system, System

The MSMQ aspects of the system are similar to the models presented in the previous
sections. However, note that the activity in now merely represents the delivery of a packet
from the generator to the buffer. The rate of this activity is determined by the generator.
We assume that there is a Poisson arrival process supplying messages to the generator when
it is ready to accept them, with rate λ, and this is represented by the accept activity.
Each accepted message is broken up into packets, as represented by the pack activity. We
assume that the average message length is M packets. The packets are then delivered to
the buffer, via the in activity, one at a time. When a packet has completed its service it
will be replaced by another until the entire message has been sent. The arrival process is
then resumed. Since the average number of packets in a message is M , when a packet has
completed service, another packet is already available with probability M − 1/M , and so
the passive serve activity with this outcome is given weight M −1, whereas with probability
1/M a new message must be processed before another packet is available, so the weight of
the serve activity which resumes the arrival process is 1.
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mean no. packets accept pack in walk E and walk F serve
M λ p d min(e, ω) µ

5− 25 0.05 0.1 20 min(50, 10) = 10 1.0

Table 4.5: Parameter values assigned to System

The nodes of the system are now represented by composite components Compj , the co-
operation of a generator, Genj0 and a “node”, Nodej0. These components must cooperate
on the in and servej activities. The composites are independent of each other, as are the
servers. The activities walk Ej, walk Fj, servej require the cooperation of a server and the
appropriate composite. Note that this means that three components, Genj, Nodej and Sj
must cooperate in order to achieve a servej activity.

The model has 888 states and 3858 transitions. The parameter values used to solve the
model are shown in Table 4.5. As the system is symmetric the performance characteristics
of all the nodes are the same. Instead of the mean waiting time for a customer, or packet,
in the node, we calculate the mean transmission time for a message. As previously we use
Little’s Law, this time applied to the composite node-generator pair. We find the mean
number of messages at a node, Nm, by noting that there is one message present whenever
the accept activity is not enabled. Therefore we attach a reward of 1 to this activity, to find
Raccept, and we deduce that Nm = 1 − Raccept. We find the message throughput, Xm, by
attaching a reward of 1/M × µ, to the activity (serve, w2>), which will occur whenever all
the packets within a message have been sent. The expected transmission time, Tm, for a
message in the system is then Tm = Nm/Xm.

message length

System

SysP

252015105

delay

70

60
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40
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Figure 4.13: Mean message transmission time plotted against mean number of packets per
message.
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The value of the expected transmission time, when the mean number of packets in a
message, M , varies between 5 and 25, is shown in Figure 4.13. This is compared with the
expected transmission times for messages of the same length in the related polling model,
SysP ,

SysP
def= (Comp1 ‖ Comp2 ‖ Comp3) BC

{walk Ej,

walk Fj,servej}

(S1)/{accept, pack, walk Ej, walk Fj}



Chapter 5

Notions of Equivalence

5.1 Introduction

In this chapter we develop a framework to analyse notions of equivalence between models.
Within this framework we present several equivalences which have been applied to pro-
cess algebra models and performance models. By notions of equivalence we mean criteria
which may be applied to determine whether two entities can be considered to be, in some
sense, the same. For example, a common concern for most modelling methodologies is model
verification—the problem of ascertaining whether a model is the same as the system under
study, in the sense of providing an adequate representation to meet the objectives of the
study. For a performance model “adequate representation” is usually interpreted as the cal-
culation of certain quantitative performance characteristics within acceptable error bounds.
For a process algebra model it is interpreted as a condition on the observable behaviour of
the model, as represented by its actions, compared with the observable or intended behaviour
of the system.

The framework we consider identifies three different classes of entity-to-entity equivalence
which may arise during a modelling study: system-to-model equivalence, model-to-model
equivalence and state-to-state equivalence. We will see that for process algebra models
these equivalences are all addressed by a single notion of equivalence, the bisimulation. Two
agents are considered to be equivalent in this way when their externally observed behaviour
appears to be the same. This is a formally defined notion of equivalence, based on the
labelled transition system underlying the process algebra. Bisimulation can characterise all
three classes of entity-to-entity equivalence since, in a process algebra, all the modelling
entities—system, model and states—are represented as agents.

For performance modelling the three classes of equivalence are quite distinct, since the
entities—system, model and state—are distinct. A representation of the system may not be
available at all. If it is, it will generally be in a different notation, for example as a design.
For a Markov process the behaviour of a model is characterised by the states it may visit
and the time it will spend in them. Thus models and states are regarded as different types
of entity. The states are not regarded as active entities. In contrast, in a process algebra
the behaviour of a model is characterised by the actions it may engage in. At any particular
time these will be embodied in the current derivative (state). However the ideas of model
and state are interchangeable in a process algebra since, via the semantics of the language,
each “state” also includes information about all possible future states which may be reached
via the transitions of the language. Both model and state are represented as agents, or
expressions in the language.

65
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There has been little formal development of system-to-model, and model-to-model equi-
valences for performance models, although these have been of pragmatic concern. In contrast
there has been much work on state-to-state equivalences. These equivalences form the basis
of aggregation techniques for reducing the state space of the underlying Markov model, and
thus provide a technique for making large models tractable.

In Section 5.2 we present the idea of bisimulation, which is widely used as a notion of
equivalence for process algebras, and explain how it may be used to characterise system-
to-model, model-to-model and state-to-state equivalences. We outline how the notion of
bisimulation has been extended to apply to timed and probabilistic process algebras. In
Section 5.3 we discuss the system-to-model and model-to-model equivalences which have
been considered for performance models. In Section 5.4 we review aggregation techniques in
model simplification and discuss the role of state-to-state equivalences. Finally in Section 5.5
we will discuss how the behaviour of a PEPA component may be captured by structural or
bisimulation style equivalences. In Chapter 7 a strong bisimulation for PEPA is presented.

5.2 Process Algebras and Bisimulation

In this section the notion of bisimulation is defined in the context of a pure process algebra,
such as CCS. Bisimulation is based on the idea of observable behaviour. Strong and weak
forms of the equivalence are defined depending on whether internal actions are considered to
be within the set of observable actions. How the notion of bisimulation has been extended
to timed and probabilistic process algebras is described in Sections 5.2.2 and 5.2.3. In Sec-
tion 5.2.4, how bisimulation may address the different classes of entity-to-entity equivalence
for process algebra models is discussed.

5.2.1 Bisimulation for Pure Process Algebras

Bisimulation aims to capture the idea of equivalence as identical observed behaviour. If two
agents are bisimilar it is not possible to distinguish between them by observation. However,
we must specify which actions of the agents are considered visible to the observer and the
context in which they are observed. In its strongest form bisimilarity means that two agents
are capable of exactly the same transitions, and the derivatives which result from the same
transitions in the agents are themselves bisimilar.

This notion of equivalence is based on the labelled transition system defined by the se-
mantics of the language. Thus for a language whose labelled transition system is the triple
(P ,Act, { α−→ | α ∈ Act}) the strong form of bisimulation is expressed as follows.

Definition 5.2.1 Two agents, P, Q ∈ P, are strongly bisimilar, denoted P ∼ Q, if and only
if, there is some relation R over P × P such that if (P, Q) ∈ R then for all α ∈ Act:

1. Whenever P
α−→ P ′, then for some Q′, Q

α−→ Q′ and (P ′, Q′) ∈ R;

2. Whenever Q
α−→ Q′, then for some P ′, P

α−→ P ′ and (P ′, Q′) ∈ R.

Thus, if P and Q are strongly bisimilar agents, any action performed by one must be
matched by the other. Moreover, any subsequent action must also be matched. It is import-
ant to note that this includes the internal, τ , actions. The definition of bisimulation may
also be phrased in terms of sequences of actions rather than single actions i.e. two agents are
strongly bisimilar if any transition, formed by a sequence of actions, which can be performed
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by one agent, can also be performed by the other agent and the resulting derivatives are
themselves strongly bisimilar.

Weaker forms of bisimulation are defined by restricting the class of actions which may be
observed to Act\{τ}. Thus the internal, τ , action is assumed to occur unobserved, reflecting
its private nature within an agent. If α is a visible action, it will be indistinguishable to
an external observer from the action sequence τα , or even ττατ . Weakly bisimilar agents
can form the same sequences of visible actions, modulo the occurrence of a finite number of
τ actions before or after any of the visible actions, and the resulting agents are themselves
weakly bisimilar. In CCS an intermediate notion of equivalence is introduced, observation
congruence. Two agents are observation congruent if any action by one of them (including
a τ action) is matched by the other, up to the inclusion of additional τ actions, and the
resulting derivatives are weakly bisimilar.

In order to show that two agents are equivalent in this sense it is necessary to find a relation
R between the derivatives of each agent which satisfies the conditions of the Definition 5.2.1.
A bisimulation forms equivalence classes over the set of process terms, P . This partition
will then induce a corresponding partition on the derivative set of any agent in a natural
way. To show strong bisimulation between CCS agents it is sufficient to show that a relation
satisfying the strong bisimulation conditions exists between the partitions in the derivative
sets of the two agents [29]. This is the idea of strong bisimulation up to ∼.

5.2.2 Bisimulation for Timed Process Algebras

In [34], the notion of bisimulation is extended to temporal CCS. As discussed in Section 2.3.1,
in TCCS time and actions are considered separately, the semantics of the language being
given in terms of two distinct transition systems. Strong bisimulation for the language en-
sures that both types of transitions are matched by equivalent agents, and that the resulting
agents are also strongly bisimilar. A weakened form of the bisimulation is also defined. Two
agents are considered equivalent if they can witness the same sequence of delays or visible
actions, up to the introduction of τ actions within either type of sequence, and the resulting
agents are also equivalent.

5.2.3 Bisimulation for Probabilistic Process Algebras

For probabilistic process algebras the labelled transition system underlying the language
may be extended to form a probabilistic labelled transition system [38, 36] (Section 2.3.2). In
these systems a probability measure, µ, is defined over the transitions of a labelled transition
system, µ : P×Act×P −→ [0, 1]. If we consider all the transitions into a set of process terms,
via a given action, this can be extended to the probability measure ν : P×Act×2P −→ [0, 1],
such that

ν(P α−→ S) =
∑
P ′∈S

µ(P α−→ P ′).

The bisimulations already discussed, for CCS and TCCS, are equivalence relations. Thus
they generate equivalence classes over the set of all process terms, P . Exploiting this idea,
a probabilistic bisimulation is defined to be an equivalence relation such that, for any two
agents within an equivalence class, for any action α ∈ Act and any equivalence class S, the
probability measure ν of each of the agents performing an α action and resulting in an agent
within S, is the same.
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Definition 5.2.2 A probabilistic bisimulation p∼ is an equivalence relation over P such that
whenever P

p∼ Q, then for all α ∈ Act, and for all S ∈ P/
p∼

ν(P α−→ S) = ν(Q α−→ S).

The definition of the probability measure µ, and consequently also ν, depends on whether
the process algebra is reactive or generative. Larsen and Skou, [38], define µ(P α−→ P ′)
for a reactive system, as the probability, given that P performs an action α, that P ′ is the
derivative. ∑

P ′∈P
µ(P α−→ P ′) = 1

In contrast, for a generative system, Jou and Smolka [36], define µ(P α−→ P ′) to be the
probability that the transition α−→ P ′ is the one that P performs.∑

α∈Act
P ′∈P

µ(P α−→ P ′) = 1

5.2.4 Bisimulation and Entity-to-Entity Equivalence

During a modelling study we may be concerned with different equivalences relating to a
model. In order to establish confidence in the model as the representation of the system
being investigated, system-to-model equivalence is considered. This is model verification and
it is used to ensure that the model is a suitable tool for studying the behaviour of the system.
Subsequently, it may be necessary to manipulate or compare models, in order to develop
further knowledge about the system, or find alternative representations of the system. The
modeller must be certain that such manipulation does not change the behaviour of the model,
and jeopardise its relationship with the system. This leads to the analysis of model-to-model
equivalences. When models are large and complex, model simplification strategies may be
required to reduce the complexity of the model. One approach to model simplification is
a search for state-to-state equivalences, which allow one macro-state [7] to replace a set of
equivalent states.

As explained in Section 5.1, for process algebra models the concepts of state and model are
interchangeable, both being represented as expressions in the language. The system, in the
form of a design or specification, is also often expressed as an agent. Thus it is clear that the
bisimulation notion of equivalence provides the apparatus for studying each form of entity-to-
entity equivalence outlined above. State-to-state equivalences, bisimulation between agents
within a derivative set, are found by considering the partition of the derivative set induced
by the bisimulation relation. There has been little consideration in the literature of this as a
model simplification technique but it is used extensively to reduce the complexity of finding
the bisimulation relation between agents, via the approach of bisimulation up to ∼.

Due to its formal nature, based on the labelled transition system for the language, the
bisimulation relation may be characterised by equational laws. These abstract laws may
then be applied to any model, resulting in modifications which are guaranteed to preserve
the observable behaviour of the model. Moreover, the formal nature of these laws makes it
possible to provide machine-assistance for such model manipulation [95].

A relation is a congruence with respect to an algebra if it is preserved by all algebraic
contexts. Bisimulation relations which are also congruence relations fully complement the
compositional nature of the process algebra. For example, if we replace an agent within any
language expression by any bisimilar agent then the resulting expression is bisimilar to the
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original expression. This property has distinct advantages. For example, model verification
may be approached by showing bisimilarity between the components of the system and the
model component by component.

5.3 Performance Modelling and Equivalences

In performance modelling studies, using queueing networks or stochastic Petri nets, the
modelling entities—system, model and state—will generally all have distinct representations.
This means that the three classes of entity-to-entity equivalence, outlined in the previous
section, give rise to distinct notions of equivalence for performance models. In this section we
will consider system-to-model and model-to-model equivalences. The notion of state-to-state
equivalence is much more developed. Together with the resulting aggregation techniques, it
will be considered separately in Section 5.4.

5.3.1 Performance Model Verification

Model verification, or establishing system-to-model equivalence, is important to ensure that
the performance characteristics obtained from the model will be close to the performance
characteristics of the system under study. When the system exists, model verification may
be carried out by comparing data collected from the system and the model in identical
circumstances. Such an approach is often costly in terms of intrusive system monitoring,
extensive model executions and the amount of data which must be collected and analysed.
In some circumstances a simulation model is used as an intermediate representation of the
system, as seen in Section 4.3.1. In this case the results of the analytical model are tested
against the results of the simulation when the context of operation is assumed to be the
same for both. Obviously this relies on the assumption that the simulation is an accurate
representation of the system.

When the system does not exist, as in the case of a projected system, the model must be
verified against a design. Unfortunately, as explained in Section 2.4, the system design, even
if formally developed, will generally use a different notation from the performance model.
Thus comparison of the behaviour of the two is often necessarily informal, or experimental.
The recent work on the use of system description formalisms as the basis for performance
modelling has clear implications for model verification. Using a formal language, such as
PEPA, it is intended that the design of the system will be annotated to form the performance
model. Thus the system, i.e. the design, is by definition the same as the performance model,
and so problems of model verification disappear.

There has been some formal work on the area of system-to-model equivalence, but this has
been principally aimed at simulation models. For example, in early work based on Systems
Theory [96], Zeigler develops the idea of equivalence within limited contexts of observation.
These contexts are called experimental frames. It is assumed that behaviour is characterised
by input-output pairs capturing the system’s response to its environment. Equivalence is
defined as generating the same set of input-output pairs. The experimental frame limits the
inputs which may be considered and the outputs which may be observed.

Zeigler’s work also considers experimental frames as a basis for model-to-model equival-
ence and model simplification. From a full representation of the input-output behaviour of
the system, termed the base model, an equivalent lumped model is formed which will have
identical behaviour in a given experimental frame. The lumped model is formed by combin-
ing components within the base model, and simplifying the interactions between them.
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5.3.2 Model-to-Model Equivalence

For performance models based on queueing networks and Petri nets each model has two
representations—one within its model construction paradigm, and the other as the underly-
ing Markov process. There has been little work on notions of model-to-model equivalence at
the level of the modelling paradigm. Most notions of equivalence arise solely from consider-
ation of the underlying Markov process. A notable exception is Sanders and Meyer’s work
for SAN, based on Zeigler’s experimental frame approach [5].

Sanders and Meyer use the reward structure incorporated into SAN models to define an
experimental frame for a model. Using a constructive technique, a SAN model is developed
representing the system—this is the base model. The reward structure is then defined to
calculate the performance measures of interest for the current study. This reward structure
defines an experimental frame in terms of which aspects of the model may not be modified if
the integrity of the performance measures is to be ensured. The authors propose simplifica-
tion techniques to reduce the state space, forming a lumped model which is still Markovian,
within the context of this experimental frame. These techniques are applied at the level
of the SAN, rather than directly manipulating the Markov process. As with Zeigler’s ex-
perimental frames it is envisaged that different performance measures may lead to different
lumped models.

A similar approach to model simplification for PEPA, resulting in the amalgamation of
derivatives (states), is presented in Chapter 8.

In [27], Chiola et al. define a notion of equivalence between GSPN models, and between
GSPN and SPN models. This equivalence implies equivalence of the underlying Markov
processes but it is a stronger condition. Since performance indices are often defined at the
net level, the authors argue that additional conditions are necessary to ensure that the same
performance measures can be derived from the models. These conditions compensate for any
information that is lost in going from the marking sequence of the GSPN to the transition
sequence in the Markov process—if there is more than one transition between a pair of
markings they appear as a single transition in the Markov process. This equivalence was
developed with a clear objective. It is used to prove that for any GSPN, an equivalent SPN
can be constructed, thus showing that immediate transitions are not necessary.

Equivalences Between Markov Processes

The usual notion of equivalence between Markov processes is the intuitive one—two Markov
processes are equivalent if they have the same number of states and the same transition rates
between those states. This implies an isomorphism between the states of the two processes
and that they have the same infinitesimal generator matrix Q (up to a permutation of rows
and columns). It follows that they will have the same transient and steady state probability
distributions.

This notion of equivalence is quite different from the bisimulation style equivalence used
in process algebras. Both notions are concerned with processes which exhibit the same
behaviour: processes which when observed will display the same history. However, how
these histories are defined differs in the Markov process and the process algebra worlds. In
the Markov process the history of the process is regarded as the sequence of states in which
the process spends time. In the process algebra the history of the process is regarded as the
sequence of activities the process engages in.

The Markov process equivalence is very strict and of little practical use in terms of model
manipulations or transformations. Several more relaxed forms of equivalence, perhaps more
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appropriately termed near-equivalences, have been considered. These equivalences have been
used to identify Markov processes which, although outside a particular class of processes
amenable to efficient solution, may be safely replaced by an appropriate process of that
class.

The classes of processes which have been considered in these equivalences are character-
ised by a generator matrix which has a particular structure. For example, a completely
decomposable matrix consists of stochastic blocks down the principal diagonal and zeroes
everywhere else. A nearly completely decomposable matrix is one in which the blocks down
the leading diagonal have elements which are at least an order of magnitude larger than
any element outside these blocks [97]. Completely decomposable and nearly completely de-
composable Markov processes are defined in the obvious way. Thus if a process is found to
be nearly completely decomposable it may be replaced by its equivalent completely decom-
posable process, which may be solved by considering the submodels corresponding to the
diagonal blocks separately. Decomposability has been used extensively in queueing networks.
A similar notion, near-independence, has been recently developed for GSPNs [74].

In the recent paper [98], Buchholz develops the notion of near-lumpability which can be
applied to any Markovian based model, and provides a technique for state space reduction.
Lumpability is discussed in more detail in Section 5.4.2.

5.4 State-to-State Equivalence

In order to tackle the problem of state space explosion, model simplification techniques have
been considered for performance models, at both the paradigm and the Markov process level.
One such technique, aggregation, can be formalised in terms of state-to-state equivalences
within the state space of the model. When an equivalence is found, sets of equivalent states
may be formed into one macro-state thus reducing the overall state space of the model. In
the following section we will briefly outline the aggregation procedure.

5.4.1 Aggregation of Markov Processes

An equivalence relation defined over the state space of a model will induce a partition on
the state space. Aggregation is achieved by constructing such a partition and forming the
corresponding aggregated process. In the aggregated process each partition of states in the
original process forms one state. In some cases, this partition will be based on a defined
equivalence relation over the states of the original process. In other cases, the partition will
be abstract or artificial, but it will define an equivalence relation over the state space in the
natural way. Thus we can always assume that there is an equivalence relation underlying
the partition. If the original state space is {X1, X2, . . . , Xn} then the aggregated state space
is some {X[1], . . . , X[N ]}, where N < n, ideally N � n.

The infinitesimal generator matrix of the aggregated process is formed in the intuitive
way. If the transition rates of the original process are denoted q(Xi, Xk) then the transition
rate into any partition from a given state is

q(Xi, X[j]) =
∑
k∈[j]

q(Xi, Xk).

The transitions between aggregated states are then formed as a weighted sum of the trans-
ition rates of the states in the first partition to the second partition, weighted by the condi-
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tional steady state probabilities of being in each state in the partition, Π̄j(·) ,

q(X[j], X[i]) =
∑
k∈[j]

Π̄j(Xk) q(Xk, X[i]).

Exact calculation of the steady state probabilities, Π̄j(Xk) will normally entail finding the
steady state distribution of the original process. However, aggregation procedures include a
plethora of iterative procedures based on the approximation of these values. Alternatively, if
the partitions are based on a structural property of the model it may be possible to calculate
these values by a separate analysis of the corresponding submodel. A comprehensive survey
of aggregation techniques is presented in [7].

In general it will not be the case that the Markov property is preserved in the aggregated
process. However it is assumed that the aggregated process is Markovian and this allows the
steady state probability of being in each partition to be calculated correctly. The case when
the aggregated process is a Markov process relies on a condition known as lumpability. The
case of aggregation in which the aggregated model is treated as a Markov process although
the Markov property is not conserved is sometimes called pseudo-aggregation [99].

5.4.2 Lumpability

The characteristics of the aggregated process will depend on the equivalence relation used to
form the partitions on which the aggregation is based. When the partition is such that the
Markov property is conserved in the aggregated process the process is said to be ordinarily
or strongly lumpable with respect to the partition [100]. Such partitions are formed on the
basis of a strong notion of equivalence between states. In the case of a lumpable partition the
steady state solution of the aggregated process can be found without the conditional steady
state probabilities of states within each partition. Moreover this steady state distribution
may be used to derive an exact solution of the original model.

Definition 5.4.1 A Markov process is (strongly or ordinarily) lumpable with respect to a
partition χ = {X[i]} if for every initial distribution the aggregated process is a Markov
process.

Theorem 5.4.1 (Kemeny and Snell 1960 [100, p. 124]) A Markov process is lumpable
with respect to a partition χ = {X[i]} if, and only if, for any X[k], X[l] ∈ χ, Xi, Xj ∈ X[k]

q(Xi, X[l]) = q(Xj, X[l])

A strongly lumpable partition exists if there is an equivalence relation such that for any
two states within a partition induced by the equivalence relation their aggregated transition
rates to any other partition are the same. The related notions of exactly lumpable and strictly
lumpable partitions [101], are defined as follows.

Definition 5.4.2 χ is an exactly lumpable partition if, and only if, for all X[l], X[k] ∈ χ,
and for all Xi, Xj ∈ X[k]

q(X[l], Xi) = q(X[l], Xj)

Thus an exactly lumpable partition exists if there is an equivalence relation such that for any
two states within a partition, induced by the equivalence relation, the aggregated transition
rates into the states from any other partition are the same. Here, the aggregated transition
rate into a state is defined in the obvious way. For a strictly lumpable partition there must
be the same aggregated flow both into, and out of, the equivalent states.
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Definition 5.4.3 χ is strictly lumpable if, and only if, it is ordinarily lumpable and exactly
lumpable.

Aggregation techniques in general, and lumpability in particular, are usually applied across
the state space of a model considered as a whole. Recent work by Buchholz has shown that
the lumpability equivalence is a congruence over a class of Markov processes expressed in
terms of tensor algebra [44].

5.4.3 Folding in GSPNs

Another approach to model simplification based on state-to-state equivalences is the tech-
nique of folding in GSPNs [25]. This technique can greatly reduce the state space of a
complex GSPN, but it may result in some loss of detail. Using an equivalence relation based
on the enabled transitions a partition is formed over the markings of the GSPN. This iden-
tification of equivalent markings is used to construct a simpler, more compact model, from
which a smaller Markov process is generated. Although very similar to aggregation using
lumpable partitions, this approach has the advantage that it is not necessary to construct
the Markovian generator matrix of the original model, which may be very large.

5.5 Notions of Equivalence for PEPA

In the following chapters we will develop four different notions of equivalence for PEPA, two
of which are based on bisimulation. Unlike other performance modelling paradigms PEPA
allows models and states to be regarded as equivalent entities—both are represented as
components. Thus we may use the developed equivalence relations to analyse both model-to-
model and state-to-state equivalences. For each equivalence we will consider its implications
for the underlying Markov process and assess its potential for use as the basis for a model
simplification technique.

In Chapter 6 we develop isomorphism, a structural equivalence similar to the equivalence
between Markov processes described in Section 5.3. This relation is too strong to be used
for model simplification but it does provide equational laws which may be used for model
transformation. A weaker form of the relation, weak isomorphism is also presented. This
introduces the consideration of how components appear to observers. Two components are
considered equivalent in this way if they only differ in the detail of their internal activities.
The relation is found to lead to a useful approach to model simplification which can, like
Sanders and Meyer’s approach for SAN, be varied according to the performance measures
to be calculated.

The third notion of equivalence, developed in Chapter 7, is strong bisimilarity which is
based on the labelled multi-transition system, presented in Chapter 3 as the semantics of
PEPA. Although this relation is shown to be a congruence it is found that it is not sufficient
to ensure equivalent behaviour. It illustrates the problems which can ensue because of the
loss of information in going from the process algebra to the underlying Markov process.
Nevertheless circumstances in which strongly bisimilar components will exhibit the same
behaviour are identified, and this leads to the definition of a model simplification technique.

In Chapter 8 an alternative notion of equivalence is developed, called strong equivalence,
in the style of the strong probabilistic bisimulation of Larsen and Skou. This equivalence
uses the activity rates in a similar way to the probabilities used in probabilistic systems.
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The equivalence relation is formed by consideration of total transition rates between parti-
tions induced by the equivalence relation. The relationship between strong equivalence and
lumpability in the underlying Markov process is demonstrated. Strong equivalence is also
shown to be a congruence and its use for model simplification is illustrated by one of the
MSMQ systems modelled in Chapter 4.



Chapter 6

Isomorphism and Weak Isomorphism

6.1 Introduction

In this chapter we develop a very strong notion of equivalence between PEPA components
called isomorphism. This is a condition on the derivation graphs of components and it en-
sures that components are only considered equivalent if there is a one-to-one correspondence
between their derivatives and they are capable of carrying out exactly the same activities.
It is not an observation based notion of equivalence in the style of bisimulation which is
usual for process algebras. It is structural, in the style of the equivalence between Markov
processes introduced in Section 5.3. Isomorphism is defined in Section 6.2.

In Sections 6.3 to 6.5 we examine some properties of this notion of equivalence, from
the perspectives of a process algebra, the modelled system components and the underlying
Markov processes. As we might expect from such a strong notion of equivalence, we can
derive strong properties for isomorphism. The relation is a congruence for PEPA. The rela-
tionship between isomorphism and the Markov processes underlying the PEPA components
is found to be a close one—isomorphic components generate equivalent Markov processes.

In the remainder of the chapter we develop a weaker form of this equivalence called weak
isomorphism. This equivalence reflects the hidden nature of τ type activities. We will
consider two components equivalent in this way if they only differ in their capabilities to
carry out such activities. A definition of this notion of equivalence is presented in Section 6.6.

The properties of weak isomorphism are examined from the process algebra perspective in
Section 6.7 and from the system perspective in Section 6.8. Although it is not a congruence,
it is found that weak isomorphism is preserved by some combinators of the language. In
Section 6.9 we examine the relationship between weak isomorphism and the underlying
Markov process. Weakly isomorphic components may generate Markov processes which
are not equivalent. However it is shown that these processes will attract the same reward.
Finally, in Section 6.10, an application of the weak isomorphism relation as a model-to-model
equivalence for model simplification is explained and illustrated by an example taken from
Chapter 4.

6.2 Definition of Isomorphism

If we consider the PEPA components P BC
L

Q and Q BC
L

P it is intuitive to regard them as
equivalent. The semantic rules determining the behaviour of components of this form are
symmetric, so the activities of the two components are exactly the same. It is this intuitive
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notion of equivalence, based on an exact match of behaviours, which we aim to capture
within the definition of isomorphism. It is closely allied to the equivalence between Markov
processes which ensures that the generator matrices of the two processes are the same up
to a permutation of the rows and columns. PEPA components are isomorphic if there is a
one-to-one correspondence between the derivatives of the components, equivalent derivatives
enabling the same activities, which result in equivalent derivatives.

Definition 6.2.1 A function, F : ds(P ) −→ ds(Q), is a component isomorphism between
P and Q, if F is an injective function, and for any component P ′, Act(P ′) = Act(F(P ′)),
and for all a ∈ Act, the set of a-derivatives of F(P ′) is the same as the set of F-images of
the a-derivatives of P ′, i.e.

{Q′ | F(P ′) a−→ Q′} = {F(P ′′) | P ′ a−→ P ′′}.

Definition 6.2.2 Two components, P and Q, are isomorphic, denoted P = Q, if there
exists a component isomorphism F between them such that D(F(P )) = D(Q).

Although the same notation is used, it should be noted that the isomorphism relation, =,
is much stronger than observation congruence in CCS. In PEPA P = Q signifies that P and
Q are the same up to the naming of derivatives.

Isomorphism is an equivalence relation over the set of components: any component is trivi-
ally isomorphic to itself; as a component isomorphism is injective the relation is symmetric;
and, since the composition of component isomorphisms is a component isomorphism, the
relation is transitive.

In general, in order to show that two components are isomorphic we must exhibit a com-
ponent isomorphism between their derivation graphs.

6.3 Properties of Isomorphism

In this section we investigate the properties of the isomorphism relation from a process
algebra aspect. In particular we exhibit some straightforward equational laws which hold
for the relation, and establish that isomorphism is a congruence for PEPA.

6.3.1 Equational Laws for Isomorphic Components

The following equational laws may be used to manipulate and transform PEPA compon-
ents. Note that these laws alter the presentation or naming of derivatives: the structure of
components remains the same. These equational laws can be proved by direct appeal to the
definition of = and the semantic rules in Figure 3.1.

Proposition 6.3.1 (Choice)

1. P + Q = Q + P

2. P + (Q + R) = (P + Q) + R

Proposition 6.3.2 (Hiding)

1. (P + Q)/L = P/L + Q/L

2. ((α, r).P )/L =
{

(τ, r).P/L α ∈ L
(α, r).P/L α /∈ L
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3. (P/L)/K = P/(L ∪K)

4. P/L = P if L ∩ ~A(P ) = ∅

Proposition 6.3.3 (Cooperation)

1. P BC
L

Q = QBC
L

P

2. P BC
L

(Q BC
L

R) = (P BC
L

Q)BC
L

R

3. (P BC
L

Q)/(K ∪M) =
(
(P/K) BC

L
(Q/K)

)/
M where K ∩M = K ∩ L = ∅

4. P BC
K

Q = P BC
L

Q if K ∩
(

~A(P ) ∪ ~A(Q)
)

= L

5. (P BC
L

Q)BC
K

R =

 P BC
L

(Q BC
K

R) if ~A(R) ∩ (L \K) = ∅ ∧ ~A(P ) ∩ (K \L) = ∅
QBC

L
(P BC

K
R) if ~A(R) ∩ (L \K) = ∅ ∧ ~A(Q) ∩ (K \L) = ∅

Proposition 6.3.4 (Parallel)

1. P ‖ Q = Q ‖ P

2. P ‖ (Q ‖ R) = P ‖ Q ‖ R = (P ‖ Q) ‖ R

3. (P ‖ Q)/K = P/K ‖ Q/K

Proposition 6.3.5 (Constant)
If A

def= P then A = P .

The laws presented in Proposition 6.3.4 are a reiteration of rules 1–3 of Proposition 6.3.3 for
the special case L = ∅. They are stated here for clarity.

6.3.2 The Expansion Law

The Expansion Law, presented in Proposition 6.3.6, like the equational laws in the previous
section, can be proved by direct appeal to the definition of isomorphism and the semantic
rules for PEPA. It allows us to unravel the behaviour of a cooperation of components.
Inherently this relies on the memoryless property of the exponential distributions used to
determine the duration of activities. As explained in Section 3.3.3, this memoryless prop-
erty allows us to treat the preemptive resume policy corresponding to the cooperation of
components as equivalent to the preemptive restart policy corresponding to choice.

The law is presented in terms of two cooperating components—recall that the coopera-
tion combinator is not associative. Thus we need only consider the cooperation between a
pair of components, with the understanding that each of these components may itself be a
cooperation of components at a lower level.
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Proposition 6.3.6 (Expansion Law) Let P ≡ (P1 BC
L

P2)/K with L, K ⊂ A. Then

P =
∑
{(α, r).(P ′1 BCL P2)/K | P1

(α,r)−→ P ′1 ; α /∈ L ∪K}

+
∑
{(α, r).(P1 BC

L
P ′2)/K | P2

(α,r)−→ P ′2 ; α /∈ L ∪K}

+
∑
{(τ, r).(P ′1 BCL P2)/K | P1

(α,r)−→ P ′1 ; α ∈ K \ L}

+
∑
{(τ, r).(P1 BC

L
P ′2)/K | P2

(α,r)−→ P ′2 ; α ∈ K \ L}

+
∑
{(α, r).(P ′1 BCL P ′2)/K | P1

(α,r1)−→ P ′1 ; P2
(α,r2)−→ P ′2 ; α ∈ L \K ;

r =
r1

rα(P1)
r2

rα(P2)
min(rα(P1), rα(P2))}

+
∑
{(τ, r).(P ′1 BCL P ′2)/K | P1

(α,r1)−→ P ′1 ; P2
(α,r2)−→ P ′2 ; α ∈ L ∩K ;

r =
r1

rα(P1)
r2

rα(P2)
min(rα(P1), rα(P2))}

Associativity does apply in the case of parallel composition, as we see in Proposition 6.3.4,
since the components proceed independently. An alternative form of the Expansion Law can
be stated for parallel composition.

Proposition 6.3.7 (Expansion Law for Parallel Composition)
Let P ≡ (P1 ‖ P2 ‖ · · · ‖ Pn)/K with n ≥ 1 and K ⊂ A. Then

P =
∑
{(α, r).(P1 ‖ · · · ‖ P ′i ‖ · · · ‖ Pn)/K | Pi

(α,r)−→ P ′i ; α /∈ K}

+
∑
{(τ, r).(P1 ‖ · · · ‖ P ′i ‖ · · · ‖ Pn)/K | Pi

(α,r)−→ P ′i ; α ∈ K}

6.3.3 Isomorphism as a Congruence

A relation over PEPA components is a congruence if it is preserved by each of the combinators
of the PEPA language and by recursive definition. It is straightforward to show that this is
true for the isomorphism relation by constructing appropriate component isomorphisms.

Proposition 6.3.8 (Preservation by Combinators)
Let P1 = P2, with component isomorphism F : ds(P1) −→ ds(P2). Then

1. a.P1 = a.P2;

2. P1 + Q = P2 + Q;

3. P1 BC
L

Q = P2 BC
L

Q;

4. P1/L = P2/L.

Proof

1. Consider a function G : ds(a.P1) −→ ds(a.P2) defined as follows:

for any P ′ ∈ ds(a.P1), G(P ′) =
{

a.P2 if P ′ ≡ a.P1

F(P ′) otherwise

Then, since Act(a.P1) = {| a |} = Act(a.P2), G is a component isomorphism. Hence
a.P1 = a.P2.
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2. We remark that ds(P1 + Q) = ds(P1) ∪ ds(Q). Consider a function G such that, for
any P ′ ∈ ds(P1 + Q),

G(P ′) =


P2 + Q if P ′ ≡ P1 + Q
F(P ′) if P ′ ∈ ds(P1)
P ′ otherwise

Act(P1 + Q) = Act(P2 + Q) since Act(P1) = Act(P2). For all P ′ ∈ ds(P1), by the
definition of F , F(P ′) ∈ ds(P2). Moreover P ′ ∈ ds(P1 + Q) \ ds(P1) and P ′ ≡/ P1 + Q
implies that P ′ ∈ ds(Q). Thus G is a component isomorphism and P1 + Q = P2 + Q.

3. Any element of ds(P1 BC
L

Q) has the form P ′ BC
L

Q′, where P ′ ∈ ds(P1), Q′ ∈ ds(Q).
Define G : ds(P1 BC

L
Q) −→ ds(P2 BC

L
Q) such that for any P ′ BC

L
Q′ ∈ ds(P1 BC

L
Q),

G(P ′ BC
L

Q′) = F(P ′)BC
L

Q′.

Since F is a component isomorphism, it follows that G is a component isomorphism.
Hence P1 BC

L
Q = P2 BC

L
Q.

4. If F is a component isomorphism between P1 and P2 it follows immediately that a
component isomorphism between P1/L and P2/L can be defined in terms of F in the
natural way, and so P1/L = P2/L. �

As seen in Chapter 4, sets of recursive definitions are typically used to define the behaviour
of PEPA components. Recall that if E is a component expression which contains an indexed
set of variables X̃ , then E{P̃ /X̃} denotes the component formed when every occurrence of
each X in E is replaced by the component P from an indexed set of components P̃ .

Definition 6.3.1 Let E and F be component expressions, both containing the same indexed
set of variables X̃. Then FX̃ : ds(E) −→ ds(F ) is a component isomorphism between E and
F if FX̃ is an injective function such that Xi = FX̃(Xi) for all Xi ∈ X̃, for any derivative
expression E′, Act(E′) = Act(FX̃(E′)), and for all a ∈ Act the set of a-derivatives of FX̃(E′)
is the same as the set of FX̃-images of a-derivatives of E′.

Definition 6.3.2 Two component expressions, E and F , containing variables X̃, are iso-
morphic, denoted E = F , if there exists a component isomorphism FX̃ between them such
that D(FX̃(E)) = D(F ).

Thus, by definition, E = F implies that D(FX̃(E)) = D(F ), so if the variables X̃ are
instantiated by an indexed set of components P̃ there exists a component isomorphism
FP̃ : ds(E{P̃ /X̃}) −→ ds(F{P̃ /X̃}), defined as FP̃ (E′{P̃ /X̃}) = FX̃(E′){P̃ /X̃}. It follows
that E{P̃ /X̃} = F{P̃ /X̃} for all indexed sets of components P̃ .

The following proposition shows that isomorphism is preserved by recursive definition.
This means that if a subexpression is replaced by an isomorphic subexpression, then the
resulting expression is isomorphic to the original expression.

Proposition 6.3.9 (Preservation by Recursive Definition) Let Ẽ and F̃ contain vari-
ables X̃ at most. Let Ã

def= Ẽ{Ã/X̃}, B̃
def= F̃{B̃/X̃} and Ẽ = F̃ . Then Ã = B̃.

Proof It is sufficient to show the result for single recursion equations E and F such that
E = F , A

def= E{A/X}, B
def= F{B/X}. By Proposition 6.3.5, it follows that A = E{A/X}

and B = F{B/X}. Moreover, E = F , implies that there is a component isomorphism FX
such that D(FX(E)) = D(F ). Therefore E{A/X} = F{B/X} since the structure of the
two expressions is identical. Hence, A = B as required. �

This result, with Proposition 6.3.8, shows that = is a congruence for PEPA.
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6.4 Isomorphism between System Components

In this section we consider what we can deduce about the system components represented
by the PEPA components P and Q in the case that P = Q. Let SysP and SysQ denote the
system components modelled by P and Q respectively.

If P = Q then there is a component isomorphism, F , between the derivative sets, such
that D(F(P )) = D(Q). In terms of the system components, SysP and SysQ this implies that
they are capable of performing the same actions, at the same rates, resulting in states which
also enable exactly the same actions. The exit rates from P and Q are the same, implying
that the expected delay experienced by each system component before an action occurs
will be the same. Actions in the two components progress at the same rate which implies
that the implicit resources of the two system components are equivalent, i.e. equivalent
underlying resources facilitating actions, which are not explicitly modelled, are available in
SysP and SysQ. Moreover, since the activity multisets of the two components are identical,
the probability that each system component undertakes a given action is the same. Also, if
a particular action occurs, the probability of any given outcome will be the same in the two
components.

In effect SysP and SysQ are the same component. They are capable of exactly the same
sequences of activities, in the same order, with the same probabilities and transition rates.
Thus if P = Q then SysP and SysQ are indistinguishable in terms of behaviour and may be
used interchangeably.

6.5 Isomorphism and the Markov Process

In this section we examine the relationship between isomorphism of PEPA components and
the equivalence of Markov processes described in Section 5.3. Both these equivalences aim
to capture the notion of models that exhibit exactly the same behaviour. In the PEPA
components the behaviour is represented by derivatives and activities between them. In the
Markov processes the behaviour is represented by states and transitions between them. It is
clear that there is a strong correlation between these notions.

Proposition 6.5.1 If P and Q are isomorphic PEPA components, i.e. P = Q, then P and
Q generate Markov processes which are equivalent.

Proof By definition P = Q implies that there is a component isomorphism F such that
D(F(P )) = D(Q). Since the Markov process underlying a component is defined by the
derivation graph the result follows immediately. �

Isomorphism between components ensures that the underlying Markov processes must
exhibit the same transient and steady state behaviours.

We can also consider whether equivalence of the underlying Markov processes implies
isomorphism between the PEPA components. However, a PEPA component contains in-
formation about the type of an activity which is not recorded in the underlying Markov
process. For example, consider the components,

T1
def= (task1, r).T1 T2

def= (task2, r).T2

T1 and T2 will generate the same Markov process although they are not isomorphic. Even if
we consider an augmented Markov process in which transitions are annotated by the action
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types of the corresponding activities, equivalence at the level of the Markov process will not
ensure that the components are isomorphic. Two or more activities in the PEPA component
may be represented by a single transition in the Markov process. For example, consider
the components X and Y shown in Figure 6.1. These components give rise to the same
augmented Markov process although they are not isomorphic.

X0
def= (α, r).X1 + (β, s).X1

X1
def= (γ, t).X0

Y0
def= (α, s).Y1 + (β, r).Y1

Y1
def= (γ, t).Y0

Figure 6.1: Components which generate the same Markov process

A model-to-model equivalence between PEPA models should ensure that the same per-
formance measures can be derived from the models. Since these measures are derived from
reward structures, defined in terms of activities, the example in Figure 6.1 shows that equi-
valence of the underlying Markov processes, even if annotated, is not sufficient. Isomorphism
does maintain performance measures but since it only relates models which generate Markov
processes of the same size it is not useful for model simplification. In the rest of the chapter
we develop a weaker notion of equivalence. We show that it guarantees the integrity of re-
ward structures defined in terms of visible activities, whilst offering the possibility of model
simplification in some circumstances.

6.6 Definition of Weak Isomorphism

Weak isomorphism aims to capture a notion of equivalence relating components which differ
only in the details of their τ type activities. These activities are regarded as internal to the
component enabling them, and as such their real type is hidden from external observation.
No rewards may be attached to τ type activities. In particular we are interested in defining
such a relation to find model simplifications which result in a smaller Markov process, whilst
ensuring the integrity of the reward structure.

Weak isomorphism is based on the idea that for a component which carries out several
consecutive τ type activities we may be able to find an equivalent compact form, which
has the same visible behaviour but a single τ activity of longer duration. The relation
is termed weak isomorphism because all other behaviours of the components are matched
exactly. For components which do not enable such a sequence of τ activities there is a one-
to-one correspondence with the compact form as in component isomorphism. Derivatives
that are intermediate to, or start, such a sequence are mapped onto a single derivative in
the compact form. As with isomorphism the equivalence is defined in terms of a structural
relation between derivation graphs, the weak component isomorphism.

Thus, in effect, we eliminate nodes in the derivation graph whose only contribution is to
introduce a τ type activity which is part of a sequence of τ type activities. For example, if
a portion of the derivation graph is as shown on the left hand side below, we would like to
replace it by the reduced graph shown on the right, where R is chosen appropriately.
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Pi -(τ, r1)
Pj -(τ, r2)

Pk ⇒ Pi -(τ, R)
Pk

Here, the node to be eliminated, Pj , can be identified as having only a single input arc and
a single output arc, both of which correspond to τ type activities. However sequences of τ
activities may also arise in more complex situations. For example, consider the component
P

def= Q1 BC{β} Q2, where b = (β, rb) and

Q1
def= (τ, r1).(τ, r2).b.Q1 Q2

def= a.c.b.Q2

The derivation graph of P is shown below:

P0
-(τ, r1)*a

P3
-

*a (τ, r2)
P6

*a
P1

-(τ, r1)*c

P4
-

*c (τ, r2)
P7

*c
P2

-(τ, r1)
P5

-(τ, r2)
P8

�b

We would like the derivation graph shown below to be considered weakly isomorphic to this:

P0′
-(τ, R)*a

P3′

*a
P1′

-(τ, R)*c

P4′

*c
P2′

-(τ, R)
P5′

�b

when R has the appropriate value.
In general, choosing this value, R, presents a problem. In each case we relate a sequence of

τ activities to a single τ activity. We would like the duration of this single activity to be the
same as the end-to-end delay incurred by the τ -sequence. However, the distribution of this
end-to-end delay is found as the convolution of the appropriate distributions—for a sequence
of exponential delays this will be a Coxian distribution. In the simplified PEPA model the
distribution associated with the single τ type activity is assumed to be exponential. In
Section 6.9 we will show when this assumption is justified by considering the PEPA model
as a generalised semi-Markov process (GSMP) and applying insensitivity results.

Before we formalise the definition of weak isomorphism we introduce the notion of a
resource component.

Resource Components

If we consider the enabled activities of any component we can find one or more collections of
competing activities—these correspond to the implicit resources in the system. As explained
in Section 3.3.3, in a choice of components, P +Q, it is assumed that P and Q are competing
for the same implicit resource. Thus only one of the activities enabled by P and Q can have
access to the resource at a time. It follows that the completion of an activity enabled by
P will abort all the activities enabled by Q, as well as any other activities enabled by P .
In contrast a cooperation, P BC

L
Q, represents an interaction between components, each of
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which has its own implicit resource. Thus, the completion of an individual activity of P will
interrupt, but not abort, concurrently enabled individual activities of Q. It follows that, in
general, each cooperation combinator in a component represents the introduction of another
implicit resource.

We can identify a resource component within a component, C, with a multiset of activities
withinAct(C) which are all dependent on the same implicit resource. Thus each cooperation
combinator potentially introduces another resource component—this is not necessarily the
case since the cooperation may inhibit some activities. Shared activities will belong to more
than one resource component.

Definition 6.6.1 A resource component within a multiset of enabled activities is a multiset
of activities such that the completion of any one of them aborts all of them, and interrupts
all other enabled activities.

For example, if P and Q both enable a single resource component, then P + Q has a single
resource component corresponding to Act(P + Q); on the other hand, P BC

L
Q enables two

resource components corresponding to Act(P ) and Act(Q) respectively. Recall that for irre-
ducible components, all choices must occur within cooperations, not between cooperations.
It follows that in all the PEPA models we consider choices in the model will constitute single
resource components.

If we consider the derivation graph fragment shown in Figure 6.2 it is clear that the τ
activities, (τ, r1), (τ, r2) and (τ, r3), correspond to the same implicit resource and the visible
activities a and b correspond to a different one.

Definition 6.6.2 A resource component is termed a silent resource component if it consists
of a single hidden activity, i.e. {| (τ, r) |}.

In the example shown in Figure 6.2 the activities (τ, r1), (τ, r2) and (τ, r3) are silent resource
components, occurring consecutively.

It is consecutive silent resource components which may be replaced by a single activity in
a compact form. Replacing other sequences of τ activities would not leave the rest of the
behaviour of the component unaffected. For example, if the first τ activity in the sequence
was enabled in competition with visible activities, replacing the sequence by a single τ
activity with a different duration will alter the probability of the visible activities occurring.

Definition 6.6.3 A sequence of consecutive τ type activities in a derivation graph is termed
a reducible sequence if the activities are all silent resource components corresponding to the
same implicit resource.

The activities (τ, r1), (τ, r2) and (τ, r3) shown in Figure 6.2 form a reducible sequence.

Pi -(τ, r1)
1a

qb

Pj -

1a

qb

(τ, r2)
Pk

1a

qb

-

1a

qb

(τ, r3)
P`

1a

qb

Figure 6.2: Derivation graph fragment for a PEPA model with a reducible sequence
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Weak Component Isomorphism

We use reducible sequences to identify components which do not need to be maintained by
the weak component isomorphism, the hidden components.

Definition 6.6.4 A derivative P is a hidden component if it has a silent resource compon-
ent, it is the derivative of a component with a silent resource component, via the completion
of that activity, and all other resource components of the two derivatives are the same.

If we consider the derivatives shown in Figure 6.2, the hidden components are Pj and Pk.
The weak component isomorphism will map a hidden component onto the same derivative
as its silent precedent, the previous derivative in the reducible sequence.

Definition 6.6.5 For a hidden component P its silent precedent is the preceding derivative
connected to it by an arc corresponding to the previous silent resource component in the
reducible sequence.

In Figure 6.2, Pi is the silent precedent of Pj and Pj is the silent precedent of Pk. The
derivative that marks the end of a reducible sequence which starts with the activity (τ, r)
will be called the visible (τ, r)-derivative. This derivative will not be a hidden component.
Thus P` is the visible (τ, r1)-derivative of Pi.

Definition 6.6.6 Suppose component P has a reducible sequence with silent resource com-
ponent {| (τ, r) |}, such that P

(τ,r)−→ P ′, then the visible (τ, r)-derivative of P , denoted V(τ,r)(P )
is defined as follows:

V(τ,r)(P ) =


V(τ,s)(P ′) if (τ, s) is the next silent resource component in the

reducible sequence.

P ′ if P ′ is not a hidden component

We can now define a weak component isomorphism. The conditions imposed on it for
components which are not hidden components and activities which do not form silent resource
components are the same as the conditions for a component isomorphism.

Definition 6.6.7 A function F : ds(P ) −→ ds(C) is a weak component isomorphism from
P to C if F is a surjective function such that if P ′ ∈ ds(P ), P ′ not a hidden component, all
non-silent resource components of P ′ and F(P ′) are identical. For any a ∈ Act(P ′), not part
of a reducible sequence, the set of a-derivatives of F(P ′) is the same as the F-image of the
set of a-derivatives of P ′. For any silent resource component of P ′, (τ, r), there is some silent
resource component of F(P ′), (τ, R), such that F(V(τ,r)(P ′)) = V(τ,R)(F(P ′)). Moreover the
expected delay between P ′ and V(τ,r)(P ′) is the same as the expected delay between F(P ′)
and V(τ,R)(F(P ′)). On the other hand, if P ′′ ∈ ds(P ), P ′′ a hidden component, with silent
precedent P ′, then F(P ′′) = F(P ′).

Definition 6.6.8 If there is a weak component isomorphism F from P to C, then C is
called a compact form of P , denoted C ≤ P .
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If a component P has no hidden derivatives in its derivative set the identity function, or
any component isomorphism, will be a weak component isomorphism on P . Moreover P , or
any component isomorphic to it, will be a compact form of P , i.e. P ≤ P , or if P ′ = P then
P ′ ≤ P and P ≤ P ′. The converse is also true, P ′ ≤ P and P ≤ P ′ only if P ′ = P .

If C is a compact form of P , and Q = P then it follows that C is also a compact form of
Q, i.e. C ≤ P and Q = P implies C ≤ Q. Similarly if C ′ is isomorphic to C, then C ′ is also
a compact form of P , i.e. C ≤ P and C ′ = C implies C ′ ≤ P .

We can now define when we consider components to be weakly isomorphic. Clearly we
would like to consider a component to be weakly isomorphic with its compact form. However
we can make the relation more general than that—we consider a component to be weakly
isomorphic with any component with which it shares a compact form.

Definition 6.6.9 Two components P and Q are weakly isomorphic, denoted P ≈ Q, if
there is some component C which is a compact form of both P and Q,

Thus a component may be weakly isomorphic to components which have more elaborate
representations of internal activities as well as more compact ones.

If P = Q then by the argument above, they must have a common compact form, and
P ≈ Q. If P ≈ Q and neither P nor Q has any hidden derivatives in its derivation graph,
then P and Q are each their own, and each other’s, compact form, so it follows that P = Q.

In general, in order to show that P ≈ Q we must find a compact form C and weak
component isomorphisms, FP and FQ, from P to C and Q to C respectively. However,
in practice we will be interested in using weak isomorphism to guide model simplification,
by finding a compact form of a component, which has a smaller derivative set, and so will
generate a smaller Markov process.

6.7 Properties of Weak Isomorphism

In this section we consider the weak isomorphism relation, ≈, from a process algebra per-
spective. We see that weak isomorphism is not a congruence—it is not preserved by the
choice combinator. For example, consider the components X, Y and Z shown in Figure 6.3.
We assume that R has the appropriate value and that Y is a compact form of X, i.e. Y ≤ X,
with weak component isomorphism F . It follows that X ≈ Y but X + Z ≈/ Y + Z.

X0
def= (τ, r1).X1

X1
def= (τ, r2).X2

X2
def= (β, rb).X0

Y0
def= (τ, R).Y1

Y1
def= (β, rb).Y0

Z0
def= (α, sa).Z1

Z1
def= (β, sb).Z0

Figure 6.3: Components X, Y and Z such that Y ≤ X

If we consider the derivation graphs of the components X +Z and Y +Z neither contains
a hidden component. It follows that X + Z ≈ Y + Z only if X + Z = Y + Z. However this
cannot be the case since the components do not even have the same number of derivatives.
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The resource component of X + Z is {| (τ, r1), (α, sa) |} whereas the resource component of
Y + Z is {| (τ, R), (α, sa) |}.

For the components X BC
{β}

Z and Y BC
{β}

Z, we can form a weak component isomorphism
F ′, from X BC

{β}
Z to Y BC

{β}
Z, based on F .

F ′(Xi BC{β} Zj) = F(Xi)BC{β} Zj for i = 0, 1, 2 and j = 0, 1

The resource components of X BC
{β}

Z are {| (τ, r1) |} and {| (α, sa) |}, and the resource com-
ponents of Y BC

{β}
Z are {| (τ, R) |} and {| (α, sa) |}. Thus we conclude that X BC

{β}
Z ≈ Y BC

{β}
Z.

Note that X + Z and Y + Z, unlike the rest of the examples used in the thesis, are
not irreducible components. Indeed, we conjecture that if we considered only irreducible
components weak isomorphism may be preserved by choice, and therefore be a congruence.

6.7.1 Preservation by Combinators

In the following proposition we show that weak isomorphism is in fact preserved by all the
other combinators of PEPA except choice.

Proposition 6.7.1 (Preservation by Combinators)
If P1 ≈ P2 then

1. a.P1 ≈ a.P2;

2. P1 BC
L

Q ≈ P2 BC
L

Q;

3. P1/L ≈ P2/L

Proof If P1 ≈ P2 then they must have some common compact form, C say, such that there
are weak component isomorphisms, F1 and F2, from P1 and P2 to C respectively.

1. We can extend F1 and F2 to ds(a.P1) and ds(a.P2) in the natural way:

for all P ′ ∈ ds(a.P1) F ′1(P
′) =

{
a.C if P ′ ≡ a.P1

F1(P ′) otherwise

F ′2 is defined analogously. F ′1 and F ′2 are weak component isomorphisms and a.C is a
compact form for both a.P1 and a.P2. Hence a.P1 ≈ a.P2.

2. Let Q be a compact form of Q, with weak component isomorphism FQ, possibly the
identity. We define a function G1 from P1 BC

L
Q to C BC

L
Q:

for any P ′ BC
L

Q′ ∈ ds(P1 BC
L

Q), G1(P
′ BC

L
Q′) = F1(P

′)BC
L
FQ(Q′)

G1 is surjective sinceF1 and FQ are surjective. Since τ cannot belong to the cooperation
set it follows that any reducible sequence in P1 BC

L
Q arises from a reducible sequence

in P1 or Q. Any activity a of P ′ BC
L

Q′ which is not a silent resource component will
be an individual activity of P ′ or Q′, or a shared activity arising from activities of P ′

and Q′. By the definition of weak component isomorphism these will be individual
activities of F1(P ′) or FQ(Q′), or a shared activity of F1(P ′)BC

L
FQ(Q′). It follows

that G1 is a weak component isomorphism and C BC
L

Q is a compact form of P1 BC
L

Q.

We define G2 from P2 BC
L

Q to C BC
L

Q analogously, and thus it follows that it is a
weak component isomorphism. Hence C BC

L
Q is a compact form of both P1 BC

L
Q and

P2 BC
L

Q. We conclude that P1 BC
L

Q ≈ P2 BC
L

Q.
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3. Let C be a compact form of C/L and let FR be a weak component isomorphism from
C/L to C, possibly the identity. We can construct a weak component isomorphism G1

from P1/L to C as follows:

for all P ′/L ∈ ds(P1/L) G1(P
′/L) = FR(F1(P

′)/L)

We can define a weak component isomorphism, G2 from P2/L to C analogously. It
follows that C is a compact form of P1/L and P2/L, and we conclude that P1/L ≈ P2/L.

�

6.7.2 Equational Laws for Weak Isomorphism

Since isomorphism between components implies weak isomorphism, i.e. if P = Q then P ≈ Q,
it follows that the equational laws stated in Section 6.3.1 can be restated for the weak
isomorphism relation.

Proposition 6.7.2 (Choice)

1. P + Q ≈ Q + P

2. P + (Q + R) ≈ (P + Q) + R

Proposition 6.7.3 (Hiding)

1. (P + Q)/L ≈ P/L + Q/L

2. ((α, r).P )/L ≈
{

(τ, r).P/L α ∈ L
(α, r).P/L α /∈ L

3. (P/L)/K ≈ P/(L ∪K)

4. P/L ≈ P if L ∩ ~A(P ) = ∅

Proposition 6.7.4 (Cooperation)

1. P BC
L

Q ≈ Q BC
L

P

2. P BC
L

(Q BC
L

R) ≈ (P BC
L

Q)BC
L

R

3. (P BC
L

Q)/(K ∪M) ≈
(
(P/K) BC

L
(Q/K)

)/
M where K ∩M = K ∩ L = ∅

4. P BC
K

Q ≈ P BC
L

Q if K ∩
(

~A(P ) ∪ ~A(Q)
)

= L

5. (P BC
L

Q)BC
K

R ≈
 P BC

L
(Q BC

K
R) if ~A(R) ∩ (L \K) = ∅ ∧ ~A(P ) ∩ (K \L) = ∅

QBC
L

(P BC
K

R) if ~A(R) ∩ (L \K) = ∅ ∧ ~A(Q)∩ (K \L) = ∅

Proposition 6.7.5 (Constant)
If A

def= P then A ≈ P .



88 CHAPTER 6. ISOMORPHISM AND WEAK ISOMORPHISM

Proposition 6.7.6 (Expansion Law) Let P ≡ (P1 BC
L

P2)/K with L, K ⊂ A. Then

P ≈
∑
{(α, r).(P ′1 BCL P2)/K | P1

(α,r)−→ P ′1 ; α /∈ L ∪K}

+
∑
{(α, r).(P1 BC

L
P ′2)/K | P2

(α,r)−→ P ′2 ; α /∈ L ∪K}

+
∑
{(τ, r).(P ′1 BCL P2)/K | P1

(α,r)−→ P ′1 ; α ∈ K \ L}

+
∑
{(τ, r).(P1 BC

L
P ′2)/K | P2

(α,r)−→ P ′2 ; α ∈ K \ L}

+
∑
{(α, r).(P ′1 BCL P ′2)/K | P1

(α,r1)−→ P ′1 ; P2
(α,r2)−→ P ′2 ; α ∈ L \K ;

r =
r1

rα(P1)
r2

rα(P2)
min(rα(P1), rα(P2))}

+
∑
{(τ, r).(P ′1 BCL P ′2)/K | P1

(α,r1)−→ P ′1 ; P2
(α,r2)−→ P ′2 ; α ∈ L ∩K ;

r =
r1

rα(P1)
r2

rα(P2)
min(rα(P1), rα(P2))}

6.8 Weak Isomorphism and System Components

In this section we consider the implications of the weak isomorphism relation, P ≈ Q, for
the system components being modelled by P and Q. As in Section 6.4, let SysP and SysQ
denote the system components modelled by P and Q respectively. First, we consider what
it means, from the aspect of system components, to hide some action types.

Hiding may be regarded as a representation of encapsulation of function by system com-
ponents. We assume that if a system component is represented by P/{α} in the PEPA model,
then implementations of the action α are internal to this component. No other components
within the system may gain access to this instantiation of the action. In particular, even if
the component is subsequently placed in a configuration in which cooperation is required to
achieve actions of type α, the α action of P will not be available to the other component.
Thus τ actions are not visible to the environment in this sense. Nevertheless, the component
will still expend some effort to complete such actions and a delay will be incurred.

In terms of complete systems, hiding at the top level denotes those actions of the system
which are not deemed visible to an external observer. This may place limitations on the
performance measures which can be derived from the system. More often such top level
hiding will be introduced in the model, without an interpretation in terms of the system, for
the purposes of model simplification. Which action types are hidden may vary according to
the required reward structure. In effect we may transform the model to suit the experimental
frame in which it is placed.

P ≈ Q implies that there is some compact form C such that C ≤ P and C ≤ Q. Note that
we do not assume that C corresponds to any existing system component. It is the simplest
representation of the components representing SysP and SysQ.

A reducible sequence in a PEPA component corresponds to a sequence of hidden actions
in the system component which must be completed before it can engage in any other actions
accessing the same implicit resource. P ≈ Q implies that for activities which are not part
of a reducible sequence, P and Q have the same capabilities. This means that the system
components SysP and SysQ are capable of performing the same visible actions, at the same
rates, resulting in states which also enable the same visible actions. Moreover there is a
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A
def= (task1, r).(task2, s).a.A

A/L ≡ (τ, r).(τ, s).a.A/L

B
def= (task3, s).(task2, r).a.B

B/L ≡ (τ, s).(τ, r).a.B/L

L = {task1, task2, task3}

Figure 6.4: Weakly isomorphic components with different internal actions

one-to-one correspondence between the reducible sequences of the two components. Thus
SysP and SysQ engage in internal activity, of the same mean duration, at corresponding
points in their life cycles.

However the weak isomorphism relation does not tell us anything more about these internal
tasks which occupy SysP and SysQ. They may be engaged in exactly the same actions
(P = Q), the same actions in a different order, or completely different actions. For example,
consider the components A/L and B/L shown in Figure 6.4. A/L ≈ B/L although A and
B are differently occupied during the reducible sequence.

We cannot conclude, as we did when P = Q, that SysP and SysQ are the same component
in effect. The tasks undertaken by the two components may differ. However, they are
indistinguishable in terms of visible behaviour—they are capable of the same sequences of
visible activities, in the same order, with the same transition rates. Since the interactions
between components are defined only in terms of their visible behaviours it follows that SysP
and SysQ may be used interchangeably within any configuration.

6.9 Weak Isomorphism and the Markov Process

In this section we examine the relationship between the Markov processes underlying a PEPA
model with a reducible sequence and a compact form of its initial component respectively.
It is clear that these Markov processes cannot be equivalent as they do not have the same
number of states. However we will show that in some cases the steady state distributions of
the two processes are such that the same reward may be derived from each of them. There-
fore, it follows that the same rewards and performance measures may be derived from weakly
isomorphic components when certain syntactic conditions are satisfied. As a preliminary we
define a generalised semi-Markov process and discuss how a PEPA model may be used to
generate such a process.

Generalised Semi-Markov Processes

A generalised semi-Markov process (GSMP) is a process in which each state is characterised
by a set of active elements, each with an associated lifetime. A state change occurs when
an active element completes a lifetime and all interrupted elements record their residual
lifetimes. Whenever the element is again active it resumes its remaining lifetime. If the
lifetimes are exponential we may disregard the residual lifetimes, restarting each element
with a new lifetime whenever it is active.
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Definition 6.9.1 A generalised semi-Markov process (GSMP) is defined on a set of states
{x | x ∈ X}. For each x there are active elements s, from the set S, which decay at the
rate r(s, x), s ∈ S. When the active element s dies, the process moves to state x′ ∈ X with
probability p(x, s, x′). The set of active elements S may be partitioned into two sets S′ and
S?, where s ∈ S ′ if the element s has an exponentially distributed lifetime, and s ∈ S? if its
lifetime has an arbitrary general distribution.

As when generating the Markov process underlying a PEPA model, we associate a state in
the GSMP with each node in the derivation graph of the model. The active elements of the
state are the resource components of the corresponding derivative. The rate of decay of the
resource component is the sum of the rates of the activities enabled by the component. The
transition probabilities are determined by the relative probability of each activity within the
resource component. Thus in a PEPA model all the active elements will have exponentially
distributed lifetimes, i.e. s ∈ S′ for all s ∈ S. However we will consider an intermediate
system between the GSMP underlying a model and the GSMP underlying its compact form,
in which generally distributed lifetimes are introduced.

Example

Let P be a PEPA component with a single reducible sequence of length n. For convenience
we assume that this is between derivatives P

N−n and P
N
, where |ds(P )| = N+1, renumbering

derivatives if necessary. Then there are silent resource components {| (τ, r1) |}, . . . , {| (τ, rn) |}
such that P

N−n

(τ,r1)−→ P
N−n+1

(τ,r2)−→ · · · (τ,rn)−→ P
N
. Since there is only one reducible sequence,

{| (τ, r1) |} must be the only resource component of P
N−n . In general, if P

N−n has m other
resource components there will be m or more reducible sequences started by the activity
(τ, r1) (cf. P

def= Q1 BC{β} Q2 illustrated in Section 6.6).
Let C be a compact form of P , via weak component isomorphism F , with a single silent

resource component {| (τ, R) |} corresponding to the reducible sequence of P , C
N−n

(τ,R)−→ C
N−n+1,

|ds(C)| = N −n + 2. We assume that for 0 ≤ i ≤ N − n, F(Pi) = Ci and F(PN ) = C
N−n+1.

Let XP and XC denote the (exponential) GSMPs generated by P and C respectively. We
can construct a reduced form of XP , XP , if we amalgamate the states x

N−n−1, . . . , x
N−1,

corresponding to the hidden derivatives P
N−n+1 , . . . PN−1 , with x

N−n. Each silent resource
component {| (τ, r1) |}, . . . , {| (τ, rn) |}, corresponds to an active element. We concatenate
the lifetimes of these active elements to form a single active element, denoted s. The
lifetime of s is a n-stage Coxian distribution and the conditional transition probability is
p(x

N−n+1 , s, xN−1) = 1. Note that given XP , XP would be the process formed to solve the
model by the method of stages.

Insensitivity in Generalised Semi-Markov Processes

It has been established that for some GSMPs, elements with lifetimes governed by a general
distribution, such as s in XP , may be replaced by an element, such as {| (τ, R) |} in XC , with
an exponential lifetime of the same mean, without affecting the steady state behaviour. A
GSMP is said to be insensitive if its steady state distribution depends only on the mean of
distributions governing the behaviour of its elements, not their form. Therefore any process
which is identical except that the lifetime of an insensitive element is governed by a different
distribution function, but with the same mean, will exhibit the same steady state behaviour.
Thus, for the example above, if we can show that XP is insensitive in the element s, it
follows that XP and XC exhibit the same steady state behaviour.
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Conditions for insensitivity were investigated by Matthes [102], and may be expressed in
the following theorem:

Theorem 6.9.1 (Matthes) For a generalised semi-Markov process it can be shown that
the following two statements are equivalent:

1. The process is insensitive with respect to the active elements of S?. That is, the gen-
eral distributions of the lifetimes of the elements of S? can be replaced by any other
distributions with the same mean, and yet the process still retains the same steady state
distribution.

2. (the insensitivity balance equations)
When all active elements of S? are assumed to be exponentially distributed, the flux
out of each state due to the death of an element of S? is equivalent to the flux into that
state which causes the birth of that element.

The death of an element is interpreted as the element completing its lifetime and causing
a state change. In terms of the PEPA component this corresponds to one of the activities
in the resource component completing. The birth of an element occurs when there is a
transition into a state where the element is active from a state where it was inactive and had
no residual lifetime, or from a state where it completed a lifetime. In terms of the PEPA
component this corresponds to the completion of an activity by the resource component
based on the same implicit resource in a previous derivative.

In the case of XP in the example above, the insensitivity balance equation is exactly the
global balance equation for x

N−n in XC . It follows that XP and XC exhibit the same steady
state behaviour. However, the steady state behaviour of XP is the same as the steady state
behaviour of XP except that residence in any of the states x

N−n+1, . . . , x
N−1 in XP is regarded

as prolonged residence time in x
N−n in XP ,

ΠP (x
N−n) = ΠP (x

N−n) + ΠP (x
N−n+1) + · · ·+ ΠP (x

N−1)

We can deduce that, for all 0 ≤ i ≤ N − n,

ΠP(xi) = ΠC(F(xi)) and ΠP (xN) = ΠC(F(xN))

where the weak component isomorphism, F , is defined for the underlying state spaces in
the obvious way. Since rewards are attached to visible activities and no visible activities are
active when P is engaged in the reducible sequence, or C is engaged in the activity (τ, R),
it follows that the rewards derived from P and C will be the same.

In the following section we establish when the insensitivity balance equations are satisfied
by an arbitrary PEPA model with more than one reducible sequence in its derivation graph.
As in the simple example above, we will introduce an intermediate GSMP with an active
element with a Coxian lifetime for each reducible sequence. We will show that the reward
derived from the model and its compact form will be the same provided the insensitivity
balance equations are satisfied by the GSMP corresponding to the compact form.

6.9.1 Insensitivity of Reducible Sequences

Let S be a PEPA model with N reducible sequences within its derivation graph. We assume
that T is a compact form of S, via the weak component isomorphism G. Let XS and XT
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denote the (exponential) GSMPs generated by S and T respectively. As previously, we con-
struct a reduced form of XS , XS, in which each state corresponding to a hidden derivative in
the derivation graph of S is amalgamated with its silent precedent. The lifetime of the silent
resource component starting the sequence, denoted sj , 1 ≤ j ≤ N , becomes the concaten-
ation of the lifetimes of each of the silent resource components within the sequence. Note
that all other active elements associated with a state corresponding to a hidden derivative
are also active in the state corresponding to its silent precedent, by definition.

In [45], Henderson and Lucic state that in order to ensure insensitivity of a GSMP it is
sufficient if a state change cannot activate or kill two generally distributed active elements
simultaneously, and interrupted generally distributed active elements carry over their residual
lifetimes to the next state.

Since we assume a preemptive resume execution strategy for cooperating components,
and therefore resource components, it follows that interrupted generally distributed active
elements, sj, carry over their residual lifetimes to the next state (different resource compon-
ents must arise in different cooperating components). Two such elements, sk and sj say,
cannot die simultaneously. If they are simultaneously active they must belong to different
resource components and as such can only interrupt each other. Moreover, there will be a
race condition between them and the continuous nature of the distributions ensures that the
probability of their simultaneous completion is zero.

The requirement that two active elements with generally distributed lifetimes cannot be
simultaneously activated is not necessarily satisfied by a PEPA model. For example, consider
a component P BC

L
Q in which both P and Q enable reducible sequences immediately after

a shared activity. In the reduced GSMP representing P BC
L

Q, in which hidden derivatives
have been removed, the state change brought about by the completion of the shared activity
will activate both sP and sQ, active elements with generally distributed lifetimes. However
this is the only way in which two such active elements may be simultaneously activated,
since to be simultaneously active they must belong to different resource components. Such
instances can be easily identified, and excluded.

Theorem 6.9.2 If PEPA model S has compact form T , and S is such that reducible se-
quences are enabled by the same resource component, by resource components in parallel
components, or by resource components in cooperating components but preceded by individual
activities, then the reward derived from S will be the same as the reward derived from T .

Proof Let XS and XT be the GSMPs generated by S and T respectively, and construct
the reduced form of XS , XS , as previously. We assume that there are N reducible sequences
in the derivation graph of S and that for each 1 ≤ j ≤ N , the sequence has length nj and
runs between derivatives Sj1 and Sjnj . We denote the set of derivatives of S0 which do not
belong to any reducible sequence by dsNR(S0), i.e. Si ∈ dsNR(S0) implies that i 6= jk for all
k, 1 ≤ k ≤ nj − 1 and for all j, 1 ≤ j ≤ N . Let xi denote the state of XS corresponding to
Si ∈ ds(S0), and xG(i) denote the state of XT corresponding to G(Si) = TG(i) ∈ ds(T0).

Since no reducible sequences of S are enabled by resource components in cooperating
components immediately following a shared activity, it follows that no active elements with
generally distributed lifetimes in XS can be simultaneously activated. Thus we see that XS

is insensitive to all its active elements with generally distributed lifetimes, and that XS and
XT exhibit the same steady state behaviour, i.e. for all Si ∈ dsNR(S0),

ΠS(xi) = ΠT (xG(i)) (9.2)
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Moreover, if xj1 is the start of a reducible sequence between xj1 and xjnj , by definition,

ΠS(xj1) =
nj−1∑
k=1

ΠS(xjk) (9.3)

Recall that the reward associated with a derivative is the sum of the rewards attached
to activities which the derivative enables. If we consider all the hidden derivatives in the
jth reducible sequence, Sj2 , . . . , Sjnj−1 , by definition they all enable the same activities as
the starting derivative Sj1 . Thus, the reward associated with each of them is the same, ρj
say. Moreover, the same reward will be associated with the corresponding derivative of T ,
G(Sj1) = TG(j1) ∈ ds(T0). By definition the total reward associated with T , RT , is

RT =
∑

TG(i)∈ds(T0)

ρG(i) ΠT (xG(i))

Similarly, the total reward associated with S, RS, is

RS =
∑

Si∈ds(S0)

ρi ΠS(xi) =
∑

Si∈dsNR(S0)

ρi ΠS(xi) +
N∑
j=1

nj−1∑
k=1

ρjk ΠS(xjk)

=
∑

Si∈dsNR(S0)

ρi ΠS(xi) +
N∑
j=1

ρj

nj−1∑
k

ΠS(xjk)

=
∑

Si∈dsNR(S0)

ρi ΠT (xG(i)) +
N∑
j=1

ρj ΠT (xG(j1)) (9.4)

It follows, by equations 9.2 and 9.3, that RS = RT . That is, the total rewards derived from
the model, S, and its compact form, T , are the same. �

Corollary 6.9.1 If P ≈ Q and the reducible sequences of P and Q satisfy the conditions of
Theorem 6.9.2, then any performance measures derived from P and Q via a reward structure
are the same.

Proof It follows immediately from the definition of ≈ and Theorem 6.9.2 that the rewards
derived from P and Q will be identical and the result follows. �

6.10 Weak Isomorphism for Model Simplification

In the previous section it was shown that given a reward structure expressed in terms of
activities, weakly isomorphic components will generate the same reward. In particular the
same performance measures may be derived from a model and its compact form. The size
of the derivative set of a compact form is never larger than the size of the derivative set of
the model it reduces, i.e. C ≤ P implies that |ds(C)| ≤ |ds(P )|. This suggests the use of
weak component isomorphisms for model simplification, resulting in state space reduction.

6.10.1 An Approach to Model Simplification

In this section we outline how weak isomorphism and the identification of a compact form
for model components may be used as a model simplification technique. The approach
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which we propose involves the identification of reducible sequences within components of a
complete model. A component will be replaced by a compact form as long as the conditions
of Theorem 6.9.2 are satisfied. Since weak isomorphism is preserved by cooperation, the
modified model will be weakly isomorphic to the original model, although it is not necessarily
a compact form of the original model as there may be other reducible sequences which have
not been reduced.

As remarked in Section 6.8, hiding at the top level of a PEPA model may be introduced to
reflect the experimental frame in which the model is currently viewed. Thus any activities
to which rewards are not attached may be hidden. Using the equational laws of Propos-
itions 6.3.2 and 6.3.3, the PEPA component representing the model may be manipulated
into a form in which the reducible sequences are apparent. In particular hiding operators
are moved inside cooperation combinators whenever possible.

As different performance measures are derived from rewards attached to different activities
it may be possible to produce different simplified models according to the performance
measure currently under consideration. For very large models, producing separate models to
calculate each performance measure may be more efficient than solving a single large model
suitable for calculating all the performance measures at once.

6.10.2 Simplifying an MSMQ Model using Weak Isomorphism

In this section we illustrate the technique outlined in the previous section with one of the
case studies introduced in Chapter 4. Consider again the embedded MSMQ system shown
in Figure 4.12:

System
def=

(Comp1 ‖ Comp2 ‖ Comp3) BC
{walk Ej,

walk Fj ,servej}

(S1 ‖ S1)

 /L (1 ≤ j ≤ N)

where L = {accept2, accept3, pack2, pack3, walk Ej, walk Fj}. By Proposition 6.3.3 we know
that this is isomorphic to((Comp1 ‖ Comp2 ‖ Comp3)/L1) BC

{walk Ej ,

walk Fj,servej}

((S1 ‖ S1)/L1)

 /L2

where L1 = {accept2, accept3, pack2, pack3} and L2 = {walk Ej , walk Fj}. Continuing in
this way, applying Proposition 6.3.3 and 6.3.2, we can see that this is isomorphic to(Comp1 ‖ (Comp2/L12) ‖ (Comp3/L13)) BC

{walk Ej ,

walk Fj,servej}

(S1 ‖ S1)

 /L2

where L12 = {accept2, pack2} and L13 = {accept3, pack3}. Then

Comp2/L12 = (Node20/L12) BC
{in,serve2}

(Gen20/L12)

= Node20 BC
{in,serve2}

(Gen20/{accept2, pack2})

and by Proposition 6.3.2,

Gen20/{accept2, pack2} = (τ, λ).(τ, p).(Gen21/{accept2, pack2}).
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Nodej0
def= (in,>).Nodej1 + (walk Ej, e).Nodej0 1 ≤ j ≤ N

Nodej1
def= (walk Fj, e).Nodej2

Nodej2
def= (servej,>).Nodej0 + (walk Ej, e).Nodej2

Gen10
def= (accept1, λ).(pack1, p).Gen11

Gen11
def= (in, d). ((serve1, w1>).Gen11 + (serve1, w2>).Gen10)

Gen′j0
def= (τ, λp).Gen′j1 λp = (λ p)/(λ + p) j = 2, 3

Gen′j1
def= (in, d).

(
(servej, w1>).Gen′j1 + (servej, w2>).Gen′j0

)
where w1 = M − 1, w2 = 1 (M is mean no. of packets/message)

Comp1
def= Node10 BC

{in,serve1}
Gen10

Comp′2
def= Node20 BC

{in,serve2}
Gen′20

Comp′3
def= Node30 BC

{in,serve3}
Gen′30

Sj
def= (walk Ej, ω).Sj⊕1 + (walk Fj, ω).(servej , µ).Sj⊕1

where j ⊕ 1 = 1 when j = N
when N = 3:
System′

def= (Comp1 ‖ Comp′2 ‖ Comp′3) BC
{walk Ej,

walk Fj ,servej}

(S1 ‖ S1)/{walk Ej, walk Fj}

for 1 ≤ j ≤ N

Figure 6.5: Modified PEPA model of the enhanced MSMQ system, System′

Thus there is a reducible sequence within the component Gen20/L12. Similarly there will
be a reducible sequence in the component Gen30/L13:

Gen30/{accept3, pack3} = (τ, λ).(τ, p).(Gen21/{accept3, pack3}).

We can construct the compact form of Gen20/L12 as follows:

Gen′20
def= (τ, λp).Gen′21

Gen′21
def= (in, d).

(
(servej , w1>).Gen′21 + (servej, w2>).Gen′20

)
where λp = (λp)/(λ + p), and we construct Gen′30, the compact form corresponding to
Gen30/L13 similarly.

Since these components are in parallel composition with each other the conditions of
Theorem 6.9.2 are satisfied if we replace Gen20 and Gen30 by their respective compact forms
and consider the modified model, System′, shown in Figure 6.5.

Recall that in Section 4.4.5 we saw that the Markov process underlying the model System
had 888 states. In contrast the weakly isomorphic model System′ has only 542 states.
The same performance measures were calculated for the model using the parameter values
shown in Table 6.1. The difference in values derived from this model and the original model,
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mean no. packets accept pack τ in walk E and walk F serve
M λ p λp d min(e, ω) µ

5− 25 1/20 1/10 1/30 20 10, 25 1.0

Table 6.1: Parameter values assigned to System′

System, were found to be less than 0.001%. This error is attributed to the numerical
technique used to solve the model in each case. The mean transmission time as message
length varies as before is shown in Figure 6.6, for walk rates 10 and 25.

w=10

w=25

message length
252015105

delay

45

40

35

30

25

20

15

Figure 6.6: Mean message transmission time plotted against mean number of packets per
message and walk rates



Chapter 7

Strong Bisimilarity

7.1 Introduction

In this chapter we develop a strong bisimulation, based on the labelled multi-transition
system for PEPA developed in Chapter 3, and examine some of its properties. The strong
bisimulation relation aims to capture the idea that strongly bisimilar components are able to
perform the same activities, resulting in derivatives that are themselves strongly bisimilar.
In Section 7.2 we show how this property may be expressed in the definition of a strong
bisimulation relation. Strong bisimilarity is then defined as the largest relation satisfying
the conditions of a strong bisimulation relation.

The rest of the chapter is concerned with the properties exhibited by the strong bisimilarity
relation, ∼. In Section 7.3 the relation is investigated from a process algebra perspective.
In particular it is shown that strong bisimilarity is a congruence relation for PEPA. The
implications of strong bisimilarity for the system components being modelled are discussed
in Section 7.4. The relationship between strong bisimilarity and the underlying Markov
process is examined in Section 7.5, as we investigate whether the partition induced by the
relation forms a suitable basis for exact aggregation. This is found not to be the case.

Finally in Section 7.6 we suggest how strong bisimilarity may be used as a model simplific-
ation technique. The relation is used to find components which exhibit the same activities.
These may then be subjected to a simple further test to ensure that the behaviours of the
components are indeed the same. Then if one component has a smaller derivative set it may
replace the other component in a PEPA model and reduce the state space of the underlying
Markov process. We demonstrate this use of strong bisimilarity for state space reduction on
one of the MSMQ models developed in Chapter 4.

7.2 Definition of Strong Bisimilarity

As explained in Section 5.2, a bisimulation is intended to capture the idea of identical
observed behaviour. Of course we must clarify which aspects of behaviour may be witnessed
by the observer and the context in which the observation takes place. In terms of PEPA we
have several choices of how “observant” we allow the observer to be. For example, can the
observer record the rate of each activity or only the apparent rate of each action type? Can
the observer remember the relative frequency with which alternative activities, or possible
derivatives, occur in a race condition from a given component? Does the observer record the
sojourn time in each component?

97
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An alternative way to think about the strong bisimulation relation is in terms of the
labelled multi-transition system used to give an operational semantics to the language. From
this perspective, two components are strongly bisimilar if they are capable of exactly the
same activities, and the resulting derivatives are also strongly bisimilar. When, as in PEPA,
the labelled transition system generates a multigraph, the multiplicity of each activity should
also be considered.

The definition of strong bisimulation we present in this chapter aims to be a simple exten-
sion of the strong bisimulation of CCS to PEPA. Recall that in CCS two agents are strongly
bisimilar if any α action of one can be matched by an α action of the other; moreover every
α-derivative of one is strongly bisimilar to some α-derivative of the other. Thus for PEPA we
replace actions by activities and place the same requirement on derivatives. However, note
that this does not impose any condition on the multiplicities of activities in components.
For example this would lead to an equivalence in which P +P is considered equivalent to P ,
although the first component, P + P , would appear to act twice as fast as P . The simplest
way to avoid this problem is to place an additional condition on the strong bisimulation
ensuring that the apparent rate of all action types is the same in the two components. Thus,
in keeping with both CCS and Markov processes, we imagine an observer who bases his
comparison on the current behaviour and has no memory of the previous behaviour of the
components. In particular there is no consideration of the relative frequency, or probability,
of transitions or derivatives.

Definition 7.2.1 A binary relation, R ⊆ C × C, over components is a strong bisimulation
if (P, Q) ∈ R implies, for all α ∈ A,

i) rα(P ) = rα(Q);

and for all a ∈ Act,

ii) Whenever P
a−→ P ′ then, for some Q′, Q

a−→ Q′, and (P ′, Q′) ∈ R;

iii) Whenever Q
a−→ Q′ then, for some P ′, P

a−→ P ′, and (P ′, Q′) ∈ R.

Any component is trivially a member of a strong bisimulation since the identity relation
satisfies all the conditions of the Definition 7.2.1. Similarly, we can see that, since the condi-
tions are all symmetric, if R is a strong bisimulation then R−1 is also a strong bisimulation.
The conditions are also transitive and preserved by union. Thus we can state the following
proposition:

Proposition 7.2.1 Assume that each Ri (i = 1, 2, . . . ) is a strong bisimulation. Then the
following relations are all strong bisimulations:

(1) IdC (3) R1R2

(2) R−1
i (4)

⋃
i∈IRi

Proof The proof follows trivially from the Definition 7.2.1. �
We may now define the strong bisimilarity relation ∼.

Definition 7.2.2 P and Q are strongly bisimilar, written P ∼ Q, if (P, Q) ∈ R for some
strong bisimulation R.

∼ =
⋃
{R : R is a strong bisimulation}
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It follows immediately from the definition and the Proposition 7.2.1 that ∼ is itself a strong
bisimulation, that it is the largest such relation and that it is an equivalence relation.

In general, in order to show that P ∼ Q we must find a strong bisimulation relationR such
that (P, Q) ∈ R. As this involves considering all the derivatives of P and Q and their possible
activities this may be a non-trivial task. However we can define a weaker relation, strong
bisimulation up to ∼, which takes advantage of equivalence classes induced on the derivative
set of each component by the ∼ relation. Then two components satisfy the relation R if the
activities and apparent rates of action types are matched, and each a-derivative belongs to
an equivalence class which has an element which is inR with some element of an equivalence
class, containing an a-derivative, in the other component’s derivative set.

Definition 7.2.3 R is a strong bisimulation up to ∼ if P R Q implies for all α ∈ A,

i) rα(P ) = rα(Q);

and for all a ∈ Act,

ii) Whenever P
a−→ P ′ then, for some Q′, Q

a−→ Q′, and P ′ ∼ R ∼ Q′;

iii) Whenever Q
a−→ Q′ then, for some P ′, P

a−→ P ′, and P ′ ∼ R ∼ Q′.

Proposition 7.2.2 shows that in order to exhibit strong bisimilarity between components it
is sufficient to find a strong bisimulation up to ∼ between them. First, the following Lemma
is needed.

Lemma 7.2.1 If R is a strong bisimulation up to ∼, then the relation ∼ R ∼ is a strong
bisimulation.

Proof Let P ∼ R ∼ Q. Then there are derivatives P1 ∈ ds(P ) and Q1 ∈ ds(Q) such
that P ∼ P1 R Q1 ∼ Q. Considering the activities of P and Q the diagrams below can be
inferred:

∼P ′ P ′1

∼P P1

? ?

a a

rα(P ) = rα(P1)

P ′1 Q′1R∼ ∼

RP1 Q1

� ^

a a

rα(P1) = rα(Q1)

∼Q′1 Q′

∼Q1 Q

? ?

a a

rα(Q1) = rα(Q)

Recall that ∼, as an equivalence relation, is transitive, and compose these diagrams to obtain:

P ′ Q′R∼ ∼

P QR∼ ∼

? ?

a a

rα(P ) = rα(Q)

as required. �

Proposition 7.2.2 If R is a strong bisimulation up to ∼ then R ⊆ ∼.
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Proof Since, by Lemma 7.2.1, ∼ R ∼ is a strong bisimulation, it follows that ∼ R ∼ ⊆ ∼.
But recall that IdC ⊆ ∼, so R ⊆ ∼ R ∼. Consequently, we conclude that R ⊆ ∼. �

We will make use of this result when we prove that ∼ is a congruence relation.

7.3 Properties of the Strong Bisimilarity Relation

In this section we investigate the properties of the strong bisimilarity relation in a process
algebra context. We prove that strong bisimilarity is a congruence relation by showing that
it is preserved by the combinators of the language and by recursive definitions. We also show
that any isomorphic components are strongly bisimilar.

7.3.1 Strong Bisimilarity as a Congruence

In order to show that strong bisimilarity is a congruence for PEPA we must show that the
relation is preserved by each of the combinators of the language. For example, this means
that if P1 is strongly bisimilar to P2, we may replace P1 in a component P1 BC

L
Q by P2 and

be confident that the activities of the component remain the same.

Proposition 7.3.1 (Preservation by Combinators)
Let P1 ∼ P2, then

1. a.P1 ∼ a.P2;

2. P1 + Q ∼ P2 + Q;

3. P1 BC
L

Q ∼ P2 BC
L

Q;

4. P1/L ∼ P2/L.

Proof
1. The only possible activity of a.P1 or a.P2 is a, where a = (α, r) for some action type α

and rate r. Thus it is clear that for all β ∈ A,

rβ(a.P1) =
{

r if β = α
0 if β 6= α

}
= rβ(a.P2)

Moreover, these derivatives, P1 and P2, are themselves bisimilar, P1 ∼ P2, by the
hypothesis. Consequently a.P1 ∼ a.P2.

2. Consider P1 + Q and P2 + Q. Recall that for any P and Q, and for all α ∈ A,
rα(P + Q) = rα(P ) + rα(Q). Thus, since by the hypothesis rα(P1) = rα(P2) for all
α ∈ A, we conclude that rα(P1 + Q) = rα(P2 + Q) as required.
Now suppose P1 + Q

a−→ P ′. Then

Case 1 P1
a−→ P ′; since P1 ∼ P2 then, for some P ′′, P2

a−→ P ′′, and P ′ ∼ P ′′. It
follows that P2 + Q

a−→ P ′′, and P ′ ∼ P ′′.

Case 2 Q
a−→ P ′. Then P2 + Q

a−→ P ′ and P ′ ∼ P ′.

The result follows by symmetry.
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3. Consider P1 BC
L

Q and P2 BC
L

Q and define a relation R as follows

R = {(Q1 BC
L

Q, Q2 BC
L

Q) | Q1 ∼ Q2}.

Recall that for any P and Q, and for all α ∈ A,

rα(P BC
L

Q) =
{

min(rα(P ), rα(Q)) if α ∈ L
rα(P ) + rα(Q) if α /∈ L

By definition (P1 BC
L

Q, P2 BC
L

Q) ∈ R. Moreover, since for all α ∈ A, rα(P1) = rα(P2),
it follows that rα(P1 BC

L
Q) = rα(P2 BC

L
Q), for all α ∈ A.

Consider P1 BC
L

Q
a−→ R, where a = (α, r).

Case 1 P1
a−→ P ′1 and R ≡ P ′1 BCL Q, α /∈ L.

Since P1 ∼ P2 there is a P ′2 such that P2
a−→ P ′2, and P ′1 ∼ P ′2. Thus, if R′ ≡ P ′2 BCL Q,

P2 BC
L

Q
a−→ R′ and by the definition of R, (R, R′) ∈ R.

Case 2 Q
a−→ Q′ and R ≡ P1 BC

L
Q′, α /∈ L. Similar to Case 1.

Case 3 α ∈ L and P1
(α,r1)
−−−→ P ′1, Q

(α,r2)
−−−→ Q′, R ≡ P ′1 BCL Q′.

Then r = r1
rα(P1)

r2
rα(Q) min(rα(P1), rα(Q)).

Since P1 ∼ P2 there is a P ′2 such that P2
(α,r1)
−−−→ P ′2, and P ′1 ∼ P ′2. Therefore there is

R′ ≡ P ′2 BCL Q′ such that P2 BC
L

Q
a−→ R′.

Then, by definition, (R, R′) = (P ′1 BCL Q′, P ′2 BCL Q′) ∈ R.

It follows by symmetry that R is a strong bisimulation.
Hence, P1 BC

L
Q ∼ P2 BC

L
Q as required.

4. To show that P1/L ∼ P2/L, we define a relation R as follows:

R = {(Q1/L, Q2/L) | Q1 ∼ Q2}

and show that it is a strong bisimulation, analogously to above.

�

In the following proposition we show that sets of recursive definitions also preserve the
strong bisimilarity relation. The definition of strong bisimilarity is extended to component
expressions as follows:

Definition 7.3.1 Let E and F be component expressions, containing variables X̃ at most.
Then E ∼ F if, for all indexed sets of components P̃ , E{P̃ /X̃} ∼ F{P̃ /X̃}.

This proposition, together with Proposition 7.3.1, shows that ∼ is a congruence.

Proposition 7.3.2 (Preservation by Recursive Definition)
Let Ẽ and F̃ contain variables X̃ at most. Let Ã

def= Ẽ{Ã/X̃}, B̃
def= F̃{B̃/X̃} and Ẽ ∼ F̃ .

Then Ã ∼ B̃.
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Proof It is sufficient to show the result for single recursion equations E and F such that
E ∼ F , where A

def= E{A/X} and B
def= F{B/X}. We construct a relation R as follows,

R = {(G{A/X}, G{B/X}) | G contains at most variable X}

and show thatR is a strong bisimulation up to∼. First we show by induction on the maximal
depth of inference that, for an arbitrary activity type α, the apparent rate of activities of
type α in G{A/X} and G{B/X} are the same, i.e. rα(G{A/X}) = rα(G{B/X}). The
possible forms of G are considered separately; the case G ≡ X is omitted since the apparent
rate is not defined for unguarded variables.

Case 1 (Base Case): G ≡ (β, r).G′

Then G{A/X} ≡ (β, r).G′{A/X} and rα(G{A/X}) =
{

r if α = β
0 otherwise.

Similarly we can see that rα(G{B/X}) =
{

r if α = β
0 otherwise.

Thus it follows immediately that rα(G{A/X}) = rα(G{B/X}).
Case 2: G ≡ G1 + G2

Then, applying the induction hypothesis and the definition of rα(·), we see that

rα(G{A/X}) = rα(G1{A/X}) + rα(G2{A/X})
= rα(G1{B/X}) + rα(G2{B/X}) = rα(G{B/X}).

Case 3: G ≡ G1 BC
L

G2

By definition,

rα(G{A/X}) =
{

rα(G1{A/X}) + rα(G2{A/X}) if α /∈ L
min(rα(G1{A/X}), rα(G2{A/X})) if α ∈ L.

Thus, by the induction hypothesis, since G1 and G2 must have a shorter maximal depth of
inference rα(G{A/X}) = rα(G{B/X}) as required.

Case 4: G ≡ G′/L
If α ∈ L then clearly, rα(G{A/X}) = 0 = rα(G{B/X}).
Otherwise rα(G{A/X}) = rα(G′{A/X}) and the result follows by induction.

Case 5: G ≡ C where C is constant.
Then C is associated with some component definition, C

def= S. Therefore, it follows that
rα(G{A/X}) = rα(S) = rα(G{B/X}).

Since α was arbitrary, we have shown that (G{A/X}, G{B/X}) ∈ R implies that for all
α ∈ A, rα(G{A/X}) = rα(G{B/X}).

Now we show that any activity of G{A/X} can be matched by an activity of G{B/X}.
Consider an arbitrary activity, a ∈ Act(G{A/X}), such that G{A/X} a−→ P ′. We will use
transition induction on the depth of inference by which the activity a is inferred to show
that there exist Q′′ and Q′ such that G{B/X} a−→ Q′′ ∼ Q′ and (P ′, Q′) ∈ R.

The possible forms of G are considered separately.

Case 1: G ≡ a.G′

Then G{A/X} ≡ a.G′{A/X} and P ′ ≡ G′{A/X}.
Similarly G{B/X} ≡ a.G′{B/X} a−→ G′{B/X} where, (G′{A/X}, G′{B/X}) ∈ R, by
definition.
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Case 2: G ≡ X
Then G{A/X} ≡ A, and A

a−→ P ′. It follows that E{A/X} a−→ P ′, by a shorter depth
of inference. By the induction hypothesis, we can assume that there exist Q′′ and Q′, such
that E{B/X} a−→ Q′′ ∼ Q′ with (P ′, Q′) ∈ R.
Since E ∼ F , there exists Q′′′ such that F{B/X} a−→ Q′′′ ∼ Q′.
However B

def= F{B/X} and G{B/X} ≡ B which means that the activities of G{B/X} are
exactly the activities of F{B/X}, so G{B/X} a−→ Q′′′ ∼ Q′ with (P ′, Q′) ∈ R as required.

Case 3: G ≡ G1 + G2

Then G{A/X} ≡ G1{A/X} + G2{A/X}, and the activity G{A/X} a−→ P ′ may be due
to either component. These cases, G1{A/X} a−→ P ′ and G2{A/X} a−→ P ′, are considered
separately. Since each of these transitions has a shorter depth of inference the proof is a
straightforward application of the induction hypothesis, which is omitted here.

Case 4: G ≡ G1 BC
L

G2

Then G{A/X} ≡ G1{A/X}BC
L

G2{A/X}. Let us consider some activity a = (α, r), such
that G{A/X} a−→ P ′. It may arise in three distinct ways: α /∈ L, a an individual activity
of G1{A/X}; α /∈ L, a an individual activity of G2{A/X}; and α ∈ L, a a shared activity
of G1{A/X} and G2{A/X}. Here we present only the third case, the other two are similar.

Case 4.3 α ∈ L : G1{A/X}
(α,r1)
−−−→ P ′1, G2{A/X}

(α,r2)
−−−→ P ′2, P ′ ≡ P ′1 BCL P ′2.

r =
r1

rα(G1{A/X})
r2

rα(G2{A/X}) min(rα(G1{A/X}), rα(G2{A/X}))

As the transitions of G1 and G2 have a shorter depth of inference, by induction there exist
Q′′1 and Q′1, and Q′′2 and Q′2 such that,

G1{B/X}
(α,r1)
−−−→ Q′′1 ∼ Q′1, G2{B/X}

(α,r2)
−−−→ Q′′2 ∼ Q′2

such that (P ′1, Q
′
1) ∈ R, and (P ′2, Q

′
2) ∈ R. Thus, setting Q′′ ≡ Q′′1 BCL Q′′2 and Q′ ≡ Q′1 BCL Q′2

we obtain G{B/X} a′−→ Q′′ ∼ Q′ where a′ = (α, rB). But rα(G1{A/X}) = rα(G1{B/X})
and rα(G2{A/X}) = rα(G2{B/X}) so it follows that

rB =
r1

rα(G1{B/X})
r2

rα(G2{B/X}) min(rα(G1{B/X}), rα(G2{B/X})) = r

Since (P ′1, Q
′
1) ∈ R we can find H1 such that P ′1 ≡ H1{A/X}, and Q′1 ≡ H1{B/X}. Similarly

we can find H2 such that P ′2 ≡ H2{A/X} and Q′2 ≡ H2{B/X}.
Consequently, setting H ≡ H1 BC

L
H2, we see that

(P ′, Q′) ≡ (H{A/X}, H{B/X}) ∈ R

Case 5: G ≡ G′/L
We consider the cases for transitions of G′ being hidden or not, separately. Since all trans-
itions of G are derived from transitions of G′ which have a shorter depth of inference, the
proof is a straightforward application of the induction hypothesis and is omitted here.

Case 6: G ≡ C where C is a constant
Suppose that C is associated with some definition C

def= S. Since X does not appear in G,
G{A/X} and G{B/X} are both identical to C. Consequently, both will have the same
a-derivative P ′, where (P ′, P ′) ≡ (P ′{A/X}, P ′{B/X}) ∈ R as required.
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Thus we have shown that every activity of G{A/X} is matched by G{B/X}, and by
a symmetric argument we can see that every activity of G{B/X} is similarly matched by
G{A/X}. It follows that the relation

R = {(G{A/X}, G{B/X}) | G contains at most variable X}

is a strong bisimulation up to ∼. Consequently, if we take G ≡ X, it follows that A ∼ B as
required. �

7.3.2 Isomorphism and Strong Bisimilarity

In Section 6.2 the concept of isomorphic components was introduced. Two components are
isomorphic if they generate derivation graphs which have the same structure. Such compon-
ents differ only in the naming of derivatives. In the following proposition we establish that
isomorphism between components is a stronger relation between components than strong
bisimilarity, i.e.,

= ⊂ ∼ . (3.1)

Lemma 7.3.1 If F is a component isomorphism then for any P , P ∼ F(P ).

Proof Since F is a component isomorphism we know that it is an injective function with
Act(P ) = Act(F(P )), and for all a ∈ Act the a-derivatives of F(P ) are the same as the F -
images of a-derivatives of P . Thus it is clear that P and F(P ) enable the same activities, in
the same multiplicities , so all activities of P and F(P ) are matched and the apparent rates
of all action types are the same in the two components. It follows by structural induction on
the structure of P , and Proposition 7.3.1 that every a-derivative of P is strongly bisimilar
to an a-derivative of F(P ). �

Proposition 7.3.3 If P and Q are isomorphic components then P ∼ Q.

Proof This follows immediately from the Lemma. �
From this we can deduce that the equational laws stated for isomorphic components in

Section 6.3 can be restated with “=” replaced by “∼”.

Corollary 7.3.1 (Choice)

1. P + Q ∼ Q + P

2. P + (Q + R) ∼ (P + Q) + R

Corollary 7.3.2 (Hiding)

1. (P + Q)/L ∼ P/L + Q/L

2. ((α, r).P )/L ∼
{

(τ, r).P/L α ∈ L
(α, r).P/L α /∈ L

3. (P/L)/K ∼ P/(L ∪K)

4. P/L ∼ P if L ∩ ~A(P ) = ∅
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Corollary 7.3.3 (Cooperation)

1. P BC
L

Q ∼ Q BC
L

P

2. P BC
L

(Q BC
L

R) ∼ (P BC
L

Q)BC
L

R

3. (P BC
L

Q)/(K ∪M) ∼
(
(P/K) BC

L
(Q/K)

)/
M where K ∩M = K ∩ L = ∅

4. P BC
K

Q ∼ P BC
L

Q if K ∩ ( ~A(P ) ∪ ~A(Q)) = L

5. (P BC
L

Q)BC
K

R ∼
P BC

L
(Q BC

K
R) if ~A(R) ∩ L \K = ∅ ∧ ~A(P ) ∩K \L = ∅

QBC
L

(P BC
K

R) if ~A(R) ∩ L \K = ∅ ∧ ~A(Q)∩M \L = ∅

Corollary 7.3.4 (Constant)
If A

def= P then A ∼ P .

Corollary 7.3.5 (The Expansion Law)
Let P ≡ (P1 BC

L
P2)/K with L, K ⊂ A. Then

P ∼
∑
{(α, r).(P ′1 BCL P2)/K | P1

(α,r)−→ P ′1 ; α /∈ L ∪K}

+
∑
{(α, r).(P1 BC

L
P ′2)/K | P2

(α,r)−→ P ′2 ; α /∈ L ∪K}

+
∑
{(τ, r).(P ′1 BCL P2)/K | P1

(α,r)−→ P ′1 ; α ∈ K \ L}

+
∑
{(τ, r).(P1 BC

L
P ′2)/K | P2

(α,r)−→ P ′2 ; α ∈ K \ L}

+
∑
{(α, r).(P ′1 BCL P ′2)/K | P1

(α,r1)−→ P ′1 ; P2
(α,r2)−→ P ′2 ; α ∈ L \K ;

r =
r1

rα(P1)
r2

rα(P2)
min(rα(P1), rα(P2))}

+
∑
{(τ, r).(P ′1 BCL P ′2)/K | P1

(α,r1)−→ P ′1 ; P2
(α,r2)−→ P ′2 ; α ∈ L ∩K ;

r =
r1

rα(P1)
r2

rα(P2)
min(rα(P1), rα(P2))}.

Note that it is easy to construct components which are strongly bisimilar but not iso-
morphic, showing that the relation in equation 3.1 is “⊂” and not “⊆”. For example, it is
straightforward to verify that the relation,

R = {(A0, B0), (A1, B1), (A0, B2), (A1, B3)}, (3.2)

is a strong bisimulation for the components A and B shown in Figure 7.1. However, there
can be no isomorphism between the derivative sets of A and B since they do not have the
same number of elements. Thus A ∼ B but A 6= B.

A0
def= a.A1

A1
def= b.A0

B0
def= a.B1

B1
def= b.B2

B2
def= a.B3

B3
def= b.B0

Figure 7.1: An example to show A ∼ B does not imply A = B
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7.4 Strong Bisimilarity and System Components

In this section we consider what the relation P ∼ Q tells us about the system components
modelled by the PEPA components P and Q. Let SysP and SysQ denote the system
components modelled by P and Q respectively and assume that P ∼ Q. It is clear from
the definition of strong bisimulation that the action sets, the activity multisets and the exit
rates of the two components are equal.

A(P ) = A(Q) Act(P ) = Act(Q) q(P ) = q(Q) (4.3)

In terms of the system components SysP and SysQ this means that under observation they
appear to carry out the same actions, at the same rates and that their average delay before
performing some action will be the same. Moreover we can deduce from equation 4.3 that
the probability (or relative frequency) that the action performed will have a given type will
be the same in the two components, SysP and SysQ.

The strong bisimulation relation between P and Q ensures that the same relation must
exist between matching derivatives, i.e. if P

a−→ P ′ there must be some Q′ such that Q
a−→ Q′

and P ′ ∼ Q′. This implies that any sequence of activities which can be performed by P can
also be performed by Q. Thus if we consider the system components SysP and SysQ the
possible sequences of actions that they can perform are the same. However we cannot draw
conclusions about the relative frequencies of these sequences of actions. When the same
activity in a PEPA component may result in different derivatives the strong bisimilarity
relation does not necessarily tell us anything about the relative frequency of these different
outcomes of the activity, or even the transition rates between derivatives. For example
consider the simple components in Figure 7.2. It is straightforward to verify that the relation
R = {(P, Q), (P ′, Q′)} is a strong bisimulation since, assuming a = (α, ra) and b = (β, rb),

rγ(P ) =
{

3ra γ = α
0 γ 6= α

}
= rγ(Q) rγ(P

′) =
{

rb γ = β
0 γ 6= β

}
= rγ(Q

′)

and the activities can be matched in the pairs:{
P

a−→ P

Q
a−→ Q

} {
P

a−→ P ′

Q
a−→ Q′

}  P ′
b−→ P

Q′
b−→ Q


However if we consider the transition rates between the derivatives of P and Q respectively,

q(P, P ) = 2ra q(P, P ′) = ra q(P ′, P ) = rb
q(Q, Q) = ra q(Q, Q′) = 2ra q(Q′, Q) = rb.

P
def= a.P + a.P + a.P ′

P ′
def= b.P

Q
def= a.Q + a.Q′+ a.Q′

Q′
def= b.Q

Figure 7.2: Strongly bisimilar components with different transition rates



7.5. STRONG BISIMILARITY AND THE MARKOV PROCESS 107

In terms of the system components SysP and SysQ this implies that continued observation
of the two systems would distinguish between them since β actions will occur less frequently
in SysP .

Multiple instances of activities with the same action type may arise in PEPA components
in two ways. Firstly, the system component being modelled might have multiple capacity
to carry out the corresponding action. For example, if the component is a cooperation of
two identical components and the action type is not in the cooperation set then there are
two different ways in which the action may occur, represented as two separate activities.
Secondly, an action in the system component may have more than one possible outcome. In
this case the PEPA component represents the single action in the system by several activities,
each with the appropriate action type and suitably adjusted activity rates to reflect the
probability of the outcome they lead to. Note that in this second case it is only when the
outcomes have equal probability that the multiple representations of the same action will
appear as multiple instances of the same activity in the PEPA component, and so potentially
cause problems. Of course, in any PEPA model combinations of these circumstances may
occur.

Since in strongly bisimilar components all activities occur with the same multiplicity, a
mismatch of transition rates can only occur when there is more than one derivative resulting
from a given activity and at least one of those derivatives may be reached by more than one
instance of the activity. In the two strongly bisimilar components this “extra” capacity to
carry out the activity leads to different derivatives, resulting in the differing transition rates.

Thus it is apparent that this näıve definition of strong bisimilarity is not strong enough
to ensure that components are indistinguishable under experimentation. On the other hand
if we can ensure that the problem discussed above does not occur, the relation is enough
to guarantee the same behaviour between components. A model simplification technique
aiming to take advantage of such circumstances is outlined in Section 7.6.

7.5 Strong Bisimilarity and the Markov Process

In this section we investigate the strong bisimilarity relation from the perspective of the
underlying Markov process, both as a model-to-model equivalence and as a state-to-state
equivalence. In particular we examine what the relation P ∼ Q tells us about the Markov
processes generated by P and Q. The partition induced by ∼ on the state space of a model
is considered but found, in general, to be an unsuitable basis for exact aggregation.

As explained in Chapter 5, two Markov processes are considered to be equivalent if they
have the same number of states and the same transition rates between those states. Unlike
isomorphic components, strongly bisimilar components will not necessarily generate equival-
ent Markov processes. For example, consider the components A and B shown in Figure 7.1
and the strong bisimulation in equation 3.2. Here, just as A and B could not be isomorphic
because the derivative sets did not have the same number of elements, the corresponding
Markov processes cannot be equivalent as they do not have the same number of states.

We will sometimes find it useful to consider a weaker form of equivalence between Markov
processes, lumpable equivalence.

Definition 7.5.1 Two Markov processes, {Xi} and {Yj}, are lumpably equivalent if there
is a lumpable partition of {Xi}, {X[i]}, and a lumpable partition of {Yj}, {Y[j]} such that
there is an injective function f which satisfies

q(X[k], X[l]) = q(Yf([k]), Yf([l])).
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Thus two Markov processes are lumpably equivalent if they have lumpable partitions with
the same number of elements and there is a one-to-one correspondence between the partitions
such that the aggregated transition rates between partitions are also matched. Note that for
any process there is a trivial lumpable partition in which every state forms a partition on
its own. We do not allow the degenerate partition in which all the states are taken to form
a single partition.

If we consider again the strongly bisimilar components A and B, shown in Figure 7.1,
we can see that the states corresponding to B0 and B2, and B1 and B2 may be combined
to form a lumpable partition of the underlying state space. Moreover using this partition
and the trivial partition on A, it is clear that the Markov processes underlying A and B are
lumpably equivalent.

However, strong bisimilarity does not imply even this weaker form of equivalence between
the corresponding Markov processes. For example, if we consider the state spaces underlying
the components P and Q shown in Figure 7.2, the only possible partitions are the trivial
or degenerate ones. Since the transition rates between strongly bisimilar derivatives are not
the same it follows that the Markov processes cannot be lumpably equivalent. Therefore we
conclude that strong bisimilarity between components does not provide sufficient information
for us to deduce any relation between the corresponding Markov processes.

Strong bisimilarity is an equivalence relation over the set of all components and as such
will induce an equivalence relation over the derivative set of any component. Thus we also
consider how strong bisimilarity between the derivatives of a single component relates to the
structure of the Markov process generated by the component. To examine strong bisimilarity
as a state-to-state equivalence we consider the partition induced by ∼ over the derivative set
of a component. Only if the partition is lumpable will the aggregated process be a Markov
process.

Recall that a partition is lumpable if for any two states within a partition class their ag-
gregated transition rates to any other partition class are the same. However we have already
seen that strong bisimilarity between components does not guarantee that the transition
rates to matching derivatives are matched. If we consider strongly bisimilar components
within a derivative set they will be elements within the same partition class induced by
∼. Thus it follows that it is possible to form such a partition so that elements within the
same class have different transition rates to other partition classes. For example, consider
the component C shown in Figure 7.3. Partitioning the derivative set by ∼ we obtain the
following partition:

C[0] = {C0} C[1] = {C1, C2} C[2] = {C3, C4}

C0
def= a.C1 + a.C2

C1
def= b.C1 + b.C3 + b.C4

C2
def= b.C2 + b.C2 + b.C4

C3
def= c.C0

C4
def= c.C0

Figure 7.3: Example of ∼ inducing a non-lumpable partition
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This is not a lumpable partition since

q(C1, C[2]) = q(C1, C3) + q(C1, C4) = 2rb
q(C2, C[2]) = q(C2, C3) + q(C2, C4) = rb

It follows that, in general, ∼ cannot be used to form lumpable partitions over the state
space of a component as a basis for exact aggregation. Of course the partitions formed by ∼
on the state space of a model could be used for aggregation but some method for calculating
the conditional probability of each of the states within each partition would have to be used
before the aggregated process could be formed.

Finally we consider whether equivalence between the underlying Markov processes allows
us to conclude anything about the strong bisimilarity, or otherwise, of the corresponding
PEPA components. As we saw in Section 6.5, a PEPA component contains information
about the action types of activities as well as activity rates and so there will always be a
loss of information in going from the PEPA component to the underlying Markov process.
Therefore it is trivial to construct components which will generate the same Markov process
but which are not strongly bisimilar. For example, consider again T1 and T2,

T1
def= (task1, r).T1 T2

def= (task2, r).T2

T1 and T2 generate the same Markov process although they are not strongly bisimilar—they
are not even isomorphic. Similarly we can construct processes which generate lumpably
equivalent Markov processes but which are not strongly bisimilar.

Augmenting the Markov process does not solve the problem since more than one activity
in the PEPA component may be represented as a single transition in the annotated Markov
process, annotated by the types of all the activities. Defining equivalent augmented Markov
processes and lumpably equivalent augmented Markov processes in the obvious way, we can
see that such processes may arise from components which are not strongly bisimilar. For
example, consider the components X and Y shown in Figure 7.4 (and Figure 6.1). Here X
and Y generate equivalent augmented Markov processes but there is no strong bisimulation
relating them.

Hence equivalences between the Markov processes, even if augmented by action types, do
not allow us to infer a strong bisimulation between the corresponding components. More
significantly, strong bisimilarity does not, in general, provide us with sufficient information
about the probabilistic behaviour of components to deduce any relation between, or within,
their underlying Markov processes.

X0
def= (α, r).X1 + (β, s).X1

X1
def= (γ, t).X0

Y0
def= (α, s).Y1 + (β, r).Y1

Y1
def= (γ, t).Y0

Figure 7.4: Components which generate the same Markov process
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7.6 Strong Bisimilarity for Model Simplification

In this section we outline the use of strong bisimilarity as a model simplification technique.
It was shown in Section 7.4 that strong bisimilarity alone is not sufficient to ensure that
components will exhibit exactly the same behaviour if observed over time. However, we
present a simple additional condition, which may be easily tested, which guarantees that
this problem with transition rates does not occur. The approach to model simplification,
based on strong bisimilarity and this condition, is outlined in Section 7.6.1 and illustrated
in Section 7.6.2.

In Section 7.4 it was remarked that a mismatch of transition rates in strongly bisimilar
components can only occur when, in at least one of the components, for some activity a,
there is more than one a-derivative and at least one of those derivatives results from more
than one a activity. The different transition rates occur because these multiple instances of
a occur with different derivatives in the two components. Thus we see that if two strongly
bisimilar components also satisfy the following condition, Condition 1, then the relative
frequencies of activity sequences within the components will be the same.
Condition 1 P satisfies the condition if, for all P ′ ∈ ds(P ), for all a ∈ Act(P ′), either

• there is only one a-derivative of P ′; or

• there is only one instance of the activity a resulting in each a-derivative of P ′.

It is straightforward to verify that if two components are strongly bisimilar and both
satisfy Condition 1 then the transition rates to derivatives which are strongly bisimilar will
be the same in the two components. Thus it follows that the probabilistic behaviour of the
two components will be the same. In particular the relative frequency of activity sequences
in the two components will be matched.

7.6.1 An Approach to Model Simplification

The approach to model simplification which we propose involves replacing a top-level com-
ponent in a PEPA model by another component which has a smaller derivative set but
equivalent behaviour. The replacement component must be strongly bisimilar to the ori-
ginal component and both components must satisfy Condition 1. Since ∼ is a congruence
relation the modified model is strongly bisimilar to the original model. Also the modified
model will satisfy Condition 1 if the original model did. Thus the behaviour of the model
is preserved, and an alternative representation of the system has been found. Moreover
since the activities of the two models are the same the reward structure will be unaffected.
Modifying the model in this way cannot increase the size of the state space of the underlying
Markov process and in most cases it will be reduced.

Thus a model may be constructed in a näıve way with each of the components of the
model represented explicitly, as in the examples shown in Chapter 4. This might result in a
model which has a large state space but using this approach it may subsequently be possible
to replace some components of the model and reduce the state space.

7.6.2 Simplifying an MSMQ Model using Strong Bisimilarity

We now illustrate the approach outlined in the previous section, using one of the case studies
presented in Chapter 4, the asymmetric MSMQ system. We reduce the state space of the
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Nodej0
def= (in, λ).Nodej1 + (walk Ej ,>).Nodej0 1 ≤ j ≤ N

Nodej1
def= (walk Fj,>).Nodej2

Nodej2
def= (servej, µj).Nodej0 + (walk Ej,>).Nodej2

where µj =
{

µ if j = 1
mµ if 1 < j ≤ N

Sj
def= (walk Fj, ω).(servej,>).Sj+1 + (walk Ej, ω).Sj+1

where j + 1 = 1 when j = N
when N = 4:
Asym

def= (Node10 ‖ Node20 ‖ Node30 ‖ Node40) BC
{walk Fj ,

walk Ej,servej}

(S1 ‖ S1)

SS{i,j}
def= (walk Fi, ω).SS{i+,j} + (walk Ei, ω).SS{i+1,j}

+ (walk Fj, ω).SS{i,j+} + (walk Ej, ω).SS{i,j+1}

SS{i+,j}
def= (servei,>).SS{i+1,j}+ (walk Ej, ω).SS{i+,j+1}+ (walk Fj, ω).SS{i+,j+}

SS{i,j+}
def= (walk Ei, ω).SS{i+1,j+}+ (walk Fi, ω).SS{i+,j+}+ (servej,>).SS{i,j+1}

SS{i+,j+}
def= (servei,>).SS{i+1,j+} + (servej,>).SS{i+,j+1}

where j + 1 = 1 when j = N ;
and i + 1 = 1 when i = N.

when N = 4:
Asym′

def= (Node10 ‖ Node20 ‖ Node30 ‖ Node40) BC
{walk Fj,

walk Ej ,servej}

SS{1,1} for 1 ≤ j ≤ 4

Figure 7.5: Original and modified PEPA models of the asymmetric MSMQ system with four
nodes

underlying Markov process by finding a simpler, strongly bisimilar, replacement for the
component representing the two servers in the system. The original and modified PEPA
models of the system are presented in Figure 7.5.

In the original model each server is modelled explicitly as a component, Sj.

Sj
def= (walk Fj, ω).(servej,>).Sj+1 + (walk Ej, ω).Sj+1

The two servers in the system are then represented as a top-level component which is the
parallel combination of two such components: S1 ‖ S1. It is this top-level component which
we replace. We take advantage of the fact that the activities which the combination of the
two servers can undertake is determined by the present location of the two servers, but not
which of them is at which location. We replace Si ‖ Sj by a single component SS{i,j} defined
as follows:

SS{i,j}
def= (walk Fi, ω).SS{i+,j}+ (walk Ei, ω).SS{i+1,j} +

(walk Fj, ω).SS{i,j+}+ (walk Ej, ω).SS{i,j+1}

SS{i+,j}
def= (servei,>).SS{i+1,j}+ (walk Ej, ω).SS{i+,j+1}+ (walk Fj, ω).SS{i+,j+}

SS{i,j+}
def= (walk Ei, ω).SS{i+1,j+}+ (walk Fi, ω).SS{i+,j+}+ (servej,>).SS{i,j+1}

SS{i+,j+}
def= (servei,>).SS{i+1,j+}+ (servej ,>).SS{i+,j+1}
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Although at first sight the component SS{i,j} appears to be more complex than Si ‖ Sj
it generates a smaller derivative set. For example, in the case N = 4, the derivative set
of S1 ‖ S1 has 64 elements, of which 56 are exhibited in the derivatives of Asym. Not all
the derivatives are exhibited, e.g. (serve1,>).S2 ‖ (serve1,>).S2, because to arrive at such
a derivative in Asym there would need to be more than one customer present at Node 1,
contrary to the definition of the node. In contrast SS{1,1} has just 36 elements, 32 of which
are exhibited in the derivatives of Asym.

If we consider the relation R,

R =
{(

(Si‖Sj), SS{i,j}

)
,
(
(Sj‖Si), SS{i,j}

)
,
(
((servei,>).Si+1‖(servej,>).Sj+1), SS{i+,j+}

)
,(

((servei,>).Si+1‖Sj), SS{i+,j}

)
,
(
(Si‖(servej,>).Sj+1), SS{i,j+}

) ∣∣∣∣ 1 ≤ i, j ≤ N
}

it is easy to verify that it is a strong bisimulation. Moreover, we can see by inspection that
both S1 ‖ S1 and SS{1,1} satisfy Condition 1.

Thus we replace (S1 ‖ S1) in the model of the asymmetric MSMQ system by the new top-
level component SS{1,1}, to form the modified model Asym′. It follows from Proposition 7.3.1
that Asym ∼ Asym′.

Asym
def= (N1 ‖ · · · ‖ NN ) BC

{walk Fj ,

walk Ej,servej}

(S1 ‖ S1) Asym′
def= (N1 ‖ · · · ‖ NN ) BC

{walk Fj ,

walk Ej,servej}

(SS{1,1})

Recall that in Section 4.4 we saw that the Markov process for the model Asym with four
nodes had 560 states in the state space. The modified model, Asym′, when N = 4, has 312
states. However the performance measures extracted from the models are exactly the same
as the reward structure is unaffected by the simplification.

1/m

Node 1

Node 2
Node 3
Node 4

54321

W

0.25

0.24

0.23

0.22

0.21

0.2

0.19

Figure 7.6: Mean customer waiting times as service demand at Node 1 increases, calculated
from the modified asymmetric MSMQ model, Asym′



Chapter 8

Strong Equivalence

8.1 Introduction

In this chapter an alternative notion of equivalence for PEPA components is developed. This
equivalence, strong equivalence, is defined in Section 8.2. It is developed in the style of Larsen
and Skou’s probabilistic bisimulation which was discussed in Section 5.2.3. Here transition
rates, already embedded in the PEPA labelled transition system as activity rates, are used
instead of probabilities. As with strong bisimulation the relation aims to capture a notion
of equivalent behaviour between components. However, observation now occurs without
detailed knowledge of the individual transitions involved. Strong equivalence, unlike strong
bisimulation, is unable to distinguish between a single (α, 2r) activity and two simultaneously
enabled instances of the (α, r) activity.

Some properties of the relation from a process algebra perspective are examined in Sec-
tion 8.3. Like strong bisimulation, strong equivalence is found to be a congruence relation
for PEPA. In Section 8.4 we discuss some of the implications of strong equivalence for the
system components being represented, and in Section 8.5 the implications for the underlying
Markov processes are reviewed. Finally, in Section 8.6, we outline the use of strong equival-
ence as a state-to-state equivalence forming the basis of exact aggregation. An alternative
approach to the generation of the Markov process underlying a PEPA model is also discussed.
These ideas are illustrated in Section 8.6.3 with an example taken from Section 4.4.4.

8.2 Definition of Strong Equivalence

In PEPA two components are strongly bisimilar if any a activity of one can be matched by an
a activity of the other, and every a-derivative of one is strongly bisimilar to some a-derivative
of the the other. Furthermore the apparent rates of all action types are the same in the two
components. We saw in Section 7.4 that although this relation ensures that the sequences
of activities which can result from strongly bisimilar components are matched, the relative
frequencies of such sequences occurring in the two components are not necessarily the same.

The probabilistic bisimulation of Larsen and Skou [38] forms equivalence classes such that,
for any two agents within a class, the probabilities of them performing a given action, α,
and resulting in α-derivatives which lie within a given equivalence class, are the same. To
apply a similar notion of equivalence to PEPA we consider the conditional transition rates
rather than the conditional transition probabilities.

The conditional transition rate between two components Ci and Cj, via a given action
type α, denoted q(Ci, Cj, α) was defined in Section 3.5.2. It is the rate at which a system

113
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behaving as component Ci evolves to behave as component Cj as a result of completing an
activity of action type α. It is the sum of activity rates, labelling arcs of type α, connecting
the nodes corresponding to Ci and Cj in the derivation graph. If we consider a set of possible
derivatives S, the total conditional transition rate from Ci to S, denoted q[Ci, S, α], is defined
to be

q[Ci, S, α] =
∑
Cj∈S

q(Ci, Cj, α)

Two PEPA components are strongly equivalent if there is an equivalence relation between
them such that, for any action type α, the total conditional transition rates from those
components to any equivalence class, via activities of this type, are the same.

Definition 8.2.1 An equivalence relation R ⊆ C × C, is a strong equivalence if whenever
(P, Q) ∈ R then for all α ∈ A and for all S ∈ C/R,

q[P, S, α] = q[Q, S, α] (2.1)

It is clear that the identity relation trivially satisfies Definition 8.2.1, and so all components
are members of some strong equivalence. As with strong bisimulation we will be interested
in the relation which is the largest strong equivalence, formed by the union of all strong
equivalences. However it is not straightforward to see that this will indeed be a strong
equivalence. First we prove the following proposition, showing that the transitive closure of
a union of such relations, is itself a strong equivalence.

Proposition 8.2.1 Let each Ri, i ∈ I for some index set I, be a strong equivalence. Then
R = (

⋃
i∈IRi)

∗ , the transitive closure of their union, is also a strong equivalence.

Proof Since each Ri is an equivalence relation, it follows from the definition of R that R
is also an equivalence relation.

Any equivalence relation over C will partition the set into equivalence classes. Let C/R and
C/Ri denote these sets of equivalence classes for R and each Ri respectively. By definition
(P, Q) ∈ Ri implies that (P, Q) ∈ R, and so any equivalence class Sij ∈ C/Ri is wholly
contained within some equivalence class Tk ∈ C/R. Moreover, it follows that there is some
set J ik such that Tk =

⋃
j∈Jik

Sij .

Consider (P, Q) ∈ R, then (P, Q) ∈ (
⋃
i∈IRi)

n for some n > 0. We will show that R
satisfies equation 2.1 by induction over n. Let Rn denote (

⋃
i∈IRi)

n. For an arbitrary
element Tk ∈ C/R and any α ∈ A, we consider the total conditional transition rates from P
and Q into Tk given that (P, Q) ∈ Rn.

When n = 1, (P, Q) ∈ R1 implies that (P, Q) ∈ Ri for some i ∈ I , and by the argument
above,

q[P, Tk, α] =
∑
j∈Jik

q[P, Sij, α] =
∑
j∈Jik

q[Q, Sij, α] = q[Q, Tk, α].

For n > 1 we assume that for all Rm, where m < n, if (P, Q) ∈ Rm then,

q[P, Tk, α] = q[Q, Tk, α]

Now (P, Q) ∈ Rn implies that (P, Q) ∈ Ri;Rn−1, i.e. there is some C ∈ C such that (P, C) ∈
Ri for some i ∈ I and (C, Q) ∈ Rn−1. But then it follows by the same argument as above
that q[P, Tk, α] = q[C, Tk, α] , and by the induction hypothesis, q[C, Tk, α] = q[Q, Tk, α].
Thus we can see that q[P, Tk, α] = q[Q, Tk, α] as required.

Therefore R is a strong equivalence relation. �
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Definition 8.2.2 We say P and Q are strongly equivalent, written P ∼= Q, if (P, Q) ∈ R
for some strong equivalence R, i.e.

∼= =
⋃
{R | R is a strong equivalence}

It is clear from the definition that ∼= is at least as large as the largest strong equivalence,
and it follows from Proposition 8.2.1 that ∼= is a strong equivalence itself. Thus we state the
following proposition:

Proposition 8.2.2 ∼= is the largest strong equivalence.

In order to show that P ∼= Q we must find a strong equivalence relation R such that
(P, Q) ∈ R. Alternatively we can regard this as finding partitions of the derivative sets of
P and Q satisfying equation 2.1, and a one-to-one correspondence between them.

We can also define a weaker relation, strong equivalence up to ∼=. As with strong bisim-
ilarity and strong bisimulation up to ∼, in order to exhibit strong equivalence between two
components it is sufficient to find a strong equivalence up to ∼= between them. This result
is stated in Proposition 8.2.3.

Definition 8.2.3 R is a strong equivalence up to ∼= if R is an equivalence relation over C
and (P, Q) ∈ R implies that for all α ∈ A, and for all T ∈ C/(∼=R∼=),

q[P, T, α] = q[Q, T, α]

Let us consider, for any equivalence relation R, what equivalence classes of the form
T ∈ C/(∼=R∼=) represent. Recall that (P, Q) ∈ ∼=R∼= if there exist P1 and Q1 such that
P ∼= P1, P1RQ1 and Q1

∼= Q. For all P ∈ C, let SP denote the equivalence class in C/∼=
which contains P , RP the corresponding equivalence class in C/R and TP the corresponding
equivalence class in C/(∼=R∼=). Then we can see that

TP = {Q | P ∼= R ∼= Q} =
⋃
{SQ1 | Q1 ∈ {RP1 | P1 ∈ SP}}

It follows that any TP ∈ C/(∼=R∼=) is a union of equivalence classes SQ1∈ C/∼=.

Lemma 8.2.1 If R is a strong equivalence up to ∼=, then the relation ∼=R∼= is a strong
equivalence.

Proof Let P ∼= R ∼= Q. Then there are components P1 and Q1 such that P ∼= P1RQ1
∼= Q.

Moreover for all S ∈ C/∼=

q[P, S, α] = q[P1, S, α] q[Q1, S, α] = q[Q, S, α]

and for all T ∈ C/(∼=R∼=), q[P1, T, α] = q[Q1, T, α].
Since any T ∈ C/(∼=R∼=) is a union of S ∈ C/∼= it follows that for all such T ,

q[P, T, α] = q[Q, T, α].

�
Proposition 8.2.3 If R is a strong equivalence up to ∼= then R ⊆ ∼=.

Proof This follows immediately from Lemma 8.2.1, by similar reasoning to the proof of
Proposition 7.2.2. �
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8.3 Properties of the Strong Equivalence Relation

In this section we investigate the properties of the strong equivalence relation ∼= from a
process algebra perspective. We show that strong equivalence is a congruence. We also show
that isomorphic components are strongly equivalent and examine the relationship between
strong bisimilarity and strong equivalence.

8.3.1 Strong Equivalence as a Congruence

We establish that ∼= is a congruence for PEPA by showing, in Proposition 8.3.1, that the
relation is preserved by the combinators, and in Proposition 8.3.2, that it is preserved by re-
cursive definitions. The proofs are similar to those for strong bisimilarity, although somewhat
more intricate.

Proposition 8.3.1 (Preservation by Combinators)
If P1

∼= P2 then
1. a.P1

∼= a.P2;

2. P1 + Q ∼= P2 + Q;

3. P1 BC
L

Q ∼= P2 BC
L

Q;

4. P1/L ∼= P2/L.

Proof We show only the proofs of 2. and 3.—the proof of 1. is straightforward and the
proof of 4. is similar to 3.

2. Since P1 ∼= P2 it follows that for all α ∈ A, and for all S ∈ C/∼=,

q[P1, S, α] = q[P2, S, α].

Consider P1 + Q. By the definition of q[·] and the definition of choice, it follows that
for all α ∈ A and for all S ∈ C/∼=,

q[P1 + Q, S, α] = q[P1, S, α] + q[Q, S, α] =
q[P2, S, α] + q[Q, S, α] = q[P2 + Q, S, α].

Thus we conclude that P1 + Q ∼= P2 + Q.

3. Consider R = {(Q1 BC
L

Q, Q2 BC
L

Q) | Q1 ∼= Q2}. We extend this to a relation R+ over
all components, where R+ = R ∪ Id. We will show that R+ is a strong equivalence.
Since ∼= is an equivalence relation R is symmetric and transitive, and it follows that
R+ is an equivalence relation.

Suppose (Q1, Q2) ∈ R+. Then either (Q1, Q2) ∈ Id, i.e. Q1 ≡ Q2, or (Q1, Q2) ∈ R,
i.e. Q1 ≡ P1 BC

L
Q and Q2 ≡ P2 BC

L
Q where P1

∼= P2. In the first case, it is trivially
true that for all T ∈ C/R+ and for all α ∈ A,

q[Q1, T, α] = q[Q2, T, α].

Therefore consider (P1 BC
L

Q, P2 BC
L

Q) ∈ R. Recall that since P1
∼= P2 the set of action

types enabled in P1 and P2 are the same: A(P1) = A(P2).
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Any derivative of a cooperation of components will have the form of a cooperation of
components. Thus we only consider the equivalence classes T ∈ C/R+ such that there
is some element P BC

L
Q′ ∈ T . Then, for some S ∈ C/∼=,

T = {P ′ BC
L

Q′ | P ∼= P ′} = {P ′ BC
L

Q′ | P ′ ∈ S}

Thus we may denote each such T as T(S,Q′). For any equivalence class T ∈ C/R+ which
is not of this form, for all α ∈ A,

q[P1 BC
L

Q, T, α] = 0 = q[P2 BC
L

Q, T, α]

Now consider q[P1 BC
L

Q, T(S,Q′), α] for arbitrary T(S,Q′) ∈ C/R+, and α ∈ A. We
consider the different cases of α with respect to A(P1 BC

L
Q) separately.

Case 1: α /∈ A(P1 BC
L

Q)
It follows that α /∈ A(P2 BC

L
Q) and so trivially, for all T(S,Q′) ∈ C/R+,

q[P1 BC
L

Q, T(S,Q′), α] = 0 = q[P2 BC
L

Q, T(S,Q′), α]

Case 2: α /∈ L, α ∈ A(P1) \ A(Q)
Only P1 can complete activities of type α and so for all T(S,Q) ∈ C/R+

q[P1 BC
L

Q, T(S,Q), α] =
∑
P ′1∈S

q(P1, P
′
1, α) = q[P1, S, α]

α must be an individual action type of P2 in P2 BC
L

Q, and by similar reasoning
q[P2 BC

L
Q, T(S,Q), α] = q[P2, S, α]. Therefore it follows that,

q[P1 BC
L

Q, T(S,Q), α] = q[P1, S, α] = q[P2, S, α] = q[P2 BC
L

Q, T(S,Q), α]

Case 3: α /∈ L, α ∈ A(Q) \ A(P1)

Only Q can complete activities of type α so P1 BC
L

Q
(α,r)
−−−→ P1 BC

L
Q′ for some Q′ and

similarly for P2 BC
L

Q
(α,r)
−−−→ P2 BC

L
Q′. By the definition of R these will lie within the

same equivalence class, and so, for all T(S,Q′) ∈ C/R+,

q[P1 BC
L

Q, T(S,Q′), α] = q[P2 BC
L

Q, T(S,Q′), α]

Case 4: α /∈ L, α ∈ A(P1) ∩A(Q)
Both P1 and Q have individual activities of type α. Either P1 or Q may perform an
activity of this type, but not both, and so only one component will change. Thus
if we consider any appropriate equivalence class T(S,Q′) in C/R′ we see that the total
conditional transition rate q[P1 BC

L
Q, T(S,Q′), α] is

∑
P ′ BC

L
Q′∈T(S,Q′)

q(P1 BC
L

Q, P ′ BC
L

Q′, α) =


∑
P ′∈S

q(P1, P
′, α) if Q′ ≡ Q

q(Q, Q′, α) otherwise

Similarly

q[P2 BC
L

Q, T(S,Q′), α] =


∑
P ′∈S

q(P2, P
′, α) if Q′ ≡ Q

q(Q, Q′, α) otherwise

Thus it follows that for any T(S,Q′) ∈ C/R+,

q[P1 BC
L

Q, T(S,Q′), α] = q[P2 BC
L

Q, T(S,Q′), α].
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Case 5: α ∈ L, α ∈ A(P1 BC
L

Q)
α is a shared activity of P ′1 and Q. In general, for a shared action type α,

q(P BC
L

Q, P ′ BC
L

Q′, α) =
q(P, P ′, α)

q(P, α)
× q(Q, Q′, α)

q(Q, α)
min(rα(P ), rα(Q))

and min(rα(P ), rα(Q)) = rα(P BC
L

Q).

Since P1
∼= P2, it follows that q(P1, α) = q(P2, α), rα(P1) = rα(P2), and for all

S ∈ C/∼=, q[P1, S, α] = q[P2, S, α].

Now we consider q[P1 BC
L

Q, T(S,Q′), α] for arbitrary T(S,Q′) ∈ C/R+:

q[P1 BC
L

Q, T(S,Q′), α] =
∑

P ′ BC
L
Q′∈T(S,Q′)

q(P1 BC
L

Q, P ′ BC
L

Q′, α)

=
q(Q, Q′, α)

q(Q, α)
×
∑
P ′∈S

q(P1, P
′, α)

q(P1, α)

× rα(P1 BC
L

Q)

=
q(Q, Q′, α)

q(Q, α)
× q[P1, S, α]

q(P1, α)
× rα(P1 BC

L
Q)

=
q(Q, Q′, α)

q(Q, α)
× q[P2, S, α]

q(P2, α)
× rα(P2 BC

L
Q)

=
∑

P ′ BC
L
Q′∈T(S,Q′)

q(P2 BC
L

Q, P ′ BC
L

Q′, α) = q[P2 BC
L

Q, T(S,Q′), α]

Thus we have shown that for all α ∈ A and for all T ∈ C/R+

q[P1 BC
L

Q, T, α] = q[P2 BC
L

Q, T, α]

and we conclude that R+ is a strong equivalence as required.
Therefore P1 BC

L
Q ∼= P2 BC

L
Q. �

We extend the notion of strong equivalence to component expressions in the obvious way:

Definition 8.3.1 Let E and F be component expressions, containing variables X̃ at most.
Then E ∼= F if, for all indexed sets of components P̃ , E{P̃ /X̃} ∼= F{P̃ /X̃}.

Since most PEPA models are defined in terms of sets of recursive definitions we would
like to show that strong equivalence is preserved by such definitions. That is, replacing a
subexpression by a strongly equivalent subexpression, will result in a component expression
which is strongly equivalent to the original. The following proposition proves that this is
indeed the case.

Proposition 8.3.2 (Preservation by Recursive Definition)
Let Ẽ and F̃ contain variables X̃ at most. Let Ã

def= Ẽ{Ã/X̃}, B̃
def= F̃{B̃/X̃} and Ẽ ∼= F̃ .

Then Ã ∼= B̃.
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Proof As in Proposition 7.3.2, it is sufficient to show the result for single recursion equa-
tions E and F such that E ∼= F , A

def= E{A/X} and B
def= F{B/X}. We construct a relation

R as follows,

R = {(G{A/X}, G{B/X}) | G contains at most variable X}

and let R∗ be the transitive, symmetric closure of R. Clearly R∗ is an equivalence relation.
We will show that R∗ is a strong equivalence up to ∼=, using transition induction on the
maximal depth of inference by which an activity by G{A/X} can be inferred. Let α be

an arbitrary activity type, α ∈ A(G{A/X}), G{A/X}
(α,r)
−−−→ P ′. We will use induction to

show that for all T ∈ C/(∼=R∗∼=),

q[G{A/X}, T, α] = q[G{B/X}, T, α]

We assume that if α /∈ A(G{A/X}) then the maximal depth of inference of α in G{A/X}
is -1. In this case q[G{A/X}, T, α] = 0 for any set T ∈ C/(∼=R∗∼=).
Base Case: maximal depth of inference is zero—G ≡ (α, r).G′.

G{A/X} ≡ (α, r).G′{A/X} G{B/X} ≡ (α, r).G′{B/X}

By the definition of R, (G′{A/X}, G′{B/X}) ∈ R∗ and there exists T ′ ∈ C/(∼=R∗∼=) such
that G′{A/X}, G′{B/X} ∈ T ′. Thus it follows that for all T ∈ C/(∼=R∗∼=),

q[G{A/X}, T, α] = q[G{B/X}, T, α] =
{

r if T = T ′

0 otherwise

We now assume that the maximal depth of inference by which an α type activity can be
inferred in G{A/X} is N , and that R∗ is a strong equivalence up to ∼= over components
with maximal depth of inference < N , i.e. if G′{A/X} has maximal depth of inference for
activities of type α of < N , then for all T ∈ C/(∼=R∗∼=),

q[G′{A/X}, T, α] = q[G′{B/X}, T, α].

The possible forms of G are considered separately.
Case 1: G ≡ X

G{A/X} ≡ A, and so A
(α,r)
−−−→ P ′. Also E{A/X}

(α,r)
−−−→ by a shorter maximal depth of

inference, so by the induction hypothesis, for all T ∈ C/(∼=R∗∼=),

q[E{A/X}, T, α] = q[E{B/X}, T, α]

Since E ∼= F , it follows that E{B/X} ∼= F{B/X} and for all S ∈ C/∼=,

q[E{B/X}, S, α] = q[F{B/X}, S, α].

Since any T ∈ C/(∼=R∗∼=) is a union of elements of C/∼=, for all T ∈ C/(∼=R∗∼=),

q[E{B/X}, T, α] = q[F{B/X}, T, α].

As A
def= E{A/X}, B

def= F{B/X} and G ≡ X, it follows that for any set U ⊆ C,

q[G{A/X}, U, α] = q[E{A/X}, U, α], q[G{B/X}, U, α] = q[F{B/X}, U, α].

Hence we may conclude that for all T ∈ C/(∼=R∗∼=),

q[G{A/X}, T, α] = q[G{B/X}, T, α]
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Case 2: G ≡ G1 + G2

Then G{A/X} ≡ G1{A/X}+ G2{A/X}, so for any set U ⊆ C,
q[G{A/X}, U, α] = q[G1{A/X}, U, α] + q[G2{A/X}, U, α]

and similarly, G{B/X} ≡ G1{B/X}+ G2{B/X} and

q[G{B/X}, U, α] = q[G1{B/X}, U, α] + q[G2{B/X}, U, α].

Now both G1 and G2 have a shorter maximal depth of inference for inferring an activity of
type α, and therefore by induction, for all T ∈ C/(∼=R∗∼=),

q[G1{A/X}, T, α] = q[G1{B/X}, T, α] q[G2{A/X}, T, α] = q[G2{B/X}, T, α]

Thus it follows that for all T ∈ C/(∼=R∗∼=),

q[G{A/X}, T, α] = q[G1{A/X}, T, α] + q[G2{A/X}, T, α]
= q[G1{B/X}, T, α] + q[G2{B/X}, T, α] = q[G{B/X}, T, α]

Case 3: G ≡ G1 BC
L

G2

Clearly G1{A/X} and G2{A/X} both have maximal depth of inference, to infer an activity
of type α, < N , and by induction, for all T ∈ C/(∼=R∗∼=),

q[G1{A/X}, T, α] = q[G1{B/X}, T, α] q[G2{A/X}, T, α] = q[G2{B/X}, T, α]

From this we can deduce that

q(G1{A/X}, α) = q(G1{B/X}, α) rα(G1{A/X}) = rα(G1{B/X})
q(G2{A/X}, α) = q(G2{B/X}, α) rα(G2{A/X}) = rα(G2{B/X}).

When the activity G{A/X}
(α,r)
−−−→ P ′ is an individual activity the proof is similar to Case 2

above. We present the case of a shared activity: α ∈ L, α ∈ A(G1{A/X})∩A(G2{A/X}),
G1{A/X}

(α,r1)
−−−→ P ′1, G2{A/X}

(α,r2)
−−−→ P ′2, and P ′ ≡ P ′1 BCL P ′2. Consider the conditional

transition rate to P ′:

q(G{A/X}, P ′, α) =
q(G1{A/X}, P ′1, α) q(G2{A/X}, P ′2, α)

q(G1{A/X}, α) q(G2{A/X}, α)
min(rα(G1{A/X}), rα(G2{A/X}))

For any T ∈ C/(∼=R∗∼=) the total conditional transition rate is

q[G{A/X}, T, α] =
∑
P ′∈T

q(G{A/X}, P ′, α)

where P ′ ≡ P ′1 BCL P ′2, if q(G{A/X}, P ′, α) 6= 0. Since ∼=R∗∼= partitions C, there are equi-
valence classes T1, T2 ∈ C/(∼=R∗∼=), such that P ′1 ∈ T1 and P ′2 ∈ T2. Moreover, since the
relation ∼=R∗∼= is preserved by the combinator BC , it follows that P ′1 BCL P ′2 ∈ T , P ′1 ∈ T1,
implies that Q1 BC

L
P ′2 ∈ T for all Q1 ∈ T1. Similarly P ′1 BCL Q2 ∈ T , for all Q2 ∈ T2. Thus

the total conditional transition rate is:∑
Q1∈T1

q(G1{A/X}, Q1, α)
∑

Q2∈T2

q(G2{A/X}, Q2, α)


q(G1{A/X}, α) q(G2{A/X}, α)

min(rα(G1{A/X}), rα(G2{A/X}))

=
q[G1{A/X}, T1, α]
q(G1{A/X}, α)

q[G2{A/X}, T2, α]
q(G2{A/X}, α)

min(rα(G1{A/X}), rα(G2{A/X}))

=
q[G1{B/X}, T1, α]
q(G1{B/X}, α)

q[G2{B/X}, T2, α]
q(G2{B/X}, α)

min(rα(G1{B/X}), rα(G2{B/X}))

=
∑
Q′∈T

q(G{B/X}, Q′, α) = q[G{B/X}, T, α]
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Hence we can conclude that for all T ∈ C/(∼=R∗∼=),

q[G{A/X}, T, α] = q[G{B/X}, T, α]

Case 4: G ≡ G1/L
As G{A/X} can infer an activity of type α, with maximal depth of inference N , it follows
that α /∈ L. Moreover since the maximal depth of inference of α in G1{A/X} < N by the
induction hypothesis we see that, for all T ∈ C/(∼=R∗∼=),

q[G1{A/X}, T, α] = q[G1{B/X}, T, α]

q[G{A/X}, T, α] =


q[G1{A/X}, T, α] if α 6= τ

q[G1{A/X}, T, τ ] +
∑
β∈L

q[G1{A/X}, T, β] if α = τ

It follows that, for all T ∈ C/(∼=R∗∼=), q[G{A/X}, T, α] = q[G{B/X}, T, α].

Case 5: G ≡ C where C is a constant
C is associated with some definition C

def= P . Since X does not appear in G, G{A/X} and
G{B/X} are both identical to C. They will have exactly the same transitions, so it follows
trivially that, for all T ∈ C/(∼=R∗∼=),

q[G{A/X}, T, α] = q[P, T, α] = q[G{B/X}, T, α].

Since the choice of α ∈ A was arbitrary, it follows that for all α ∈ A, for all T ∈ C/(∼=R∗∼=),

q[G{A/X}, T, α] = q[G{B/X}, T, α].

Thus, for R ≡ {(G{A/X}, G{B/X}) | G contains at most variable X}, we have shown that
R∗ is a strong equivalence up to ∼=.

Consequently if we take G ≡ X, then A ∼= B as required. �

8.3.2 Isomorphism and Strong Equivalence

Recall that in Section 7.3.2 we showed that isomorphism between components was a stronger
relation than strong bisimilarity. In this section we show that it is also a stronger relation
than strong equivalence, i.e. = ⊂ ∼= .

Proposition 8.3.3 If P and Q are isomorphic components then P ∼= Q.

Proof Recall that P = Q if there is a component isomorphism F : C −→ C, an injective
function, such that Act(P ) = Act(F(P )), where for all a ∈ Act the a-derivatives of F(P )
are the same as the F -images of the a-derivatives of P , and Q ≡ F(P ). We will show that
= is a strong equivalence. It is trivial to see that = is an equivalence relation. Let T be any
equivalence class in C/=, then for all α ∈ A,

q[P, T, α] =
∑
P ′∈T

q(P, P ′, α) =
∑
P ′∈T

q(F(P ),F(P ′), α) =
∑
P ′∈T

q(Q, P ′, α) = q[Q, T, α]

Thus we see that = is a strong equivalence, and we conclude that if P = Q then P ∼= Q.
�

As for strong bisimilarity, the equational laws stated earlier for isomorphic components,
may now be restated with “=” replaced by “∼=”.
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Proposition 8.3.4 (Choice)
1. P + Q ∼= Q + P

2. P + (Q + R) ∼= (P + Q) + R

Proposition 8.3.5 (Hiding)
1. (P + Q)/L ∼= P/L + Q/L

2. ((α, r).P )/L ∼=
{

(τ, r).P/L α ∈ L
(α, r).P/L α /∈ L

3. (P/L)/K ∼= P/(L ∪K)

4. P/L ∼= P if L ∩ ~A(P )

Proposition 8.3.6 (Cooperation)
1. P BC

L
Q ∼= Q BC

L
P

2. P BC
L

(Q BC
L

R) ∼= (P BC
L

Q)BC
L

R

3. (P BC
L

Q)/(K ∪M) ∼=
(
(P/K) BC

L
(Q/K)

)/
M where K ∩M = K ∩ L = ∅

4. P BC
K

Q ∼= P BC
L

Q if K ∩
(

~A(P ) ∪ ~A(Q)
)

= L

5. (P BC
L

Q)BC
K

R ∼=
 P BC

L
(Q BC

K
R) if ~A(R) ∩ L \K = ∅ ∧ ~A(P ) ∩K \ L = ∅

QBC
L

(P BC
K

R) if ~A(R) ∩ L \K = ∅ ∧ ~A(Q) ∩K \ L = ∅

Proposition 8.3.7 (Constant)
If A

def= P then A ∼= P .

Proposition 8.3.8 (Expansion Law) Let P ≡ (P1 BC
L

P2)/K with L, K ⊂ A. Then

P ∼=
∑
{(α, r).(P ′1 BCL P2)/K | P1

(α,r)−→ P ′1 ; α /∈ L ∪K}

+
∑
{(α, r).(P1 BC

L
P ′2)/K | P2

(α,r)−→ P ′2 ; α /∈ L ∪K}

+
∑
{(τ, r).(P ′1 BCL P2)/K | P1

(α,r)−→ P ′1 ; α ∈ K \ L}

+
∑
{(τ, r).(P1 BC

L
P ′2)/K | P2

(α,r)−→ P ′2 ; α ∈ K \ L}

+
∑
{(α, r).(P ′1 BCL P ′2)/K | P1

(α,r1)−→ P ′1 ; P2
(α,r2)−→ P ′2 ; α ∈ L \K ;

r =
r1

rα(P1)
r2

rα(P2)
min(rα(P1), rα(P2))}

+
∑
{(τ, r).(P ′1 BCL P ′2)/K | P1

(α,r1)−→ P ′1 ; P2
(α,r2)−→ P ′2 ; α ∈ L ∩K ;

r =
r1

rα(P1)
r2

rα(P2)
min(rα(P1), rα(P2))}

8.3.3 Strong Bisimilarity and Strong Equivalence

In this section we investigate the relation between strong bisimilarity and strong equivalence.
It is straightforward to construct components A and B such that A ∼= B but A ∼/ B. For
example, consider A and B shown in Figure 8.1. Incidentally, this simple example also shows
that A ∼= B does not imply A = B.
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A
def= (α, r).A + (α, r).A B

def= (α, 2r).B

Figure 8.1: Strong equivalence does not imply strong bisimilarity

Both strong bisimilarity and strong equivalence are implied by component isomorphism
and we might expect to be able to deduce that ∼ ⊂ ∼=. However we can construct compon-
ents, such as P and Q shown in Figure 8.2, which are strongly bisimilar but not strongly
equivalent.

Thus we conclude that it is not the case that ∼ ⊂ ∼= , or ∼= ⊂ ∼.

8.4 Strong Equivalence and System Components

In this section we consider the implications for the system components modelled by PEPA
components P and Q when P ∼= Q. As previously, let SysP and SysQ denote the system
components modelled by P and Q respectively.

From the definition of strong equivalence it is clear that the action sets of the two com-
ponents are equal, i.e. A(P ) = A(Q). Moreover, since the equivalence classes S ∈ C/∼=
partition the set C, it follows that the conditional exit rates, and the exit rates from the two
components are the same:

q(P, α) = q(Q, α) for all α ∈ A, and q(P ) = q(Q).

As the conditional exit rates are equivalent to the apparent action rates it also follows that
rα(P ) = rα(Q) for all α ∈ A.

We can deduce that the system components, SysP and SysQ, appear to perform the same
actions, at the same rates, and that their expected delay before performing some action will
be the same. Thus, as with strong bisimilarity, an external observer would be unable to
distinguish between them on the basis of a memoryless observation. As when P ∼ Q, it
also follows that the probability (or relative frequency) that the action performed will have
a given type will be the same in the two components, SysP and SysQ.

Although P ∼ Q implies that SysP and SysQ are capable of exactly the same sequences
of actions we saw in Section 7.4 that it does not ensure that they will occur with the same
relative frequency in the two components. Hence prolonged or repeated observation might
distinguish between SysP and SysQ. If we think of these sequences of actions as patterns

P
def= a.P + a.P + a.P ′

P ′
def= b.P

Q
def= a.Q + a.Q′+ a.Q′

Q′
def= b.Q

Figure 8.2: Strong bisimilarity does not imply strong equivalence
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of behaviour, then for strongly bisimilar components the possible patterns of behaviour are
the same but the predominant ones may differ.

This is not the case when P ∼= Q. The strong equivalence relation ensures that the
conditional probability of completing an activity of type α and resulting in a derivative
within a given equivalence class, S, denoted p[P, S, α], is the same in the two components.

p[P, S, α] =
q[P, S, α]

q(P )
=

q[Q, S, α]
q(Q)

= p[Q, S, α] (4.4)

Similarly the unconditional probability of any activity by the component resulting in a
derivative within the equivalence class S, p[P, S], will also be matched by P and Q:

p[P, S] =
∑
α∈A q[P, S, α]

q(P )
=

∑
α∈A q[Q, S, α]

q(Q)
= p[Q, S] (4.5)

The implication of this is that SysP and SysQ are indistinguishable even under extended
observation.

To see this consider the equivalence classes S ∈ C/∼=. P ∼= Q implies that SysP and
SysQ are capable of the same patterns of behaviour. It follows that each equivalence class
S is a set of components all exhibiting the same patterns of behaviour. The example in
Figure 8.1 shows that this behaviour may be achieved differently by different components
within the class, for example in terms of the number of activities instantiating any action
type. However, viewed externally the behaviour of all the components is the same. Moreover,
by equation 4.4, the probabilities of SysP and SysQ completing an α type activity and then
exhibiting the behaviour represented in S are the same. Thus, the probabilities, or relative
frequencies, of patterns of behaviour in SysP and SysQ are equal.

This suggests that it might be more appropriate to generate an underlying stochastic
process for the PEPA model in terms of these sets of equivalent behaviours. Instead of
having a state corresponding to each derivative within the derivative set of a component,
we would have a state corresponding to each of the equivalence classes, S ∈ C/∼=, suitably
restricted to the derivative set. This is discussed in more detail in Section 8.6.

8.5 Strong Equivalence and the Markov Process

In this section we examine the strong equivalence relation from the perspective of the un-
derlying Markov process. We consider what we can deduce about the corresponding Markov
processes when P ∼= Q, and whether any relation between Markov processes allows us to
deduce this relation between PEPA components. We also consider the use of strong equival-
ence to induce a state-to-state equivalence on the state space of a model. The properties of
the partition generated by this equivalence are presented.

The relation ∼= partitions the set of components C, and it is easy to see that if restricted to
the derivative set of any component P , the relation partitions this set. Let ds(P )/∼= denote
the set of equivalence classes generated in this way.

As a preliminary we state the following proposition.

Proposition 8.5.1 For any component P , ds(P )/∼= induces a lumpable partition on the
state space of the Markov process corresponding to P .
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Proof Let Si and Sj denote arbitrary elements of ds(P )/∼=, and consider any two elements
of Si, Pik and Pi` . Then since Pik

∼= Pi`, by equation 4.5,

q[Pik, Sj] = q[Pi`, Sj]

Thus, it follows immediately that the partition ds(P )/∼= induces a lumpable partition on
the state space of the Markov process underlying P . �

Now, if we consider the strict form of equivalence between Markov processes, introduced
in Section 5.3, it is easy to see that strongly equivalent components do not necessarily give
rise to equivalent Markov processes. Two Markov processes are considered to be equivalent
in this way if they have the same number of states and the same transition rates between
those states.

C0
def= (α, 2r).C1

C1
def= (β, s).C0

D0
def= (α, 2r).D1

D1
def= (β, s).D2

D2
def= (α, r).D3 + (α, r).D1

D3
def= (β, s).D0

Figure 8.3: Strong equivalence does not imply equivalent Markov processes

For example, consider the components C and D shown in Figure 8.3. It is straightforward
to verify that R,

R = {(C0, D0), (C0, D2), (C1, D1), (C1, D3)}
is a strong equivalence, giving rise to the partitions:

[C0] = {C0}, [C1] = {C1}, [D0] = {D0, D2}, [D1] = {D1, D3} (5.6)

on the derivative sets of C and D respectively. However the Markov processes corresponding
to C and D cannot be equivalent as they do not have the same number of states.

Recall from Section 7.5 that two Markov processes are lumpably equivalent if they have
lumpable partitions, generating the same number of equivalence classes and there is a one-to-
one correspondence between the equivalence classes such that the aggregated transition rates
are also matched. If we consider the partitions of ds(C) and ds(D) shown in equation 5.6 it
is clear that the Markov processes underlying C and D are lumpably equivalent.

In general, for any two components X and Y such that X ∼= Y , any equivalence class
S ∈ C/∼= will induce corresponding equivalence classes, SX and SY in ds(X)/∼= and ds(Y )/∼=
respectively. By Proposition 8.5.1 these correspond to lumpable partitions in the underlying
state spaces. Moreover, by the strong equivalence relation, these partitions are in one-to-one
correspondence with matching total transition rates. Thus we state the following corollary
to Proposition 8.5.1.

Corollary 8.5.1 For any X, Y ∈ C if X ∼= Y then the Markov processes underlying X and
Y respectively are lumpably equivalent.

It also follows immediately from Proposition 8.5.1 and the definition of lumpability (Defin-
ition 5.4.1) that if strong equivalence over the derivative set of a component is used to induce
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X0
def= (α, r).X1 + (β, s).X1

X1
def= (γ, t).X0

Y0
def= (α, s).Y1 + (β, r).Y1

Y1
def= (γ, t).Y0

Figure 8.4: Components which generate the same Markov process

a partition of the state space of the Markov process then the corresponding aggregation will
result in a Markov process. Thus the aggregated process may be solved exactly to find the
steady state distribution. This use of strong equivalence as a model simplification technique
based on aggregation is discussed in detail in Section 8.6 and illustrated by one of the models
presented earlier in Section 4.4.

Finally we consider whether equivalence between the underlying Markov processes allows
us to conclude anything about the strong equivalence, or otherwise, of the corresponding
PEPA components. We consider only the augmented Markov processes introduced in Sec-
tion 7.5, in which each transition is annotated by the action types of the corresponding
activities.

Equivalences between the underlying Markov processes, even if augmented by the action
types, do not allow us to infer strong equivalence between the corresponding PEPA com-
ponents. As previously, this is due to the loss of information in going from the derivation
graph of the component to the corresponding Markov process, even if it is augmented. For
example, consider the components X and Y shown in Figure 8.4. X and Y generate equi-
valent, and therefore lumpably equivalent, Markov processes. However there is no strong
equivalence relation containing them.

8.6 Strong Equivalence for Aggregation

In this section we present an alternative approach to generating a Markov process corres-
ponding to a PEPA model. In Section 3.5 we explained how the derivation graph of a PEPA
model is used to directly generate a representation of the system as a Markov process. This
approach is straightforward but may result in a process with a large state space even for
moderately simple models. It does not take advantage of any symmetries which might exist
within the model.

The alternative approach now presented aims to take advantage of symmetries and other
patterns of repeated behaviour within the derivative set of a model. We recall that each
equivalence class S ∈ ds(P )/∼= represents a set of derivatives which all exhibit the same
behaviour. Moreover this corresponds to a lumpable partition within the state space of the
Markov process generated in the näıve way. Instead of having a state corresponding to each
derivative within the derivative set of a component, we generate a state corresponding to each
of the equivalence classes induced on the derivative set by strong equivalence, S ∈ ds(P )/∼=.
This new process will be a Markov process by Proposition 8.5.1, and in many cases it will
have a smaller state space than the original model.

For any PEPA component S, let the set of equivalence classes, ds(S)/∼= , induced on the
derivative set by the strong equivalence relation, be called the lumped derivative set. For
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any element, T , of this set we can construct the lumped activity set, Act∼=(T ).

Definition 8.6.1 Suppose that P is an arbitrary element of T ∈ ds(S)/∼=, then the lumped
activity set of T , Act∼=(T ) is

Act∼=(T ) = {(α, q′) | rα(P ) 6= 0, q′ = q[P, S, α] for some S ∈ ds(S)/∼=}

Moreover the complete lumped activity set of the component S is,

~Act∼=(S) =
⋃

T∈ds(S)/∼=
Act∼=(T )

Based on this we can also define the lumped derivation graph.

Definition 8.6.2 Given a PEPA component S, and its lumped derivative set ds(S)/∼=, the
lumped derivation graph, D∼=(S), is the labelled directed graph whose set of nodes is ds(S)/∼=
and whose set of arcs, A∼= is defined as follows:

• The elements of A∼= are taken from the set ds(S)/∼= × ds(S)/∼= × ~Act∼=(S);

• 〈Ti, Tj, (α, q′)〉 ∈ A∼= if (α, q′) ∈ Act∼=(Ti) and q′ = q[Pi, Tj, α] for all Pi ∈ Ti.

The node T0, where S ∈ T0, is taken to be the initial node of the graph.

8.6.1 Basic Application of Strong Equivalence Aggregation

The most straightforward way to apply strong equivalence aggregation is at the level of a
complete PEPA model of a system. Instead of the derivation graph, we now use the lumped
derivation graph to generate the Markov process representation of the model. A state of
this process is associated with each node in the lumped derivation graph, and the transition
rate between any two nodes is the sum of the total conditional transition rates attached
to the arcs connecting them. In effect strong equivalence is used to induce a state-to-state
equivalence which gives an exact aggregation of the original Markov process, although this
process is not constructed.

Performance measures are derived from a reward structure defined at the level of the
PEPA model in terms of the derivative set and enabled activities. If the integrity of these
measures is to be maintained by the strong equivalence aggregation, it must be possible to
derive the same reward from the lumped derivation graph. This is analogous to Nicola’s
extension of strong lumpability to Markov reward processes, presented in [103]:

Definition 8.6.3 A Markov reward process is strongly lumpable with respect to a reward
R in the context of a partition χ, if, for every starting distribution, the aggregated process
is a Markov reward process which results in the same reward.

We can define the lumped reward for any element Tj ∈ ds(S)/∼= in the intuitive way, in
terms of the conditional steady state probabilities for each component within the equivalence
class. If R̂ denotes the lumped reward function, corresponding to the reward function R,
and Πj is the conditional steady state probability,

R̂(Tj) =
∑
Ci∈Tj

R(Ci) Πj(Ci) for all Tj ∈ ds(S)/∼= (6.7)
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However this implies that when the steady state distribution of the lumped process has been
found disaggregation must be performed in order to find the rewards. Clearly we would
like to be able to derive the reward directly from the Markov process based on the lumped
derivation graph. This will be possible in some cases. The following proposition provides a
sufficient condition which can be easily verified.

Proposition 8.6.1 The strong equivalence aggregation of S is strongly lumpable with respect
to some reward defined by R, if for all Tj ∈ ds(S)/∼=, for all Ci ∈ Tj, R(Ci) = ρ. Then
R̂(Tj) = ρ.

Proof The aggregation is strongly lumpable, and results in a Markov process, by Proposi-
tion 8.5.1. It remains to show that the reward R is maintained, but this follows immediately
since,

R =
∑

Ci∈ds(S)

ρiΠ(Ci) =
∑

Tj∈ds(S)/∼=

 ∑
Ci∈Tj

ρiΠ(Ci)

 =
∑

Tj∈ds(S)/∼=
ρ Π̂(Tj)

where Π̂(·) is the steady state distribution of the aggregated process. �
Since rewards are defined in terms of the activities of a component many PEPA models will

satisfy the condition of Proposition 8.6.1. For example in order to calculate the throughput
of an action within a system a reward equal to the activity rate is attached to all activities
of the given action type. As the apparent rate of an action type is the same in all strongly
equivalent components, this reward will satisfy the condition of Proposition 8.6.1.

When the condition is not satisfied for all Tj ∈ ds(C)/∼= it may still be satisfied by
some partitions, in particular those which contain no components to which a reward is
attached. Thus even if the lumped reward must be kept in the form shown in equation 6.7
selective disaggregation may be carried out to calculate the reward when the steady state
distribution has been found. An outline of the procedure implementing this approach is
given in Figure 8.5.

Note that the state-to-state equivalence induced on the state space of a Markov process
by ∼= is stronger than the relation generally underlying lumpability. In the partitions based
on ds(S)/∼= not only the rates of transitions between partitions are matched but also the
action types of the activities involved. Thus there may be a lumpable partition of the
Markov process underlying a PEPA component which has fewer elements than the partition
induced by ∼=. However strong equivalence aggregation has the advantage that lumping
may be carried out before the full state space is generated, leading to compositional strong
equivalence aggregation.

8.6.2 Compositional Strong Equivalence Aggregation

The use of strong equivalence over the derivative set of a complete model, to induce a state-
to-state equivalence resulting in aggregation, may result in a drastic reduction of the state
space of the underlying Markov process. However this approach still necessitates the con-
struction of the full derivative set of the model. In some cases this will be prohibitively large
making even aggregation of the model infeasible. In this section we outline an application of
strong equivalence aggregation which takes advantage of the fact that strong equivalence is
a congruence. We apply strong equivalence as a state-to-state equivalence compositionally,
replacing cooperating components by strongly equivalent, lumped components.

It is clear from the definition of a derivation graph (Definition 3.4.3) that just as we
can form such a multigraph corresponding to any PEPA component, so we can also form a
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1. Construct the model S, combining components until the full functionality of the
system is represented.

2. Generate the derivative set, ds(S), corresponding to the model.

3. Find the strong equivalence classes within ds(S) and form the lumped derivative set
ds(S)/∼=.

4. Form the lumped activity set for each T ∈ ds(S)/∼= and construct the lumped
derivation graph D∼=(S).

5. Form the aggregated Markov process, associating one state of the process with each
node of D∼=(S), and with transition rates equal to the total transition rates between
nodes.

6. Assign lumped rewards to the states of the process corresponding to equivalence
classes they represent.

7. Solve the aggregated Markov process and calculate the rewards, disaggregating to
find conditional probabilities if necessary, i.e. if the conditions of Proposition 8.6.1
were not satisfied.

Figure 8.5: Outline of a procedure implementing the basic application of strong equivalence
aggregation
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PEPA component corresponding to any derivation multigraph. Furthermore if we consider
a lumped derivation graph, as defined in Definition 8.6.2, we can see that it has labelled
nodes, and arcs connecting them which are labelled by an action type and a transition rate.
Thus each lumped derivation graph may be regarded as a derivation graph. For any lumped
derivation graph we can form a lumped PEPA component.

Definition 8.6.4 The lumped component of P , P̂ , is formed from the lumped derivation
graph, D∼=(P ) in the natural way: we associate a component P̂j with each Tj ∈ ds(P )/∼=
such that

Act(P̂j) = Act∼=(Tj)

In particular we associate P̂0 with T0, the initial node of D∼=(P ). Then P̂
def= P̂0.

Proposition 8.6.2 Any PEPA component P is strongly equivalent to its lumped component,
P̂ , i.e. P ∼= P̂ .

Proof By definition, ds(P̂ )/∼= = ds(P̂ ) = ds(P )/∼=. The result follows immediately.
�

Since strong equivalence is a congruence this means that if we replace one component
within a model by the equivalent lumped component, the new model will be strongly equi-
valent to the original one. In most cases the derivative set of a lumped component will be
smaller than the derivative set of the component it replaces, and it will never be larger,
i.e. |ds(P̂ )| ≤ |ds(P )|. Also, since the lumped derivation graph is a graph and not a multi-
graph, the number of transitions generated by the lumped component will also usually be
reduced.

To apply strong equivalence aggregation compositionally we replace components which
represent separately resourced components of the system, the components combined by the
cooperation combinator, by their strongly equivalent lumped components. This cannot in-
crease the size of the derivative set of the model, and in most cases will reduce it, sometimes
dramatically.

Proposition 8.6.3 When a lumped component, P̂ , replaces a top-level component P , within
a model, S, to form a modified model, S ′, then |ds(S ′)| ≤ |ds(S)|.

Proof P is a top-level component, so S has the form S ≡ P BC
L

Q for some other component
Q and some cooperation set L. Similarly S ′ ≡ P̂ BC

L
Q. By the definition of the cooperation

combinator, the derivative set of the cooperation of two components is no larger than the
product of the derivative sets of those components, i.e.

|ds(S)| ≤ |ds(P )| × |ds(Q)| and |ds(S ′)| ≤ |ds(P̂ )| × |ds(Q)|

Since |ds(P̂ )| ≤ |ds(P )| it follows immediately that |ds(S ′)| ≤ |ds(S)| . �
Thus we can systematically simplify a model, by considering each of its top-level compon-

ents in turn. Each of these is itself treated as a separate model, and its top-level components
are identified and so on. At some level the identified top-level components will be atomic, in
the sense that they cannot themselves be broken down into cooperating components. The
strong equivalence aggregation is applied to the cooperation of these atomic components,
resulting in a lumped component which replaces them. At each level of the model the aggreg-
ation procedure is applied, until a lumped version of the complete original model is formed.
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1. Construct the model S, combining components until the full functionality of the
system is represented.

2. Identify the atomic cooperating components of the model, X and Y , by unfolding.
Apply strong equivalence aggregation to the cooperation of these components,
P ≡ X BC

L
Y , to form P̂ :

2.1 Form the derivative set of the component P , ds(P ).
2.2 Find the strong equivalence classes within ds(P ) and form the lumped de-

rivative set ds(P )/∼=.
2.3 Form the lumped activity set for each T ∈ ds(P )/∼= and construct the

lumped derivation graph D∼=(P ).
2.4 Construct the lumped component P̂ , based on D∼=(P ), and replace P by P̂ .

Repeat with all other pairs of atomic components.

3. Consider the next level of the model, i.e. Q BC
K

P̂ , for some Q. Repeat steps 2.1−2.4
applied to QBC

K
P̂ . Continue in this way until Ŝ has been formed.

4. Based on the derivation graph of Ŝ (this will be the lumped derivation graph of S
formed in the previous step) form an aggregated Markov process representing the
model, in the usual way.

5. Assign lumped rewards to the states of the process.

6. Solve the aggregated Markov process and calculate the rewards.

Figure 8.6: Outline of a procedure implementing the compositional application of strong
equivalence aggregation
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The outline of a procedure to implement this approach to model simplification is shown
in Figure 8.6. Note that the full derivative set of the original model does not need to be
constructed. No Markov process is constructed until the aggregation procedure is complete.

As with the basic application of strong equivalence aggregation, we must consider the
implication of compositional aggregation for the performance measures to be extracted from
the model. One alternative is to postpone the definition of the reward structure until the
lumped model has been formed. Rewards would then be attached to the elements of the
complete lumped activity set, and associated with derivatives of the model in the usual
way. This is a straightforward approach but it requires the modeller to keep track of the
aggregation of the model. Thus it eliminates the possibility of the technique being automated
and applied without the intervention of the modeller.

A preferable alternative is to define the reward structure, R, over the full model as pre-
viously, but to restrict the aggregation to components where the resulting partition will be
strongly lumpable with respect to R. For example, this will be the case if aggregation is
only applied to components which satisfy the condition of Proposition 8.6.1. This may mean
that some components for which a strong equivalence aggregation exists, are left unlumped,
but it has the consequence that lumped rewards are easy to derive and no disaggregation is
necessary. Moreover the approach has potential to be automated and carried out without
the participation of the modeller. It also implies that the form of the lumped model may be
dependent on the performance measure, and reward structure, under consideration.

8.6.3 Aggregating an MSMQ Model using Strong Equivalence

To illustrate the compositional application of strong equivalence aggregation we consider
the faulty Mi/Mi/M/(2, 1, 1, 1)/Q × S/L MSMQ system with random polling shown in
Figure 8.7, similar to the system presented in Section 4.4.4. This model, with four nodes,
has 1170 states and 5865 transitions. It would be extremely time consuming to solve using
the techniques and equipment used to solve the models presented in Chapter 4. Using
compositional strong equivalence aggregation we can reduce the state space of the underlying
Markov process to 191 states and 745 transitions. This smaller model can be easily solved
in a matter of minutes.

We consider two separate reward structures. The first is used to calculate the expected
waiting time for customers at Node1 and concerns only activities associated with that node.
Similarly the second reward structure only attaches rewards to activities of Node4 as it is
used to calculate the expected waiting time for customers at any of the single place buffers.

The top-level components of the model are the parallel composition of the servers, and
the parallel composition of the nodes. The atomic components are the individual servers
and nodes. Let us consider the component representing the two servers in the system, S‖S.
Note that there are no rewards directly associated with the activities of this component
although rewards are attached to activities which will be carried out with the cooperation
of this component.

ds(S ‖ S) = {S ‖ S, S ‖ Sj, Sj ‖ S, Sj ‖ Si, S ‖ (serve, µ).S, (serve, µ).S ‖ S,

Sj ‖ (serve, µ).S, (serve, µ).S ‖ Sj, (serve, µ).S ‖ (serve, µ).S | 1 ≤ i, j ≤ 3}

Recall that since isomorphism implies strong equivalence, for any components X and Y ,
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Node′100
def= (in, 2λ).Node′110 + (pass1, 2e).Node′100

Node′110
def= (in, λ).Node′111 + (engage1, e).Node′120 + (pass1, e).Node′110

Node′111
def= (engage1, 2e).Node′121

Node′120
def= (in, λ).Node′121 + (pass1, 2e).Node′120 + (serve,>).Node′100

Node′121
def= (engage1, e).Node′122 + (pass1, e).Node′121 + (serve,>).Node′110

Node′122
def= (pass1, 2e).Node′120 + (serve,>).Node′120

Nodej0
def= (in, λ).Nodej1 + (passj, e).Nodej0 for j = 2, 3, 4

Nodej1
def= (engagej, e).Nodej2

Nodej2
def= (serve,>).Nodej0 + (passj , e).Nodej2

S
def= (walk, ω/4).S1 + (walk, ω/4).S2 + (walk, ω/4).S3 + (walk, ω/4).S4

Sj
def= (passj ,>).S + (engagej,>).(serve, µ).S 1 ≤ j ≤ 4

MSMQwf
def= (Node′100 ‖ Node20 ‖ Node30 ‖ Node40)BC

L
(S ‖ S)/K

where L = {engagej, passj, serve | 1 ≤ j ≤ 4} and K = {passj , engagej | 1 ≤ j ≤ 4}

Figure 8.7: Asymmetric MSMQ model with faulty connector to Node1

X ‖ Y ∼= Y ‖ X. Hence, partitioning this derivative set by strong equivalence we obtain:

ds(S ‖ S)/∼= =
{
{S ‖ S}, {S ‖ (serve, µ).S, (serve, µ).S ‖ S, }, {S ‖ Sj, Sj ‖ S},

{Sj ‖ Si, Si ‖ Sj}, {Sj ‖ (serve, µ).S, (serve, µ).S ‖ Sj},
{Sj ‖ Sj}, {(serve, µ).S ‖ (serve, µ).S} | 1 ≤ j, i ≤ 3, i < j

}
Since no rewards are directly associated with activities of the servers we can form the lumped
component, denoted SS, without consideration of the reward structure. We associate one
derivative of SS with each node of the lumped derivation graph as follows:

SS0 ↔ {S ‖ S} SSjj ↔ {Sj ‖ Sj} SSs0 ↔ {S ‖ (serve, µ).S, (serve, µ).S ‖ S}
SSj ↔ {S ‖ Sj, Sj ‖ S} SSss↔ {(serve, µ).S ‖ (serve, µ).S}
SSij ↔ {Si ‖ Sj, Sj ‖ Si, i < j} SSsj ↔ {(serve, µ).S ‖ Sj , Sj ‖ (serve, µ).S}

Using the lumped activity sets we can define the behaviour of these lumped components:

SS0
def=

4∑
j=1

(walk, 2ω/4).SSj

SSs0
def= (serve, µ).SS0 +

4∑
j=1

(walk, ω/s).SSsj

SSjj
def= (passj,>).SSj + (engagej,>).SSsj

SSj
def= (passj,>).SS0 + (engagej ,>).SSs0 +

4∑
i=1

(walk, ω/4).SSij
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SSss
def= (serve, 2µ).SSs0

SSij
def= (passj,>).SSi + (engagej ,>).SSsi + (passi,>).SSj + (engagei,>).SSsj

SSsj
def= (serve, µ).SSj + (passj,>).SSs0 + (engagej,>).SSss

This component, SS0, now replaces S0 ‖S0 in the complete model.
If we consider the atomic node components Nodej for 1 ≤ j ≤ 4, in pairs, we can see

that there are no non-trivial strong equivalence partitions of the derivative sets because the
activity sets of the components are not the same. The hiding operator, which will make
all engagej and passj activities appear as τ type activities does not apply at this level of
the model, and cannot be passed through the cooperation since the action types engagej
and passj appear in the cooperation set. Therefore the parallel composition of the node
components cannot be independently simplified using strong equivalence. Thus we form the
final version of the model as:

MSMQwf ′
def= (Node′100 ‖ Node20 ‖ Node30 ‖ Node40)BC

L
(SS0)/K

where, as previously, L = {serve, engagej, passj}, and K = {passj , engagej}.
If we compare the size of the derivative set ds(MSMQwf ) with the size of the derivative

set ds(MSMQwf ′) we can see that it is already considerably reduced.

|ds(MSMQwf )| = 1170 whereas |ds(MSMQwf ′)| = 670

Furthermore, we can take advantage of the fact that the action types passj and engagej are
hidden, and so all appear as τ type activities. This, together with the fact that the reward
structure is defined only over one node at a time, allows us to partition the derivative set of
the model. For example when we consider the reward structure defined only over Node1, in
order to find the mean waiting time of customers at that node, we can generate a Markov
process based on the lumped derivation graph which has only 191 states.

Components which exhibit equivalent behaviour are found by considering the states of the
nodes without rewards, Node2, Node3 and Node4, and the positions of the two servers (as
represented in the lumped component SS). For example, the following components{

(Node′100 ‖ Node21 ‖ Node30 ‖ Node41)BC
L

(SS2)/K,

(Node′100 ‖ Node21 ‖ Node31 ‖ Node40)BC
L

(SS2)/K,

(Node′100 ‖ Node20 ‖ Node31 ‖ Node41)BC
L

(SS3)/K,

(Node′100 ‖ Node21 ‖ Node31 ‖ Node40)BC
L

(SS3)/K,

(Node′100 ‖ Node21 ‖ Node30 ‖ Node41)BC
L

(SS4)/K,

(Node′100 ‖ Node20 ‖ Node31 ‖ Node41)BC
L

(SS4)/K
}

are all strongly equivalent and so the corresponding nodes will be amalgamated into a single
node in the lumped derivation graph. Similarly{

(Node′121 ‖ Node20 ‖ Node30 ‖ Node41)BC
L

(SSs2)/K,

(Node′121 ‖ Node20 ‖ Node31 ‖ Node40)BC
L

(SSs2)/K,

(Node′121 ‖ Node20 ‖ Node30 ‖ Node41)BC
L

(SSs3)/K,

(Node′121 ‖ Node21 ‖ Node30 ‖ Node40)BC
L

(SSs3)/K,

(Node′121 ‖ Node20 ‖ Node31 ‖ Node40)BC
L

(SSs4)/K,

(Node′121 ‖ Node21 ‖ Node30 ‖ Node40)BC
L

(SSs4)/K
}
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are strongly equivalent and may be represented by a single state in the underlying Markov
process. Other examples of the reward preserving, strong equivalence classes are:{

(Node′122 ‖ Node20 ‖ Node30 ‖ Node40)BC
L

(SSss)/K
}

{
(Node′111 ‖ Node21 ‖ Node31 ‖ Node42)BC

L
(SSs4)/K,

(Node′111 ‖ Node21 ‖ Node32 ‖ Node41)BC
L

(SSs3)/K,

(Node′111 ‖ Node22 ‖ Node31 ‖ Node41)BC
L

(SSs2)/K
}

{
(Node′120 ‖ Node20 ‖ Node30 ‖ Node40)BC

L
(SSs0)/K

}
Each of these will be represented by a single node, with appropriate arcs, in the lumped
derivation graph, and so a single state in the underlying Markov process.

If we consider the reward structure used to derive the expected waiting time of customers
at Node4 we can find similar equivalence classes by considering states of Node1, Node2 and
Node3, and the positions of the servers. For example, in this case the pairs{

(Node′111 ‖ Node20 ‖ Node31 ‖ Node40)BC
L

(SS23)/K,

(Node′111 ‖ Node21 ‖ Node30 ‖ Node40)BC
L

(SS23)/K
}
,

{
(Node′121 ‖ Node20 ‖ Node32 ‖ Node41)BC

L
(SSss)/K,

(Node′121 ‖ Node22 ‖ Node30 ‖ Node41)BC
L

(SSss)/K
}
,

and {
(Node′100 ‖ Node21 ‖ Node30 ‖ Node42)BC

L
(SSs2)/K,

(Node′100 ‖ Node20 ‖ Node31 ‖ Node42)BC
L

(SSs3)/K
}

are strongly equivalent components which have the same reward, and so may be represented
by a single node in the lumped derivation graph. In this case the state space of the underlying
Markov process is reduced to 423 states.

in passj or engagej serve walk
λ or 2λ e or 2e µ ω

λ = 0.1 e = 50 1.0 4, 8, 12, 16, 20

Table 8.1: Parameter values assigned to aggregated model of MSMQwf ′

Figure 8.8 shows how the mean waiting time for customers at Node1 decreases as the
walk rate of the servers is varied between 4 and 20. The other values for parameters in
the model are shown in Table 8.1. These performance characteristics were calculated using
the aggregated model described above, and were verified against values obtained from the
simplified model MSMQwf ′.
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Figure 8.8: Mean waiting time for customers at Node1 in the MSMQwf ′ system with four
nodes.



Chapter 9

Conclusions

9.1 Introduction

In this chapter the main results of the thesis are summarised. The extent to which these
address the problems facing performance analysis, identified in Section 2.4, is assessed. In
Section 9.4, the direction for further work and future development of PEPA, as it appeared
at the end of the thesis, are discussed. The chapter concludes with a review of work which
has been developed since the thesis was completed, particularly examining the extent to
which the areas outlined in Section 9.4 have been addressed.

9.2 Summary

A compositional approach to performance modelling has been presented. This novel model
construction technique, based on the stochastic process algebra PEPA, has been shown to be
suitable for specifying a Markov process. This underlying process can subsequently be solved
using any appropriate numerical technique. The ease with which models can be constructed
and modified using PEPA was demonstrated in the case studies presented in Chapter 4. For
example, when the effect of a faulty component was to be investigated, only the relevant
component within the model had to be modified.

As outlined in Section 3.6, one of the major advantages of PEPA over the standard
paradigms for specifying stochastic performance models is the inherent apparatus for reas-
oning about the structure and behaviour of models. In the later chapters of the thesis this
apparatus has been exploited to define four equivalence relations over PEPA components.
Each of these notions of equivalence has intrinsic interest from a process algebra perspective.
However, they have also been demonstrated to be useful in a performance modelling context.

Isomorphism is a strong notion of equivalence, defined structurally. It generates equational
laws which form the basis of model transformation techniques, based on term rewriting.

Weak isomorphism, in which the observation of internal activities is relaxed, leads to a
model simplification technique which is sensitive to the intended use of the model. Via
judicious use of the PEPA abstraction mechanisms, weak isomorphism allows a model to be
modified to a simpler form, reflecting its current experimental frame. Moreover, although
the relation is not a congruence relation, it has been shown to be preserved by cooperation,
and so this model simplification technique can be applied compositionally in appropriate
circumstances.

Strong bisimilarity, a bisimulation in the style of CCS, captures the notion of equivalence
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under memoryless observation. It has been shown that this is insufficient to ensure that the
systems represented exhibit exactly the same behaviour. However the additional condition
which must be satisfied for this to be the case has been identified. The model simplification
technique based on strong bisimilarity involves the modeller identifying components of the
model which can be replaced by a strongly bisimilar alternative which has a smaller derivative
set. This implies that some insight is required on the part of the modeller; such insight is
easily developed with experience.

Strong equivalence is also a bisimulation, developed in the style of the probabilistic bisim-
ulation of Larsen and Skou. It has been shown that this relation is sufficient to ensure that
the systems represented exhibit exactly the same behaviour. Moreover, when used to induce
a state-to-state equivalence in the underlying Markov process, it results in a lumpable parti-
tion of the state space. Thus strong equivalence can be used as a basis for exact aggregation
of the Markov process, and because it is a congruence this may be systematically applied
hierarchically through the component structure of the model. Since this technique can be
formally defined it could potentially be applied automatically. A procedure for implement-
ing the compositional application of strong equivalence aggregation has been outlined in
Figure 8.6.

Thus the performance modeller is armed with several methods for reducing the state
space of the Markov process underlying a PEPA model. Each of these methods can be
applied at the level of the PEPA model, without the construction of the state space of the
original model. Since the techniques are compositional they can be used simultaneously,
with different methods being applied to different components within the same model.

Some of the techniques for model construction and model solution described in the thesis
have already been implemented by Gilmore [104], and further development of this tool, the
PEPA Workbench, is planned.

9.3 Evaluation

The problems facing performance analysis outlined in Section 2.4 were:

1. Integrating performance analysis into system design;

2. Representing systems as models; and

3. Model tractability.

The use of process algebras as system description formalisms is widely accepted. Therefore
PEPA represents a step towards the timely consideration of quantitative characteristics of
systems during design, as stochastic process algebras integrate performance analysis into a
design methodology. PEPA has been defined so that the additional information which must
be included in the model for performance analysis to take place, the activity rates, may be
regarded as an annotation of a pure process algebra model. Thus there is the possibility
that existing designs may be used to generate performance models. The applicability of such
an approach may, however, turn out to be limited. As described in Section 3.5.4, the set of
PEPA components which can be considered to specify a performance model is restricted and
work needs to be done to investigate how often “satisfactory” designs fall within this set.

PEPA, like all process algebras, exemplifies the cooperator paradigm described in Sec-
tion 2.4. Thus it is an appropriate notation for representing modern computer and commu-
nication systems in which components have autonomy. The compositional structure inherent
in the process algebra corresponds to the structure of these systems. Furthermore this style
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of model construction suggests the possibility of a modelling tool based around a library of
parameterised components. Such a tool would help to make performance analysis accessible
to the non-expert.

Like stochastic Petri net paradigms, PEPA is susceptible to the problem of state space
explosion. The size of the state space underlying a model grows extremely rapidly as the size
and complexity of the system modelled increases. It has been shown however, that PEPA
supports three model simplification techniques which can take advantage of the compositional
structure of the model. These have the advantage over standard techniques for tackling state
space explosion that they can be applied without the construction of the state space of the
original model. In the future it may be possible that the compositional structure of the
PEPA models may also be used to inform the solution of the underlying Markov process,
enhancing the tractability of these models even further.

9.4 Further Work and Future Directions

The further work and future developments of PEPA will also be motivated by the problems
outlined in Section 2.4.

In the examples presented in this thesis we have considered PEPA only as a performance
modelling paradigm. However it also has the potential to be used as a design notation,
possibly with the activity rates omitted. Constructing performance models directly from
designs, using an annotation of the design notation, has a clear intuitive appeal. As well as
integrating performance analysis into a design methodology, it has important implications for
model verification. However, as already noted, there is potentially a mismatch between the
models which can be constructed in this way and the set of models which can be considered
to be valid performance models.

Further work is needed to establish the relationship between qualitative, or functional,
properties of systems, and quantitative, or performance, characteristics. For example, a
deadlock or livelock will correspond to an absorbing state, or an absorbing set of states,
respectively, in the underlying Markov process. A combined qualitative/quantitative analysis
of the system could provide measures such as the mean time until a deadlock occurs.

We have established that PEPA may be used to succinctly describe MSMQ systems.
However, in its present form PEPA may be regarded as a minimal notation. There is
considerable scope for adding more features to the language. Indeed, some applications may
require them. The current version of the language was chosen for the work presented in the
thesis because it allowed interesting models to be developed, without over-complicating the
proofs.

Some features which could be added to the language to enhance modelling convenience
include immediate activities and prioritised activities. It has been shown that the primary
importance of these features is to allow models, particularly parameterised ones, to be con-
structed easily, rather than increasing the expressiveness in SPNs. It is anticipated that
similar results could be developed for PEPA.

There are many different ways in which components within a system interact with each
other. The form of synchronisation represented by the cooperation combinator of PEPA was
chosen because it is general enough to represent many situations, and because its behaviour
is fully compositional. However, alternative combinators could be derived or defined to
represent other interactions such as the one-way condition testing and loose synchronisation
identified by Ciardo and Trivedi [74]. Modified versions of PEPA could be developed to suit
particular applications.
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The final, and most interesting, area for future work involves the investigation of the use
of the compositional structure of PEPA models to inform model solution. The relation-
ship between this structure and various decompositional approaches to the solution of the
underlying Markov process promises to be an interesting and fruitful area for future research.

There has been considerable recent interest in establishing the circumstances under which
an SPN model will be amenable to a product form solution [23, 81]. A class of nets which
satisfy the required conditions has been identified but the structure of these nets is limited.
These results have been considered in the more general framework of Markov processes by
Boucherie [80]. His results suggest that a product form solution for PEPA models would
only be possible in models in which all cooperation sets are empty. Further work is necessary
to extend these results to PEPA.

An alternative compositional approach to the solution of Markov processes is the use of
tensor algebra to express the generator matrix of a process. This approach has been proposed
by Plateau [82] and Buchholz [83]. Again, this is based on a restricted form of interaction
between subsystems within the system. However there appears to be potential for expressing
these forms of interaction in PEPA, or a similar stochastic process algebra.

9.5 Developments Since the Completion of the Thesis

In this section, added for the publication of the thesis as a book, we review the develop-
ments which have taken place in the area of stochastic process algebra since the thesis was
completed. There are now more researchers involved in the development of such formalisms
and their application to performance modelling. Since these researchers have diverse back-
grounds and motivations some of the recent developments are outside the areas identified in
the original conclusions of the thesis. However, particular attention is paid to the directions
for future work suggested in the previous section. As in that section, the discussion is struc-
tured around the problems facing performance modelling introduced in Section 2.4. First, a
general overview of recent work on stochastic process algebras is presented.

9.5.1 Stochastic Process Algebras

There have been no significant changes to PEPA since the thesis was completed, although
recently the set of combinators has been extended (see Section 9.5.3). Most of the research
effort centred on the language has been directed towards identifying cases when the model
structure can be exploited to provide efficient model solution (see Section 9.5.4).

The PEPA Workbench has been developed to address the creation and solution of more
sophisticated models. This has led to improvements in the state space storage scheme used
and also to the solution methods offered. The symbolic solution methods which are avail-
able by using the PEPA Workbench with the Maple computer algebra system can now be
supplemented by using the workbench with the high-performance numeric methods from the
Matlab computing environment [105]. In addition to efficient numerical solution methods,
Matlab also offers sophisticated facilities for visualising matrices. The information obtained
in this way may be used to guide a series of experiments which investigate the model, or to
provide insight into how the structure at the process algebra level influences the structure
of the generator matrix. In addition the workbench can be used with an implementation
of the preconditioned biconjugate gradient method for sparse equation solution. This is an
iterative solution method which gives very good performance and allows the workbench to
be used independently of both Maple and Matlab.



9.5. DEVELOPMENTS SINCE THE COMPLETION OF THE THESIS 141

Recent work on TIPP has focussed on a Markovian version of the language, sometimes
called MTIPP, and an equivalence relation, Markovian bisimulation (strong equivalence).
Recognising the usefulness of such relations for model transformation the Erlangen team
have been developing a sound and complete set of axioms to capture Markovian bisimulation
[106]. The aim is to develop a term-rewriting system based on these axioms that would carry
out the aggregation automatically at the syntactic level of models. The equivalence relation
has recently been extended to encompass various extensions to the language [107, 108] (see
Section 9.5.3).

A tool has also been developed for TIPP [109]. The TIPP-tool is similar to the PEPA
Workbench. It supports a LOTOS-oriented input language and provides facilities for func-
tional analysis as well as a set of numerical solution modules for the transient and steady
state analysis of the underlying Markov process.

In 1994 two new stochastic process algebras appeared in the literature. Markovian Process
Algebra (MPA) was developed by Buchholz of the University of Dortmund [110, 111]. The
major difference between this language and PEPA or TIPP, is the assumption that all actions
of type α proceed at a fixed rate µα. Activities are still represented as (α, r) pairs but r now
represents the number of concurrently enabled instances of action α, all of which proceed at
rate µα. These instances are assumed to be competing in the sense that as soon as one of
them completes the rest are aborted. This difference has subtle impact on the semantics of
the language.

Extended Markovian Process Algebra (EMPA)1 has been developed by Gorrieri’s group
at the University of Bologna [112, 113]. Although closer to PEPA than earlier work [62],
this language includes a richer set of combinators than either PEPA or TIPP. It was also
the first stochastic process algebra to include immediate or instantaneous actions. Passive
actions play a central role in the theory of EMPA and synchronisation is restricted to involve
at most one timed or immediate action. Most of the work on EMPA has focussed on various
Petri net based semantics for the language.

There have also recently been some interesting explorations of the next departure after
stochastic process algebra. In [114] Priami presents a stochastic extension of the π-calculus.
The extension is analogous to the approach taken by the stochastic process algebras and
allows Priami to consider the flexibility which process mobility might bring to performance
modelling whilst staying within the Markovian framework. In two recent papers [115, 116],
Brinksma et al. investigate the potential of using a true concurrency approach via stochastic
extensions to a simple process algebra in a causality-based setting.

There has been extensive work studying semantic models of stochastic process algebra
languages based on SPNs over the last two years [117, 118, 119, 120, 121]. Ribaudo’s work
[118, 122] makes use of a net-based semantics to compare the approaches to state space
aggregation which are available in PEPA and Stochastic Well-formed Nets (SWN), a class of
coloured SPN. In particular the semantics is used to establish that the aggregation achieved
by strong equivalence in PEPA is more compact than that achieved by symbolic marking in
SWN [123].

9.5.2 Integrating Performance Analysis into System Design

The work by Holton et al. [124, 125, 126] can be regarded as an initial investigation of how far
PEPA provides integration between design and performance modelling. Previous work on the

1Originally this stochastic process algebra was also called MPA but the authors subsequently changed
the name to avoid ambiguity.
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performance analysis of robots and production cells has been limited, and mostly focussed
on detailed simulation studies. However use of formal methods, such as process algebras, as
design tools is better established [127]. The preliminary conclusions of experience of using
PEPA in this way are that the reservations about using designs to generate performance
models, expressed in Section 9.3, are not unfounded. In particular problems due to state
space explosion and transient states have been encountered. However, these problems are
not insurmountable and it has been found that designs can be readily modified to produce
tractable performance models once the modeller has developed a little experience [125]. In
the future it is planned to develop a refinement calculus based on PEPA which allows a
model containing only essential detail for performance modelling, to be elaborated through
stages of detailed design and implementation.

9.5.3 Representing Systems as Models

In addition to the work on robots and production cells case studies have been published on
communication protocols [128, 129], a distributed mail system [130, 131] and a fault tolerant
multi-processor [132, 133]. Some of these case studies have particularly aimed to consider
the extent to which qualitative and quantitative analysis can be integrated [130, 134]. In
the area of performability modelling this has been found to be especially relevant.

As mentioned above EMPA offers the modeller the richest set of combinators. Recently
Holton has developed new combinators for PEPA [135]. The impact of such combinators
on the transformation from design to performance model is still to be assessed in practice.
Application area specific language features have not yet been investigated. This is possibly
because except for the work on robots and production cells the case studies are being carried
out by language developers themselves.

Recent work on TIPP has aimed to enhance the usefulness of the language by incorporat-
ing immediate actions. Here the aim is to offer the modeller a more compact representation
of the system. Analysing the role of immediate actions within a modelling paradigm Rettel-
bach identifies two important ways in which they are used. The first role—representing
“management” activities whose duration is negligible—is investigated in [108]. In this paper
previous theoretical results on TIPP are extended to a new version of the language which in-
cludes such immediate actions. Moreover it is shown that transitions corresponding to these
actions can be safely eliminated before the underlying CTMC is generated. Similarly in [107]
Rettelbach tackles the second role for immediate actions—representing decisions and choices
which do not consume system resources. Here too an equivalence relation is developed which
could be used to automatically reduce the transition system, without affecting the integrity
of the performance measures, whilst retaining this attractive modelling feature for model
development. Thus, as anticipated, the addition of immediate actions, whilst easing model
construction does not enhance the expressiveness of the stochastic process algebra.

Preliminary work exploring the more informal relationship between the modelling styles
and facilities available in stochastic process algebras and GSPN has recently been published
[136, 131]. Paradigms exhibit distinct strengths and weaknesses and a better understanding
of the relationships between them can have mutual benefit as characteristics and techniques
are imported from one to the other. Indeed the benefits of understanding the relationship
between formalisms has become apparent in recent work on efficient solution: the recent
results on product form solutions were inspired by earlier work on SPNs and queueing net-
works.

Little work has yet been done comparing the different stochastic process algebras. However
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by analysing their GSPN semantics, Ribaudo was able to present a summary of their differing
characteristics and facilities [137]. This paper highlights the fact that the most significant
difference between the formalisms is their different interpretations of synchronisation or
cooperation. This is analysed in some detail in [138].

9.5.4 Model Tractability

Finding ways of exploiting the structure within PEPA models to enhance model tractability
was identified as the most compelling problem left unsolved at the end of the thesis. Although
the problem is still far from being completely resolved, significant progress has been made.
Three distinct strands of research have arisen in this area corresponding to product form
solution, near complete decomposability (or time scale decomposition), and tensor algebra
and other special matrix representations.

The work on product form solutions aims to take advantage of apparent independence
between submodels of a model, so that the submodels can be solved in isolation. Based on
Henderson and Taylor’s work on product form SPN models, Sereno has developed criteria to
recognise a class of PEPA models which exhibit product form solution [139]. In such models
the activities themselves are considered to be the states of a Markov chain which may be
solved to find the steady state of the complete process. As in the SPN case only limited
forms of synchronisation between submodels is allowed.

Similarly the work of Harrison and Hillston [140] derives conditions to recognise a restricted
form of interaction between submodels which corresponds to the limited form of interaction
between nodes in a queueing network. Efficient product form solution is one of the major
attractions of such networks for performance modelling purposes. This work uses the notion
of quasi-reversibility which had previously only been defined in a queueing network setting
[141]. Extending this notion to a Markov process setting, the authors are able to define a form
of interaction between PEPA components which ensures apparently independent behaviour.
There is a pleasing resonance between the compositionality of the stochastic process algebra
models and the modular, hierarchical approach defined by quasi-reversibility.

Note that the classes of models identified by the two approaches are distinct and it is an
interesting area for future work to be able to compare them within the common framework
of stochastic process algebras.

In contrast to the exact solutions obtained by product form methods, time scale decom-
position results in an approximate solution. However the loss of accuracy is compensated
by a technique which is efficient both in terms of time and storage. The essence of the
approach is to identify when the model has a nearly completely decomposable structure [97]
(see Section 5.3). In [142] Hillston and Mertsiotakis present a class of TIPP models which
satisfy this property and give an algorithm to apply time scale decomposition to such models.
Similarly to recent work on SPN models [143], each submodel in the decomposition corres-
ponds to a set of derivatives which are reachable via fast activities. Transitions between
submodels correspond to slow activities. A prototype implementation of the algorithm has
been developed for the TIPP-tool and this is described in the paper.

Although not decompositional in the sense of the techniques described above work on
tensor algebra and spectral expansion allow the generator matrix representing a model to
be expressed in a form which facilitates efficient solution. The compositional structure is
not used to identify submodels which can be solved in isolation. Instead this structure
is used to structure the generator matrix so that specialised efficient solution algorithms
can be employed. In [110, 111] and [144] the benefits of recognising the correspondence
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between operators in the process algebra and tensor operators on the underlying matrices
are explored for MPA and a subset of TIPP, respectively. More recently a convenient means
of modelling the behaviour of infinite state systems based on TIPP has been developed
[145]. The approach allows analysis of the system’s underlying Markov chain using the
spectral expansion solution method [146].
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