IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

An Efficient Algorithm for Aggregating PEPA
Models

Stephen Gilmore, Jane Hillston and Marina Ribaudo

Abstract— Performance Evaluation Process Algebra
(PEPA) is a formal language for performance modelling
based on process algebra. It has previously been shown
that using the process algebra apparatus compact perfor-
mance models can be derived which retain the essential be-
havioural characteristics of the modelled system. However
no efficient algorithm for this derivation was given. In this
paper we present an efficient algorithm which recognises and
takes advantage of symmetries within the model and avoids
unnecessary computation. The algorithm is illustrated by a
multiprocessor example.

Keywords— Performance modelling, model aggregation,
performance evaluation tools, stochastic process algebras.

I. INTRODUCTION

N recent years several Markovian process algebras

(MPAs) have been presented in the literature. These
include PEPA [1], MTIPP [2], and EMPA [3]. As with
classical process algebras, these formalisms allow models
of systems to be constructed which are amenable to func-
tional or behavioural analysis by a variety of techniques.
Additionally they allow timing information to be captured
in those models and so facilitate performance analysis via
the solution of a Continuous Time Markov Chain (CTMC).

Process algebras have several attractive features: a
facility for high-level definition, compositional structure
and the existence of formally defined equivalence relations
which can be used to compare models. In the Markovian
context theoretical results have shown that it is possible
to exploit these equivalence relations at the level of the
model description to generate an aggregated CTMC in a
compositional way [4]. This is of great practical impor-
tance because, like all state-based modelling techniques,
MPA models suffer from the state space explosion problem.
Although prototype tools have been developed for model
exploration [5, 6, 7], little work has been done to exploit to
the full the potential to use equivalence relations to achieve
effective aggregation and thus to put the theoretic results
to practical use. In this paper we describe an algorithm to
carry out efficient aggregation and its implementation in
the PEPA Workbench.

Aggregation is a widely used and well-understood tech-
nique for reducing the size of CTMC used in performance
analysis. The state space of the CTMC is partitioned into a
number of classes, each of which is treated as a single state
in a new derived stochastic process. If the partition can

S. Gilmore and J. Hillston are with the Laboratory for Foundations
of Computer Science, The University of Edinburgh, Scotland. Email:
{stg, jeh}@dcs.ed.ac.uk

M. Ribaudo is with the Dipartimento di Informatica, Universita di
Torino, Italy. Email: marina@di.unito.it

be shown to have a condition known as lumpability [8], this
new stochastic process will again be a CTMC and amenable
to numerical solution of a steady state probability distribu-
tion via linear algebra. In the MPA context the partition-
ing is carried out using a formally defined equivalence rela-
tion which establishes behavioural or observational equiva-
lence between states within a model. The equivalence rela-
tion which is generally discussed in relation to aggregation
is called strong equivalence (for PEPA), Markovian bisim-
ulation (for MTIPP) or extended Markovian bisimulation
equivalence (for EMPA). However there are some problems
with applying this equivalence relation/aggregation at the
syntax level in a compositional way. These are discussed
in more detail in Section V. In this paper we use a finer
equivalence relation, called isomorphism, which although
it may result in coarser aggregations has the advantage of
being readily amenable to automatic generation of equiva-
lence classes at the syntax level. Thus the construction of
the complete state space can be avoided and the aggregated
CTMC is constructed directly.

The rest of the paper is structured as follows. In Sec-
tion II we introduce the PEPA language, its operational
semantics, and aggregation via isomorphism. The algo-
rithm for the computation of a reduced state space is dis-
cussed in Section I1I, an example is presented in Section IV.
Some cases in which the algorithm cannot achieve the op-
timal theoretical partitioning are discussed in Section V.
Section VI presents some related approaches and, finally,
Section VII concludes the paper presenting some possible
future investigation.

II. PEPA

Performance Evaluation Process Algebra (PEPA) is an
algebraic description technique based on a classical process
algebra and enhanced with stochastic timing information.
This extension results in models which may be used to cal-
culate performance measures as well as deduce functional
properties of the system. In this section we briefly intro-
duce PEPA; more detailed information can be found in [1].

Process algebras are mathematical theories which model
concurrent systems by their algebra and provide appara-
tus for reasoning about the structure and behaviour of the
model. In classical process algebras, e.g. Calculus of Com-
municating Systems (CCS [9]), time is abstracted away—
actions are assumed to be instantaneous and only relative
ordering is represented—and choices are generally nonde-
terministic. If an exponentially distributed random vari-
able is used to specify the duration of each action the pro-
cess algebra may be used to represent a Markov process.

This approach is taken in PEPA and several of the other
Markovian process algebras [2, 3].

The basic elements of PEPA are components and activi-
ties, corresponding to states and transitions in the under-
lying CTMC. Each activity is represented by two pieces of
information: the label, or action type, which identifies it,
and the activity rate which is the parameter of the negative
exponential distribution determining its duration. Thus
each action is represented as a pair (a, 7). We assume that
the set of possible action types, A, includes a distinguished
type, 7. This type denotes internal, or “unknown” activi-
ties and provides an important abstraction mechanism.

The process algebra notation for representing systems is
wholly based on the use of a formal language. The PEPA
language provides a small set of combinators. These allow
language terms to be constructed defining the behaviour
of components, via the activities they undertake and the
interactions between them. The syntax may be formally
introduced by means of the following grammar:

S = (a,r).S | S+S5 | Cs
P uw= PP | P/L|C

where S denotes a sequential component and P denotes a
model component which executes in parallel. C' stands for
a constant which denotes either a sequential or a model
component, as defined by a defining equation. C's stands
for constants which denote sequential components. The
component combinators, together with their names and in-
terpretations, are presented informally below.

Prefiz, (o, 7).S

The basic mechanism for describing the behaviour of a
system is to give a component a designated first action
using the prefix combinator, “.”. For example, the compo-
nent (o, r).S carries out activity («,r), which has action
type a and an exponentially distributed duration with pa-
rameter r, and it subsequently behaves as S. The set of
all action types is denoted by A. Sequences of actions can
be combined to build up a life cycle for a component. For

example:
Comp = (error, €).(repair, p). Comp

Choice, S+ S

The life cycle of a sequential component may be more
complex than any behaviour which can be expressed using
the prefix combinator alone. The choice combinator cap-
tures the possibility of competition or selection between
different possible activities. The component S; + Sy rep-
resents a system which may behave either as S; or as Ss.
The activities of both S; and S5 are enabled. The first
activity to complete distinguishes one of them: the other is
discarded. The system will then behave as the derivative
resulting from the evolution of the chosen component. For
example, the faulty component considered above may also
be capable of completing a task satisfactorily:

Comp = (error, €).(repair, p).Comp + (task, j1).Comp

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Constant, C

As we have already seen, it is convenient to be able to
assign names to patterns of behaviour associated with com-
ponents. Constants provide a mechanism for doing this.
They are components whose meaning is given by a defin-
ing equation: e.g. C'= P, which gives the constant C' the
behaviour of the component P.

Cooperation, P I P

Most systems are comprised of several components which
interact. In PEPA direct interaction, or cooperation, be-
tween components is represented by the combinator DLQ 7.
The set L, of visible action types (L C A\ {7}), is signif-
icant because it determines those activities on which the
components are forced to synchronise. Thus the coopera-
tion combinator is in fact an indexed family of combinators,
one for each possible cooperation set L. When cooperation
is not imposed, namely for action types not in L, the com-
ponents proceed independently and concurrently with their
enabled activities. However if a component enables an ac-
tivity whose action type is in the cooperation set it will
not be able to proceed with that activity until the other
component also enables an activity of that type. The two
components then proceed together to complete the shared
activity. The rate of the shared activity may be altered to
reflect the work carried out by both components to com-
plete the activity.

For example, the faulty component considered above
may need to cooperate with a resource in order to com-
plete its task. This cooperation is represented as follows:

System = Comp {ES-} Res
If the component also needs to cooperate with a repairman
in order to be repaired this could be written as:

System {53) Repman
or, equivalently

(Comp {Eﬁﬂk} Res) {Eﬂ} Repman

In some cases, when an activity is known to be carried out
in cooperation with another component, a component may
be passive with respect to that activity, denoted («, T).
This means that the rate of the activity is left unspecified
and is determined upon cooperation, by the rate of the
activity in the other component. All passive actions must
be synchronised in the final model.

If the cooperation set is empty, the two components pro-
ceed independently, with no shared activities. We use the
compact notation, P || @, to represent this case. Thus, if
two components compete for access to the resource and the
repairman we would represent the system as

((Comp || Comp) {Ei]} Res) B Repman

{repair}

GILMORE, HILLSTON AND RIBAUDO: AN EFFICIENT ALGORITHM FOR AGGREGATING PEPA MODELS 3

Hiding, P/L

The possibility to abstract away some aspects of a com-
ponent’s behaviour is provided by the hiding operator “/”.
Here, the set L of visible action types identifies those activ-
ities which are to be considered internal or private to the
component. These activities are not visible to an exter-
nal observer, nor are they accessible to other components
for cooperation. For example, in the system introduced
above we may wish to ensure that these components have
exclusive access to the resource in order to complete their
task. Thus we hide the action type task, ensuring that even
when the system is embedded in an environment no other
component can access the task activity of the resource:

B Res)/{task}

{task}

System = ((Comp || Comp)

Once an activity is hidden it only appears as the unknown
type 7; the rate of the activity, however, remains unaf-
fected.

The precedence of the combinators provides a default
interpretation of any expression. Hiding has highest prece-
dence with prefix next, followed by cooperation. Choice
has the lowest precedence. Brackets may be used to force
an alternative parsing or simply to clarify meaning.

A. Operational semantics and the underlying CTMC

The model components capture the structure of the sys-
tem in terms of its static components. The dynamic be-
haviour of the system is represented by the evolution of
these components, either individually or in cooperation.
The form of this evolution is governed by a set of formal
rules which give an operational semantics of PEPA terms.
The semantic rules, in the structured operational style of
Plotkin, are shown in Fig. 1; the interested reader is re-
ferred to [1] for full details.

The rules are read as follows: if the transition(s) above
the inference line can be inferred, then we can infer the
transition below the line. For one example, the two rules
for choice show that the choice operator is symmetric and
preserves the potential behaviours of its two operands. For
another, the cooperation operator has a special case where
the two cooperands do not synchronise on any activities.
The notation for this case is F || F. In this case the three
rules would simplify to the two which are shown below.

(ev,r)

—

(ev,r)

RN El F/

(a,r) (a,r)

E|F—FE|F E|F—E| F

These rules capture the intuitive understanding that two
components which do not synchronise on any activities can-
not influence each other’s computational state. In the case
of components which do synchronise the rate of the result-
ing activity will reflect the capacity of each component to
carry out activities of that type. For a component E and
action type «, this is termed the apparent rate of a in F,
denoted 7,(FE). It is the sum of the rates of the a type

Prefix
(a,r)
(a,r).E — F

Choice

(at,m) (et,m)

_ E/ _ F/

(a,7) (e,7)
E+F — FE' E+F —— F'
Cooperation (a ¢ L)
B (a,r) B (a,r) o

(e;r)

EDLQF—>ED§F’

(er)

ED;QF—>E’D§F

Cooperation (a € L)

(e,r1)

(a,r2) T1]
’ ’ R = Tm
: le — Ta(E) 7o (F)
«,

EXF — pr B T = min(ry (E), ro(F))

Hiding
(ev,r)

[5

@

(¢ L) (ve L)

(e,r) (7,7)
E/L -2 BL E/L -2 EL

Constant
B p

C —= FE’

Fig. 1. Operational semantics of PEPA

activities enabled in E. The exact mechanism used to de-
termine the rate of the shared activity will be explained
shortly.

As in classical process algebra, the semantics of each
term in PEPA is given via a labelled transition system;
in this case a labelled multi-transition system—the multi-
plicities of arcs are significant. In the transition system a
state corresponds to each syntactic term of the language, or
derivative, and an arc represents the activity which causes
one derivative to evolve into another. The complete set of
reachable states is termed the derivative set of a model and
these form the nodes of the derivation graph (DG) formed
by applying the semantic rules exhaustively. For example,
the derivation graph for the system

((Comp || Comp) Dﬁ} Res) Dﬂ}Repman

{t {repair

4
(reset, 1)
s2
(reset, r
: (reset,)
(task, p) |} (task, p)
(error - _(error,€)
(repair, p) (repair, p

repair, p) (repair, p

@ = initial state

Fig. 2. DG for the Multi-Component model (without hiding)

| State || Corresponding derivative |

S0 ((Comp || Comp)
B Res) D(]}Repman

{task} {repair

s1 ((Comp || Comp)
B (reset,r).Res) P Repman

{task} {repair}

S9 (((repair, p).Comp || Comp)

es) P Repman
{task} {repair}

s3 || ((Comp | (repair, p).Comp)
B Res) B Repman

{task} {repair}
S4 (((repair, p).Comp || (repair, p).Comp)
B Res) B , Repman

{task} {repair
S5 (((repair, p).Comp || Comp)
(reset,T).Res) {Epﬂ

=] Repman
{task} r}

s¢ || ((Comp || (repair, p).Comp)
B (reset,r).Res)

{task}

BJ Repman
{repair}

s7 (((repair, p).Comp || (repair, p).Comp)
B (reset,r).Res) {D{]

{task} repair}

Repman

TABLE 1
STATES OF THE DERIVATION GRAPH OF FIG. 2

is shown in Fig. 2, assuming the following definitions:
Comp = (error,e).(repair, p).Comp
+ (task,p).Comp
Res = (task,T).(reset,r).Res
(

Repman = repair, T).Repman

For simplicity, in the figure we have chosen to name the
derivatives with short names s;,7 = 0...7; the correspond-
ing complete names are listed in Table 1. Note that there
is a pair of arcs in the derivation graph between the initial
state sg and its one-step derivative s;. These capture the
fact that there are two distinct derivations of the activity

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Fig. 3. CTMC underlying the Multi-Component model

(task, 1) according to whether the first or second compo-
nent completes the task in cooperation with the resource,
even though the resulting derivative is the same in either
case.

The timing aspects of components’ behaviour are not
represented in the states of the DG, but on each arc as the
parameter of the negative exponential distribution govern-
ing the duration of the corresponding activity. The inter-
pretation is as follows: when enabled an activity a = (a, 1)
will delay for a period sampled from the negative expo-
nential distribution with parameter r. If several activities
are enabled concurrently, either in competition or indepen-
dently, we assume that a race condition exists between
them. Thus the activity whose delay before completion
is the least will be the one to succeed. The evolution of
the model will determine whether the other activities have
been aborted or simply interrupted by the state change.
In either case the memoryless property of the negative ex-
ponential distribution eliminates the need to record the
previous execution time.

When two components carry out an activity in coopera-
tion the rate of the shared activity will reflect the working
capacity of the slower component. We assume that each
component has a fixed capacity for performing an activity
type «, which cannot be enhanced by working in coop-
eration (it still must carry out its own work), unless the
component is passive with respect to that activity type.
This capacity is the apparent rate. The apparent rate of
« in a cooperation P {D(;ﬂ} Q@ will be the minimum of r,(P)

and 7,(Q). The rate of any particular shared activity will
be the apparent rate of the shared activity weighted by the
conditional probability of the contributing activities in the
cooperating components. The interested reader is referred
to [1] for more details.

The DG is the basis of the underlying CTMC which is
used to derive performance measures from a PEPA model.
The graph is systematically reduced to a form where it can
be treated as the state transition diagram of the underly-
ing CTMC. Each derivative is then a state in the CTMC.
The transition rate between two derivatives P and P’ in
the DG is the rate at which the system changes from be-
having as component P to behaving as P’. It is denoted
by ¢(P, P’) and is the sum of the activity rates labelling
arcs connecting node P to node P’. For example, the state

GILMORE, HILLSTON AND RIBAUDO: AN EFFICIENT ALGORITHM FOR AGGREGATING PEPA MODELS 5

transition diagram for the CTMC underlying the simple
component model is shown in Fig. 3. Note the arc la-
belled with rate 2u between states Xg and X7, representing
the derivatives ((Comp || Comp) P Res) B Repman

{task} {repair}

and ((Comp || Comp) {Eﬁ} (reset,T).Res) {Eﬂ} Repman

respectively.

In order for the CTMC to be ergodic its DG must be
strongly connected. Some necessary conditions for ergod-
icity, at the syntactic level of a PEPA model, have been
defined [1]. These syntactic conditions are imposed by the
grammar introduced earlier.

B. Aggregation in PEPA via isomorphism

Equivalence relations, and notions of equivalence gener-
ally, play an important role in process algebras, and defin-
ing useful equivalence relations is an essential part of lan-
guage development. For PEPA various equivalence rela-
tions have been defined. These include isomorphism, which
captures the intuitive notion of equivalence between lan-
guage terms based on isomorphic derivation graphs, and
strong equivalence, a more sophisticated notion of equiva-
lence based on bisimulation.

Any equivalence relation defined over the state space of
a model will induce a partition on the state space. Ag-
gregation is achieved by constructing such a partition and
forming the corresponding aggregated process. In the ag-
gregated process each partition of states in the original
process forms one state. If the original state space is
{Xo,X1,...,X,} then the aggregated state space is some
{X[O],X[l],...,X[N]}, where N < n, ideally N < n. In
general, when a CTMC is aggregated the resulting stochas-
tic process will not have the Markov property. However if
the partition can be shown to satisfy the so-called lumpabil-
ity condition, the property is preserved and the aggregation
is said to be ezxact.

When the model considered is derived from a process
algebra such as PEPA it is possible to establish useful al-
gebraic properties of the equivalence relation used. The
most important of these is congruence. An equivalence re-
lation is a congruence with respect to the operators of the
language if substituting an equivalent component within a
model expression gives rise to an equivalent model; e.g. if P
is equivalent to P’, then P D@ is equivalent to P’ BIQ.
When a congruence is used as the basis for aggregation
in a compositional model, the aggregation may be carried
out component by component, avoiding the construction
of the complete state space because the aggregated com-
ponent will be equivalent to the original. Nevertheless this
approach is applied at the semantic level of the model and
necessitates the expansion and subsequent partitioning of
relevant state spaces. Moreover, the reduced model pro-
duced in this way may not be as compact as would be
achieved by aggregating the complete model directly, mak-
ing a further application of aggregation necessary, in this
case to the model consisting of the aggregated components.

Both isomorphism and strong equivalence are congru-
ence relations that can be used as the basis for exact ag-

gregation of PEPA models, based on lumpability [4]. In
either case the relation is used to partition the state space
(possibly compositionally), and so the underlying CTMC,
and each such equivalence class forms one state in the ag-
gregated state space. In the algorithm which we are pre-
senting here we use the isomorphism relation: the use of
strong equivalence for the same purpose is discussed in Sec-
tion V.

The use of the isomorphism relation may seem surpris-
ing since the more powerful bisimulation-style equivalence
relations are one of the attractive features of process al-
gebras and are often cited as one of the benefits of these
formal languages. In contrast, isomorphism has received
little attention in the literature. In part, this is because in
classical process algebra the objective is to use an equiv-
alence relation to determine when two agents or system
descriptions exhibit the same behaviour. In stochastic pro-
cess algebra greater emphasis is placed on using equivalence
relations to partition the derivation graph of the model in
order to produce an aggregation resulting in a smaller un-
derlying Markov process. It has been shown that PEPA’s
strong equivalence relation is a powerful tool for aggrega-
tion in this style, always resulting in a lumpably equivalent
Markov process [1]. However, we believe that in many in-
stances isomorphism can also be useful for this purpose.
Since it is a more discriminating notion of equivalence it
may give a finer partition and thus less aggregation than
strong equivalence. On the other hand, as we will show,
it may be detected at the syntactic level of the system de-
scription without the recourse to the semantic level which
is necessary to detect strong equivalence in general. Thus
a reduced derivation graph is generated without the need
to construct the original derivation graph.

In the following section we present the algorithm which
exploits isomorphism, while in Section VI we discuss its
relation to other work on automated aggregation.

III. ALGORITHM

The algorithm for computing the reduced derivation
graph of a PEPA model begins by pre-processing a model
which has been supplied by the modeller. The purpose of
this pre-processing is to re-express the model in a more con-
venient form for the production of the aggregated deriva-
tion graph. The aggregated derivation graph has at its
nodes, equivalence classes of PEPA terms, rather than sin-
gle syntactic expressions. During the pre-processing step
the PEPA syntax is systematically replaced and the model
expression is converted into a wvector form, which is then
minimised and converted into its canonical form. Every
distinct PEPA expression maps to a distinct vector form,
but equivalent (isomorphic) expressions will have the same
canonical representation.

Once this pre-processing is complete, the generation of
the reduced derivation graph can begin. This process al-
ternates between generating all of the one-step derivatives
of the present state and compacting these in order to group
together derivatives which have the same canonical repre-
sentation.

The algorithm proceeds on the assumption that the
model supplied is in reduced named norm form. In the
named form representation each derivative of each sequen-
tial component is explicitly named. In the norm form the
model is expressed as a single model equation which con-
sists of cooperations of sequential components governed by
hiding sets. In the reduced form all cooperation and hiding
sets have been reduced by removing any redundant ele-
ments. If the supplied model is not in this form the nec-
essary restructuring is carried out before the algorithm is
applied. The functions to achieve this carry out routine
checks on the validity of the model supplied and the modi-
fications that they make are completely transparent to the
modeller.

We now proceed to describe these steps in more detail.

A. Restructuring the model

During the application of the algorithm it is convenient
to have intermediate derivatives in the model bound to
identifiers. We generate these identifiers as we decompose
the defining equations for each sequential component. For
example, if the defining equation is

Comp = (error, €).(repair, p). Comp + (task,). Comp

we introduce a name for the intermediate derivative by re-
placing this single equation by the following pair of equa-
tions.

Comp = (error,e).Comp’ + (task,u).Comp

Comp’ = (repair, p).Comp

Once this has been done for each sequential component the
model is said to be in named form.

As described in Section II, a PEPA model consists of a
collection of defining equations for sequential components
and model components. One of the model components is
distinguished by being named as the initial state of the
model. The definition of this component may refer to other
model components, defined by other equations. We wish to
eliminate uses of model components from that definition, in
order to reduce it to a normed form in which the only iden-
tifiers used are those of sequential components. We proceed
by back-substituting the model component definitions into
the defining equation of the distinguished component. For
example, the pair of equations

Config = System {Eﬂr} Repman
System = Comp P Res

{task}

will become

Config & Comp {ES} Res Repman

{repair}
We continue this process until it converges to a definition
of a mormed model equation which consists only of cooper-
ations of sequential components governed by hiding sets.
If the cooperation or hiding sets in a model definition
contain unnecessary or redundant elements the equivalence

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

classes formed by the algorithm may not be optimal. Thus
we can, in some circumstances, improve the subsequent
performance of the algorithm by removing redundant ele-
ments from these sets before the algorithm is applied. Fur-
thermore, the presence of redundant elements in cooper-
ation or hiding sets can be regarded as a potential error
on the part of the modeller; consequently the modeller is
warned of any reduction.

We have previously presented efficient algorithms for
computing the sets of activities (Act) which are performed
by PEPA model components [10] and we use these to re-
duce to the minimum the size of cooperation and hiding
sets in the following way.

PBEQ ~ P %‘? Q@ where Lo = LN (Act(P) U Act(Q))
P/L ~ P/Ly where Lo= LN Act(P)

This reduction is applied systematically throughout the
normed model equation. This operation is bounded in com-
plexity by the size of the static representation of the input
PEPA model and thus there is no hidden cost here of a
traversal of the state space which is generated by the dy-
namic exploration of the model.

B. Pre-processing: vector form, minimisation, canonicali-
sation

The vector form of a model expression represents the
model in the most suitable form for our aggregation algo-
rithm because it is amenable to efficient calculation of its
canonical form. Here we present the vector form as a vector
of sequential components with decorated brackets denoting
the scope of these sets. We use subscripted brackets to de-
limit a cooperation set and superscripted angle brackets to
delimit hiding sets.

In the implementation these vectors are represented by
linked lists which provide for efficient manipulation when
forming canonical representatives. Re-ordering and re-
arrangement of the representations of components in the
vector forms can then be achieved by safe, statically-
checked pointer manipulation, thereby avoiding the over-
head of the repeated copying of data values which would
be incurred by the use of an array-based representation.

Definition 1 (Vector Form) For a model expression,
we define the vector form inductively over the structure of
the expression: let M, N be expressions and C be a constant
denoting a sequential component.

1. vf (M BAN) = (vf M,vf N)p,

2. vf (M/L) = E{vf M)

3.vf(C)=C

In the following we write P to denote a vector (P, ..., P,).

As with the normed model equation, the vector form
representation contains within a single expression all of
the information about the static structure of the model.
It records the name of the current derivative of each of
the sequential components in addition to the scope of the
cooperation and hiding sets which are in force. The vec-
tor form alone is not sufficient to allow us to compute the

GILMORE, HILLSTON AND RIBAUDO: AN EFFICIENT ALGORITHM FOR AGGREGATING PEPA MODELS 7

derivation graph of the model: the defining equations for
the sequential components are also needed.

Because it is generated directly from the full model
equation the vector form may include some redundancies.
Hence, we include a preprocessing step which is carried out
to reduce the vector form generated by a straightforward
translation of the model equation to the vector form which
will be used for the remainder of the state space explo-
ration. This step consists of generating the minimal repre-
sentation of the vector form, which is minimal with respect
to the number of brackets needed to record the scope of the
cooperation and hiding sets. As we will see, reducing the
number of brackets in the vector form may have significant
impact on the aggregation which can be achieved. Thus we
can perform the following simplifications:

Elimination of redundant cooperation brackets: this arises
when we have a component such as @ B (P BIR). The
vector form of this component would be (Q,(P,R)L)L.
When contiguous brackets have the same decoration in this
way the inner one can be eliminated. In this example this
results in (@, P, R) .

Elimination of redundant hiding brackets: this would arise
whenever hiding brackets are contiguous regardless of their
decoration. For example, if we had a component (P/L)/K
its vector form would be & (*(P)). This would be reduced
to KYL(p).

From the minimal vector form we reduce the model repre-
sentation to its canonical form. We can choose an arbitrary
ordering on component terms—one suitable ordering is lex-
icographic ordering. We denote this ordering by P < @ or
@ > P. We denote the canonicalisation function by C. We
insert a component P into a vector P using Zp P. The def-
initions of these functions are shown in Definition 2. The
definitions are not complex but we include them here for
completeness and in order to prevent there appearing to be
any hidden complexity in their definitions.

Definition 2 (Canonicalisation and insertion) These
are the definitions of the canonicalisation function C and
the insertion function Z. There are three cases in the defi-
nition of each of these functions.

1. cCc=C

2. CL(P) = L(CP)

3. C(Py,...,Py)r =Zcp, -+ Tep, ()L

1. Zp ()r = (P)L

2. Ip(Pr,...,P) = (P.Pr,...,P)) if P< P

3. IP(Pla"'vpn)L:IP1IP(P23"'7PTL)L ZfP>P1

C. Generating the aggregated derivation graph

The previous pre-processing steps have been applied to
the input PEPA model to facilitate the subsequent appli-
cation of the aggregation algorithm. Before pre-processing
the model was represented by a PEPA expression, which
represented an individual (initial) state and contained all
the information necessary for its dynamic evolution. After

the pre-processing steps have been performed, the expres-
sion is reduced to canonical, minimal vector form, which
retains only information about the state structure of the
model and represents an equivalence class of states. Thus
this canonical vector form is a reduced representation in
two senses. Firstly, the information about the dynamic be-
haviour, cooperation sets and hiding sets, which is common
to all states of the model, is factored out and stored sep-
arately. Secondly, each canonical vector form may in fact
represent a number of equivalent model states which would
have distinct vector forms.

Generating the reduced derivation graph now proceeds
via the following two steps which are carried out alternately
until the state space has been fully explored.

Derivation: Given the vector form the objective is to find
all enabled activities and record them in a list, paired with
the vector form of the corresponding derivative. This is
done by recursing over the static structure of the current
derivative. At the lowest level the sequential components
are represented simply as a derivative name. At this point
the defining equations are used to find the activity, or set
of activities, which are enabled by the derivative. We can
identify three cases:

o Individual activities which are not within the scope of
a hiding operator are recorded directly with the resulting
derivative.

o Individual activities which are within the scope of a hid-
ing operator are recorded as 7 actions with the appropriate
rate together with the resulting derivative.

o Activities which are within the scope of a cooperation
set are compared with the enabled activities of the other
components within the cooperation. If there is no matching
activity the individual activity is discarded; otherwise, as
above, the activity is recorded together with the resulting
vector form.

Reduction: Carrying out the derivation may have given rise
to vector forms which are not canonical. Moreover several
of the (activity, vector form) pairs may turn out to be iden-
tical once the vector form is put into canonical form. In
this case the multiplicity is recorded and only one copy is
kept.
These two steps have to be repeated until there are no
elements left in the set of unexplored derivative classes.
In the remainder of this section we present these steps
more formally, but first we introduce some notation for
describing the formulation and manipulation of vectors and
vector forms.
o Given a vector P, we write (P; € P : ¢) to denote the
sub-vector of those elements of P which satisfy the predi-
cate ¢. When the vector P is obvious from the context we
shall omit it, writing (P; : ¢) as an abbreviation.
o We write P[P; := P/] to denote the vector obtained from
P by substituting P/ for P;.
e When S is a sub-vector (Si,...,S5,), and S’ similarly,
we write P[S := S'] as an abbreviation for P[S; :=
Si]-+[Sn := SI]. Note that we only use vector substi-
tution between vectors with the same number of elements.

The rules which govern the derivation step of the algo-
rithm are shown in Fig. 4. The rule for constant formally
states that at the lowest level defining equations are used
to find the activity or activities which can be inferred from
a derivative name. The two rules for hiding correspond
to the first two cases identified above. The most complex
rules are those for cooperation, the third case above. We
examine these in more detail.

The first rule states the condition under which a number
of identical activities, («,r), give rise to derivatives which
have identical canonical forms. For this to be the case the
activity (a,7) must be enabled by one or more component
P; of P. Moreover, for each such possible activity, the
vector form of the resulting derivative is always the same
when canonicalised. Formally,

(a’r) /
P~ P

3

N CP/ =Co

where o is an arbitrary element of the vector S’, say its first
element S7. Note that the equation CP] = CS] does not
imply that P/ and S7 are equal, only that they are in the
same equivalence class because they have equal canonical
forms. The vector S’ is defined as the sub-vector consisting
of those derivatives which may potentially change via an
(a, r) activity.

(a,r)
S'= (P :P— P))

3 K3

Having now formed a vector S satisfying these conditions
for the activity («,r) we can compute the rate at which
the component performs this activity and evolves to the
canonical representative of the derivatives as |S| - r, since
the total rate into the equivalence class will be the sum of
the rates of the individual activities which may make the
move.

In the case where only one of the elements of the vector
performs an activity o the complication due to the consid-
eration of multiplicities does not arise and the rule simpli-
fies to be equivalent to the following.

(r)

—— P,
o) (a g L)
PL — C(PL[PZ = .Pz/])

The complexity in the second rule for cooperation is due
to the need to calculate the rate at which the sub-vector
of components in cooperation performs the activity. Here
also there is a simpler case, where the vector is of size two.
This special case of the rule affords easier comparison with
the operational semantics of PEPA as presented in Fig. 1.

(e,r1) (a,r2)
5P P,—5 P

(a,R)
(P,), —C

(e € L)
(P, P)L

The rate R of the activity which is performed in coopera-
tion is computed from the individual rates 1 and ro as in
the corresponding cooperation rule in Fig. 1.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Constant
(a,7) ,
S — S (C def S)
¢l g
Hiding
(r) (ar)
D —_—
L(P) — L(P) L(P) — L(P)
Cooperation (« ¢ L)
(a,r)
S =(P:P,— P/ACP/ =CS5})
(am)
s = (P P 0 P
CHEIRY!
L —— C(PL[S = S/])
Cooperation (a € L)
S = (PP (er,r0) P R = min{ry(P;)}rp

()

S = (P :P,—5 P

7

(e, R)

sl
PL —>C(PL[S = S/]) e il;[lra(lgi)

Fig. 4. Operational semantics of vector form

D. Implementation

The state space reduction algorithm has been added to
the PEPA Workbench [5], the modelling package which
implements the PEPA language and provides a variety of
solution and analysis facilities for PEPA models.

The algorithm is presented in pseudo-code form in Fig. 5
and Fig. 6. The driving force of the algorithm is pro-
vided by the procedure wvfderive which, given a deriva-
tive of the model, finds its enabled transitions using the
function cderiv, and calls itself on the resulting derivative.
The function cderiv carries out the canonicalisation of the
one-step derivatives which it has produced using the func-
tion derivatives. This function has different cases depend-
ing on the structure of the vector form being handled, each
reflecting the appropriate rule(s) in the semantics. For ex-
ample, in the case of a choice the list of possible derivatives
consists of the list of derivatives of the second component
of the choice appended to the list of derivatives of the first.
The derivatives of a vector of cooperating components are
computed by using the function cooperations to derive tran-
sitions and the function disallow to enforce that activities
of types in a cooperation set are not carried out without a
partner. We make use of a function lookup to retrieve the
definitions of component identifiers from the environment.

GILMORE, HILLSTON AND RIBAUDO: AN EFFICIENT ALGORITHM FOR AGGREGATING PEPA MODELS

derivatives(P) =
switch P is
case (P;)r
d — derivatives(P);
return update(d, proc (a, P') is (a,(P')1));
end case;

(* unary cooperation x)

case (Py,..., P, (* n-ary cooperation %)
dy — derivatives((Py)r);
doy — derwatives((Pa, . . .
f1 < disallow(dy, L);
fa «— disallow(ds, L);
hi < update(f1, proc (a,(P')) is

7Pn)L);

(a'a (PI7P25"'7PTL)L));
he «— update(fa, proc (a,(Pj,...,P))r) is
(a’(P17P2/7""P7{L)L));

hs < cooperations(dy,ds, L);
return append(hy, ha, h3);
end case;

case “(P)
d «— derivatives(P);
return filter(d, L);
end case;

(* hiding *)

case (a,r).P
return singleton((a,r), P);
end case;

(* prefix x)

case P+ Q
dy «— derivatives(P);
dy — derivatives(Q);
return append(dy,ds);
end case;

(* choice)

case const C
return derivatives(lookup(C));
end case;
end switch;

(* constant x)

vfderive(P) =
if not marked (P)
then
begin
mark P;
for each ((a,r),n, P’) in cderiv(P)
do (a,mer)
output transition (P —— P’);
vfderive(P’);
end for;
end;
cderiv(P) =

d «— derivatives(P);
d' — update(d, proc (a, P) is (a,CP));
r— 0;
while d’ is not empty do
choose (a, P) from d’ ;
if (a,n, P) in r for some n
then replace (a,n, P) by (a,n+1,P) inr
else add (a,1, P) to r;
remove (a, P) from d’;
end while;
return 7r;

update(d, proc P) =
r— 0
while d is not empty do
remove z from d;
add P(z) to r;
end while;
return 7r;

cooperations(dy,ds, L) =

if d; or dy is empty

then return 0

else

begin

remove ((a1,7r1),Ply,) from dy;
remove ((az,r2), P2r,) from do;
if a1 = as and a1 in L
then ¢y « singleton((ay, min(ry,rs)),

(append(P1, P2))L))

else ¢; « 0;
co — cooperations(((a1,71), Plr,),ds, L);
cs < cooperations(dy, ((az,r2), P21,), L);
¢4 — cooperations(dy, da, L);
return append(cy, c2, c3,C4);

end;

Fig. 5. Pseudo-code for the algorithm (i)

filter(d, L) =

r—0;

while d is not empty do
remove ((a, 1), P) from d;
if ain L
then add ((7,7),P) to r
else add ((«,7), P) to r

end while;

return 7;

disallow(d, L) =

r <« (0;

while d is not empty do
remove ((a, 1), P) from d;
if @ not in L
then add ((«,r), P) tor

end while;

return 7r;

Fig. 6. Pseudo-code for the algorithm (ii)

10

Finally, the function update takes a set of elements and a
procedure and returns a set in which each element has been
modified by the procedure.

The modification to the PEPA Workbench required the
alteration of the data structure which is used to represent
PEPA models as an abstract syntax tree within the Work-
bench. The representation of cooperations between pairs
of components was generalised to extend to lists of compo-
nents. If the PEPA model which is submitted for process-
ing does not contain any structure which can be exploited
by the state space reduction algorithm then this change is
invisible to any user of the Workbench. However, if the
PEPA model does contain either repeated components or
other structure which can be exploited then the benefits
become apparent to the user of the Workbench in terms of
reduced time to generate the CTMC representation of the
model and in terms of the matrix of smaller dimension re-
quired for its storage, once the model gets above a certain
size (see Table III).

IV. EXAMPLE

In this section we show how the algorithm works on
an example. We consider a multiprocessor system with a
shared memory, we derive the corresponding PEPA model,
and then the underlying derivation graphs, both ordinary
and aggregated. Some alternatives to our approach are dis-
cussed in Section V, introduced by means of small variants
of the same example.

A. Multiprocessor system

Consider a multiprocessor system with a shared mem-
ory. Processes running on this system have to compete for
access to the common memory: to gain access and to use
the common memory they need also to acquire the system
bus which is released when access to the common memory
is terminated; for simplicity the bus will not be explicitly
represented in the following. Processes are mapped onto
processors. The processors are not explicitly represented
but they determine the rate of activities in the associated
processes, i.e. all processes have the same functional be-
haviour, but actions progress at different speeds depend-
ing on the processor on which they are running, and the
number of processes present on the processor. It is the
modeller’s responsibility to select rates appropriately.

A protocol which is not completely fair, but simply pre-
vents one processor from monopolising the memory, might
impose that after each access of a processor to the mem-
ory, some other processor must gain access before the first
can access again. A process running on the ith processor
is represented as P,

i = (thmk, /\i)'(getiv g)'(usea Hi)'(rela T)'Pz

In this case, in order to impose the protocol, the memory is
modelled as remembering which processor had access last.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Access for this processor is disabled.

N
Mem; = Z (get;, T).(use, T).(rel, T).Mem;

j=1
J#i

If there are n; processes running on the ith processor the
system is modelled by the following expression

Sys = (Pl I Pl -l P |l -

ni nnN

1 Memy

{get; yuse,rel}

| Pn)

Note that in the cooperation set of this model expression,
and throughout the remainder of the paper, we write get;
as a shorthand for get; | 1 <i < N. We assume that the
starting state of the system excludes access of an arbitrary
processor, number k. The vector form of the model Sys,
derived applying the equations of Definition 1, has the fol-
lowing form:

((P17 P Py PN)(Z)a Memk,){geti,use,rel}

We now show an example derivation of the state space of
Sys, both ordinary and aggregated. For simplicity we con-
sider a smaller system Sys’ in which we have only two pro-
cessors and only two replicas of the same process running
on each processor. The simplified system is thus specified
as

Sys' = (P, || P || P2 || P) Mem,

{getq ,geto use,rel}

We can expand the derivatives of the processes P;, for i =
1,2, and of the memory Mem; as follows:

P, = (think,\;).P;
Pl = (get;,9).P)
Pl (use, i) Pl
P = (rel,r).P,
Mem; = (get,, T).Mem)
Mem, = (use, T).Mem/
Mem = (rel, T).Memsy
Memsy = (gety, T).Mem),
Mem), = (use, T).Mem!
MemY = (rel, T).Mem,

Complete derivation graph

The complete derivation graph of Sys’, computed using
the PEPA Workbench [5] with the aggregation algorithm
switched off, has 96 states and 256 transitions. A portion
of this graph is shown in Fig. 7. To make the drawing
easier to understand we have chosen to name the deriva-
tives with short names s; or s}, depending on whether the
state has been completely expanded (s;) or not (sf) (i.e.
whether all its one-step derivatives are also represented).

GILMORE, HILLSTON AND RIBAUDO: AN EFFICIENT ALGORITHM FOR AGGREGATING PEPA MODELS 11

@ Initial state s; :
(think, A1)

((P1, P1, P2, P2)g, Memi)r
- (think, \2)

Fig. 7. Ordinary derivation graph of Sys’

The vector forms corresponding to the derivatives are listed
in Table II: each row contains the name of the state and
the corresponding vector form. Moreover, it contains infor-
mation on whether the vector form is canonical or not, and
the name of the state which represents the corresponding
canonical vector form.

Aggregated derivation graph

The aggregated derivation graph, computed using the
PEPA Workbench with the aggregation algorithm switched
on, has 42 states and 88 transitions. A portion of this graph
is shown in Fig. 8 and can be compared with the one of
Fig. 7.

The PEPA model Sys’ has been constructed according
to the algorithm: the sequential components defining the
processes and the memory are composed by means of the
cooperation operator to obtain the model equation. All the
derivatives have been explicitly named and we can use the
model equation to generate the vector form of the model
which does not have redundant brackets, and therefore no
elimination is required.

At this point the aggregated state space can be obtained
by considering canonical vector forms only, as shown in the
graph of Fig. 8 in which only a subset of the states of Ta-
ble I, those corresponding to the canonical vector forms, is
explicitly outlined. The names of the nodes are again s; or
s; and the integer numbers in round brackets close to them
specify the number of equivalent states they represent.
These numbers can be computed by considering the num-
ber of replicas of the same process in the model equation
and the numbers of equal derivatives in each vector form.

State/rep Vector Form Canonical?
51/81 ((P17P1,P2,P2) Meml)L Yes
82/83 ((Pl,Pl,P27P2) ,Meml)L NO
53/83 ((Pl,Pl,P27P2) ,Meml)L Yes
84/85 ((Pl,Pl,P27P) 7]Wt’iTTLl)L No
85/85 ((Pl,Pl,P27P) 7]\46’”L1)L Yes
56/56 ((PI,PI,PQ,PQ) ,Meml)L Yes
s7/810 ((P{, P, P}, Py)g, Mem1)p, No
58/810 ((Pl,Pl’P27P) 7]\4677’L1)L No
89/810 ((Pl,Pl,P27P) ,Meml)L No
510/810 ((Pl,Pl,P27P2/)@,M6m1)L Yes
811/811 ((Pl,Pl,Pz’,Pé)@,Meml)L Yes
812/813 ((Pl,Pl,P27P) ,Meml)L No
813/813 ((P{,P{,PQ,PQ/)Q),MEWM)L Yes
814/815 ((Pl,Pl,P27P2) Meml)L No
515/815 ((Pl,Pll, é,Pé)@,Meml)L Yes
816/816 ((Pl,Pl,P27P2) Meml)L Yes
5){7/8*118 ((Plv‘PlvPQ/,vP?)@vMem/l)L No
STS/STS ((Pl’P17P2,P2) Mem’l)L Yes
8;9/832 ((P1/7P17P2//7P2>@7Mem/1)14 No
5;0/532 ((P13P17P2,P2) Memll)L No
8;1/532 ((P1’P1,7P2H7P2)@7M6m/1)L No
532/8%2 ((Pr, P, P, Py')g, Mem)) Yes
853/534 ((P1’P17P2H7P2/)@7M6m/1)L No
834/‘9;4 ((P17 Py, P2/7P2”>@7 Mem/l)L Yes
3;5/836 ((P1,3P1/7P2/,7P2)@7Mem/1)11 No
s36/s3 | (P, Pi, P, Py)g, Mem)) Yes
8;7/s§0 ((Plv-PlvP PZ/) Memll)L No
838/5§0 ((PII’PMPQ/?PZN)@?Mem/l)L No
so/s50 | (P, Pi, P3Py, Mem)) No
S§O/S§O ((P13P1/7P2/7P2,/)@7M6m/1)11 Yes
s51/s5 | (Pl P1, Py, Py)g, Mem)) No
8;2/‘3;2 ((Pllv 1/7 PQ/v PQH)(Z\v Memll)L Yes

TABLE II
STATES7 REPRESENTATIVES AND VECTOR FORMS FOR
L = {gety, get,, use, rel}

As an example, let us consider the state sjg which corre-
sponds to the vector form ((Py, Py, P2, P})g, Memy). This
state represents four equivalent derivatives. This number
can be computed by dividing the product of the factorial
of the numbers of the repeated instances of components
by the product of the factorial of the numbers of identical
derivatives in the vector form.

2! 2!
L TP TR TR TR TR
More generally the formula could be expressed as follows
ni!l---ny!
T Gl) (val v)

where n;, for © = 1,2,..., N, is the number of processes
running on the same processor and n;] are the numbers of

equal derivatives of P;, such that Z LN =Ny

12

(think,\1) — -
(think, 2)\1) —>

(think, A2)
(think, 2Xs) -

(getz, g)
(g€t27 29)

- - >

Fig. 8. Aggregated derivation graph of Sys’

The multiplicities of the arcs are also represented and in-
dicate the number of arcs which have been folded together.
The fact that a single arc represents one or more activities
of the same type is reflected in the rate of the action that
labels the arc itself. For instance, the model evolves from
the state s; to the states s3 by executing an action think
with a rate 2\ because whenever the model is in state sq,
ie. (P Pl P2 P) B Memq, two activities

{getq ,geto,rel}
(think, A1) are concurrently enabled.

Notice that the aggregation we obtain corresponds to
finding permutations of the same components within brack-
ets. This form of aggregation is pictorially represented in
Fig. 8 by flattening equivalent nodes of the derivation graph
of Fig. 7 onto the same plane.

B. Timings

We ran different configurations of the multiprocessor
system on a Pentium III machine with clock frequency
of 500 MHz and 128 MBytes of memory. The times
recorded in Table IIT take into account both CPU time
and the time necessary for file I/0.

If there is a single component P; running on each pro-
cessor, no aggregation is possible and the execution times
of the basic and the modified Workbench are almost the
same. As soon as we add replicas of the same process, the
state space aggregation becomes apparent as well as the re-
duction in the execution times, particularly when the size
of the model grows.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

[2 Processors [Derivation graph |

Processes States Trans. Time (sec.)
1P1,1 P 16 24 0.011
2 P,1 P 40 84 0.020
2P,2 P 96 256 0.047
3P,2 P 224 720 0.132
3P,3 P 512 1920 0.371
4P,3 P 1152 4928 1.048
4 P,4 P 2560 12288 2.887
2 Processors Aggregated derivation graph
Processes States Trans. Time (sec.)
1P, 1P 16 24 0.010
2P, 1P, 26 47 0.015
2P, 2Py 42 88 0.028
3P,2 P 58 129 0.045
3P,3 P 80 188 0.075
4P,3 P 102 247 0.110
4P,4 P 130 324 0.173
3 Processors Derivation graph
Processes States Trans. Time (sec.)
1P,1P,1P; 72 156 0.037
2P, 1P, 1P 176 480 0.093
2P, 2Py, 1 Ps 416 1360 0.262
2P1,2 P, 2Ps 960 3648 0.754
3P1,2P,2P3 2176 9408 2.144
3P,3P,2P; 4864 23552 5.888
3P1,3 P3P 10752 57600 15.932
4P1,3 P, 3P3 23552 138240 42.580
4P,4 P,3P3 51200 326656 111.529
4 P1,4 P,4 P3 110592 761856 285.204
3 Processors Aggregated derivation graph
Processes States Trans. Time (sec.)
1P, 1P, 15 72 156 0.041
2P,1P,1Ps 116 284 0.079
2P1,2P,1P; 186 505 0.159
2P1,2 P, 2 P; 297 882 0.320
3P, 2P, 2 Ps 408 1259 0.525
3P1,3 P, 2P; 560 1792 0.839
3P1,3 P, 3P3 768 2544 1.391
4P,3P,3P3 976 3296 2.036
4P,4P,3P3 1240 4267 3.098
4P, 4P 4P 1575 5520 4.430
TABLE III

EXECUTION TIMES OF THE BASIC AND MODIFIED WORKBENCH

V. ALTERNATIVE AGGREGATIONS

In this section we illustrate some cases in which our al-
gorithm, or indeed any syntactic approach, cannot achieve
the optimal theoretical partitioning. In particular we show
how greater aggregation could be achieved in some circum-
stances if strong equivalence was used to generate parti-
tions instead of isomorphism. Note, however, that these
cases rely on quite strong conditions on apparently unre-
lated activity rates. It is not clear that such conditions
occur with sufficient frequency in real models to justify the
additional complexity needed to implement an approach
based on strong equivalence.

The strong equivalence relation is a more sophisticated
notion of equivalence, in the bisimulation style, based on
observed behaviour. In general, in a process algebra, two
terms are considered bisimilar if their externally observed
behaviour appears to be the same. Strong equivalence as-
sumes that both the action type and the apparent rate of

GILMORE, HILLSTON AND RIBAUDO: AN EFFICIENT ALGORITHM FOR AGGREGATING PEPA MODELS 13

each activity is observable. Informally, two PEPA com-
ponents are strongly equivalent if their total conditional
transition rates to strongly equivalent terms are the same
for all action types.

The conditional transition rate from P to P’ via an ac-
tion type « is denoted by ¢(P, P’, «). This is the sum of the
activity rates labelling arcs connecting the corresponding
nodes in the DG which are also labelled by the action type
a. The conditional transition rate is thus the rate at which
a system behaving as component P evolves to behaving
as component P’ as the result of completing an activity
of type a. If we consider a set of possible derivatives S,
the total conditional transition rate from P to S, denoted
q[P, S,], is equal to

q[P,S,0] = > q(P,P',a)
P'eS

The definition can thus be formally stated as follows.

Definition 3 Let 7 denote the set of all language terms,
or deriwatives. An equivalence relation over derivatives,
R C T xT, is a strong equivalence if whenever (P,Q) € R
then for all o € A and for all S € T/R,

q[P,S,a] = ¢[Q,S,]
We say that P and Q) are strongly equivalent, denoted by
P=Qif (P,Q) € R for some strong equivalence R, i.e.

>~ = U{R | R is a strong equivalence }

Two of the following examples demonstrate the use of
strong equivalence for aggregation. However, in the first
example we show how the abstraction operator may be
used at a higher syntactic level in the model and introduce
symmetries between components which appear quite dis-
tinct in their defining equations. These symmetries rely on
the context in which the components are placed, something
not currently captured by our algorithm.

In [11], Ribaudo distinguishes two form of aggregation
which can be found using strong equivalence. Horizon-
tal aggregation arises from the interleaving of the activ-
ities of similarly behaved components. This aggregation
takes advantage of repeated instances of the same pattern
of behaviour within the overall model structure. The ag-
gregation found using our algorithm may be termed a hor-
izontal aggregation. In contrast, vertical aggregation arises
when there are repeated patterns of behaviour within a sin-
gle component. In the second example presented below, a
variant of the multiprocessor model is considered in which
a horizontal aggregation can be found using strong equiva-
lence although isomorphism would regard the components
as distinct. Finally we give an example where a vertical ag-
gregation is possible with strong equivalence but not with
isomorphism, and consequently not with our syntactic ap-
proach.

A. Aggregation via abstraction

The facility to hide or abstract action types within a
PEPA model is designed to give the modeller the freedom
to construct components in detail to ensure that their be-
haviour is accurately represented but to subsequently re-
strict the visible action types to only those relevant to the
current modelling study. For example, in the model of the
multiprocessor presented in the previous section, the mod-
eller may choose to hide all the get; actions. In terms of
capturing the correct behaviour of the protocol it was im-
portant that these action types were distinguished; but in
terms of the complete model they may all be regarded as
internal 7 actions.

Hiding all of these activities introduces strong symme-
tries into the model in terms of its functional behaviour.
If, moreover, we find that the processes which are running
on different processors share the same timing characteris-
tics, i.e. A; = Aj and p; = p; for all 7 # 7, then the symme-
tries are apparent in all aspects of the model’s behaviour.
Only one process can access the memory at any time—
and for the subsequent memory access its host processor is
excluded—Dbut the processes on all other processors behave
equivalently. This means that we need only consider two
classes of processes, those excluded and those eligible for
access, regardless of their placement on processors. Once
the get; activities are all hidden it is no longer possible
to identify from these processes which type of process is
operating.

For example, consider the multiprocessor with three pro-
cessors, and two processes running on the first, one on the
second and two on the third. Then if we regard the system
immediately after the process P, has completed an access
to the memory and when one other process is waiting for
access, the behaviour of the system is isomorphic regard-
less of whether the waiting process is on processor 1 or
processor 3, i.e. all the following states are isomorphic:

(PLII P[Pl Pl Ps
(P P || Po|| Ps || P3
(P Pl Po|l P || Ps
(P Pl Pl Ps || Py

D Mems) /{get; }
D Mems) /{get;}
DI Memo) /{get;}
D Mems)/{get; }

e — — —

Although these states are equivalent by isomorphism our
algorithm would not place them within a single partition
but into two: one consisting of the first two states and one
consisting of the second pair. This is because the processes
operating on different processors have distinct names and
distinct actions get,—this is necessary to ensure the cor-
rect functioning of the protocol—and the syntactic form
of minimisation that we use cannot recognise that in some
contexts P; and P;3 will behave equivalently.

This could be regarded as a penalty for the richness of the
language. For example, the analogous situation does not
arise in Petri net-based models because there is no notion
of abstraction or hiding.

14

B. Horizontal aggregation via strong equivalence

Isomorphism is a strict structural equivalence: there
must be a one-to-one relationship between both derivatives
and activities. The observation-based strong equivalence
is not so strict. Although corresponding derivatives must
be capable of the same action types at the same apparent
rates, how these are implemented as activities in the deriva-
tives may differ as the following example demonstrates.

Suppose that on processor 1 two different types of pro-
cess may be running. The first is identical to the process
P; discussed in Section IV-A. The second has a similar
pattern of behaviour but has two alternative local com-
putations between accesses to the common memory. The
process P; is represented below.

D def

o

» Py = (think, A\11).P{
]131/ = Ethztnk’ ;\1) Py + (think,)\12) Py
= (getq,g pr Lf
P (e DL 0ehe9)D
def ! Pl = (’U,8€ ,U1) P’”
P/" = (rel,r).P, S 4
P = (rel,r).P,

If the rates of the think activities are such that Ay = A11 +
A12, then P is strongly equivalent to P; although the two
are clearly not isomorphic. Thus if we consider the system

(P || Py || Py || P) DI Mems

our algorithm will distinguish the derivatives (P} || Pj ||
P} || P§) B Mem), and (P] || P{' | Py || P}) B Mem)
whereas a partitioning based on strong equivalence would
consider them to be equivalent. In this case the state space
aggregated by our algorithm will have 64 states whereas
aggregation based on strong equivalence would result in 42
states.

C. Vertical aggregation via strong equivalence

We can identify a second source of aggregation which can
be achieved by strong equivalence but which is not captured
by our algorithm: so-called wertical aggregation. Here we
illustrate the vertical aggregation case by means of another
variant of the multiprocessor example. We consider a pro-
cess which, after the use of the memory, can detect an error.
If this is the case it does not return directly to the initial
state; instead, it must complete a recovery action and re-
peat the access to the memory. For this new process the
expansion of derivatives could be as follows:

P, = (think,\;).P;

Pl = (get;,g).F

Pl (use,). P

Pz'm def (7, () ~ 7‘) P + (rel p X T) P////
P = (recover,y;).P)

where p is the probability that an error occurs. The deriva-
tion graph of such a process P; is shown in Fig. 9(a). Now
we suppose that the action types think and recover are
hidden and become internal to the component. Moreover,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

(rel, p)

(b)

Fig. 9. Derivation graphs of P;

we assume that A\; = ~;. If this is the case the deriva-
tives P; and P/’ are strongly equivalent, and we can ag-
gregate them to form the macro-state [P;]. Similarly, we
combine the arcs labelled (rel, (1 — p) x r) and (rel,p x r)
into a single arc labelled (rel,r) connecting P/ and [P}
(see Fig. 9(b)).

Clearly this form of aggregation relies on the information
about the operational behaviour of the component repre-
sented in the derivation graph. It cannot be detected by
the purely syntactic means used in our algorithm. Ap-
proaches based on bisimulation style equivalences, such as
strong equivalence, work at the semantic rather than the
syntactic level. Thus they are not, in general, comparable
to our approach.

VI. RELATED WORK

The exploitation of symmetries to achieve aggregation of
performance models is a well-explored topic. Several au-
tomated approaches have been described in the literature.
In this section we give a brief account of some of the work
that has appeared in the context of stochastic Petri nets
and stochastic process algebras, and explain how that work
relates to our own. In each case the objective is to gener-
ate a partitioning of the original CTMC which satisfies the
condition of lumpability.

The closest approach to our own is the work on a class
of stochastic coloured Petri nets called Stochastic Well-
formed Nets (SWN) [12]. Stochastic Petri nets (SPN) [13]
have been extensively used for the functional analysis and
performance evaluation of distributed systems. Their mod-
elling primitives consist of places and (timed) transitions,
representing system states and system events respectively.
Just as in PEPA, in order to analytically solve an SPN
model, the associated stochastic process must be derived
by computing the set of reachable states (markings). More-
over, just as in PEPA, for realistic systems the computa-
tion of the state space can often lead to models whose size
makes them intractable.

In order to tackle this problem SWN allow the construc-
tion of a parametric representation of a system. This is
achieved by folding similar subnets and by adding a colour
structure to distinguish tokens that, after the folding, be-
long to the same place. The nets are restricted in terms
of the possible colour domains for places and transitions

GILMORE, HILLSTON AND RIBAUDO: AN EFFICIENT ALGORITHM FOR AGGREGATING PEPA MODELS 15

and in terms of the possible colour functions. These re-
strictions allow symmetric structures within the model to
be exploited for solution purposes. In particular, these
structures are automatically detected and the reduced state
space is constructed without recourse to the complete state
space. The reduction is obtained through the concept of
symbolic marking [12].

Informally, a symbolic marking corresponds to an equiv-
alence class of ordinary markings sharing the same charac-
teristics. In fact, the ordinary markings in the same equiv-
alence class enable the same set of transitions, whose firings
lead to new ordinary states which are still equivalent, i.e.
belong to the same symbolic marking.

Starting from a symbolic representation of the initial
marking a symbolic reachability graph is constructed via
a symbolic firing rule. Each symbolic marking is repre-
sented in a minimal, canonical form. Note that unlike our
algorithm in which minimisation is carried out only in the
preprocessing, in the SWN case minimisation has to be re-
peated after each symbolic derivation step. The symbolic
reachability graph is used to generate a reduced CTMC and
it has been proved [14] that it is lumpably equivalent to the
original CTMC. Thus the same performance estimates can
be computed with a lower computational cost.

Another Petri net-based approach has been developed in
the context of Stochastic Activity Networks (SAN) [15].
This formalism incorporates features of both SPNs and
queueing models and makes use of compositional operators,
similar to those found in process algebras. The primitives
of the formalism are places, activities (equivalent to Petri
nets transitions), which may be guarded by input gates,
representing enabling rules, and output gates representing
completion rules. Once submodels have been constructed
representing the components of the system they may be
combined using the replication and join operations. The
replication operator captures the case of a system contain-
ing two or more identical subsystems. The join operator
combines SAN submodels of different types. Use of these
operators makes symmetries within the model explicit and
so facilitates a compact representation of the state space.

The structure of a composed SAN is represented by a
directed tree with different types of nodes. Leaf nodes cap-
ture the distinct SAN submodels, i.e. the basic elements
to which the construction operators apply. Internal nodes
with one child are replication nodes, their child being the
submodel to be replicated. Internal nodes with two or more
children are join nodes, the children representing the sub-
models to be joined together.

From this tree a state representation is automatically
extracted that is minimal in the sense that states which
differ only by a permutation of repeated components are
grouped together into a single combined state. Each such
state is represented by recording, for each replication node,
the number of replicated SANs in each possible submodel
marking, and for each join node, a vector of the markings of
each joined submodel. In addition each state maintains in-
formation about the desired performance variable [15] but
this is outside the scope of this paper. There are clear par-

allels between this state representation and our vector form
discussed in Section ITI-B.

The other work on aggregation of stochastic process al-
gebra models is developed almost entirely at the semantic
level. In this approach well known graph partitioning al-
gorithms are used to reduce the labelled transition system
underlying the process algebra model [16, 4]. In [17] a more
syntactic approach is taken but this is on an ad hoc basis
without a corresponding tool implementation. Equational
laws derived from Markovian bisimulation, which is equiv-
alent to strong equivalence, are used to obtain state space
reduction of a MTIPP model. This is achieved by term
rewriting based on judicious application of the laws. How-
ever, although good results can be obtained on particular
models, no set of term rewriting rules which can be used
for aggregation purposes have been found.

In some approaches good results have been obtained by
modifying and restricting the combinators of the language
to make symmetries more explicit and disallowing difficult
cases. For example, in [18] a symmetric parallel composi-
tion operator, denoted {n!P}S is used to capture the case
of n-ary parallel composition of identical replicas, all syn-
chronising on actions in .S. This operator provides a means
of expressing a number of replicated copies of a process but
it cannot express synchronisation of repeated copies over
different synchronisation sets. The operational semantics
of the new operator is consistent with the usual parallel
composition but a reduced state space is produced. This
can be regarded as the SPA equivalent of the SAN approach
outlined above. States which differ only by a permutation
of replicated submodels are treated as equivalent.

Earlier work on MTIPP took a similar approach in terms
of altering the combinators of the language. In [19] a repli-
cation operator, here denoted !§ P has the same informal
semantics as {n!P}S above. Hiding and the usual gen-
eral parallel composition operator are removed from the
language. The distinction of this approach is that a de-
notational matrix semantics is given rather than the more
usual operational semantics. Using this approach the in-
finitesimal generator matrix of the CTMC is constructed
directly. Moreover Rettelbach and Siegle show that the
transition matrix resulting from the semantics are minimal
with respect to Markov chain lumpability (i.e. the matrices
do not have subsets of equivalent states).

The disadvantages of both these approaches are that
they require the modeller to adhere to a new set of combi-
nators and this form of cooperation does not allow different
synchronisation sets amongst replicas of the same compo-
nent. The techniques do not appear to have been auto-
mated. In contrast our algorithm works transparently with
the PEPA language taking advantage of whatever sym-
metries are present in the model submitted to the PEPA
Workbench by the user.

VII. CONCLUSIONS AND FURTHER WORK

We have shown how the existence of isomorphisms be-
tween terms in the derivation graph of a stochastic pro-
cess algebra model can be exploited to aggregate the state

16

space of the model. Our algorithm for this collapses the
derivation graph at each model state and does not require
a costly computation of bisimulation equivalence between
components of the model. We have found it to be applica-
ble in situations where the full derivation graph is too large
even to be generated [20]. Further, we believe that many of
the models which occur in practice would contain symme-
tries of the types which can be exploited by isomorphism.
However, against these advantages our algorithm cannot be
guaranteed to achieve the maximum possible aggregation
for all models.

Generating an aggregated derivation graph will allow
speedier computation of the steady state probability distri-
bution of the CTMC which corresponds to a PEPA model.
We have not discussed in this paper the influence of aggre-
gation on the interpretation of this probability distribution
in terms of the given PEPA model. When examining the
steady state distribution in order to determine performance
factors such as throughput and utilisation the PEPA mod-
eller must now select sets of model states of interest via the
description of canonical representatives in the state space.
This is an added reason for choosing to aggregate with iso-
morphism instead of with bisimulation because the forma-
tion of a canonical representative of an isomorphism class
is simpler. However, the full investigation of this issue re-
mains as further work.

Our work has been influenced by earlier work on
SWN [21]. However, we stress that significant adjustments
to the approach have been necessary for the development
of the algorithm for SPA: it is not a straightforward trans-
lation of results. Nevertheless we feel that there is consid-
erable benefit to be gained from studying the relationship
between formalisms with the objective of importing ideas,
and when appropriate, techniques from one to the other.

Acknowledgements

This collaboration took place due to the British Coun-
cil/MURST project “Rom/889/94/9: An enhanced tool-
set for performance engineers”. Stephen Gilmore is sup-
ported by the ‘Distributed Commit Protocols’ grant from
the EPSRC and by Esprit Working group FIREworks.
Jane Hillston is supported by the ESPRC ‘COMPA’ grant.

The authors would like to thank the anonymous referees
for helpful comments on an earlier version of this paper
and to thank Graham Clark for implementation work on
the PEPA Workbench.

REFERENCES

[1] J. Hillston, A Compositional Approach to Performance Mod-
elling, Cambridge University Press, 1996.

[2] N. Gotz, H. Hermanns, U. Herzog, V. Mertsiotakis, and M. Ret-
telbach, “Stochastic process algebras,” in Quantitative Methods
in Parallel Systems, F. Baccelli, A. Jean-Marie, and I. Mitrani,
Eds., Basic Research Series, pp. 3—17. Springer, 1995.

[3] M. Bernardo and R. Gorrieri, “A Tutorial on EMPA: A Theory
of Concurrent Processes with Nondeterminism, Priorities, Prob-
abilities and Time,” Theoretical Computer Science, vol. 202, no.
1-2, pp. 1-54, 1998.

[4] J. Hillston, “Compositional Markovian modelling using a process
algebra,” in Proc. 2nd International Workshop on the Numerical
Solution of Markov Chains, Raleigh, North Carolina, January
1995.

(5]

[6]

[7]

(8]
(9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

20]

(21]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

S. Gilmore and J. Hillston, “The PEPA Workbench: A tool to
support a process algebra based approach to performance mod-
elling,” in Proc. Seventh International Conference on Modelling
Techniques and Tools for Computer Performance FEwvaluation,
Vienna, May 1994, number 794 in Lecture Notes in Computer
Science, pp. 353—-368, Springer-Verlag.

M. Bernardo, W.R. Cleaveland, S.T. Sims, and W.J. Stewart,
“TwoTowers: A tool integrating function and performance anal-
ysis of concurrent systems,” in Proc. of IFIP Joint Int. Conf.
on Formal Description Techniques and Protocol Specification,
Testing and Verification. 1998, North-Holland (IFIP).

H. Hermanns, U. Herzog, U. Klehmet, V. Mertsiotakis, and
M. Siegle, “Compositional performance modelling with TIPP-
Tool,” in Proc. of Int. Conf. on Modelling Techniques and
Tools for Computer Performance Evaluation, R. Puigjaner, Ed.,
Palma de Mallorca, Spain, September 1998, number 1469 in
LNCS, Springer-Verlag.

J.G. Kemeny and J.L. Snell, Finite Markov Chains, Van Nos-
trand, Princeton, NJ, 1960.

R. Milner,
1989.

S. Gilmore, J. Hillston, and D.R.W. Holton, “From SPA models
to programs,” in Proceedings of the Fourth Annual Workshop
on Process Algebra and Performance Modelling, M. Ribaudo,
Ed. Universita di Torino, July 1996, pp. 179-198.

M. Ribaudo, “On the aggregation techniques in stochastic Petri
nets and stochastic process algebras,” in Proceedings of the Third
International Workshop on Process Algebras and Performance
Modelling, S. Gilmore and J. Hillston, Eds. Dec. 1995, pp. 600—
611, Special Issue of The Computer Journal, 38(7).

G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad,
“Stochastic Well-Formed coloured nets for symmetric modelling
applications,” IEEFE Transactions on Computers, vol. 42, no.
11, Nov. 1993.

M.K. Molloy, “Performance analysis using stochastic Petri nets,”
IEEE Transactions on Computers, vol. 31, no. 9, pp. 913-917,
Sept. 1982.

G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad,
“Stochastic Well-Formed coloured nets and multiprocessor mod-
elling applications,” in High-Level Petri Nets. Theory and Ap-
plication, K. Jensen and G. Rozenberg, Eds. Springer Verlag,
1991.

J.F. Meyer and W.H. Sanders, “Reduced Base Model Construc-
tion Methods for Stochastic Activity Networks,” IEEE Journal
on Selected Areas in Communications, vol. 9, no. 1, pp. 25-36,
Jan. 1991, Special issue on Computer-Aided Modeling, Analysis
and Design of Communication networks.

Communication and Concurrency, Prentice Hall,

H. Hermanns and U. Herzog, “Compositional nets and composi-
tional aggregation,” in Performance Models for Discrete Event
Systems with Synchronisations: Formalisms and Analysis Tech-
niques, G. Balbo and M. Silva, Eds., vol. 2, pp. 553-582. Prensas
Universarias de Zaragoza, 1998.

H. Hermanns, U. Herzog, and V. Mertsiotakis, “Stochastic Pro-
cess Algebras as a Tool for Performance and Dependability Mod-
elling,” in IEEE International Computer Performance and De-
pendability Symposium, Erlangen, 1995, pp. 102—-111.

H. Hermanns and M. Ribaudo, “Exploiting Symmetries in
Stochastic Process Algebras,” in Proc. of 12th European Simu-
lation Multiconference (Manchester, UK). 1998, SCS Europe.

M. Rettelbach and M. Siegle, “Compositional Minimal Seman-
tics for the Stochastic Process Algebra TIPP,” in Proc. of
the 2% Process Algebra and Performance Modelling Workshop,
M. Rettelbach U. Herzog, Ed., Erlangen, 1994.

J. Hillston and L. Kloul, “Investigating an On-Line Auction
System using PEPA,” Concurrency: Practice and Ezperience,
2000, To appear.

G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad,
“On Well-Formed coloured nets and their symbolic reachability
graph,” in Proc. 11t" Intern. Conference on Application and
Theory of Petri Nets, Paris, France, June 1990, Reprinted in
High-Level Petri Nets. Theory and Application, K. Jensen and
G. Rozenberg (editors), Springer Verlag, 1991.

GILMORE, HILLSTON AND RIBAUDO: AN EFFICIENT ALGORITHM FOR AGGREGATING PEPA MODELS 17

Stephen Gilmore received both his B.Sc.
and his Ph.D. from the Queen’s University of
Belfast in Northern Ireland. He currently holds
a lectureship in Computer Science at The Uni-
versity of Edinburgh where he is a member of
the Laboratory for Foundations of Computer
Science and an associate member of the In-
stitute for Computing Systems Architecture.
His interests include the development of tools
to support the performance modelling process.
His personal web page with information on re-
search projects and copies of his published papers can be found at
http://www.dcs.ed.ac.uk/ stg.

Jane Hillston received a B.A. and an MSc.
in Mathematics from the University of York
and Lehigh University, respectively. After a
brief period working in industry she joined the
Department of Computer Science at the Uni-
versity of Edinburgh as a research assistant in
1989. She received a Ph.D. in Computer Sci-
ence from that university in 1994. Since 1995
she has been a lecturer in Computer Science
and a member of the Laboratory for Founda-
tions of Computer Science. Her principal re-
search interests are in the use of process algebras to model computer
systems, and the investigation of issues of compositionality with re-
spect to Markov processes.

Marina Ribaudo graduated in Computer
Science at the University of Torino (Italy) in
1990 and she obtained a Ph.D. in Computer
Science from the same University in 1995.
Since July 1995 she has been a researcher at
the Computer Science Department of the Uni-
versity of Torino. Her current research inter-
ests are in the area of performance evaluation
of computer systems, mainly in the fields of
stochastic process algebras and stochastic Petri
nets. Her Ph.D. thesis examines the relation-
ships existing between these two formalisms.

