
A Comparison of Performance Evaluation Process Algebra and Generalized
Stochastic Petri Nets

S. Donatelli and M. Ribaudo J. Hillston

Dipartimento di Informatica Department of Computer Science
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Abstract
Generalized Stochastic Petri Nets (GSPN) and Perform-

ance Evaluation Process Algebra (PEPA) can both be used
to study qualitative and quantitative behaviour of systems
in a single environment.

This paper presents a comparison of the two formalisms
in terms of the facilities that they provide to the model-
ler, considering both the definition and the analysis of the
performance model.

Our goal is to provide a better understanding of both
formalisms, and to prepare a fertile ground for exchan-
ging ideas and techniques between the two. To illustrate
similarities and differences, we make the different issues
more concrete by means of an example modelling resource
contention.

1 Introduction

In this paper we present a comparison of two formal-
isms which may be used to develop performance models
as continuous time Markov chains (CTMC). Generalized
stochastic Petri nets (GSPN) is a well-established high level
modelling paradigm which has been widely applied in per-
formance analysis. In contrast, Performance Evaluation
Process Algebra (PEPA) is a recently developed formalism.
It is a stochastic extension of classical process algebras such
as CCS or CSP. PEPA appears to offer several attractive
features which have not previously been available to the
performance modeller.

As in the paper of Vernon et al. comparing queueing
networks and performance Petri nets [20], we aim to com-
pare the paradigms in terms of the facilities that they offer
the modeller. We consider model construction as well as
analysis techniques to produce quantitative and qualitative
results.

Note that our motivation is distinct from that of previous
studies in which untimed Petri nets and process algebras
are investigated in terms of their different representations
of causality and concurrency. Here the underlying Markov
process forces an interleaving view of concurrency in both
paradigms.

Unlike Vernon et al. we do not yet aim to determine
which applications GSPN and PEPA are particularly suited
to. Rather, our intention is to develop a better understanding

of both paradigms, individually and in relation to each
other, so that such a study may be possible in the future.

The rest of this paper is organised as follows. In Sec-
tion 2 PEPA is briefly introduced. An introductionto GSPN
may be found in the tutorial [1] or in the recent book [2].
The different styles in which the paradigms express the be-
haviour of systems are examined in Section 3. In Section 4
these points are illustrated by an example. Techniques for
quantitative and qualitative analysis for both formalisms
are described in Sections 5 and 6 respectively. Finally, in
Section 7, we consider possibilities for strengthening each
of the paradigms with characteristics, or lessons learned,
from the other one.

2 PEPA

The Performance Evaluation Process Algebra (PEPA) is an
algebraic description technique based on a classical pro-
cess algebra and enhanced with timing information. This
extension results in models which may be used to calculate
performance measures as well as deduce functional prop-
erties of the system. In this section we briefly introduce
PEPA; more detailed information can be found in [16].

Process algebras are mathematical theories which model
concurrent systems by their algebra and provide appar-
atus for reasoning about the structure and behaviour of
the model. In classical process algebras, e.g. Calculus of
Communicating Systems (CCS [18]), time is abstracted
away—actions are assumed to be instantaneous and only
relative ordering is represented—and choices are generally
nondeterministic. If an exponentially distributed random
variable is used to specify the duration of each action the
process algebra may be used to represent a Markov process.
This approach is taken in PEPA and the other recently pub-
lished stochastic process algebras [5, 3, 15]. It is analogous
to the association of a duration with the firing of a timed
transition in a GSPN model.

The basic elements of PEPA are components and activ-
ities, corresponding to states and transitions in the under-
lying CTMC. Each activity is represented by two pieces of
information: the label, or action type, which identifies it,
and the activity rate which is the parameter of the negat-
ive exponential distribution determining its duration. Thus
each action is represented as a pair (�; r). We assume that



the set of possible action types,A, includes a distinguished
type, � . This type denotes internal, or “unknown” activities
and provides an important abstraction mechanism.

When enabled, an activity a = (�; r), will delay for a
period determined by a sample drawn from the negative
exponential distribution with parameter r. As with timed
transitions in GSPN, we can think of this as the activity
setting a timer whenever it becomes enabled. Similarly,
if several (conflicting and/or concurrent) activities are en-
abled at the same time they are assumed to execute in par-
allel subject to a race condition. The activity whose delay
before completion is the minimum will be the one to suc-
ceed. An activity may be interrupted or aborted if another
one completes first but the use of the exponential distribu-
tion eliminates the need to record previous execution time
in the former case.

As in a classical process algebra, the semantics of each
term in PEPA is given via a labelled (multi-) transition
system (the multiplicities of arcs are significant). In the
transition system a state corresponds to each derivative (a
syntactic term of the language) and arcs represent the ac-
tions which can cause one derivative to evolve into another.
For any model this semantic construction leads to a Deriv-
ation Graph (DG) in which actions and their durations are
associated with arcs and the nodes are the possible states of
the model. This graph is systematically reduced to a form
where it can be treated as the state transition diagram of the
underlying CTMC. This is analogous to the Reachability
Graph (RG) of a GSPN.

PEPA uses a small set of combinators. These allow
terms to be constructed defining the behaviour of com-
ponents, via the activities they undertake and the interac-
tions between them. The combinators, together with their
names and interpretations, are presented informally below.
A structured operational semantics may be found in [16],
and a GSPN semantics in [19].

Prefix, (�; r):P : This is the basic mechanism for con-
structing the behaviours. The component (�; r):P carries
out activity (�; r), which has action type � and a dura-
tion which is exponentially distributed with parameter r; it
subsequently behaves as P .

Choice, P+Q : The componentP+Q represents a system
which may behave either as P or as Q. The activities of
both P and Q are enabled. The first activity to complete
distinguishes one of them: the other is discarded. The
system will then behave as the derivative resulting from
the evolution of the chosen component.

Cooperation, P ��
L

Q : This combinator is in fact an in-
dexed family of combinators, one for each possible set L of
visible action types: L is called the cooperation set. P and
Q proceed independently and concurrently with any activ-
ity whose action types is not contained in L (individual
activity). However, for any activity whose action type is
included in L, the components must cooperate to achieve
the activity (shared activity). Such activities are only en-
abled in P ��

L

Q when they are enabled in both P and Q.
The rate of the shared activity is altered to reflect the work
carried out by both components to complete the activity.

The apparent rate of � in P is the total capacity of P

to carry out activities of that type, i.e. the sum of the rates
of the � type activities enabled. When two components
carry out � in cooperation their total capacity to complete
� type activities is limited to the capacity of the slower
component, i.e. the apparent rate of the shared activity is
the minimum of the apparent rate of � in the participating
components. Since each component may enable several
� activities it must choose which one will take part in
the cooperation. We assume that these choices are made
independently according to the relative rates. The rate of
the shared activity is thus the product of the conditional
probability for each participating activity and the apparent
rate of the shared action type.

A component may be passive with respect to an activity,
denoted (�;>): the rate of the activity is left unspecified
until cooperation. The rate of the shared activity is then
dictated by the other component. All passive actions must
be synchronised in the final model.

If the cooperation set is empty, the two components
proceed independently. We use the compact notation,PkQ,
to represent this case.

Hiding, P=L : Hiding abstracts some aspect of the beha-
viour of a component so that it is not visible to an external
observer, or to other components (i.e. for cooperation). The
component P=L behaves as P except that any activities of
types within the set L are hidden. They appear as the un-
known type � and can be regarded as an internal delay by
the component. The rate of the activity is unaffected.

Constant, A : Constants are components whose meaning
is given by a defining equation: e.g. A

def
= P , which

gives the constant A the behaviour of the component P .
This is the mechanism of assigning names to components
(behaviours).

In order for the Markov process underlying a PEPA
model to be ergodic its DG must be strongly connected.
A similar condition applies to the RG of a GSPN. Some
necessary conditions for ergodicity, at the syntactic level of
a PEPA model, have been defined [16]. The class of PEPA
terms which satisfy these syntactic conditions are termed
cyclic components.

3 Descriptive power

In this section we compare GSPN and PEPA from the point
of view of model construction. In particular, we examine
the different styles in which the formalisms express the
behaviour of systems.

At a notational level the difference seems significant
since PEPA is a textual language and GSPN has a graphical
notation. However, at the other extreme, if we consider
the class of Markov processes which can be expressed, it is
clear, as in [20], that any Markov process can be expressed
as a degenerate form of either paradigm. In GSPN a place
is associated with each state and appropriate transitions
are inserted between the places to represent the transitions
in the Markov process. The place corresponding to the
initial state is marked by a single token. Similarly for
PEPA: a component is associated with the initial state of



the Markov process, with a derivative for each subsequent
state; activities capture the transitions.

Neither of these comparisons reflect the modelling styles
of the two paradigms, which is what we wish to compare.
For example, in the degenerate GSPN the notions of dis-
tributed state and local evolution are lost. Therefore, we
conduct a more informal comparison, aiming to provide
insight into the relative strengths and weaknesses of the
two paradigms, without strictly categorising their model-
ling power.

Five different aspects of modelling style, which high-
light the differences between the formalisms, are con-
sidered below. The notion of state is central to modelling
with Markov processes, yet the way that a state is defined in
GSPN and PEPA is quite different. Also the model struc-
ture in PEPA is forced to be static, whereas in GSPN the
entities visible within the model, as represented by tokens,
tend to change over time. Both notations have only a
few primitives; consequently they both tend to be verbose.
At the level of model construction this problem has been
tackled differently by the two paradigms. GSPN offers a
greater degree of freedom with respect to the chosen level
of modelling abstraction. In contrast in PEPA all aspects of
a system’s behaviour must be modelled explicitly, but the
ability to define the components separately, compositional
construction and abstraction mechanisms, help to alleviate
this problem.

3.1 State vs action orientation
GSPNs have a very clear notion of state, the distribution

of tokens in the places of the net. We can regard a GSPN
model as an association of a state (the initial marking) to
a graph structure, where the graph structure specifies how
the state is modified (state evolution). Note that there are
two distinct languages: one to define the structure, and one
to define the state.

In general, different initial markings lead to completely
different Markov chains, and to models with very different
properties. For example, they may or may not exhibit cyclic
behaviour, or they may be bounded or not. Nevertheless, if
a GSPN model gives rise to an ergodic Markov chain, then
any reachable state can be taken as the initial state, and the
same Markov chain will, of course, be generated.

There is no notion of state in the syntax of PEPA.
However, at the semantic level, in the labelled transition
system, a state is associated with each syntactic term. Thus
for a PEPA model each derivative of the initial expression
representing the model is considered to be a state. These
derivatives form the states of the underlying Markov pro-
cess.

Observe that the model and each derivative are specified
in the PEPA language. It is impossible to distinguish syn-
tactically whether a term is a derivative of a model or a
model itself. Indeed, in PEPA, the concept of state and
model coincide, especially in the case of a cyclic PEPA
term (ergodic CTMC): since the DG is strongly connected,
all derivatives encapsulate sufficient information, via the
semantic rules, to recreate the complete behaviour of the
model. This has implications for exploitation of equival-
ence relations and qualitative analysis of models.

From a modelling point of view, GSPN is focussed on
states, while PEPA is focussed on actions. Given an arbit-
rary marking of a GSPN model it is usually possible, by

Q
def
= P1 + P2

P1
def
= (�; �1):(�; �):Q

P2
def
= (�; �2):(�; �):Q

p2p1

p1 + p2

t1 t2�1 �2

t3� t4�

Figure 1: PEPA and GSPN models of a simple system.

considering the number of tokens in a given place, to im-
mediately infer the state of the system, e.g. “server is idle."
In contrast the information that can be immediately extrac-
ted from a PEPA model during its evolution is in terms of
the actions which the model (system) could perform e.g.
“begin service" action is enabled. This may implicitly tell
us that the server is currently idle. This distinction has
consequences for the definition of performance measures
(Section 5.1).

To see how the generation of states in the two paradigms
differs, consider a simple system in which a job has a choice
between two possible evolutions: it may perform action �
at rate �1 followed by action � at rate �, or it may choose
to perform action � at rate �2 followed by action � at rate
�. A representation of this system in the two formalisms
is given in Figure 1, by PEPA on the left and GSPN on the
right.

The derivative set of the PEPA model has two elements:
fP1+P2; (�; �):(P1+P2)g, while the reachability set of the
GSPN model has three states: f(1; 0; 0); (0; 1; 0); (0; 0; 1)g.
In PEPA, after action (�;�1) ((�;�2)) takes place, ac-
tion (�;�) is executed, without making any distinction of
whether � is executed as an action of the first component
(P1) or of the second one (P2). In the GSPN model instead
the two � actions are represented by the two distinct trans-
itions t3 and t4 triggered by a condition on two different
places. Thus there is a “history” of which component ex-
ecuted the � action remembered by the model. The state
transition diagrams of the corresponding Markov processes
are shown in Figure 2.
�
�

�
�

�
�

�
�

P1 + P2

(�;�):(P1+P2)

? ?
�1 �2

�

�

�

�

�
�

�
�

�
�
���

(1; 0; 0)

�1

�
�

�
�

A
A
AAU

(0; 1; 0)

�2

�
�

�
�

�

� (0; 0;1)

�

- �

�
�

�

Figure 2: The Markov processes underlying the PEPA and
GSPN models respectively.

Note that the states corresponding to the markings
(0; 1; 0) and (0; 0; 1) of the GSPN form a lumpable subset
of states within the Markov process.

This example shows how, in PEPA, terms with a com-
mon future are considered to represent the same state,
whereas in GSPNs this is not necessarily so. We could
have modelled the system with a GSPN where p1 and p2
(t3 and t4) are fused in a single place (transition), but this
does not appear a very “natural” model for the given system,
since the two possible evolutions of the job are described
separately.



Although the way in which states are derived in GSPN
and PEPA differ both can be said to exhibit distributed
state to some extent. Transitions (activities) need only
local knowledge to determine whether they are enabled,
and subsequently whether they fire (complete). However,
in PEPA only the functional behaviour—whether an activ-
ity is enabled—is truly distributed, whereas the temporal
behaviour—the expected duration of an activity—is not.
The use of apparent rates for assigning rates to shared
activities means that such rates may depend upon a global
assessment of the state of the system.

3.2 Static vs dynamic model entities
Process algebras distinguishbetween dynamic and static

combinators. Choice is dynamic since after a choice has
been made the syntactic form of the component will, in
general, be different: e.g. P +Q �! P 0. Cooperation is a
static combinator since the syntactic form of the component
is the same after evolution regardless of whether a shared
or an individual activity was completed, e.g. P ��

L
Q �!

P 0
��

L
Q.

In PEPA, entities within the system are represented as
components in the model. In cyclic models the ergodicity
condition ensures that the cooperating components of a
model are static—they are not created or destroyed as the
model evolves. The initial term of a PEPA model shows
all the parallel components which are going to exist during
the life of the model, and therefore a cyclic PEPA model
will have the same number of such terms throughout its
evolution. Choices may occur within such components
and these represent alternative modes of behaviour but not
alternative structures.

In GSPN there is no notion of static components.
However, a related concept is that ofP -semiflows of the net,
which are called conservative components in Petri net ter-
minology. These are subsets of places such that a weighted
sum of tokens in those places is constant for all reachable
states. We observe that if a PEPA term is built as the com-
position of N components, then the equivalent GSPN has
at least N P -semiflows where all the places have weight
equal to 1.

In a GSPN model, entities within the system are asso-
ciated with the tokens of the Petri net. As the net evolves
the number of tokens may vary, reflecting the dynamic be-
haviour of the system, according to the firing rule. This
models the interactions between the entities in the system.
For example, in the case of a GSPN model of a queueing
network, we can consider certain tokens as jobs, and others
as servers. Tokens representing jobs move from queue to
queue through the firing of transitions; when a job is in
service this may be represented as a single token although
two entities are involved.

For example, consider a simple parallel program con-
taining a parbegin/parend section. In the GSPN this can
be simply modelled using a Fork & Join structure as shown
in Figure 3(a). Representing this system in PEPA produces
an alternative view of the system (see Figure 3(b)). The
GSPN representation has one process which becomes split
into three and then recombined to form a single process
again. The static nature of the PEPA models forces a repres-
entation with three processes which are initially and finally
constrained to act together, only free to act independently
during the middle phase of their execution.

(�; �3)

(�; �2)

(�; �1)

(�; �2)

(start; r)
(�; �1)

(stop; s)

(�;�3)

(a)

Pi0
def
= (start; r):Pi1

Pi1
def
= (�;�i):Pi2

Pi2
def
= (�; �i):Pi3

Pi3
def
= (stop; s):Pi0

System
def
= ((P10

��

fstart;stopg
P20) ��

fstart;stopg
P30)

(b)

Figure 3: GSPN and PEPA models of the Fork & Join
structure.

3.3 Modelling abstraction
One of the skills of an experienced modeller is choosing

an appropriate level of abstraction at which to construct a
model. Although this is largely a question of judgement it
is aided by fexibility in the way a system may be presented
in a paradigm. GSPN offers more flexibility in this respect
than PEPA.

For example, consider a system which is comprised of
two identical instances of an entity, which are independent.
In PEPA this would be modelled as the component Q def

=
P k P . The component P could have any behaviour but for
simplicity we assume that it repeatedly carries out activity
(�;r) followed by (�; s): P

def
= (�;r):P 0; P 0

def
= (�; s):P .

p
0
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p
0

1
p
00

1

p
00
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p1

p2

t1t
00

1

t
0

2
t2t

00

2

t
0
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(a) (b)

Figure 4: Alternative GSPN representations of two in-
stances of the same entity.

There are two possible GSPN models of this behaviour.
In the first, the net representing the behaviour of the entity
is constructed, and repeated instances of the component
are represented by repeated instances of the same net (Fig-
ure 4(a)). Alternatively, the single net structure represent-
ing the entity may be marked by two tokens in its initial
place to represent the repeated structure (Figure 4(b)), if we
assume an infinite server discipline for the transition t1.



In PEPA repeated instances of the same entity will al-
ways be distinguished so all possible interleavings of states
must be represented, i.e. we do distinguish between P 0 k P
and P k P 0. There is no way in PEPA of reflecting that the
identity of the component which has completed the activity
(�; r) is unimportant. In contrast, in the compact GSPN in
Figure 4(b) both these cases are represented by the marking
(1; 1). This means that GSPN can have a more compact
representation than the corresponding PEPA model, and
fewer states in the associated Markov chains. It is up to
the GSPN modeller to decide whether the more detailed in-
formation is needed. Note that again the resulting Markov
processes are equivalent up to lumpability.

3.4 Compositionality
Compositionality is a central feature of model construc-

tion in PEPA, resulting in models which are easy to under-
stand and readily modified. The expression Q

def
= P k P

shows that the system is comprised of two identical but in-
dependent components, without detailed information about
the behaviour of P . It follows that a PEPA term may
have a lot of embedded behaviour, defined in a separate
expression. This leads to a hierarchical approach to model
construction. The resulting model has a structure which re-
flects the structure of the system itself. Moreover this struc-
ture may be exploited during analysis. Model components
can be developed by different modellers and libraries of
re-usable components may be established.

In contrast, with GSPN the model is constructed as a
flat representation of the system, all modelling primitives
conveying the same amount of information.

Observe that in both formalisms it is possible to develop
models following a bottom-up or top-down discipline: the
major difference is that PEPA has explicit primitives for
this, while GSPN does not.

Compositionality is closely related to the autonomy of
components. In cyclic PEPA, due to the restrictions placed
on choice, compositionality is based upon cooperation. For
example, consider the components P1 and P2 defined as:

P1
def
= (�; r):P1 P2

def
= (�; s):P2

The component P1 k P2 is clearly composed of two
components, P1 and P2. Even if the cooperation set is not
empty as here, the basic behaviour of the two components
is established before the composition is formed. If we
consider a similar choice of components, Q1 and Q2, if
the resulting component is to be cyclic, the choice must
be recurrent, i.e. whichever component is chosen it must
have a derivative which allows the choice to be made again.
Thus the individual components have the following form:

Q1
def
= (�; r):(Q1+Q2) Q2

def
= (�; r):(Q1+Q2)

Here it is clear, even at a syntactic level, that the two
components do not have autonomy, i.e. the behaviour of
Q1 cannot be described without reference to Q2.

Petri nets (timed or untimed) are not compositional in
nature, but there have been efforts to add composition op-
erators to the basic, untimed, formalism: composition is
based on superposition of places and transitions in [11],
while more recently it has been defined in the more struc-
tured approach of the Box Calculus [4].

For GSPNs it is not possible, in general, to identify
parts of a model which behave autonomously. Special net
structures have been established which identify compon-
ents within the model which have some degree of independ-
ence [10]. The motivation for such work is usually to find
a decomposition of the model which enables an efficient
(exact or approximate) solution of the underlying Markov
process. The emphasis of this work is on decomposition:
models are not constructed compositionally. Recent work
on Superposed Stochastic Automata (SSA)and Superposed
GSPN (SGSPN) [13] does emphasize compositionality, but
from the point of view of solution of the associated Markov
process: in both cases the model is defined as a set of inter-
acting components (stochastic automata for SSA and reg-
ular GSPN for SGSPN), but this interaction is not defined
as part of the basic formalism.

3.5 Operator abstraction
We can consider two forms of operator abstraction in

performance modelling paradigms: functional and tem-
poral abstraction. Functional abstraction allows some be-
haviour of the system to be abstracted away because it is
more detailed than necessary for the current model. Tem-
poral abstraction allows some of the timing information
within a system to be abstracted away as irrelevant in
the current model. Temporal abstraction is provided by
GSPN but not PEPA, whereas functional abstraction is only
provided by PEPA.

Temporal abstraction is provided in GSPN by immediate
transitions when they are used to represent timed actions,
the duration of which is negligible compared with that of
other actions within the model. It is assumed that these
events do not have a significant impact on the performance
of the system. Note that this is distinct from the use of
immediate transitions to represent logical actions, to which
no time can be associated. As there are only timed activities
in PEPA no equivalent form of abstraction is available.

Functional abstraction in PEPA is providedby the hiding
operator. Activities of type � are considered to be internal
to the component in which they occur. Thus hiding allows
an interface to a model or component to be defined. This
is particularly powerful when used in conjunction with the
cooperation combinator as it may restrict the interactions
of a component. Components of a system may be modelled
individually in detail, but subsequently in a more abstract
form as the interactions between them are developed. There
is no equivalent in GSPN or in any GSPN extensions.

4 Example

To illustrate the observations of the previous sections we
present a simple example of resource contention in a mul-
tiprocessor environment. We start with a very simple and
abstract model, and then move to more complex ones. Each
stage of the example is presented as follows: a short de-
scription of the system, its GSPN model, the PEPA model,
and a brief comparison.

4.1 The initial system
Consider a multiprocessor system with a shared

memory. Processes have to compete for access to the
common memory: to gain access and to use the common



memory they need also to acquire the system bus. The
bus is released when the access to the common memory is
terminated. For simplicity we consider the minimal case
of a system composed of two processors, Proc1 and Proc2.
All processes have the same functional behaviour, although
basic actions progress at different speeds depending on the
processor on which they are running. Due to the pres-
ence of a single memory and a single bus, the processes
may experience undesirable delays. The goal of the model
is to study how long the processes wait for access to the
common memory. Each process Pi has cyclic behaviour:
it performs some local action first, and then accesses the
common memory through the bus. Let us consider initially
the case of two processes P1 and P2 running on Proc1 and
Proc2, respectively.

The GSPN model, shown in Figure 5(a), is composed of
two subnets representing the cyclic behaviour of P1 and P2

and two distinct places representing the bus and the memory
respectively. We have chosen not to model processors
explicitly. The local “thinking” action in Pi (i = 1; 2) is
modelled by transition Tith, with rate �i, and the use of
the memory is modelled by transitions T iuse with rate �i.
The acquisition and the subsequent release of the memory
and the bus are modelled by the immediate transitions tiget
and tirel, respectively. This use of immediate transitions
abstracts away from the details of how the bus and memory
are acquired, and how long the acquire and release actions
take. The initial marking has one token in each of the places
P1a and P2a, to model the initial state of the two processes,
and one token in the Bus and Mem places, to represent the
availability of the bus and memory resources.

P2c

P2b

P2a

P2dP1d

P1a

P1b

Bus

MemP1c

T1use

T1th

T2use

t1get

t1rel t2rel

t2get

T2th

(a)

P1

def
= (think; �1):(get; g):(use; �1):(rel; r):P1

P2

def
= (think; �2):(get; g):(use; �2):(rel; r):P2

Mem
def
= (get;>):(rel;>):Mem

Bus
def
= (get;>):(rel;>):Bus

Sys
def
= (P1 k P2) ��

fget;relg
Bus ��

fget;relg
Mem

(b)

Figure 5: GSPN and PEPA models of initial system.

If we model all actions explicitly the PEPA model is as
shown in Figure 5(b). Since PEPA does not have immediate
actions, we assign a delay to both the get and rel actions.
Note that (get;>) etc. denotes that the rate of the get action
inMem is unspecified since this component is passive with
respect to this action.

The number of states of the Markov chains derived from
the two models differ slightly, since get and release actions
occur in zero time in the GSPN model. For the sake of
a fair comparison we shall report the size of tangible and
vanishing markings together, indicated as kRSk. The size
of the Derivative Set is denoted by kDSk. For the models
above we have kRSk = 11 (5 tangible and 6 vanishing)
and kDSk = 12. The additional state occurs because the
PEPA model allows the situation where both processes have
finished thinking and are trying to acquire the bus and
memory. In the GSPN model the higher priority of the
immediate transition prohibits this state.

Now consider the system with more than one process
in each processor, all processes on the same processor be-
having in the same way. In GSPN we can model this new
system by simply changing the initial marking of places
P1a and P2a to be equal to the number of processes in
Proc1 and Proc2 respectively.

Similarly the PEPA model is modified by changing the
initial term of the model:

Sys
0 def
= (P1 k � � � k P1

| {z }

N1

k P2 k � � � k P2
| {z }

N2

)
��

fget;relgBus
��

fget;relgMem

where N1 and N2 are the number of processes on Proc1
and Proc2 respectively.

As discussed in 3.3, the state space of the GSPN and
PEPA models now differ significantly, for example for 3
processes on Proc1 and 2 on Proc2 we have kRSk = 45
(18 tangible and 27 vanishing) and kDSk = 192.

4.2 Identical processes
Let us consider again the initial system, where we have

only one process per processor. We now assume that the
two processors behave in the same way, even from a timing
point of view. Since there is no need to distinguish the
processors, we now have slightly simpler GSPN and PEPA
models. In particular in the GSPN model the two subnets
representing the two processes are folded into a single one
(Figure 6(a)), while in the PEPA model we have two replica
of P (Figure 6(b)).

However the PEPA model will continue to distinguish
between the two processes (unless model simplification
techniques are applied); e.g. the derivatives

(P k (rel; r):P ) ��

fget;relg
(rel;>):Bus ��

fget;relg
(rel;>):Mem

((rel; r):P k P ) ��

fget;relg
(rel;>):Bus ��

fget;relg
(rel;>):Mem

give rise to distinct states in the underlying Markov process.
Thus we can observe that there is a difference in the number
of states: kRSk = 6 (3 tangible and 3 vanishing) while
kDSk = 12.

4.3 Different memory modules
We now consider a more complex example in which

there are different memory modules and each process can
choose which memory it wants to access. We assume
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Figure 6: Compact GSPN model of initial system and sim-
plified PEPA term.

also that the cyclic behaviour of each process is slightly
modified: after the access and the release of the common
memory, the process performs an update operation of its
local state.

In GSPN the choice can be modelled with a conflict
of immediate transitions: the weights assigned to these
transitions reflect the probabilities of each memory being
chosen. The updating operation is modelled by transitions
Tiup with rates �i (Figure 7(a)).

In the corresponding PEPA model (Figure 7(b)), the
choice of which memory to access is made via the race
between the two getMi actions. These two actions, enabled
simultaneously although only one of them will succeed,
represent acquisition of the chosen memory. Their rates
reflect their relative probabilities and the activity rate, i.e.
memory M1 is chosen with probability p and the rate of a
get action remains g.

In this case kRSk = 26 (9 tangible and 17 vanishing)
and kDSk = 48. As before the discrepancy is due to the
priority levels present in the GSPN model. If �1 = �2
the derivatives P1 and P2 in the PEPA model become
indistinguishable and kDSk = 33.

4.4 Discussion
We have modelled the same systems using both formal-

isms and shown that the state spaces underlying the GSPN
models are always smaller than those of the corresponding
PEPA models.

kRSk kDSk
Fig. 5 12 12
Fig. 6 7 12
Fig. 7 45 48(33)

Such a comparison is unequal because PEPA does not
have immediate actions. If we replace the immediate trans-
itions of the GSPN models in Figures 5(a)-7(a) with timed
ones, thus eliminating vanishing states and moving from

P1c

P1b P2b

P2c

Mem2Mem1

P1a P2a

Pth

Bus

Pch

P1d P2d

T2upT1up

Tth

T2useT1use

t2relt1rel
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t1get t2get
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(a)

P
def
= (think; �):((getM1; g � p):(use; �1):(relM1; r):P1

+ (getM2; g � (1� p)):(use;�2):(relM2; r):P2)

P1
def
= (update; �1):P P2

def
= (update; �2):P

M1
def
= (getM1;>):(relM1;>):M1

M2
def
= (getM2;>):(relM2;>):M2

Bus
def
= (getM1;>):(relM1;>):Bus

+ (getM2;>):(relM2;>):Bus

Sys
def
= (P k P )��

L
Bus ��

L
(M1 kM2)

where L = fgetM1; getM2; relM1; relM2g

(b)

Figure 7: GSPN and PEPA models of the system with two
memory modules.

GSPN to SPN, the underlying state spaces are as shown
in the table above. Since the RS and the DS only have
the same size for the models of the initial system we can
conclude that the differences on the sizes of the underlying
state spaces are not only due to the presence of immediate
transitions.

The model in Figures 6(a) is analogous to that described
in Figure 4: there is a single net structure and the repeated
instances are modelled by the two tokens in the initial mark-
ing. This more compact representation leads to a less de-
tailed state space in which the identity of the component
that uses the memory is lost. The model in Figure 7(a) has a
smaller state space for the same reason. However, when the
rates of the update actions are the same, the PEPA model
has 33 derivatives while the RS still contains 45 states. The
situation is analogous to that shown in Figure 1: each pair
of states that differ only in the marking of places P1d and
P2d (they can never be marked together) corresponds to a
single derivative in the DS.



5 Quantitative analysis

The solution techniques applied to compute quantitative
results in GSPN and PEPA are identical, based on the nu-
merical solution of the underlying CTMC. Starting from a
GSPN (PEPA) model, the associated Reachability (Deriva-
tion) Graph is obtained and then reduced to the correspond-
ing CTMC. This is then numerically solved to compute the
steady state probabilities. Tool support is available in both
cases.

There has been more work on efficient algorithms for
finding and solving this Markov process in the case of
GSPNs, and there has been a certain effort towards “less
expensive” solution methods, based on product form res-
ults [14], computation of bounds [8], approximations [17],
and solution based on decomposition [10, 13]. The authors
have no doubts that the efficient algorithms for the con-
struction and solution of the associated CTMC can be eas-
ily imported into PEPA, and there is also hope that some of
the economical solution methods can be transferred. State
space explosion is a major problem for models in either
paradigm.

To ensure steady state solution the same restriction
to ergodic Markov processes must be imposed on both
paradigms. Necessary syntactic conditions for a PEPA
model to ensure an ergodic Markov process have been iden-
tified but these are not sufficient. For some net subclasses,
such as free choice nets, it is possible to prove ergodicity by
solving a set of equations derived from the graph structure
of the net [12].

5.1 Performance indices and rewards
Both paradigms base the calculation of performance in-

dices on rewards, although in GSPN the reward structure
may be implicit. In PEPA rewards are associated with
activities whereas in GSPN rewards may be attached to
either transitions or places.

The computation of throughput of activities is straight-
forward in PEPA, while in GSPN it requires the modeller
to identify the set of transitions that represent the given
activity, and then to sum the throughputs over this set.
For example, to compute the throughput of accesses to the
common memory for the system in Figure 5 in PEPA we
assign a reward to the get action, while in GSPN we need
to identify all the transitions which represent the action of
acquiring the bus and the memory (t1get and t2get) and
calculate throughput as the sum of the throughput of the
two transitions.

Conversely, if, for the same system, we want to know
the throughput of the thinking activity in process P1, it is
immediate in GSPN even if �1 = �2 (throughput of trans-
itionT1th), while in PEPA we would need to distinguishthe
think activity in component P1 from the one in component
P2.

Performance indices which involve “state-based” in-
formation are very natural to compute in GSPN. For ex-
ample, for the same system we can study the probability of
process P1 being delayed because of contention on global
memory, by computing the probability of place P1b con-
taining one token, that is to say the probability of a partial
state (a state that has been only defined partially). We can
also study mutual exclusion in a probabilisticsense by com-
puting the probability that place P1c is marked and place

P2c is marked. If these places can not be marked together
in any reachable state, this probability is zero, and there-
fore the two transitions T1use and T2use, which represent
access to global memory, are never enabled together.

In PEPA, since rewards are defined at the syntactic level
in terms of activities, such state-based information is diffi-
cult to define directly. For example to calculate the prob-
ability of process P1 experiencing contention requires re-
wards to be associated with activities of separate compon-
ents rather than the model as a whole. This facility is not
currently available.

6 Qualitative analysis

GSPN and PEPA have both evolved from formal system
description techniques and so models in either paradigm can
be regarded as a functional representation of the system, as
well as a performance representation. The choice, in both
GSPN and PEPA, to use a distribution with infinite support
for the delays, allows functional properties of the timed
models to be proved with the same techniques used for
their untimed counterpart.

In this section we shall review state space analysis, com-
mon to both GSPN and PEPA, structural analysis, typical
of nets, and verification and transformation based on equi-
valences, particular to process algebras. We postpone until
Section 7 a discussion of the possibilities of applying struc-
tural analysis to PEPA and equivalences to GSPN.

6.1 State space analysis
Graph-based analysis may be used to answer many ques-

tions about system behaviour when applied to the Reach-
ability or Derivation Graph. For example, the presence of a
deadlock can be checked on the graph by looking for a dead
state, i.e. a node with no output arc, and the reachability of
a given state M 0 starting from a state M can be checked
by looking for a direct path in the graph connecting the
corresponding nodes.

State space analysis techniques are very powerful, since
they allow the proof of many properties of interest by in-
spection of the graph which contains all possible evolutions
of the model. In general, they are considered to be very
expensive because the space and time complexity of the
graph construction algorithm can exceed acceptable limits.
However, in the case of GSPN and PEPA models, intended
for performance evaluation, construction of this graph is
essential in any case to generate the underlying CTMC.

Analysis of the RGs of the GSPN models in Figures 5-
7 shows that each model is free from deadlock, and that
all transitions are live, implying that they can fire infin-
itely often. Moreover, the analysis shows that the RGs are
strongly connected, and therefore the associated CTMCs
are ergodic. The same analysis can be applied to the DGs
of the PEPA models.

6.2 Structural techniques (GSPN)
The structural analysis techniques of GSPN allow the

investigation of properties that may be proved directly on
the structure of the net, regardless of its initial marking.
Any property proved structurally is valid for every pos-
sible GSPN model obtained by imposing an arbitrary initial
marking.



Structural analysis is performed by applying linear al-
gebraic techniques to the matrix description of the GSPN
model (the incidence matrix). The method leads to the
computation of the so-called P-semiflows and T-semiflows.
Covering all places by P-semiflows is a sufficient condition
for a model to be bounded. For example, all the places of the
GSPN models in Figures 5-7 are covered by P-semiflows,
ensuring that their associated RGs are finite. P-semiflows
can also sometimes be used to prove mutual exclusion prop-
erties. For the model in Figure 5 we can prove mutually
exclusive access to the memory by observing that there is a
P-semiflow Mem+ P1c + P1d + P2c + P2d. In the initial
marking the sum of tokens in these places is equal to one, so
it will be equal to one in any reachable marking; therefore
transitions T1use and T2use are never both enabled.

A T-semiflow identifies a set of transitions such that,
starting from any markingM , firing any transition sequence
belonging to the set, returns to marking M . The existence
of T-semiflows covering all the transitions in the net is a
necessary, but not sufficient, condition for the liveness of
the model.

6.3 Equivalences (PEPA)
The standard process algebra notions of equivalence

have been extended into the timed setting and equival-
ence relations play two important rôles in the analysis of
PEPA models. Exhibiting equivalence between alternative
models, or between a model and another system descrip-
tion establishes when the observable behaviour of the two
are the same. This may verify the model with respect to
the system’s behaviour, or confirm that one model may
be substituted for another. If the new model has a smal-
ler DG, the substitution constitutes a simplification which
preserves the functional integrity of the model. Alternat-
ively, finding equivalence classes within the DG identifies
repeated patterns of behaviour within the evolution of the
model. Replacing each equivalence class by one represent-
ative constitutes an aggregation. If the equivalence relation
is well-defined the observable behaviour is unchanged.

Equivalence relations suitable for both purposes have
been defined for PEPA [16]. The standard notion of equi-
valence for Markov processes is based on isomorphism
between states. In process algebras equivalence, termed
bisimulation, is based on the notion of indistinguishabil-
ity under observation. In PEPA bisimulation relations are
defined which observe temporal and functional aspects of
an agent’s behaviour (strong bisimulation) or stochastic
and functional aspects (strong equivalence). In this lat-
ter case the activities performed by the agents may differ
but their externally observed behaviour is identical. These
equivalence relations are congruences—they are preserved
by all the combinators of the language—so the relations
are complementary to the compositionality. Simplification
and aggregation can be carried out component-wise within
a model.

Applying strong equivalence to the Multiprocessor ex-
ample in Figure 5, with 3 processes running on Proc1 and
2 processes running on Proc2, kDSk is reduced from 192
to 46. As previously the difference of one state, when com-
pared to the corresponding kRSk (45), is due to the priority
of immediate transitions.

After a reward structure has been defined over a PEPA
model hiding may be used to make only those actions to

which a reward is attached visible. In effect an interface to
the model is defined. An equivalence relation, called weak
isomorphism, has been developed in PEPA which abstracts
away from the hidden actions of a model but ensures the
integrity of the reward structure [16]. This equivalence
can be used for model simplification. Different reward
structures define different interfaces for the model, giving
rise to different model simplifications.

Although there has been considerable work on notions
of equivalence for Petri nets—indeed all the equivalences
defined for process algebras have been defined also for Petri
nets—this work has only recently been incorporated into
the timed setting of GSPN. In [6] defines an equivalence
for labelled SPN based on bisiumlation. In [9], Chiola et al.
define a notion of equivalence between GSPN models, and
between GSPN and SPN models. However, the motivation
of this work was to prove that for a very large class of
GSPN, an equivalent SPN can be constructed. It was not
intended that this equivalence relation should be used in
the manner described above, for model verification, model
simplification or aggregation.

7 Cross-fertilisation

In the previous sections we have examined the similarit-
ies and differences of GSPN and PEPA: here we outline
instead the characteristics (operators, solution techniques,
or others) of each formalism that we hope to successfully
import into the other one.

Compositionality: The benefits of compositionality are
clearly visible in PEPA. We can envisage two possible ways
of introducing compositionality into GSPN. The first is aug-
menting GSPN with operators taken from PEPA. Alternat-
ively, time could be added to a formalism such as the Box
Calculus which, in the untimed setting, represents an effort
to incorporate compositionality into Petri nets.

Operator abstraction: Temporal abstraction could be
incorporated into PEPA via the inclusion of immediate
activities, which are assumed to have negligible duration.
This would be analogous to the use of immediate trans-
itions in GSPN, and would result in vanishing and tangible
derivatives. We think that the introduction of immediate
activities in PEPA can greatly benefit from the experience
gained with immediate transitions in GSPN in two import-
ant ways. Firstly, from their definition, which has finally
led, [7], to the choice of defining probabilities of immedi-
ate transitions at a structural level (through the concept of
Extended Conflict Sets). Secondly, from the reuse of the
algorithms for the construction of the CTMC, algorithms
that require the elimination of the vanishing markings.

Functional abstraction could be incorporated into
GSPNs via the use of a labelling function to associate a
name with each transition. Hiding is then a relabelling
which results in more transitions having the distinguished
label � . As well as making reasoning about a model simpler,
functional abstraction may facilitate model simplification
as explained in Section 6.3. There is a notion of labelling in
untimed Petri nets and a transition may be labelled � (non-
observable). This has not yet been imported into timed or



stochastic nets although it should be straightforward to do
so. A similar notion occurs in the Box Calculus where �
transitions are removed from the communication interface
of the box.

Rewards and performance measures: Experience with
GSPN has shown that it is important for the modeller to have
a rich language for performance indices, and suggests that
the reward structure of PEPA should be enriched, to include
the definition of performance indices based on (partial)
states. This could be achieved if the reward structure were
to exploit the compositional structure of PEPA components.
For example, in PEPA we cannot currently express the
condition that (�; r1) and (�; r2) are enabled. However,
if the activities arise within separate components within
a model, P and Q say, where the system is P ��

L

Q, it
should be possible to express this as the conjunction of two
separate component rewards. In other words, we attach
reward 1 to any derivative in which P enables (�; r1), 0 to
all others, and attach reward 1 to any derivative in which
Q enables (�; r2), and 0 to all others, then reward 1 will be
associated only with those derivatives which enable both
(�; r1) and (�; r2).

Structural techniques: Structural techniques have
proved very powerful for the analysis of GSPN models:
since there is no structural (graph) component in PEPA, we
can not hope to import this technique into PEPA directly.
Nevertheless we hope to be able to define syntactic tech-
niques for PEPA, starting from the basic ideas of P� and
T�semiflows, based on the syntactic form of the model
expression. For example, we observe that in the GSPN
translation of a PEPA model [19], each PEPA component
will be a P-semiflow of weight and token count equal to
one (the converse is not the case—not every P-semiflows
will be a PEPA component), while if the PEPA model is
cyclic, then the transitions of the GSPN are covered by
T-semiflows.

Equivalence relations: It is clear from work in the
untimed setting that the notions of equivalence based on
bisimulation can be naturally applied to Petri nets as well
as process algebras. The useful application of these equi-
valences within PEPA suggest that there may be benefits
in extending such notions into the timed setting of GSPNs.
However, for fully comparable benefits to be achieved some
form of compositionality will also be needed in GSPN. If
functional abstraction is incorporated into GSPN there is
scope for model simplificationwhich is sensitive to the con-
text of observation, to be developed from an equivalence
relation based on PEPA’s weak isomorphism.

Kronecker algebra-based solution: As pointed out in
the discussion of quantitative analysis there has been far
more work on efficient algorithms for finding and solving
the CTMC in the case of GSPNs but it is hoped that some of
these algorithms may be imported into PEPA directly. More
interestingly it is hoped that the SSA and SGSPN ideas for
compositional solution based on Kronecker algebra can be
adapted for PEPA models. This would involve character-
ising the PEPA cooperation combinator as a tensor algebra
operaton.

To conclude, we have found that the two formalisms
have distinctive strengths and weaknesses. One of the
strengths of Petri nets is that causality, conflict and con-
currency are clearly depicted within a model and this is
true for GSPN models as well. From a performance point
of view, GSPNs offer the modeller an explicit notion of
state, a flexible approach to modelling abstraction and a
rich means of expressing rewards and performance indices.
Structural analysis on a GSPN model can provide valuable
insight into the behaviour of the system.

In contrast, in process algebra based formalisms such as
PEPA, causality is not exhibited and there is no clear notion
of state. However, an explicit compositional structure is im-
posed on the model. This structure makes the model easy to
understand, may alleviate problems of model construction
and can be exploited for both qualitative and quantitative
analysis. In addition, the functional abstraction, offered by
� actions and the hiding mechanism of PEPA, enhances the
compositional approach.

GSPN is a much more mature paradigm and this is ap-
parent in the number and scope of GSPN results, and the
efficiency of the analysis algorithms. However, the authors
are confident that many of these techniques may be impor-
ted into PEPA. Furthermore, there is scope for future work
incorporating the attractive characteristics of the formal-
isms, such as structural analysis or functional abstraction,
from one paradigm into the other.
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