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Abstract

Generalized Stochastic Petri Nets (GSPN) and Perform-
ance Evaluation Process Algebra (PEPA) can both be used
to study qualitative and quantitative behaviour of systems
in a single environment.

Thispaper presents a comparison of the two formalisms
in terms of the facilities that they provide to the model-
ler, considering both the definition and the analysis of the
performance model.

Our goal is to provide a better understanding of both
formalisms, and to prepare a fertile ground for exchan-
ging ideas and techniques between the two. To illustrate
similarities and differences, we make the different issues
more concrete by means of an example modelling resource
contention.

1 Introduction

In this paper we present a comparison of two forma-
isms which may be used to develop performance models
as continuous time Markov chains (CTMC). Generdized
stochastic Petri nets (GSPN) isawel l-established highlevel
modelling paradigm which has been widely appliedin per-
formance anaysis. In contrast, Performance Evauation
Process Algebra(PEPA) isarecently developed formalism.
Itisastochastic extension of classical processalgebrassuch
as CCS or CSP. PEPA appears to offer severd attractive
features which have not previously been available to the
performance modeller.

As in the paper of Vernon et al. comparing queueing
networks and performance Petri nets [20], we aim to com-
pare the paradigms in terms of the facilitiesthat they offer
the modeller. We consider model construction as well as
analysis techniquesto produce quantitative and qualitative
results.

Notethat our motivationisdistinct fromthat of previous
studies in which untimed Petri nets and process algebras
are investigated in terms of their different representations
of causality and concurrency. Here the underlying Markov
process forces an interleaving view of concurrency in both
paradigms.

Unlike Vernon et al. we do not yet aim to determine
which applications GSPN and PEPA are particularly suited
to. Rather, our intentionisto devel op abetter understanding
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of both paradigms, individually and in relation to each
other, so that such astudy may be possiblein the future.

The rest of this paper is organised as follows. In Sec-
tion 2 PEPA isbriefly introduced. Anintroductionto GSPN
may be found in the tutoria [1] or in the recent book [2].
The different stylesin which the paradigms express the be-
haviour of systemsare examined in Section 3. In Section4
these pointsare illustrated by an example. Techniques for
guantitative and quditative anaysis for both formalisms
are described in Sections 5 and 6 respectively. Finally, in
Section 7, we consider possibilitiesfor strengthening each
of the paradigms with characteristics, or lessons learned,
from the other one.

2 PEPA

The Performance Evaluation Process Algebra(PEPA) isan
algebraic description technique based on a classica pro-
cess agebra and enhanced with timing information. This
extension resultsin modelswhich may be used to calculate
performance measures as well as deduce functional prop-
erties of the system. In this section we briefly introduce
PEPA; more detailed information can be found in [16].

Process algebras are mathematical theori eswhich model
concurrent systems by their algebra and provide appar-
atus for reasoning about the structure and behaviour of
the model. In classical process algebras, e.g. Calculus of
Communicating Systems (CCS [18]), time is abstracted
away—actions are assumed to be instantaneous and only
relativeordering is represented—and choices are generally
nondeterministic. If an exponentialy distributed random
variable is used to specify the duration of each action the
process algebramay be used to represent aMarkov process.
This approach istaken in PEPA and the other recently pub-
lished stochastic process algebras[5, 3, 15]. Itisanaogous
to the association of a duration with the firing of a timed
transitionin a GSPN modd.

The basic elements of PEPA are components and activ-
ities, corresponding to states and transitionsin the under-
lying CTMC. Each activity isrepresented by two pieces of
information: the label, or action type, which identifies it,
and the activity rate which is the parameter of the negat-
ive exponential distribution determining itsduration. Thus
each action is represented as apair («, ). We assume that



the set of possibleaction types, .4, includes a distinguished
type, 7. Thistypedenotesinternal, or “ unknown” activities
and provides an important abstraction mechanism.

When enabled, an activity a = («, rf), will delay for a
period determined by a sample drawn from the negative
exponentia distribution with parameter ». As with timed
transitions in GSPN, we can think of this as the activity
setting a timer whenever it becomes enabled. Similarly,
if severa (conflicting and/or concurrent) activities are en-
abled at the same time they are assumed to execute in par-
allel subject to arace condition. The activity whose delay
before completion is the minimum will be the one to suc-
ceed. An activity may be interrupted or aborted if another
one completesfirst but the use of the exponential distribu-
tion eliminates the need to record previous execution time
in the former case.

Asinaclassica process agebra, the semantics of each
term in PEPA is given via a labelled (multi-) transition
system (the multiplicities of arcs are significant). In the
transition system a state corresponds to each derivative (a
syntactic term of the language) and arcs represent the ac-
tionswhich can cause one derivativeto evolveinto another.
For any model this semantic construction leads to a Deriv-
ation Graph (DG) in which actions and their durations are
associated with arcs and the nodes are the possibl e states of
the model. Thisgraph is systematically reduced to aform
whereit can betreated asthe state transition diagram of the
underlying CTMC. Thisis anaogous to the Reachability
Graph (RG) of a GSPN.

PEPA uses a small set of combinators. These alow
terms to be constructed defining the behaviour of com-
ponents, via the activities they undertake and the interac-
tions between them. The combinators, together with their
names and interpretations, are presented informally bel ow.
A structured operational semantics may be found in [16],
and a GSPN semanticsin [19].

Prefix, (o, r).P : This is the basic mechanism for con-
structing the behaviours. The component («, ). P carries
out activity («, r), which has action type « and a dura
tion which is exponentialy distributed with parameter r; it
subsequently behaves as P.

Choice, P+ @ : Thecomponent P+ () representsasystem
which may behave either as P or as (. The activities of
both P and (7 are enabled. The first activity to complete
distinguishes one of them: the other is discarded. The
system will then behave as the derivative resulting from
the evolution of the chosen component.

Cooperation, P BIQ: This combinator isin fact an in-
dexed family of combinators, onefor each possible set . of
visibleaction types: /. iscalled the cooperation set. P and
@ proceed independently and concurrently with any activ-
ity whose action types is not contained in L (individual
activity). However, for any activity whose action type is
included in L, the components must cooperate to achieve
the activity (shared activity). Such activities are only en-
abled in P X1 when they are enabled in both P and Q.
Therate of the shared activity is altered to reflect the work
carried out by both components to complete the activity.
The apparent rate of « in P isthetotal capacity of P

to carry out activities of that type, i.e. the sum of the rates
of the « type activities enabled. When two components
carry out «v in cooperation their total capacity to complete
« type activities is limited to the capacity of the slower
component, i.e. the apparent rate of the shared activity is
the minimum of the apparent rate of « in the participating
components. Since each component may enable severa
« activities it must choose which one will take part in
the cooperation. We assume that these choices are made
independently according to the relative rates. The rate of
the shared activity is thus the product of the conditional
probability for each participating activity and the apparent
rate of the shared action type.

A component may be passive with respect to an activity,
denoted (o, T): the rate of the activity Is left unspecified
until cooperation. The rate of the shared activity is then
dictated by the other component. All passive actions must
be synchronised in the final model.

If the cooperation set is empty, the two components
proceed independently. Weusethecompact notation, P||Q,
to represent this case.

Hiding, P/L : Hiding abstracts some aspect of the beha-
viour of a component so that it isnot visibleto an external
observer, or to other components(i.e. for cooperation). The
component P/ L behavesas P except that any activities of
types within the set . are hidden. They appear as the un-
known type 7 and can be regarded as an internal delay by
the component. The rate of the activity is unaffected.

Constant, A : Constants are components whose meaning

is given by a defining equation: eg. 4 £ P, which
gives the constant A the behaviour of the component P.
This is the mechanism of assigning names to components
(behaviours).

In order for the Markov process underlying a PEPA
model to be ergodic its DG must be strongly connected.
A similar condition applies to the RG of a GSPN. Some
necessary conditionsfor ergodicity, at the syntactic level of
aPEPA model, have been defined [16]. The class of PEPA
terms which satisfy these syntactic conditions are termed
cyclic components.

3 Descriptive power

In this section we compare GSPN and PEPA from the point
of view of model construction. In particular, we examine
the different styles in which the formalisms express the
behaviour of systems.

At a notationa level the difference seems significant
since PEPA isatextua language and GSPN has agraphical
notation. However, at the other extreme, if we consider
the class of Markov processes which can be expressed, itis
clear, asin[20], that any Markov process can be expressed
as a degenerate form of either paradigm. In GSPN aplace
is associated with each state and appropriate transitions
are inserted between the places to represent the transitions
in the Markov process. The place corresponding to the
initial state is marked by a single token. Similarly for
PEPA: a component is associated with the initia state of



the Markov process, with a derivative for each subsequent
state; activities capture the transitions.

Neither of these comparisonsreflect themodelling styles
of the two paradigms, which iswhat we wish to compare.
For example, in the degenerate GSPN the notions of dis-
tributed state and local evolution are lost. Therefore, we
conduct a more informal comparison, aiming to provide
insight into the relative strengths and weaknesses of the
two paradigms, without strictly categorising their model-
ling power.

Five different aspects of modelling style, which high-
light the differences between the formalisms, are con-
sidered below. The notion of state is central to modelling
with Markov processes, yet theway that astateisdefinedin
GSPN and PEPA is quite different. Also the model struc-
ture in PEPA isforced to be static, whereas in GSPN the
entities visiblewithin the model, as represented by tokens,
tend to change over time. Both notations have only a
few primitives; consequently they both tend to be verbose.
At the level of model construction this problem has been
tackled differently by the two paradigms. GSPN offers a
grester degree of freedom with respect to the chosen level
of modelling abstraction. In contrast in PEPA all aspects of
a system’s behaviour must be modelled explicitly, but the
ability to define the components separately, compositional
construction and abstraction mechanisms, help to alleviate
this problem.

3.1 Statevsaction orientation

GSPNshave avery clear notion of state, the distribution
of tokensin the places of the net. We can regard a GSPN
model as an association of a state (the initial marking) to
a graph structure, where the graph structure specifies how
the state is modified (state evolution). Note that there are
two distinct languages. oneto define the structure, and one
to define the state.

In general, different initia markings lead to completely
different Markov chains, and to models with very different
properties. For example, they may or may not exhibit cyclic
behaviour, or they may be bounded or not. Nevertheless, if
a GSPN model givesriseto an ergodic Markov chain, then
any reachable state can be taken as theinitia state, and the
same Markov chain will, of course, be generated.

There is no notion of state in the syntax of PEPA.
However, at the semantic level, in the labelled transition
system, astate isassociated with each syntacticterm. Thus
for a PEPA model each derivative of theinitia expression
representing the model is considered to be a state. These
derivatives form the states of the underlying Markov pro-
Cess.

Observethat the model and each derivativeare specified
in the PEPA language. It isimpossibleto distinguish syn-
tactically whether a term is a derivative of a modd or a
mode! itself. Indeed, in PEPA, the concept of state and
model coincide, especialy in the case of a cyclic PEPA
term (ergodic CTMC): since the DG is strongly connected,
all derivatives encapsulate sufficient information, via the
semantic rules, to recreate the complete behaviour of the
model. This has implications for exploitation of equival-
ence relations and qualitative analysis of models.

From a modelling point of view, GSPN is focussed on
states, while PEPA isfocussed on actions. Given an arbit-
rary marking of a GSPN modé it is usudly possible, by
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Figure 1: PEPA and GSPN models of a simple system.

considering the number of tokensin a given place, to im-
mediately infer the state of the system, eg. “server isidle."
In contrast the information that can beimmediately extrac-
ted from a PEPA modd during its evolutionisin terms of
the actions which the model (system) could perform e.g.
“begin_service" action isenabled. Thismay implicitly tell
us that the server is currently idle. This distinction has
consequences for the definition of performance measures
(Section 5.1).

To see how the generation of statesin thetwo paradigms
differs, consider asimplesysteminwhich ajob hasachoice
between two possible evolutions: it may perform action «
at rate A\, followed by action 3 at rate p, or it may choose
to perform action « at rate A, followed by action (5 at rate
1. A representation of this system in the two formalisms
isgivenin Figure 1, by PEPA ontheleft and GSPN on the
right.

The derivative set of the PEPA model has two elements:
{P1+ P2, (B, n).(Pr+ P2)}, whilethereachability set of the
GSPN model hasthreestates: {(1,0,0), (0,1,0), (0,0,1)}.
In PEPA, after action (o, A1) (e, A2)) takes place, ac-
tion (8, ) isexecuted, without making any distinction of
whether /5 is executed as an action of the first component
(P1) or of the second one (7). Inthe GSPN model instead
thetwo (3 actions are represented by the two distinct trans-
itionsts and ¢4 triggered by a condition on two different
places. Thus thereisa“history” of which component ex-
ecuted the « action remembered by the model. The state
transition diagrams of the corresponding Markov processes
are shown in Figure 2.

Figure2: The Markov processes underlying the PEPA and
GSPN models respectively.

Note that the states corresponding to the markings
(0,1,0) and (0,0,1) of the GSPN form a lumpable subset
of states within the Markov process.

This example shows how, in PEPA, terms with a com-
mon future are considered to represent the same date,
whereas in GSPNs this is not necessarily so. We could
have modelled the system with a GSPN where p; and p-
(ts and t4) are fused in asingle place (transition), but this
doesnot appear avery “natura” model for thegiven system,
since the two possible evolutions of the job are described

separately.



Although the way in which states are derived in GSPN
and PEPA differ both can be said to exhibit distributed
state to some extent. Transitions (activities) need only
local knowledge to determine whether they are enabled,
and subsequently whether they fire (complete). However,
in PEPA only the functional behaviour—whether an activ-
ity is enabled—is truly distributed, whereas the temporal
behaviour—the expected duration of an activity—is not.
The use of apparent rates for assigning rates to shared
activities means that such rates may depend upon a globa
assessment of the state of the system.

3.2 Staticvsdynamic model entities

Process al gebras distingui sh between dynamic and static
combinators. Choice is dynamic since after a choice has
been made the syntactic form of the component will, in
general, be different: eg. P + Q@ — P’. Cooperationisa
static combinator sincethe syntactic form of the component
is the same after evolution regardless of whether a shared
or an individual activity was completed, eg. P=Q —
P'mQ.

In PEPA, entities within the system are represented as
components in the model. In cyclic models the ergodicity
condition ensures that the cooperating components of a
model are static—they are not created or destroyed as the
model evolves. The initid term of a PEPA mode shows
all the parallel components which are going to exist during
the life of the model, and therefore a cyclic PEPA model
will have the same number of such terms throughout its
evolution. Choices may occur within such components
and these represent aternative modes of behaviour but not
aternative structures.

In GSPN there is no notion of static components.
However, arelated concept isthat of P-semiflowsof thenet,
which are called conservative components in Petri net ter-
minology. These are subsets of places such that aweighted
sum of tokensin those places is constant for al reachable
states. We observethat if a PEPA term is built as the com-
position of N components, then the equivalent GSPN has
at least N P-semiflows where all the places have weight
equd to 1.

In a GSPN model, entities within the system are asso-
ciated with the tokens of the Petri net. Asthe net evolves
the number of tokens may vary, reflecting the dynamic be-
haviour of the system, according to the firing rule. This
models the interactions between the entitiesin the system.
For example, in the case of a GSPN model of a queueing
network, we can consider certain tokensasjobs, and others
as servers. Tokens representing jobs move from queue to
gueue through the firing of transitions; when a job isin
service this may be represented as a single token although
two entitiesare involved.

For example, consider a smple paralel program con-
tainingaparbegin/parend section. Inthe GSPN thiscan
be simply modelled using a Fork & Join structure as shown
inFigure 3(a). Representing thissystem in PEPA produces
an dternative view of the system (see Figure 3(b)). The
GSPN representation has one process which becomes split
into three and then recombined to form a single process
again. Thestatic nature of the PEPA model sforcesarepres-
entation with three processes which areinitially and finally
constrained to act together, only free to act independently
during the middle phase of their execution.

(a)

P; s (start,r). Py

Pq £ (a,\).Po

Po = (B,mi)Pa

P; o (stop, s).Pio

def
System = ((Pro {start,stop) 20) {start,stop} Pao)

(b)

Figure 3: GSPN and PEPA models of the Fork & Join
structure.

3.3 Modelling abstraction

One of theskillsof an experienced modeller ischoosing
an appropriate level of abstraction at which to construct a
model. Although thisislargely a question of judgement it
isaided by fexibility inthe way a system may be presented
inaparadigm. GSPN offers more flexibility in thisrespect
than PEPA.

For example, consider a system which is comprised of
two identical instances of an entity, which are independent.

In PEPA this would be modelled as the component @ £
P || P. Thecomponent P could have any behaviour but for
simplicity we assume that it repeatedly carries out activity

(a,r) followed by (8,s): P Z (a,r).P', P Z(8,s).P.
P Plll P1
ty t'll tq
P Pa =
t; t;l t2

(a) (b)

Figure 4. Alternative GSPN representations of two in-
stances of the same entity.

There are two possible GSPN models of this behaviour.
In thefirst, the net representing the behaviour of the entity
is constructed, and repeated instances of the component
are represented by repeated instances of the same net (Fig-
ure4(a)). Alternatively, the single net structure represent-
ing the entity may be marked by two tokens in its initial
placeto represent therepeated structure (Figure4(b)), if we
assume an infinite server disciplinefor thetransition¢;.



In PEPA repeated instances of the same entity will a-
ways be distinguished so al possibleinterleavingsof states
must be represented, i.e. we do distinguish between P’ || P
and P || P'. Thereisno way in PEPA of reflecting that the
identity of the component which has completed the activity
(ar, 7) Isunimportant. In contrast, in the compact GSPN in
Figure4(b) both these cases are represented by the marking
(1,1). This means that GSPN can have a more compact
representation than the corresponding PEPA model, and
fewer states in the associated Markov chains. It isup to
the GSPN modeller to decide whether the more detailed in-
formation is needed. Notethat again the resulting Markov
processes are equivalent up to lumpability.

3.4 Compositionality
Compositionality isacentral feature of model construc-
tionin PEPA, resultingin models which are easy to under-

stand and readily modified. The expression Q £ P || P
shows that the system is comprised of two identica but in-
dependent components, without detailed information about
the behaviour of P. It follows that a PEPA term may
have a lot of embedded behaviour, defined in a separate
expression. Thisleadsto a hierarchica approach to model
congtruction. Theresultingmode has astructurewhich re-
flectsthestructure of the systemitself. Moreover thisstruc-
ture may be exploited during analysis. Model components
can be developed by different modellers and libraries of
re-usable components may be established.

In contrast, with GSPN the model is constructed as a
flat representation of the system, al modelling primitives
conveying the same amount of information.

Observethat in bothformalismsitispossibleto develop
model s following a bottom-up or top-down discipline: the
major difference is that PEPA has explicit primitives for
this, while GSPN does not.

Compositionality is closely related to the autonomy of
components. In cyclic PEPA, dueto the restrictions placed
on choice, compositionality is based upon cooperation. For
example, consider the components P, and P defined as:

P1 g(a,r).Pl Pzg(ﬁ,s).Pz

The component 7 || P, is clearly composed of two
components, P, and P,. Even if the cooperation set is not
empty as here, the basic behaviour of the two components
is established before the composition is formed. If we
consider a similar choice of components, @, and @, if
the resulting component is to be cyclic, the choice must
be recurrent, i.e. whichever component is chosen it must
have aderivativewhich allowsthe choiceto be made again.
Thus the individual components have the following form:

Q1 Z (a,7).(Q1+ Q) Q2 Z (8,7).(Q1+ Q)

Here it is clear, even a a syntactic level, that the two
components do not have autonomy, i.e. the behaviour of
Q1 cannot be described without reference to @-.

Petri nets (timed or untimed) are not compositiona in
nature, but there have been efforts to add composition op-
erators to the basic, untimed, formalism: composition is
based on superposition of places and transitionsin [11],
while more recently it has been defined in the more struc-
tured approach of the Box Calculus[4].

For GSPNs it is not possible, in genera, to identify
parts of a model which behave autonomoudly. Specia net
structures have been established which identify compon-
entswithinthemode which have some degree of independ-
ence [10]. The motivation for such work isusualy to find
a decomposition of the model which enables an efficient
(exact or approximate) solution of the underlying Markov
process. The emphasis of thiswork is on decomposition:
models are not constructed compositionally. Recent work
on Superposed Stochastic Automata (SSA)and Superposed
GSPN (SGSPN) [13] does emphasi ze compositionality, but
from the point of view of solution of the associated Markov
process. in both cases the model is defined as aset of inter-
acting components (stochastic automata for SSA and reg-
ular GSPN for SGSPN), but thisinteraction is not defined
as part of the basic formalism.

3.5 Operator abstraction

We can consider two forms of operator abstraction in
performance modelling paradigms. functional and tem-
poral abstraction. Functional abstraction allows some be-
haviour of the system to be abstracted away because it is
more detailed than necessary for the current model. Tem-
pora abstraction allows some of the timing information
within a system to be abstracted away as irrdlevant in
the current model. Temporal abstraction is provided by
GSPN but not PEPA, whereas functional abstractionisonly
provided by PEPA.

Temporal abstractionisprovidedin GSPN by immediate
transitions when they are used to represent timed actions,
the duration of which is negligible compared with that of
other actions within the model. It is assumed that these
events do not have a significant impact on the performance
of the system. Note that this is distinct from the use of
immediate transitionsto represent logical actions, to which
no time can be associated. Asthereareonly timed activities
in PEPA no equivalent form of abstractionisavailable.

Functional abstractionin PEPA isprovided by thehiding
operator. Activitiesof type r are considered to be internal
to the component in which they occur. Thus hiding allows
an interface to amodel or component to be defined. This
is particularly powerful when used in conjunction with the
cooperation combinator as it may restrict the interactions
of acomponent. Componentsof asystem may be modelled
individually in detail, but subsequently in a more abstract
formastheinteractions between them are devel oped. There
isno equivalent in GSPN or in any GSPN extensions.

4 Example

To illustrate the observations of the previous sections we
present a simple example of resource contention in a mul-
tiprocessor environment. We start with avery simple and
abstract model, and then moveto more complex ones. Each
stage of the example is presented as follows: a short de-
scription of the system, its GSPN model, the PEPA modd,
and a brief comparison.

4.1 Theinitial system
Consider a multiprocessor system with a shared

memory. Processes have to compete for access to the
common memory: to gain access and to use the common



memory they need also to acquire the system bus. The
busis released when the access to the common memory is
terminated. For simplicity we consider the minimal case
of a system composed of two processors, Proc; and Proc,.
All processes have the same functional behaviour, athough
basic actions progress at different speeds depending on the
processor on which they are running. Due to the pres-
ence of a single memory and a single bus, the processes
may experience undesirabledelays. The goal of the model
is to study how long the processes wait for access to the
common memory. Each process P; has cyclic behaviour:
it performs some local action first, and then accesses the
common memory throughthe bus. Let usconsider initially
the case of two processes 7, and P, running on Proc; and
Proc,, respectively.

The GSPN mode, shownin Figure5(a), is composed of
two subnets representing the cyclic behaviour of P, and P,
and two di stinct placesrepresenting the busand the memory
respectively. We have chosen not to model processors
explicitly. Thelocal “thinking” action in 7; (: = 1,2) is
modelled by transition 7., with rate A;, and the use of
the memory is modelled by transitions 7', ;. with rate ;.
The acquisition and the subsequent rel ease of the memory
and the bus are modelled by theimmediate transitionst i .;
and ti,.;, respectively. This use of immediate transitions
abstracts away from the detail s of how the busand memory
are acquired, and how long the acquire and release actions
take. Theinitia marking hasonetokenineach of theplaces
P1, and P2,,to model theinitia state of thetwo processes,
and onetoken inthe Bus and M em places, to represent the
availability of the bus and memory resources.

Py = (think,\1).(get, g).(use, p1).(rel,r). Py
p, % (think, X2).(get, g).(use, p2).(rel, r). P>
Mem 2 (get, T).(rel, T).Mem
Bus ¥ (get, T).(rel, T).Bus
def
Sys = (P ]| P2) {geiﬂrel}Bus {geiﬂrel}Mem

(b)
Figure5: GSPN and PEPA models of initia system.

If we model al actions explicitly the PEPA modd isas
showninFigure5(b). Since PEPA doesnot haveimmediate
actions, we assign a delay to both the get and rel actions.
Notethat (get, T) etc. denotesthat therate of the get action
in M em isunspecified since thiscomponent is passivewith
respect to thisaction.

The number of states of the Markov chains derived from
thetwo modelsdiffer dightly, since get and rel ease actions
occur in zero time in the GSPN model. For the sake of
afair comparison we shall report the size of tangible and
vanishing markings together, indicated as | RS||. The size
of the Derivative Set is denoted by || DS]|. For the models
above we have |RS|| = 11 (5 tangible and 6 vanishing)
and || D5S|| = 12. The additional state occurs because the
PEPA modéd alowsthesituationwhere both processeshave
finished thinking and are trying to acquire the bus and
memory. In the GSPN model the higher priority of the
immediate transition prohibitsthis state.

Now consider the system with more than one process
in each processor, al processes on the same processor be-
having in the same way. In GSPN we can mode this new
system by simply changing the initial marking of places
P1, and P2, to be equal to the number of processes in
Procy and Proc, respectively.

Similarly the PEPA model is modified by changing the
initial term of the modd:

ef B B

7

Sys' = (Prll - I PLUPall - | P2) {get rel} BuS {get,rer) Mem
—_—— ——

Ny N2

where N; and N, are the number of processes on Proc,
and Proc, respectively.

As discussed in 3.3, the state space of the GSPN and
PEPA models now differ significantly, for example for 3
processes on Proc; and 2 on Proce We have ||RS|| = 45
(18 tangibleand 27 vanishing) and || DS|| = 192.

4.2 Identical processes

Let usconsider again theinitia system, where we have
only one process per processor. We now assume that the
two processors behave in the same way, even from atiming
point of view. Since there is no need to distinguish the
processors, we now have dightly simpler GSPN and PEPA
models. In particular in the GSPN model the two subnets
representing the two processes are folded into asingle one
(Figure6(a)), whileinthe PEPA model wehavetworeplica
of P (Figure6(b)).

However the PEPA model will continue to distinguish
between the two processes (unless moddl simplification
techniques are applied); e.g. the derivatives
(P | (rel,r).P), ™

{get,rel}

(rel, T).Bus AN (rel, T).Mem

((rel,r).P || P) rel, T).Bus AN (rel, T).Mem

giverisetodistinct statesintheunderlying Markov process.
Thuswe can observethat thereisadifferenceinthe number
of states: |RS|| = 6 (3 tangible and 3 vanishing) while
|DS|| = 12.

4.3 Different memory modules
We now consider a more complex example in which

there are different memory modules and each process can
choose which memory it wants to access. We assume

{ge[t),qml} (
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SysE(P|| P), = Bu

s D
{get,rel} {get,rel}

(®)

Figure 6: Compact GSPN model of initial system and sim-
plified PEPA term.

aso that the cyclic behaviour of each process is dlightly
modified: after the access and the release of the common
memory, the process performs an update operation of its
local state.

In GSPN the choice can be modelled with a conflict
of immediate transitions: the weights assigned to these
transitions reflect the probabilities of each memory being
chosen. The updating operation is modelled by transitions
Ti., Withrates v; (Figure 7(a)).

In the corresponding PEPA modd (Figure 7(b)), the
choice of which memory to access is made via the race
between thetwo get 4; actions. Thesetwo actions, enabled
simultaneoudly athough only one of them will succeed,
represent acquisition of the chosen memory. Their rates
reflect their relative probabilities and the activity rate, i.e.
memory M1 is chosen with probability p and the rate of a
get actionremains g.

In this case ||RS|| = 26 (9 tangible and 17 vanishing)
and || DS = 48. As before the discrepancy is due to the
priority levels present in the GSPN moddl. If v1 = v
the derivatives P1 and P2 in the PEPA mode become
indistinguishableand || DS|| = 33.

4.4 Discussion

We have modelled the same systems using both formal -
isms and shown that the state spaces underlying the GSPN
models are always smaller than those of the corresponding
PEPA models.

[2S] [ [[D5]]
Fig. 5 12 12
Fig. 6 7 12
Fig. 7 45 48(33)

Such a comparison is unequal because PEPA does not
haveimmediate actions. If we replace theimmediate trans-
itions of the GSPN models in Figures 5(a)-7(a) with timed
ones, thus eliminating vanishing states and moving from

—t2op

# Bus

ema

p % (think, X).((getar1, g x p).(use, p1).(relpn, r).P1

+ (getmz, g x (1 = p)).(use, p2).(relarz, r). P2)

I (update, vq).P p2 & (update, v2). P

M1 £ (getan, T).(rela, T). M1

M2 £ (getars, T).(relns, T). M2

Bus £ (getarn, T).(rela, T). Bus
+ (getarz, T).(relps2, T).Bus

Sys £ (Pl P) > Busea (M1 ]| M2)

where L = {getar1, getarz, relan, reln}

(®)

Figure 7: GSPN and PEPA models of the system with two
memory modules.

GSPN to SPN, the underlying state spaces are as shown
in the table above. Since the RS and the DS only have
the same size for the models of the initid system we can
concludethat the differences on the sizes of the underlying
state spaces are not only due to the presence of immediate
transitions.

Themodel in Figures 6(a) isana ogousto that described
in Figure 4: thereisasingle net structure and the repeated
instancesare modelled by thetwotokensintheinitial mark-
ing. This more compact representation leads to a less de-
tailed state space in which the identity of the component
that usesthememory islost. Themodel inFigure7(a) hasa
smaller state space for the same reason. However, whenthe
rates of the update actions are the same, the PEPA model
has 33 derivativeswhilethe RS still contains 45 states. The
situation is analogous to that shown in Figure 1: each pair
of states that differ only in the marking of places P14 and
P24 (they can never be marked together) correspondsto a
singlederivativein the DS.



5 Quantitative analysis

The solution techniques applied to compute quantitative
resultsin GSPN and PEPA are identical, based on the nu-
merical solution of the underlying CTMC. Starting from a
GSPN (PEPA) moddl, the associated Reachability (Deriva-
tion) Graphis obtained and then reduced to the correspond-
ing CTMC. Thisisthen numerically solved to computethe
steady state probabilities. Tool support isavailablein both
Ccases.

There has been more work on efficient algorithms for
finding and solving this Markov process in the case of
GSPNs, and there has been a certain effort towards “less
expensive” solution methods, based on product form res-
ults[14], computation of bounds|[8], approximations[17],
and solution based on decomposition[10, 13]. The authors
have no doubts that the efficient algorithms for the con-
struction and sol ution of the associated CTMC can be eas-
ily imported into PEPA, and thereis also hope that some of
the economical solution methods can be transferred. State
space explosion is a mgor problem for models in either
paradigm.

To ensure steady state solution the same restriction
to ergodic Markov processes must be imposed on both
paradigms. Necessary syntactic conditions for a PEPA
model to ensure an ergodic Markov process havebeen iden-
tified but these are not sufficient. For some net subclasses,
such as free choice nets, itispossibleto proveergodicity by
solving a set of equations derived from the graph structure
of the net [12].

5.1 Performanceindicesand rewards

Both paradigms base the cal culation of performance in-
dices on rewards, although in GSPN the reward structure
may be implicit. In PEPA rewards are associated with
activities whereas in GSPN rewards may be attached to
either transitionsor places.

The computation of throughput of activitiesis straight-
forward in PEPA, whilein GSPN it requires the modeller
to identify the set of transitions that represent the given
activity, and then to sum the throughputs over this set.
For example, to compute the throughput of accesses to the
common memory for the system in Figure 5 in PEPA we
assign areward to the get action, whilein GSPN we need
to identify all the transitionswhich represent the action of
acquiring the bus and the memory (¢1,., and ¢2,.;) and
calculate throughput as the sum of the throughput of the
two transitions.

Conversdly, if, for the same system, we want to know
the throughput of the thinking activity in process P, itis
immediate in GSPN even if A; = A, (throughput of trans-
itionT1¢), whilein PEPA wewould need to distinguishthe
think activity in component 7, from the onein component
Ps.

Performance indices which involve “state-based” in-
formation are very natura to compute in GSPN. For ex-
ample, for the same system we can study the probability of
process P; being delayed because of contention on global
memory, by computing the probability of place P1, con-
taining one token, that isto say the probability of apartial
state (a state that has been only defined partialy). We can
also study mutual exclusioninaprobabilisticsense by com-
puting the probability that place P1. is marked and place

P2. ismarked. If these places can not be marked together
in any reachable state, this probability is zero, and there-
fore the two transitions 7'1 .. and 7'2...., which represent
access to globa memory, are never enabled together.

In PEPA, sincerewards are defined at the syntactic level
in terms of activities, such state-based information is diffi-
cult to define directly. For example to calculate the prob-
ability of process P, experiencing contention requires re-
wards to be associated with activities of separate compon-
ents rather than the model as awhole. This facility is not
currently available.

6 Qualitative analysis

GSPN and PEPA have both evolved from formal system
description techni quesand so model sin either paradigm can
be regarded as afunctional representation of the system, as
well as a performance representation. The choice, in both
GSPN and PEPA, to use adistributionwith infinite support
for the delays, alows functiona properties of the timed
models to be proved with the same techniques used for
their untimed counterpart.

Inthissectionweshal review state space anaysis, com-
mon to both GSPN and PEPA, structural analysis, typical
of nets, and verification and transformation based on equi-
valences, particular to process algebras. We postpone until
Section 7 adiscussion of the possibilitiesof applying struc-
tura analysisto PEPA and equivalencesto GSPN.

6.1 Statespaceanalyss

Graph-based analysismay beused to answer many ques-
tions about system behaviour when applied to the Reach-
ability or Derivation Graph. For example, the presence of a
deadl ock can be checked on thegraph by looking for adead
state, i.e. anodewith no output arc, and the reachability of
agiven state M’ starting from a state M/ can be checked
by looking for a direct path in the graph connecting the
corresponding nodes.

State space anaysistechniquesare very powerful, since
they allow the proof of many properties of interest by in-
spection of the graph which containsall possibleevol utions
of the model. In general, they are considered to be very
expensive because the space and time complexity of the
graph construction a gorithm can exceed acceptable limits.
However, in the case of GSPN and PEPA models, intended
for performance evaluation, construction of this graph is
essential in any case to generate the underlying CTMC.

Analysis of the RGs of the GSPN modelsin Figures 5-
7 shows that each model is free from deadlock, and that
al transitions are live, implying that they can fire infin-
itely often. Moreover, the analysis shows that the RGs are
strongly connected, and therefore the associated CTMCs
are ergodic. The same analysis can be applied to the DGs
of the PEPA models.

6.2 Structural techniques(GSPN)

The structural anaysis techniques of GSPN alow the
investigation of propertiesthat may be proved directly on
the structure of the net, regardless of its initia marking.
Any property proved structuraly is vaid for every pos-
sible GSPN model obtai ned by imposing an arbitrary initial
marking.



Structural analysis is performed by applying linear a-
gebraic techniques to the matrix description of the GSPN
model (the incidence matrix). The method leads to the
computation of the so-called P-semiflows and T-semiflows.
Coveringal placesby P-semiflowsisasufficient condition
for amodel tobebounded. For example, al theplacesof the
GSPN modelsin Figures 5-7 are covered by P-semiflows,
ensuring that their associated RGs are finite. P-semiflows
can a so sometimes be used to prove mutua exclusion prop-
erties. For the model in Figure 5 we can prove mutually
exclusive access to the memory by observing that thereisa
P-semiflow Mem + P1. + Plq+ P2, + P24. Intheinitia
marking the sum of tokensinthese placesisequal to one, so
it will be equal to onein any reachable marking; therefore
transitions7'1,;. and 72, ;. are never both enabled.

A T-semiflow identifies a set of transitions such that,
starting fromany marking M , firing any transition sequence
bel onging to the set, returnsto marking M. The existence
of T-semiflows covering al the transitionsin the net is a
necessary, but not sufficient, condition for the liveness of
themoddl.

6.3 Equivalences (PEPA)

The standard process agebra notions of equivaence
have been extended into the timed setting and equival-
ence relations play two important roles in the anaysis of
PEPA models. Exhibiting equival ence between aternative
models, or between a model and another system descrip-
tion establishes when the observable behaviour of the two
are the same. This may verify the model with respect to
the system’s behaviour, or confirm that one model may
be substituted for another. If the new model has a smal-
ler DG, the substitution constitutes a simplification which
preserves the functiona integrity of the model. Alternat-
ively, finding equivalence classes within the DG identifies
repeated patterns of behaviour within the evolution of the
model. Replacing each equivalence class by onerepresent-
ativeconstitutesan aggregation. |f theequivaencerelation
iswell-defined the observabl e behaviour is unchanged.

Equivaence relations suitable for both purposes have
been defined for PEPA [16]. The standard notion of equi-
valence for Markov processes is based on isomorphism
between states. In process agebras equivalence, termed
bisimulation, is based on the notion of indistinguishabil-
ity under observation. In PEPA bisimulation relations are
defined which observe tempora and functional aspects of
an agent’s behaviour (strong bisimulation) or stochastic
and functional aspects (strong equivalence). In this lat-
ter case the activities performed by the agents may differ
but their externally observed behaviour isidentical. These
equivalence relations are congruences—they are preserved
by al the combinators of the language—so the relaions
are complementary to the compositionality. Simplification
and aggregation can be carried out component-wise within
amodd.

Applying strong equivalence to the Multiprocessor ex-
ample in Figure 5, with 3 processes running on Proc; and
2 pProcesses running on Procz, || DS|| is reduced from 192
to46. Asprevioudly the difference of one state, when com-
pared to the corresponding || RS|| (45), isduetothe priority
of immediate transitions.

After a reward structure has been defined over a PEPA
model hiding may be used to make only those actions to

which areward is attached visible. In effect an interface to
the model is defined. An equivaence relation, called weak
isomor phism, has been developed in PEPA which abstracts
away from the hidden actions of a model but ensures the
integrity of the reward structure [16]. This equivaence
can be used for model simplification. Different reward
structures define different interfaces for the model, giving
riseto different model simplifications.

Although there has been considerable work on notions
of equivalence for Petri nets—indeed al the equivalences
defined for processal gebras have been defined al so for Petri
nets—this work has only recently been incorporated into
the timed setting of GSPN. In [6] defines an equivaence
for labelled SPN based on bisiumlation. In[9], Chiolaetal.
define a notion of equivalence between GSPN models, and
between GSPN and SPN models. However, the motivation
of this work was to prove that for a very large class of
GSPN, an equivalent SPN can be constructed. It was not
intended that this equivalence relation should be used in
the manner described above, for model verification, model
simplification or aggregation.

7 Cross-fertilisation

In the previous sections we have examined the similarit-
ies and differences of GSPN and PEPA: here we outline
instead the characteristics (operators, solution techniques,
or others) of each formalism that we hope to successfully
import into the other one.

Compositionality: The benefits of compositionaity are
clearly visiblein PEPA. We can envisagetwo possibleways
of introducing compositionality into GSPN. Thefirstisaug-
menting GSPN with operators taken from PEPA. Alternat-
ively, time could be added to a formalism such as the Box
Cadculuswhich, inthe untimed setting, represents an effort
to incorporate compositionality into Petri nets.

Operator abstraction: Tempora abstraction could be
incorporated into PEPA via the inclusion of immediate
activities, which are assumed to have negligible duration.
This would be analogous to the use of immediate trans-
itionsin GSPN, and would result in vanishing and tangible
derivatives. We think that the introduction of immediate
activitiesin PEPA can greatly benefit from the experience
gained with immediate transitionsin GSPN in two import-
ant ways. Firstly, from their definition, which has finally
led, [7], to the choice of defining probabilities of immedi-
ate transitions a a structurd level (through the concept of
Extended Conflict Sets). Secondly, from the reuse of the
algorithms for the construction of the CTMC, algorithms
that require the elimination of the vanishing markings.
Functional abstraction could be incorporated into
GSPNs via the use of a labelling function to associate a
name with each transition. Hiding is then a relabelling
which results in more transitions having the distinguished
label 7. Aswell asmaking reasoning about amodel simpler,
functional abstraction may facilitate model simplification
asexplainedin Section 6.3. Thereisanotionof labellingin
untimed Petri nets and atransition may be labelled r (non-
observable). This has not yet been imported into timed or



stochastic nets although it should be straightforward to do
0. A similar notion occurs in the Box Calculus where 7
transitions are removed from the communication interface
of the box.

Rewards and performance measures. Experience with
GSPN hasshownthat itisimportant for themodeller to have
arich language for performance indices, and suggests that
thereward structure of PEPA should be enriched, toinclude
the definition of performance indices based on (partial)
states. Thiscould be achieved if the reward structure were
to exploit thecompositiona structure of PEPA components.
For example, in PEPA we cannot currently express the
condition that («, r1) and (3, rz) are enabled. However,
if the activities arise within separate components within

amode, P and @ say, where the system is P DI @, it

should be possibleto express this as the conjunction of two
separate component rewards. In other words, we attach
reward 1 to any derivativein which P enables («, 71 ), 0to
all others, and attach reward 1 to any derivative in which
Q) enables (3, r»), and Oto all others, then reward 1 will be
associated only with those derivatives which enable both
(o, 1) @nd (3, 72).

Structural techniques: Structural techniques have
proved very powerful for the analysis of GSPN models:
sincethereisno structural (graph) component in PEPA, we
can not hope to import this technique into PEPA directly.
Nevertheless we hope to be able to define syntactic tech-
niques for PEPA, starting from the basic ideas of P— and
T—semiflows, based on the syntactic form of the model
expression. For example, we observe that in the GSPN
trandation of a PEPA model [19], each PEPA component
will be a P-semiflow of weight and token count equa to
one (the converse is not the case—not every P-semiflows
will be a PEPA component), while if the PEPA model is
cyclic, then the transitions of the GSPN are covered by
T-semiflows.

Equivalence relations: It is clear from work in the
untimed setting that the notions of equivalence based on
bisimulation can be naturally applied to Petri nets as well
as process algebras. The useful application of these equi-
valences within PEPA suggest that there may be benefits
in extending such notionsinto thetimed setting of GSPNs.
However, for fully comparabl e benefitsto beachieved some
form of compositionality will also be needed in GSPN. If
functional abstraction is incorporated into GSPN there is
scopefor modd simplificationwhichissensitiveto thecon-
text of observation, to be developed from an equivaence
relation based on PEPA’s weak isomorphism.

Kronecker algebra-based solution: As pointed out in
the discussion of quantitative analysis there has been far
more work on efficient algorithms for finding and solving
the CTMC inthecase of GSPNsbut it ishoped that some of
thesea gorithmsmay beimported into PEPA directly. More
interestingly it is hoped that the SSA and SGSPN idesas for
compositiona solution based on Kronecker algebracan be
adapted for PEPA models. This would involve character-
ising the PEPA cooperation combinator as a tensor algebra
operaton.

To conclude, we have found that the two formalisms
have distinctive strengths and weaknesses. One of the
strengths of Petri nets is that causality, conflict and con-
currency are clearly depicted within a model and this is
true for GSPN models as well. From a performance point
of view, GSPNs offer the modeller an explicit notion of
state, a flexible approach to modelling abstraction and a
rich means of expressing rewards and performanceindices.
Structural analysis on a GSPN model can providevaluable
insight into the behaviour of the system.

In contrast, in process algebra based formalisms such as
PEPA, causality isnot exhibited and thereisno clear notion
of state. However, anexplicit compositiona structureisim-
posed onthemodel. Thisstructuremakesthemodel easy to
understand, may alleviate problems of model construction
and can be exploited for both qualitative and quantitative
analysis. In addition, thefunctiona abstraction, offered by
7 actions and the hiding mechanism of PEPA, enhances the
compositiona approach.

GSPN is a much more mature paradigm and thisis ap-
parent in the number and scope of GSPN results, and the
efficiency of theanalysisalgorithms. However, the authors
are confident that many of these techniques may beimpor-
ted into PEPA. Furthermore, thereis scope for future work
incorporating the attractive characteristics of the formal-
isms, such as structural analysis or functional abstraction,
from one paradigm into the other.
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