
PEPA nets in practice: modelling a decentralised
peer-to-peer emergency medical application

Stephen Gilmore, Valentin Haenel, Jane Hillston, and Leı̈la Kloul

Laboratory for Foundations of Computer Science
The University of Edinburgh, Scotland.

Abstract. We apply the PEPA nets modelling language to modelling a peer-to-
peer medical informatics application, the FieldCare PDA-based medical records
system developed by SINTEF Telecom and Informatics, Norway. Medical data
on accident victims is entered by medics on handheld devices at the crash site
and propagated wirelessly from peer to peer in order to improve information flow
and reduce the potential for data loss. The benefits of such a system include im-
proved reliability in patient care and the ability for hospitals to prepare better
for incoming trauma patients. The effectiveness and usefulness of the system in
practice depends upon both reliability and performance issues. We analyse the
functioning of the application through a high-level model expressed in the PEPA
nets modelling language, a coloured stochastic Petri net in which the tokens are
terms of Hillston’s Performance Evaluation Process Algebra (PEPA). We use the
PRISM probabilistic model checker to solve the model and evaluate probabilisti-
cally quantified formulae which quantify the responsiveness of the system.

1 Introduction

Public medical emergencies occur when trains are derailed or when aeroplanes or other
multi-passenger vehicles crash. Doctors and paramedics are dispatched to the crash site
in order to assess the severity of injuries, dispense medication and provide best-effort
treatment for the victims in situ. Typically the majority of the most seriously-injured
patients are transported by medical ambulance to a hospital for further treatment. With
them is sent a transcript of the treatment administered at the crash site together with
the assessment of the attending physician of the severity of the injuries. The record of
medicines dispensed is a vital piece of documentation, preventing potentially injurious
overdosing with another drug. Similarly the assessment of the on-site physician contains
very important data, facilitating speedy prioritisation of the incoming patients.

At present this documentation is most often sent as paper records or cards which are
attached to the patient’s clothing. The intention is that when the patient reaches hospital
they, and their records, can be transferred into the care of another doctor. In practice
the process of documenting treatment in this way does not always work well. Records
and cards can be lost or damaged or unreadable and the only copy of important medical
data is compromised. This usually leads to a predictably poor outcome—overdosing
a patient with an already-administered drug, or incorrectly prioritising patients when
determining treatment order and thereby lessening the chances of survival of a badly-
injured patient.

Medical informatics researchers are working to replace these systems with techno-
logically superior ones. One such effort is theFieldCareproject, initiated by SINTEF
Telecom and Informatics, Norway [1]. The intention of this project is to equip emer-
gency rescue medics in Norway with handheld PDAs on which is recorded the relevant
patient information. This information is then replicated from PDA to PDA in peer-to-
peer fashion in order to improve the robustness of the information storage. The func-
tioning principle of the system is that all data should be replicated to every potential
medical site. Patient care is often handed on from one doctor to another rapidly and
poor information flow can be a cause of errors. The propagation of information through
the system allows hospital staff to make appropriate preparations in advance of the ar-
rival of patients at hospitals.

The timely operation of a mobile computing system such as this is a significant
concern. In this paper we present a model of the FieldCare system implemented as a
PEPA net [2], and present an analysis of the system based on this model. PEPA nets
are ideally suited to represent a system in which the components of the system find
themselves working in a changing context due to mobility. Our analysis is based on the
PRISM stochastic model checking tool [3] which allows us to express desirable features
of the model in Continuous Stochastic Logic (CSL) [4], a logical specification language
which incorporates time- and probability-bounded operators.

The remainder of the paper is organised as follows. In the following section we
give a description of the PEPA nets formalism, and its tool support. This includes an
explanation of how a PEPA net model can be used as input to the PRISM model checker.
In Section 3 we describe the FieldCare system in more detail and present the PEPA net
representation of it. The analysis of this system, is given in Section 4, together with a
brief overview of the CSL stochastic logic which we use to express desirable properties
of the model. Finally, in Section 5, we discuss our conclusions.

2 PEPA nets

In this section we provide a brief overview of PEPA nets and the PEPA stochastic pro-
cess algebra. A fuller description, together with supporting theory and proofs is avail-
able in [2] and [5]. The purpose of this summary is to provide enough information about
the modelling language to make the present paper self-contained.

The tokens of a PEPA net are terms of the PEPA stochastic process algebra which
define the behaviour of components via the activities they undertake and the interactions
between them. One example of a PEPA component would be aFile object which can
be opened for reading or writing, have data read (or written) and closed. Such an object
would understand the methodsopenRead(), openWrite(), read(), write() andclose(). A
PEPA model shows the order in which such methods can be invoked.

File
def= (openRead, ro).InStream+ (openWrite, ro).OutStream

InStream
def= (read, rr).InStream+ (close, rc).File

OutStream
def= (write, rw).OutStream+ (close, rc).File

Every activity in the model incurs an execution cost which is quantified by an estimate
of the (exponentially-distributed) rate at which it can occur (ro, rr , rw, rc).

Such a description documents a high-level protocol for usingFile objects, from
which it is possible to derive properties such as “it is not possible to write to a closed
file” and “read and write operations cannot be interleaved: the file must be closed and
re-opened first”.

A PEPA net is made up of PEPAcontexts, one at each place in the net. A context
consists of a number ofstaticcomponents (possibly zero) and a number ofcells(at least
one). Like a memory location in an imperative program, a cell is a storage area to be
filled by a datum of a particular type. In particular in a PEPA net, a cell is a storage area
dedicated to storing a PEPA component, such as theFile object described above. The
components which fill cells can circulate as the tokens of the net. In contrast, the static
components cannot move. A typical place might be the following:

File[] BC
L

FileReader

where thecooperation set Lin this case isA(File), the complete action type setof
the component, (openRead, openWrite, . . .). This place has aFile-type cell and a static
component,FileReader, which can process the file when it arrives. When components
cooperate in this way it will usually be the case that one is the active participant (which
determines the rate at which the activity is performed) and the other is the passive par-
ticipant (who is delayed until the activity completes, and cannot hurry its completion).
The PEPA notation to denote the passive participant in a cooperation is to use the dis-
tinguished symbol> in place of their rate variable. Thus (a, r) and (a,>) can cooperate
overa to produce ashared activity(a, r). The case where two active participants coop-
erate is defined in [5].

A PEPA net differentiates between two types of change of state. We refer to these as
firings of the net andtransitionsof PEPA components. Each are special cases of PEPA
activities. Transitions of PEPA components will typically be used to model small-scale
(or local) changes of state as components undertake activities. Firings of the net will
typically be used to model macro-step (orglobal) changes of state such as context
switches, breakdowns and repairs, one thread yielding to another, or a mobile software
agent moving from one network host to another. The set of all firings is denoted by
Af . The set of all transitions is denoted byAt. We distinguish firings syntactically by
printing their names in boldface.

Continuing our example, we introduce an instant message as a type of transmissible
file.

InstantMessage
def= (transmit , rt).File

Part of a definition of a PEPA net which models the passage of instant messages is
shown below. An instant messageIM can be moved from the input place on the left
to the output place on the right by thetransmit firing. In doing so it changes state to
evolve to aFile derivative, which can be read by theFileReader.

InstantMessage[IM]
(transmit , rt)

−−−→[]−−−→ File[] BC
L

FileReader

The syntax of PEPA nets is given in Figure 1.

N ::= D+M (net)

M ::= (MP, . . .) (marking)

MP ::= P[C, . . .] (place marking)

D ::= I
def
= S (component defn)

| P[C]
def
= P[C] (place defn)

| P[C, . . .]
def
= P[C] BC

L
P (place defn)

P ::= P BC
L

P (cooperation)

| P/L (hiding)

| P[C] (cell)

| I (identifier)

C ::= ‘ ’ (empty)

| S (full)

S ::= (α, r).S (prefix)

| S+ S (choice)

| I (identifier)

Fig. 1.The syntax of PEPA nets

Definition 1 (PEPA net) A PEPA netN is a tupleN = (P,T , I, O, `, π, C, D, M0)
such that

– P is a finite set of places andT is a finite set of net transitions;
– I : T → P is the input function andO : T → P is the output function;
– ` : T → (Af ,R+ ∪ {>}) is the labelling function, which assigns a PEPA ac-

tivity to each transition. The rate determines the negative exponential distribution
governing the delay associated with the transition;

– π : Af → N is the priority function which assigns priorities (represented by natu-
ral numbers) to firing action types;

– C : P → P is the place definition function which assigns a PEPA context, contain-
ing at least one cell, to each place;

– D is the set of token component definitions;
– M0 is the initial marking of the net.

The structured operational semantics, given in [2], gives a precise definition of the
possible evolution of a PEPA net, and shows how a Continuous-Time Markov Chain
(CTMC) can be derived, treating each marking as a distinct state.

The firing rule for PEPA nets is a natural extension of the classical firing rule. A
transition may fire if there is an input token corresponding to each input arc which
can perform a firing activity of the appropriate type. However in addition we require
that there is a vacant cell of the correct type corresponding to each output arc of the
transition (see [6] for details).

2.1 Tool support for PEPA nets

We see the provision of tool support for modelling languages as being analogous to pro-
viding tools for programming languages. A software development kit used by a software
engineer typically provides a range of tools (compilers, debuggers, profilers, perhaps
even model checkers) which perform various types of analysis or conversion on the

program. Similarly a model development kit used by a performance engineer contains
steady-state and transient solvers, passage-time analysers, model-checkers and other
tools which implement a range of analyses for models in the modelling language used.

PEPA nets are directly supported by the PEPA Workbench for PEPA nets, ML Edi-
tion [2]. This extends the PEPA Workbench [7] to implement the semantics of the PEPA
nets language directly.

Since there already exists comprehensive tool support for PEPA [7, 8, 3, 9] we have
recently developed a compiler for PEPA nets which carries out a translation from a
PEPA net to a PEPA model [6]. This has the effect of removing the locations within
the model and encoding them implicitly within state and activity names. The benefit of
this approach is that it allows us to exploit existing tools for PEPA, such as the PRISM
probabilistic model checker [3].

In order to define and analyse a model, PRISM requires two input files: adescrip-
tion of the systemunder investigation expressed in a language of reactive modules and a
set of propertiesto be checked against it. To integrate PEPA, we built a compiler which
compiles PEPA into the reactive modules language. Additionally, PRISM was extended
to support PEPA’s combinators (parallel and hiding). The PRISM implementation is
based on the CUDD [10] binary decision diagram (BDD) library which provides multi-
terminal BDD data structures and algorithms. In PRISM, analysis of CTMCs is per-
formed through model checking specifications in the probabilistic temporal logic CSL
(see Section 4).

3 The FieldCare system and its PEPA net model

3.1 Description

As previously explained, the FieldCare system has been developed in [1] to address the
need of medical teams dealing with accidents to share the information about the status
of individual patients. The medical teams include the staff providing first help at the
accident scene, the coordination staff at the scene, the ambulance staff and dispatchers
in central control rooms, and the local hospitals’ staff preparing for the arrival of the
casualties. The team members record the information about the patients using hand-
held and other computers linked together in a wireless network. The network and team
will be very dynamic with members joining and leaving at very short notice.

The particular concern of the authors was to investigate how to achieve reliable data
replication between the nodes in a network where some users are very mobile, the radio
links may suffer intermittent failures and the connection topology between nodes may
vary as team members move around, including moving out of range of a base station. To
quote [1], “The goal is that all data, about all patients, should be stored on all nodes.”.
All nodes have the same status: there is no central server. Fortunately, the lifetime of the
database is rather short and the volume of data entered by each user will not be great.
Because PDAs are diskless, supporting record-based storage, the entire database will
have to be stored in main memory in each PDA. The PDAs are not multi-function; they
are specialised only to supporting the FieldCare application. There is one such PDA for
each team.

Transaction nameSequence no.Neighbour 1 . . . Neighbour n
(n, 1) 1 true . . . false
(n, 2) 2 true . . . true
(m, 1) 3 false . . . true

...
...

... . . .
...

Table 1.Transaction table

The reliable data replication approach: basic ideaThe approach developed consists
of replicating everything to everyone. The objective is that all data about all patients
should be stored on all nodes. Thus, data entered on one node must be replicated to all
nodes including those that are added to the network afterwards. To achieve that each
node has a copy of the database and maintains its own transaction table.

The database is assumed to have a very simple data model where each record con-
sists of patient identification number, time stamp, name of the team, and details of the
medical observation. All transactions in the database have an identifier which is unique
throughout the network. The identifier is generated on the node at which the trans-
action is originated. Only INSERT operations are allowed on the database; DELETE
and MODIFY are not allowed. Furthermore, full database transaction consistency is
not necessary; temporary inconsistency between the local copies of the database during
data replication is acceptable [1].

The transaction table is unique to the node. It contains one row for each transaction
entered in the local copy of the database and shows, for each current neighbour of the
node, which transactions it is known to have. To achieve this a column is created and
initialised tofalse for each new neighbouring node. Two additional columns are used,
one for the unique transaction identifier and one for the transaction sequence number.
The identifier is assigned to the transaction by the node where it is originated and the
sequence number is local to each node. This corresponds to the position in which the
transaction has been entered in the table. Table 1 shows an example.

Transactions available protocol When a new transaction is generated in a node, an
identifier is assigned and it is inserted in the local database. A new row is added to the
transaction table and the columns corresponding to all current neighbouring nodes are
initialised tofalse for this new row. The node sends aTransaction offer message to each
of its neighbours, to which it expects to receive aPlease send answer. The node then
sends the new transaction using aData update command. When the neighbouring node
receives the new patient record, it sends anI’ve got it message. In the original node this
triggers a change in the corresponding column value totrue.

Frequent communication failures are anticipated and because of this expectation
there are sporadic updates between neighbouring nodes. Thus each node checks period-
ically if its current neighbours have all the transactions reported in its own transaction
table. The node sends aTransaction offer message to those neighbours whose corre-
sponding column for the transaction offered is still set tofalse. The contacted node may

respond either with anI’ve got it message because it already has the transaction in its
local database or aPlease send message. In the latter case it receives aData update
command to which it answers with anI’ve got it message. Both nodes have then to set
the column of the neighbour totrue.

Moreover, when a node establishes a new node communication after changing its
position in the network, both nodes send each other a“Pleased to meet you” message
and add a new column for each other in their respective transaction table. These nodes
have then to offer each other all the transactions in their table using the exchanges of
messages described above.

The periodic check allows the network to provide a solution to the problem of pos-
sible losses, like the loss of an aknowledgement messageI’ve got it.

3.2 The PEPA net model

Consider two geographical areas, AREA 1 and AREA 2. The former being, for exam-
ple, the area where an accident took a place and the latter the location of the hospital.
Moreover, consider three medical teams A, B and C moving from one area to the other.
The PEPA net model corresponding to this situation is described in Figure 2.

AREA_1 OUT
AREA_2

(move_2, c)

(move_1, c)

(out_1, s) (in_2, r)

(in_1, r) (out_2, s)

Team X

Fig. 2.The PEPA net Model

The PEPA net model consists of three places, namelyAREA1, AREA2 andOUT.
PlaceOUT is used to model the area where a team is out of range of the base station of
either AREA 1 or AREA 2. To model the behaviour of the different teams, we use com-
ponentsTeamX whereX stands forA,B orC. Moreover a static componentNeighbour
is associated with each place of the PEPA net network. This component allows us to
keep track of the local copies of the database which have already been updated and the
ones which still have to be updated.

ComponentTeamX This component models the behaviour of a nodeX representing
a medical team in the wireless network. Initially a node may generate a transaction,
receive a transaction offer or a“Pleased to meet you” message from another nodeY .
These are modelled using activitiesgeneratetrans, trans offerY X andpleasedY X re-
spectively. The two latter activities have an unspecified rate (>) as they are initiated by
another node (component). Furthermore a node may move from one area to another, be-
haviour that is captured by the firing activitymove i wherei is the area number where
it moves to.

Once a new transaction is generated and inserted (insert trans) into the local trans-
action table of the node, it is offered, with activitytrans offer, and then sent (with ac-
tivity pleasesend) to all immediate neighbours of the node, that is all the nodes in the
same area (place). ActivityendneighboursX allows us to know when all neighbours
of nodeX have been updated with the new transaction. This activity has an unspecified
rate as it is controlled by componentNeighbourpresented later.

The periodic check for changes which is done by a node is modelled using the ac-
tivity periodic check. During this phase of the protocol, the node checks its transaction
table using thechecktableactivity and offers a transaction (trans offer) to all its neigh-
bours whose corresponding column hasfalse as value.

When a nodeX moves to a new area it has to establish communication with all
nodes already in the area. This is modelled by the activitypleasedXY . As for the periodic
check, the node has then to check its transaction table and to offer the transactions with
a false value in its line to the corresponding immediate neighbours. Note that in
this case the node has to offer all the transactions in its table to all its new immediate
neighbours. Indeed when a node moves from one area to a new one, its transaction table
does not keep track of its previous neighbours.

When a node is within an area, it may become out of range of the base station of
the area. This is captured in the model by the firing activityout i wherei(= 1, 2) is the
node’s current area.

TeamX
def= (generatetrans, r).TeamX1 +

∑
Y 6=X(pleasedYX ,>).TeamX0

+ (periodic check, t1).TeamX0 +
∑

Y 6=X(trans offerYX ,>).TeamX6

+ (move 1, c).TeamXM + (move 2, c).TeamXM

TeamXM
def=

∑
Y 6=X(pleasedXY , w).TeamXM + (endneighboursX,>).TeamX0

+ (out 1, s).TeamXMout1 + (out 2, s).TeamXMout2

TeamX0
def= (checktable, c2).TeamX2 +

∑
Y 6=X(trans offerYX ,>).TeamX6a

+ (out 1, s).TeamX0out1 + (out 2, s).TeamX0out2

TeamX1
def= (insert trans, r1).TeamX2

TeamX2
def=

∑
Y 6=X(trans offerXY , r2).TeamX3 + (endneighboursX,>).TeamX

+ (out 1, s).TeamX2out1 + (out 2, s).TeamX2out2

TeamX3
def=

∑
Y 6=X(pleasesendYX ,>).TeamX4 +

∑
Y 6=X(I’ve got itYX ,>).TeamX5

+ (out 1, s).TeamX3out1 + (out 2, s).TeamX3out2

TeamX4
def=

∑
Y 6=X(databaseupdateXY , r3).TeamX3 + (out 1, s).TeamX4out1

+ (out 2, s).TeamX4out2

TeamX5
def= (set true receiver, r4).TeamX2

TeamX6
def=

∑
Y 6=X(pleasesendXY , r6).TeamX7 +

∑
Y 6=X(I’ve got itXY , r5).TeamX

+ (out 1, s).TeamX6out1 + (out 2, s).TeamX6out2

TeamX7
def=

∑
Y 6=X(databaseupdateYX ,>).TeamX8 + (out 1, s).TeamX7out1

+ (out 2, s).TeamX7out2

TeamX8
def= (set true sender, r7).TeamX

TeamX6a
def=

∑
Y 6=X(pleasesendXY , r6).TeamX7a +

∑
Y 6=X(I’ve got itXY , r5).TeamX8a

+ (out 1, s).TeamXa6out1 + (out 2, s).TeamXa6out2

TeamX7a
def=

∑
Y 6=X(databaseupdateYX ,>).TeamX8a + (out 1, s).TeamXa7out1

+ (out 2, s).TeamXa7out2

TeamX8a
def= (set true sender, r7).TeamX0

In componentTeamX the derivativesTeamXkouti are defined as follows

TeamXkouti
def= (in i, r).TeamXk

indicating that for a node which has moved out of range, when it returns it does so in
the same state. Firing activityin i models the case where the node becomes reachable
again. That is, it is no longer out of range.

Component Neighbour ComponentNeighbourallows us to keep track of the nodes
which have received a transaction offer and the ones which have not. Similarly it allows
us to identify the current node(s) of an area with which a newly arriving node has
established communication. The complete behaviour of the component when there are
three nodes or teamsA,B andC, in the network is as follows:

Neighbour
def= (trans offerAB,>).NextAC + (trans offerAC,>).NextAB

+ (trans offerBA,>).NextBA + (trans offerBC,>).NextBC

+ (trans offerCA,>).NextCB + (trans offerCB,>).NextCA

+ (pleasedAB,>).NextAC + (pleasedAC,>).NextAB

+ (pleasedBA,>).NextBC + (pleasedBC,>).NextBC

+ (pleasedCA,>).NextCB + (pleasedCB,>).NextCA

+
∑

x=A,B,C(endneighboursX, ρ).Neighbour

NextAB
def= (trans offerAB,>).Next+ (pleasedAB,>).Neighbour
+ (endneighboursA, ρ).Neighbour

NextAC
def= (trans offerAC,>).Next+ (pleasedAC,>).Neighbour
+ (endneighboursA, ρ).Neighbour

NextBA
def= (trans offerBA,>).Next+ (pleasedBA,>).Neighbour
+ (endneighboursB, ρ).Neighbour

NextBC
def= (trans offerBC,>).Next+ (pleasedBC,>).Neighbour
+ (endneighboursB, ρ).Neighbour

NextCA
def= (trans offerCA,>).Next+ (pleasedCA,>).Neighbour
+ (endneighboursC, ρ).Neighbour

NextCB
def= (trans offerCB ,>).Next+ (pleasedCB ,>).Neighbour
+ (endneighboursC, ρ).Neighbour

Next
def=

∑
x=A,B,C(endneighboursX, ρ).Neighbour

TheNeighbourcomponent does not have a physical counterpart in the system but
can be regarded as representing the knowledge embodied in the wireless LAN, for pur-
poses such as broadcast messaging.

The initial marking The initial marking of the system we consider is the one corre-
sponding to Figure 2.(

Neighbour BC
L

((TeamA[TeamA] BC
K

TeamB[TeamB]) BC
K′

TeamC[]),

Neighbour BC
L

((TeamA[] BC
K

TeamB[]) BC
K′

TeamC[TeamC]),

TeamA[] BC
∅

TeamB[] BC
∅

TeamC[]
)

The cooperation setsK,K′ andL are defined as follows:

K = {trans offerAB, trans offerBA, pleasesendAB, databaseupdateAB, I’ve got itAB}
K′ = {trans offerAC, trans offerBC, trans offerCB, trans offerCA, pleasesendAC,

I’ve got itAC, databaseupdateAC, databaseupdateBC, pleasesendBC, I’ve got itBC}
L = {trans offerAB, trans offerAC, trans offerBA, trans offerBC, trans offerCA,

trans offerCB, endneighboursA, endneighboursB, endneighboursC, pleasedAB,
pleasedAC, pleasedBA, pleasedBC, pleasedCA, pleasedCB}

4 Model analysis

The PRISM model checker supports the analysis of probabilistic and stochastic systems
by allowing a modeller to check a logical property against a model. Several logics and
several types of model are supported. Recently the CSL logic (Continuous Stochastic
Logic) [4] has gained some acceptance as a suitable vehicle for expressing performance
and performability measures which can be model checked on a CTMC. A CSL formula
expresses an assertion about the performance measures of a model which can then be
checked to see whether it is true or not. The syntax of CSL is:

φ ::= true | false| a | φ ∧ φ | φ ∨ φ | ¬φ | P./p[ψ] | S./p[φ]
ψ ::= X φ | φ UI φ | φ U φ

wherea is an atomic proposition,./ ∈ {<,≤, >,≥} is a relational parameter,p ∈
[0, 1] is a probability, andI is an interval ofR. An action-based version of CSL has
been defined [11] but is not supported by PRISM.

Paths of interest through the states of the model are characterised by thepath for-
mulaespecified byP. Path formulae either refer to the next state (using the X oper-
ator), or record that one proposition is always satisfied until another is achieved (the

until-formulae use the U-operator). Performance information is encoded into the CSL
formulae via the time-bounded until operator (UI) and the steady-state operator,S.

It is sometimes convenient to introduce somederived operatorsin order to help
with the expression of a CSL formula. These operators do not add to the expressive
power of the logic, they simply help to make the statements of some formulae more
compact. One such operator isimplication(⇒) which can be defined in the usual way,
φ1 ⇒ φ2 ≡ ¬φ1 ∨ φ2. Another useful operator istime-bounded eventually(�I , where
I is an interval of time) which is defined thus:�Iφ ≡ true UI φ. This operator is
frequently used with intervals of the form [0,t] to capture formally the concept of
“within t time units”.

These derived operators are used in our present case study in the following way. We
wish to capture the situation where information sent by one of the participants in the
protocol is received by another within a suitable time frame. In a framework with only
one sender and one receiver we can characterise thesendingand receivingevents by
two atomic propositions,s andr. Then the property which we are interested in can be
expressed in CSL as follows.

Φ ≡ s ⇒ P≥p[�[0, t]r]

This is a typical CSL formula, combining time, probability and a path through the sys-
tem evolution. The above formula characterises all states for which either a send event
does not occur or it does occur and then a receive event occurs within timet with prob-
ability at leastp.

Hence, the CSL model-checking problem which we want to check is that Sat(Φ) =
S, whereS is the complete state-space of the model.

4.1 Probabilistic model checking

In model-checking our CSL formula against our model of the FieldCare system we
investigated the formulaΦ whenp held the value 0.9. We found that the critical time-
frame whereΦ returns significant information is fort between 40 and 54 seconds. For
values oft less than 40 the formula is true in just those states where a send event does
not occur (178432 of the 182002 states of the model are in this subspace). For values oft
greater than 54 the formula is true even if a send event occurs because with probability
at least 0.9 the information will be received within 54 seconds (all of the 182002 states
of the model are in this subspace). Figure 3 presents these results.

By presenting the number of satisfying states instead of simply a single truth value
PRISM guides the modeller through experimentation with the model in order to select
subsequent formulae to verify. If the present formula is true in nearly all of the states in
the model then the next values for the probabilistic or time bounds might be close to the
present ones. If the formula is satisfied in only a small number of states the next values
chosen might be further away.

In studying the growth of the satisfying states in the model we see that the curve is
not totally smooth. At around 50 seconds there is a small kink in the curve as a slightly
larger than usual subset of the state space moves into the satisfying set for the formula.
Shortly after the growth of this set slows. Variations such as this are readily explained
as being caused by variability in the connectivity of components in the model.

 178000

 178500

 179000

 179500

 180000

 180500

 181000

 181500

 182000

 182500

 10 20 30 40 50 60 70 80 90

N
u

m

Time in seconds

"RESULTS"

Fig. 3.Plot of satisfying states for the FieldCare model withp = 0.9

4.2 Performance analysis

In addition to model-checking the above formulae we undertook a classical perfor-
mance analysis of the model. We used the sparse matrix engine of the PRISM tool with
its implementation of the Jacobi over-relaxation numerical routine to solve the CTMC
representation of the model for its stationary probability distribution. This is an efficient
procedure, taking (approximately) 400 seconds to compute on a Pentium IV processor
running at 1.8GHz with 256MB of physical RAM.

We then focussed on the probability of being in a distinguished subset of the state
space, determined formally from our high-level PEPA net model. Figure 4 shows the
impact of the increase in rate of movement of teamTeamBfrom one area to another
on the database update probability ofTeamA. As the speed of movement increases, the
probabilityPBA of updating the database ofTeamAdecreases. This is the most typical
case where one of the teams is more often required to move than the other one.

 0.0125

 0.013

 0.0135

 0.014

 0.0145

 0.015

 0.0155

 0 50 100 150 200 250 300 350 400 450 500

P
ro

b
a

b
ili

ty

Rate of Team B moving out of radio contact

"RESULTS"

Fig. 4. Plot showing the probability of successfully updating the database decreasing as the rate
of movement of teams increases

5 Conclusions

In this paper we have applied the PEPA nets modelling language to the analysis of
a model of a real-world application, the FieldCare medical emergency system being
developed by SINTEF Telecom and Informatics, Norway. This application will be used
in a safety-critical setting and therefore deserves considered analysis and investigation
before it is deployed in earnest.

The analysis which we applied to the system is undertaken by making a high-level
model, abstracting away much unnecessary detail in order to focus more clearly on the
salient aspects of the problem. Building performance models of realistic real-world sys-
tems is an activity which requires careful attention to detail in order to model correctly
the intended behaviour of the system. Proceeding with care during this part of the mod-
elling process is a wise investment of effort. If the initial performance model contains
errors then all of the computational expense incurred in solving the model and all of
the intellectual effort invested in the analysis and interpretation of the results obtained
would at best be wasted. In general interpreting a model with errors could lead to mak-
ing flawed decisions based on erroneous conclusions made from erroneous results. This
can lead to perhaps classifying systems as being effectively reliable when a high-level
model without these flaws would have demonstrated that they are not. For this reason
we consider it important to work with structured, high-level modelling languages which
directly support the concepts and idioms of the application domain, such as mobility of
users and devices.

Using a suitable high-level modelling language, the PEPA nets notation, our analy-
sis focussed on correctly capturing the behaviour of this dynamically-varying system in
use and probing the timely behaviour of its key function: propagating critical data to all
neighbours in a peer-to-peer application using a simple and robust protocol. Using the
PRISM probabilistic model checker as our analysis tool we were able to ascertain how
delays on the receiving of propagated medical information would impact on the system
in use.

Other analysis tools for PEPA provide complementary analysis capabilities to those
which are provided by PRISM. The Imperial PEPA Compiler (IPC) [9] uses the DNA-
maca tool [12] to compute passage-time quantiles for passages through the model de-
limited by a set of starting states and a set of terminating states. This could be used to
investigate other measures over the behaviour of the system including quantifying aver-
ages and extremes in response times. One of the reasons to model with a well-supported
formal language such as PEPA is that a range of analysis options are available.

Many concerns and questions remain about peer-to-peer emergency medial systems
such as FieldCare. Our analysis has said nothing about other very important aspects of
the application such as resistance to malicious attack by hostile users of other mobile
devices in the area. Similarly other analyses would be appropriate. The application is to
be implemented using Java technology operating on hand-held devices under far from
ideal conditions of use. We have thrown no light on whether or not the implementation
technology can withstand this challenge. Aspects such as these remain to be considered
carefully by the designers and developers of the system before the system is deployed
in earnest in a life-critical situation.

Acknowledgements:The authors are supported by the Design Environments for Global
ApplicationS project (DEGAS) IST-2001-32072 funded by the Future and Emerging
Technologies Proactive Initiative on Global Computing. The PEPA to PRISM compiler
was developed in collaboration with Gethin Norman and Dave Parker of The University
of Birmingham. The authors wish to thank Paolo Ballarini for many helpful sugges-
tions on CSL. Lëıla Kloul is on leave from PRISM, Université de Versailles, Versailles,
France.

References

1. J. Gorman, S. Walderhaug, and H. Kvålen. Reliable data replication in a wireless medical
emergency network. InProceedings of the 22nd International Conference on Computer
Safety, Reliability and Security (SAFECOMP’03), number 2788 in LNCS, pages 207–220,
Edinburgh, Scotland, September 2003. Springer-Verlag.

2. S. Gilmore, J. Hillston, M. Ribaudo, and L. Kloul. PEPA nets: A structured performance
modelling formalism.Performance Evaluation, 54(2):79–104, October 2003.

3. M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model checking with
PRISM: A hybrid approach. In J.-P. Katoen and P. Stevens, editors,Proc. 8th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’02), volume 2280 ofLNCS, pages 52–66. Springer, April 2002.

4. A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Verifying continuous time Markov chains.
In Computer-Aided Verification, volume 1102 ofLNCS, pages 169–276. Springer-Verlag,
1996.

5. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University
Press, 1996.

6. S. Gilmore, J. Hillston, L. Kloul, and M. Ribaudo. Software performance modelling using
PEPA nets. InProceedings of the Fourth International Workshop on Software and Perfor-
mance, pages 13–24, Redwood Shores, California, USA, January 2004. ACM Press.

7. S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to Support a Process Algebra-
based Approach to Performance Modelling. InProceedings of the Seventh International
Conference on Modelling Techniques and Tools for Computer Performance Evaluation, num-
ber 794 in Lecture Notes in Computer Science, pages 353–368, Vienna, May 1994. Springer-
Verlag.

8. G. Clark and W.H. Sanders. Implementing a stochastic process algebra within the Möbius
modeling framework. In L. de Alfaro and S. Gilmore, editors,Proceedings of the first joint
PAPM-PROBMIV Workshop, volume 2165 ofLecture Notes in Computer Science, pages
200–215, Aachen, Germany, September 2001. Springer-Verlag.

9. J.T. Bradley, N.J. Dingle, S.T. Gilmore, and W.J. Knottenbelt. Derivation of passage-time
densities in PEPA models using IPC: The Imperial PEPA Compiler. In G Kotsis, editor,
Proceedings of the 11th IEEE/ACM International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunications Systems, pages 344–351, University of
Central Florida, October 2003. IEEE Computer Society Press.

10. F. Somenzi.CUDD: CU Decision Diagram Package. Department of Electrical and Computer
Engineering, University of Colorado at Boulder, February 2001.

11. R. D. Nicola and F. W. Vaandrager. Action versus state based logics for transition systems.
In ProceedingsEcole de Printempson Semantics of Concurrency, volume 469 ofLecture
Notes in Computer Science, pages 407–419. Springer Verlag, 1990.

12. W.J. Knottenbelt. Generalised Markovian analysis of timed transition systems. Master’s
thesis, University of Cape Town, 1996.

