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Abstract

In this paper we present a novel performance analysis
technique for large-scale systems modelled in the stochas-
tic process algebra PEPA. In contrast to the well-known ap-
proach of analysing via continuous time Markov chains, our
underlying mathematical representation is a set of coupled
ordinary differential equations (ODEs). This analysis pro-
cess supports all of the combinators of the PEPA algebra
and is well-suited to systems with large numbers of repli-
cated components. The paper presents an elegant procedure
for the generation of the ODEs and compares the results of
this analysis with more conventional methods.

1 Introduction

Over the last decade process algebras in which quantified

durations are associated with activities have enjoyed consid-

erable success. In many cases the duration is assumed to be

an exponentially distributed random variable resulting in an

underlying mathematical model which is a continuous time

Markov chain. Such models may be solved for either steady

state or transient probability distributions via linear algebra.

When more general random variables are assumed the un-

derlying mathematical model is a generalised semi-Markov

process and simulation will typically be the means of anal-

ysis. In either case there is a problem of state space explo-
sion. Like most discrete state-based modelling formalisms,

process algebras are prone to the failing that apparently sim-

ple models can readily generate extremely large state spaces

making numerical solution via linear algebra very costly or

even intractable, and simulation time-consuming and poten-

tially inaccurate. Much research ingenuity has gone into

tackling the problem of state space explosion for continu-

ous time Markov chains (e.g. [8, 3, 13]), and consequently

the size of process which can be solved does continue to

grow, albeit slowly.

In this paper we propose a radically different approach

to tackling this problem when modelling with a process al-

gebra such as PEPA. The approach is based on two shifts

from the usual perspective:

• Firstly, we do not aim to calculate the probability dis-

tribution over the entire state space of the model. We

choose a more abstract state representation in terms of

state variables, quantifying the types of behaviour evi-

dent in the model.

• Secondly, we assume that these state variables are sub-

ject to continuous rather than discrete change.

Once these adjustments are made the system is amenable

to efficient solution as a set of ordinary differential equa-

tions (ODEs), leading to the evaluation of transient, and in

the limit, steady state measures.

The remainder of this paper is organised as follows. Sec-

tion 2 presents some background information on PEPA and

introduces the new state representation, numerical vector
form. The shift to continuous analysis is explained in Sec-

tion 3 and illustrated by an example in Section 4. The rela-

tionship of the approach to other techniques is discussed in

Section 5, while Section 6 concludes the paper.

2 PEPA

PEPA has been used to study the performance of a wide

variety of systems [11, 1, 2, 21, 12]. As in all process alge-

bras, systems are represented in PEPA as the composition

of components which undertake actions. In PEPA the ac-

tions are assumed to have a duration, or delay. Thus the

expression (α, r).P denotes a component which can under-

take an α action, at rate r to evolve into a component P .

Here α ∈ A where A is the set of action types and P ∈ C
where C is the set of component types.

PEPA has a small set of combinators, allowing system

descriptions to be built up as the concurrent execution and

interaction of simple sequential components. We infor-

mally introduce the syntax below. More detail can be found

in [10]. The structured operational semantics are shown in

Figure 1.
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Prefix

(α, r).E
(α,r)
−−−→ E

Choice
E

(α,r)
−−−→ E′

E + F
(α,r)
−−−→ E′

F
(α,r)
−−−→ F ′

E + F
(α,r)
−−−→ F ′

Cooperation

E
(α,r)
−−−→ E′

E ��
L

F
(α,r)
−−−→ E′ ��

L
F

(α /∈ L)

F
(α,r)
−−−→ F ′

E ��
L

F
(α,r)
−−−→ E ��

L
F ′

(α /∈ L)

E
(α,r1)−−−→ E′ F

(α,r2)−−−→ F ′

E ��
L

F
(α,R)
−−−→ E′ ��

L
F ′

(α ∈ L)

where R =
r1

rα(E)
r2

rα(F )
min(rα(E), rα(F ))

Hiding

E
(α,r)
−−−→ E′

E/L
(α,r)
−−−→ E′/L

(α /∈ L)

E
(α,r)
−−−→ E′

E/L
(τ,r)
−−−→ E′/L

(α ∈ L)

Constant

E
(α,r)−→ E′

A
(α,r)−→ E′

(A def= E)

Figure 1. PEPA Structured Operational Semantics

Prefix: The basic mechanism for describing the be-

haviour of a system with a PEPA model is to give a com-

ponent a designated first action using the prefix combinator,

denoted by a full stop, which was introduced above. As ex-

plained, (α, r).P carries out an α action with rate r, and it

subsequently behaves as P .

Choice: The component P + Q represents a system

which may behave either as P or as Q. The activities of

both P and Q are enabled. The first activity to complete dis-

tinguishes one of them: the other is discarded. The system

will behave as the derivative resulting from the evolution of

the chosen component.

Constant: It is convenient to be able to assign names

to patterns of behaviour associated with components. Con-

stants are components whose meaning is given by a defining

equation. The notation for this is X
def= E. The name X is in

scope in the expression on the right hand side meaning that,

for example, X
def= (α, r).X performs α at rate r forever.

Hiding: The possibility to abstract away some aspects

of a component’s behaviour is provided by the hiding oper-

ator, denoted P/L. Here, the set L identifies those activities

which are to be considered internal or private to the compo-

nent and which will appear as the unknown type τ .

Cooperation: We write P ��
L

Q to denote cooperation

between P and Q over L. The set which is used as the

subscript to the cooperation symbol, the cooperation set L,

determines those activities on which the cooperands are

forced to synchronise. For action types not in L, the com-

ponents proceed independently and concurrently with their

enabled activities. We write P ‖ Q as an abbreviation for

P ��
L

Q when L is empty.

If a component enables an activity whose action type is

in the cooperation set it will not be able to proceed with that

activity until the other component also enables an activity

of that type. The two components then proceed together to

complete the shared activity. The rate of the shared activ-

ity may be altered to reflect the work carried out by both

components to complete the activity. The total capacity of

a component C to carry out activities of type α is termed

the apparent rate of α in P , denoted rα(P ). Unlike some

other stochastic process algebras, PEPA assumes bounded
capacity: a component cannot be made to perform an activ-

ity faster by cooperation, so the rate of a shared activity is

the minimum of the rates of the activity in the cooperating

components.

In some cases, when an activity is known to be carried

out in cooperation with another component, a component

may be passive with respect to that activity. This means

that the rate of the activity is left unspecified (denoted �)

and is determined upon cooperation, by the rate of the ac-

tivity in the other component. All passive actions must be

synchronised in the final model.

The syntax may be formally introduced by means of the

following grammar:

S ::= (α, r).S | S + S | CS

P ::= P ��
L

P | P/L | C

where S denotes a sequential component and P denotes a

model component which executes in parallel. C stands for

a constant which denotes either a sequential component or

a model component. CS stands for constants which de-

note sequential components. The effect of this syntactic

separation between these types of constants is to constrain

legal PEPA components to be cooperations of sequential

2
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processes, a necessary condition for an ergodic underlying

Markov process.

2.1 State representation

In process algebra models the usual state representation

is in terms of the syntactic forms of the model expression.

The structured operational semantics define how a model

may evolve and these may be applied exhaustively to form

a labelled transition system (usually termed the derivation
graph in PEPA) representing the state space of the model.

This is a graph in which each node is a distinct syntactic

form or derivative (or equivalence class of syntactic expres-

sions up to strong equivalence) and each arc represents a

possible activity causing the state change. It is important to

note that in PEPA the state representation is in fact a labelled

multi-transition system because recording the multiplicity

of arcs is crucial, particularly when repeated components

are involved.

When a Markovian interpretation is put on the PEPA

model the duration of each activity is assumed to be a ran-

dom variable governed by a negative exponential distribu-

tion. In this case the derivation graph can be considered to

be the state transition diagram of a continuous time Markov

chain. Thus one Markovian state is associated with each

syntactic term. Performance analysis is then carried out

in terms of the steady state probability distribution, or the

transient probability distribution, which is extremely costly

when the state space is large.

Rather than the complete syntactic form, since the static

cooperation combinators remain unchanged in all states, it

is often convenient to represent the states of the model in

vector form. The state vector records one entry for each se-

quential component of the PEPA model. These components

will be present in each derivative of the model, although

they will change their local state or derivative. Thus the

global state can be represented as a vector or sequence of

local derivatives.1

If a model contains equivalent components there may be

multiple states within the model which exhibit the same be-

haviour and so we may aggregate the model. The derivation

graph is then constructed in terms of equivalence classes of

syntactic terms and this is used as the basis of the CTMC

construction [7]. At the heart of this technique is the use

of a canonical state vector to capture the syntactic form of

a model expression. If two states have the same canoni-

cal state vector they are equivalent and need not be dis-

tinguished in the aggregated derivation graph. Canonical-

isation involves reordering entries within the vector in a

way that strong equivalence, the Markovian bisimulation

1For the remainder of this paper we use the term local derivative to refer

to the local state of a single sequential component, whereas derivative will

be used to refer to a global state represented in its syntactic form.

of PEPA models, is respected, but which places elements

within subvectors of equivalent components in lexicograph-

ical order. Further details can be found in [7].

In this paper we propose an alternative vector form for

capturing the state information of models with repeated

components. In the state vector form, even when the canon-

ical representation is used there is one entry in the vector

for each sequential component in the model. When the

number of repeated components becomes large this can be

prohibitively expensive in terms of storage. In the alterna-

tive vector form there is one entry for each local derivative

of each type of component in the model. Two components

have the same type if their derivation graphs are isomorphic.

The entries in the vector are no longer syntactic terms rep-

resenting the local derivative of the sequential component,

but the number of components currently exhibiting this lo-

cal derivative.

To clarify the distinction between the two vector forms

consider the small example defined below, consisting of in-

teracting processors and resources:

Processor0
def= (task1, r1).Processor1

Processor1
def= (task2, r2).Processor0

Resource0
def= (task1, r1).Resource1

Resource1
def= (reset, s).Resource0

(Resource0 ‖ Resource0) ��
{task1}

(Processor0 ‖ Processor0)

The canonical state vector form corresponding to

this example with the given configuration is shown in

Figure 2a). Here the initial state is represented explicitly as

((Resource0, Resource0), (Processor0, Processor0)){task1}.

In contrast, in the numerical vector form, shown in Fig-

ure 2b), the initial state is (2, 0, 2, 0) where the entries in the

vector are counting the number of Resource0, Resource1,

Processor0, Processor1 local derivatives respectively,

exhibited in the current state. In the canonical state vector

representation we record the number of elements in each

equivalence class (shown in square brackets in Figure 2a).

The total rate of the transitions between the canonical states

is derived from this number of instances, the number of

enabled activities and their relative probabilities. In the

numerical state vector representation each vector is a single

state and the rates of the transitions between states are

derived directly from the vector and the activity rate, as

explained below.

In the current configuration of the model, with two in-

stances of each component type, it is clear that the state vec-

tor form and the numerical vector form each have four ele-

ments, but if we consider a configuration with ten instances

of each component type it becomes clear that the numerical

form is much more compact. Moreover, it is without any

significant loss of information.

3
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(task2, r )
2 (reset, s)

(task2, 2r )
2

(task2, r )
2

(task1, r )1(task2, r )
2

(task1, r )1(task2, 2r )2

(task1, 2r )1

(task2, 2r )
2

(task1, r )1

a) Aggregated state space in canonical form

((Resource  , Resource  ), (Processor  , Processor  ))

((Resource  , Resource  ), (Processor  , Processor  ))

((Resource  , Resource  ), (Processor  , Processor  ))

((Resource  , Resource  ), (Processor  , Processor  )) ((Resource  , Resource  ), (Processor  , Processor  ))

((Resource  , Resource  ), (Processor  , Processor  ))((Resource  , Resource  ), (Processor  , Processor  ))

(reset, 2s)

((Resource  , Resource  ), (Processor  , Processor  ))((Resource  , Resource  ), (Processor  , Processor  ))

0 0 0 0

0 0

0 0 0 0 0

0 0

0

1

1 1

11 1 1

1 1 1 1 1 0

1 1

1

1 1 0

1 0

0

[1]

[2]

[4]

[1]

[2]

[1]

[2]

[2]

[1]

(reset, 2s)

(reset, 2s)(reset, s)

(reset, s)

(task2, r )
2

(task2, 2r )2

2(task2, 2r )

b) Vector state space

(2, 0, 0, 2) (1, 1, 1, 1)

(0, 2, 0, 2)

(2, 0, 2, 0)

(2, 0, 1, 1)

(1, 1, 0, 2) (0, 2, 1, 1)

(1, 1, 2, 0)

(0, 2, 2, 0)

(reset, s)

(task2, 2r )
(task1, r )

(task1, 2r )

(task1, r )

(task1, r )

(reset, s)(task2, r )

(reset, s) (task2, r )

(reset, 2s)

(reset, 2s)

(reset, 2s)

1

1

1
12

2

2

Figure 2. Illustrative example of contrasting state representations

The numerical vector form for an arbitrary PEPA model

is defined as follows.

Definition 2.1 (Numerical Vector Form) For an ar-
bitrary PEPA model M with n component types
Ci, i = 1, . . . , n, each with Ni distinct derivatives,
the numerical vector form of M, V(M), is a vector with
N =

∑n
i=1 Ni entries. The entry vij

records how many
instances of the jth local derivative of component type Ci

are exhibited in the current state.

3 Continuous State Space Approximation

The numerical vector form presents an alternative way

of presenting the state space of a PEPA model but can nev-

ertheless be used as the basis of the usual Markovian anal-

ysis, albeit in terms of an aggregated model. Since the ag-

gregation is based on strong equivalence we know that the

aggregated CTMC is lumpably equivalent to the original

CTMC derived from the derivation graph [9]. The aggre-

gated model is isomorphic to that produced by the canonical

vector form and the automatic aggregation presented in [7].

However, the focus of this paper is the use of this vec-

tor form as the basis for a fluid approximation when each

component type in the model is replicated a large number

of times. If this is the case the domain of values of each

entry in V(M) is large. If Ki is the number of components

of type Ci in the initial configuration of the model then each

entry in the ith subvector will have domain 0, . . . ,Ki.

Consider an arbitrary state M′ of the model M which

has the particular numerical vector representation V(M′).
When a state change occurs it can happen in two distinct

ways:

• A single sequential component, an instance of compo-

nent type Ci may engage in an individual action. In

this case the impact on V(M′) is that within the ith
subvector one entry is incremented by one while an-

other is decremented by one, reflecting the evolution

of this single component from one local derivative to

another.

• Alternatively a shared action may be performed re-

sulting in the simultaneous evolution of two or more

sequential components of distinct types (since we as-
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sume that replicated components are independent of

each other). Thus a number of distinct subvectors may

need to be updated within V(M′). However in each

case one entry is incremented by one and one entry is

decremented by one.

The system is inherently discrete with the entries within

the numerical vector form always being non-negative inte-

gers and always being incremented or decremented in steps

of one. When the numbers of components are large these

steps are relatively small and we can approximate the be-

haviour by considering the movement between states to be

continuous, rather than occurring in discontinuous jumps.

Thus our objective is to replace the discrete event system

represented by the derivation graph of a PEPA process by a

continuous model, represented by a set of coupled ordinary

differential equations. The numerical vector form of state

representation is an intermediate step to achieving that.

We start with some preliminary definitions. Consider a

local derivative D of a sequential component. An activity

(α, r) is an exit activity of D if D enables (α, r), i.e. there

is a transition D
(α,r)−→ in the labelled transition system of

D. We denote the set of exit activities of D by Ex(D).
Conversely, we denote the set of local derivatives for which

(α, r) is an exit activity by Ex(α, r). Similarly, an activity

(β, s) is an entry activity of D if there is a derivative D′

which enables (β, s) and D is the one-step β-derivative of

D′, i.e. D′ (β,s)−→ D is in the labelled transition system of D′.
We use En(D) to denote the set of entry activities of D.

This categorisation of activities is needed because it is

important to record the impact of each activity on each local

derivative, Cij
, in the model. Recall that in the vector form

the numbers of these derivatives, N(Cij
), have become our

state variables.

Let us consider the evolution of the numerical state vec-

tor. Let vij
(t) = N(Cij

, t) denote the jth entry of the ith
subvector at time t, i.e. the number of instances of the jth

local derivative of sequential component Ci. In a short time

δt the change to this arbitrary vector entry will be:

N(Cij
, t + δt) − N(Cij

, t) =

−
∑

(α,r)∈Ex(Cij
)

r × min
Ckl

∈Ex(α,r)
(N(Ckl

, t))

︸ ︷︷ ︸
exit activities

δt

+
∑

(α,r)∈En(Cij
)

r × min
Ckl

∈Ex(α,r)
(N(Ckl

, t))

︸ ︷︷ ︸
entry activities

δt

The first term records the impact of exit activities. If

the exit activity is an individual activity of this component

Ex(α, r) = {Cij} and min(N(Ckl
, t)) = N(Cij , t) i.e.

there will be N(Cij , t) instances of the local derivative each

proceeding with the individual activity concurrently. When

Ex(α, r) �= {Cij
} the activity is a shared activity involv-

ing local derivatives from two or more component types in

a multiway synchronisation. By the definition of apparent

rate in PEPA, if there are N replicated instances of a com-

ponent offering an activity (α, r), the apparent rate of the

activity will be N × r. By the semantics, the apparent rate

of a synchronised activity is the minimum of the apparent

rates of the cooperating components. The second term is

explained similarly, noting that the rate of an entry activity

will be determined by the number of components for which

this is an exit activity, in accordance with the semantics of

the language.

Dividing by δt and taking the limit, δt −→ 0, we obtain:

dN(Cij
, t)

dt
= −

∑
(α,r)∈Ex(Cij

)

r× min
Ckl

∈Ex(α,r)
(N(Ckl

, t))

+
∑

(α,r)∈En(Cij
)

r× min
Ckl

∈Ex(α,r)
(N(Ckl

, t))

In the following subsection we show how these equations

may be derived automatically from the model definition in

a straightforward way. To fully specify the system of ODEs

it only remains to set the initial values of the state variables,

i.e. N(Cij
, 0) for ij = 1, . . . , N . These are easily recorded

from the initial model configuration.

3.1 Automatically deriving ODEs

The impact of activities on derivatives can be recorded

in either a graph or a matrix form, easily derived from the

syntactic presentation of the model, as defined below.

Definition 3.1 (Activity Graph) An activity graph is a bi-
partite graph (N,A). The nodes N are partitioned into Na,
the activities, and Nd, the derivatives. A ⊆ (Na × Nd) ∪
(Nd×Na), where a = (na, nd) ∈ A if na is an exit activity
of derivative nd, and a = (nd, na) ∈ A if na is an entry
activity of derivative nd.

The same information can be represented in a matrix,

termed the activity matrix.

Definition 3.2 (Activity Matrix) For a model with NA ac-
tivities and ND distinct local derivatives, the activity matrix

Ma is an ND × NA matrix, and the entries are defined as
follows.

(di, aj) =

⎧⎨
⎩

+1 if aj is an entry activity of di

−1 if aj is an exit activity of di

0 otherwise.

5
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//Form one ODE for each local derivative/state variable
For i = 1...ND

//Find the activities involving this derivative
For j = 1....NA

If Ma(i, j) �= 0
//Form exit set Ex(j) for activity j
Ex(j) = ∅
For k = 1...ND

If Ma(k, j) = −1
Ex(j) = Ex(j) ∪ {k}

//Record the impact of each such activity
If Ma(i, j) = +1

Add

+rj × min
k∈Ex(j)

(nk(t))

to the equation
If Ma(i, j) = −1
Add

−rj × min
k∈Ex(j)

(nk(t))

to the equation

Figure 3. Pseudo-code for generating the set
of ODEs

In the activity matrix each row corresponds to a single

local derivative. In the representation of the model as a sys-

tem of ODEs there is one equation for each state variable,

i.e. for the current number of each local derivative exhib-

ited. This equation details the impact of the rest of the sys-

tem on the value of that state variable. This can be derived

automatically from the activity matrix when we associate

a state variable ni with each row of the matrix and a rate

constant rj with each column of the matrix. The number of

terms in the ODE will be equal to the number of non-zero

entries in the corresponding row, each term being based on

the rate of the activity associated with that column. As ex-

plained above, by the semantics of PEPA, the actual rate of

change caused by each activity will be the rate multiplied

by the minimum of the current number of local derivatives

enabling that activity in parallel, for each cooperating com-

ponent type. The identity of these derivatives can be found

in the column corresponding to the activity, a negative en-

try indicating that this derivative participates in that activity.

There will be one ODE in the system for each row of the

matrix

3.2 Small example revisited

Let us consider again the small example considered ear-

lier, assuming now that there are large numbers of proces-

Processor 0

Processor 1

task 1

task 2

reset

Resource 1

Resource 0

Figure 4. Activity diagram for the simple
Processor-Resource model

task1 task2 reset
Processor0 −1 +1 0 n1

Processor1 +1 −1 0 n2

Resource0 −1 0 +1 n3

Resource1 +1 0 −1 n4

Figure 5. Activity matrix for the simple
Processor-Resource model

sors and resources:

Processor0
def= (task1, r1).Processor1

Processor1
def= (task2, r2).Processor0

Resource0
def= (task1, r1).Resource1

Resource1
def= (reset, s).Resource0

(Resource0 ‖ · · · ‖ Resource0) ��
{task1}

(Processor0 ‖ · · · ‖ Processor0)

The activity graph is as depicted in Figure 4 while the

activity matrix is as depicted in Figure 5.

From the matrix, we derive each differential equation in

turn. For state variable ni, consider row i. Each non-zero

entry in the row will results in one term within the equation.

dn1(t)
dt

= −r1 min(n1(t), n3(t)) + r2n2(t)

dn2(t)
dt

= r1 min(n1(t), n3(t)) − r2n2(t)

dn3(t)
dt

= −r1 min(n1(t), n3(t)) + sn4(t)

dn4(t)
dt

= r1 min(n1(t), n3(t)) − sn4(t)

Note that the form of the system of equations is inde-

pendent of the number of components included in the initial

6
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configuration of the model. The only impact of changing

the number of instances of each component type is to alter

the initial conditions. Thus, if there are initially 200 pro-

cessors, all starting in state Processor0 and 120 resources,

50% of which start in state Resource0 and 50% in state

Resource1, the initial conditions will be:

n1(0) = 200 n2(0) = 0 n3(0) = 60 n4(0) = 60

4 Example

We present an example model which demonstrates the

use of the ODE-based analysis procedure and relates this to

existing performance analysis methods for PEPA models.

The example which we consider is a Web service which

has two types of clients; first party application clients which

access the web service across a secure intranet, and second

party browser clients which access the Web service across

the Internet. Second party clients route their service re-

quests via trusted brokers.

To ensure scalability the Web service is replicated across

multiple hosts. Multiple brokers are available too. There

are numerous first party clients behind the firewall using the

service via remote method invocations across the secure in-

tranet. There are numerous second party clients outside the

firewall. Second party clients need to use encryption to en-

sure authenticity and confidentiality properties whereas first

party clients do not. Brokers add decryption and encryption

steps to build end-to-end security from point-to-point secu-

rity. When processing a request from a second party client

brokers decrypt the request before re-encrypting it for the

Web service. When the response to a request is returned to

the broker it decrypts the response before re-encrypting it

for the second party client.

A schematic of the communication topology of the sys-

tem is shown in Figure 6.

The model files processed by the modelling tools use

long descriptive identifiers such FirstPartyClient.

For brevity in presenting the model on the printed page we

abbreviate “first party client” and “second party client” to

FPC and SPC respectively. We abbreviate “Web service”

to WS.

4.1 The PEPA model

A second party client cycles through a lifetime of com-

posing service requests, encrypting these and sending them

to its broker. It then waits for a response from the broker.

The rate at which the first three activities happen is under

the control of the client. The rate at which responses are

produced is determined by the interaction of the broker and

the service endpoint. As usual with PEPA models this com-

ponent contains some individual activities which it itself

performs (the composition and encryption) and some activi-

ties which are performed in co-operation with another com-

ponent (the request and response are in co-operation with

the broker).

SPCidle
def= (composesp, rsp cmp).SPCenc

SPCenc
def= (encryptb, rsp encb).SPCsending

SPCsending
def= (requestb, rsp req).SPCwaiting

SPCwaiting
def= (responseb,�).SPCdec

SPCdec
def= (decryptb, rsp decb).SPCidle

The broker is inactive until it receives a request. It then

decrypts the request before re-encrypting it for the Web ser-

vice (to ensure end-to-end security). It forwards the request

to the Web service and then waits for a response. The corre-

sponding decryption and re-encrytion are performed before

returning the response to the client.

Brokeridle
def= (requestb,�).Brokerdec input

Brokerdec input
def= (decryptsp, rb dec sp).Brokerenc input

Brokerenc input
def= (encryptws, rb enc ws).Brokersending

Brokersending
def= (requestws, rb req).Brokerwaiting

Brokerwaiting
def= (responsews,�).Brokerdec resp

Brokerdec resp
def= (decryptws, rb dec ws).Brokerenc resp

Brokerenc resp
def= (encryptsp, rb enc sp).Brokerreplying

Brokerreplying
def= (responseb, rb resp).Brokeridle

The lifetime of a first party client mirrors that of a second

party client except that encryption need not be used when

all of the communication is conducted across a secure in-

tranet. The method of invoking the Web service may also

be different because the service may be invoked by a re-

mote method invocation to the host machine instead of via

an HTTP request. Thus the first party client experiences the

Web service as a blocking remote method invocation.

FPCidle
def= (composefp, rfp cmp).FPCcalling

FPCcalling
def= (invokews, rfp inv).FPCblocked

FPCblocked
def= (resultws,�).FPCidle

We model a thread of execution on the Web service. There

are two ways in which the service is executed, leading to a

choice in the process algebra model taking the service pro-

cess into one or other of its two modes of execution. In ei-

ther case, the duration of the execution of the service itself

is unchanged. The difference is only in whether encryption

is needed and whether the result is delivered as an HTTP
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Second Party Client Broker Web Service First Party Client

Figure 6. Web service with first and second party clients and brokers

response or as a direct value.

WSidle
def= (requestws,�).WSdecoding
+ (invokews,�).WSmethod

WSdecoding
def= (decryptReqws, rws dec b).WSexecution

WSexecution
def= (executews, rws exec).WSsecuring

WSsecuring
def= (encryptRespws, rws enc b).WSresponding

WSresponding
def= (responsews, rws resp b).WSidle

WSmethod
def= (executews, rws exec).WSreturning

WSreturning
def= (resultws, rws res).WSidle

In the initial state of the system model we represent each of

the four component types being initially in their idle state.

The synchronisation sets K, L and M synchronise the com-

ponents on their common activity names.

System def= (SPCidle ��
K

Brokeridle) ��
L

(WSidle ��
M

FPCidle)

where K = { requestb, responseb }
L = { requestws, responsews }

M = { invokews, resultws }

This model represents the smallest possible instance of the

system, where there is one instance of each component type.

We evaluate the system as the number of clients, brokers,

and copies of the service increase.2

4.2 Cost of analysis

Performance models admit many different types of anal-

ysis. Some have lower evaluation cost, but are less infor-

mative, such as steady-state analysis. Others have higher

evaluation cost, but are more informative, such as transient

analysis. We compare ODE-based evaluation against other

techniques which could be used to analyse the model. We

compare against steady-state and transient analysis as im-

plemented by the PRISM probabilistic model-checker [17],

which provides PEPA as one of its input languages. We also

compare against Monte Carlo Markov Chain simulation.

2The example here has been chosen for its simplicity. It consists of

components with only simple cycles of behaviour but this is not a restric-

tion of the technique. The approach works equally well with components

with any sequential form.

Note that Figure 7 reports only a single run of the

transient analysis and simulation. In practice, due to the

stochastic nature of the analyses, these would need to be

re-run multiple times to produce results comparable to the

ODE-based analysis. Moreover, note that the number of

ODEs is constant regardless of the number of components

in the system, whilst the state space grows dramatically.

The ODE integrator which we used is a Java imple-

mentation of the Dormand-Prince fifth-order Runge-Kutta

solver [4]. The version of PRISM which we used is

2.1.dev4 [19]. The Monte-Carlo Markov Chain simulator

is a Java implementation of Gillespie’s Direct method [5].

The runtimes which are reported are elapsed (wall clock)

times as reported by GNU time version 1.7. All timings

were made on a 1.60GHz Pentium IV with 1Gb RAM run-

ning Red Hat Linux 9, averaged over a number of runs.
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1 1 1 1 48 48 1.04 1.10 1.01 2.47 2.81

2 2 2 2 6,304 860 2.15 2.26 2.31 2.45 2.81

3 3 3 3 1,130,496 161,296 172.48 255.48 588.80 2.48 2.83

4 4 4 4 234,702,336 30,251,627 – – – 2.44 2.85

100 100 100 100 – – – – – 2.78 2.78

1000 100 500 1000 – – – – – 3.72 2.77

1000 1000 1000 1000 – – – – – 5.44 2.77

Figure 7. Running times from analyses

The observation from Figure 7 is that the running time to

obtain results by ODE solution compares favourably to the

other approaches tried and scales better than others as the

number of instances of components increases.

4.3 Comparison of results

In Figure 8 we show the results from our solution of the

PEPA Web Service model as a system of ODEs with the

number of clients of both kinds, brokers, and web service

instances all 1000. The results as presented from our ODE

integrator are time-series plots of the number of each type

of component behaviour as a function of time. The graphs

show fluctuations in the numbers of components with re-

spect to time from t = 0 to t = 100 for estimated values

of rates for the activities of the system. We can observe an
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Figure 8. Time series plots of components

initial flurry of activity until the system stabilises into its

steady-state equilibrium at time (around) t = 50.

We compared the steady-state likelihoods of compo-

nent types with the probabilities computed using the PEPA

Workbench [6] on the smallest instance of the model (one

of each type of component) and scaling the probabilities by

multiplying by 1000. (Such an approach is legitimate in the

absence of blocking when the numbers of each component

are equal but could not have been used for a model with dif-

ferent numbers of clients, brokers and services.) We found

good agreement with the results obtained by ODE solution

after the system stabilises into its steady-state equilibrium.

5 Discussion

The approach that we take is quite distinct from that for

fluid queues [16] and fluid stochastic Petri nets [22]. In

those modelling techniques the model has a mixture of fluid

or continuous elements and the usual discrete state space

elements. For example in a fluid queue the service pro-

cess may be modelled as a fluid process, servicing a buffer

which is the continuous element, but the arrival process it-

self will in general be governed by a (discrete) Markov pro-

cess. Similarly in a fluid stochastic Petri net only some

places will be fluid, having a continuous marking domain,

other places remaining discrete in nature.

This is in contrast with our approach in which all state

variables are approximated by continuous variables. Thus it

is closer to the diffusion approximation technique for queue-

ing networks [14, 15].

6 Concluding remarks and future work

The problem of state space explosion has challenged nu-

merical solution of Markovian models for a generation. In

this paper we propose a means of avoiding this problem for

large scale models of repeated components, represented in

PEPA. By adopting a continuous approximation of the be-

haviour of the model we are able to analyse systems of ar-

bitrarily large scale. Presently we make some assumptions

about the form of the PEPA models: that components of the

same type do not cooperate and that all cooperating compo-

nents have the same local rate for shared activities. How-

ever, work is progressing on relaxing these assumptions.

Whilst the class of models currently considered is re-

stricted it is not without interest. Many application domains

naturally give rise to models in this style. For example,

• epidemiology, both for natural populations with re-

spect to disease and for computer software populations

with respect to worms and viruses;
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• wireless networks;

• Grid computing and other large scale service environ-

ments.

If the rates of change within the model are generalised

to allow activity rates to be governed by probability dis-

tributions rather than being deterministic the evolution of

the system can be described by a set of random differen-

tial equations [20]. A further generalisation, introducing

more uncertainty, is offered by stochastic differential equa-
tions[18]. In future work we plan to investigate the use of

these more sophisticated forms of differential equations to

evaluate the behaviour of PEPA models.
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