
3(3$��$�672&+$67,&�352&(66
$/*(%5$�)250$/,60

Project funded in part by the Motorola Center for High-Availability System Validation, under the umbrella of the
Motorola Communications Center, and National Science Foundation Next Generation Software Program

KWWS���ZZZ�FUKF�XLXF�HGX�3(5)250

Motorola Center for High-Availability System Validation Review Meeting
October 4, 2000

Graham Clark
gcla@crhc.uiuc.edu

Performability Engineering Research Group
Coordinated Science Laboratory and Electrical and

Computer Engineering Department
University of Illinois at Urbana-Champaign

,QWURGXFWLRQ

This talk will introduce you to PEPA, a stochastic process
algebra formalism being incorporated into UltraSAN/Möbius

• The motivation for this work

• A description of process algebra, and how it is used for
modeling

• Modeling performance – PEPA

• What goes on underneath the hood

• A simple example – a multiprocessor system

• Integrating PEPA into the Möbius framework, and the
benefits for modelers

0RWLYDWLRQ

• UltraSAN/Möbius will be a multi-formalism modeling tool,
and PEPA is a new and different modeling paradigm

• An analogy :

– SANs are graphical – models are graphs

– PEPA is textual – models are programs

• The use of Process algebras for performance modeling is
a growing field

• New formalisms will allow colleagues to collaborate in
constructing models without forcing a single modeling
paradigm on all parties

:KDW�DUH�3URFHVV�$OJHEUDV"

• View as a programming language
for describing performance models

• Central aims:
– Compositionality – a

methodology for systematically
building the complex from the
simple

– Concurrency – built-in for free,
as a consequence

• Prominent representatives:

– For research: CCS [Milner],
CSP [Hoare]

– For applications: LOTOS (ISO
Std. 8807) e.g. the study of
communications protocols

process Spec :=
enter.exit.Spec
endproc

process Peterson[p1_enter,
p1_exit, p2_enter, p2_exit] :=

hide
flag1,flag2,…

in
(Proc […] <flag1,…> Proc […])

endproc

…

:KDW�LV�3(3$"

• PEPA stands for “Performance Evaluation Process
Algebra”

• Primitive process algebra actions become timed PEPA
activities:

enter.exit.Spec (enter,r).(exit,s).Spec

• r and s are the parameters of exponentially distributed
random variables which determine the time it takes for
each activity to complete

• What are the primitives for building PEPA models?

3(3$�&RPELQDWRUV

• Prefix: given an activity (a,r), and a process P, (a,r).P is a
process which performs the activity (a,r) and then becomes P

• Choice: P + Q is a process which expresses competition between
P and Q. It is analogous to the following SAN fragment:

• Cooperation: given processes P and Q, and a set of activity names
L, the process P <L> Q expresses the parallel composition of P
and Q with synchronization on L activities; c.f. increasing the
number of tokens in a SAN place

• Hiding: given a process P, and a set of activity names L, the
process P/L hides those names in L from further interaction

7KH�8QGHUO\LQJ�0RGHO

• The model evolves from state to state by performing
activities:

(enter,r).(exit,s).Spec (exit,s).Spec Spec

(enter,r) (exit,s)

• Rules are used to calculate the behavior of processes
from their subcomponents. Assume item is in L; then

Producer Producer’

(item, r)

Consumer Consumer’

(item, s)

Producer <L> Consumer Producer’ <L> Consumer’

(item, R)

• Leads to direct simulation, or an analytical solution

$Q�([DPSOH�0RGHO

• An abstraction of a multiprocessor system with shared memory
• Three processors (each called Proc)
• Two shared memory modules (called Mem1 and Mem2)

• A global bus (Bus) through which all communication with the shared
memory takes place

$Q�([DPSOH�6SHFLILFDWLRQ

Mem1 := (getM1,-).(relM1,-).Mem1

Mem2 := (getM2,-).(relM2,-).Mem2

Bus := (getM1,g1).(relM1,r).Bus + (getM2,g2).(relM2,r).Bus

Proc := (getM1,-).(use,u1).(relM1,-).(update,p1).(think,t).Proc

+ (getM2,-).(use,u2).(relM2,-).(update,p2).(think,t).Proc

System := (Proc | Proc | Proc) <S> Bus <S> (Mem1 | Mem2)

(where S = {getM1,getM2,relM1,relM2})

• “System Equation”:

• Definitions:

,QWHJUDWLRQ�LQWR�8OWUD6$1�0|ELXV

• We have a mapping from a PEPA model to the Möbius Abstract
Functional Interface

– AFI actions are derived from PEPA activities

– AFI state variables are given by the number of concurrent
instances of subcomponents in a particular state

e.g. (Proc | Proc | Proc) would generate a state variable with
a value of 3

• PEPA models will then be able to share state and interact with other
UltraSAN/Möbius formalisms

• Changing the value of a shared state variable will alter the rate at
which the PEPA model proceeds

• The modeler must provide a textual description of the PEPA model
(and a little more information)

,Q�'HYHORSPHQW���

&RQFOXVLRQV

• Stochastic Process Algebra, and in particular PEPA, has
been introduced as an alternative paradigm for
performance modeling

• With the incorporation of PEPA into UltraSAN/Möbius,
users will be able to model in a style similar to more
traditional computer programming

• These models can each share state, and interact with
other UltraSAN/Möbius models in a meaningful way

• UltraSAN/Möbius is becoming equipped with a wider
range of formalisms (SAN, Buckets and Balls, PEPA,…) –
more choice for modelers!

