
Performance Evaluation for Global Computation

Linda Brodo1, Pierpaolo Degano2, Stephen Gilmore3,
Jane Hillston3, and Corrado Priami4

1 Istituto Trentino Cultura – IRST
Via Sommarive 18, I-38050 Povo (Trento), Italy

brodo@itc.it
2 Dipartimento di Informatica

Università di Pisa
F.Buonarroti 2, I-56127 Pisa, Italy

degano@di.unipi.it
3 Laboratory for Foundations of Computer Science

The University of Edinburgh
Edinburgh EH9 3JZ, Scotland
{stg,jeh}@lfcs.ed.ac.uk

4 Università di Trento
Dipartimento di Informatica e Telecomunicazioni
Via Sommarive 14, I-38050 Povo (Trento), Italy

priami@dit.unitn.it

Abstract. Global computing applications co-ordinate distributed com-
putations across widely-dispersed hosts. Such systems present formidable
design and implementation challenges to software developers and syn-
chronisation, scheduling and performance problems come to the fore.
Complex systems such as these can benefit from the application of high-
level performance analysis methods founded on timed process algebras.
In this paper we compare the use of two such approaches, the PEPA
nets and EOS methods, illustrating our presentation with the example
of modelling Web services.

1 Introduction

Our main concern here is comparing existing process algebraic primitives against
the needs arising when modelling global applications with a view to determining
their run-time performance. Communication and especially mobility are pos-
sibly the two main features characterising global computing. There are differ-
ent approaches to their representation. One widely-studied approach represents
mobility implicitly through the communication of links. A name n, representing
a communication channel, is passed to an agent that now becomes connected
through n to all the agents that know the link n. In this way the topology of
the interconnecting network varies while the (distributed) computation goes on.
The typical representative of this class is the well-known π-calculus [16].

An alternative approach to representing mobility and communication is taken
by the PEPA nets formalism, which combines the process algebra PEPA with

C. Priami (Ed.): GC 2003, LNCS 2874, pp. 229–253, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

230 Linda Brodo et al.

a Petri net infrastructure [9]. In this formalism, which can be regarded as a
high-level Petri net formalism, places are process algebra contexts and tokens
are process algebra components. Mobility is modelled explicitly by the firing of a
transition in the Petri net which has the result of a component moving from one
place to another. Communication is restricted to be local and is modelled by the
usual process algebra communication between components. We have previously
studied the relationship between PEPA nets and the π-calculus, by translating a
subset of the PEPA nets formalism into the stochastic π-calculus [2]. The objec-
tive of performance evaluation is to analyse the dynamic behaviour of a system
and predict performance indices or measures such as throughput, utilisation or
response time. A performance prediction may be useful at specification time
both when the system implementation is known and when the specification is
not connected to any particular implementation. In the first case analysis can
suggest potential technical improvements of the implementation. In the second
case many implementations can be imagined for the same specification and this
could give hints in choosing the more adequate implementation. If a process
algebra model is to be used for this purpose certain aspects of the behaviour of
the model must be quantified. For example, in classical process algebras alter-
native behaviours are modelled by a non-deterministic choice. However from
such a model no predictions about the likelihood of differing behaviours can be
made. Therefore when the objective is performance evaluation, non-deterministic
choice is replaced by probabilistic choice. Similarly, in the dynamic behaviour
of a system the durations of actions (or equivalently the delays between events)
are important and must be incorporated into the model.

Many probabilistic and timed extensions of process algebras have appeared in
the literature in the last 15 years, however the most prevalent approach taken in
performance evaluation is exemplified by PEPA [11]. In this language all actions
have an associated duration which is specified by a random variable, governed by
a negative exponential distribution. In PEPA probabilistic choice is not modelled
explicitly; when more than one activity is possible it is assumed that the activities
race in the sense that each draws from the corresponding distribution function to
obtain a duration for this instance of the activity. The activity with the shorter
duration sample is the one which will be performed first, thus “winning the
race”. In practice, since all durations are governed by a negative exponential
distributions, the relative probability of activities in competition can be derived
by a simple formula. The stochastic π-calculus [18] adopts similar constructs.

In this way, our process algebra models can be used to generate a Continuous
Time Markov Chain (CTMC) which can be solved to obtain a steady state prob-
ability distribution from which performance measures can be derived. In recent
work we have extended PEPA to allow the durations of activities to be defined
via functions rather than explicitly [13, 12]. In the context of global computing
this means that the duration of an activity can depend on the state of other com-
ponents. In PEPA nets, again the target representation for performance analysis
is a CTMC, and so both process algebra transitions, and Petri net firings have an
associated duration which is negative exponentially distributed. As previously

Performance Evaluation for Global Computation 231

conflicts may be solved by the race policy but it is also possible to assign differ-
ent priorities to different Petri net transitions, giving some firings priority over
others [9].

In the EOS approach [6], the transition labels are enhanced so that they
record the application of inference rules. The designer of the application under
analysis can define evaluation functions that determine the rates of transitions,
by inspecting enhanced labels, as these represent the low level routines per-
formed by the run-time support to execute the transition itself. Since the rates
are also affected by the target architecture, its peculiarities will also affect the
evaluation functions, the parameters of which are then the enhanced labels and
the architectural details [17].

Structure of this paper: The paper is organized as follows. In the next section
we describe our running example of Web services. Section 3 recalls the basics
of PEPA nets, while Sect. 4 introduces the PEPA nets semantics and shows
how performance analysis can be carried out on the running example. Section 5
describes the EOS approach on the π-calculus and shows how it can be used
to perform a quantitative analysis of the Web service system. Finally, we draw
some conclusions.

2 Example: Modelling Web Services

Web services provide a technological platform which enables global computation.
In a Web services architecture clients and services are loosely coupled and geo-
graphically distributed. Services are obtained by discovery from registries and
directories. Web service descriptions specify the interfaces and locations of ser-
vices. Method invocation and transport of data are performed by asynchronous
message passing. The computing platform is heterogeneous and architecture-
neutral. The implementation platform is also heterogeneous; web service clients
may be implemented in a different implementation language from the service
application. All of the above qualities typify global computation: distributed
computations across heterogenous platforms utilising discovery services to effect
remote evaluation.

Another typical quality of global computations is that they take place across
administrative domains. In consequence they must coordinate communication
and evaluation across different security contexts. Firewalls are used in distributed
systems to safeguard systems against attack, preventing unrestricted communi-
cation between remote sites. Their presence is a necessity but one which causes
problems for some communications protocols. Web services however are accessed
by HTTP. The use of the HTTP protocol virtually eliminates the complications
caused by firewalls.

Web services achieve global accessibility in practice by adherance to open
standards which are widely supported and used. Both communication protocols
and data formats are standardised. Web services are globally positioned by giving
each a unique Uniform Resource Identifier (URI). Clients and services in a Web

232 Linda Brodo et al.

services architecture exchange XML-encoded messages using the standard SOAP
protocol. The use of XML for data carriage provides an abstraction barrier over
the language-dependent in-memory data formats used in application programs.
The SOAP protocol provides a high-level transport and may itself be layered
over native network protocols such as SMTP or HTTP. A special-purpose lan-
guage WSDL (Web Services Description Language) exists for describing interface
“contracts” between Web service provider and client.

Web services applications incorporate many significant practical advances
over previous generations of distributed systems technology. One cost of their
considerable advantages is that they are resource-intensive systems. Web ser-
vices include many layers of encapsulation which would not be needed in tra-
ditional binary communication protocols. Service lookup is an overhead, as is
XML-encoding. The XML language itself is a verbose, human-readable encod-
ing format which is engineered for clarity, not for compactness. This has the
consequence that XML-encoded method calls are weighty data items which
incur significant transmission costs. The use of the HTTP protocol is another
overhead. Network reliability, host availability problems and distributed system
faults further degrade performance. For these reasons, Web services provide a
highly appropriate example for performance modelling techniques such as those
presented in this paper.

Process algebras are excellent tools for modelling Web services because they
naturally support peer-to-peer architectures. The co-operator/co-operand style
of process algebras allows an intuitive encoding of control flow logics such as call-
backs. A process algebra which provides direct support for location-awareness is
an added benefit. This provides the right conceptual modelling concepts to rep-
resent mobile code systems ranging from the asynchronous remote procedure call
method provided by Web services to more complex configurations as embodied
in the remote evaluation, code-on-demand or mobile agent paradigms.

3 PEPA Nets

PEPA nets extend the PEPA [11] stochastic process algebra by connecting indi-
vidual PEPA models together as the places of a coloured stochastic Petri net.
PEPA components travel from place to place as the tokens of the net.

A PEPA net differentiates between two types of change of state. We refer to
these as firings of the net and transitions of PEPA components. Each are special
cases of PEPA activities. Transitions of PEPA components will typically be used
to model small-scale changes of state as components undertake activities. Firings
of the net will typically be used to model large-scale changes of state such as
context switches, breakdowns and repairs, one thread yielding to another, or a
mobile software agent moving from one network host to another.

A firing in a PEPA net causes the transfer of one token from one place to
another. The token which is moved is a PEPA component, which causes a change
in the subsequent evaluation both in the source (where existing cooperations
with other components now can no longer take place) and in the target (where

Performance Evaluation for Global Computation 233

previously disabled cooperations are now enabled by the arrival of an incoming
component which can participate in these interactions). Firings have global effect
because they involve components at more than one place in the net.

A transition in a PEPA net takes place whenever a transition of a PEPA
component can occur (either individually, or in cooperation with another com-
ponent). Components can only cooperate if they are resident in the same place in
the net. The PEPA net formalism does not allow components at different places
in the net to cooperate on a shared activity. An analogy is with message-passing
distributed systems without shared-memory where software components on the
same host can exchange information without incurring a communication over-
head but software components on different hosts cannot. Additionally we do not
allow a firing to coincide with a transition which is shared, i.e. it is not possible
for two components in one place to cooperate and transfer to another place as
an atomic action. Thus transitions in a PEPA net have local effect because they
involve only components at one place in the net. Maintaining this strict distinc-
tion between firings and transitions is essential in order to provide the separation
into macro- and micro-step state changes that we are seeking to represent.

Each place has a distinct alphabet for transitions and firings, meaning that
the same action type cannot be used for both. Thus there can be no ambiguity
between such micro- and macro-scale transitions.

A PEPA net is made up of PEPA contexts, one at each place in the net. A
context consists of a number of static components (possibly zero) and a number
of cells (at least one). Like a memory location in an imperative program, a cell
is a storage area to be filled by a datum of a particular type. In particular in a
PEPA net, a cell is a storage area dedicated to storing a PEPA component. The
components which fill cells can circulate as the tokens of the net. In contrast,
the static components cannot move.

We use the notation Q[] to denote a context which could be filled by the
PEPA component Q or one with the same alphabet. If Q has derivatives Q′

and Q′′ only and no other component has the same alphabet as Q then there
are four possible values for such a context: Q[], Q[Q], Q[Q′] and Q[Q′′]. Q[]
enables no transitions. Q[Q] enables the same transitions as Q. Q[Q′] enables the
same transitions as Q′. Q[Q′′] enables the same transitions as Q′′. As usual with
PEPA components we require that the component has an ergodic definition so
that it is always possible to return to a state which one has previously reached.
This has as a consequence that if Q′ is a derivative of Q then it is also the case
that Q is a derivative of Q′, for any Q and Q′.

The introduction of contexts requires an extension to the syntax of PEPA.
This extension is presented in Table 1.

For any token component its action type set can be partitioned in distinct
subsets corresponding to transitions and firings respectively. For a component
Q we will denote these sets by At(Q) and Af (Q), where At(Q) is the set of
local transitions currently enabled in Q and Af (Q) is the set of firings currently
enabled for Q. Note that for a firing to be enabled the token must enable the
corresponding activity, it must be in a place connected to a net-level transition

234 Linda Brodo et al.

Table 1. The syntax of PEPA extended with contexts.

N ::= D+M (net)

(definitions and marking)

M ::= (MP, . . .) (marking) D ::= I
def
= S (component defn)

MP ::= P[C, . . .] (place marking) | P[C]
def
= P [C] (place defn)

| P[C, . . .]
def
= P [C] ��

L
P (place defn)

(marking vectors) (identifier declarations)

S ::= (α, r).S (prefix) P ::= P ��
L

P (cooperation) C ::= ‘ ’ (empty)

| S + S (choice) | P/L (hiding) | S (full)

| I (identifier) | P [C] (cell)

| I (identifier)

(sequential components) (concurrent components) (cell term expressions)

of the same type and there must be an empty cell at the output place of the
transition of the correct token type.

We use capitalised names to denote PEPA components (such as P and Q)
and lowercase for PEPA transitions (such as a and b). We use bold capitalised
names for PEPA net places (such as P1 and P2) and bold lowercase for PEPA
net firings (such as a and b).

3.1 Markings in a PEPA Net

The marking of a classical Petri net records the number of tokens which are
resident at each place in the net. Since the tokens of a classical Petri net are
indistinguishable it is sufficient to record their number and one could present
the marking of a Petri net with places P1, P2 and P3 as (P1 : 2, P2 : 1, P3 : 0). If
an ordering is imposed on the places of the net a more compact representation
of the marking can be used. Place names are omitted and the marking can be
written using vector notation thus, (2, 1, 0).

For a PEPA net, we can denote a marking by (P1[Q],P2[],P3[]) (the token
at place P1 is in state Q; the other places have no tokens). In general, a context
may have more than one parameter, to be filled by PEPA components of different
types. We denote the ith component of a marking M by Mi. For example,
(P1[Q],P2[],P3[])1 is P1[Q].

It is simple to define a function to count the number of tokens in a PEPA
net term and this function proves to be useful in practice.

Performance Evaluation for Global Computation 235

tokens(P) = 0
tokens(P []) = 0

tokens(P [P ′]) = 1
tokens(P ��

L
Q) = tokens(P) + tokens(Q)

tokens(P/L) = tokens(P)

3.2 Net-Level Transitions in a PEPA Net

Transitions at the net-level of a PEPA net are labelled in a similar way to the
labelled multi-transition system which records the unfolding of the state space
of a PEPA model. A labelling function � maps transition names into pairs of
names such as (α, r) where it is possible that �(ti) = �(tj) but ti �= tj . The first
element of a pair (α, r) specifies an activity which must be performed in order
for a component to move from the input place of the transition to the output
place. The activity type records formally the activity which must be performed
if the transition is to fire. The second element is an exponentially-distributed
random variable which quantifies the rate at which the activity can progress in
conjunction with the component which is performing it.

As an example, suppose that Q is a component which is currently at place P1

and that it can perform an activity α with rate r1 to produce the derivative Q′.
Further, say that the net has a transition between P1 and P2 labelled by (α, r2).
IfQ performs activity α in this setting it will be removed from P1 (leaving behind
an empty cell) and Q′ will be deposited into P2 (filling an empty cell there).

3.3 Net Structure of a PEPA Net

The class of nets that we currently use for modelling the net structure of a
PEPA net is restricted to structural state machines, i.e. nets whose transitions
can have only one input place and one output place. This means that we can
represent conflicts at the net level, while synchronisations are not allowed. This
is consistent with the fact that PEPA components cannot cooperate on a shared
activity when they are resident in different places.

It is usual with coloured Petri nets to associate functions with arcs, offering
a generalisation of the usual, basic “functions” offered by arc multiplicities. In
PEPA nets the arc functions are implicit. The modification of a token which
takes place when it is fired is wholly specified by the action type of the firing,
the definition of the token and the semantics. Furthermore, although we allow
multiple tokens within net places, only one token can move at each firing. Thus
arc multiplicities greater than one are not allowed.

4 Semantics

The PEPA language is formally defined by a small-step operational semantics.
In order to describe the firing rule for PEPA nets formally we need a relational
operator which is to be used to express the fact that there exists a particular

236 Linda Brodo et al.

transition in the net superstructure. This operator must have the properties that
it identifies the source and target of the transition and that it records the activity
which is to be performed in order for a component to cross this transition, moving
from the source to the target. We use the notation

P1

(α, r)

−→[]−→ P2

to capture the information that there is a transition connecting place P1 to
place P2 labelled by (α, r). This relation captures static information about the
structure of the net, not dynamic information about its behaviour. We could
describe the net structure in a PEPA net using a list of such declarations but
the more familiar graphical presentation of a net presents the same information
in a more accessible way.

Definition 1. A PEPA net N is a tuple N = (P , T , I, O, �, π, C, D,M0) such
that

– P is a finite set of places;
– T is a finite set of net transitions;
– I : T → P is the input function;
– O : T → P is the output function;
– � : T → (Af ,R

+∪{�}) is the labelling function, which assigns a PEPA activ-
ity ((type, rate) pair) to each transition. The rate determines the negative
exponential distribution governing the delay associated with the transition;

– π : Af → N is the priority function which assigns priorities (represented by
natural numbers) to firing action types;

– C : P → P is the place definition function which assigns a PEPA context,
containing at least one cell, to each place;

– D is the set of token component definitions;
– M0 is the initial marking of the net.

The semantic rules for PEPA nets are provided in Table 2. The Cell rule con-
servatively extends the PEPA semantics to define that a cell which is filled by a
component Q has the same transitions as Q itself. A healthiness condition on the
rule (also called a typing judgement) requires a context such as Q[] to be filled
with a component which has the same alphabet as Q. We write Q =a Q

′ to state
that Q and Q′ have the same alphabet. There are no rules to infer transitions
for an empty cell because an empty cell enables no transitions.

The Transition rule states that the net has local transitions which change
only a single component in the marking vector. This rule also states that these
transitions agree with the transitions which are generated by the PEPA seman-
tics (including the extension for contexts). Recall that the transition and firing
alphabets of any place must be distinct.

The Firing rule takes one marking of the net to another marking by perform-
ing a PEPA activity and moving a PEPA component from the input place to the
output place. This has the effect that two entries in the marking vector change
simultaneously.

Performance Evaluation for Global Computation 237

Table 2. Additional semantic rules for PEPA nets.

Cell:

Q′ (α, r)

−−−→ Q′′

Q[Q′]
(α, r)

−−−→ Q[Q′′]
(Q =a Q′)

Transition:

MP

(α, r)

−−−→M ′
P

(. . . , MP, . . .)
(α, r)

−−−→ (. . . , M ′
P, . . .)

(α ∈ At)

Enabling:

Q
(α, r1)

−−−→ Q′ Pi

(α, r2)

−→[]−→ Pj

(.., Pi[.., Q, ..], .., Pj[.., , ..], ..)
(α, R)

−−−→π(α) (.., Pi[.., , ..], .., Pj[.., Q′, ..], ..)
(α ∈ Af)

Firing:

M
(α, r)

−−−→n M ′ M
(β, s)

−−−→m M ′′

M
(α, r)

−−−→M ′
(n ≥ m)

4.1 The Net Bisimulation Relation

In this section we define a bisimulation relation for PEPA nets called net bisimu-
lation. This relation is important both in theory and in practice. In the evolution
of the state space of a model by our tool we only store states up to net bisimula-
tion, i.e. we carry out automatic aggregation over equivalent states. This provides
a dramatic reduction in the state space of the model under certain conditions.

Our relation is defined in the style of Larsen and Skou [14], based on a
conditional transition rate between markings, rather than the strong equivalence
relation of PEPA which considers the transition rates between components. The
conditional transition rate from marking M to marking M ′ via action type α,
denoted q(M,M ′, α), is the sum of the activity rates labelling arcs connecting the
corresponding nodes in the derivation graph which are labelled by the action type
α. The total conditional transition rate from a marking M to a set of markings
E is defined as

q[M,E,α] =
∑

M ′∈E

q(M,M ′, α)

Definition 2. An equivalence relation over markings, R ⊆ M ×M , is a net
bisimulation if whenever (M,M ′) ∈ R then for all α ∈ A and for all equivalence
classes E ∈M/R,

q[M,E,α] = q[M ′, E, α]

4.2 PEPA Net Model of a Web Service

In modelling our Web services example as a PEPA net we first identify three
components: Client , WebService and SOAPmessage. We begin with the simplest

238 Linda Brodo et al.

of these, the SOAPmessage. The lifecycle of this component is that it is built
using a message composition API, then launched over the network and then read
using an XML parser. This leads to another message which is the continuation
of the lifetime of this component. This component plays the role of passive
data in our application so in its description it leaves unspecified (�) the rates
at which these actions are performed, allowing the cooperating partner in the
synchronisation to determine these rates.

SOAPmessage def= (compose message,�).
(launch,�).
(read message,�).SOAPmessage

A Client divides its time between local computation, the details of which we do
not model here, and Web services interactions. When the client comes to a phase
in its local computation where it realises that it needs to use a Web service it
interacts with the discovery service to obtain a specification of the service. It then
composes a SOAP message to send to the service. The communication with the
remote Web service is asynchronous so the client returns to its local computation,
anticipating that a reply will come later. When a message is returned from the
service the client will read it and make use of the results in the remainder of its
computation.

Client def= (local computing , rl).Client
+ (discover , rd).Client1

Client1
def= (compose message, rC

c).Client2

Client2
def= (local computing , rl).Client2

+ (read message, rC
r).Client

The lifetime of a Web service is modelled as a simple loop. Web services requests
are received and read; these lead to the execution of a Web service and the
composition of a message to return the results.

WebService def= (read message, rS
r).WebService2

WebService2
def= (transact service, rs).WebService3

WebService3
def= (compose message, rS

c).WebService

The places of the net specify that there is a cell (a storage place) for a SOAP
message at the client side and at the Web service side. The message synchronises
on composition and reading activities.

P1[s]
def= SOAPmessage[s] ��

L
WebService

P2[s]
def= SOAPmessage[s] ��

L
Client

where L = { compose message, read message }

The initial marking of the net places a token on the client side, in its initial
state: (P1[], P2[SOAPmessage]).

Firing the operational semantics of the example generates the state space
depicted in Fig. 1 with the transition system given in Fig. 2. By erasing activity
names from the labelled transition system we obtain the CTMC given in Fig. 3.

Performance Evaluation for Global Computation 239

As a concrete illustration of numerical evaluation take rd = rm = 17.03,
rC
c = rS

r = rS
c = rC

r = 3.28 and rs = 1.10. The value of rl is immaterial because
the self-loops on states which are visible at the process algebra level are not
represented at the Markov chain level. In the Markov chain representation we
are concerned with balancing flow into a state against flow out of a state, so
self-loops have no role.

Denote the infinitesimal generator matrix of the CTMC in Fig 3 by Q. As
usual, we solve πQ = 0 subject to

∑
π = 1 giving (0.025, 0.132, 0.025, 0.132,

0.394, 0.132, 0.025, 0.132).

1 (SOAPmessage [] ��
L

WebService ,

SOAPmessage [SOAPmessage] ��
L

Client)

2 (SOAPmessage [] ��
L

WebService ,

SOAPmessage [SOAPmessage] ��
L

Client1)

3 (SOAPmessage [] ��
L

WebService ,

SOAPmessage [(launch,�).(read message ,�).SOAPmessage] ��
L

Client2)

4 (SOAPmessage [(read message ,�).SOAPmessage] ��
L

WebService ,

SOAPmessage [] ��
L

Client2)

5 (SOAPmessage [SOAPmessage] ��
L

WebService2,

SOAPmessage [] ��
L

Client2)

6 (SOAPmessage [SOAPmessage] ��
L

WebService3,

SOAPmessage [] ��
L

Client2)

7 (SOAPmessage [(launch,�).(read message ,�).SOAPmessage] ��
L

WebService ,

SOAPmessage [] ��
L

Client2)

8 (SOAPmessage [] ��
L

WebService ,

SOAPmessage [(read message ,�).SOAPmessage] ��
L

Client2)

Fig. 1. Reachable state space of the PEPA nets Web services model shown as the
markings of (P1, P2).

4.3 Using Logic to Specify Performance Measures

We now explain how to specify performance measures of interest with respect to
a PEPA net model by using a probabilistic modal logic. The appropriate logic
for PEPA nets is one which can specify performance measures over the places of
the net, and has the capability of expressing requirements on tokens in addition
to requirements on the transitions and firings of the net.

We introduce the PMLν logic by means of a two-level grammar which sepa-
rates the specification of place formulae and token formulae from the specification
of transition and firing activities. Behaviour at the transition and firing level is
captured by formulae of a sub-logic, PMLµ.

240 Linda Brodo et al.

1 −(local computing , rl)→ 1

1 −(discover , rd)→ 2

2 −(compose message , rC
c)→ 3

3 −(local computing , rl)→ 3

3 −(launch, rm)→ 4

4 −(read message , rS
r)→ 5

4 −(local computing , rl)→ 4

5 −(transact service , rs)→ 6

5 −(local computing , rl)→ 5

6 −(compose message , rS
c)→ 7

6 −(local computing , rl)→ 6

7 −(launch, rm)→ 8

7 −(local computing , rl)→ 7

8 −(local computing , rl)→ 8

8 −(read message , rC
r)→ 1

Fig. 2. The transition system of the Web services example.

1
rd−→ 2

rC
c−→ 3

rm−→ 4
rC

r ↑ ↓ rS
r

8
rm←− 7

rS
c←− 6

rs←− 5

Fig. 3. The CTMC of the Web services example.

This separation of PMLν formulae from PMLµ formulae enforces a syntactic
restricition on the allowable terms in the logic whereby places cannot refer to the
local state at another place. This reflects the global computing idiom that it is
impossible to know the global state of the system. This restriction also strongly
supports the PEPA nets modelling rule which forbids communication between
components at different places in the net, as in distributed systems without
shared memory.

We present the sub-logic PMLµ first. The constant true is represented by tt.
Conjunction and negation are denoted as usual. The term ∇α represents the
inability of a process to perform an α action. The diamond operator specifies
an activity α, a rate µ, and a succeeding formula which is to be satisfied by all
one-step α-derivatives. The accumulated rate of these α activities must be at
least µ. We use φ, φ1, φ2, . . . , to range over PMLµ formulae.

φ ::= tt

| ¬φ
| φ1 ∧ φ2

| ∇α

| 〈α〉ρφ

The meaning of the PMLµ connectives is given by reference to the transition
relation of the PEPA net semantics. We require an addition simple auxilliary
definition:

Definition 1 Let S be a set of states. P
(α,λ)
=⇒ S if for all successors P ′ ∈ S,

P
α−→ P ′, and

∑
{ r : P

(α,r)−→ P ′, P ′ ∈ S } = λ.

Performance Evaluation for Global Computation 241

Now let P be a model of a PEPA net process. Then

P |=µ tt
P |=µ ¬φ iff P �|=µ φ
P |=µ φ1 ∧ φ2 iff P |=µ φ1 ∧ P |=µ φ2

P |=µ ∇α iff P
α−→/

P |=µ 〈α〉ρφ iff P
(α,λ)
=⇒ S for some λ ≥ ρ, and for all P ′ ∈ S, P ′ |=µ φ.

It is convenient to introduce a number of derived operators. These add no expres-
sive power to the logic but they shorten the statement of realistic performance
measures in PMLµ.

ff
def= ¬tt

[α]ρφ
def= ¬〈α〉ρ¬φ

∆α
def= ¬∇α

φ1 ∨ φ2
def= ¬((¬φ1) ∧ (¬φ2))

The PMLν logic has as atomic propositions all of the formulae of PMLµ. In
addition it has conjunction and negation, place formulae and token formulae.
We use ψ, ψ1, ψ2, . . . , to range over PMLν formulae.

ψ ::= φ
| ¬ψ
| ψ1 ∧ ψ2

| Pi[φ]
| #Pi ∼ n

where ∼ = {=, �=, <,≤, >,≥}.
The meaning of PMLν formulae (|=ν) is defined in terms of the meaning of

PMLµ formulae (|=µ) and the token counting function for PEPA nets. Let M
be a marking of a PEPA net. Then,

M |=ν φ iff M |=µ φ
M |=ν ¬ψ iff M �|=ν ψ
M |=ν ψ1 ∧ ψ2 iff M |=ν ψ1 ∧M |=ν ψ2

M |=ν Pi[φ] iff Mi |=µ φ
M |=ν #Pi ∼ n iff tokens(Mi) ∼ n.

4.4 Selecting States of the Web Services Model

Performance measures characterising the long-run behaviour of the system are
calculated from the computation of the probability of being in selected subsets
of the states of the system.

We now use PMLν to characterise some of the states of the Web services
PEPA net model, illustrating its use as a specification language for performance
measures.

The first value which we might wish to quantify is the next-read probability.
This is the probability that one of the components of the model can read a

242 Linda Brodo et al.

message as its next action. We related this formula to the concrete subset of
states of the Web services model as shown below:

||∆read message || = {4, 8}

A slightly more specialised quantity is the server next-read probability. This
is the probability that the Web service component can read a message as its
next action. Again we relate a PMLν formula to a subset of the state space, in
this case this just turns out to be just a single state.

||P1[∆read message]|| = {4}

As a final example we can specify the blocking probability. This describes the
cases where a Web services request message is being processed at the server side
and the client is delayed awaiting the reply, performing local computation only.
For the present simple example, there are many ways to express this property
some of which would also be applicable in a more complex, multi-threaded ver-
sion of the model. The most direct expressions seem to come from stating the
number of tokens at one of the places.

||#P1 = 1|| = ||#P2 = 0|| = {4, 5, 6, 7}

5 Enhanced Operational Semantics

In this section we survey Degano and Priami’s enhanced operational seman-
tics (EOS for short) [5]. EOS is built upon operational semantics by enriching
labels of transitions with the (partial) encodings of their proofs. By exploiting
this information, different descriptions of process behaviour can be mechanically
derived, thus expressing both quantitative and qualitative aspects [6]. Here, we
shall concentrate on a quantitative description that enables us to measure the
performance of global applications, specified in the π-calculus [16, 15].

We first recall below the EOS semantics of the π-calculus and then the
stochastic interpretation of the enriched labels of the transitions. We shall then
consider the web service example introduced in Section 3.

Definition 3. Let N be a countable infinite set of names which is ranged over
by a, b, . . . , x, y, . . . with τ �∈ N . We also assume a set A of agent identifiers
ranged over by A,A1, Processes (denoted by P,Q,R, . . . ∈ P) are built from
names according to the syntax

P ::= 0 | π.P | (νx)P | P |P | P + P |A(y1, . . . , yn)

where π may be either x(y) for input, or x y for output (where x is the subject,
singled out by a function sbj and y the object, singled out by a function obj)
or τ for silent moves. The order of precedence among the operators is the order
(from left to right) listed above. Hereafter, the trailing 0 will be omitted.

Performance Evaluation for Global Computation 243

Table 3. Structural congruence for the π-calculus.

(ν x)(ν x′)T ≡ (ν x′)(ν x)P A(ỹ) ≡ P, if A(ỹ)
def
= P

(νx)(T0|T1) ≡ ((ν x)T0)|T1, if x 	∈ fn(T1) (ν x)0 ≡ 0

The process 0 can perform no actions. The prefix π is the first atomic action
that the process π.P can perform. The input x(y) binds the occurrences of the
variable y in the prefixed process P . Roughly, a name will be received on the
channel x and it will substitute the free occurrences of the placeholder y in P .
The output prefix x z sends the name z along the channel x without binding z.
In the process (ν x)P , the restriction operator (ν x) creates a new (unique) name
x whose scope is P . The operator | defines the parallel composition of processes.
In the composition P1 |P2 the two processes act independently and they may
communicate if they share a common channel name. The summation operator
defines the non deterministic choice: P1 + P2 behaves either as P1 or as P2. For
each agent identifier A there is a unique defining equation of the form A(ỹ) def= P ,
where ỹ is a list of distinct parameters which are the free names of the process
P . Each occurrence of an agent identifier A(z̃) will be replaced by the process
P , substituting the list of formal parameters ỹ by the list of actual parameters
z̃. Here we assume that the processes associated to agent identifiers contain no
parallel operators, i.e. have sequential behaviour.

We enrich the labels of transitions with tags that record the rules applied in
their derivation and we call the new labels proof terms. We also define a function
� that maps proofs terms to standard labels.

Definition 4 (proof terms). Let ϑ ∈ {||0, ||1,+0,+1}∗. Then the set Θ of
proof terms (with metavariable θ) is defined by the following syntax

θ ::= ϑµ | ϑ〈||0ϑ0µ0, ||1ϑ1µ1〉
with µi = x(z) iff µ1−i is either xz or x(z), for i ∈ {0, 1}.

Function � : Θ → Act is defined as

�(θµ) = µ; �(ϑ〈||0ϑ0µ0, ||1ϑ1µ1〉) = τ.

Here, we only consider tags that record the occurrences of the parallel and
summation operators, as they suffice for the present treatment. A more detailed
definition is in [19] that uses tags for all the other π-calculus operators.

The enhanced operational semantics is defined by the inference rules in
Tab. 4, assuming the minimal congruence, induced by α-congruence and by the
rules in Tab. 3. Note that the | and + operators are no longer commutative and
associative, and 0 is not the neutral element.

An Interpretation of the Proof Terms. Since the parallel operator has no
congruence rules, we can interpret sequences of parallel tags as abstract addresses
that uniquely identify sequential subprocesses. For example, consider the process

244 Linda Brodo et al.

Table 4. Proved Transition system of the π-calculus.

Act : µ.P
µ−→ P

Sum0 :
P

θ−→ P ′

P + Q
+0θ−−→ P ′ Par0 :

P
θ−→ P ′

P |Q ‖0θ−−→ P ′|Q
, bn(�(θ)) ∩ fn(Q) = ∅

Sum1 :
Q

θ−→ Q′

P + Q
+1θ−−→ Q′ Par1 :

Q
θ−→ Q′

P |Q ‖1θ−−→ P |Q′
, bn(�(θ)) ∩ fn(Q) = ∅

Com0 :
P

xz−→ P ′, Q
x(y)−−−→ Q′

P |Q 〈‖0xz,‖1x(y)〉−−−−−−−−−→ P ′|Q′{z/y}
Open :

P
x y−−→ P ′

(νy)P
x〈y〉−−−→ P ′

, y 	= x

Com1 :
Q

x(y)−−−→ Q′, P xz−→ P ′

Q|P 〈‖0x(y),‖1xz〉−−−−−−−−−→ Q′{z/y}|P ′
Res :

P
θ−→ P ′

(νx)P
θ−→ (νx)P ′ , x 	∈ n(�(θ))

Close0 :
P

x(z)−−−→ P ′, Q
x(y)−−−→ Q′

P |Q 〈‖0x(z),‖1x(y)〉−−−−−−−−−−→ (νy)(P ′|Q′{z/y})

Close1 :
Q

x(y)−−−→ Q′, P
x(z)−−−→ P ′

Q|P 〈‖0x(y),‖1x(z)〉−−−−−−−−−−→ (νy)(Q′{z/y}|P ′)

S = ((P1 | a(x).P2) +Q) | ((R1 + a z.R2) |T)

whose syntax tree is

Q T

P1 a(x).P2 R2 a z.R2

‖0 ‖1

+0
+1 ‖0

‖1

‖0
‖1 +0

+1

The process (P1|a(x).P2)+Q has ‖0 as abstract address, while the tree associated
to the sub process T is identified by the abstract address ‖1‖1.

Below we introduce the function ∂ for extracting abstract addresses from the
proof terms; there is no need to define the function ∂ on pairs because it will be
always applied component-wise.

Performance Evaluation for Global Computation 245

Definition 5. The function ∂ is inductively defined on proof terms:

∂(‖i ϑµ) = ‖i ∂(ϑµ)
∂(µ) = ε

∂(+iϑµ) = ε

For example, consider the transition S
〈‖0+0‖1a(x),‖1‖0+1a z〉−−−−−−−−−−−−−−−→ (P1 |P2) | (R2 |T)

The proof terms of the communication contain the unique abstract addresses:
∂(‖0 +0 ‖1) =‖0‖1 for the input action and ∂(‖1‖0 +1) =‖1‖0 for the output
action.

5.1 Stochastic Semantics

As it happens for PEPA nets, we associate probabilistic information with actions.
Hence, a random variable Xθ, which expresses the time duration of the action
described by θ, must be associated to each proof term θ. The values that Xθ can
assume are regulated by an exponential function fθ(x) = λe−λx. Our approach
mainly differs from the PEPA one because we do not insert probabilistic param-
eters in the syntax of the calculus, but we derive them from proof terms. The
basic idea is that the operational semantics defines abstract machines and the
proofs of transitions (encoded in proof terms) represent the low level routines of
the abstract machine needed to implement transitions. We then assign rates to
single tags (low level routines) and we give a way of composing them in order
to compute rates of the transitions. Thus, for example, an action fired after a
choice costs more than the same action occurring deterministically. Therefore,
we have two logical phases. First we describe the system functionalities with a
specification language. Then we associate quantitative values with the actions
of the specification through an interpretation function of the proof terms. Such
interpretation function is called rate function. Once rates have been associated
with transitions, we derive CTMC and perform numerical analysis using the
same techniques described in the previous section. Below we give the definition
of the rate function that will be used in our case study.

A Rate Function. We assume that the throughput1 of the communication
channels and the size of the messages exchanged are given. We will use two
auxiliary functions: th and size, for associating to each proof term a throughput
and a size measure. The function th associates a throughput with the triple
(ϑ0, ϑ1, name), where ϑ0 and ϑ1 are the abstract addresses of the subprocesses
that are communicating. The parameter name represents the channel that the
partners in a communication use to interact. The function size associates a byte
size with the couple (ϑ, name), where name is the data sent and ϑ is the abstract

1 The number of bits, characters, or blocks passing through a data communication
channel. Throughput may vary greatly from its theoretical maximum. Throughput
is expressed in data units per period of time; e.g. as blocks per second.

246 Linda Brodo et al.

address of the sender process. We use also the function min which returns the
minimum value between its two arguments.

The definition of the rate function is given for the asynchronous and for the
synchronous case:

$(ϑµ) = size(obj(µ))
th(∂(ϑ),ε,sbj(µ)) × $o(ϑ)

$(ϑ〈ϑ0µ0, ϑ1µ1〉) = size(obj(µi))
th(∂(ϑϑ0),∂(ϑϑ1),sbj(µi))

×min($o(ϑϑ0), $o(ϑϑ1))

where the value returned by the auxiliary function $o represents a slowing fac-
tor due to the time spent by the run time support. Consider the case when
the proof terms record a communication as in ϑ〈||0ϑ0µ0, ||1ϑ1µ1〉 (for the other
asynchronous case similar, yet simpler, considerations hold). The two partners
perform independently some low-level operations locally to their environment.
These operations are recorded in ϑ0 and ϑ1, inductively built by the applica-
tion of the rules that fill in the premises of rules Com or Close. Each of the ϑi

leads to a delay in the rate of the corresponding µi, which we compute through
the auxiliary cost function $o. Then the pairing 〈||0ϑ0µ0, ||1ϑ1µ1〉 occurs and
corresponds to the actual communication. Finally, there are those operations,
recorded in ϑ, that account for the common context of the two partners. Also,
the slow down due to this common context is computed using $o. Since commu-
nication is synchronous and handshaking, we take the minimum of the costs of
the operations performed by the participants independently (originated by ϑi)
to make communications reflect the speed of the slower partner2.

For example, if a proof term models a service request from a client to a server
we could interpret the +0 and +1 tags, contained in the proof term portion of
the server ϑi, as a time degradation factor due to the waiting time spent in
queuing for accessing the server. Also, we can differentiate the slowing factor of
an operator taking care of the position where it has been executed by relying
on the parallel tags, i.e. we can associate with ‖0‖1 +0 and ‖0‖1‖0 +0 different
values. For simplicity, here we assume $o(ϑ) = 1. A definition of $o can be found
in [17].

5.2 The π-Calculus Model of a Web Service

We now model the Web service presented in Sect. 2, made of five components:
Client , WebService, SOAPmsg, Discover and Database. In our scenario we con-
sider the Universal Description Discovery Integration (UDDI) registry, modeled
by the process Discover , which provides to the client the description of the
web service. Moreover we assume that the WebService process queries a remote
database, described as the process Database, in order to execute its task.

For the sake of readability, we write x a for a place-holder that will be
replaced with the value a.
2 Recall that the lower the cost, the greater the time needed to complete an action

and hence the slower the speed of the transition occurring.

Performance Evaluation for Global Computation 247

The Discover process interacts with the Client process by accepting the
request ask Des on the public channel dis. The name ask Des represents the
description of the service that the Client needs. The Discover sends back to the
Client the private name des along the channel ask Des. The name des represents
the description of the service that the Client asked for.

Discover (dis) def= dis(x askDes).(ν des)x askDes des.Discover (dis).

The Client process interleaves the activity of looking for web-services with
various other activities that we express with output actions on the channel
localComp. When the Client needs a web service, it sends the request askDes to
the Discover on the public channel dis. Then, the Client sends the description
des, received by the discovery service, to the SOAPmsg on the public channel
client. After that, it executes local operations, localComp , until it receives the
answer service from the SOAPmsg along the private channel des.

Client(localComp, dis, client, y)
def
= localComp y.Client(localComp, dis, client, y)

+

((ν askDes)dis askDes.askDes(x des).

client x des.Client2(des, localComp, y)
)

Client2(des, localComp, y)
def
= localComp y.Client2(des, localComp, y)

+
des(x service).
Client(localComp, dis, client, y)

The SOAPmsg process uses the public channel client to accept a descrip-
tion of a service, des, from the Client seeking for a web service. Then, the
SOAPmsg is ready to send to the WebService the new name newdes, represent-
ing the client’s request, on the public channel web. The SOAPmsg will receive
the answer, service, from WebService along the private channel newdes and
then it will send back the answer to the Client along the private channel des.

SOAPmsg(client, web) def= client(x des).(ν newdes)web newdes.
newdes(x service)x des x service.
SOAPmsg(client, web)

The WebService process interacts with the SOAPmsg receiving the request
on the public channel web. Then, it connects with a remote database, using the
public channel data and the private channel newdata, to retrieve the informa-
tion it needs to complete its task. Finally, it replies the answer service to the
SOAPmsg on the channel newdes.

WebService(web, data) def= web(x newdes).(ν newdata)data newdata.
newdata(x service).x newdes x service.
WebService(web, data)

The Database process simply receives a request from the WebService along
the public channel name data and then gives back the answer using the private
channel newdata.

248 Linda Brodo et al.

web

Discover WebService

Database

1

4

3

2

Client

dis

client

des

SOAPMsg

data

newdata

ask_des

newdes

Fig. 4. The changes in the channel topology of the Web services example.

Database(data) def= data(x newdata).(ν service)x newdata service.
Database(data)

The complete system is given by composing in parallel the processes defined
so far:

P (localComp, dis, client, y, web, data) def=
(Client(localComp, dis, client, y) |Discover(dis)) |
(SOAPmsg(client, web) | (WebService(web, data) |Database(data)))

For the sake of readability from now onwards we shall write the process
identifications omitting the parameters. Fig. 4 shows how the processes of the
system interact. In particular the arcs between the processes are the communi-
cation channels: the ones with dotted lines are auxiliary channels and the circled
numbers attached to the channels indicate the temporal order in which they are
used.

The transition system generated by applying the enhanced operational seman-
tics is illustrated in Fig. 5. Fig. 6 displays the processes passed through during
a computation.

In order to obtain the rates for each proof term, we apply the rate function $
using the measures in Fig. 7. Recall that the function th associates a throughput
to a pair of abstract addresses and a channel name; and that the function size
associates the byte size of the data communicated to an abstract address and a
data name, see Sect. 5.1. Some comments on the quantitative modeling of our
example are in order. We do not need to associate a rate to the transitions corre-
sponding to the execution of the asynchronous action localCompy, because the

Performance Evaluation for Global Computation 249

1 − ‖0‖0 +0localComp y → 1

1 − ‖0 〈‖0 +1dis〈askDes〉, ‖1 dis(x askDes)〉 → 2

2 − ‖0 〈‖0 askDes(x des), ‖1 askDes〈des〉〉 → 3

3 −〈‖0‖0 client〈des〉, ‖1‖0 client(x des)→ 4

4 − ‖1 〈‖0 web〈newdes〉, ‖1‖0 web(x newdes)〉 5

4 − ‖0‖0 +0localComp y → 4

5 − ‖1‖1 〈‖0 data〈newdata〉, ‖1 data(x newdata)〉 → 6

5 − ‖0‖0 +0localComp y → 5

6 − ‖1‖1 〈‖1 newdata〈service〉, ‖0 newdata(x service)〉 → 7

6 − ‖0‖0 +0localComp y → 6

7 − ‖1 〈‖0 newdes(x service), ‖1‖0 newdes〈service〉〉 → 8

7 − ‖0‖0 +0localComp y → 7

8 −〈‖0‖0 des(x service), ‖1‖0 des〈service〉〉 → 1

Fig. 5. Transition system of the process P .

self-loops are not represented by the Markov chain model. We assume that the
communication connection from the Client to the Discover has the throughput
of 300Kbyte/sec, and that the communication connection from the Discover to
the Client has a slower throughput of 250Kbyte/sec (first and second rows of the
tables in Fig. 7). We assume that the communication between the Client and the
WebService is asynchronous, thus we consider that the Client requires a shorter
time to send the SOAPmsg to the WebService than the time the WebService
needs to receive the SOAPmsg (third and fourth rows of the tables in Fig. 7).
The difference between the sending time and the receiving time could be sen-
sible if the Client and the WebService are located in two distant geographic
regions or else if there are waiting queues for accessing the WebService. Recall
that the SOAPmsg process represents a message which is sent by the Client
to the WebService and then by the WebService to the Client . The communica-
tions between the WebService and the Database model the time spent by the
WebService to execute its task (fifth and sixth rows of the tables in Fig. 7). For
the last two communications between the WebService and the SOAPmsg and
between the SOAPmsg and the Client we again suppose that the sending time
of the SOAPmsg is shorter than the correspond receiving time.

In Fig. 7 we also associate quantitative measures to the private names ask
Des, newdata, newdes and des, (when used as data) assuming that they will
not vary significantly from one execution of the system to another.

Fig. 8 shows the infinitesimal generator matrix Q of the CTMC. We solve
πQ = 0 subject to

∑
π = 1, obtaining the vector

π = (0.014, 0.033, 0.05, 0.063, 0.05, 0.031, 0.255, 0.212) as stationary distribution.
Adopting the technique for computing the rewards, described in [4], we can

analyze for instance the probability of using the data name des. We consider the
following reward array (0, 1, 0, 0, 0, 0, 0) that has value 0 everywhere and value
1 in the position of a state with an outgoing transition whose label contains the

250 Linda Brodo et al.

1 (Client |Discover) | (SOAPmsg | (WebService |Database))

2 (askDes(x des).client x des.Client2(des) | (ν des)askDesdes.Discover)
|
(SOAPmsg | (WebService |Database))

3 (client des.Client2(des) |Discover) | (SOAPmsg | (WebService |Database))

4 (Client2(des) | Discover)
|
((ν newdes)webnewdes.newdes(x service).des x service.SOAPmsg
|
(WebService |Database))

5 (Client2(des) | Discover)
|
(newdesx service.des(x service).SOAPmsg
|
((ν newdata)datanewdata.newdata(x service).newdata sevice.WebService) |Database))

6 (Client2(des) | Discover)
|
(newdes(x service).desx service.SOAPmsg
|
((ν newdata)newdata(x service).newdatax service.WebService
|
(ν service)newdata〈service〉.Database))

7 (Client2(des) | Discover)
|
(newdes(x service).desx service.SOAPmsg | ((ν newdata)newdes serviceWebService) |Database))

8 (Client2(des) | Discover) | des service.SOAPmsg | (WebService) |Database))

Fig. 6. Reachable state space of the π-calculus Web service model P .

name des as data (see the transition system in Fig. 5). Thus we obtain that the
probability of the system to use the name des as data is 0.033. We also can rely
on more specific tags of the proof terms, considering for example the probability
that the SOAPmsg and the WebService are interacting. The correspond reward
array is (0, 0, 0, 1, 0, 1, 0) that has value 0 everywhere and value 1 in the position
of a state with an outgoing transition located at ‖1‖0, ‖1‖1‖0. The resulting
probability is 0.318.

6 Conclusions

If they were to be viewed purely formally as high-level description languages
for specifying continuous-time Markov chains, then PEPA nets and the Stochas-
tic π-calculus would be considered equally expressive. That is to say, for a given
CTMC C, it is possible to construct a high-level model in either formalism such
that the underlying CTMC derived from the model is isomporphic to C. This is
a fundamental agreement in expressive power, but it is a rather weak one, sim-
ilar to the agreement that all programming languages are Turing complete. In
this paper and in related work [3] we have sought to understand the connections
between these formalisms more thoroughly.

The modelling paradigms supported by PEPA nets and the Stochastic π-
calculus EOS approach have a common root in using interleaving models of

Performance Evaluation for Global Computation 251

th : Kbytes/secs. size : Kbytes

(‖0‖0, ‖0‖1, dis) 300.00
(‖0‖0, ‖0‖1, askDes) 250.00
(‖0‖0, ‖1‖0, client) 250.00
(‖0‖0, ‖1‖0, web) 200.00

(‖1‖1‖0, ‖1‖1‖1, data) 250.00
(‖1‖1‖0, ‖1‖1‖1, newdata) 200.00

(‖1‖0, ‖1‖0, newdes) 250.00
(‖0‖0, ‖1‖0, des) 300.00

(‖0‖0, askDes) 10
(‖0‖1, des) 20
(‖0‖0, des) 30

(‖1‖0, newdes) 30
(‖1‖1‖0, newdata) 30
(‖1‖1‖1, service) 150
(‖1‖1‖0, service) 150
(‖1‖0, service) 150

Fig. 7. The functions th and size applied to the proof terms of the transition system
in Fig. 5.

1
30−→ 2

12.5−→ 3
8.3−→ 4

6.66 ↑ ↓ 8.33

8
1.33←− 7

1.66←− 6
2←− 5

Fig. 8. The CTMC of the Web services example.

concurrent systems to first describe and then analyse the temporal behaviour
of global and mobile code applications. However, there are many opportunities
in such an enterprise to exercise creativity in the expression of concepts such
as process mobility and performance metrics over models of mobile code sys-
tems. The differences between the PEPA nets approach and the EOS approach
highlight points where different design choices were made.

Inside the behavioural description of a system the modeller needs to repre-
sent sequential execution and causal ordering of events. Over this aspect of the
behavioural modelling there is close agreement between PEPA nets and EOS.
However, process algebras also need to represent the concurrent composition
of sequential behaviours and concepts such as synchronisation, parameterisa-
tion, naming and scoping. In stochastically timed process algebras particularly
there are many ways to design and justify the synchronisation operator for pro-
cesses [10, 1] and different design decisions are naturally taken in the PEPA nets
and EOS approaches.

Adjacent to this, and perhaps of greater importance, is the use of the process
algebra machinery in defining the meaning of terms in the language and legit-
imising their analysis. The differences between PEPA nets and the EOS approach
are most pronounced here. The EOS approach encodes the rules which are used
to produce the derivatives of a process as proof terms in their derivations. This
information is implicit in a PEPA net one-step derivation although a proof of
any derivation could be obtained by revisiting the operational semantics of the
language or by using an EOS semantics for PEPA nets [7]. The proof terms play
a central role in the performance analysis process for EOS. The evaluation cost
function is defined over the proof terms of the language and hence built into
the language at the same level as the operational semantics. The cost function

252 Linda Brodo et al.

and the operational semantics interoperate, with structural congruence rules for
operators being disabled by their use in the definition of the evaluation cost
function.

In constrast for PEPA nets, performance measures over a model are defined
outside the operational semantics for the language, and this separation is high-
lighted by the use of a separate logical language, PMLν for the expression of
these measures. This separation means that the interpretation of the language
constructs is unchanged across models and so tools supporting the language
can perform optimisations such as quotienting by PEPA’s bisimulation equiva-
lence [8]. This operation is performed by rewriting the terms denoting process
derivatives to amalgamate syntactically distinct terms which represent processes
which no external observer could distinguish. This has the effect of reducing the
state space of the system and therefore reducing the numerical computation
effort which is needed to find the steady-state probability distribution for a
given assignment of values to the symbolic rates of the model.

Despite these differences in methodology the present paper illustrates that
the two modelling approaches can be used effectively in modelling real-world
global computing applications and complement each other well in practical use.
Both of the modelling methods used here are continuing to develop both in theory
and in practical application. When, as in the present paper, we can compare
modelling idioms in use we have the opportunity to see how to import analysis
methods and techniques from one formalism to the other, to the benefit of both.

Acknowledgements

The authors are supported by the DEGAS (Design Environments for Global
ApplicationS) IST-2001-32072 project funded by the FET Proactive Initiative
on Global Computing.

References

1. J. T. Bradley and N. Davies. Reliable performance modelling with approximate
synchronisations. In Proceedings of the 7th International Workshop on Process
Algebra and Performance Modelling (PAPM’99), pages 99–118, Prensas Universi-
tarias de Zaragoza, September 1999.

2. L. Brodo, S. Gilmore, J. Hillston, and C. Priami. A stochastic π-calculus semantics
for PEPA nets. In Proceedings of the workshop on Process Algebras and Stochas-
tically Timed Activities (PASTA), pages 1–17, Edinburgh, Scotland, June 2002.

3. L. Brodo, S. Gilmore, J. Hillston, and C. Priami. Mapping coloured stochastic
Petri nets to stochastic process algebras. In P. Kemper, editor, Proceedings of the
ICALP Workshop on Stochastic Petri nets, June 2003. To appear.

4. G. Clark and J. Hillston. Towards automatic derivation of performance measures
from PEPA models. In Proceedings of UKPEW, 1996.

5. P. Degano and C. Priami. Non-interleaving semantics for mobile processes. TCS:
Theoretical Computer Science, 216, 1999.

Performance Evaluation for Global Computation 253

6. P. Degano and C. Priami. Enhanced operational semantics: a tool for describing
and analyzing concurrent systems. ACM Computing Surveys, 33(2):135–176, 2001.

7. S. Gilmore and J. Hillston. An enhanced operational semantics for PEPA nets.
DEGAS project internal document, May 2002.

8. S. Gilmore, J. Hillston, and M. Ribaudo. An efficient algorithm for aggregating
PEPA models. IEEE Transactions on Software Engineering, 27(5):449–464, May
2001.

9. S. Gilmore, J. Hillston, and M. Ribaudo. PEPA nets: A structured performance
modelling formalism. In T. Field, P.G. Harrison, J. Bradley, and U. Harder, edi-
tors, Proceedings of the 12th International Conference on Modelling Tools and
Techniques for Computer and Communication System Performance Evaluation,
number 2324 in Lecture Notes in Computer Science, pages 111–130, London, UK,
April 2002. Springer-Verlag.

10. J. Hillston. The nature of synchronisation. In U. Herzog and M. Rettelbach,
editors, Proceedings of the Second International Workshop on Process Algebras
and Performance Modelling, pages 51–70, Erlangen, November 1994.

11. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

12. J. Hillston and L. Kloul. Formal techniques for performance analysis: blending
SAN and PEPA. Submitted for publication, 2002.

13. J. Hillston and L. Kloul. From SAN to PEPA: A technology transfer. In Proceedings
of the workshop on Process Algebras and Stochastically Timed Activities (PASTA),
pages 56–76, Edinburgh, Scotland, June 2002.

14. K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information
and Computation, 94(1):1–28, September 1991.

15. R. Milner. Communicating and Mobile Systems: The π Calculus. Cambridge Uni-
versity Press, Cambridge, England, 1999.

16. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Information
and Computation, 100(1):1–77, September 1992.

17. C. Nottegar, C. Priami, and P. Degano. Performance evaluation of mobile processes
via abstract machines. IEEE Transactions on Software Engineering, 27(10):867–
889, 2001.

18. C. Priami. Stochastic π-calculus. In S. Gilmore and J. Hillston, editors, Proceedings
of the Third International Workshop on Process Algebras and Performance Mod-
elling, pages 578–589. Special Issue of The Computer Journal, 38(7), December
1995.

19. C. Priami. Language-based performance prediction for distributed and mobile
systems. Information and Computation, 175(2):119–145, 2002.

	1 Introduction
	2 Example: Modelling Web Services
	3 PEPANets
	3.1 Markings in a PEPA Net
	3.2 Net-Level Transitions in a PEPA Net
	3.3 Net Structure of a PEPA Net

	4 Semantics
	4.1 The Net Bisimulation Relation
	4.2 PEPA Net Model of a Web Service
	4.3 Using Logic to Specify Performance Measures
	4.4 Selecting States of the Web Services Model

	5 Enhanced Operational Semantics
	5.1 Stochastic Semantics
	5.2 The π-Calculus Model of a Web Service

	6 Conclusions
	References

