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Abstract

Performance Evaluation Process Algebra (PEPA) is a high-level mod-
elling language for distributed systems. In this paper we describe a novel
approach to composing PEPA models where the language is supplemented
with the structuring features and language constructs of a strongly typed
higher-order functional programming language, Standard ML. Together,
this language combination provides greatly improved support than was
previously available for experimenting with PEPA models to check for
errors in their formulation.

1 Introduction

Modelling the performance of yet-to-be-constructed software systems is becom-
ing an increasingly common activity among practising software developers. Re-
cent developments in practical modelling languages for software systems have
included introducing language extensions which explicitly support performance
modelling of software systems [1]. Our motivation here is to demonstrate that
more abstract languages for performance modelling can be made more famil-
iar to software engineers by supplementing them with programming language
constructs which are familiar from functional programming languages. As our
example we show how the stochastic process algebra PEPA [2] can be extended
with the constructs from the Standard ML programming language [3]. The
PEPA language is supported by a range of modelling tools which allow models
to be solved for steady-state analysis. One of the primary modelling tools for
PEPA is the PEPA Workbench [4] but other tools have also been applied to a
range of example models [5].

Process algebras are parsimonious languages. PEPA offers only indispens-
able connectors for defining the behaviour of structured performance models.
This makes the definition of the language readily amenable to formal analysis
which guarantees the validity or reasoning methods such as proof by construc-
tion of bisimulation equivalences between PEPA components. The language
definition also ensures that these equivalences are meaningful ones in terms of
the model’s effective performance as expressed through random variables drawn
from exponential distributions.
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For models of modest size and detail, the use of a compact modelling lan-
guage is highly desirable. Mistakes of mis-interpretation are less likely because
of the simplicity of the language and the goal of effective and precise commu-
nication is served well. As models grow in size and detail together with our
ability to solve them it becomes more important that the modelling language
used be able to formally express scope and structure within models, in addition
to providing other means of expressing flow of control and logical dependen-
cies within models. One advantage of this added facility for defining models is
that the re-use of existing tested models is better supported, because of better
language support for encapsulation and component definition.

2 Embedding PEPA in Standard ML

The program structuring facilities of Standard ML are typical of those of a
higher-order functional programming language. Functions are first-class and
can be passed as parameters, returned as results, or used as values which can
be stored in a data structure such as a list or a binary tree. The ability to
manipulate functions in this way is used in our embedding of PEPA components
in Standard ML. PEPA components describe the performance of activities
by using conditional recursive definitions. We map PEPA components onto
Standard ML functions and provide datatype constructors which can be used
to compose these functions as structured PEPA components can be built using
the combinators of the language.

PEPA has four combinators, prefix (.), choice (+), co-operation (��) and
hiding (/). These are mapped on to the constructors of a Standard ML datatype
which can be used to compose component definitions. The constructors of
this datatype are *, +, <> and /. These identifiers are chosen to resemble the
corresponding symbols in the PEPA syntax, making their encoding relatively
straightforward. The appendix gives a full introduction to the PEPA language.

2.1 A simple example

As a simple example consider the following PEPA model which defines the
very simple model of a transmitter which transmits at rate t or rate t/2 to a
receiver which receives data at rate r. This transmission is conducted through
the medium of a network which passively cooperates with the transmitter and
the receiver. This is the meaning of the > symbol used in the occurrences of the
transmit and receive activities specified in the description of the network, that
it is passive with respect to these activities. Transmissions are visible outside
the system but receipt of transmissions is hidden. This small example uses all
four of the PEPA combinators.

Transmitter def= (trans, t).Transmitter + (trans, t/2 ).Transmitter
Receiver def= (recv , r).Receiver

Network def= (trans,>).Network ′

Network ′ def= (recv ,>).Network

System def= (Transmitter ��
{trans}

Network ��
{recv}

Receiver)/{ recv }



The model is encoded using our PEPA embedding in Standard ML thus.

datatype Activity = trans | recv
| tau of { hidden : Activity };

datatype Rate = t | t half | r | top;

fun Transmitter () = (trans, t) * Transmitter
+ (trans, t half) * Transmitter;

fun Receiver () = (recv, r) * Receiver;

fun Network () = (trans, top) * Network’
and Network’ () = (recv, top) * Network;

fun System () = (Transmitter() <[trans]> Network()
<[recv]> Receiver()) / [recv];

The datatype definitions at the beginning encode the names of activities and
rates which are used in the model. The benefit which comes from this are
the guarantees provided by the strict static type-checking of the Standard ML
language. For example, i) no activities or rates can be used within the model
without an accompanying declaration and ii) an activity name cannot appear
where a rate is expected. The polymorphic type inference [6] mechanism of
Standard ML means that this benefit is provided without the imposition of
additional syntactic clutter such as typing assignments in function definitions.

The PEPA language defines a distinguished activity name, τ , which indi-
cates that the activity is a private one. Components cannot co-operate on τ
activities. The tau constructor of the activity datatype provides the value tau
{ hidden = recv } which additionally captures in the Standard ML encoding
the information that the activity which was hidden was recv.

The PEPA language also defines a distinguished symbol > which is used to
indicate passive co-operation in an activity. This is encoded as the constructor
top in the datatype of activity rates.

Each of the PEPA component definitions translates into a function defini-
tion, introduced by the keyword fun . Where a group of component definitions
are mutually recursive—as Network and Network ′ are—they are introduced by
a simultaneous binding where the function definitions are separated by the key-
word and . All functions in Standard ML have a single argument and so the
definition of the function name is followed by Standard ML’s void type, de-
noted by (). Each of the sets used in the PEPA model—for synchronisation or
hiding—contains only a single activity name but if more are required they can
be included in lists such as [trans, recv].

2.2 Using Standard ML’s structuring facilities

In the previous example it might be the case that we view the definition of the
component Network ′ as being subordinate to the Network component and would
like to hide the identifier Network ′ so that only the identifier Network is visible.
PEPA’s definitional equality def= provides us with a method of associating a name
which a behaviour but does not provide a method for hiding the names which
are bound in this way. With our embedding in Standard ML we can make



a component definition local to an expression by using the let .. in .. end

construct as shown below.

fun Network () =
let

fun Network’ () = (recv, top) * Network
in

(trans, top) * Network’
end

Management of the identifier namespace is an important issue for larger devel-
opment projects and as our ability to solve models increases, so to does the
usefulness of namespace management constructs such as let .. in .. end .

2.3 Encoding parameterised components

Some model components are inherently parametric, with behaviour which counts
a certain type of events. One such typical component is a bounded queue, which
can be encoded as a Standard ML function with different cases to deal with
boundary conditions. In the example below, we fix the maximum queue length
to be six. The function succ returns the successor of an integer value and the
function pred returns the predecessor of an integer value.

fun Queue 0 () = (accept, lambda) * Queue 1 (* empty *)

| Queue 6 () = (serve, top) * Queue 5 (* full *)

| Queue n () = (accept, lambda) * Queue (succ n)
+ (serve, top) * Queue (pred n)

Because the Standard ML language supports unbounded data structures we can
equally easily encode unbounded queues, as can be expressed in extensions of
PEPA such as PEPA∞ph [7].

fun Queue 0 () = (accept, lambda) * Queue 1 (* empty *)

| Queue n () = (accept, lambda) * Queue (succ n)
+ (serve, top) * Queue (pred n)

In either case it is unlikely that we would wish to initialise the queue to contain
any data initially. In this case we can partially apply the definition to get a def-
inition of a queue where the parameterised definition is hidden and errors such
as an inadvertent call to Queue 7 are prevented. (Such a mistake in initialising
the queue would allow the queue to grow and shrink without restriction until
the queue length fell to six, at which point the definition would cause the queue
to regain the behaviour of a queue with a maximum capacity of six.) Stan-
dard ML’s local .. in .. end construct is used to make a group of definitions
local to other definitions, as shown below.

local

fun queue 0 () = (accept, lambda) * queue 1
| queue 6 () = (serve, top) * queue 5
| queue n () = (accept, lambda) * queue (succ n)

+ (serve, top) * queue (pred n)
in

val Queue = queue 0
end



An alternative method of achieving the same effect would be to use Stan-
dard ML’s exception mechanism to reject any queue lengths which were out
of range.

2.4 Parameterising on activities and rates

By further parameterising the model on the names of activities and their rates
and the capacity of the queue we produce a very general template for queue
which can be instantiated to deliver the queue which we want.

fun Queue (a, ar) (s, sr) capacity =
let

fun queue n () =
if (n = 0) then (a, ar) * queue 1
else if (n = capacity) then (s, sr) * queue (pred n)

else (a, ar) * queue (succ n) +
(s, sr) * queue (pred n)

in

queue 0
end

One possible use of such a queue template would be to produce a single cell
with put and get activities.

val Cell = Queue (put, top) (get, top) 1

3 Combinators

Parameterisation on activities and rates gives us the ability to make general-
purpose definitions of component behaviours which will then have a number
of different realisations. Combinators which allow us to modify the behaviour
of existing components are also very useful. The activities performed by a
component are found by using the step function, which gives the activity name,
the rate and the resulting component. Any of these may then be modified before
the next one-step derivative is found. Two examples are presented below.

3.1 Renaming

One way in which renaming can be useful is when we have not had the foresight
to parameterise a component definition on an activity name. In this case we
compute a one-step derivative, test for the activity which has been renamed and
replace it where needed. Renaming is a static activity so the same renaming
will need to be applied to the one-step derivative of the component.

fun (P renaming (alpha, beta)) () =
let

val ((act, rate), P’) = step P (* unroll P one step *)

val P’’ = P’() renaming (alpha, beta)
in

if act = alpha then (beta, rate) * P’’ else (act, rate) * P’’
end



3.2 Coroutines

We define a Cycle combinator which is a version of Milner’s Before combina-
tor [8] for the classical process algebra CCS modified to combine two PEPA
components. Unlike CCS, PEPA has no notion of component termination and
so the sequential composition of components which is defined for CCS in the
Before combinator has no meaning in PEPA. However, two non-terminating
processes can be defined so that each of them will yield to allow the other to
progress. In this way, their combination will cycle between the behaviour of the
first component and the behaviour of the second component.

fun Cycle (P, Q) () =
let

val ((act, rate), P’) = step P (* unroll P one step *)

in

case act of

yield => (yield, rate) * Cycle (Q, P’())
| default => (act, rate) * Cycle (P’(), Q)

end

4 Verifying higher-order models

The primary reason to be concerned about the expressiveness of the modelling
language which is used for performance modelling is that a well-designed lan-
guage can be helpful in early detection of errors in models. Because the perfor-
mance modelling process is a time-consuming one, in addition to being resource-
intensive, significant effort can be saved if errors can be found in models before
they are solved. We have implemented an interpreter for the PEPA modelling
language, allowing initial lightweight experimentation with models. If this ex-
perimentation proves to be successful then the next stage in the modelling pro-
cess is model checking properties of the system over the transition graph. The
companion language which we use for specifying properties of PEPA models is
the probabilistic modal logic PMLµ [9, 10].

5 Conclusions

The embedding of PEPA in Standard ML can be used simply to provide a
simple experimental implementation of a PEPA model in a strongly-typed lan-
guage. This implementation can be executed with our interpreter. This process
alone may reveal errors in a model but it can be taken further because logical
properties can be checked against the model. This allows a graded migration
from limited testing at one extreme to exhaustive symbolic probabilistic model
checking at the other. The Standard ML embedding of the PEPA language
also provides a useful testbed for the design of simple combinators for PEPA
components and can serve as a designer’s workbench for experimenting with
simple extensions to the language. New combinators are encoded as component-
manipulating functions and can be used to modify the behaviour of components
by replacing some transitions with others or by combining two components to
generate a third. We have found these combinators to be useful in practice.
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A Summary of the PEPA language

The PEPA language provides a small set of combinators. These allow language
terms to be constructed defining the behaviour of components, via the activities
they undertake and the interactions between them. The syntax may be formally
introduced by means of the grammar shown in Figure 1.

S ::= (sequential components)

(α, r).S (prefix)

| S + S (choice)

| CS (constant)

P ::= (model components)

P ��
L
P (cooperation)

| P/L (hiding)

| C (constant)

Figure 1: The syntax of PEPA

In the grammar S denotes a sequential component and P denotes a model com-
ponent which executes in parallel. C stands for a constant which denotes either
a sequential or a model component, as defined by a defining equation. C when
subscripted with an S stands for constants which denote sequential components.
The component combinators, together with their names and interpretations, are
presented informally below.

Prefix: The basic mechanism for describing the behaviour of a system is to
give a component a designated first action using the prefix combinator,
denoted by a full stop. For example, the component (α, r).S carries out
activity (α, r), which has action type α and an exponentially distributed
duration with parameter r, and it subsequently behaves as S. Sequences
of actions can be combined to build up a life cycle for a component.

Choice: The life cycle of a sequential component may be more complex than
any behaviour which can be expressed using the prefix combinator alone.
The choice combinator captures the possibility of competition between
different possible activities. The component P + Q represents a system
which may behave either as P or as Q. The activities of both P and Q
are enabled. The first activity to complete distinguishes one of them: the
other is discarded. The system will behave as the derivative resulting from
the evolution of the chosen component.

Constant: It is convenient to be able to assign names to patterns of behaviour
associated with components. Constants are components whose meaning
is given by a defining equation.



Hiding: The possibility to abstract away some aspects of a component’s be-
haviour is provided by the hiding operator, denoted by the division sign
in P/L. Here, the set L of visible action types identifies those activities
which are to be considered internal or private to the component. These
activities are not visible to an external observer, nor are they accessible
to other components for cooperation. Once an activity is hidden it only
appears as the unknown type τ ; the rate of the activity, however, remains
unaffected.

Cooperation: Most systems are comprised of several components which inter-
act. In PEPA direct interaction, or cooperation, between components is
represented by the butterfly combinator. The set which is used as the sub-
script to the cooperation symbol determines those activities on which the
cooperands are forced to synchronise. Thus the cooperation combinator is
in fact an indexed family of combinators, one for each possible cooperation
set L (we write P ‖ Q as an abbreviation for P ��

L
Q when L is empty).

When cooperation is not imposed, namely for action types not in L, the
components proceed independently and concurrently with their enabled
activities. However if a component enables an activity whose action type
is in the cooperation set it will not be able to proceed with that activity
until the other component also enables an activity of that type. The two
components then proceed together to complete the shared activity. The
rate of the shared activity may be altered to reflect the work carried out
by both components to complete the activity.

In some cases, when an activity is known to be carried out in cooperation
with another component, a component may be passive with respect to
that activity. This means that the rate of the activity is left unspecified
and is determined upon cooperation, by the rate of the activity in the
other component. All passive actions must be synchronised in the final
model.

Model components capture the structure of the system in terms of its static
components. The dynamic behaviour of the system is represented by the evo-
lution of these components, either individually or in cooperation. The form of
this evolution is governed by a set of formal rules which give an operational
semantics of PEPA terms. The semantic rules, in the structured operational
style, are presented in Figure 3 without further comment; the interested reader
is referred to [2] for more details. The rules are read as follows: if the transi-
tion(s) above the inference line can be inferred, then we can infer the transition
below the line.

A.1 Apparent rates

When two components carry out an activity in cooperation the rate of the shared
activity will reflect the working capacity of the slower component. We assume
that each component has a capacity for performing an activity type α, which
cannot be enhanced by working in cooperation (it still must carry out its own
work), unless the component is passive with respect to that activity type. For
a component P and an action type α, this capacity is termed the apparent rate
of α in P . The notation rα(P ) is used to denote the apparent rate of α in P . It



rα((β, r).P ) =
{
r, if α = β
0, if α 6= β

rα(P +Q) = rα(P ) + rα(Q)

rα(P/L) =
{
rα(P ), if α 6∈ L
0, if α ∈ L

rα(P ��
L
Q) =

{
rα(P ) + rα(Q), if α 6∈ L
min(rα(P ), rα(Q)), if α ∈ L

Figure 2: The apparent rate of α in PEPA components

is the sum of the rates of the α type activities enabled in P . For a cooperation,
if α is in the cooperation set, the slowest participant determines the rate of the
cooperation.

A.2 The derivation graph

Thus, as in classical process algebra, the semantics of each term in PEPA is
given via a labelled multi-transition system—the multiplicities of arcs are sig-
nificant. In the transition system a state corresponds to each syntactic term of
the language, or derivative, and an arc represents the activity which causes one
derivative to evolve into another. The complete set of reachable states is termed
the derivative set of a model and these form the nodes of the derivation graph
formed by applying the semantic rules exhaustively.

The timing aspects of components’ behaviour are not represented in the
states of the derivation graph, but on each arc as the parameter of the negative
exponential distribution governing the duration of the corresponding activity.
The interpretation is as follows: when enabled an activity a = (α, r) will delay
for a period sampled from the negative exponential distribution with param-
eter r. If several activities are enabled concurrently, either in competition or
independently, we assume that a race condition exists between them. Thus the
activity whose delay before completion is the least will be the one to succeed.
The evolution of the model will determine whether the other activities have been
aborted or simply interrupted by the state change. In either case the memoryless
property of the negative exponential distribution eliminates the need to record
the previous execution time.

The derivation graph is the basis of the underlying Continuous Time Markov
Chain (CTMC) which is used to derive performance measures from a PEPA
model. The graph is systematically reduced to a form where it can be treated
as the state transition diagram of the underlying CTMC. Each derivative is
then a state in the CTMC. The transition rate between two derivatives P and
Q in the derivation graph is the rate at which the system changes from behaving



Prefix

(α, r).E
(α,r)
−−−→ E

Cooperation

E
(α,r)
−−−→ E′

E ��
L
F

(α,r)
−−−→ E′ ��

L
F

(α /∈ L)
F

(α,r)
−−−→ F ′

E ��
L
F

(α,r)
−−−→ E ��

L
F ′

(α /∈ L)

E
(α,r1)
−−−→ E′ F

(α,r2)
−−−→ F ′

E ��
L
F

(α,R)
−−−→ E′ ��

L
F ′

(α ∈ L)

where R =
r1

rα(E)
r2

rα(F )
min(rα(E), rα(F ))

Choice

E
(α,r)
−−−→ E′

E + F
(α,r)
−−−→ E′

F
(α,r)
−−−→ F ′

E + F
(α,r)
−−−→ F ′

Hiding

E
(α,r)
−−−→ E′

E/L
(α,r)
−−−→ E′/L

(α /∈ L)
E

(α,r)
−−−→ E′

E/L
(τ,r)
−−−→ E′/L

(α ∈ L)

Constant

E
(α,r)−→ E′

A
(α,r)−→ E′

(A def= E)

Figure 3: The operational semantics of PEPA



as component P to behaving as Q. It is denoted by q(P,Q) and is the sum of
the activity rates labelling arcs connecting node P to node Q. In order for the
CTMC to be ergodic its derivation graph must be strongly connected. Some
necessary conditions for ergodicity, at the syntactic level of a PEPA model,
have been defined [2]. These syntactic conditions are imposed by the grammar
introduced earlier.

A.3 Availability of the modelling tools

The PEPA modelling tools, together with user documentation and papers and
example PEPA models are available from the PEPA Web page at the address
http://www.dcs.ed.ac.uk/pepa.


