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Abstract

Recent research has investigated ways in which generally distributed random variables may be incorporated into stochastic
process algebra (SPA). These proposals allow the arbitrary use of such variables, improving expressibility, but in general this
makes performance evaluation difficult. Typically, simulation techniques must be employed. We attack the goal of generally
distributed random variables from the opposite direction, using the stochastic property ofinsensitivity. In this paper we describe
a construction which guarantees the insensitivity of certain concurrently enabled non-conflicting SPAactivities. We give a
derived combinator for constructing process algebra models. Use of this combinator guarantees that the stochastic process
underlying the model is insensitive to a particular set of activities. Therefore, the user need not assume these activities are
exponentially distributed, yet may still use familiar Markovian techniques to solve the model. We find that the model structure
we identify has a product form solution and the criteria we list do not match any of those currently proposed for SPA. We
highlight our technique with an example drawn from the field of transaction processing systems. Our analysis uses the SPA
PEPA, and its associated conventions.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Stochastic process algebras (SPAs[1–4]) are modelling methodologies useful for the performance
analysis of systems with concurrent behaviour. An SPA model is typically built compositionally from
smaller components using a small set of combinators. The fundamental ability of an SPA component
is to perform one or more enabledactivities, which causes the model components to effecttransitions.
Since an SPA model may enable several activities, it exhibits the potential for concurrent behaviour.
Furthermore, activities may compete with others, whereby the completion of one activity cancels the
others. When activity durations are assumed to be exponentially distributed, an SPA model can be reduced
to a continuous time Markov chain (CTMC), from which performance measures may be calculated
numerically.
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The exponential assumption inherent in Markovian analysis is regarded by some as a restriction in the
application of SPA modelling. For example, deterministic random variables may be more appropriate
in modelling time-outs in communication protocols. It would therefore be of great utility to be able to
incorporate generally distributed random variables into SPA performance models. Indeed, several attempts
to do this are underway, as discussed later inSection 3.2. However, unlike previously published work, our
aim is to introduce this increased modelling expressiveness only when it does not seriously impinge on
the tractability of the numerical solution of the underlying stochastic process. We do this by making use
of the concept ofinsensitivity. A stochastic process is said to be insensitive if its steady-state distribution
depends on the distribution of one or more of its state lifetime random variablesonly through the mean. In
this paper, we will consider insensitivity with respect to the activities of an SPA model. The consequence
of an SPA model being insensitive to a particular activity is that the activity may provably be arbitrarily
distributed (with the same mean) without affecting the steady-state probability distribution of the model.
Therefore, conditions under which activities can be shown to be insensitive are conditions under which
more flexible modelling features, such as realistic time-outs and repair times, may be introduced.

In this paper, we present a simple class of SPA models, which may be constructed using a new derived
combinator. The class consists of a collection of simple subcomponents which interact in a weak fashion.
Despite this interaction, we show that insensitivity of residence time in particular sub-states (states
of each subcomponent) is retained, and thus in our approach, insensitivity of particular SPA activities
too. Therefore, in many cases, generally distributed activities may be used to build the subcomponents
without affecting the equilibrium distribution of the model as a whole. Models built using our combinator
are guaranteed to have our insensitivity properties. Furthermore, we show that the class of models we
describe gives rise to a product form solution, and that the structure does not match the criteria for any
of the currently known SPA product form classes.

The rest of this paper is organised as follows: inSection 2we present a short overview of PEPA,
the SPA used in our presentation, and some of its associated theory and conventions. InSection 3we
discuss insensitivity, presenting the basic results, and review some process algebras with support for
generally distributed random variables.Section 4describes the extent to which generally distributed
random variables may be introduced, and the structure of PEPA models which permit this. The class
of models is demonstrated with an example drawn from the field of transaction processing systems in
Section 5. Section 6then looks at existing product form solutions for process algebra, and compares them
to our approach. Finally,Section 7concludes the paper.

2. PEPA

Classical process algebras disregard the notion of measuring time, and model functional behaviour
only. PEPA is astochasticprocess algebra, and extends classical process algebras by associating an
exponentially distributed random variable, which represents a duration, with every action. There is a
close relationship between a PEPA model and a CTMC, and it is from this underlying stochastic process
that performance measures can be calculated.

PEPA models are constructed compositionally fromcomponents, which are able to interact with each
other. Each of these components is capable of performingactivities. Formally, an activitya is described
as a pair(α, r), whereα is theaction type, i.e. thetypeof the activity, andr ∈ R

+ is the activity rate.
The set of all action types is denoted byA, andR

+ is defined as the set of positive real numbers together
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with the symbol�. This symbol denotes an unspecified (orpassive) activity rate. Such an activity may
only take place in synchrony with another of the same type, whose rate is specified. Whenr is specified,
its value is the parameter of an exponential distribution and thus governs the duration of the activity. The
set of all activities isA× R

+, denoted byAct.

2.1. PEPA syntax

PEPA models are built using only a small set of combinators. The way in which a model may behave is
entirely determined by the modeller’s use of the combinators in building structure. Each PEPA combinator
is described briefly below:

• Prefix. If P is a process, then(α, r).P is a process that performs(α, r) (an activity of typeα, which
has a duration exponentially distributed with mean 1/r) and then evolves intoP .

• Constant. If Q is a process andP
def=Q, thenP is a process that behaves in exactly the same fashion

asQ.
• Summation/choice. If P andQ are processes, thenP + Q is a process that expresses the conflicting

competition ofP andQ. The current activities of bothP andQare enabled; arace conditiondetermines
the first to complete and distinguishes the component into which the process evolves. A choice over
processesPi for 1 ≤ i ≤ n is denoted by

∑n
i=1 Pi .

• Cooperation. If P andQ are processes, andL is a set of action types, thenP Q is a process
that expresses the parallel and synchronising execution of bothP andQ. Both components proceed
independently on activities whose types are not in the cooperation set,L. However, those activities
whose types are contained inL require the participation of bothP andQ. If one of the components
may not perform an activity of some typeα in its current state, the other component becomesblocked
on allα activities. If both are capable of performing anα activity, it may occur with a rate given as the
minimum of the rates at which each would have had the capacity to perform anα activity in isolation.

If the cooperation setL is empty, we denote the parallel composition ofP andQ asP ‖Q. More
generally, the parallel composition of a set ofn processes is given as

∏n
i=1 Pi .

• Hiding. If P is a process, andL is a set of action types, thenP/L is the process that can behave exactly
asP , except that ifP would perform an activity of typeα ∈ L, thenP/L would perform asilent
activity denoted by the typeτ . Activities whose types are inL are said to behidden, and cooperation
is not possible onτ activities.

2.2. Terminology

In this section, we introduce our terminology and some useful definitions. Suppose a PEPA processP

may perform an(α, r) activity. We denote this fact byP
(α,r)→ . Furthermore,P → implies thatP

(α,r)→ for
some(α, r). If P may evolve intoQ via some activity,Q is called a (one-step)derivativeof P , and we

writeP
(α,r)→Q. The relation denoted by

(α,r)→ is called thetransition relation. For any PEPA processP , the
derivative setof P , ds(P ), is the least set of derivatives closed under the transition relation, and it thus
captures all the reachable states of the system, i.e.

• if P
def=Q, thenQ ∈ ds(P );

• if Q ∈ ds(P ) andQ
(α,r)→Q′ for some(α, r), thenQ′ ∈ ds(P ).
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Furthermore, for any PEPA processP , we denote the multiset of activities currently enabled byP as
Act(P ), and the set of types of these activities asA(P ). The multiset of activities enabled byP over the
course of its lifetime is given by�Act(P ). This is defined more formally asP ′∈ds(P )Act(P ′). In similar
fashion, the set of action types represented in�Act(P ) is denoted by�A(P ). If processP is syntactically
equivalent toQ, we writeP ≡ Q. Finally, we represent sequences of objects by enclosing them in braces;
e.g., we may denote an indexed sequence of processesPi as〈P1, . . . , Pn〉.

PEPA has a formal operational semantics[1] and this associates a labelledmulti-transition system with
each PEPA process expression. A labelled transition system is a triple(S, T ,→) whereS is a set of
states,T a set of transition labels and→⊆ S × T × S is the transition relation. With PEPA, the states
are syntactic process expressions, the transition labels are the(α, r) activities, and the transition relation
is defined inductively by the operational semantics. A multi-transition relation must be used because the
timing behaviour of a process will depend on the number of instances of an activity that are enabled. Any
PEPA model which enables a passive activity is termedincomplete, meaning it is underspecified for the
purpose of performance analysis. Given a PEPA model which iscomplete, its multi-transition relation
may be used to generate, a CTMC,Q, providing the stochastic process semantics of a PEPA model.

Given a derivativeP , the exit rate (or departure rate) from P is the parameter of the exponential
distribution governing the sojourn time inP . It is denoted asq(P ). The transition ratebetween two
componentsP andP ′ is given by

q(P, P ′) =
∑

{|(α,r):P
(α,r)→ P ′|}

r. (1)

Theseq(P, P ′) provide the off-diagonal elements of the infinitesimal generator matrix of the CTMCQ.
Given that the current derivative isP , theprobability that the successor derivative will beP ′ is given by

p(P, P ′) = q(P, P ′)∑
P ′′∈ds(P ) q(P, P ′′)

. (2)

3. Using generally distributed random variables

In this section, we discuss various approaches to stochastic modelling with generally distributed random
variables. We begin with an explanation of insensitivity, and formally introduce the stochastic model which
was used as a vehicle for the insensitivity property. The conditions on the stochastic process that guarantee
insensitivity are then described, and we discuss some work which has identified conditions under which
stochastic Petri net (SPN) models may be insensitive to particular transitions. We conclude this section
with a discussion of current approaches to incorporate generally distributed random variables into SPA.

3.1. Insensitivity

An exponential random variable is often inappropriate in applications of performance modelling. Many
features of systems, such as timeouts, are simply not memoryless. It would therefore be beneficial to be
able to incorporate generally distributed random variables into SPA performance models. A stochastic
process is said to be insensitive if its steady-state distribution depends on the distribution of one or more
of the random variables representing residence time in a stateonly through their mean. Just as steady-state
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is characterised by a set ofbalance equations, insensitivity of residence time in a state is characterised by
a set ofinsensitivity balance equations. These are interpreted with respect to a particular model, which
we introduce next.

3.1.1. The generalised semi-Markov process
A generalised semi-Markov process (GSMP) is defined on a set of states{g : g ∈ G}. Within each

of these states are active elements,s ∈ S. The current stateg will contain a set of active elements, each
elements with a lifetimewhich decays at the state dependent ratec(s, g). When the lifetime of an active
elements expires, the process moves to another stateg′ ∈ G with probabilityP(g, s, g′). When the
process changes from stateg due to the death of an active element the remaining elements fromg ∩ S∗

retain their residual lifetimes. Active elements new to the current state are given new lifetimes, as samples
drawn from their governing distribution functions. LetS ′, S∗ be disjoint, and such thatS ′ ∪ S∗ = S. If
s ∈ S ′ then the lifetime ofs is exponentially distributed; ifs ∈ S∗, s has a generally distributed lifetime.
A restriction on the process’s behaviour is that no two active elements fromS∗ may be activated or die
simultaneously.

Insensitivity results were originally presented with respect to the GSMP. Working with this model,
Matthes[5] showed:

Theorem (Matthes).Given a GSMP, the following two statements are equivalent:

(1) The process is insensitive to the elements ofS∗.That is, the distributions of the lifetimes of the elements
of S∗ may be replaced by any other distribution with the same mean, while still retaining the same
equilibrium distribution.

(2) When all elements ofS∗ are assumed to be exponentially distributed, the flux out of each state due to
the death of an element ofS∗ is equivalent to the flux into that state due to the birth of that element.

The second statement describes theinsensitivity balance equationsfor the GSMP.

3.1.2. Conditions for insensitivity
SPA and SPN[6] can be regarded as high-level performance modelling paradigms. These behavioural

description techniques are enhanced with timing information by associating durations, specified by ran-
dom variables, with some modelling features:transitionsin SPN andactivitiesin SPA. It is these durations
for which it would be useful to relax the exponential assumption. However, exploiting insensitivity is not
straightforward. This is because a feature which appears once in the high-level model may impact on
many states in the underlying stochastic process. Conditions for insensitivity have been investigated in
the context of SPNs. Some early work by Dugan et al.[7] considered SPNs which satisfied the following
rules:

(1) The firing time of non-conflicting transitions which are enabled concurrently must be exponentially
distributed.

(2) The firing time of an exclusive transition, a transition which is never enabled concurrently with
another, may be generally distributed.

The intuition for these rules can be understood by examining the authors’ choice of stochastic model,
thesemi-Markov process(SMP). An SMP is a renewal process that passes through a set of statesS at
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successive renewal points according to a transition probability matrix (therefore a Markov chain). For a
given sequence of states, the sojourn times in each state, given each successor, are independent. Therefore,
at transition times, this process has the Markov property. These two conditions can be readily understood
by recourse to the balance equations of the stochastic process. The second condition listed above is a
strong one; for such a transitiont , every marking in which it is enabled represents a state in which no other
transitions are enabled. However, this means the insensitivity balance equations fort are immediately
satisfied by the global balance equations for the states in whicht is enabled. However, the first condition
rules out generally distributed concurrently enabled non-conflicting transitions; there is no guarantee that
the insensitivity balance equations are satisfied by the global balance equations.

As described by Henderson and Lucic[8], a further condition, that a transition in conflict may be gener-
ally distributed, but all others with which it conflicts must be exponentially distributed, can be understood
as a practical restriction which means that the generated SMP, which features general distributions, may
be solved with little computational effort. The restriction leads to tractable next state probabilities, due to
a result presented by Ajmone et al.[9]. In principle, all concurrently enabled transitions which conflict
may be generally distributed. When one fires, all others are disabled, and an appropriate interpretation is
that when re-enabled, each transition is assigned a new time-to-live. This means that in any marking cor-
responding to a set of conflicting transitions, the next marking will not require a record of any transition’s
residual lifetime. Since the transitions notionally compete, the next marking should be chosen based on
the transition which is fastest to fire. Therefore, the distribution of the sojourn time in a state of the SMP
is given by the minimum of the distributions associated with each transition.

Henderson and Lucic[8] considered the conditions under which a GSMP may be produced from an SPN.
In their translation, SPN transitions are represented by active elements; in this setting, all concurrently
enabled generally distributed transitions carry over their spent lifetimes to successor markings. The
authors give a translation of Matthes’ theorem for use with SPN.

Corollary 3.1 (Henderson and Lucic[8]). The following two statements are equivalent:

(1) The SPN model is insensitive to each generally distributed transition t.
(2) If all generally distributed transitions t are assumed to be exponentially distributed with the same

mean, then for all markings j that enable t the flux, in the underlying Markov process, into j enabling
t is balanced by the flux out of j due to the death of t.

In general, the choice of successor state is time-dependent; consider two enabled transitions, one of
which, t , is uniformly distributed betweenm andn. If n time units elapse, thent must definitely have
fired. If a transition fires beforem time units pass, it must not have beent . This property is calledage de-
pendent routing. Fortunately, a result due to Rumsewicz and Henderson[10] states that thetime-averaged
stochastic process, with age-independent transition probabilities, gives the same equilibrium distribution
as the original process, under the condition that the time-averaged process is insensitive to its generally
distributed transitions. The technical difficulty is constructing the time-averaged mean sojourn time, given
a set of transitions with arbitrary distributions, and then the next state probabilities.

In Section 4we define a construction which guarantees the insensitivity of some PEPA activities. In
Section 4.2we present a corollary of Matthes’ theorem in the SPA context, and use this, together with a
GSMP semantics of PEPA to prove that the insensitivity result will hold whenever models are constructed
in this way. However, in the case of conflicting activities, we encounter the same difficulty with respect
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to time-averaged mean sojourn times and next state probabilities. This leads to a practical restriction on
the application of the result, which is discussed in detail inSection 4.3.

3.2. Process algebras with general distributions

An alternative and popular approach to incorporate the generally distributed random variables into
SPA is to build a process algebra where every activity may have a generally distributed lifetime. Such an
approach has both benefits and disadvantages. The obvious and greatest advantage is the extra modelling
flexibility this affords to the user. There is no longer a requirement that model activities have durations
which are exponentially distributed only. One disadvantage is that some familiar process algebra rules are
no longer applicable in general. For example, consider the parallel composition of two processes, each
capable of performing a single activity. The familiarexpansion lawstates, using informal notation, that
a‖b isobservationallyequivalent toa.b+b.a. However, whena andb are not modelled with ‘memoryless’
distributions, the interleaving approach is incorrect when a pre-emption with restart semantics is used.
This is because after one activity completes, the choice does not represent the residual lifetime of the
other activity.

When general distributions may be used arbitrarily in a process algebra model, it becomes very difficult
in general to numerically solve the process for a steady-state distribution. Non-Markovian process algebra
models correspond to less restricted stochastic processes. An early non-Markovian approach to process
algebra was exemplified by Harrison and Strulo[11]. Their framework enhanced traditional process
algebra with probabilistic and timed features, resulting in a model with three distinct transition relations.
Their approach to performance evaluation was to show how their models could evolve over time via a
discrete event simulation.

A recent example of a process algebra incorporating general probability distributions is generalised
semi-Markovian process algebra (GSMPA) by Bravetti et al.[12]. Their calculus incorporates all the
traditional process algebra combinators, including choice and parallel composition, and as in PEPA, typed
actions are assumed to have a duration. In[12] they provide a mapping to a GSMP, the stochastic process
introduced inSection 3.1.1. GSMPA is provided with a ST semantics, meaning that the evolution of an
action is represented as a combination of action start and action termination. In later work[13], Bravetti and
Gorrieri describe an alternative process algebra, interactive generalised semi-Markov processes (IGSMP),
incorporating generally distributed durations. Here, as in earlier work on interactive Markov chains
(IMCs) by Hermanns[4], typed actions are assumed to have no duration, whilst delays are represented by
anonymous actions with (generally) distributed durations. Bravetti and Gorrieri restrict IGSMPA so that
it is only possible to synchronise on untimed actions. In[13], the authors show that it is possible to reduce
models by amalgamating sequences of non-timed silent actions in such a way that certain properties of
the algebra are preserved and the underlying stochastic process is still a GSMP. Furthermore, the authors
list as further work extending their work such that collections of timed silent actions can be aggregated
in a similar fashion. For example, a sequence of generally distributedτ -actions could be reduced to a
singleτ -action distributed as the convolution of the distributions of those in the sequence.

In [12], Bravetti et al. give an example of a simple queueing system modelled in GSMPA, where the
queue has a deterministic service time. They determine that the resulting GSMP is insensitive when
particular states of the GSMP model are amalgamated, and then derive a CTMC which they are able to
solve conventionally for steady-state. The new derived combinator we present in this paper does not allow
the modeller the freedom to arbitrarily use generally distributed activities. Their use is limited to certain
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activities within the given construction pattern. However, insensitivity is guaranteed by construction, and
does not need to be determined by the modeller on a model-by-model basis.

An alternative SPA is spades(♠), introduced by D’Argenio et al.[14]. Once more, the authors choose to
separate the stochastic timed behaviour of the model from the actions it performs. Again this immediately
gives a more visible correspondence with a GSMP. For example, ifP is a spades process, then so is{|C|}P
where{|C|} represents a set ofclocks. Each clock has a distribution function, and thus corresponds to an
active element of a GSMP.{|C|}P represents a process where all clocks in{|C|} are set according to their
distribution functions, and begin counting down. The spades processC �→ P represents the process that
may becomeP if the clockC has reached 0. This represents a state change in a GSMP when an active
element reaches the end of its lifetime. Of course their calculus allows processes to be expressed in which
clock settings persist over transitions, and thus residual lifetimes are respected. Moreover, due to their
separation of action and duration, they recover a form of the expansion law. However, for performance
evaluation, they do not attempt to use analytical techniques, and instead choose discrete event simulation.

Finally, El-Rayes et al.[15] propose a distinctive approach to using general distributions in process al-
gebra. They propose PEPA∞

ph, a modification of PEPA, such that activities can be distributed by phase-type
probability distributions, and furthermore, consider models representing potentially infinitely many cus-
tomers in a queueing system. The solution of an infinite-state model relies on it having a restricted
structure—it must be decomposable into an initial portion, and a repetitive portion. The stochastic process
underlying such a restricted PEPA∞

ph model will then have a (infinite) generator matrix with a particular
repeating structure, and can be solved by using matrix geometric methods. Despite features in PEPA∞

ph
which are superficially similar to those present in this paper, the methods presented are quite dissimilar.
The models we construct implicitly contain models of queues, but none may contain an arbitrary num-
ber of customers. On the other hand, the theory ofinsensitivityemployed need not restrict attention to
phase-type distributions only. Furthermore, the models built using our new combinator can be solved in
an entirely conventional way, as if all activities were exponentially distributed, a property guaranteed by
the theory of insensitivity.

4. A structure for generally distributed activities

In this section, we present a derived combinator which allows construction of models containing
concurrently enabled activities and which are insensitive. Therefore, these activities may be generally
distributed. Simple sequential components directly generate an SMP and are insensitive to all activities;
similarly collections of concurrent, non-interacting sequential components are insensitive. However, such
models have little practical application. Our aim has been to introduce sufficient interaction to make our
models useful whilst constraining the form of interaction so that the insensitivity balance equations might
still be consistent with the global balance equations.

The form of interaction we introduce is indirect—concurrent sequential components do not interact
directly but influence each other’s progress via an imposedqueueing discipline. The derived combinator
we use specifies a set of action types and to perform activities of these types components in the scope of the
combinator are forced to cooperate with an arbiter process in a FCFS order. Whilst waiting for cooperation
we regard components as being in a ‘queue’ and we term models constructed with this combinator,queue-
ing discipline models. The combinator also imposes the rate at which queueing activities are completed.
As we will demonstrate, such models are insensitive to all activities enabled outside the ‘queues’.
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Section 4.1proceeds to define a new combinator,QA,ξ (·), leading to two results.Theorem 1demon-
strates the general solution form of queueing discipline models andTheorem 2proves the insensitivity
of a particular set of activities used in queueing discipline models.

4.1. A derived combinator for the queueing discipline

In this section, we introduce the new combinator,QA,ξ (·). It can be used to build PEPA models
insensitive to the distributions associated with particular activities. Assume a collection ofn complete
sequential componentsSi , 1 ≤ i ≤ n, upon which a queueing discipline is to be enforced. Now we present
a derived combinator which defines a cooperating processRA and a cooperation setMA, dependent on a
set of action typesA. As for a PEPA cooperation set, the hidden action typeτ may not appear inA.

Definition 1 (Simple queueing combinator).

QA(S1, . . . , Sn)
def=
(

n∏
i=1

Si

)
RA. (3)

An intuitive meaning for this notation is thatQA(S1, . . . , Sn) allows eachSi,1 ≤ i ≤ n, to proceed in
parallel, independent of each other, and only enforces synchronisation of eachSi with a distinguished
process, on action types determined by eachSi and the setA. If eachSi of a subset of processes currently
enables an activity whose action type is inA, eachSi must ‘queue’ to perform its activity. Therefore, at
any one time, only one of the queueingSi processes is allowed to proceed.

LetA be such that for eachα ∈ A, there exists a uniqueSi such that(α, r) ∈ �Act(Si) for somer; and for
eachSi , there exists a uniqueα ∈ A such that(α, r) ∈ �Act(Si) for somer. EachSi will be forced to queue
to perform its activity whose type is inA. The restrictions mean that within a life-cycle, each process
interacts with the arbiter only once and can be uniquely identified by the activity it seeks cooperation on.

Next we give some definitions which allow the specification of a cooperation setMA called thearbiter
synchronisation set. This procedure is mechanical, and could be simply automated.

Definition 2 (Enabling action type). LetS be a sequential component, anda an activity. Thenβ is an
enabling action type fora in S if

• for all derivativesS ′ of S such thatS ′ a→, there exists a derivativeS ′′ �≡ S ′ such thatS ′′(β,r)→ S ′ for somer;

• for every derivativeS ′′ of S such that for somer, S ′′(β,r)→ S ′, it is the case thatS ′ a→.

An enabling action type fora can be viewed as the type of an activity which may only be performed
immediately prior to the model enablinga, and which if performed, always leads toa being enabled. The
seteA(S) is a set of enabling action types for those activities ofS with types present inA.

Definition 3 (Arbiter synchronisation set). LetP ≡ QA(S1, . . . , Sn) be a process with a queueing
discipline. The arbiter synchronisation setMA of P is given by(

⋃n
i=1 eA(Si)) ∪ A.

We make the assumption that fori, j , the enabling action types of processSi are distinct from those of
Sj , i.e.,eA(Si)∩eA(Sj ) = ∅ for i �= j . This ensures there is no confusion over which component is about
to enter or leave the queue. Furthermore, for the models studied in this paper, we assumed that for every
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queue activitya that may be enabled by a processS, there exists an enabling action type fora in S. Next,
a processRA is defined which enforces the required queueing discipline.RA is called anarbiter process.

Definition 4 (Arbiter process). LetP ≡ QA(S1, . . . , Sn) be a process with a queueing discipline. Let
�ActA(P )=def{(α, r) ∈ �Act(P ) : α ∈ A} denote the set of queue activities belonging to processP . The

arbiter process forP is given byRA,〈 〉, defined as

RA,〈 〉
def=

∑
1≤i≤n

∑
α∈A

∑
β∈eα(Si )

(β,�).RA,〈Si〉,

RA,〈Sj ,Sm,...,Sn〉
def=

∑
1≤i≤n

i /∈{j,m,...,n}

∑
α∈A

∑
β∈eα(Si )

(β,�).RA,〈Sj ,Sm,...,Sn,Si〉 +
∑

(α,r)∈ �ActA(Sj )〉
(α,�).RA,〈Sm,...,Sn〉,

|{Sj , Sm, . . . , Sn}| < n,

RA,〈Sj ,Sm,...,Sn〉
def=

∑
(α,r)∈ �ActA(Sj )

(α,�).RA,〈Sm,...,Sn〉, |{Sj , Sm, . . . , Sn}| = n.

This arbiter process can be viewed as a PEPA definition of a queue, which enforces an ordering on
the processes it controls. The size of the queue specified by the combinator is equal to the number of
processes given as the combinator’s arguments.

4.1.1. A restriction on activity rates
The arbiter process given inDefinition 4only performs activities which are passive with respect to the

model with which it interacts. This simplifies the definition, and ensures that the arbiter does not affect
the rate at which any activities are performed. However, in order to gain insensitivity results, an extra
restriction is required—all queued processesmustperform their queue activities with a rate fixed for the
particular arbiter process and number of customers in the queue (i.e., the mean duration of the queue
activity of a queued process is common to all queued processes, and may vary only with queue length).
The restriction on the rates of the queue activities emphasises that these activities are really in the control
of the implicit arbiter process. As we will see in the example presented inSection 5, such a restriction is
natural in some applications. The effect of the restriction is that when the insensitivity balance equations
are constructed, they can be shown to be consistent with the global balance equations of the process.

It is a mechanical task to alter a PEPA model with a queueing discipline such that it conforms to this
restriction. Recall that the PEPA definition of a model with a queueing discipline over the action setA is
given by

QA(S1, . . . , Sn)
def=
(

n∏
i=1

Si

)
RA,

whereRA is the arbiter process andMA the arbiter synchronisation set. Now a simple translation of the
current queueing discipline model is defined such that it conforms with the required rate restriction. Cru-
cial to this translation is the use of PEPA’s passive activities. Currently, the arbiter restricts the behaviour
of processes, but does not affect the rate at which they perform activities. The idea behind the translation
is that each process right to individual behaviour in the queue is removed, by making the queue activity
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passive, so that the queue defines at what rate processes may pass through. Note that the queue activity is
made passive inside the process itself, although this would be carried out transparently to the modeller.

Definition 5 (Rate replacement). LetP be a PEPA process andA a set of action types that does not
containτ . ThenPA→� is the PEPA process where each occurrence of a non-passive activity(α, r) such
thatα ∈ A is modified such that it becomes passive, i.e., it is changed to(α,�). PA→� is defined on the
structure ofP as

P ≡ Q R : QA→� RA→�, P ≡ Q+ R : QA→� + RA→�,
P ≡ Q/L : QA→�/L, P ≡ (α, r).Q : (α,�).QA→� if α ∈ A,

P ≡ (α, r).Q : (α, r).QA→� if α /∈ A, P ≡ Q : Q′ where Q′ def= RA→� if Q
def= R.

Then the following modification of the arbiter process is made.

Definition 6 (Rate restricted arbiter process). LetP ≡ QA(S1, . . . , Sn) be a process with a queueing
discipline. Letξ be a sequence of rates〈κ1, . . . , κn〉, which defines the rate at which anySi will perform
its queue activity dependent on the current queue length. Then the arbiter process rate restricted byξ ,
R

ξ

A, is defined as

R
ξ

A,〈 〉
def=

∑
1≤i≤n

∑
α∈A

∑
β∈eα(Si )

(β,�).R
ξ

A,〈Si〉,

R
ξ

A,〈Sj ,Sm,...,Sn〉
def=

∑
1≤i≤n

i /∈{j,m,...,n}

∑
α∈A

∑
β∈eα(Si )

(β,�).R
ξ

A,〈Sj ,Sm,...,Sn,Si〉

+
∑

(α,r)∈ �ActA(Sj )

(α, κk).R
ξ

A,〈Sm,...,Sn〉, |〈Sj , Sm, . . . , Sn〉| = k < n,

R
ξ

A,〈Sj ,Sm,...,Sn〉
def=

∑
(α,r)∈ �ActA(Sj )

(α, κn).R
ξ

A,〈Sm,...,Sn〉, |〈Sj , Sm, . . . , Sn〉| = n.

Now it is a simple task to write out the definition of the rate restricted queueing discipline model.

QA,ξ (S1, . . . , Sn)
def=
(

n∏
i=1

SiA→�

)
R

ξ

A,〈 〉. (4)

4.1.2. Multiple queues
Now we define a model withseveralqueueing disciplines, i.e. there are several notional queues which

sequential processes may enter during a life-cycle. This is a straightforward extension of the model
structure used to build models with one queueing discipline. Assume that there areN queueing disciplines
and for 1≤ i ≤ N , letAi be a set of action types such that for 1≤ i < j ≤ N ,Ai∩Aj = ∅;A∗ =

⋃N
i=1 Ai

andξi a finite sequence of rates as before.

Definition 7 (Extended queueing combinator).
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Q〈A1,ξ1,...,AN ,ξN 〉(S1, . . . , Sn)
def=
(
· · ·
((

n∏
i=1

SiA∗→�

)
R

ξ1
A1

)
· · · R

ξN
AN

)
. (5)

This notation is cumbersome, and so the shorthandQχ(S1, . . . , Sn) is used to represent

Q〈A1,ξ1,...,AN ,ξN 〉(S1, . . . , Sn).

4.2. Mapping a PEPA queueing discipline model to a GSMP

To study the insensitivity of activities in queueing discipline models, this section provides a translation
to a GSMP. Such a mapping was given by Hillston[16] for earlier work on examining insensitivity of
PEPA models. In that paper, Hillston gives a mapping for a PEPA model as a configuration oftop-level
components, e.g., for a cooperation of two sequential components. The active elements of the GSMP are
multisets of enabled activities. Such a cooperation would in general enable three active elements—one
for the multiset of individual activities that each component could perform individually, and one for the
activities on which each component must cooperate. For example, consider the PEPA component

((α, r1).P1 + (γ, r2).P2) ((α, s1).Q1 + (β, s2).Q2 + (γ, s3).Q3). (6)

Under Hillston’s mapping, this component is represented by the GSMP state

({(γ, r2)}, {(γ, s3)}, {(α, t1)}) where t1 = min(r1, s1). (7)

The active elements present represent the individual abilities of both sides of the cooperation to proceed,
and one element to represent the shared ability of the component to proceed via cooperation. Such a
mapping is appropriate since the PEPA semantics uses a pre-emption with restart policy. The PEPA
model structure studied in this paper is of a restricted form, and so the GSMP mapping provided is more
limited, and in particular does not need to take account of arbitrary cooperation in PEPA models.

The approach used in this paper is based on the consideration of PEPA models of the form described
in Section 4.1.2, i.e., a collection of concurrent sequential components with queueing disciplines. In this
approach, an active element of the GSMP is constructed from a sequential component as a multiset of pairs,
where each pair is an enabled activity and the PEPA derivative that results. Without a queueing discipline,
only simple models need be considered; these consist of the unrestricted cooperation of sequential PEPA
components. For example, consider the component given below:

((α, r1).P1 + (γ, r2).P2)‖(β, s1).Q1. (8)

Under the new mapping, this component would be represented by the GSMP state

({|((α, r1), P1), ((γ, r2), P2)|}, {|((β, s1),Q1)|}). (9)

Since we wish to be able to uniquely determine the GSMP successor state resulting from each active
element, we now include the derivatives as well as the activities in the active element. This means that if
concurrent active elements arise from activities with the same name we can still distinguish between them.

The queueing discipline consists of a component, the arbiter process, with the potential to interact with
each of the sequential components; however, the component has no individual ability, and must cooperate
in order to evolve. In this respect, the queueing discipline provides a similar restriction to that described
by Hillston and Thomas in[17]. Its effect on the GSMP state is not to add active elements, but rather to
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reduce the number of activities which constitute existing active elements. Now a more formal definition
is presented.

Definition 8 (GSMP state). The GSMP state corresponding to derivativeP ′ ≡ Qχ(S
′
1, . . . , S

′
n) is given by

n∏
i=1

{|(a,Qχ(S
′′
i )) : Qχ(S

′
i)

a→Qχ(S
′′
i )|}. (10)

Note that this is a conventional Cartesian product over sets. The GSMP state representation of a component
P is denotedP̂ .

This definition gives rise to a GSMP with some simple properties. If we consider the derived form of
the queueing discipline models, it is clear that each activity ofQχ(S1, . . . , Sn) is either an independent
activity of someSi or a shared activity ofSi in cooperation with the appropriate arbiter process. Moreover,
the completion of an activity will always result in the death of an active element, even if the active
element contains more than one activity. Thus, the death of an active element corresponding toSi for
somei will not cause the death of any active elements for componentsSj , j �= i. Since interest will be
limited to studying when activities, and thus active elements, can be generally distributed, this property is
important—it ensures that the remaining lifetime of an active element representing an activity will persist
over a state change, unless the state change corresponds to the completion or disabling (by competition)
of that activity. A further related property is that any transition which can be made byQχ(S1, . . . , Sn)

can be inferred from a transition made byQχ(Si), for somei.
Since this is an alternative model for a PEPA process, it is important that it preserves the performance

properties of the original model too. The lifetime of an active element is defined next.

Definition 9 (Active element lifetime). Lets be an active element present in stateP̂ . The lifetime ofs is
exponentially distributed with mean

 ∑
{|((α,r),Qχ (S ′))∈s|}

r




−1

. (11)

The rate of departure from statêP is denoted bŷq(P̂ ), and given by
∑n

i=1

∑
(α,r)∈ �Act(Qχ (Si))

r.

Since an active element is amultisetof activities, then the death of an active element also corresponds
to the disabling of more than one activity in general. This interpretation is correct, since the multiset will
representcompeting, and therefore mutually disabling, activities, as the result of a sequential component
offering a choice. When an active elements of a stateP̂ dies, the probability that the next state isP̂ ′ is
given by a probability distributionp(P̂ ′; P̂ , s). This is defined as follows.

Definition 10 (GSMP next-state probability). LetP ≡ Qχ(S1, . . . , Sn), andP ′ ≡ Qχ(S1, . . . , S
′
j , . . . , Sn)

such thatP → P ′. Given thatsi is the active element that dies in stateP̂ , the probability that the next
state isP̂ ′ is given by

p(P̂ ′; P̂ , si) = 1(j = i)

(∑
W r∑
V r

)
, (12)

whereW = {|((α, r),Qχ(S
′
i)) ∈ si : Qχ(Si)

(α,r)→Qχ(S
′
i)|} andV = {|((α, r),Qχ(S

′
i)) ∈ si |}.
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The probability that the next state iŝP ′ is denoted byp̂(P̂ , P̂ ′), and is given by
∑n

i=1 p(P̂
′; P̂ , si).

Although not concise, these definitions are intuitive. An active elements of a stateP̂ is a multiset of
pairs of activities and derivatives. The activities constitute a particular subset of the enabled activities of
P . These are used to specify the mean lifetime ofs. The derivatives capture how the GSMP can evolve
on the death ofs, and are used to define the successor state probability distribution.

Now some simple results about the GSMP model are illustrated. The GSMP model is a faithful repre-
sentation of the original PEPA model meaning in particular that performance properties are preserved.

Lemma 4.1. LetP ≡ Qχ(S1, . . . , Sn). Thenq(P ) = q̂(P̂ ).

Lemma 4.2. Let P ≡ Qχ(S1, . . . , Sn) and P
(α,r)→ P ′ (therefore, P ′ ≡ Qχ(S1, . . . , S

′
j , . . . , Sn) for

some j). Thenp(P, P ′) = p̂(P̂ , P̂ ′).

These results are almost self-evident by deliberate construction of the GSMP model, but they illustrate
that the GSMP performance model will faithfully represent the PEPA model.

For a PEPA model, this GSMP mapping would result in active elements with exponential lifetimes.
However, in particular circumstances, generally distributed active elements will be allowed, and it is
shown that these do not affect the steady-state solution. At the process algebra level, the modeller would
wish to use general distributions when describing the duration of an activity. In an insensitive model, a
generally distributed active element representing a set of (albeit mutually disabling) activities results in a
next state probability which is well-defined[10], but which is in general difficult to calculate. However,
note that where a sequential component does not currently enable a choice, then the active element is
represented by a single activity. In such circumstances, the next state probability is trivial. Furthermore,
despite the loss of behavioural independence of each sequential component due to the restrictions of the
queueing discipline, it is still the case that such activities are provably insensitive. With this mapping, an
analogous form of Matthes’ theorem can be stated for PEPA models.

Corollary 4.1. The following two statements are equivalent:

(1) The PEPA model is insensitive to each generally distributed activity a.
(2) The purely Markov process, i.e. whenS = S ′, has the property that for all states P that enable activity

a, the flux into P enabling a is balanced by the flux out of P due to the completion or disabling of a.

Comparing this withCorollary 3.1, it can be seen that the condition for the flux out of a state looks to
be different. The explanation for this is that each state of the GSMP for a queueing discipline model is
constructed as a multiset of pairs of activities and PEPA terms, and the theory of insensitivity deals with
the death of active elements of the GSMP. If an active element of a queueing discipline model ‘dies’, one
of the activities that makes up the active element completes, and all the others are disabled.

4.3. Queueing discipline structure, insensitivity and product form

Given the process algebra definitions of the queueing discipline framework above, we can now formally
analyse the structure of the models it produces. The aim of the work in this paper is to examine conditions
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for insensitivity of activities in process algebra models. The first result gives insight into why the structure
of models built with the new combinator is related to insensitivity; we show that the solution of such
models is a product form over both the solutions to the individual sequential components, and the current
queue lengths.

Let there be a size-n set of sequential PEPA componentsSi , i.e., a set of components each without
the syntactic cooperation or hiding operators. Now assume a model of the formQχ(S1, . . . , Sn) where
χ = 〈A1, ξ1, . . . , AN, ξN 〉. Therefore,Aj defines the set of activities by which componentsSi may
leave thej th queue, and also implicitly defines which componentsSi may enter the queue. Recall from
Section 4.1that we assume that for any 0≤ i < j ≤ N , the arbiter cooperation sets ofSi andSj

are pairwise disjoint. This condition ensures that at each point in the evolution of eachSi , it may enter
either one queue only, or none at all, and that there is no confusion over which process will leave a queue.
Furthermore, we assume that if a sequential process,Si , enables a queue activity, then it has no potential to
perform another activity; effectively, it must wait its turn in the queue. Currently, processes may not leave
a queue such that they move directly into another queue, i.e., for any 0≤ i < j ≤ N , eAi

∩Aj = ∅. This
restriction is only in place for simplicity, and indeed it is conjectured that the restriction is unnecessary.
However, the extension remains as future work.

Let Θ represent the set of processes currently queueing. At any point, a number of processes may
be queued due to thej th queue. Letqj represent the current queue length anddj the maximum length
(i.e. dj = |ξj |, recalling thatξj is a sequence), such that 0≤ qj ≤ dj . If Si is currently at the front
of thej th queue, it may perform its queue activitya with action type inAj at a rateκjqj

. The notation
is used with respect to the state currently being considered. For convenience,κj0 is defined to be 0 for
eachj .

Finally, each sequential component is a PEPA process in its own right, and as such, its underlying
stochastic process has a steady-state probability distribution. Letπi(·) denote the steady-state probability
distribution ofSi ; then ifS ′

i ∈ ds(Si), the long-run probability of being present inS ′
i is given byπi(S

′
i).

With all notation in place, the theorem can now be stated:

Theorem 1. LetP ≡ Qχ(S1, . . . , Sn). The steady-state solution of P is given by

π(P ) = 1

G

n∏
i=1

πi(Si)

N∏
i=1

di∏
j=qi+1

κij

∏
i=1
Si∈Θ

∑
(α,r)∈Act(Si )

r,

where1/G is a normalising constant.

Due to space limitations, the proof for the result above is omitted though it can be found in full in
[18]. The approach taken was standard, that being to propose a general form of solution, and then show
that it satisfies the global balance equations of the stochastic process underlyingP . Now that we have
exhibited the general form of the steady-state solution for models built with the queueing combinator, we
can easily study further sets of balance equations. The next result relies oninsensitivity balanceequations
for particular activities present in queueing combinator models.

Theorem 2. Given a PEPA modelP ≡ Qχ(S1, . . . , Sn), P is insensitive to each activity in�Act(Si), for
1 ≤ i ≤ n, with the exception of those activities in the set(

⋃n
i=1 eA∗(Si)) ∪ A∗, whereA∗ =

⋃N
i=1 Ai .
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Again, the proof is omitted but can be found in[18]. It proceeds by constructing balance equations,
namely the insensitivity balance equations for the non-queue activities. These equations are satisfied with
respect to a state and an activity if it is the case that the steady-state solution of the process depends on the
distribution of the activity rateonly through its mean.Theorem 1guarantees the form of the solution for
our queueing models, and we have shown that this is also a solution to the insensitivity balance equations
for states which do not enable queue activities. Therefore, the process is shown to be insensitive to
the residence time in these states, and therefore insensitive to the activities represented by the active
elements.

Remark. The application ofTheorem 2raises some technical difficulties. The aim of the work is to
consider the insensitivity of PEPA activities, but when a particular derivative enables more than one
activity, in the context of a choice, it is difficult in general to construct the time-averaged distribution of
the minimum of the distributions of these activities. This means that if a derivative enables more than one
activity, then these activities may still be insensitive to the forms of their distributions, but calculating the
parameters of the corresponding Markov process may be difficult. Therefore, for practical purposes, the
result can be considered to be limited to activities which are not in competition.

5. A simple transaction processing system

We illustrate our queueing discipline by using it to give a simple model of a transaction processing
system. In recent years, the demand for these systems has grown rapidly, along with a strong focus
on performance requirements. These systems consist of a centralised database, which controls a set of
databaseobjects; and a set oftransactions, which attempt to access database objects, and thus perform,
e.g., user queries. Models of transaction processing systems abound in the literature; we refer the interested
reader to[19] as a starting point.

The example we present is a simple transaction processing system, with components to represent a
collection of transaction classes, and a manager to enforce locking rules on database objects. Broadly,
each transaction class may launch a transaction, which may then attempt to access particular database
objects, be they pages or even records. In a typical database system, each object will be in a certain state of
access—perhaps currently being modified by a transaction, or perhaps not being used at all. A transaction
in our model may either attempt to:

• modify a particular database object, in which case it attempts to acquire awrite lock for that object, or
• read a particular object in its current state, in which case it does so regardless of any locks present on

that object; this is called adirty read.

Dirty reads are useful when a set of data is required often and in real-time. Although they run the risk
of occasionally reading out-of-date information, they have the great advantage that they do not impact on
transaction concurrency, and so keep transaction throughput higher. However, if a transaction acquires a
write lock on an object, no other transaction may also acquire a write lock until the first hascommittedits
changes. This is modelled by forcing such transactions to block in an orderly fashion, sequentially gaining
write access to the required object. According to the attributes of the class it belongs to, each transaction
will choose to read from or write to an object with a fixed probability; and after the object access, another
transaction of the same class will be immediately generated with another fixed probability. In this way,
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Fig. 1. PEPA model of a transaction class.

different transaction classes will be characterised in part by the mean number of transactions generated
in a row.

We proceed by giving a model inFig. 1which represents a class of transactions; i.e., it can be used as
part of a model when a sequence of transactions with particular characteristics are required. Component
TxnCi represents the state in which no transactions of classCi are presently being processed. From
this point, we specify that there is a delay, athink time (mean 1/ti), before the user generates a job
which requires access to the database. The think time represents the delay between jobs generated by the
supposedith user or application. From here, a transaction begins the process of accessing the database by
attempting either a write lock, or a dirty read, which is modelled by a probabilistic choice over thework
activity. The issue of deadlock is avoided since in our model, transactions cannot accumulate locks—
locks are released immediately the processing of an object is complete. Our model is therefore closer
to astatic locking methodology[19]. Written changes are committed via the(commitij,�) activity.
This is passive because intuitively, the database manager will be the determining factor in how long such
commits will take.

Assuming that the transaction requires exclusive locks (such that other transactions must wait to access
the locked objects), the additional factorpj governs which area of the database the transaction wishes
to access. In this way, we capture the fact that parts of the database may be more frequently accessed
than others. This phenomenon is known variously as the ‘b–c’ rule and ‘80–20’ rule[19], meaning that
b% (20%) of the database is accessed on averagec% (80%) of the time. Activitieswritelock and
dirtyread model the point at which the transaction attempts to access an object. If a write lock is
awarded, the object is used, and the transaction commits its changes. The work of the current transaction
is now done, and the model now probabilistically determines if the current job features more transactions
(probabilityr)—if so, another is generated, and if not, we await another job from theith user.

The next requirement is to model the central database itself. This model allows access toM classes of
write-locked database objects, and enforces a two-phase locking concurrency control scheme. Given the
above definition, modelling the transaction processing system using a queueing discipline is straightfor-
ward. First, we construct the types of the queue activities for each lock manager:

Ai = {writelockij : 1 ≤ i ≤ M}, 1 ≤ j ≤ n.

Secondly, we require that the database controls how long a commit takes to complete. We have the
freedom to allow this to vary depending on how many transactions are currently waiting to commit their
changes. Let

ξj = 〈µj0, µj1, . . . , µjM〉 for 1 ≤ j ≤ n,
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whereξj is a vector of rates; a commit on thej th database lock is exponentially distributed with rateµji

when i transactions are currently waiting to commit their changes. The needs of the modeller may be
such that only fixed rates are required independent of the number of transactions queued, i.e.µji = µjk

for all i, k.
We assume that in a situation when a lock manager cannot accept any more transactions, it still controls

the rate of access to the database. This leads to a representation of TPS as

TPS
def=Qχ(TxnC1, . . . ,TxnCM) where χ = 〈A1, ξ1, . . . , AN, ξN 〉. (13)

There are elements of this model which it may not be appropriate to model using an exponential distri-
bution. One such activity may be the think time of each user, i.e.thinki, 1 ≤ i ≤ n, e.g. if the ‘user’
in one case is a computer program generating transactions at a constant rate. In this case it is possible to
choose a generally distributed duration of activity, since the TPS has been modelled by making use of the
new queueing combinator. Rate restriction is in place, since each lock manager controls the rate at which
waiting transactions may commit changes to the database, i.e.commitkj activities happen at a constant
rate. Therefore, the rate is fixed independent of the number of blocked transactions, which is actually
stricter than the queue-length dependent rates required. This is not unreasonable, since access times will
depend on the database objects, not on the transactions themselves.Theorem 2allows us to model the
transaction processing system in PEPA, yet with no assumption of the stochastic nature of eachthinki
other than each mean.

6. Related and further work

Ours is not the first syntactic characterisation of criteria for SPA models which generate product form
solutions. Over recent years several such criteria have appeared in the literature[17,20,21]. Given the
clear compositional structure of SPA models, it is a natural goal to seek to identify those cases when
the model structure can be exploited for efficient decomposed solution. In all such cases the models are
restricted in form, and the previous approach has been to formulate these restrictions in terms of syntactic
conditions against which any given model can be checked. Our approach in this paper is distinct in that
we provide a new combinator whichguaranteesthat models satisfy the necessary restriction. Below,
we briefly survey the previous work on product form SPA and discuss how each of the captured criteria
relates to our class of models.

An initial study of SPA models giving rise to reversible Markov processes was presented by Bhabuta
et al. in [22]. This paper largely considered the problem at the level of the underlying state space. In
[20], Hillston and Thomas, identify syntactic conditions which an SPA model must satisfy in order for
the underlying process to be reversible. First, a basic class of sequential components which give rise to
reversible structures are identified. Then, assuming that a known class of reversible SPA components
exist, the authors investigate under what circumstances the conditions for reversibility will be preserved
if reversible components are composed using the combinators of the SPA. Fundamental to the basic class
of reversible sequential components is the notion of areverse pair. A pair of action types(α,−α) form a
reverse pair if, in any state, anyα transition leads to a state in which a−α transition leading back to the
original state. This is an abstraction of the notions ofarrival anddeparturein a queue. In[20] various
canonical forms for sequential reversible components are described as well as conditions under which
reversible components can be composed without losing the reversibility property. These criteria rely on
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a resource- or server-centricview of the system, in which system behaviour is captured by representing
the local states of the resources of the system. As we will explain below, our class of models present a
customer-centricview of systems. Syntactically these two views are quite distinct.

Harrison and Hillston[23] explore SPA structure which give rise toquasi-reversible(QR) models.
Again, a basic class of QR sequential components is identified and then conditions under which they
can interact whilst preserving the QR property are investigated. Again, a resource-centric view of the
system is assumed, making the models very different in appearance to those considered in this paper. The
restrictions placed on the form of interaction are strong. Not surprisingly, given the origins in queueing
networks, the form of admissible interaction is aflow cooperation. This means that the ‘positive’ half of
a reverse pair in one component is carried out in cooperation with the ‘negative’ half of a reverse pair
in another. The ‘positive’ actions correspond to the input process in the definition of quasi-reversibility,
while the ‘negative’ correspond to the output process.

In [21], Sereno derives product form criteria for SPA models based on earlier work on product form
criteria for SPN[24–26]. He defines a Markov process in which the states correspond to the actions of
the SPA model, all of which are assumed to be distinct. This is called therouting process. The conditions
for this process to exist place severe restrictions on the forms of synchronisation and resource contention
which can be represented in the model. For each action, the sequential components which participate in
the action must, as a result enter local states that collectively enable another action; moreover, they must
be the only participants necessary to complete the other action. Our insensitive structure, generated by
the queueing discipline PEPA models, are not subject to these restrictions. In particular, the action which
removes a component from a queue, involving the arbiter in addition to the component, will result in the
enabling of two or more distinct actions, one by the arbiter and one by the component.

In [27], Boucherie describes a class of Markov processes which are formed using a simple exclusion
mechanism for product processes. In[17], Hillston and Thomas give a syntactic characterisation of these
processes as PEPA models. The models they describe are perhaps the closest to the models presented in
this paper. As in this paper, the models considered take a customer-centric view of the system modelled.
In both cases the characterised models represent the competition, of otherwise independent components,
over resources. However, the exclusion mechanism at the basis of Boucherie’s class of processes imposes
a powerful restriction on the behaviour of competing components. If two components compete over a
resource, and one of them is currently holding the resource, then the other cannot make any state change,
no matter where it is in its state space. This restriction is not necessary, and is not imposed, for the models
presented in this paper. Although two components may be subject to the same queueing discipline, the
fact that one of them is currently ‘using the resource’ (enabling a shared activity with the appropriate
arbiter) does not prevent the other from enabling its own activities outside the queue.

6.1. The new combinator and BCMP queues

We note that the product form solution for our structure, along with the use of queueing disciplines,
suggests a link to the well-known class of BCMP network queueing models[28]. This similarity is worth
exploring further and formalising. The BCMP theorem states that queueing networks with nodes which
can be classified as

• First come first served (FCFS); or
• Processor sharing (PS); or
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• Infinite server (IS); or
• Last come first served-pre-emptive resume (LCFS-PR).

and which also contain multi-class traffic having a product form solution for the steady-state probability
distribution of the node states. A comparison with the structure of models we present here suggests that it
may be possible to view them too as networks of queues, which helps to explain the product form result
we have obtained. To illustrate this, we consider a model built using our combinator, and show how it
can be interpreted as a closed queueing network.

Let χ = 〈A1, ξ1, . . . , AN, ξN 〉. By definition, a modelQχ(S1, . . . , Sn) is of the form(
· · ·
((

n∏
i=1

SiA∗→�

)
R

ξ1
1

)
· · · R

ξN
N

)
,

whereA∗ =
⋃N

i=1 Ai . We assume that for 1≤ i ≤ N , if both (α, r) ∈ �Act(Si) and(α, s) ∈ �Act(Si), then
r = s. Further, we assume that for anyi �= j , �A(Si) ∩ �A(Sj ) = ∅. EachSi has the capacity to perform
individual activities, except where specified by the setsAj , 1 ≤ j ≤ N . This individual behaviour can
be separated and captured in the following way. LetBi = �Act(Si)\{(α, r) : α ∈ A∗}. Now consider the
following PEPA definition:

ISi
def=

∑
(α,r)∈Bi

(α, r).ISi . (14)

Each sequential componentSi is now altered such that each of its activities is passive. LetCi = �A(Si)\A∗;
put together with ISi , we recover a sequential component isomorphic toSi :

Si = SiA∗→� ISi . (15)

This construction explicitly separates the sequential component from its timing behaviour, which is now
specified by ISi . We suggestively rename each arbiter processR

ξi
i to FCFSξii , meaning the entire model

can now be constructed as

Qχ(S1, . . . , Sn) =
(
· · ·
((

n∏
i=1

SiA∗→� ISi

)
FCFSξ1

1

)
· · · FCFSξNN

)
. (16)

This can be understood as a queueing network, with a marked separation in the modelling of each of its
features.

The roles of each ISi are intuitive—any behaviour ofSi that was originally individual toSi is interpreted
as the passage of customeri through aninfinite servernode. Customeri is held up for a (stochastically)
fixed delay, and there is no queueing. FCFS

ξj
j is a shared resource, representing afirst come first served

node. Depending on the action types enabled bySi , as it models customeri’s passage through the network,
customeri may be forced to queue at this node for service; of course it may have to wait its turn behind
other customers which arrived prior to it.ξj specifies a vector of rates, and FCFS

ξj
j determines the rate at

which a customer receives service depending on how many customers are currently queued. The FCFS
nodes mark the points in the queueing network where customers meet.

This provides a PEPA translation of a subset of possible BCMP queueing networks. Our translation
is customer-centric, in that we construct the network from the point of view of the passage of classes
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of customer. This is in contrast to the traditional view of a queueing network which identifies states
with vectors of natural numbers, denoting the number of customers present at each service centre. We
have only consideredclosednetworks; there are no external arrivals. While external arrivals could be
modelled in PEPA, our translation relies on the fact that the queues may only hold a bounded number
of customers. Furthermore, we have not discussed the translation of BCMP queues with LCFS-PR or
PS nodes.

7. Conclusion

To summarise, we have presented a new derived combinator for PEPA. This combinator is used to
construct models of sequential processes which synchronise according to a queueing discipline. We show
that despite such synchronisation, we can guarantee the insensitivity of residence time in particular states
of the model, and thus can guarantee insensitivity of PEPA activities in these cases. Where the state
does not enable a syntactic choice, we may choose to employ a non-exponential distribution to model
the duration of the enabled activity. We believe this work should translate for use with other Markovian
process algebras.

The structure we present is rigid, and the combinator builds PEPA models which are certainly a small
subset of those possible with the complete algebra. However, this restrictive structure seems necessary in
order to obtain insensitivity results; the insensitivity balance equations themselves place strict demands
on the stochastic process. It is not possible to use the combinator to build arbitrary PEPA models; however,
we have shown inSection 5that some real-life systems do exhibit the required structure at a suitable level
of abstraction. For the future, we plan to further investigate syntactic structures in which insensitivity
may be exploited.

An aspect of this work that we have not dealt with in this paper isaggregation. Hillston’s original work
on insensitivity for PEPA models[16] was motivated by a desire to remove behaviourally inert sequences
of silent τ activities. Hillston showed that in particular circumstances the residence time spent in the
set of states constituting the sequence was insensitive, and therefore, the sequence could be treated as a
singleτ activity. Use of the work in this paper for aggregation would also be a legitimate pursuit; e.g.,
circumstances in which we may use a generally distributed activity could represent situations where part
of the state space of the PEPA model has been aggregated.
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