
Evaluating quality of service for service level
agreements

Allan Clark and Stephen Gilmore

Laboratory for Foundations of Computer Science, The University of Edinburgh,
Edinburgh, Scotland

Abstract. Quantitative analysis of quality-of-service metrics is an im-
portant tool in early evaluation of service provision. This analysis de-
pends on being able to estimate the average duration of critical activities
used by the service but at the earliest stages of service planning it may
be impossible to obtain accurate estimates of the expected duration of
these activities. We analyse the time-dependent behaviour of an auto-
motive rescue service in the context of uncertainty about durations. We
deploy a distributed computing platform to allow the efficient derivation
of quantitative analysis results across the range of possible values for
assignments of durations to the symbolic rates of our high-level formal
model of the service expressed in a stochastic process algebra.

1 Introduction

Service-oriented computing (SOC) is an important focus area for industrial com-
puter systems, highlighting the crucial interplay between service provider and
service consumer. Service-level agreements (SLAs) and service policies are key
issues in service-oriented computing. A service-level agreement typically incor-
porates a time bound and a probability bound on a particular path through the
system. It will make clear the metric against which the service is being judged,
how the service provision will be measured, and the penalty to be exacted if the
service is not delivered with the agreed level of quality of service (QoS). We are
concerned here with the quantitative core of an SLA and wish to answer for-
mally questions of the form “Will at least 90% of all requests receive a response
within 3 seconds?” which has as a probability bound “at least 90%”, as a time
bound “within 3 seconds”, and as the path through the system “from request to
response”.

A service-level agreement needs to be established in the early specification
phase for a commissioned service, and the service provider needs to ensure not
later than that point in time that the SLA is credible. High-level formal mod-
elling is helpful here because it allows us to pose precise questions about a
formal model of the service to be provided and to answer them using efficient,
proven analysis tools [1]. The difficulty at the early specification phase is to
know whether we can match the quantitative constraints of customers’ requests
against the efficiency or performance of the implementation of our service. In

1

the early specification phase in model-driven software development we have no
measurement data which we can use to parameterise our high-level quantitative
model (since the implementation has not yet been built), leading to uncertainty
about the values of the rate constants to be used in the computation of the
passage-time quantiles needed to answer the questions about satisfaction of QoS
constraints.

This uncertainty is manageable in practice because although we may not
know precisely the value of the rate constants to be used in the model we may
know a range of values within which they will lie. The problem then is simply to
evaluate our model against our SLA measure a (possibly large) number of times.
This can be done by performing a parameter sweep across the range of possible
values for the rates. If each of these computations leads to the conclusion that
the SLA can be met, then we can accept it even in the presence of uncertainty
about the rate values. However, if any of the computations leads to the conclusion
that the SLA cannot be met, then we must revise the SLA to loosen the time
or probability bounds which it mandates and see if this weaker SLA is still
acceptable to the service consumer. An alternative would be to try to improve
some of the rates at which key activities are performed, in order to fulfil the
stricter SLA and avoid the need to weaken the time or probability bounds.
To help with identifying the key rates in the model we need to investigate the
sensitivity of the model to changes in individual rates. To do this we evaluate
our chosen measure for each rate repeatedly while varying the rate throughout
its range of allowable values. This will allow us to identify those rates which
have a major impact on performance if varied and those rates which impact on
performance little.

Specifically, we are addressing in the present paper analysis methods and
tools for the efficient computation of cumulative distribution functions (CDFs)
which decide whether a service-level agreement will be met. Set against this
means of evaluating SLAs by parameter sweep is the attendant computational
cost of the many numerical computations needed to compute the many CDFs
required. The approach which we follow here is to evaluate simultaneously many
runs of the Markov chain analyser used. Parameter sweep is an approach which
falls into the class of problems commonly known as “embarrassingly paralleliz-
able”. That is, there are many independent copies of the code being run in
isolation with none of the complexities of management of synchronisation points
which are usually associated with parallel codes. In this setting a simple ap-
proach based on a Network of Workstations (NoW) architecture will be effective
in delivering the computational effort needed.

We used the Condor [2] high-throughput computing platform to distribute
the necessary SLA computation across many hosts. Condor is a widely-used
long-standing workload management system. A recent paper presenting the key
ideas is [3].

We model our service in the PEPA process algebra [4]. Our models are com-
piled into stochastic Petri nets by the Imperial PEPA Compiler, ipc, and these
are analysed by the Hydra release of the DNAmaca Markov chain analyser [5], a

2

state-of-the-art stochastic Petri net tool which computes the passage-time quan-
tiles needed in the computation of a CDF used in the evaluation of an SLA.

PEPA models submitted to ipc must be Cyclic PEPA [6], formed by the
composition of co-operating sequential components. Each of the sequential com-
ponents at the leaves of the process tree is viewed as a finite state automaton
with timed Markovian transitions and converted into a Petri net state machine.
ipc then recurses back up the process tree composing these nets until it has
produced a single net representing the complete PEPA model.

2 Related work

Our use of Hydra on a distributed workload management system such as Condor
is different in nature from previous work on using Hydra on distributed-memory
parallel machines (examples include [7]) and distributed compute clusters (ex-
amples include [8]). One difference is that we initiate our Hydra execution from
a PEPA model, via ipc, and are therefore using Markovian modelling exclusively
([8] addresses semi-Markov models). In work such as [7], [8] and [9] the emphasis
is on grande modelling, where detailed models of systems are evaluated in the
setting of many component replications. Due to the multitude of possible inter-
leavings of the local states of each of these subcomponents it is not uncommon
for such grande modelling to give rise to statespaces of order 106 [8], 107 [7],
108 [9], or 109 [10]. Although such sizes might seem modest if compared to the
sizes of models analysed by non-quantitative procedures these dimensions place
these analysis problems on the edge of tractability for Markovian analysis.

In contrast to the above, the style of modelling which we are using here is
diminutive. Most nodes in our Condor cluster are typical desktop Pentium 4
PCs, with 1 CPU and with 1Gb of RAM. Each of these must be able to solve
our modelling problem independently. The difference is that the prior work cited
above is solving very large models a relatively small number of times whereas
we are solving relatively small models a very large number of times.

An alternative method of answering the same question about service-level
agreements would be first to encode the statement of the QoS measure as a
formula in Continuous Stochastic Logic (CSL) [11] and then to model-check
the formula against the PEPA model using the PRISM probabilistic symbolic
model checker [12]. Computationally, this solution procedure would be very sim-
ilar to the method which we employ, using uniformisation [13, 14] to compute
the transient analysis result needed from the continuous-time Markov chain rep-
resentation underlying the PEPA model.

While this approach would have been successful for solving one run of the
numerical computing procedure required we believe that we would have found
difficulty in hosting multiple runs of PRISM on the Condor platform. As a batch
processing system Condor has a notion of execution context called a universe.
The ipc and Hydra modelling tools which we used run as native executables in
Condor’s vanilla universe. Java applications run on Condor’s java universe
(developed in [15]). However, PRISM combines both Java code and native C

3

code in its use of the CUDD binary decision diagram library [16] via the Java
Native Interface. The general approach to running Java code with JNI calls under
Condor would be to execute the JVM under the vanilla universe because the
java universe cannot guarantee to provide necessary libraries for the native code
part of PRISM. However, this would in general require first copying the JVM
binary onto the remote machine before execution of PRISM could begin. This
would impose a heavy penalty on run-time which would offset significantly the
advantages to be gained from Condor-based distribution.

3 Markovian process algebras

Markovian process algebras such as PEPA extend classical process algebras by
associating an exponentially-distributed random variable with each activity rep-
resenting the average rate at which this activity can be performed. The random
variable X is said to have an exponential distribution with parameter λ (λ > 0)
if it has the distribution function

F (x) =
{

1− e−λx for x > 0
0 for x ≤ 0

The mean, or expected value, of this exponential distribution is

µ = E[X] =
∫ ∞

−∞
xλe−λxdx =

1
λ

An activity in a PEPA model takes the form (α, λ).P (“perform activity α at
exponentially-distributed rate λ and behave as process P”). The high-level ex-
pression of the model includes a symbolic rate variable λ. The model is evaluated
against a valuation which assigns numerical values to all of the symbolic rates
of the model.

All activities in a PEPA model are timed, and via the structured operational
semantics of the language, PEPA models give rise to a continuous-time, finite-
state stochastic processes called Continuous-Time Markov Chains (CTMCs).

The relationship between the process algebra model and the CTMC repre-
sentation is the following. The process terms (Pi) reachable from the initial state
of the PEPA model by applying the operational semantics of the language form
the states of the CTMC (Xi). For every set of labelled transitions between states
Pi and Pj of the model {(α1, r1), . . . , (αn, rn)} add a transition with rate r be-
tween Xi and Xj where r is the sum of r1, . . . , rn. The activity labels (αi) are
necessary at the process algebra in order to enforce synchronisation points, but
are no longer needed at the Markov chain level.

A CTMC can be represented by a set of states X and a transition rate
matrix R. The matrix entry in position rij is λ if it is possible for the CTMC to
transition from state i to state j at rate λ. An infinitesimal generator matrix Q
is formed from the transition rate matrix by normalising the diagonal elements
to ensure that each row sums to zero. The generator matrix is usually sparse.

4

3.1 Transient analysis and uniformisation

Investigation of SLAs requires the transient analysis of a CTMC. That is, we
are concerned with finding the transient state probability row vector π(t) =
[π0(t), . . . , πn−1(t)] where πi(t) denotes the probability that the CTMC is in
state i at time t. Transient and passage-time analysis of CTMCs proceeds by
uniformisation [13, 14]. The generator matrix, Q, is “uniformized” with:

P = Q/q + I

where q > maxi |Qii|. This process transforms a CTMC into one in which all
states have the same mean holding time 1/q.

Passage-time computation is concerned with knowing the probability of reach-
ing a designated target state from a designated source state. It rests on two key
sub-computations. First, the time to complete n hops (n = 1, 2, 3, . . .), which is
an Erlang distribution with parameters n and q. Second, the probability that
the transition between source and target states occurs in exactly n hops.

3.2 Model checking

A widely-used logic for model checking properties against continuous-time Markov
chains is Continuous Stochastic Logic (CSL) [11]. The well-formed formulae of
CSL are made up of state formulae φ and path formulae ψ. The syntax of CSL
is below.

φ ::= true | false | a | φ ∧ φ | φ ∨ φ | ¬φ | P./p[ψ] | S./p[φ]
ψ ::= Xφ | φ UI φ | φ U φ

where a is an atomic proposition, ./ ∈ {<,≤, >,≥} is a relational parameter,
p ∈ [0, 1] is a probability, and I is an interval of R. Derived logical operators
such as implication (⇒) can be encoded in the usual way.

Paths of interest through the states of the model are characterised by the
path formulae specified by P. Path formulae either refer to the next state (using
the X operator), or record that one proposition is always satisfied until another
is achieved (the until-formulae use the U-operator).

Performance information is encoded into the CSL formulae via the time-
bounded until operator (UI) and the steady-state operator, S. The evaluation
of time-bounded until formulae against a CTMC in a CSL-based model checker
such as PRISM [12] or MRMC [17] proceeds by transient analysis using uni-
formisation and a numerical procedure such as the Fox-Glynn algorithm [18].

3.3 Sensitivity analysis

Due to the roles which activities play in creating the dynamics of our stochastic
process algebra model it may be that increasing the rate of one activity increases
the score obtained by the model on our chosen performance measure of interest.
Conversely, increasing the rate of another activity may decrease the score which

5

we get. Changing one rate a little may vary the score a lot. Changing another
rate a lot might only vary the score a little. The study of how changes in perfor-
mance depend on changes in parameter values in this way is known as sensitivity
analysis.

Our main aim here is to determine that our SLA is met across all of the
possible combinations of average values of rates across all their allowable ranges.
However, by collecting the results where one rate is varied we can examine the
sensitivity of our measure with respect to that rate, at no added computational
cost.

The practical relevance of sensitivity analysis is that we may find that the
model is relatively insensitive to changes in one of the rates. In this case we need
not spend as much effort in trying to determine precisely the exact average value
of this rate. This effort would be better directed to determining the values of
rates for which the model has been shown to be sensitive. Further, sensitivity
analysis will identify the most critical areas to improve if failing to meet an SLA.

4 Case Study: Automotive crash scenario

Our case study concerns the assessment of a service level agreement offered by
an automotive collision support service. The scenario with which these systems
are concerned is road traffic accidents and dispatch of medical assistance to
crash victims. Drivers wishing to use the service must have in-car GPS location
tracking devices with communication capabilities and have pre-registered their
mobile phone information with the service.

The scenario under study considers the following sequence of events.

– A road traffic accident occurs. The car airbag deploys.
– Deployment of the air bag causes the on-board safety system to report the

car’s current location (obtained by GPS) to a pre-established accident report
endpoint.

– The service at the reporting endpoint attempts to call the registered driver’s
mobile phone.

– If there is no answer to the call then medical assistance is dispatched to the
reported location of the car (presuming that the driver has been incapaci-
tated by injuries sustained in the accident).

There may be many possible reasons why the driver does not answer the phone.
The phone may be turned off; its battery may be flat; the phone may be out of
network range; the driver may have switched to a new telephone provider, and
not informed the collision support service; the phone may not be in the car; it
may have been smashed on impact; or many other possibilities.

The accident reporting service cannot know the exact reason why the driver
does not answer the phone. They only know that an accident has happened which
was serious enough to cause the airbag to be deployed, and that the driver has
not confirmed that they do not need medical assistance. In this setting they will

6

dispatch medical help (even if sometimes this will mean that help is sent when
it is not absolutely necessary).

The service level agreement related to this scenario concerns the response
time of the passage from the deployment of the airbag to the dispatch of medical
assistance. The parameters of our modelling study are:

– the rate at which information on the location of the car—and any other
pertinent information such as speed on impact, engine status, and other
diagnostic information obtained from the on-board diagnostic systems and
controllers—can be reported to the accident reporting service;

– the time taken to confirm that the driver is not answering their mobile
telephone; and

– the time taken to contact the emergency services to dispatch medical assis-
tance.

None of these parameters are known exactly, but their average values are known
to lie within a range of acceptable operation. We are, of course, interested in
worst case bounds on passage-time quantiles and also in best case analysis but
also in the variety of possible responses in between.

4.1 PEPA model

In this section we consider the sequence of events which begins with the deploy-
ment of the airbag after the crash and finishes with the dispatch of the medical
response team. The first phase of the sequence is concerned with relaying the
information to the remote service, reporting the accident. When the diagnostic
report from the car is received the service processes the report and matches it
to the driver information stored on their database.

Car1
def= (airbag , r1).Car2

Car2
def= (reportToService, r2).Car3

Car3
def= (processReport, r3).Car4

The second phase of this passage through the system focuses on the attempted
dialogue between the service and the registered driver of the car. We consider
the case where the driver does not answer the incoming call because this is the
case which leads to the medical response team being sent.

Car4
def= (callDriversPhone, r4).Car5

Car5
def= (timeoutDriversPhone, r5).Car6

The service makes a final check on the execution of the procedure before the
decision is taken to send medical help. At this stage the driver is awaiting rescue.

Car6
def= (rescue, r6).Car7

Car7
def= (awaitRescue, r7).Car1

This takes us to the end of the passage of interest through the system behaviour.

7

4.2 Rates constants and ranges

All timings are expressed in minutes, because that is an appropriate granularity
for the events which are being modelled. Thus a rate of 1.0 means that something
happens once a minute (on average). A rate of 6.0 means that the associated
activity happens six times a minute on average, or that its mean or expected
duration is ten seconds, which is an equivalent statement. A table of the ranges
of average rate values used appears in Figure 1.

Value
Rate min max Meaning

r1 600.0 600.0 an airbag deploys in 1/10 of a second

r2 2.0 10.0 the car can transmit location data in 6 to 30 seconds

r3 0.5 1.5 it takes about one minute to register the incoming data

r4 1.5 2.5 it takes about thirty seconds to call the driver’s phone

r5 1.0 60.0 give the driver from a second to one minute to answer

r6 0.25 3.0 vary about one minute to decide to dispatch medical help

r7 1.0 1.0 arbitrary value — the driver is now awaiting rescue

Fig. 1. Table of minimum and maximum values of the rates from the model

4.3 Sensitivity analysis for the automotive crash scenario

We consider how the cumulative distribution function for the passage from airbag
deployment to dispatch of medical assistance is affected as the values of the rates
r2 to r6 are varied as specified in the table in Figure 1. The results are presented
in Figure 2.

What we see from these results is that variations in upstream rates (near the
start of the passage of interest) such as r2, r3 and r4 have less impact overall
than variations in downstream rates (near the end of the passage of interest)
such as r5 and r6. This is true even when the scale over which the upstream
rates are varied is much more than the scale over which the downstream rates
are varied (for example, contrast variation in r2 against variation in r6).

The conclusion to be drawn from such an observation is that, if failing to meet
a desired quality of service specified in an SLA then it is better to expend effort
in making a faster decision to dispatch medical help (governed by rate r6) than
to expend effort in trying to transmit location data faster (governed by rate r2),
over the range of variability in the rates considered in the present study.

Another use of this sensitivity data would be to find an optimum time to hold
while waiting for the driver to answer the phone. The optimisation problem to
be solved here is to decide how long to wait before terminating the call in case of
non-answer. If the service providers wait too long then they risk failing to meet
their SLA. If they wait too little then they risk dispatching medical assistance

8

 0
 0.2
 0.4
 0.6
 0.8
 1

 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
 0

 0.2
 0.4
 0.6
 0.8

 1

Pr

Sensitivity of cumulative distribution function to r2

r2
Time

Pr

 0
 0.2
 0.4
 0.6
 0.8
 1

 0.4 0.6 0.8 1 1.2 1.4 1.6 0
 1 2 3 4 5 6 7 8 9 10

 0
 0.2
 0.4
 0.6
 0.8

 1

Pr

Sensitivity of cumulative distribution function to r3

r3
Time

Pr

 0
 0.2
 0.4
 0.6
 0.8
 1

 1.4 1.6 1.8 2 2.2 2.4 2.6 0
 1 2 3 4 5 6 7 8 9 10

 0
 0.2
 0.4
 0.6
 0.8

 1

Pr

Sensitivity of cumulative distribution function to r4

r4
Time

Pr

 0
 0.2
 0.4
 0.6
 0.8
 1

 0 10 20 30 40 50 60 70 0 1 2 3 4 5 6 7 8 9 10
 0

 0.2
 0.4
 0.6
 0.8

 1

Pr

Sensitivity of cumulative distribution function to r5

r5
Time

Pr

 0
 0.2
 0.4
 0.6
 0.8
 1

 0 0.5 1 1.5 2 2.5 3 0 1 2 3 4 5 6 7 8 9 10
 0

 0.2
 0.4
 0.6
 0.8

 1

Pr

Sensitivity of cumulative distribution function to r6

r6
Time

Pr

Fig. 2. Graphs of cumulative distribution function sensitivity to changes in rates for
the passage from airbag deployment to dispatch of medical assistance

9

when it is not actually necessary. In this case the sensitivity graph of rate r5
shows a portion where changes in rate value have little impact and so targeting
the lowest rate here gives the driver more time to answer the phone.

5 Relation to model checking

In this section we consider how the results expressed above relate to model
checking a CSL formula against our model of the system. Expressed as a CSL
formula an example of the kind of question which we are asking is the following.

airbag ⇒ P>0.9[true U[0,10] rescue]

In words, this says “If the airbag in the car deploys, is it true with probability
at least 0.9 that the rescue service will be sent within 10 minutes?”

We consider a more general form of the question which is the following

airbag ⇒ P./p[true U[0,10] rescue]

We consider this for all relations ./ ∈ {<,≤, >,≥} and for all values of the
probability bound 0 ≤ p ≤ 1. Further, we answer these general formulae not
for only a single assignment of values to symbolic rate variables (as would be
the case for conventional model checking) but across the range of assignments
presented in Figure 1.

In order to determine upper and lower bounds on the probability with which
the rescue service is dispatched within 10 minutes we can simply plot the proba-
bility computed via transient analysis against experiment number. Each mapping
of rate values onto symbolic rate names is an experiment.

The graph of computed probability against experiment number for the first
fifty experiments is shown in Figure 3. Experiments are grouped whereby a group
contains about five evaluations of the CDF corresponding to the SLA for five
assignments of concrete rate values to one of the symbolic rates r2 to r6. This
shows slightly more than the first eight groups of experiments.

The graph of computed probability against experiment number for the all 3750
experiments is shown in Figure 4. At this level of granularity it is not easy to
pick out groups of runs but one can see that all experiments achieve at least
a minimum QoS that at least 83% of calls to the service will lead to medical
assistance being dispatched within 10 minutes.

One use of these graphs is to identify all of the combinations of average rate
values which allow the service to satisfy an SLA which requires their quality
of service to be above a specific threshold. For example, say that the service
providers wish to, or need to, meet the SLA that the rescue service is dispatched
within 10 minutes in 92% of cases of airbag deployment. The graph in Figure 4
identifies all of the combinations of parameter values which achieve this bound,
or do better. Some of these might be much easier to realise than others so the
service could meet its QoS requirement by striving for those combinations of
average rates for individual actions of the system such as taking the decision to
dispatch medical help (at rate r6).

10

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

Pr

Experiment number

Probability of completion by time 10.0 for first 50 experiments

Fig. 3. Graph of probability of completing the passage from airbag deployment to
medical assistance dispatch within ten minutes plotted against experiment number
over the first fifty experiments

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

Pr

Experiment number

Probability of completion by time 10.0 against experiment number

Fig. 4. Graph of probability of completing the passage from airbag deployment to
medical assistance dispatch within ten minutes plotted against experiment number
over all 3750 experiments

11

6 Further work

Our future programme of work on using ipc and Hydra on the Condor distributed
computing platform is directed towards making better use of the support which
Condor provides for distributed computing. This will include the use of the
standard universe which will allow checkpointing within a run, and allow a
long-running Hydra computation to be migrated in-run from a machine claimed
by a user onto a presently-idle machine.

In this work we have made the conceptually convenient simplification of
thinking of Hydra as a single, indivisible application which accepts a stochastic
Petri net as input and returns as its output a CDF showing passage-time quan-
tiles. While this is an accurate conceptual description Hydra is in fact structured
as a collection of independent components (a parser, a state-space generator, a
functional analyser, a solver and a uniformiser). The application which we think
of as Hydra is a high-level driver executing these components in the order de-
scribed above.

The opportunity which this gives us for the future is to structure Hydra as
a directed acyclic graph (DAG) of component tasks. To run Hydra on Condor
in this way we would specify the inputs and outputs from each sub-component
(state-space generator, functional analyser and others) and connect these to-
gether replacing Hydra’s top-level driver with the appropriate use of Condor’s
DAG manager (DAGman). This would offer a greater range of possibilities for
component deployment on our Condor pool.

7 Conclusions

The automotive rescue case study used in this paper gives rise to a relatively
small continuous-time Markov chain, the unit solution cost of which is not exces-
sive. However, when repeatedly re-running this solution procedure for different
parameter values these small costs quickly start to add up. The Condor dis-
tributed computing system allowed us to execute these many copies of the job
simultaneously.

The parallel structure of the joint computation was very simple; running a
sequential application multiple times. No dynamic process creation was required
within an individual run, and no inter-process communication was needed. A
full-blown parallel computing infrastructure such as PVM or MPI would have
been excessive but Condor suited our problem very well.

The style of analysis which we pursue here is embarrassingly parallelizable,
meaning that the throughput of jobs increases linearly with the number of ma-
chines available. This means that if given access to a larger Condor pool, or the
ability to connect Condor pools together, then the rate at which jobs can be
processed continues to grow and is not capped by an inherent bound on prob-
lem scalability. Thus the combination of ipc, Hydra and Condor as a modelling
and experimentation framework provides a strong platform on which to conduct
larger and more complex experiments.

12

Acknowledgements

The authors are supported by the SENSORIA project (EU FET-IST Global
Computing 2 project 016004). We are grateful to Angelika Zobel and Nora Koch
of F.A.S.T. München for the specification of the automotive case study. We
modified the open-source software tool ipc developed by Jeremy Bradley and
made freely available. We ran our models on the Condor cluster provided in the
School of Informatics at Edinburgh and benefited from advice from Chris Cooke
on using this effectively.

References

1. William J Knottenbelt. Generalised Markovian analysis of timed transition sys-
tems. MSc thesis, University of Cape Town, South Africa, July 1996.

2. Condor project homepage. Website with documentation and software, University
of Wisconsin-Madison, April 2006. http://www.cs.wisc.edu/condor/.

3. Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed computing in
practice: the Condor experience. Concurrency - Practice and Experience, 17(2-
4):323–356, 2005.

4. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

5. J.T. Bradley and W.J. Knottenbelt. The ipc/HYDRA tool chain for the analysis
of PEPA models. In Proc. 1st International Conference on the Quantitative Evalu-
ation of Systems (QEST 2004), pages 334–335, Enschede, Netherlands, September
2004.

6. J. Hillston and M. Ribaudo. Stochastic process algebras: a new approach to per-
formance modeling. In K. Bagchi and G. Zobrist, editors, Modeling and Simulation
of Advanced Computer Systems. Gordon Breach, 1998.

7. Nicholas J Dingle, Peter G Harrison, and William J Knottenbelt. Uniformization
and hypergraph partitioning for the distributed computation of response time den-
sities in very large Markov models. Journal of Parallel and Distributed Computing,
64:908–920, 2004.

8. Jeremy T Bradley, Nicholas J Dingle, Peter G Harrison, and William J Knot-
tenbelt. Distributed computation of passage time quantiles and transient state
distributions in large semi-Markov models. In Performance Modelling, Evalua-
tion and Optimization of Parallel and Distributed Systems, Nice, April 2003. IEEE
Computer Society Press.

9. W J Knottenbelt, P G Harrison, M S Mestern, and P S Kritzinger. A probabilis-
tic dynamic technique for the distributed generation of very large state spaces.
Performance Evaluation, 39(1–4):127–148, February 2000.

10. R. Mehmood and Jon Crowcroft. Parallel iterative solution method for large sparse
linear equation systems. Technical Report UCAM-CL-TR-650, Computer Labora-
tory, University of Cambridge, UK, October 2005.

11. A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Verifying continuous time Markov
chains. In Computer-Aided Verification, volume 1102 of LNCS, pages 169–276.
Springer-Verlag, 1996.

13

12. M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic model
checker. In A.J. Field and P.G. Harrison, editors, Proceedings of the 12th Interna-
tional Conference on Modelling Tools and Techniques for Computer and Communi-
cation System Performance Evaluation, number 2324 in Lecture Notes in Computer
Science, pages 200–204, London, UK, April 2002. Springer-Verlag.

13. W. Grassmann. Transient solutions in Markovian queueing systems. Computers
and Operations Research, 4:47–53, 1977.

14. D. Gross and D.R. Miller. The randomization technique as a modelling tool and
solution procedure for transient Markov processes. Operations Research, 32:343–
361, 1984.

15. Al Globus, Eric Langhirt, Miron Livny, Ravishankar Ramamurthy, Marvin
Solomon, and Steve Traugott. JavaGenes and Condor: Cycle-scavenging genetic
algorithms. In Proceedings of the ACM Conference on Java Grande, pages 134–139,
San Francisco, CA, 2000.

16. F. Somenzi. CUDD: CU Decision Diagram Package. Department of Electrical and
Computer Engineering, University of Colorado at Boulder, February 2001.

17. J.-P. Katoen, M. Khattri, and I. S. Zapreev. A Markov reward model checker.
In Proceedings of the Second International conference Quantitative Evaluation of
Systems (QEST), pages 243–244. IEEE CS Press, 2005.

18. Bennett L. Fox and Peter W. Glynn. Computing Poisson probabilities. Commu-
nications of the ACM, 31:440–445, 1988.

14

