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Abstract. In this paper we present a representation of the Markov
process underlying a PEPA model in terms of a Kronecker product of
terms. Whilst this representation is similar to previous representations
of Stochastic Automata Networks and Stochastic Petri Nets, it has novel
features, arising from the definition of the PEPA models. In particular,
capturing the correct timing behaviour of cooperating PEPA activities
relies on functional dependencies.

1 Introduction

Performance investigation of modern computer and communication systems re-
quires the development of relevant and efficient modelling techniques. The rich
synchronisation constraints and the size of these systems lead to complex mod-
els with exponential growth of the number of states. Traditional performance
models, based on queueing networks, cannot readily capture these constraints;
thus several new performance modelling techniques have been developed, e.g.
Stochastic Petri Nets (SPN), Stochastic Automata Networks (SAN) and Stochas-
tic Process Algebras (SPA).

Petri nets were designed to represent synchronisation constraints within con-
current systems and protocols; SPN associate random variables with timed tran-
sitions within the net [16, 1, 20]. However, although the graphical representation
of Petri Nets presents the dynamic behaviour of the model, it provides little
insight into the structure of the system being modelled.

SAN and SPA provide mechanisms which allow the increasing complexity of
synchronisation constraints to be captured whilst retaining the compositional
structure of the system explicitly within the model. For many modern systems,
being able to construct a model from components or elements, reflecting the
system’s composition, greatly aids handling the complexity of the model con-
struction task. As with all state-based modelling formalisms, such models are
prone to state space explosion. However, both formalisms incorporate techniques
for overcoming this problem.
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The SAN formalism, developed by Plateau [18], models complex systems
with interacting components such as parallel systems. To tackle the state space
explosion problem, Plateau [17] has proved that the generator matrix of the
Markov process underlying a SAN model can be analytically represented us-
ing Kronecker algebra. Moreover the solution of the model can be achieved via
this tensor expression of submatrices—the complete matrix does not need to be
generated.

SPA are extensions of classical process algebras such as CCS and CSP, analo-
gous to SPN in the sense that random variables are associated with timed actions
in the model. In this paper we consider the Markovian process algebra, Perfor-
mance Evaluation Process Algebra (PEPA), introduced by Hillston in 1994 [14].
In PEPA, a system is described as an interaction of components which, either
singly or multiply, engage in activities. The components represent the active
parts within the system and the activities the actions of those parts.

Various techniques for solving large models have been developed for PEPA
but these have focused on aggregation or decomposition techniques, which use
the process algebra structure of the model to guide manipulations of the un-
derlying Markov process. In this paper we show that a PEPA model can also
be represented analytically using Kronecker algebra and solved without con-
structing the complete generator matrix. Correct representation of the features
of the PEPA model, in particular the synchronisation behaviour, relies on the
functional dependencies introduced in PEPA formalism in [15]. Just as for SAN
models, we show that the translation from the model to the compact represen-
tation is automatic.

This paper is structured as follows. In Sect. 2, we present the PEPA language.
A small example illustrates the use of this modelling technique. Section 3 is
dedicated to the functional depencies in PEPA. In Sect. 4, we show how to
represent the underlying Markov process of a PEPA model using the tensor
algebra. An application example is given, followed by the proof of the validity
of this analytical representation. Section 5 is dedicated to related work. Finally,
we conclude with some remarks and future work.

2 PEPA

The basic elements of PEPA[14] are components and activities, corresponding
to states and transitions in the underlying Markov process. Each activity has
an action type and τ denotes the distinguished type representing private or
unseen action. The duration of each activity is represented by the parameter
of the associated exponential distribution: the activity rate of the activity. The
rate may be any positive real number, or the distinguished symbol > (read as
unspecified). Thus each activity, a, is a pair (α, r) where α is the type and r is
the rate. We let C denote the countable set of components and A denote the
countable set of all possible action types. We denote by Act ⊆ A× R+, the set
of activities, where R+ is the set of positive real numbers plus the symbol >.
Models in PEPA are built using a small but expressive set of combinators:
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Prefix (α, r).C1. Prefix is the basic mechanism by which the behaviours of com-
ponents are constructed. The component carries out activity (α, r) and subse-
quently behaves as component C1.

Choice C1 +C2. The component represents a system which may behave either as
component C1 or as C2: all the current activities of both components are enabled.
A race condition determines the first activity to complete, and so distinguishes
one component; the other is discarded.

Cooperation C1 ��
L
C2. The components proceed independently with any activi-

ties whose types do not occur in the cooperation set L. However, activities with
action types in the set L require the simultaneous involvement of both compo-
nents; these shared activities are only enabled when they are enabled in both
C1 and C2. The shared activity occurs at the rate of the slowest participant.
The capacity of a component Ci to carry out a given action type α (the sum of
rates associated with its α actions) is called its apparent rate, denoted rα(Ci).
The apparent rate of a shared activity is the minimum, among the participating
components, of the apparent rates for that type.

If an activity has rate > the component is passive with respect to that action
type and it does not influence the rate at which such shared activities occur.
When the set L is empty, we use the more concise notation C1 ‖ C2 to represent
C1 ��

∅
C2.

Hiding C1/L. The component behaves as C1 except that any activities of types
within the set L are hidden, i.e. such an activity exhibits the unknown type τ
and the activity can be regarded as an internal delay by the component. The
original action type of a hidden activity is no longer accessible; the duration is
unaffected.

Constant M def= C1. Constants are components whose meaning is given by a
defining equation: M def= C1 gives the constant M the behaviour of the compo-
nent C1.

The semantics of PEPA, presented in the structured operational semantics
style, are given in [14]. The underlying transition system also characterises the
Markov process represented by the model. Rules are given for each of the com-
binators, showing how the component may evolve. Here we show only the rule
for shared activities (Fig. 1).

P
(α,r1)

−−−→ P ′ Q
(α,r2)

−−−→ Q′

P ��
L
Q

(α,r)

−−−→ P ′ ��
L
Q′

(α ∈ L), r =
r1

rα(P )

r2

rα(Q)
min(rα(P ), rα(Q))

Fig. 1. Operational rule defining shared activities
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From a model definition M we can apply the semantic rules exhaustively
to find the complete set of reachable states, the derivative set of M , ds(M).
From this set, we can construct the derivation graph. The derivation graph is a
directed multigraph whose set of nodes is ds(M) and whose arcs represent the
possible transitions between them. To derive a Markov process from a PEPA
model we associate a state with each node of the derivation graph. Action type
information is discarded so that edges are labelled only by rates; multiple edges
between a pair of nodes are combined by summing the corresponding rates. The
rate on an edge in this modified graph becomes the corresponding entry in the
infinitesimal generator matrix. Thus the rate between components C and C ′ is
denoted q(C,C ′). Similarly the conditional transition rate between C and C ′

due to activities of type α is denoted q(C,C ′, α).
Necessary (but not sufficient) conditions for the ergodicity of the Markov

process in terms of the structure of the PEPA model have been identified and
can be readily checked [14]. These imply that the model should be constructed
as a cooperation of sequential components, i.e. components constructed using
only prefix, choice and constants. Thus the compositional structure of PEPA
models is at the level of the cooperating components; we refer to such models
as well-defined. Syntactic analysis can be used to determine all the action types
which will occur within the lifetime of a component C, a set denoted A(C).

Example. Consider a simple two-place buffer and a server. The buffer accepts
arrivals with a rate λ and passes the contents for service. When there are two
customers in the buffer each attempts service, but only the front customer can
be successfully serviced with rate s. Service of the second customer results in
a partial service which must be corrected, at rate t before the buffer can make
any other action. The server simply accepts customers for service (passively) and
then allows them to depart, carrying out a false departure after a partial service.
Let d be the departure rate.

In PEPA, the system is represented as the interaction of two components
Buffer0 and Server. We use three action types: in, service and depart. The first
describes the arrival of a new customer in the buffer, the second, the service
completion, and the last one the departure of a customer from the server. The
components are defined as shown below.

Buffer0
def= (in, λ).Buffer1 Server def= (service,>).Server′

Buffer1
def= (service, s).Buffer0 + (in, λ).Buffer2 Server′ def= (depart, d).Server

Buffer2
def= (service, s).Buffer1 + (service, s).Buffer3

Buffer3
def= (service, t).Buffer1

In addition to the mutually recursive sets of equations defining the behaviour
of each sequential component, we have a system equation which defines the
cooperation between the two components.

System def= Buffer0
��
{service}

Server
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3 Functional dependencies

In SAN, automata are able to influence one another in two ways, both related to
events. Direct interaction between automata is modelled by synchronised tran-
sitions, equivalent to cooperation or shared activities in PEPA.

The other form of interaction is less direct: transition rates within an au-
tomaton can be influenced by the local states of one or more other automata
of the network. Using such rates may lead to a reduction in the model size
since functional rates are a means to avoid explicitly modelling all parts of a
system’s bahaviour. This benefit is most appreciated when building/solving the
underlying Markov chain. In [15], we have introduced the notion of functional
dependencies between PEPA model’s components by extending the activity rates
to include functional rates.

In PEPA the set of activities Act is defined as Act ⊆ A × R+ where R+ is
the set of positive real numbers defined as follows:

R
+ = {r|r > 0; r ∈ R} ∪ {>}

In the context of PEPA, a functional dependency may involve one or several
components. In a functional dependency involving a single component, the rate
value of one or several activities of the component depends on the current state
of the component itself. This captures the presence of several apparent rates
for an activity in a component. In this type of functional dependency, the rate
value expressed as a function of the current component state is still a positive
real number and can never be zero. However, this may not always be the case
if the functional dependency involves two or more components. For example, a
functional dependency between two components means that the behaviour of
one component depends on the current state of the other one. This implies that
either the activity to be performed by the first component and/or its rate value
will be determined by the current state of the second component. The rate value
may then be any non-negative real number of R+ including zero, particularly
when the choice of the activity to be performed is done according to the state
of another component.

The introduction of functional dependencies in PEPA requires us to relax
the constraint on the definition domain of an activity rate [15]. Thus, the set of
activities Act is now defined as Act ⊆ A × R∗ where R∗ is the set of positive
real numbers defined as follows:

R
∗ = {r|r ≥ 0; r ∈ R} ∪ {>}

For more details about the impact of functional dependencies on PEPA mod-
els and the aggregation technique see [15].

Example. Consider again the system of the previous example. If we opt for
functional rates, the buffer may then be modelled differently:
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Buffer0
def= (in, λ).Buffer1

Buffer1
def= (service, f × p).Buffer0 + (in, λ).Buffer2

Buffer2
def= (service, f × p).Buffer1 + (service, f × p).Buffer3

Buffer3
def= (service, f × p).Buffer1

where f is a function of the state i, i = 0, . . . , 3 of component Buffer such that:

f(i) =
{
s if i = 1
t if i = 2, 3

and p is a probability function defined as:

p(i) =
{

1 if i = 1, 3
1
2 if i = 2

Note that the definition of the Server, and the equation defining the complete
system behaviour, remain unchanged:

System def= Buffer0
��
{service}

Server

This example shows that the introduction of functional rates in PEPA models
allows us to avoid having different apparent rates for an activity within a single
component. Whereas in the first version of the model, activity service has two
apparent rates (s and t), the same activity has only one apparent rate (f) when
using functional rates.

The association of an apparent rate with each action type within a single
component leads, as we will show in Sect. 4, to a simplified tensor representation
of the generator matrix associated with a PEPA model.

4 Tensor Representation

In this section we establish how to represent the infinitesimal generator matrix
corresponding to a PEPA model as a sum of tensor products, analogous to the
representation of a SAN. We proceed in three steps. In the first, we consider only
the non-shared activities which do not belong to any cooperation set, represent-
ing the independent aspect of a component’s behaviour. For each component we
capture its local transitions in an appropriate matrix. In the second step, we
consider the activities which belong to at least one cooperation set. This will
allow us to take into account, in our tensorial representation, the interactions
between the components. We represent each type of interaction by the tensor
product of matrices capturing each component’s capacity to participate in a
shared activity. Using the obtained results, we finally show how to represent the
global generator matrix of a complete model.
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4.1 Non-Interacting PEPA Components

We define a non-interacting component as a component for which at least one of
its activities is a non-shared activity, or for which all its activities are cooperating
activities, but there exists at least one non-shared activity in the model in which
this component does not participate.

With each non-interacting component Ci, i ∈ {1, .., N}, we associate a gen-
erator matrix Ri of size ni × ni with ni = |ds(Ci)|. If this component has at
least one non-shared activity, the elements of its matrix are the rates of its indi-
vidual activities. Otherwise, the matrix associated with this component is a null
matrix. In both cases, the resulting matrix describes the local transitions of the
component.

Now consider a PEPA model M def= C1 ‖ C2 ‖ . . . ‖ CN and assume that C1,
C2, . . ., CN are represented by infinitesimal generator matrices R1, R2, . . ., RN
respectively. Then any state of M can be represented as (C1,j1 , C2,j2 , . . . , CN,jN )
where ji ∈ {1, 2, . . . , ni} for 1 ≤ i ≤ N . Moreover, the system of the N non-
interacting components may be characterised by the infinitesimal generator ma-
trix [17]

Q =
N⊕
k=1

Rk =
N∑
k=1

In1 ⊗ · · · ⊗ Ink−1 ⊗Rk ⊗ Ink+1 ⊗ · · · ⊗ InN

=
N∑
k=1

k−1⊗
i=1

Ini ⊗Rk ⊗
N⊗

i=k+1

Ini

where Id is the identity matrix of size d. ⊕ and ⊗ are the tensorial sum and
product operators respectively [11].

4.2 Interacting PEPA Components

Most useful PEPA models are comprised of components which interact. To rep-
resent the interacting part of the component’s behaviour, we associate with each
action type α in Z, the set of cooperating action types, a transition probability
matrix Pi,α. This matrix captures the capacity of component Ci to participate
in the shared activity α. Thus, each element of this matrix represents the transi-
tion probability of component Ci with activity α with rate rα(Ci). Note that if
a component does not participate in a shared activity α, the matrix associated
is an identity matrix.

In general, if a PEPA model is composed of N components, the interaction
between these components can be expressed as follows:

∑
α∈Z

rα

N⊗
i=1

Pi,α
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where rα is the minimum of the functional rates of action type α over all com-
ponents Ci, i = 1 . . . N :

rα = min(rα(C1), rα(C2), . . . , rα(CN ))

4.3 Global Generator Matrix Representation

Now consider a PEPA model composed of interacting and non-interacting com-
ponents. The corresponding generator matrix may be represented using Kro-
necker algebra as stated in Definition 1.

Definition 1. The generator matrix Q of the Markov chain associated with a
PEPA model is

Q =
N⊕
i=1

Ri +
∑
α∈Z

rα

(
N⊗
i=1

Pi,α −
N⊗
i=1

P i,α

)
(4.1)

where

– N is the total number of components in the PEPA model and Z the set of
cooperating action types, determined syntactically.

– rα is the minimum of the functional rates of action type α over all compo-
nents Ci, i = 1 . . . N .

– Ri is the transition matrix of component Ci relating solely to its individual
activities.

– Pi,α is the probability transition matrix of component Ci due to activity of
type α. Its elements’ values are between 0 and 1.

– P i,α is a matrix representing the normalization associated with the shared
activity α in component Ci.

Unlike the local transition matrices Ri, the cooperation matrices Pi,α are
not generators. So we need to introduce diagonal corrector matrices P i,α to
normalize the cooperation matrices, i.e. ensure that row sums are zero. This is
shown in (4.1).

In order to apply the equation above we must place a restriction on the use of
types within cooperation sets, to ensure that each action type uniquely defines
a synchronisation event. To see the need for this restriction, consider the model
M

def
= (V ��

{α}
S) ‖ (T ��

{α}
U). Assuming that each component enables α with just

one apparent rate rα(V ), rα(S), etc., applying the equation above, we write the
generator matrix of this model as follows:

Q =
4⊕
i=1

Ri + min(rα(V ), rα(S), rα(T ), rα(U)) (PV,α ⊗ PS,α ⊗ PT,α ⊗ PU,α

− PV,α ⊗ PS,α ⊗ PT,α ⊗ PU,α
)
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It is clear that in this representation all the components are forced to make
the same α cooperation. However, applying the semantics, there are two poten-
tial shared α activities: one involving V and S and one involving T and U . These
can proceed concurrently with each other.

Thus we preprocess the model: when the same action type appears in distinct
cooperation sets we rename the action type in the appropriate components and
cooperation sets so that they are distinguished in Z. For example, in the model
above, we might distinguish α` (affecting V and S) and αr (affecting T and U)
and rename all α activities in V, S, T and U appropriately.

4.4 Example

Consider the two place buffer and the server described in Sect. 2. In the following
we show how we construct the tensor expression for the global generator matrix
of the corresponding model.

The model has two components, each component has two action types in its
complete action type set: in and service for Buffer and service and depart for
Server. The type service is the only element of Z, the set of cooperating action
types; the other action types being local to their respective components. Firstly
we construct the matrices representing these local activities as follows:

RBuffer =


−λ λ 0 0

0 −λ λ 0
0 0 0 0
0 0 0 0

 RServer =
(

0 0
d −d

)

When we come to represent the cooperations we consider each action type
in the cooperating set. In our case, this set is composed of only one action
type α = service. Component Buffer participates to this activity with rate
rα(Buffer) = f whereas component Server participates to this activity with
rate rα(Server) = >. According to the semantic of PEPA, the resulting rate
rα of the shared activity is rα = min(f,>) = f . Thus the Buffer component’s
contribution and the Server component’s contribution to the cooperation are
expressed by respectively:

PBuffer,α =


0 0 0 0
1 0 0 0
0 1

2 0 1
2

0 1 0 0

 and PServer,α =
(

0 1
0 0

)

The corresponding normalising matrix pairs are straightforward to construct:

PBuffer,α =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 and PServer,α =
(

1 0
0 0

)

Thus the complete expression becomes
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Q =


−λ λ 0 0
0 −λ λ 0
0 0 0 0
0 0 0 0

⊕ ( 0 0
d −d

)

+ f ×




0 0 0 0
1 0 0 0
0 1

2 0 1
2

0 1 0 0

⊗ (0 1
0 0

)
−


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⊗ (1 0
0 0

)
leading to the complete generator matrix:

Q =



−λ 0 λ 0 0 0 0 0
d −(d+ λ) 0 λ 0 0 0 0
0 s −(s+ λ) 0 λ 0 0 0
0 0 d −(d+ λ) 0 λ 0 0
0 0 0 s −2s 0 0 s
0 0 0 0 d −d 0 0
0 0 0 t 0 0 −t 0
0 0 0 0 0 0 d −d


Let us consider a modification of the model in which the Server, instead of

being passive with respect to service has a local rate x, such that s < x < t. Then
the construction of the tensor expression proceeds in exactly the same way except
that when we come to compute the resulting rate we obtain is rα = min(f, x)
which value depends on the current state of component Buffer. According to
this, the generator matrix is:

Q =



−λ 0 λ 0 0 0 0 0
d −(d+ λ) 0 λ 0 0 0 0
0 s −(s+ λ) 0 λ 0 0 0
0 0 d −(d+ λ) 0 λ 0 0
0 0 0 x

2 −x 0 0 x
2

0 0 0 0 d −d 0 0
0 0 0 x 0 0 −x 0
0 0 0 0 0 0 d −d


4.5 Validity of the Kronecker Expression

In this section we prove the validity of the tensor expression Q given in (4.1),
i.e. we show that for all reachable states the tensor expression gives us the
same transition rates as the generator matrix Q∗ derived from the semantics of
PEPA via the labelled transition system. First, we establish some notation and
terminology.

A PEPA model is given by components (Ci)i∈[1..N ], each with state space
Si = ds(Ci) and a model equation M

def= C1 ��
L1
· · · ��

LN−1
CN . Syntactic analysis
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readily identifies Z, the set of cooperating actions. For each component Ci we
can identify the cooperations it must participate in, a set we denote Zi, where
Zi = Z ∩A(Ci). Conversely, for each cooperating action type α, we denote by
Z(α) the set of components which participate in α typed activities.

For the same model we may have two views of the global state space. The
first is ds(M), the derivative set of M generated by the operational semantics
via the labelled transition system. The second is S =

∏N
i=1 Si, the product state

space, generated directly from the derivative sets of the components. In general,
the constraints placed on the model by cooperation will mean that ds(M) ⊂ S,
i.e. S will contain unreachable states.

We suppose that every local state space Si is ordered—simply take the order
generated by the breadth-first search carried out in the PEPA Workbench to
build the labelled transition system. In the following we assume that both ds(M)
and S are ordered lexicographically according to the ordering within component
state spaces and the vector representation of the state space.

We will write C to denote a vector (C1, . . . , CN ), and C[Ci := C ′i] to denote
the vector obtained from C by substituting C ′i for Ci. We denote by Q∗, the
original transition matrix of M defined as follows:

– For all C,C′ ∈ ds(M) such that C 6= C′, Q∗(C,C′) is the transition rate as
usually defined for PEPA, the sum of activity rates on arcs linking C and
C′ in the derivation graph:

Q∗(C,C′) =
∑

C
(α,r)−→C′

r

The set of all transitions(activities) can be partitioned into individual and
shared transitions, shared transitions can be further partitioned by action
type. Thus the off-diagonal elements of Q∗ can be expressed as a sum of
matrices as follows:

Q∗(C,C′) =

N∑
i=1

Q∗i (C,C
′) +

∑
α∈Z

Q∗α(C,C′) where:

Q∗i (C,C
′) =

∑
C

(α,r)
−→ C′

r where C′ = C[Ci := Ci
′] and α /∈ Z

Q∗α(C,C′) = q(C,C′, α) where α ∈ Z

– For all C ∈ ds(M), Q∗(C,C) is calculated such that the sum of the elements
in a row of Q∗ will be zero.

Theorem 1. Consider a well-defined PEPA model with N components inter-
acting via a set of action types Z as defined by a model equation

M
def= C1 ��

L1
· · · ��

LN−1
CN
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Then the original transition matrix Q∗ is such that, for all reachable states,
C,C′ ∈ ds(M), Q∗(C,C′) = Q(C,C′) where Q is defined as

Q =
N⊕
i=1

Ri +
∑
α∈Z

min(rα(C1), . . . , rα(CN ))

(
N⊗
i=1

Pi,α −
N⊗
i=1

P i,α

)

Furthermore, for C ∈ ds(M) and C′ /∈ ds(M), Q(C,C′) = 0, i.e. there are
no transitions from reachable states to unreachable ones represented in the tensor
expression.

Proof. We can re-express Q as follows:

Q =
N∑
i=1

Gi +
∑
α∈Z

Gα −
∑
α∈Z

Gα,n

where

Gi =
i−1⊗
j=1

Inj ⊗Ri ⊗
N⊗

j=i+1

Ijj (4.2)

Gα = rα ×
N⊗
i=1

Pi,α (4.3)

Gα,n = rα ×
N⊗
i=1

P i,α (4.4)

and rα = min(rα(C1), . . . , rα(CN )).
First, we consider the non-diagonal elements of the matrices. We will find it
convenient to use kronecker functions:

δ(x, y) =
{

1 if x = y
0 if x 6= y

Individual transitions. From above,

Gi =
i−1⊗
j=1

Inj ⊗Ri ⊗
N⊗

j=i+1

Inj

thus

Gi(C,C′) = Ri(Ci, Ci′)×
N∏
k=1
k 6=i

δ(Ck, Ck′)

By the definitions of Ri and Q∗i , it follows that, for all C ∈ ds(M), for all
i ∈ {1, . . . , N},

Gi(C,C′) =
{
Q∗i (Ci, Ci

′) if C′ = C[Ci := Ci
′]

0 otherwise
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Clearly, C′ = C[Ci, Ci′] implies that C′ is reachable. Thus it follows that for
C,C′ ∈ ds(M), for local transitions, i.e. those involving only one component Ci,
the off-diagonal elements of Q∗i and Gi are identical. Moreover, for C ∈ ds(M)
and C′ /∈ ds(M), Gi(C,C′) = 0.

Cooperating transitions. From above,

Gα = rα ×
N⊗
i=1

Pi,α (4.5)

Thus

Gα(C,C′) = rα ×
N∏
k=1

Pi,α(Ci, C ′i)

Since a component i does not participate in activities of type α if i /∈ Z(α), we
can rewrite this as:

Gα(C,C′) = rα ×
∏

i∈Z(α)

Pi,α(Ci, C ′i)×
∏

i/∈Z(α)

δ(Ci, C ′i)

Recall that Q∗α(C,C′) = q(C,C′, α), where α ∈ Z. If we consider the seman-
tic rule governing cooperation we can see that this transition rate consists of the
minimal apparent rate of the participating components multiplied by the con-
ditional probability that C′ is the derivative resulting from the transition. This
conditional probability is the product of the conditional probabilities in each
component, since we assume that each component chooses between instances of
α independently. For component Ci, this conditional probability is expressed as

p(Ci, C ′i, α) =


q(Ci,C

′
i,α)

q(Ci,α) if i ∈ Z(α)
1 if i /∈ Z(α) and Ci = C ′i
0 otherwise

Thus, for all C ∈ ds(M)

Gα(C,C′) =
{
rα × p(C,C′, α) if C′ ∈ ds(M)
0 otherwise

and so, for C,C′ ∈ ds(M),

Gα(C,C′) = rα × p(C,C′, α)

It follows that for all C ∈ ds(M),

Gα(C,C′) =

{
Q∗α(C,C′) if C′ ∈ ds(M) and C

(α,r)−→ C′

0 otherwise

In particular, for C ∈ ds(M) and C′ /∈ ds(M), Gα(C,C′) = 0 so there are no
cooperating transitions into unreachable states from reachable ones.
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Diagonal Elements. Finally, we consider only reachable states C ∈ ds(M) and
show that Q∗(C,C) = Q(C,C). However, this follows immediately since by the
previous arguments the off-diagonal elements of rows corresponding to C in Q∗

and Q are in one-to-one correspondence, and furthermore, in each matrix the
diagonal elements are chosen to normalise the matrix. For Q, Gi is already a
generator whereas we have introduced Gα,n to normalise Gα. Thus by construc-
tion it follows that for all reachable states C ∈ ds(M), Q∗(C,C) = Q(C,C), as
required.

ut
According to the tensorial form of the generator, we store at most E entries:

E = (1 + 2|Z|)
N∑
i=1

S2
i

4.6 Solution Techniques

The tensorial representation of the generator matrix corresponding to a SAN
model was proposed in 1984 by Plateau [18]. Since then different solution tech-
niques have been investigated and several of them have been adapted to the
context of this compact representation.

The main solution techniques used are either iterative methods such as the
power method and Gauss Seidel or projective methods such as the Arnoldi and
the GMRES methods.

In [21], the problem of computation time has been addressed. It has been
shown how the methods of Arnoldi and GMRES can be used to substantially
reduce the number of iterations needed when compared with the power method.
Moreover, several preconditioning strategies that may be used to speed the iter-
ation process even further have been investigated.

The power method, Arnoldi and GMRES methods have been incorporated
in the tool PEPS implemented by Plateau’s team. For each method, versions
both with and without matrix preconditionning have been implemented.

The tensorial representation we propose for PEPA models is very similar
to the one developed by Plateau for the SAN formalism. Therefore the solution
techniques adapted to the tensorial representation of SAN and the computational
results such as those presented in [10] about the impact of the functionnal rates
on the Descriptor-vector multiplications in SAN may be, without doubt, applied
in the context of PEPA formalism.

5 Related Work

Kronecker algebra representations have been used for some time as a means
to address the state space explosion problem arising in the numerical solution
of Markov chains. As mentioned earlier, the pioneering work in this area was
carried out by Plateau on Stochastic Automata Networks [18]. More recently,
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Kronecker-based solution techniques have been developed for various Petri net
based-formalisms, for example [8, 4–6].

With their explicit compositional structure, SPAs would appear to be natural
candidates for Kronecker representation; however, there is little previous work
on this topic. In 1994 Buchholz proposed an SPA called MPA, for which the
mapping to an underlying Markov process is only defined in terms of a tensor
expression [3]. However, in MPA the interpretation of both basic actions and
shared actions is quite different to that in PEPA, chosen specifically to facilitate
the tensor representation and without a natural modelling interpretation. MPA
has not been developed further. In this approach the usual labelled transition
system semantics is avoided and so there was no need to show the validity of
the tensor expression with respect to the standard Markov process generation
procedure. A similar denotational approach to semantics, making use of tensor
expressions, is developed in the work of Rettelbach and Siegle [19].

In [9] El-Rayes presents an extension of PEPA and an associated solution
technique based on the Matrix-Geometric Method (MGM). Her language PEPA∞ph
allows exponential durations to be replaced by phase type distributions. In
her mapping to the underlying Markov process, these distributions are repre-
sented by Kronecker expressions within the block-structured matrices used for
the MGM. This is distinct from the use of Kronecker expressions in this paper.

6 Conclusions

In this paper we have presented a mapping from a SPA formalism to a Kronecker
representation. Ours is the first such mapping aimed at implementation and
incorporation into a tool. The SPA we use is PEPA and the mapping is specific
to that formalism due to the complex semantic rules defining synchronisation
between PEPA components. Whilst other SPAs such as EMPA [2] and IMC [12]
have apparently simpler rules of synchronisation, they include immediate actions
which would complicate the mapping to a Kronecker representation.

Once the prototype implementation of this approach is incorporated into the
PEPA Workbench [7], we aim to improve its efficiency. In particular we plan
to investigate the multilevel approaches which have been employed with SPN
to avoid the incorporation of unreachable states. We will also be interested in
investigating techniques which exploit this Kronecker representation to solve the
model efficiently and in comparing our approach with other compact represen-
tations, such as those based on BDDs [13].
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