Analysing Performance of Lift
Systems in PEPA

Amani El-Rayes and Marta Kwiatkowska and Steven Minton*

Abstract

We use the stochastic process algebra PEPA [8] to specify lift sys-
tems and analyse their performance. We focus on the mean passenger
waiting time versus the speed of the lift (given by the slowest rate
such as the closing of the doors) and the rate of passengers arrivals.
The results are obtained by compiling the specification in the PEPA
workbench, and then solving the resulting equilibrium state equation
in Matlab. The outcome of the PEPA analysis is compared with tra-
ditional engineering methods for lift traffic analysis known from the
literature [2]. We find that PEPA has potential for finer grain analysis
than existing methods. Finally, we briefly discuss our experience with
the PEPA workbench.

1 Introduction

Performance modelling is concerned with the capture of the dynamic be-
haviour of computer and communication systems, and with their subsequent
analysis. Traditionally, analytical and numerical techniques such as Markov
chain analysis are applied, as in e.g. queuing theory, but they suffer from
the following problems: for complex systems the models become large and
unwieldy, and the structure of the solution rarely corresponds to the often hi-
erarchical structure of the system. A relatively recent proposal is to combine
process algebras, i.e. specification languages such as CCS [12] which allow
compositional design, with stochastic modelling, usually in terms of Markov
processes. This is typically achieved by augmenting the process algebra no-
tation, where actions are assumed to be instantaneous, with timing infor-
mation, usually an exponentially distributed random variable. As examples

*School of Computer Science, University of Birmingham, Edgbaston, Birmingham B15
2TT, UK. Email: {ahe,mzk,smm}@cs.bham.ac.uk



of thus obtained stochastic process algebras we mention PEPA (Performance
Evaluation Process Algebra) [8], TIPP [7] and EMPA [3].

We use PEPA, and more specifically the PEPA workbench [4], to model
and analyse a variety of lift systems. Although the PEPA tool is still in
early stages of development and rather rudimentary, it has already been
successfully applied to industrial problems, e.g. the robot control system
[5, 10]. However, all the models encountered by us were linear in structure,
as is often the case with production lines. Our aim is to evaluate PEPA from
the point of view of modelling and analysing a highly concurrent and non-
deterministic system. We choose lift systems as an object of our attention
for the following reasons:

e they range from simple to quite complex multi-lift systems, with a high
degree of parallelism and non-determinism present (e.g, if we consider
a lift serving n floors then at any one time it may receive n calls from
the floors and a number of requests to go to one of the n floors)

e their performance, e.g. mean waiting time, is sensitive to the timing in-
formation, type of distribution, as well as the actual control algorithm,
yielding a non-trivial domain for a stochastic analysis

e established traffic analysis methododology exists for lift systems, see
e.g. [2], thus making comparisons possible.

As we mentioned before, the PEPA workbench is still under development,
and, in particular, handling models with large number of states in the tool
is rather tedious. To cater for this, we shall aim for our specifications to be
scalable, that is, specified and analysed for a small number of floors, which
can then be transformed in a straightforward manner (when feasible for the
workbench) to a full-scale model, and also as accurate as possible. When
analysing performance we focus on the mean waiting time characteristics,
but other performance measures can also be considered.

Some techniques have been presented for model simplification and state
space aggregation to make it easier to tackle large problems; these methods
typically require generation of the original state space before they can be
applied. We reject those in favour of detailed description as we believe that
simplifications lead to approximate characteristics, which conflicts with one
of our goals. Techniques also have been proposed that operate at the level of
the PEPA model, thus avoiding the generation of the original state space, see
e.g. [9]. Whilst undoubtedly useful, these methods as they currently stand
are unlikely to have a major bearing the main arguments put forward in this

paper.



The outcome of our evaluation should provide useful feedback for future
development of the PEPA tool.

2 The PEPA language and workbench

In this section we overview the PEPA language [8] and the workbench [5].

In performance modelling, an appropriate representation of a system is
used to capture the essential characteristics of that system, so that its per-
formance can be reproduced. Such models are usually based on stochastic
models, from which performance measures can be easily obtained.

PEPA is intended to maintain many of the characteristics of a process
algebra, whilst incorporating the necessary features to make it suitable for
specifying stochastic processes. In particular, the stochastic processes un-
derlying PEPA models are continuous time Markov processes, which can be
solved for a steady state probability distribution.

2.1 Syntax and semantics of PEPA

In PEPA, a system is modelled as a set of components which perform actions,
either individually or multiply. Each component will correspond to some
element of the system which can be considered in isolation, be it a physical
component or a mode of behaviour. The actions correspond to the possible
activities of that element.

The actions themselves have associated with them a rate. This determines
how quickly that activity may occur, and distinguishes PEPA from other
process algebras where such actions are instantaneous. Each activity consists
of a pair, (a, r), of the activity name and its associated rate. The rate will
be either a parameter of an exponential distribution (so that if the rate is
A, the expected time at which the action occurs is 1/\ with the probability
P(ty < t) = 1 —eM), or the distinguished symbol T, which can be read
as unspecified. In this latter case, the action is performed in communication
with another component, and this component is passive, in that it may only
perform the action when the other component does.

The exclusive use of the exponential distribution is a necessary feature of
PEPA as it stands. In particular, specifying activities with constant duration,
say tg, or complying with Poisson or other distributions is not possible at
present. The restriction to exponential distributions is needed to guarantee
that the underlying stochastic process is a continuous time Markov process.

Components and activities can be combined in a number of ways. The
following constructions allow for components to be expressed in terms of



other components, and give PEPA its expressive power.
The syntax for terms in PEPA is as follows:

P = (a,r).PIP QP+ Q|P/LIX|A

where (o, 7). P denotes prefix, P+Q choice, P B4 @ cooperation, P/L hiding,

X variable and A 2 P constant.

The component (a, ). P commences by performing activity «, which takes
some time 0t drawn from the distribution, and then behaves as component
P. P+ @Q may perform as either P or (), which is possible even if they
begin with the same activity. P Df] () consists of the two components, P
and @), proceeding independently, except that they cooperate over all action
types represented in the set L. In other words, each component can perform
any activities not found in the set L entirely independently. However, they
may only commence performing an activity from L (such activities are called
shared) when they are both in a position to do so. The component P/L acts
as component P, except that activities whose type occurs in L are hidden,
meaning that their type is not witnessed upon completion. Instead, they
appear as the unknown type 7, and can be regarded as an internal delay by
the component. Constants A < P are components whose meaning is given by
a defining equation such as A = P which gives the constant A the behaviour
of the component P.

For a PEPA model we can derive a derivation graph (a multigraph in
which terms are nodes and arcs represent the transitions between them).
The stochastic process underlying the PEPA model has as states the nodes
of the graph, and the transition rate between states is the sum of the rates
labelling arcs between the corresponding nodes. Formally, the stochastic pro-
cess X (t) determined by a PEPA model is the Markov process X (t) = C;
meaning that the system behaves as the component C; at time ¢. The in-
finitesimal generator matrix () of the Markov process is formed by taking the
transition rate Q(C;, C;) as the off-diagonal elements ();;, and the negative
sum —Y,;x@Q;; as the diagonal elements ;. Under certain conditions (i.e.
if the Markov process is time-homogenous irreducible whose states are posi-
tive recurrent, and also strongly connected and finite-state) the equilibrium
probability distribution IT can be computed by solving the equation IT = Q0
(subject to the normalising condition ¥;I1(C;) = 1).



2.2 Performance measures in PEPA

In order to derive a performance measure in PEPA reward structures are
used. PEPA differs from the traditional Markov process modelling by being
action based, as opposed to state based, and so rewards can be associated
with activities. The performance measure is defined as the total reward R
based on the steady state probability distribution IT of the underlying Markov
process, i.e. R = X;p,I1(C;).

A typical state-based measure is utilisation; to calculate this associate
a reward of 1 with the states in which a resource is used, and 0 otherwise,
and then calculate the total reward. We often require action-based measures,
i.e. those in which the rate of an activity must be taken into account. An
example of such is the average rate of arrival, which is obtained by taking the
arrival rate as the reward and multiplying it with the probability of being in
one of the states from which the activity may occur. Combinations of state-
and action-based measures, such as the mean waiting time, are also used.

2.3 The PEPA workbench

The PEPA workbench inputs the model (.pepa text file) and after checking
for syntax errors, it computes the transition rate matrix @) (.m file). This file,
intended for use with a suitable mathematics package (in our case Matlab),
can be used to solve the underlying Markov process for the steady state
probability distribution IT necessary for performance analysis. As PEPA
is in an early stage of developemnt, no tools are provided for automatic or
semi-automatic calculation of desired performance measures directly from the
symbolic representation (i.e. directly from the PEPA model). Instead, such
calculations are performed at the level of Matlab, which requires translation
between the symbolic representation of states and the corresponding indices
in the transition rate matrix (two more files, .table and .hash, are generated
to ease the translation process). Understandably, the handling of models
with large numbers of states is rather tedious, although the workbench and
the Matlab package have been known to solve the steady state equation for
models of over 100,000 of states.

3 A simple lift system

We first illustrate our approach by analysing a simple lift system in PEPA.

Consider a simple one-person lift operating between two floors, which is
served on each floor by a one-person queue. It must wait on a floor until
someone arrives from the associated queue, or until there is a call from a



person on the other floor. Then it must move to the other floor, and subse-
quently behave as before. These two modes of behaviour correspond to the
states Lifty and Lift; when the lift is on the ‘ground’ floor, and to states
Lifty and Lift; when the lift is on the first floor.

The two queues are independent, but communicate with the lift via the
activities Arrival N, Call N and NoArrivalN where N = 0,1. PEPA does
not offer parametrization, and so the floor index N has to be instead encoded
in the process identifier. When the lift first arrives at floor N, it can only
accept an arrival from the queue, or the message NoArrivalN. This is to
make sure that the lift does not wait on floor N if there is no-one waiting
there, in which case the lift is ready to accept a call from the other floor.

Lifty < (Arrival0, T).Lift, + (NoArrival0, T).Lifto,
Lifto, 2 (Arrival0, T).Lift, + (Calll, T).Lift,

Lift; < (Up,r).Lift,

Lifty = (Arrivall, T).Lifts + (NoArrivall, T).Lifta,
Lifty, & (Arrivall, T).Lifts + (Call0, T).Lifts

Lifts = (Down, r).Lift,

Queuely = (OneON0, r3).Queueld, + (NoArrival0, r4).Queuely,
Queuel; = (Arrival0, ry).Queuely + (Call, r5).Queuel;

Queuely Z (OneOnl, r).Queuel, + (NoArrivall,rs).Queuelg
Queuely Z (Arrivall, r;).Queuely + (Calll, rg).Queuel;

(Queuey DU Queuely) B Lift,
where § = (Arrival0, Arrivall, Call0, Calll)

Suppose the lift is on the ground floor, and there is no new arrival on
ground floor. A possible scenario in this lift is: a person joins the first-
floor queue (via OneOnl), calls the lift (Calll), the lift ascends (Up), the
passenger enters the lift (Arrivall), and the lift returns (Down).

For the analysis, we concentrate on the mean waiting time for passengers
on the ground floor. We use Little’s Law, which states that the average
number of entities in a system is equal to the product of the average rate at
which entities arrive and the average time an entity is resident in the system.
Thus, we need to find the average number of people waiting, and the average
rate at which they arrive. The average number of people waiting is obtained



(&) ] ~

N

Waiting Time in Seconds
N w

[N

= O
i

Arrival Rate

Lift Time in Seconds

Figure 1: Performance of a Simple Lift

by associating a reward 1 (in general, the number of people waiting, but in
the simplified model we assumed 1-person queues) with all states in which
an arrival activity (Arrival0) is enabled. The average rate at which people
arrive is given by associating the rate of arrival with the arrival activity, and
multiplying it by the probability of being in one of the states from which
arrival can occur (i.e. the states corresponding to the queue being empty).
This means associating a reward of r3 with the activity OneOn0.

We summarise the results in a three-dimensional graph of average waiting
time against a measure of lift speed (the average time taken for the Up and
Down actions, r; and r5) and arrival rate (the values r3 for ground floor
and ¢ for first floor). Since the mean of an exponential distribution with
parameter 4 is 1/u, the lift time is given by the reciprocal of the rate ry
(= r9). The remaining rates are assumed to be insignificant (= 500). The
underlying stochastic model has 24 states.

This exhibits the kind of behaviour we might expect. For low lift times
(in other words for a fast lift) the waiting time is low, even for high arrival



rates. On the other hand, if the lift is slow, the waiting time quickly builds
up as the arrival rate increases, resulting in a disproportionate ‘jump’.

The PEPA workbench does not allow any execution traces of the model,
and so it is possible for errors in the model to remain undetected for some
time. We further gain confidence in our model by the following analysis.
An arrival rate of one corresponds, on average, to one arrival every second.
Consider this rate coupled with a lift time of four seconds. Now suppose
the lift is on the ground floor. It departs for the first floor, and, one second
after it leaves, there is an arrival on the ground floor. Three seconds later,
the lift arrives at the first floor, and it will take a further four seconds to
return to the ground floor. Thus, the arrival must wait seven seconds, which
is consistent with the graph. Notice that if we did not have the activity
NoArrival N then the waiting time could double, as demonstrated in the
following scenario. Suppose that there are arrivals at each floor before the
lift arrives at the first floor. When the lift arrives, instead of, as expected,
the person on the first floor getting in, the lift could respond to the call on
the ground floor, and immediately return there, thus forcing the passenger
to wait longer.

We are now in a position to exploit the compositionality of PEPA and
quickly create an interesting variation on our lift, by extending the model to
include more than one lift. We need only alter the last line:

(Queuely DI Queuely) B (Lifty B Lifto)
where S = (Arrival0, Arrivall, Call0, Calll)

The analysis yields the graph given in Figure 2. The underlying stochastic
process has 144 states, as opposed to 24 for the previous model. We can
see that this system has similar characteristics to the previous one, but is
approximately twice as fast.

We should point out that, in general, such a simplistic approach to the
increase in complexity would not work, as we must ensure that there is no
possible timing of arrivals and lifts that leads to a deadlock situation, which is
not always easily seen by considering a single component — in fact, ‘multiply-
ing’ components may result in the introduction of deadlock where deadlock
was not originally present. In the case of deadlock, the solution to the steady
state equation, if it can be approximated, yields probability 1 for the dead-
locked state and 0 for remaining states. The workbench has no support for
automatic deadlock detection at present.

The above description can now serve as a basis for a variety of perfor-
mance and cost measures.



N w
NG w »

Waiting Time in Seconds
=
L

o
o

o
Vi

Arrival Rate

Lift Time in Seconds

Figure 2: Performance of a Simple Two-Lift System



4 Analysing more complex systems

Our next task is to add more features of a realistic lift system. To achieve
this goal we have considered two directions: increasing the number of floors
and multi-person queues.

The main problem which we will encounter is an exponential state explo-
sion, which is already known from model checking [11]'. When components
with a large number of states, acting fairly independently of the other com-
ponents, are introduced, the number of states of the underlying process is
increased dramatically. For example, taking two entirely independent lift sys-
tems, each identical to the two-lift system from the previous section (which
has 144 states), yields 144 « 144 = 20736 states. Analysis of such a model, by
means of the PEPA workbench as it stands, would then be time-consuming.

Another issue that we have to deal with is the lack of parametrization
and modularity in the workbench at present, as well as restrictions in the
syntax.

Due to the large number of states we separately considered two orthogonal
designs: a many-floor system with up and down call buttons and a realistic
control element (we are in the process of analysing a two-lift system based
on this), and a simplified lift with up buttons only, but many-person queues.
In all cases, the trends observed were very similar to those described below.

4.1 Multi-floor lift

Initially, we aim to specify a three-floor system, which we can then scale
up by increasing the number of middle floors. This means that a model
where the interaction between the lift and the floors is made explicit is not
acceptable. Thus, a naive extension of the simple two-lift system with an
extra floor and lines like:

Lift, 2 (UpOne,ro).Lift, + (UpTwo, ). Lift,

will not be feasible.

What we require, instead, is some mechanism whereby the lift is passed
up or down one floor at a time, but only stops at a floor when it needs to.
We will need three elements: the control component (to determine where the
lift should go from each stop), the lift (which we make oblivious to which

!The state explosion problem has been researched widely in the model checking commu-
nity, leading to approaches that make the handling of 10?° binary states feasible. Tools for
stochastic process algebras have not reached comparable maturity, but one would expect
that some of the methods can be transferred from model checking to the SAPs.



floor it is on) and the floors. In addition, we shall need a ‘translator’ is
needed to overcome the restriction of the workbench which limits the number
of cooperating processes to two. It acts as a go-between passing messages
between components.

These restrictions make the system unnecessarily complex, as the major-
ity of the detail in each component has to do with the communications with
the other elements, and it is not always possible to have these meet with
intuition, due to the limitations of the language.

The lift itself is as follows.

a
©
~

Lifty = (Oneln, T).Lifty + (Go,ly).Lifto

Lift, < (LiftUp,1,).Lifty + (LiftDown, ly).Lifts
Lifty = (Stop,ly).Lifty + (LiftHere,l3).Lifts
Lifts 2 (Stop,ly).Lifty + (LiftHere,l3).Liftg
Lifty 2 (InOK,16).(Go, 10).Lift,

+(Calll, ly).(Go,ly).Lift,
+(Call2,14).(Go, ly).Lift,
Lifts < (Up,l5).Lift;
Lifts < (Down,l5).Lift;
Lift; ¥ (Fail, ). Lifty + (LiftUp, 1,).Lift, + (LiftDown, l,).Lifts

The lift is in state 0 when it is sitting on a floor. It may either take on
passengers (Oneln), or it may be told to Go. If it takes on passengers (state
4), they will place a call, and then the lift will be told to Go as before (InOK
is needed to communicate with the floors). Once it has received this message,
it is told which direction to head in via LiftUp and LiftDown. At the next
floor (state 2 or 3), it will either be told to Stop, in which case it returns to
state 0, or it will be acknowledged with a LiftHere communication. This
latter possibility is for when the lift passes through a floor without stopping.
In this case, it will tell the floor which direction it is heading in via Up and
Down, and go to state 7. From here, the lift will be sent on its way via
LiftUp and LiftDown. It may also Fail if it is attempting to go up from
the top floor, or down from the bottom floor, and will stop (this is included
as a safety catch).

The algorithm for the control element is as follows. We require a lift which
will always go upwards, picking people up and dropping them off on the way,
until there is no-one waiting on a floor above the lift, and no-one inside the
liftt wishes to get off on a higher floor. Then it will change direction and
always go downwards, picking people up and dropping them off as before,
until there are no calls or passengers waiting below, and so on repeatedly.



ControlUp = (Ready0, T).ControlU1
+(Readyl, T).ControlU2
+(Ready2, T).(FloorUp, ¢y).Control Down
ControlDown < (Ready0, T).(Floor Down, c,).ControlUp
+(Ready1, T).Control DO
+(Ready?2, T).Control D1
ControlU1l € (CallOnl, T).(FloorUp, cy).ControlUp
+(NoCallOnl, T).ControlU2
ControlUy = (CallOn2, T).(FloorUp, ¢o).ControlUp
+(NoCallOn2, T).(Failure, c3).Control Down
ControlD; & (CallOn1, T).(Floor Down, c,).Control Down
+(NoCallOnl, T).Control Dy
).
).

).
).

ControlDy & (CallOn0, T).(Floor Down, c,).Control Down
+(NoCallOn0, T).(Failure, cy).ControlUp

The states ControlUp and Control Down correspond to the overall gen-
eral heading of the lift. In other words, when the lift is ‘always going up-
wards’, the control element will be in state C'ontrolUp. When the lift stops
at a floor, the control element receives a Ready communication from that
floor. It then looks through the states above or below the lift, depending on
the direction the lift is heading in, for a call. If it finds one, it tells the floor
to send the lift on. If it doesn’t, it changes the overall lift direction.

This is best demonstrated with an example. Suppose the lift is heading
downwards and has arrived at the ground floor. Then the control is in state
Control Down and receives a Ready) communication, which puts it in state
ControlDown2. From this state, it tells the floor to send the lift down
(Floor Down), and changes direction by going to state ControlUp. Tt is
obviously not possible for the lift to go down, and when we come to the floor
component we will see that it treats this message as a failure, and sends the
Ready0 message again. This time the control is in the ControlUp state. It
receives the message, and goes into state C'ontrolU1.

Now suppose there is a call on floor 1. Then the control recieves the
C'allOnl communication and goes into state C'ontrolU2b, from where it tells
the floor to send the lift up, and goes back to state ControlUp. Conversely,
suppose there is no call on either floor 1 or floor 2. Then the control compo-
nent goes via NoC'allOnl and NoCallOn2 to state ControlU2c. From here it
reports a Flailure to the floor, and changes direction again, to Control Down.
Note that there is some redundancy here, since the Failure communication
achieves the same effect as the Floor Down message when it is sent to the
ground floor. This is a side-effect of the development process, and is needed



to ensure correctness.

Each floor can be loosely divided into two sections. The first section,
given below (for the ground floor), models the behaviour of the floor when
the lift is not there.

a

ef

Floor0y = (Arrival, fo).Floor0; + (Call0, T).Floor0,
+(Ex0, T).Floor0z + (NoCallOn0, f1).Floor0g

Floor0, 2 (CallOn0, f1).Floor0, + (Call0, T).Floor0,
+(FEz0,T).Floor0y

Floor0y Z (CallOn0, f1).Floor0, + (Call0, T).Floor0,
+(Arrival, fo).Floor0, + (Ex0, T).Floor0;

Floor0s Z (Arrival, fo).Floor0, + (Call0, T).Floor0s
+(LiftHere, T).Floor0Og + (NoCallOn0, f1).Floor0;

Floor0, Z (CallOn0, f1).Floor0 + (Call0, T).Floor0,
+(Stop, T).Floor0;

Floor0s Z (CallOn0, f1).Floor0s; + (Call0, T).Floor0;
+(Arrival, fy).Floor0, + (Stop, T).Floor0Os

This part of the floor component was designed after the following paradigm.
The floor can have three things: it can have an arrival, it can receive a call
(from someone inside a lift, to get out on that floor), and it can have an
expect lift token (indicating that the lift is about to arrive at the floor). It
must also respond to queries from the control about whether or not it has a
call (in this case, if it has an arrival it will respond affirmatively).

The rest of the floor description is concerned with the control of the lift
as it passes through the floor, or stops at the floor and moves off again.

Floor0s Z (Ready0, f,).Floor0,
Floor0; 2 (Oneln, fy).(InOK, T).Floor(Og

def

FloorOg = (Up, T).(ExOnl, f3).(Sent, T).(LiftUp, T).Floor0g
+(Down, T).(Fail, T).Floor0Og

Floor0g Z (FloorUp, T).(ExOnl, f3).(Sent, T)

(Go, T).(LiftUp, T).Floor0

+(Floor Down, T).(Ready0, f3).FloorOg

+(Failure, T).Floor0g



State 6 is for when the lift is stopping on the floor. It sends the Ready
communication to the control which we discussed earlier. State 7 lets arrivals
into the lift and then behaves as state 6. State 8 is for a lift passing through.
If it receives an Up message from the lift, it will pass the lift on via the
EzOnl, Sent and LiftUp messages. These respectively tell the next floor to
expect the lift, wait for acknowledgment of this message (lest the lift be sent
on before the next floor is expecting it, and trace of the lift is lost), and to
actually send the lift on. If it receives a Down message, it fails and stops the
lift (again, this should not be possible in practice). State 9, for the stopped
lift, receives instruction from the control element, and subsequently behaves
in much the same way as state 8.

For completeness, we include now the translation component, although
its operation should be self-explanatory. We also give the cooperation set
underneath.

T = (ExOn0, T).(Ex0,ty).(Sent, t1).T
+(ExOnl, T).(Exl,ty).(Sent, t1).T
+(ExOn2, T).(Ex2,ty).(Sent, t1).T

((((F'loor0s B Floorle) B Floor2,) BAT) BXI Lifto) BI ControlUp

where P = (EzOn0, ExOnl, ExOn2, Ex0, Ex1, Ex2, Sent),

Q = (Oneln,Go, LiftUp, Lift Down, Stop, LiftHere,
Call0, Call,Call2,Up, Down, Fail),

and R = (CallOn0, CallOn1, CallOn2, Ready0, Readyl, Ready?2, Failure,
NoCallOn0, NoCallOnl, NoCallOn2, FloorUp, Floor Down)

This model, and the thought processes behind its design, has been de-
scribed in detail, to try and demonstrate the inherent difficulty in describing
such a lift in PEPA while maintaining correctness assurance.

4.2 Analysing the multi-floor lift

The analysis of mean waiting time is performed similarly to the previous
model, except that now the model has 658 states in the case of three floors.
The results are given in Figure 3.

We note first that this once more exhibits the trends we have seen through-
out. We also note that this is somewhat faster than our previous attempt,
which had 860 states and did not include the InOK communication. This
was quite unexpected, but can be explained as follows. Suppose, for exam-



Spu02as Ul awi] Bunrepn

Lift Time in Seconds

Arrival Rate

Figure 3: Performance of the Multi-Floor Lift



20

=
ol

Waiting Time (%)
H
o

Arrivals per Second

Door Time in Seconds

Figure 4: Graph of Engineer’s Lift Analysis

ple, that the lift is on the first floor, heading up, and someone has just got
into it. If the system is as lift 4, then the lift could be sent down, even if
the person who just got in wanted to go up. This is because the lift can
finish communicating with the control before the call communication from
the person inside is placed. On the other hand, if the system is as lift 5,
then the lift will always go up in these circumstances, as the call from the
passenger will be placed before the control is consulted.

4.3 Comparing with traditional engineering techniques

We are now in a position to compare our results with those we would have
obtained using tradition engineering methods. In Figure 4, we have applied
an equation based method detailed in Barney [2] to a similar system to the
lift above.

We notice, firstly, that the two methods produce models exhibiting re-
markably similar trends (they are not likely to be numerically comparable
as they model slightly different types of lift). However, the engineering ap-



proach is certainly not as accurate for low arrival times and lift speeds. It
suggests that the average waiting time can be zero in such cases, which is
clearly not reasonable. It is likely that the PEPA approach is more numeri-
cally accurate over all values of arival rate and lift speed, but this is hard to
establish in general in this case.

5 Conclusions

Our experience with the PEPA workbench was largely positive, in the sense
that we did not encounter any flaws and the results obtained were consistent,
while at the same time more accurate, than those obtained by the traffic
analysis methods [2]. While the derivation of the model is a non-trivial
task, we found that once this has been obtained, introducing desired cost or
performance measures is straightforward, and so a variety of analyses can be
done on the model.

We did, however, find a number of features difficult in the tools as it
stands. We list them for the benefit of future developers of the tool.

First, we found that high level of confidence in the correctness of the
model was required. This is because there are no means for tracing execu-
tion (whether ‘running’ the model or unfolding the multi-graph), debugging,
emphdeadlock detection, or (automatic or semi-automatic) verification of
properties. Some work on code generation [6] may offer partial help in this
case, but also the development of the necessary methodologies and tools,
based e.g. on the recent work of [1], seems a worthwhile long-term goal.

Two other issues that we would like to raise were the lack of parametricity
and modularity. The former would have allowed us to specify a multi-floor
lift by describing the ground and top floors, and then the middle floor could
be indexed by the parameter 7, where ¢ could be instantiated to some value,
say 5, before analysis. The latter could be used e.g. to replace a lift control
algorithm with another one. Clearly defined interfaces are needed for this
purpose, and also equivalence / simulation testing to ensure that substitution
can be made.

The handling of models with a large number of states was also uncessarily
tedious because defining performance measures directly at the level of PEPA|
where attaching rewards to symbolic process names is possible, is not allowed
at present. More work in this direction, as well as towards full exploitation
of compositionality, is needed, although it is difficult to imagine that one can
dispose of Matlab completely.



References

1]

[10]

[11]

[12]

A. Aziz and K. Sanwal and V. Singhal and R. Brayton. Verifying Continuous
Time Markov Chains. In R. Alur and T. Henzinger, editors, Proceedings of
Computer Aided Verification (CAV), volume 1102 of Lecture Notes in Com-
puter Science. Springer Verlag, 1996.

G.C.Barney. Theoretical design aspects of lift traffic, In G.C.Barney, editor,
Elevator Technology, Ellis Horwood, 1986.

M.Bernardo, L.Donatiello and R.Gorrieri. Integrating performance and func-
tional analysis of concurrent systems with EMPA, Technical Report, Depart-
ment of Computer Science, University of Bologna, 1995.

S.Gilmore and J.Hillston. The PEPA Workbench: A tool to Support a Pro-
cess Algebra-based Approach to Performance Modelling. In G.Haring and
G.Kotsis, editors, volume 794 of LNCS, Springer-Verlag, 1994. Pages 353-
368.

S.Gilmore, J.Hillston, D.R.W.Holton, and M.Rettelbach. Specifications in
a Stochastic Process Algebra for a Robot Control Problem. International
Journal of Production Research, 1995.

S.Gilmore, J.Hillston, and D.R.W.Holton. From SPA models to programs. In
Proceedings of PAPMY96, to appear.

N. Gotz, U. Herzog and M. Rettelbach. TIPP - a language for timed pro-
cesses and performance evaluation. In U.Herzog and M.Rettelbach (editors).

Proceedings of the 2nd workshop on performance modelling, Erlangen, Ger-
many, 199/.

J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

J.Hillston and U.Mertsiotakis. A simple time scale decomposition technique
for stochastic process algebras, The Computer Journal, vol.38, no.3, 1995.

D.R.W.Holton and J.P.N.Glover. An SPA Performance Model of a Production
Cell. Preprint, 1996.

K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
1993.

R.Milner. Communication and concurrency, Prentice Hall, 1989.



