
Partial Evaluation of PEPA Models for
Fluid-flow Analysis

Allan Clark, Adam Duguid, Stephen Gilmore and Mirco Tribastone

LFCS, University of Edinburgh

Abstract. We present an application of partial evaluation to perfor-
mance models expressed in the PEPA stochastic process algebra [1]. We
partially evaluate the state-space of a PEPA model in order to remove
uses of the cooperation and hiding operators and compile an arbitrary
sub-model into a single sequential component. This transformation is
applied to PEPA models which are not in the correct form for the ap-
plication of the fluid-flow analysis for PEPA [2]. The result of the trans-
formation is a PEPA model which is amenable to fluid-flow analysis but
which is strongly equivalent [1] to the input PEPA model and so, by an
application of Hillston’s theorem, performance results computed from
one model are valid for the other. We apply the method to a Markovian
model of a key distribution centre used to facilitate secure distribution
of cryptographic session keys between remote principals communicating
over an insecure network.

1 Introduction

Fluid-flow approximation of PEPA models [2] enables the numerical analysis of
models of vast scale using ordinary differential equations (ODEs). The model
sizes which can be analysed using transformation into an ODE representation
pass effortlessly beyond the maximum attainable using exact discrete-state rep-
resentations such as continuous-time Markov chains. However, fluid-flow analysis
is applicable to PEPA models in a particular form where the model is structured
as the cooperation of replicated copies of sequential components. For example,
if P , Q and R are sequential PEPA components available in M , N and O repli-
cations and K and L are cooperation sets then the model

P [M] BC
K

(
Q[N] BC

L
R[O]

)
is immediately suitable for fluid-flow analysis but the model

P [M] BC
K

(
(Q BC

L
R)[N]

)
is not, because of the use of the cooperation operator (BC) nested inside the
array of N replications. We use partial evaluation to transform the unsuitable
model into an equivalent model of the form:

P [M] BC
K

QR[N]

The new model has a new sequential component QR which exactly respects
the interaction between the original Q and R. The new sequential component is
generated in such a way that we can recover the states of Q and R from the state
of QR. The transformation can be applied compositionally to a model to generate
an equivalent which is suitable for fluid-flow analysis without generating the full
state-space of the original model. Specifically, the cost of the transformation
depends only on the form of the components Q and R and does not depend on
the values of M or N .

The original contributions of the present paper are the following.

1. We present a novel application of Hillston’s theorem to the partial evaluation
of a PEPA model. The theorem [1] guarantees that the strong equivalence
relation of PEPA is a congruence for the PEPA process algebra and thus the
partially evaluated model is equivalent to the original.

2. We present four styles of analysis of the same model three of which allow
the analysis at large scales. The model analysed represents the Needham-
Schroeder-Lowe protocol. We compare the performance results obtained us-
ing all four analysis methods.

2 Case study: Key Distribution Centres

Key distribution centres enable secure communication between remote principals
across an insecure network. The distribution centre acts as a trusted third party,
allowing users to register a key with the centre and use a robust cryptographic
protocol to establish a secure communication between two principals who have no
previous communication history and no secure shared communications channels.

One possible candidate for the chosen cryptographic protocol is the Needham-
Schroeder-Lowe protocol [3] which hardens the Needham-Schroeder protocol [4]
against replay attacks. The goal of the protocol is to enable secure communi-
cation between Alice and Bob. The protocol has five steps, which we describe
informally first.

– Alice sends a message to the server requesting a session with Bob.
– The server generates a new session key KAB , encrypted under Alice’s regis-

tered key, KAS , together with a copy encrypted for Bob.
– Alice forwards the copy on to Bob, who can decrypt it.
– Bob sends a random number (a nonce) to Alice, encrypted under the session

key.
– Alice makes a small change to the nonce and sends it back to Bob.

The traditional representation of such a protocol is as a narration, setting out
more methodicially the information presented above. In the notation used below
X → Y denotes a communication from X to Y , x1, . . . , xn denotes a tuple of
n values and {x1, . . . , xn}K denotes a tuple of n values encrypted under the

cryptographic key K.

(request) 1. A → S : A,B, NA

(response) 2. S → A : {NA,KAB , B, {KAB , A}KBS
}KAS

(sendBob) 3. A → B : {KAB , A}KBS

(sendAlice) 4. B → A : {NAB}KAB

(confirm) 5. A → B : {NAB − 1}KAB

After these five steps are complete Alice and Bob can use the key in a secure
session (usekey).

A representation of the protocol such as this is adequate for the analysis
of the correctness of function of the protocol using a logic such as the BAN
logic [5] but it is not suitable for performance analysis. Time is abstracted away
in the model above, as it is in classical process algebras. In a stochastic process
algebra such as PEPA [1] the communication events and the encryption steps
have an expected average duration. Performance results such as response time
and utilisation can be calculated from a PEPA model of a key distribution centre,
as shown in [6] and [7]. Conversely, data is abstracted away in the PEPA model
and so it is not suitable for correctness analysis1.

A PEPA model of a key distribution centre such as the one shown in Figure 1
can be used to produce a finite discrete-state representation of the system with
quantified durations associated to each activity.

KDC
def
= (request , rq).KDC + (response, rp).KDC

Alice
def
= (request , rq).(response, rp).Alice1

Alice1
def
= (sendBob, rB).Alice2

Alice2
def
= (sendAlice,>).(confirm, rc).Alice3

Alice3
def
= (usekey , ru).Alice

Bob
def
= (sendBob,>).Bob1

Bob1
def
= (sendAlice, rA).(confirm,>).Bob2

Bob2
def
= (usekey ,>).Bob

System
def
= KDC BC

L

“
(Alice BC

M
Bob)[N]

”
where L = { request , response }

M = { sendBob, sendAlice, confirm, usekey }

Fig. 1. PEPA model of the Key Distribution Centre presented in [6]

1 The original Needham-Schroeder protocol and the modified Needham-Schroeder-
Lowe protocol would have the same representation in PEPA.

The derivation graph underlying this PEPA model can be converted into a
Continuous-Time Markov Chain (CTMC) which can be readily solved to find
the steady-state distribution over all of the reachable states of the model [8]
or analysed to determine transient probability distributions and response-time
profiles [9].

Exact discrete-state models of complex systems face the well-known problem
of state-space explosion where, as the complexity of the system under study
increases, there is an exponential growth in the state-space of the underlying
model. Out-of-core [10] and disk-based solution methods [11] allow modellers to
tolerate very large state-spaces but at the cost of greater and greater numerical
solution times.

As the number of paired principals (N) in the PEPA model increases the
machine representation of the probability distribution requires more and more
storage and longer and longer computation times to calculate. The size of the
state space of the Markovian model is 6N which grows very rapidly with N .
Fortunately we have available in the PEPA Eclipse Plug-in an implementation
of the state-space aggregation algorithm for PEPA [12] which allows us to better
cope with increases in N . The state-space sizes before and after aggregation are
shown in Table 1.

Full Aggregated
state-space state-space

N size size

1 6 6
2 36 21
3 216 56
4 1,296 126
5 7,776 252
6 46,656 462
7 279,936 792
8 1,679,616 1,287
9 10,077,696 2,002

10 60,466,176 3,003
11 362,797,056 4,368
12 2,176,782,336 6,188 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 2 4 6 8 10 12

N

Full statespace

Aggregated statespace

Table 1. Full and aggregated statespace sizes as calculated by the PEPA Eclipse
Plugin [8].

Use of the aggregation algorithm allows us to tolerate larger state-spaces
but this too will reach a limit and at that point we will need to rely on other
techniques to analyse the model. In this paper we make use of three techniques;
fluid-flow analysis, stochastic simulation and reduction to a closed queueing net-
work, to allow us to continue to analyse the model past the limit on the number
of clients imposed by the state-space explosion problem on the CTMC analysis.
For two of the techniques the model must first be partially evaluated and this
is discussed in the next section. Following this we detail the analysis by each
method.

3 Partial Evaluation

Our model of the key distribution centre shown in Figure 1 exhibits synchro-
nisation nested within an array and is thus in its present form unsuitable for
fluid-flow analysis. However we can apply the partial evaluation technique de-
scribed in the introduction transforming the synchronisation: (Alice BC

M
Bob) into

an equivalent component: AliceBob.
This is achieved by considering this synchronisation as an entire model and

deriving the entire state-space of this smaller model. Deriving the entire state-
space of this synchronisation transforms multiple (in this case two) synchronised
components into a single sequential component. The number of states in the new
sequential component depends only on the form and synchronised activies of the
involved components and not on any part of the larger model containing the
original cooperation. In particular if the synchronisation occurs nested within
an array – as is the case with our model – the partial evalation is the same
regardless of the size of the array.

KDC
def
= (request , rq).KDC + (response, rp).KDC

AliceBob
def
= (request , rq).AliceBob1

AliceBob1
def
= (response, rp).AliceBob2

AliceBob2
def
= (sendBob, rB).AliceBob3

AliceBob3
def
= (sendAlice, rA).AliceBob4

AliceBob4
def
= (confirm, rc).AliceBob5

AliceBob5
def
= (usekey , ru).AliceBob

System
def
= KDC BC

L
AliceBob[N]

where L = { request , response }

Fig. 2. Partially evaluated PEPA model of the Key Distribution Centre

When we apply partial evaluation to the PEPA model shown in Figure 1 we
obtain the model in Figure 2. There is a one-to-one correspondence between the
states of the original synchronised components (Alice BC

M
Bob) and the sequen-

tial component AliceBob as indicated in Table 2. In turn there is a one-to-one
correspondence between the states of the original PEPA model and the states
of the partially-evaluated PEPA model.

4 Analysis

After the partial evaluation of the key distribution centre PEPA model we have
four distinct forms of analysis which we may apply:

Original Partially-evaluated
PEPA model PEPA model

Alice Bob AliceBob

(response, rp).Alice1 Bob AliceBob1

Alice1 Bob1 AliceBob2

Alice2 Bob1 AliceBob3

(confirm, rc).Alice3 (confirm,>).Bob2 AliceBob4

Alice3 Bob2 AliceBob5

Table 2. Bisimilar states in the original and partially-evaluated PEPA models.

1. exact discrete-state analysis by solving the underlying continuous-time Markov
chain;

2. manually reduce and approximate the model to a closed queueing system as
is done in [6];

3. approximate discrete-state analysis by stochastic simulation of the underly-
ing continuous-time Markov chain; and

4. approximate continuous-state analysis by numerical integration of the un-
derlying fluid-flow differential equations.

We perform each of these in turn on the model of the key distribution centre.

4.1 Markovian analysis

The first programme of analysis which we undertake is to examine the probabil-
ity density function (pdf) and cumulative density function (cdf) for a passage
through the system behaviour. For this analysis we have used the International
PEPA Compiler (ipc) [9] tool suite.

The measurement which we make is from the end of an occurrence of the
request activity to the end of a confirm activity. This measures the time it takes
to restart a session and gives us our notion of response time for this system.
Note though that in this passage only the response activity cooperates with the
server the other activities are performed within a single AliceBob component
and hence the delay from these activities is unaffected by the number of clients
in the system. This is an important performance metric since sessions may need
to be restarted frequently. This is necessary because after a period of continued
use a session key should not be considered safe due to too many ciphertexts
being available to an attacker.

We vary the rate ru (the rate of the usekey activity). This essentially varies
the duration of a session (usekey is the session). We are measuring between the
request and confirm activities as performed by only the first Alice/Bob pairing
because otherwise we have essentially a meaningless measurement. The ability
to isolate and probe a particular Alice/Bob pair is given to us by the use of
location-aware stochastic probes [13]. The results are shown in Figure 3.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

Main::rp
Time

 0

 0.05

 0.1

 0.15

 0.2

 0.25

Pd

A pdf Sensitivity graph

 0.5

 1

 1.5

 2

 2.5

 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 10

Pd

 0

 0.05

 0.1

 0.15

 0.2

 0.25

Main::ru
Time

 0

 0.05

 0.1

 0.15

 0.2

 0.25

Pd

A pdf Sensitivity graph

 0.01
 0.015

 0.02
 0.025

 0.03
 0.035

 0.04
 0.045

 0.05
 0.055

 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 10

Pd

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 0.5
 1

 1.5
 2

 2.5 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Prob

A cdf Sensitivity graph

Main::rp

Time

Prob

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Prob

A cdf Sensitivity graph

Main::ru

Time

Prob

Fig. 3. The top two graphs depict the probability density function (pdf) and the bot-
tom two graphs the cumulative density function (cdf) of the passage from usekey to
confirm for a particular Alice/Bob pair. In the graphs on the left we vary the rate at
which the server responds while in the graphs on the right we vary the rate at which
session keys are consumed and hence the rate at which requests arrive at the server.

Because we are using the full numerical solution technique we are limited
in the number of clients that may participate in the model. Because of the low
number of clients the centre is able to cope with demand very well and varying
the rate at which keys are used – and therefore the rate at which requests arrive
– does not have a significant impact on the passage of interest. This further
motivates us to apply large state-space size analysis techniques.

The numerical solution of the underlying Markov chain has allowed us to
obtain response-time quantiles. However we can also use the Markov chain to
compute the steady-state probability distribution, i.e. the long-term probability
of being in each state. This information allows us to compute throughput and
utilisation which for this model will give us the average number of clients wait-
ing to be processed by the server and the average response-time. The results
are computed using the PEPA Eclipse Plug-in [8] and are shown together in
comparison to the same measures as computed using the other three analysis
techniques in Section 4.3.

4.2 Analytical Solution

We have seen that it is possible to transform the original model into one suitable
for analysis using ordinary differential equations and stochastic simulation while
being certain that we are analysing an equivalent model. Another technique
is to continue simplifying the model until we have one which may be solved
analytically. We may lose the exact correspondence between the original model
and simplified model however if we are careful in our transformations we may
still relate the performance measurements obtained from the simplified model to
the original model.

In the case of the key distribution centre it is possible to reduce the model
to that of a simple closed queueing system. This simpler model has one queue
station representing the key distribution centre and each client performing an
exponential delay after being serviced before returning to the queue. This tech-
nique is described in detail in [6]. This represents only an approximate solution
because in the original model each client pair performs a sequence of activities
before returning to the queue. This sequence of (exponentially delayed) activities
will give rise to an Erlang distributed delay.

From this closed queueing system we can compute the average number of
clients waiting in the queue and from this the average response time. As men-
tioned above these results are shown for all analysis techniques in Section 4.3.

4.3 Simulation and fluid-flow analysis

The work in the early part of this paper was concerned with transforming the
PEPA model of the key distribution centre into a form which was suitable for
ODE analysis. We reap the benefits of this work here because we can efficiently
compute mean trajectories through the model state space for large-scale models.

In this section we perform those analyses with the partially-evaluated model.
The graphs in Figure 4 show the average number of AliceBob1 components in
the system varying as we increase N – the total number of Alice and Bob pairs
in the system. This gives us the average number of clients that are waiting to be
served by the key distribution center as a function of the total number of clients.
Results are shown for all four analysis methods though the numerical solution
via a Markov chain has results only up to N = 32, the limit before solving the
Markov chain becomes too expensive. The graph on the left highlights the small
values of N ≤ 50 and the graph on the right depicts all values of N ≤ 500.

Similarly the graphs in Figure 5 show average response-time as computed
using all four analysis methods. Once again the Markov chain solution is limited
to values of N ≤ 32 and correspondingly the graph on the left highlights the
smaller values of N while the graph on the right allows N to increase to 500.

Encouragingly we see that as N increases the agreement between the mea-
surements improves. At very small values of N the ODE differs from the other
methods, whilst the queueing method, stochastic simulation and Markov chain
method continue to show good agreement for all measured values of N . This
provides us with confidence that the stochastic simulation analysis is providing

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 A
lic

eB
ob

1
C

om
po

ne
nt

s

N

CTMC

SSA

ODE

analytic

 0.01

 0.1

 1

 10

 100

 1000

 500 100 10 1A
ve

ra
ge

 A
lic

eB
ob

1
C

om
po

ne
nt

s
(lo

g
ax

is
)

N (log axis)

CTMC

SSA

ODE

analytic

(a) (b)

Fig. 4. The average number of AliceBob1 components varied as the number of client
pairs (N) is increased, using all of the separate analysis techniques.

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 R
es

po
ns

e
T

im
es

N

CTMC

SSA

ODE

analytic

 1

 10

 100

 1000

 500 100 10 1

A
ve

ra
ge

 R
es

po
ns

e
T

im
es

(lo
g

ax
is

)

N (log axis)

CTMC

SSA

ODE

analytic

(a) (b)

Fig. 5. The average response times measured as the number of clients is increased.

 150

 200

 250

 300

 350

 400

 450

 500

 300
 350

 400
 450

 500 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 0.045
 0.05

 0.055

 150

 200

 250

 300

 350

 400

 450

 500

waiting

N

usekey rate

waiting

 0

 200

 400

 600

 800

 1000

 1200

 1400

 300
 350

 400
 450

 500 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 0.045
 0.05

 0.055

 0

 200

 400

 600

 800

 1000

 1200

 1400

response time

N

usekey rate

response time

(a) (b)

Fig. 6. The sensitivity at varying values of N of the rate of key consumption (the rate
of the usekey activity) as measured by the ODE analysis.

accurate results and hence we use this to compare how well our ODE analysis
is performing at large values of N where it is not possible to compare with the
Markov chain solution. We are also pleased to note that the queueing and ODE
methods begin to show agreement with the Markov chain solution (and therfore
also the simulation results) before the limit of the Markov chain solution. In the
following section we give a more detailed comparison of the results.

Sensitivity Analysis Recall from Section 4.1 that we performed sensitivity
analysis for small values of N using the Markovian solution method of analysis.
We found that varying the rate at which the server responds affects the response
time as one would expect. However varying the rate at which keys are consumed –
and therefore the rate at which requests arrive at the server – did not significantly
affect the response time. We reasoned that this was because N was so low that
whenever a client made a request there was very likely to be no other clients
already waiting in the queue even as we increased the rate of key consumption.
To achieve any noticable effect the rate that the clients use the key must be set
unrealistically high.

We have repeated this sensitivity analysis at higher levels of N in order to
understand the influence of varying the rate of key consumption. The graphs
in figure Figure 6 show the effect that varying this rate has on the number of
clients waiting (left) and the response time (right). Here we can see a significant
effect caused by changing the rate at which requests arrive at the server. Having
done this we can conclude that although the Markovian solution allows for very
accurate results, if the number of clients is unrealistically low, any conclusion
obtained from sensitivity analysis of the Markovian method cannot be assumed
to apply at larger values of N . Thus our analysis using ordinary differential
equations and stochastic simulation is a necessary endeavour.

5 Comparison

In the previous section we compared the results from the four methods of anal-
ysis, noting disagreement at low values of N (N <≈ 25) between the ODE
analysis and other methods. For higher values of N the data indicated better
agreement over all four methods. In this section we look closer at the differences
between the different analyses.

Taking the Markovian analysis as our yardstick we can compare how well
the other three analysis methods perform for values of N ≤ 32. The graphs in
Figure 7 show the error in the measured average number of waiting clients. The
graphs in Figure 8 show the error as compared with the Markovian solution in
the measured response time. In both sets of graphs we depict in the left graph
the absolute error, as the difference between the given analysis method and
Markovian solution, while in the right hand graph this value is given relative to
the number of clients in the system. This is because, particularly in the case of
average number of clients waiting, an error of 5 is more significant when there
are only 15 clients in the system as when there are over 100. In the case of the

response-time error normalising by the number of clients does not make sense
so we instead divide the error by the response-time as calculated by the Markov
chain solution.

 0

 0.5

 1

 1.5

 2

 2.5

 5 10 15 20 25 30

A
bs

ol
ut

e
er

ro
r

N

SSA

ODE

analytic

 0

 2

 4

 6

 8

 10

 12

 5 10 15 20 25 30

R
el

at
iv

e
er

ro
r

(%
)

N

SSA

ODE

analytic

(a) (b)

Fig. 7. Each graph plots the difference in measured average number of waiting clients
for the given analysis method against the Markov chain solution as the number of
clients N is increased. The graph on the left (a) depicts the absolute error while the
graph on the right (b) depicts the error relative to the number of clients.

The disagreement seen in Figures 4 and 5 can clearly be seen here, peaking
at approximately 12% around N = 20 for the ODE analysis. The SSA analysis
shows very good agreement with the CTMC, shown by a maximum error of
0.1% for N = 1 . . . 32. What the previous graphs failed to show was the minor,
but increasing error between the CTMC and analytical analysis. What is unclear
from Figure 7 is whether the error between the CTMC and analytical approaches
has peaked or not. If we assume the level of error between CTMC and SSA were
to remain constant, as we did in Section 4.3, then we can be confident comparing
the SSA and the analytical method. This comparison shows an error of no more
than 1.4% for N = 1 . . . 500. Looking at response times (Figure 8) we see that
for lower values of N the error can be as high as 50% and a peak of 4.5% for the
analytical method.

So far comparison has been at steady-state; however SSA and ODE analysis
both allow comparison for any value of t. Figure 9 shows the time-series data
for the number of waiting clients (AliceBob1), and Figure 10 the absolute and
relative error for N = 5 . . . 50. Figure 11 shows the absolute and relative error
for N = 50 . . . 300.

What is clear from these graphs is that the reported error for the steady-state
is not the peak error seen. From Figure 7 we could see an error of approximately
12% when N ≈ 20, whereas the peak value seen from this sample of N is closer
to 15% when N = 5. Figure 11 shows that the peak error observed decreases
as N increases, showing a peak error of approximately 3.5% for N = 300, and
a steady-state error of 0.2%. If the graph was extended to show N = 500 the

 0

 1

 2

 3

 4

 5

 6

 7

 5 10 15 20 25 30

A
bs

ol
ut

e
er

ro
r

N

SSA

ODE

analytic

 0

 10

 20

 30

 40

 50

 60

 5 10 15 20 25 30

R
el

at
iv

e
er

ro
r

(%
)

N

SSA

ODE

analytic

(a) (b)

Fig. 8. Each graph plots the difference in measured response time for the given analysis
method against the Markov chain solution as the number of clients N is increased. The
graph on the left (a) depicts the absolute error while the graph on the right (b) depicts
the error relative to the response-time as calculated using the Markov chain solution.

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300

A

lic
e

an
d

B
ob

1
(S

S
A

)

Time

N=5
N=10
N=15
N=20
N=25
N=30
N=50

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300

A

lic
e

an
d

B
ob

1
(O

D
E

)

Time

N=5
N=10
N=15
N=20
N=25
N=30
N=50

(a) (b)

Fig. 9. Time-series data for SSA and ODE, graph (a) and (b) respectively, for various
values of N .

peak error seen would be approximately 3% and a steady-state error of less than
0.1%.

6 Conclusions

By applying partial evaluation of the Markovian state-space of a PEPA model
we have been able to transform a model unsuitable for fluid-flow analysis into
one for which fluid-flow analysis is immediately applicable. Fluid-flow analysis
allows us to examine the dynamics of models of large-scale at low computational
cost. This has provided us with four possible analysis methods for this model
each with a distinct set of advantages and disadvantages:

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250 300

A
bs

ol
ut

e
er

ro
r

Time

N=5
N=10
N=15
N=20
N=25
N=30
N=50

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250 300

R
el

at
iv

e
er

ro
r

(%
)

Time

N=5
N=10
N=15
N=20
N=25
N=30
N=50

(a) (b)

Fig. 10. Graphs for absolute error (a) and relative error (b) for N = 5 . . . 50.

 0

 2

 4

 6

 8

 10

 12

 0 100 200 300 400 500 600 700 800

A
bs

ol
ut

e
er

ro
r

Time

N=50
N=100
N=150
N=200
N=250
N=300

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500 600 700 800

R
el

at
iv

e
er

ro
r

(%
)

Time

N=50
N=100
N=150
N=200
N=250
N=300

(a) (b)

Fig. 11. Graphs for absolute error (a) and relative error (b) for N = 50 . . . 300.

CTMC Compiling the model to the CTMC allows for the most detailed analysis
of the model. We can obtain passage-time quantiles which none of the other
analysis methods yet support. The disadvantage though is clear - the CTMC
representation suffers from the well known state-space explosion problem. We
can mitigate this to some degree using state-space aggregation. In this particular
example we could cope with values of N up to 32.

Analytical Approximation By first manually reducing the model to an equivalent
closed queueing network we can cope with values of N much larger than for
the CTMC based analysis. We can comfortably cope with values of N over
a thousand. The disadvantage of such an approach is that it is available to
only a specific kind of model, namely those which may be reduced to a closed
queueing system. Additionally such a transformation is model dependent and
therefore must be done manually. In each case the modeller must work to show
that the simplified model is indeed equivalent to the original model or that the
approximation is close enough.

Simulation We can use stochastic simulation to analyse our model. This again
allows us to cope with larger state space sizes. The drawback in this case is
that our results will only ever be an approximation to the true results. As our
accuracy requirements increase so do the number of simulations which must be
run and thus the computation time.

Fluid-flow The approach we have used in this paper is to partially-evaluate the
model into a form suitable for translation into ordinary differential equations.
This has similar advantages to the reduction to a closed queueing network. How-
ever the partial evaluation of the parallel sub-components is a well defined trans-
formation which may be automated. Moreover all partially-evaluated models are
known to be equivalent to their original models. The disadvantage of this ap-
proach is that for the solution to the ODEs to be accurate we require a large
number of components. That is the model cannot be used for small values of N .
This is in direct contrast to the CTMC method which can be used effectively for
small values of N but cannot cope with larger values of N .

We believe that the combination of CTMC analysis for small values of N and
ODE analysis – via partial evaluation of parallel sub-components where required
– forms an important partnership in the analysis of large scale parallel models.
The CTMC analysis can be used not only for analysis for small values of N
where the ODE analysis is inappropriate but also to gain greater insight into
the properties of the model since the CTMC analysis permits such analyses as
the computation of passage-time quantiles. Meanwhile analysis for large values
of N can be obtained through fluid-flow analysis.

In doing such a combination of analyses the modeller will likely look for the
crossover point. The crossover point is the value of N at which the ODE analysis
agrees with the CTMC analysis. In general we would like this value to be lower
than the upper bound on N for the CTMC analysis. Otherwise the modeller
must guess at the crossover point though stochastic simulation can be used to
provide some assurance. Through our use of aggregation of the state-space of
the model we are hopeful that many models fall into the former category.

Acknowledgements: This work has been partially sponsored by the project SEN-
SORIA, IST-2005-016004.

References

1. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

2. J. Hillston. Fluid flow approximation of PEPA models. In Proceedings of the
Second International Conference on the Quantitative Evaluation of Systems, pages
33–43, Torino, Italy, September 2005. IEEE Computer Society Press.

3. G. Lowe. An attack on the Needham-Schroeder public key authentication protocol.
Information Processing Letters, 56(3):131–136, November 1995.

4. R. Needham and M. Schroeder. Using encryption for authentication in large net-
works of computers. Communications of the ACM, 21(12):993–999, December
1978.

5. M. Burrows, M. Abadi, and R.M. Needham. A logic of authentication. ACM
Transactions on Computing Systems, 8(1):18–36, February 1990.

6. Yishi Zhao and Nigel Thomas. Approximate solution of a PEPA model of a key
distribution centre. In S. Kounev, I. Gorton, and K. Sachs, editors, Performance
Evaluation: Metrics, Models and Benchmarks. SPEC International Performance
Evaluation Workshop (SIPEW 2008), LNCS 5119, pages 44–57, Darmstadt, Ger-
many, 2008. Springer.

7. Yishi Zhao and Nigel Thomas. Fluid flow analysis of a model of a secure key
distribution centre. In A. Argent-Katwala, N.J. Dingle, and U. Harder, editors,
Proceedings of the 24th UK Performance Engineering Workshop, pages 160–171,
Imperial College London, July 2008.

8. Mirco Tribastone. The PEPA Plug-in Project. In Mor Harchol-Balter, Marta
Kwiatkowska, and Miklos Telek, editors, Proceedings of the 4th International Con-
ference on the Quantitative Evaluation of SysTems (QEST), pages 53–54. IEEE,
September 2007.

9. Allan Clark. The ipclib PEPA Library. In Mor Harchol-Balter, Marta
Kwiatkowska, and Miklos Telek, editors, Proceedings of the 4th International Con-
ference on the Quantitative Evaluation of SysTems (QEST), pages 55–56. IEEE,
September 2007.

10. M. Kwiatkowska, R. Mehmood, G. Norman, and D. Parker. A symbolic out-of-core
solution method for Markov models. In Proc. Workshop on Parallel and Distributed
Model Checking (PDMC’02), volume 68.4 of Electronic Notes in Theoretical Com-
puter Science. Elsevier, 2002.

11. W.J. Knottenbelt and P.G. Harrison. Distributed disk-based solution techniques
for large Markov models. In Proc. 3rd International Workshop on the Numerical
Solution of Markov Chains (NSMC ’99), pages 58–75, Zaragoza, Spain, September
1999.

12. S. Gilmore, J. Hillston, and M. Ribaudo. An efficient algorithm for aggregating
PEPA models. IEEE Transactions on Software Engineering, 27(5):449–464, May
2001.

13. Ashok Argent-Katwala, Jeremy Bradley, Allan Clark, and Stephen Gilmore.
Location-aware quality of service measurements for service-level agreements. In
G. Barthe and C. Fournet, editors, Proceedings of the Third International Confer-
ence on Trustworthy Global Computing (TGC’07), volume 4912 of LNCS, pages
222–239. Springer-Verlag, 2008.

