The PEPA Feature Construct

Stephen Gilmore and Jane Hillston

LFCS, The University of Edinburgh, Edinburgh EH9 3JZ, Scotland.
Email: {stg, jeh}@dcs.ed.ac.uk

Abstract. We show how the PEPA performance modelling language could be
extended with a feature construct which can be used to describe modifications
to PEPA models. We provide this construct with an operational description which
conservatively extends the operational semantics of the PEPA language. We then
show how the feature construct can be applied in a small case study.

1 Introduction

PEPA (Performance Evaluation Process Algebra) [1] is a performance mod-
elling notation. It is also a process algebra, a concise mathematical language
which is amenable to formal reasoning. PEPA is defined by an unambiguous
semantics which makes clear the meaning of all models which are expressed in
the language. It has been used to investigate the behaviour and performance
of a diversity of distributed and concurrent systems [2—6].

Constructing performance models of distributed systems is a worthwhile
activity. Distributed systems often have designs which are both complex and
novel. An ill-considered design decision can lead to an implementation which
fails to achieve planned levels of service or has unnecessarily high running
costs.

As is the case for other performance modelling notations, PEPA can be
applied either prospectively to assess the viability of a candidate design for a
yet-to-be-constructed system or retrospectively to provide insight into a fully
functional operation. Our novel contribution in this paper is to show how the
PEPA language could be extended with syntactic support for the description
of enhancements to models which reflect enhancements to the system un-
der study. We use the term features to describe these enhancements to both
systems and models, in keeping with the use of this term in the telecom-
munications industry and in software development. With this extension, the
PEPA language can more easily be used throughout the entire lifetime of a
complex distributed system, tracking adaptive and corrective maintenance in
a formal setting.

Improving the suitability of the PEPA language for modelling complex
systems is a useful extension. The difficulty in computer system development
stems from the desire to create sophisticated and comprehensive products.
These are constructed piece by piece and are subject to many unpredictable
revisions over time. This is our motivation for considering a formal means

126 Stephen Gilmore and Jane Hillston

of expressing the addition of new features to an exisiting system. The fact
that a system has interesting performance qualities which are worth investi-
gating via the construction and analysis of system models does not make it
impervious to modifications and the addition of new features.

One way to address the problem of modelling the addition of features is
to modify the extant system description in such a way that the new feature
is incorporated or interwoven into the model description. This might at first
seem to be an attractive option since it does not require any modification
to the existing modelling language which was used to describe the original
system. The modeller can simply think that they are only constructing a
model of a more complex system, namely the one which includes the added
feature. However, this approach has the disadvantage that it reduces the
intellectual leverage which the identification of features gives both to system
designers and system builders. Firstly, the valuable documentation function
which features provide has not been exploited with the consequence that no
formal record of the change history of the system is being created. Secondly,
the dependency of the added feature upon components of the existing system
will be unclear. Effectively, all of the existing system description has been
considered to be essential to the description of the new feature. It is not usual
that this is the case in practice.

We adopt the principle that feature descriptions require a different form
of expression from system descriptions. Particularly, their descriptions should
make clear the dependencies of components of the existing system. This places
a demand upon our modelling language to provide some distinctive syntactic
support for the formal expression of features. Other authors have also argued
that the addition of a feature construct to an existing modelling language is
the right method by which to make progress in this problem [7,8].

2 Design of the feature construct

PEPA is a small language with essential, simple combinators. A description
appears in Appendix A. Readers who are already familiar with the PEPA
language can omit this summary, which is standard. Readers unfamiliar with
PEPA who are keen to understand the technical details of this paper should
study the language summary in Appendix A before proceeding. Briefly, PEPA
components perform timed activities. Each PEPA model defines a labelled
multi-transition system which can be read as a Continuous Time Markov
Chain (CTMC) by ignoring the activity names which label the arcs from one
state to another.

A feature construct for PEPA must add value without incurring unneces-
sary loss of simplicity. (The feature construct can itself be seen as a feature
which is being added to the existing PEPA language. Many of the good prac-
tices which are applied when adding functional features to software systems

The PEPA Feature Construct 127

have their analogues here where we are adding a model structuring feature
to an existing modelling language.)

Following [7], we consider that a feature construct should describe fea-
tures formally as self-contained units of functionality. It should be possible
to consider features in isolation, without complete knowledge of the system to
which they are being added. A feature construct should be general-purpose,
allowing a number of different types of features to be added. However, it
should not allow undisciplined modifications which would be hard to reason
about or understand. This last requirement would rule out of consideration
as candidates a number of powerful, but low-level, macro-like operators.

In the particular setting of the PEPA modelling language we want a fea-
ture construct which is applicable, general, clear and easy to explain. It must
have a formal definition. Two candidates present themselves as being possibly
suitable; re-binding and parametric definition.

2.1 Re-binding component definitions

PEPA is a compositional description language so in principle new features
could be installed by re-binding the definitions of key components. Such an
extension to the PEPA language would meet most of our criteria for a fea-
ture construct. Re-binding definitions is a general-purpose concept and it
can certainly be described both formally and with clarity. Unfortunately, it
fails to meet our key criteria of applicability because it cannot describe the
most general case of making unforeseen extensions to an existing system.
The use of re-binding as a feature construct is only applicable in the cases
where the designers of the system have previously loaded the system with
re-programmable hooks. It is usual to describe such systems as feature-ready
because they have been designed in the anticipation of the addition of new
features in particular ways. Extensible software systems such as Web browsers
with a “plug-in” capability are an example of feature-ready systems.

2.2 Parametric components

Our winning candidate for a feature construct for PEPA is the use of param-
eterised components. The parameters capture the dependency of the feature
on the existing system. By defining our new feature in terms of the existing
system, monitored for essential behaviour, we allow for system reconfigura-
tion and the introduction of new components.

Definition: A feature for a PEPA model consists of:

e one or more parameterised components which describe the behaviour of
the newly added feature possibly re-using existing components;

e optionally, some non-parameterised components which are used to struc-
ture the new feature (components may be re-used here also); and

e a new system equation which describes how the new system is built from
the existing one and the components of the two kinds described above.

128 Stephen Gilmore and Jane Hillston

3 Semantics of the feature construct

A feature will utilize a parameterized component and it will also typically
make use of simple components. Incorporating a feature into a system is
done by instantiating the parameter of the feature by the existing system,
optionally combined with new simple components.

In operation, a feature monitors its base system. Whenever the base sys-
tem makes a transition it is checked against the triggers for the feature. If it
is not a trigger the base system proceeds as before. Otherwise, the transition
is replaced as indicated and the feature determines how to proceed.

3.1 Impose and treat

A useful separation of concerns in describing feature integration is the dis-
tinction between imposing new behaviour on the system and treating the
existing behaviour in a new way. In a state-based modelling approach such
as ours this divides into redirecting the system evolution into new states in
the former case and substituting new activities for existing ones in the latter
case. In either case, some activity is used as a trigger for the new feature.
If the activity happens then the new feature comes into effect. If not then
the system behaves as before. Assume that the parameter P has an («,r)
transition to P’, then there are four possible outcomes.

(r)

Treat (1): S(P) — S(P) « is not a trigger
()

Treat (2): S(P) — S'(P,Q) o is a trigger for @
(a,r) . .

Impose (1): S(P) — S(P) o is not a trigger
(85)

Impose (2): S(P) — S'(P',Q) o is a trigger for @

Formally, in both cases there are two possibilities. Either the transition which
the existing system would perform has a matching transition in the transi-
tions of the parameterised component or it does not. In the cases where there
is a matching transition the new state of the system is dictated by a param-
eterised component whose behaviour can depend on either P’ or Q). In the
cases where only one of the possible outcomes is of importance the param-
eterised component need only receive a single component as its parameter.
In this case it might be that the derivative S’ of S is itself. The Treat rule
can introduce new behaviour. Additionally, the Impose rule is to replace an
activity « performed at rate r by an activity 8 performed at rate s.

It is easy to see that the expressiveness of the Treat rule subsumes that
of the Impose rule. When the metavariables o and § denote the same PEPA
activity and the metavariables r and s denote the same PEPA rate then the
Treat rule expresses the same adaptation of the existing system behaviour

The PEPA Feature Construct 129

Impose
PP gp);@ PP s e s Q)
S(P)‘ v) S(P) S(P) (—ai)»S’(P’,Q)
Treat
P S()#ﬁ PN P s(p) 2 (5,9).5(P Q)
s(P) =2 s(P) S(P) =5 87,0
Choose

S(P,Q)— S'(P) S(P,Q)— S(Q)

Fig. 1. Semantics of the feature construct

as the Impose rule. It is also easy to see that the Impose rule by itself is
not sufficient because it is not possible to prevent the exisiting system model
from performing its first activity. This is a limitation because we wish to be
able to impose new behaviour on any state of the exisiting system, even the
initial state. The Treat rule does not suffer from this limitation.

Since the Treat rule subsumes the Impose rule, and is applicable in more
situations, why then do we keep the Impose rule at all? The reason is that
in practice it gives the most convenient form of expression to new features.
The more general rule would almost always be used to simulate Impose.

It could be that we wish to make only a slight amendment to the existing
system and it should not be the case that the feature construct forces recon-
figuration. A simple example would be renaming activities as in “whenever
the base system does activity «, do 3 instead and then continue as the base
system”. In telephony the Call Forwarding feature does this. This is achieved
by furnishing the residual of a parameterised component with the two possi-
ble outcomes of the system as its parameters. Branching the system to track
the evolution of its two possible futures on every feature application is of
course impractical so we require the parameterised residual at the next step
to select one of the derivatives with the Choose rules. Where appropriate we
abbreviate pairing and choosing to follow only the selected component.

We make the preceeding informal description fully formal in the opera-
tional definition of the feature construct presented in Figure 1. This is built
structurally from the transition relation on PEPA components (written ——)
and the transitions of parameterised components (written ==, we will use
the notation == to indicate the absence of such a transition). The definition
of the transition relation for PEPA components is in Figure 9 in Appendix A.
The definition of the transition relation for parameterised components is in
Figure 2. It depends on the definition given in Figure 3 of the judgement
relation for contexts (written).

130 Stephen Gilmore and Jane Hillston

Overriding
CF (a,r).8(E) L2 5(B)
C'+ (0,).(8,9)-S(E) £ (8,5).5(E)
Option
B &8 s(E) O+ B 2D 5(E)
CF B+ B, &4 s(R) CF B+ B, &4 s(E)
O+ B 22 (8,5).5(E) CF By 22 (8,5).5(E)
CF B+ B 22 (8,5).9(E) C+ By + By &2 (8,5).9(B)

Application

crE 2 5'(F)
S(P) 2 5'(Q)

(S(B) ' E' and C+E =P, F =Q)

o

o+ E L2 (85).8(F)
S(P) 22 (8,5).5'(Q)

(S(E) Y E and C+E =P, F = Q)

Fig. 2. Transition relation for parameterised definitions

3.2 Parameterised definitions

Parameterised components are used to express the intervention of the new
feature on the existing system, as defined in Figure 2. We reuse the prefix
notation to express the activity of overriding the state and activities of the
existing system and the subsequent evolution to a new parameterised system.
In this reuse the two types of features are distinguished syntactically by the
number of activities which prefix their parameterised residual. If there is just
one activity then this is an impose feature and the activity performed will
be mirrored by the replacement activity. If there are two activities then the
first is the trigger for the feature (which will be absorbed) and the second is
the replacement activity. The rate of the triggering activity is not significant
and is denoted by an underscore. We use the plus notation in parameterised
components to express the option of monitoring a range of activities, summing
over all of the possibilities. By considering the syntactic form of such a sum it
is simple to derive statically the set of significant activities which can trigger
the activation of a newly defined feature. Just as significant is the use of
this set of activity names to determine which activities cannot cause the
invocation of a feature.

The PEPA Feature Construct 131

In the definition of the transition relation in Figure 2 the metavariable £
used in parametric definitions is sometimes used to stand for a single com-
ponent and sometimes for a pair of components, allowing a single rule to
encompass both cases. A similar device could be used to allow a single trig-
ger for a feature to be replaced by a sequence of activities.

3.3 Contexts

We introduce definition contexts to explain the binding of actual component
parameters to formal parameter identifiers. We allow components to be pa-
rameterised by other components but the parameterisation is first-order, that
is we do not allow parameterised components to be passed as parameters.

More formally, parameters range over PEPA expressions extended with
formal parameter identifiers in addition to the identifiers used for PEPA
constants. To preclude syntactic ambiguity, we use the convention that if a
constant appears in a formal parameter expression then it denotes the com-
ponent bound to that constant name and it is not a re-use of that identifier
with another meaning in the body of the parameterised component defini-
tion. Thus it is not possible to make a hole in the scope of a component
definition by re-using the identifier of that component as the identifier of a
formal parameter.

Given the above syntactic restriction on formal parameter identifiers we
note that contexts cannot contain re-definitions of identifiers of constants.
The notation C, I = P therefore denotes a context C' extended by the binding
of an identifier I to a component P. Such an expression can be used to
judge that the identifiers I and P both denote the same component. The
notation £ = P, L is used to denote a list of equalities beginning with one
between E and P and continuing with those in L.

Note that, as is usual with definitional equality, the equality symbol used
in contexts is not a commutative operator. In constrast the relations which
are used to judge semantic equivalence between PEPA components such as
PEPA’s strong equivalence (also known as Markovian bisimulation) both
preserve the familiar logical properties of equivalence relations and are con-
gruences over all of the PEPA operators. This allows the component-wise
substitution of equals for equals which is the foundation of a compositional
modelling approach such as that embodied by PEPA.

CHE=P CHL

CrP=P CI=PrI=P CFrE=PL
CHEy=P, CrE =D CHE=P CFE:P(Ad_CfP)
CHEDIE, =P DXp, CFrE/L=P/L CFE=A

Fig. 3. The judgement relation for definition contexts

132 Stephen Gilmore and Jane Hillston

4 Example

We present here an example which serves only to help explain the use of the
feature construct, not to act as a compelling defense of the use of formal
notations in performance modelling. We consider first the very simple model
of a transmitter which transmits at rate ¢ to a receiver which receives data
at rate r. This transmission is conducted through the medium of a network
which passively cooperates with the transmitter and the receiver. This is the
meaning of the T symbol used in the occurrences of the transmit and receive
activities specified in the description of the network, that it is passive with
respect to these activities.

The feature which we add to this simple system is a new component
which monitors the network bandwidth which the transmitter has been able
to obtain and signals whenever this drops below a critical threshold. In this
circumstance the transmitter halves its transmission rate (for example, in a
multimedia application by sampling an analogue input signal at half of the
previous rate or in another application by applying data compression). The
model is presented in Figure 4.

Existing system

Transmitter = (trans,t). Transmitter

Network = (trans, T).Network’

(
Receiver = (recv, r).Receiver
(
Network' (recv, T).Network

System = Transmitter {Eﬂ} Network {ES} Receiver
Addition of monitoring feature

Transmitter’ % (trans, t/2). Transmitter’
Monitor % (low,). Monitor’
Monitor’ (high, h).Monitor

s (r BN D

{trans} {recv}

R)) =

(low, 1).S(Monitor" || (Transmitter’ {Eﬂﬂ} N {ES} R))
J’_

(high, h).S(Monitor || (Transmitter {DQ N B R))

trans} © {recv}

System’ ' S(Monitor || System)

Fig. 4. Use of the feature construct

The PEPA Feature Construct 133

It is possible that the congestion on the network will subsequently reduce.
In this case the monitor will signal that it is suitable for the transmitter
to resume transmitting at the higher rate. The details of how the monitor
measures the consumption of the available bandwidth are abstracted away
in the model and the signals to switch between transmitting at the low rate
and the high rate are simply modelled by stochastic events with parameters [
and h respectively. From a performance modelling point of view, the effect
of adding the new feature is to turn the Transmitter component from a
simple Poisson arrival process into a Markov modulated process. The new
feature ensures that the correct Transmitter component is used whenever
the Monitor component changes state. Upon witnessing a low signal from
the monitor, the values held by the formal parameters M and T will be lost
and the primed versions of the Monitor and Transmitter components will be
used. Upon witnessing a high signal from the monitor, the values held by the
formal parameters M and T will similarly be lost and the unprimed versions
of the Monitor and Transmitter components will be reinstated.

The fact that there was no planning for the subsequent addition of a mon-
itoring feature in the original model is reflected in the fact that the activities
which are of interest to the monitoring feature are the low and high activities
which are themselves newly added to the system via the Monitor component.
We can see statically from the definition of the monitoring feature alone that
the activities trans and recv are not used anywhere in the definition. This pro-
vides a simple and efficient check of freedom of interference between features
and components.

5 Implementation

We have provided an embedding of the extended PEPA language in the
higher-order functional programming language Standard ML [9] a language
which we have previously used in the implementation of other software tools
for the PEPA language, notably the PEPA Workbench [10].

The program structuring facilities of Standard ML are typical of those
of a higher-order functional programming language. Functions are first-class
and can be passed as parameters, returned as results, or used as values which
can be stored in a data structure such as a list or a binary tree. The ability to
manipulate functions in this way is crucially used in our embedding of PEPA
components in Standard ML. In a language which did not support functions
as first-class values the encoding of PEPA components would involve much
more indirection. PEPA components describe the performance of activities
by using conditional recursive definitions.

We map PEPA components onto Standard ML functions and provide
datatype constructors which can be used to compose these functions as struc-
tured PEPA components can be built using the combinators of the language.
Featured PEPA components are modelled as higher-order functions.

134 Stephen Gilmore and Jane Hillston

PEPA has four combinators, prefix (.), choice (+), co-operation (I, or ||
if the co-operation set is empty) and hiding (/). These are mapped on to
the constructors of a Standard ML datatype which can be used to compose
component definitions. The constructors of this datatype are *, +, (,), ||
and /. These identifiers are chosen to resemble the corresponding symbols in
the PEPA syntax, making their encoding relatively straightforward.

datatype Component = * of (Activity * Rate) x (unit — Component)
of Component x Component
of Component x Component
of Component * Activity list
of Component x Component

of Component x Activity list

~— =+ %

Fig. 5. Datatype definition for the PEPA combinators

To explain the use of these constructors, when the plus constructor is give
a pair of components (Component x Component), it labels these as a choice,
which is itself a kind of component.

The simple model from the previous section is encoded using our PEPA
embedding in Standard ML in Figure 6. The datatype definitions at the

datatype Activity = trans | recv | tau of {hidden : Activity};
datatype Rate =t | 7 | top;

fun Transmitter () = (trans, t) x Transmitter;
fun Receiver (recv, r) * Receiver;

and Network’

(

fun Network (
((recv, top) * Network;
(

)

)=

) = (trans, top) x Network'
)

)

fun System

Transmitter () ([trans]) Network () ([recv]) Receiver ();

Fig. 6. Implementation of the original system

beginning encode the names of activities and rates which are used in the
model. The benefit which comes from this are the guarantees provided by
the strict static type-checking of the Standard ML language. For example,

1. no activities or rates can be used within the model unless there is an
accompanying declaration, and
2. an activity name cannot appear where a rate is expected.

The polymorphic type inference [11] mechanism of Standard ML means that
this benefit is provided without the imposition of additional syntactic clutter
such as typing assignments in function definitions.

The PEPA Feature Construct 135

The PEPA language defines a distinguished activity name, 7, which indi-
cates that the activity is a private one. Components cannot co-operate on 7
activities. The tau constructor of the activity datatype provides the ability to
describe activity names such as tau{hidden = recv} which is a representation
of a 7 activity which additionally captures in the Standard ML encoding the
information that the activity which was hidden was recv.

The PEPA language also defines a distinguished symbol T which is used
to indicate passive co-operation in an activity. This is encoded as the con-
structor top in the datatype of activity rates.

Each of the PEPA component definitions translates into a function defi-
nition, introduced by the keyword ‘fun’. Where a group of component defini-
tions are mutually recursive—as Network and Network’ are—they are intro-
duced by a simultaneous binding where the function definitions are separated
by the keyword ‘and’. All functions in Standard ML have a single argument
and so the definition of the function name is followed by Standard ML’s unit
pattern, analogous to the void type in Java. Each of the synchronisation sets
used in the PEPA model contains only a single activity name but if more are
required they can be included in lists such as [trans, recv].

For this simple model to be extended with the addition of the monitoring
feature we need to extend the Activity datatype with the activity names low
and high and to extend the Rate datatype with the rate t_half. We then
add the new component definitions and the new feature, building the formal
description of the new system from the description of the existing one by the
application of the monitoring feature. The definitions of the transmitter and
monitor components are straightforward and are omitted here. The accom-
panying definitions are presented in Figure 7. The monitoring feature is
parameterised by a component. Using Standard ML’s layered pattern match-
ing, identifiers are provided for this parameter as a whole (Param) and for its
subcomponents (M, T, N, R). The step function unrolls the component defi-
nition by a single transition returning the (act, rate) pair and the one-step
derivative, Param’. The activity type determines the subsequent behaviour.

fun S (Param as (M || (T ([trans]) N) {[recv]) R))) () =
let val ((act, rate), Param’) = step (Param) in
case (act, rate) of

(low, 1) =>
(low, 1) * S(Monitor'() || ((Transmitter’() {[trans]) N) {[recv]) R))
| (high, h) =>

(high, h) = S(Monitor() || ((Transmitter() ([trans]) N) {[recv]) R))
| default => (act, rate) * S(Param/())
end;

val System' = S(Monitor() || System());

Fig. 7. Implementation of the monitoring feature

136 Stephen Gilmore and Jane Hillston

6 Related and future work

It is a good practice in any model development where a series of unpre-
dictable revisions can occur to formally document system changes. A feature
construct provides a formalism for such documentation. However, in the case
of models which are used for performance analysis purposes there is an added
urgency to formally document changes. The performance modelling process
proceeds by specifying and evaluating measures of interest such as through-
put, utilisation and bandwidth. These auxiliary definitions which accompany
a system model are called reward specifications. Correct reward specifications
are themselves difficult to obtain but the difficulty of relating reward specifi-
cations is acknowledged as being considerably more difficult again [12]. With
a formal record of the changes to a model we at least have the promise of
being able to automatically update the accompanying reward specifications.
This remains as future work.

We are developing a model checker to allow formulae of the probabilistic
modal logic PML,, [13] to be checked over PEPA models which use the feature
construct described here. Our present working implementation of the model
checker has proven useful in detecting errors in PEPA models. The model
checker has the useful facility to return a counterexample to show how the
formula fails to be satisfied. This provides valuable guidance in the process
of disgnosis of the critical flaw in the model and the subsequent re-working
of the model to eliminate the error.

We have presented a method of describing additional features of a system
separately from the description of the system itself. As features are pro-
gressively added, the complexity of a system inevitably grows. One avenue of
future work is the investigation of the estimation of the additional complexity
which is brought to the system by the addition of a single feature. Concretely,
we could ask for a formula which computes how the size of the state space
of the extended system will increase as a function of the state spaces of the
systems which are used as actual parameters of parameterised components.

Conclusions

If performance modelling notations and tools are to realise the valuable con-
tribution which they promise for the development of reliable and efficient
complex software systems they must provide support not only for the initial
design of systems but also for their correction, revision, and subsequent ex-
tension. We have shown how a new construct could be added to the PEPA
performance modelling language: parameterised components. The new con-
struct satisfies many of the desired goals of a feature construct and in addition
promotes structured whole-lifecycle performance modelling of complex soft-
ware systems. We have given the construct an operational semantics which
builds upon the existing semantics of PEPA. We have applied the construct
in a small case study.

The PEPA Feature Construct 137

Acknowledgements

The authors are grateful to Mark Ryan for suggestions which helped to im-
prove the structure of the paper and the presentation of the feature con-
struct in particular. This paper has benefited significantly from the helpful
comments from the anonymous referees.

Stephen Gilmore is supported by Esprit Working group FIREworks and

by the ‘Distributed Commit Protocols’ grant from the EPSRC. Jane Hillston
is supported by the EPSRC ‘COMPA’ grant.

References

1.

2.

10.

11.

J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

D.R.W. Holton. A PEPA specification of an industrial production cell. In
S. Gilmore and J. Hillston, editors, Proceedings of the Third International
Workshop on Process Algebras and Performance Modelling, pages 542-551.
Special Issue of The Computer Journal, 38(7), December 1995.

S. Gilmore, J. Hillston, D.R.W. Holton, and M. Rettelbach. Specifications in
Stochastic Process Algebra for a Robot Control Problem. International Journal
of Production Research, 34(4):1065-1080, 1996.

A. El-Rayes, M. Kwiatkowska, and S. Minton. Analysing performance of lift
systems in PEPA. In R. Pooley and J. Hillston, editors, Proceedings of the
Twelfth UK Performance Engineering Workshop, pages 83—100, Department of
Computer Science, The University of Edinburgh, September 1996.

H. Bowman, J. Bryans, and J. Derrick. Analysis of a multimedia stream using
stochastic process algebra. In C. Priami, editor, Sixth International Workshop
on Process Algebras and Performance Modelling, pages 51-69, Nice, September
1998.

L. Kloul, J.M. Fourneau, and F. Valois. Performance modelling of hierarchical
cellular networks using PEPA. In J. Hillston, editor, Proceedings of the Sev-
enth International Workshop on Process Algebras and Performance Modelling,
Zaragosa, Spain, September 1999.

M. C. Plath and M. D. Ryan. Plug and play features. In W. Bouma, editor,
Feature Interactions in Telecommunications Systems V. 10S Press, 1998.

M. D. Ryan. Feature-oriented programming: A case study using the SMV
language. Technical report, School of Computer Science, The University of
Birmingham, UK, September 1997.

R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard
ML. The MIT Press, 1996.

S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to Support a Pro-
cess Algebra-based Approach to Performance Modelling. In Proceedings of
the Seventh International Conference on Modelling Techniques and Tools for
Computer Performance Fvaluation, number 794 in Lecture Notes in Computer
Science, pages 353—-368, Vienna, May 1994. Springer-Verlag.

R. Milner. A theory of type polymorphism in programming languages. Journal
of Computer and System Science, 17(3):348-375, 1978.

138

12.

13.

Stephen Gilmore and Jane Hillston

J. Bradley and N. Thomas. Constructing a partial order for performance mea-
sures. In Proceedings of the Sizteenth Annual UK Performance Engineering
Workshop, pages 177-186, Durham, United Kingdom, July 2000. UK Perfor-
mance Engineering Workshop Press.

G. Clark, S. Gilmore, J. Hillston, and M. Ribaudo. Exploiting modal logic to
express performance measures. In B.R. Haverkort, H.C. Bohnenkamp, and C.U.
Smith, editors, Computer Performance Evaluation: Modelling Techniques and
Tools, Proceedings of the 11th International Conference, number 1786 in LNCS,
pages 211227, Schaumburg, Illinois, USA, March 2000. Springer-Verlag.

The PEPA Feature Construct 139

A Summary of the PEPA language

The PEPA language provides a small set of combinators. These allow lan-
guage terms to be constructed defining the behaviour of components, via the
activities they undertake and the interactions between them. The syntax may
be formally introduced by means of the grammar shown in Figure 8.

S = (sequential components)
(a,7).S (prefix)

| S+5 (choice)

| Cs (constant)

P = (model components)
P DLQ P (cooperation)

| P/L (hiding)

| C (constant)

Fig. 8. The syntax of PEPA

In the grammar S denotes a sequential component and P denotes a model
component which executes in parallel. C' stands for a constant which denotes
either a sequential or a model component, as defined by a defining equation.
C when subscripted with an S stands for constants which denote sequential
components. The component combinators, together with their names and
interpretations, are presented informally below.

Prefix: The basic mechanism for describing the behaviour of a system is to
give a component a designated first action using the prefix combinator,
denoted by a full stop. For example, the component (a,7).S carries out
activity (a,), which has action type « and an exponentially distributed
duration with parameter r, and it subsequently behaves as S. Sequences
of actions can be combined to build up a life cycle for a component.

Choice: The life cycle of a sequential component may be more complex than
any behaviour which can be expressed using the prefix combinator alone.
The choice combinator captures the possibility of competition between
different possible activities. The component P +) represents a system
which may behave either as P or as). The activities of both P and @
are enabled. The first activity to complete distinguishes one of them: the
other is discarded. The system will behave as the derivative resulting
from the evolution of the chosen component.

Constant: It is convenient to be able to assign names to patterns of be-
haviour associated with components. Constants are components whose
meaning is given by a defining equation.

140 Stephen Gilmore and Jane Hillston

Hiding: The possibility to abstract away some aspects of a component’s
behaviour is provided by the hiding operator, denoted by the division sign
in P/L. Here, the set L of visible action types identifies those activities
which are to be considered internal or private to the component. These
activities are not visible to an external observer, nor are they accessible
to other components for cooperation. Once an activity is hidden it only
appears as the unknown type 7; the rate of the activity, however, remains
unaffected.

Cooperation: Most systems are comprised of several components which

interact. In PEPA direct interaction, or cooperation, between components
is represented by the butterfly combinator. The set which is used as
the subscript to the cooperation symbol determines those activities on
which the cooperands are forced to synchronise. Thus the cooperation
combinator is in fact an indexed family of combinators, one for each
possible cooperation set L (we write P || Q as an abbreviation for P Dfl Q
when L is empty). When cooperation is not imposed, namely for action
types not in L, the components proceed independently and concurrently
with their enabled activities. However if a component enables an activity
whose action type is in the cooperation set it will not be able to proceed
with that activity until the other component also enables an activity of
that type. The two components then proceed together to complete the
shared activity. The rate of the shared activity may be altered to reflect
the work carried out by both components to complete the activity.
In some cases, when an activity is known to be carried out in cooperation
with another component, a component may be passive with respect to
that activity. This means that the rate of the activity is left unspecified
and is determined upon cooperation, by the rate of the activity in the
other component. All passive actions must be synchronised in the final
model.

Model components capture the structure of the system in terms of its static
components. The dynamic behaviour of the system is represented by the
evolution of these components, either individually or in cooperation. The
form of this evolution is governed by a set of formal rules which give an
operational semantics of PEPA terms. The semantic rules, in the structured
operational style, are presented in Figure 9 without further comment; the
interested reader is referred to [1] for more details. The rules are read as
follows: if the transition(s) above the inference line can be inferred, then we
can infer the transition below the line. The notation r,(E) which is used in
the third cooperation rule denotes the apparent rate of o in FE.

Thus, as in classical process algebra, the semantics of each term in PEPA
is given via a labelled multi-transition system—the multiplicities of arcs are
significant. In the transition system a state corresponds to each syntactic
term of the language, or derivative, and an arc represents the activity which
causes one derivative to evolve into another. The complete set of reachable

The PEPA Feature Construct 141

Prefix
(a,m)
(ay7).E — E
Cooperation
oy P
R — R —
) (g L) oy (g L)
EXF—EXF EXIF—EDB F
(vr1) (ayra)
e —_— T1 T2

(a € L) where R = min(re(E), ro(F))

(a,R)

/ / Ta(E)Ta(F)
EDLd F——FE l>§ F

Choice
(er) _, (er)
EFE— F F— F
(a,m) (a,r
E+F—FE E+F—F
Hiding
(a,r) I B (a,r) B
—————— (a ¢ L) ———— (a€l)
(ayr) (rr)
E/L—)E/L E/L—>E/L
Constant
Joleiely o (4% B)
A g

Fig. 9. The operational semantics of PEPA

states is termed the derivative set of a model and these form the nodes of
the derivation graph formed by applying the semantic rules exhaustively.

The timing aspects of components’ behaviour are not represented in the
states of the derivation graph, but on each arc as the parameter of the neg-
ative exponential distribution governing the duration of the corresponding
activity. The interpretation is as follows: when enabled an activity a = («,)
will delay for a period sampled from the negative exponential distribution
with parameter r. If several activities are enabled concurrently, either in
competition or independently, we assume that a race condition exists be-
tween them. Thus the activity whose delay before completion is the least will
be the one to succeed. The evolution of the model will determine whether

142 Stephen Gilmore and Jane Hillston

(@) = {0020 (P Q) = () 4@

_fra(PlagL [P +ra@. aglL
= {08 nppag = [T @ o gl

Fig. 10. The apparent rate of a in PEPA components

the other activities have been aborted or simply interrupted by the state
change. In either case the memoryless property of the negative exponential
distribution eliminates the need to record the previous execution time.

When two components carry out an activity in cooperation the rate of
the shared activity will reflect the working capacity of the slower component.
We assume that each component has a capacity for performing an activity
type «, which cannot be enhanced by working in cooperation (it still must
carry out its own work), unless the component is passive with respect to
that activity type. For a component P and an action type «, this capacity is
termed the apparent rate of a in P (see Figure 10). It is the sum of the rates
of the a type activities enabled in P. The apparent rate of « in a cooperation
between P and () over « will be the minimum of the apparent rate of o in P
and the apparent rate of o in Q.

The derivation graph is the basis of the underlying Continuous Time
Markov Chain (CTMC) which is used to derive performance measures from
a PEPA model. The graph is systematically reduced to a form where it can
be treated as the state transition diagram of the underlying CTMC. Each
derivative is then a state in the CTMC. The transition rate between two
derivatives P and @ in the derivation graph is the rate at which the system
changes from behaving as component P to behaving as @. It is denoted
by ¢(P,Q) and is the sum of the activity rates labelling arcs connecting
node P to node Q. In order for the CTMC to be ergodic its derivation graph
must be strongly connected. Some necessary conditions for ergodicity, at
the syntactic level of a PEPA model, have been defined [1]. These syntactic
conditions are imposed by the grammar introduced in Figure 8.

A.1 Availability of the modelling tools

The PEPA modelling tools, together with user documentation and papers
and example PEPA models are available from the PEPA Web page at the
address http://www.dcs.ed.ac.uk/pepa.

