
PEPA nets:
A structured performance modelling formalism

Stephen Gilmore1, Jane Hillston1, and Marina Ribaudo2

1 Laboratory for Foundations of Computer Science, The University of Edinburgh,
Edinburgh EH9 3JZ, Scotland. Email: {stg, jeh}@dcs.ed.ac.uk

2 Dipartimento di Informatica e Scienze dell’Informazione, Università di Genova,
Via Dodecaneso 35, 16146 Genova, Italia. Email: ribaudo@disi.unige.it

Abstract. In this paper we describe a formalism which uses the stochas-
tic process algebra PEPA as the inscription language for labelled stochas-
tic Petri nets. Viewed in another way, the net is used to provide a
structure for combining related PEPA systems. The combined modelling
language naturally represents such applications as mobile code systems
where the PEPA terms are used to model the program code which moves
between network hosts (the places in the net). We describe the imple-
mentation of a tool to support this modelling formalism and apply this
to model a peer-to-peer filestore.

1 Introduction

Variants of Petri nets have been widely used in the description and performance
analysis of computer, telecommunications and manufacturing systems [1]. The
appeal of Petri nets as a modelling formalism is easy to see. They provide a
graphical presentation of a model which has an easily accessible interpretation
and they also have the advantage of being supported by an unambiguous formal
interpretation.

In their use as performance modelling languages stochastic Petri nets have
recently been joined by stochastic process algebras such as PEPA [2], EMPA [3]
and IMC [4]. Stochastic process algebras lack the attractive graphical presenta-
tion of Petri nets and properties such as the depiction of causality and conflict
in a model. In contrast though, in stochastic process algebras an explicit com-
positional structure is imposed on the model. This structure makes the model
easy to understand, may alleviate problems of model construction and can be
exploited for both qualitative and quantitative analysis. A comparison of these
two modelling formalisms [5] concludes that “there is scope for future work in-
corporating the attractive characteristics of the formalisms, such as structural
analysis or functional abstraction, from one paradigm into the other”. Some
work has been done in this area in beginning to develop a structural theory for
process algebras [6] on the one hand and in importing composition operations
from stochastic process algebras into Well-formed nets on the other [7]. The
present work considers using both Petri nets and process algebras together as

a single, structured performance modelling formalism. There is some reason to
believe that these two formalisms would complement each other. A recent pa-
per [8] gives an example of a system which can be modelled more easily in one
formalism than the other.

Petri nets have previously been combined with other modelling formalisms
such as the lazy functional programming language Haskell (used with non-
stochastic Petri nets in [9]) and queueing models (used with generalised stochas-
tic Petri nets in [10]). The combination of stochastic Petri nets with queueing
networks in particular has been a source of inspiration to several authors. Ear-
lier work in this area includes Bause’s Queueing Petri nets [11] and Haverkort’s
Dynamic Queueing Networks [12]. An extension of (non-stochastic) Petri nets
which provides modelling concepts similar to ours is Valk’s Elementary Object
systems [13]. The tokens in an elementary object system are themselves Petri
nets having individual dynamic behaviour.

Coloured Petri nets are a high-level form of classical Petri nets. The plain
(indistinguishable) tokens of a classical Petri net are replaced by arbitrary terms
which are distinguishable. In stochastic Petri nets the transitions from one mark-
ing to another are associated with a random variable drawn from an exponential
distribution. Here we consider coloured stochastic Petri nets where the colours
used as the tokens of the net are PEPA components. We refer to these as PEPA
nets from here on.

Section 2 introduces the notation and terminology of PEPA nets, to give the
reader an informal explanation of the ideas. However, PEPA is a formal language
with a precise semantic definition and so in Section 3 we present the operational
semantics of PEPA nets. In Section 4 we present a case study of a simple mobile
agent system modelled as a PEPA net. Having presented the reader an example
of modelling with PEPA nets we then compare them to the related modelling
formalisms of Petri nets and the PEPA stochastic process algebra in Section 5.
In each case we seek to show that PEPA nets offer some expressivity which is
not directly offered by the other formalisms. In Section 6 we discuss tool support
for this formalism. Section 7 is a more detailed case study. Further work is listed
in Section 8. Concluding remarks are presented in Section 9.

2 PEPA nets

In this section we present the concepts and definitions used in PEPA nets. We
assume that the reader is familiar with the basic concepts of process algebras
and Petri nets. Readers who are unfamiliar with the PEPA process algebra are
referred to Appendix A for an introduction.

There are two types of change of state in a PEPA net. We refer to these
as firings of the net and as transitions of PEPA components. The intention
behind having two types of change of state is that we can use these to model
changes which take place on different scales. Transitions of PEPA components
will typically be used to model small-scale (or local) changes of state as com-
ponents undertake activities. Firings of the net will typically be used to model

macro-step (or global) changes of state such as context switches, breakdowns and
repairs, one thread yielding to another, or a mobile software agent moving from
one network host to another. We will return to a mobile agent example later but
here we wish just to point out that our motivation is primarily to model systems
which have two levels of change of state and not to develop a stochastic process
algebra for specifically modelling mobile code applications. A suitable formalism
already exists for the latter purpose, Priami’s stochastic π-calculus [14].

A firing in a PEPA net causes the transfer of one token from one place
to another. The token which is moved is a PEPA component, which causes a
change in the remainder of the evaluation both in the source (where existing
co-operations with other components now can no longer take place) and in the
target (where previously disabled co-operations are now enabled by the arrival
of an incoming component which can participate in these interactions). Firings
have global effect because they involve components at more than one place in
the net.

A transition in a PEPA net takes place whenever a transition of a PEPA
component can occur (either individually, or in co-operation with another com-
ponent). Transitions can only take place between components which are resident
in the same place in the net. The PEPA net formalism does not allow compo-
nents at different places in the net to co-operate on a shared activity. An analogy
is with message-passing distributed systems without shared-memory where soft-
ware components on the same host can exchange information without incurring
a communication overhead but software components on different hosts cannot.
Transitions in a PEPA net have local effect because they involve only compo-
nents at one place in the net.

A PEPA net is made up of PEPA contexts, one at each place in the net. The
notion of context might seem an unusual one to have to employ here but contexts
have previously proved useful in definitions of classical process algebras [15],
and in the PEPA stochastic process algebra [16]. Contexts contain cells. Like a
memory location in an imperative program, a cell is a storage area to be filled
by a datum of a particular type. In particular in a PEPA net, a cell is a storage
area dedicated to storing a PEPA component. The components which fill cells
can circulate as the tokens of the net. Components which are not in a designated
cell are static and cannot move. Static components which cannot move are not
included in most versions of Petri nets; the closest commonly-known idea is that
of “self loops” where a token is deleted from a place and then immediately added
again. They prove useful here because our concept of token is more complex than
most. Static components act as cooperation partners in synchronisation activities
with tokens.

We use the notation P [] to denote a context which could be filled by the
PEPA component P or one with the same alphabet. If P has derivatives P ′

and P ′′ only and no other component has the same alphabet as P then there
are four possible values for such a context: P [], P [P], P [P ′] and P [P ′′]. P []
enables no transitions. P [P] enables the same transitions as P . P [P ′] enables
the same transitions as P ′. P [P ′′] enables the same transitions as P ′′.

2.1 Markings in a PEPA net

The marking of a classical Petri net records the number of tokens which are
resident at each place in the net. Since the tokens of a classical Petri net are
indistinguishable it is sufficient only to record their number and one could present
the marking of a Petri net with places P1, P2 and P3 as shown below.

P1 : 2
P2 : 1
P3 : 0

If an ordering is imposed on the places of the net a more compact representation
of the marking can be used. Place names are omitted and the marking can be
written using vector notation thus, (2, 1, 0).

Consider now a PEPA net with places P1, P2 and P3 as shown below.

P1[p] def= P [p] BC
L

Q

P2[p] def= P [p] BC
K

R

P3[p] def= P [p] BC
K∪L

(Q ‖ R)

From their uses in the contexts at each place we see that P is a component which
can move as a token around the net whereas Q and R are static components
which cannot move. There is a copy of Q at place P1 and another at P3. There
is a copy of R at place P2 and another at P3.

Given the above definitions for the places in this PEPA net, we can denote a
marking of this net by (P1[P], P2[], P3[]). In general, a context may have more
than one parameter, to be filled by PEPA components of different types, so the
vector of lists notation which we have used here is needed in general. Where an
ordering is imposed on places and each context has only a single cell to be filled
we can abbreviate such a marking by (P, ,).

2.2 Net-level transitions in a PEPA net

Transitions at the net-level of a PEPA net are labelled in a similar way to the
labelled multi-transition system which records the unfolding of the state space
of a PEPA model. A labelling function ` maps transition names into pairs of
names such as (α, r) where it is possible that `(ti) = `(tj) but ti 6= tj . The first
element of a pair (α, r) specifies an activity which must be performed in order
for a component to move from the input place of the transition to the output
place. The activity type records formally the activity which must be performed
if the transition is to fire. The second element is an exponentially-distributed
random variable which quantifies the rate at which the activity can progress in
conjuction with the component which is performing it.

As an example, suppose that Q is a component which is currently at place P1

and that it can perform an activity α with rate r1 to produce the derivative Q′.

Further, say that the net has a transition between P1 and P2 labelled by (α, r2).
If Q performs activity α in this setting it will be removed from P1 (leaving behind
an empty cell) and deposited into P2 (filling an empty cell there).

3 Semantics

The PEPA language is formally defined by a small-step operational semantics
as used in the definition of Milner’s CCS and other process algebras. In order
to describe the firing rule for PEPA nets formally we need a relational operator
which is to be used to express the fact that there exists a particular transition in
the net superstructure. This operator must have the properties that it identifies
the source and target of the transition and that it records the activity which is
to be performed in order for a component to cross this transition, moving from
the source to the target. We use the notation

P1

(α, r)
−→[]−→ P2

to capture the information that there is a transition connecting place P1 to
place P2 labelled by (α, r). This relation captures static information about the
structure of the net, not dynamic information about its behaviour. We could
describe the net structure in a PEPA net using a list of such assertions but the
more familiar graphical presentation of a net presents the same information in
a more accessible way.

When we wish to express the fact that no such labelled transition exists
connecting place P1 to place P2, we draw a stroke through the box in the middle
of the arrow symbol. This relation can be defined in terms of the relation above.

P1

(α, r)

−→[/]−→ P2 = @P2 · P1

(α, r)
−→[]−→ P2

The introduction of contexts requires an extension to the syntax of PEPA. This
extension is presented in Figure 1.

The semantic rules for PEPA nets are provided in Figure 2. The Cell rule
conservatively extends the PEPA semantics to define that a cell which is filled
by a component P has the same transitions as P itself. A healthiness condition
on the rule (also called a typing judgement) requires a context such as P [] to be
filled with a component which has the same alphabet as P . We write P =a P ′

to state that P and P ′ have the same alphabet. There are no rules to infer
transitions for an empty cell because an empty cell enables no transitions.

The Transition rule states that the net has local transitions which change
only a single component in the marking vector. This rule also states that these
transitions agree with the transitions which are generated by the PEPA seman-
tics (including the extension for contexts). The second premise of the Transition
rule mandates that a local transition α can only occur in a place in the net which
does not have an outgoing arc labelled by α. Note that this negative requirement
is a static requirement related to the structure of the net, not the negation of

N ::= D+M (net) M ::= (P, . . .) (marking) D ::= I def= S (defn)

(definitions and marking) (a vector of components) (identifier declaration)

S ::= (α, r).S (prefix) P ::= P BC
L

P (cooperation) C ::= ‘ ’ (empty)

| S + S (choice) | P/L (hiding) | P (full)

| I (identifier) | P [C] (cell)

| I (identifier)

(sequential components) (concurrent components) (cell term expressionss)

Fig. 1. The syntax of PEPA extended with contexts

the transition relation which is being defined. Thus, the rule cannot fail to be
stratifiable [17].

The Firing rule takes one marking of the net to another marking by perform-
ing a PEPA activity and moving a PEPA component from the input place to the
output place. This has the effect that two entries in the marking vector change
simultaneously. The rate at which the activity is performed is calculated as in
the PEPA semantics of co-operation. That is, the rate is adjusted to reflect the
inability of the slower co-operand to function at the rate of the faster co-operand,
using the well-known notion of apparent rate. The definition of apparent rate can
be found in [2].

Cell:

P ′
(α, r)
−−−→ P ′′

P [P ′]
(α, r)
−−−→ P [P ′′]

(P =a P ′)

Transition:

P
(α, r)
−−−→ P ′ P

(α, r′)

−→[/]−→ Q

(. . . , P, . . .)
(α, r)
−−−→ (. . . , P ′, . . .)

Firing:

Q
(α, r1)
−−−→ Q′ Pi

(α, r2)

−→[]−→ Pj

(. . . , Pi[Q], . . . , Pj [], . . .)
(α, R)
−−−→ (. . . , Pi[], . . . , Pj [Q′], . . .)

Fig. 2. Semantics of PEPA net firings

4 Example: a mobile agent system

We present a small example to reinforce the reader’s understanding of PEPA
nets. In this example a roving agent visits three sites. It interacts with static
software components at these sites and has two kinds of interactions. When
visiting a site where a network probe is present it interrogates the probe for the
data which it has gathered on recent patterns of network traffic. When it returns
to the central co-ordinating site it dumps the data which it has harvested to the
master probe. The master probe performs a computationally expensive statistical
analysis of the data. The structure of the system allows this computation to be
overlapped with the agent’s communication and data gathering. The marshalling
and unmarshalling costs for mobile code applications are a significant expense
so overlapping this with data processing allows some of this expense to be offset.

The structure of the application is as represented by the PEPA net in Fig-
ure 3. This marking of the net shows the mobile agent resident at the central
co-ordinating site. As a mnemonic, in both the net and the PEPA description,
we print in bold the names of those activities which can cause a firing of the net.
In this example, those activities are go and return .

T1

T2

T3

T4

P3P2P1

(go, λl) (go, λr)

(return , µr)(return , µl)

A

Fig. 3. A simple mobile agent system

Formally, we define the places of the net as shown in the PEPA context
definitions below. P2 has a local state denoted by P ′2.

P1[A] def= Agent [A] BC
{ interrogate }

Probe P3[A] def= Agent [A] BC
{ interrogate }

Probe

P2[A] def= Agent [A] BC
{ dump }

Master P ′2[A] def= Agent [A] BC
{ dump }

Master ′

The initial marking of the net is (,Agent ,). The behaviour of the components
is given by the following PEPA definitions.

Agent def= (go, λ).Agent ′ Master def= (dump,>).Master ′

Agent ′ def= (interrogate, ri).Agent ′′ Master ′ def= (analyse, ra).Master
Agent ′′ def= (return , µ).Agent ′′′ Probe def= (monitor , rm).Probe +
Agent ′′′ def= (dump, rd).Agent (interrogate,>).Probe

The transition system underlying this model is shown in Figure 4. The derivation
of such a transition system is the first step in the performance analysis of such a
system. The transition system contains the specification of a Continuous-Time
Markov Chain model of the system. This CTMC is solved for its stationary
distribution and performance measures are calculated from that. For a model
as simple as this one we can solve it simply with Gaussian elimination. We also
have available solvers such as an efficient implementation of the preconditioned
biconjugate gradient method.

Global transitions Local transitions

������� �	��
���
�� ����������� � ����
������ �����

��� � � �	��
�� �
 � ��������� � � � ��
�� � � �����

��� � � ����
�� �
 � ������������
�� � � �	���

��� � � �	��
��
 � ������������
�� � � �	���

��� � � ��������� � � ��
�� �
 � �	��
�� � � �	���

��� � � ��������� � � ��
��
 � �	��
�� � � �	���

������� ��������� �!��
���
�� �	��
������ �	���

������� ��������� �!��
��"�
 � �	��
������ �	���

������� �	��
���
�� �	��
��

������� �	��
����
 � �	��
����

����$ # �

��%'&

��%'(

Fig. 4. The transition system of the mobile agent example

5 Relating PEPA nets to other modelling formalisms

If they were to be viewed purely formally as high-level description languages
for specifying continuous-time Markov chains, then PEPA nets, stochastic Petri
nets and the PEPA stochastic process algebra would be considered to be equally
expressive. That is to say, for a given CTMC C, it is possible to construct a high-
level model in each of these three formalisms such that the underlying CTMC
derived from the model is isomorphic to C.

In practice, the three languages present different sets of conceptual tools to
the modeller. From the pragmatic perspective of a performance modeller who
wishes to reliably encode a high-level model of a particular system then there
might be reasons to select one of the languages instead of the others for this

particular modelling study. In the remainder of this section we compare mod-
elling with PEPA nets with modelling with Petri nets and the PEPA stochastic
process algebra.

5.1 Relating PEPA nets to Petri nets

To illustrate the difference between PEPA nets and Petri nets we first show how
to represent an ordinary k-safe stochastic Petri net as a PEPA net. In a classical
stochastic Petri net tokens are indistinguishable. We can replicate this in a PEPA
net by having only a single class of tokens which have only one (PEPA) state.
The definition of such a token would also need to always permit firings of the
net to take place. We define these tokens by summing over all of the transition
activity names, for all of the transitions of the net (tni ∈ T).

Token def=
∑

tni∈T

(tni,>).Token

To define a k-safe stochastic Petri net with a PEPA net we then need simply to
specify the places of the net as being capable of storing up to k of these tokens,
and making no use of static components.

Pi[tk1, . . . , tkk] def= Token[tk1] ‖ · · · ‖ Token[tkk]

This reconstruction of ordinary k-safe stochastic Petri nets from PEPA nets
points to the difference between the two formalisms. A PEPA net can be viewed
as a Petri net where the tokens are programmable. The tokens of a PEPA net
have state, can count, can observe activities, and can even refuse to be fired
from the place where they reside. We believe that this gives the PEPA net
modeller a novel conceptual modelling tool which can be used to express natural
descriptions of systems with active, stateful mobile agents.

5.2 Relating PEPA nets to PEPA

The relationship between PEPA nets and PEPA is straightforward. A PEPA
net with only one place and no transitions is simply a PEPA stochastic process
algebra model. To explain how a PEPA net can offer added expressive power we
consider a PEPA net with more than one place, such as that shown in Figure 5.

In this model a token of type P moves between place P1 and place P2.
In doing so it decouples itself from a static component Q, located at P1. The
token thereby moves out of the scope of the cooperation set L. Cooperation sets
are used to configure copies of components, coupling them to communication
partners. In this way they restrict the behaviour of a component, requiring it to
perform some activities (those in the cooperation set) only if they have a partner
who is able to cooperate in performing them. In the example in Figure 5 if Q
is unwilling to perform some of these activities then the behaviour of P will be
restricted. Even if Q is willing to perform all of the activities in the cooperation

P1[p] def= P [p] BC
L

Q
T1

T2

P2P1P

(decouple , λ)

(recouple , µ)

P2[p] def= P [p]

Fig. 5. Tokens in a PEPA net can decouple from a static component

set L then it can still influence the rate at which they are performed. In contrast
when the token P is resident in P2 then it is subject to no such restriction and
can perform all of its activities at the rates which it itself specifies.

This concept cannot be expressed in a PEPA stochastic process algebra
model. The cooperation sets used in a PEPA model impose a static communi-
cation topology on the model. In contrast a PEPA net has dynamically varying
communication structure and, in consequence, a given action in a component
might sometimes be performed in isolation and sometimes be performed in co-
operation. The ability to express the concept of dynamically varying communi-
cation structure offers an additional conceptual tool to the performance modeller
which is not available when modelling in PEPA. In this way PEPA nets strictly
extend the expressiveness of the PEPA stochastic process algebra.

6 Implementation

The PEPA stochastic process algebra is supported by a range of tools including
the PEPA Workbench [18] and the Möbius Modelling Framework [19]. In this
section we explain the use of PEPA nets with these tools. In the first case we have
extended the tool to directly support the extended formalism. In the second case
we explain how to translate PEPA nets into the extension of PEPA supported
by Möbius, PEPAk.

6.1 The PEPA Workbench for PEPA nets

We have implemented the PEPA nets formalism as an extension of the PEPA
Workbench, an existing modelling tool for PEPA. The PEPA Workbench exists
in two distinct versions. The first version is an experimental research tool which
is coded in the functional programming language Standard ML [20]. The second
is a re-implementation of this in the Java programming language. These are
known as “the ML edition” and “the Java edition” respectively.

Standard ML and Java have very different strengths. For a visual language
such as the notation of Petri nets the Java language’s visualisation capabilities

PEPA Workbench for PEPA nets Version 0.72.2 "Cramond" [14-08-2001]
Filename: agent.pepa
Compiling the model
Generating the derivation graph
The model has 12 states
The model has 35 transitions
The model has 8 firings
Writing the hash table file to agent.hash
Exiting PEPA Workbench.

Fig. 6. The PEPA Workbench for PEPA nets processing the mobile agent model

would suit the task much better than Standard ML. Further, there are existing
Java tools for Petri nets which could be extended to provide an implementation
of PEPA nets. After initial experimentation with the Standard ML version of the
PEPA Workbench for PEPA nets, a graphical presentation of PEPA nets could
be incorporated into the Java version of the Workbench. This implementation
plan is ongoing, but at an early stage.

The Standard ML language is well suited to implementing symbolic process-
ing applications and provides built-in support for describing datatypes such as
those needed to present the abstract syntax of a formal language such as PEPA.
These features made it possible to rapidly adapt the routines for generating
PEPA derivation graphs to generate derivation graphs for PEPA nets. The com-
pact transition rules presented in Figure 2 look simple on the page but they
proved to be a challege to implement efficiently. Here again, the higher-order
features of the Standard ML programming language proved to be useful in al-
lowing us to form function closures from higher-order functions which fixed some
of their formal parameters. This allowed us to unroll the derivation graph for the
PEPA nets model without suffering a performance penalty due to accumulated
parameter information.

The use of the PEPA Workbench for PEPA nets is illustrated in Figure 6.
Comparing the results with the picture of the labelled transition system in Fig-
ure 4 we see that the number of states and firings agree. Two self-loops are
omitted from every state in the diagram in order to avoid clutter. This accounts
for the additional twenty-four transitions reported by the PEPA Workbench for
PEPA nets.

The input language to the tool is an extension of the concrete syntax used for
storing PEPA language models. The topology of the net is specified by providing
a textual description of the places and the arcs connecting them. Providing a
visual editor for PEPA nets remains as future work.

6.2 Using PEPA nets in the Möbius Modelling Framework

Möbius is a multi-formalism performance and dependability modelling tool. The
modeller can specify atomic models in a number of component-based modelling

formalisms, including stochastic activity networks (SANs), stochastic Petri nets
(SPNs), Markov processes specified in “bucket and ball” style, queueing networks
and the PEPA stochastic process algebra [21]. These atomic models are config-
ured and composed using a graphical notation to make a structured high-level
model which is composed from atomic submodels. The ability to interconnect
models expressed in different formalisms is achieved through the use of an ab-
stract functional interface to the models. Models can be solved either by discrete
event simulation or by state-based, analytical and numerical techniques. The
Möbius solvers use efficient implementations of classical sparse matrix solution
methods.

Möbius implements an extension of PEPA called PEPAk. It is shown in [21]
that PEPAk models can be mapped to PEPA models. Here we explain how to
map PEPA nets to PEPAk models.

PEPAk extends PEPA with formal parameters, guards and value passing.
It might at first seem that we can use parameter passing to describe the firing
of a PEPA net and the communication of a token from one place to another.
However, the parameters of a PEPAk component must have integer values. That
is, the component definitions cannot describe higher-order components, which are
themselves parameterised by another component. In PEPAk, guards are used
to restrict the evaluation of process expressions to those cases where the guard
evaluates to true under the current assignment of (integer) values to parameters.
In PEPA nets, cells are storage locations for components where the behaviour
of the component is either fully enabled (because the cell contains a token)
or fully disabled (because the cell is empty). Accordingly, we can use guarded
components to model cells if we can write guards which evaluate to true exactly
when the token is present and false otherwise.

Each PEPA net has a finite number of places and each token has a finite
number of colours (local states). Because of this, we can encode the information
that a token of a particular colour is at a particular place by a pair of integer
variables. Call these variables place and colour respectively. We can now encode
a PEPA net cell in place j as a sum of PEPAk guarded components as shown
below.

P [·]
︸︷︷︸

PEPA net cell at place j,
tokens = {P0, . . . , Pn }

n

∑

i=0

[(place = j) ∧ (colour = i)] ⇒ Pi

︸ ︷︷ ︸

PEPAk expression in atomic submodel j

The Möbius implementation of a PEPA net is built up as a composition of atomic
submodels, each implemented in PEPAk, one for each place in the PEPA net.

To model the firing of a PEPA net where the place of a token and its colour
are simultaneously updated we update the variables to store the new place and
the new colour, e.g. (place = k, colour = c). The definition of the variables is
placed at a higher level of the Möbius Replicate/Join tree to allow the variables
to be shared between the atomic submodels.

To implement dynamically varying communication structure in PEPAk it
would be necessary to replicate some components or rename some activities.

7 Case study: a peer-to-peer file system

We have used the PEPA Workbench for PEPA nets to analyse performance
aspects of a modern networked application, Freenet [22], modelled as a PEPA
net. The Freenet project began in the Division of Informatics of The University
of Edinburgh. Its purpose is to develop a de-centralised networked application
which allows users to publish information for retrieval over the network. Publi-
cations are replicated at a subset of the nodes in the network and requests to
retrieve them cause them to be further replicated at other nodes nearer to the
requestor. Little-accessed publications can be dropped from nodes. In this way,
in time, a little-used publication could eventually disappear from the network
entirely (it would “go out of print”).

Up to this point one could simply think of Freenet as a probabilistic filestore
but one striking novelty of the Freenet platform is that it attempts to ensure
the anonymity of both authors and readers and the ability of node maintainers
to deny knowledge of the contents stored at their node. Additional layers of
indirection mean that it is not feasible to determine the origin of a file passing
through the network. No centralised server is used to maintain a registry of
publications on the network (this is a peer-to-peer architecture) so there is no
central control to be held accountable for the contents of the network as a whole.

Clients built on Freenet include Frost. Frost is a file-sharing tool similar to
Napster and Morpheus. It additionally provides a message board system that
allows anonymous Usenet-style communication. Applications of this include en-
abling free speech in countries without freedom of speech laws.

Because the system architecture contains no centralised index, retrieving a
file in Freenet consists of making a request to a Freenet host. This becomes a
series of requests as one host interrogates another to satisfy the request. Files
on Freenet are stored under descriptions which are hashed to provide search
keys and searching for a file proceeds by steepest-ascent hill-climbing. To pre-
vent infinite chains of requests, each request has a “hops-to-live” count which is
decreased each time that it hops from one Freenet node to another. When the
hops-to-live count reaches zero the search is abandoned and it is reported that
the file could not be found.

The behaviour of a Freenet node is modelled as a static PEPA net component.
The node first receives a request which comes from either the user or from
another node. It checks its own store to see if the data is found. It returns the
data if found, allowing another request to be initiated. If not found a further
request, found/notfound iteration is initiated.

Node def= (request , r).Node2

Node2
def= (found , p× f).Node3 + (notfound , (1− p)× f).Node

Node3
def= (return, rt).Node

The request is a PEPA net token, moving around the network via the hop
activity. We model failure due to exceeding the hops-to-live count (die). The
subscript on a request counts down the number of hops left to live. The request

dies if it has not found the file and has no more hops left. When it dies, the
component becomes “recycled” as a new request (for a different file).

Requesth
def= (request ,>).Request ′h (hmax ≥ h ≥ 0)

Request ′h
def= (found ,>).Request ′hmax

+ (notfound ,>).Request ′′h (hmax ≥ h ≥ 0)
Request ′′h

def= (hop, κ).Requesth−1 (hmax ≥ h > 0)
Request ′′0

def= (die, d).Requesthmax

Each place in the net combines a slot for a request with a node as shown below.

Pi[R] def= Request [R] BC
{ request, found, notfound }

Node

We have processed a modest-sized model of this system with the PEPA Work-
bench for PEPA nets and solved it with the Maple computer algebra system to
find performance measures of the system. One such performance measure was
the dependency of the number of requests on the probability of finding the file
at a given node, subject to two simplifying assumptions of uniform request ori-
gins and uniform file distribution. We found the PEPA nets formalism to give a
relatively natural means of expressing the structure of a system such as this one,
where mobile components have local state which evolves at places in the net.

8 Further work

We have defined a language which provides an extension to the PEPA stochastic
process algebra by allowing a number of distinct PEPA models to be arranged
into a net. These models communicate via the transfer of tokens from one place
to another. We have implemented this new language and applied it to some case
studies. In the light of additional experience gained from further case studies it
could be possible that we would discover that other language constructs would
be helpful to the modeller.

One possibility would be an independent evolution of the net system, akin to
the transport transitions of elementary object systems, where tokens are forcibly
moved from one place to another without the option to refuse this or change
state in transit. We have omitted this feature at present because it seems at
odds with the process algebra notion of every component having behaviour.
Additional language design decisions and extensions remain as future work.

Other future work includes the continued development of our implementation
of the PEPA Workbench for PEPA nets. The additional of a graphical editor for
PEPA nets is a likely next step with this tool.

Together with Norman and Parker at Birmingham we have recently extended
the PRISM probabilistic symbolic model checker [23] to support the PEPA
stochastic process algebra as an additional modelling language. An extension
of that work to support PEPA nets would greatly enhance our ability to exper-
iment with models on a large scale.

9 Conclusions

The PEPA nets formalism is new and, as yet, relatively unproven. It is our
belief that it can provide a suitable framework for the description of performance
models of systems which have distinct notions of changes of state. Our experience
with the PEPA formalism has been that the combination of a well-defined formal
semantics for the language and the availability of a range of tools to implement
the language has enabled us and others to use it effectively in the performance
modelling and analysis of systems. By following a similar development path we
would hope that the PEPA nets formalism could also prove to be useful.

The combination of a process algebra with a Petri net presents many oppor-
tunities to import developments from the Petri net community into the practices
in the process algebra community. Further, it is to be hoped that these devel-
opments can be imported more directly through the use of a Petri net with
algebraic terms as tokens than if one was to rework them and to re-apply them
in the process algebra context.

Acknowledgements

Stephen Gilmore and Jane Hillston are supported by the DEGAS (Design En-
vironments for Global ApplicationS) project funded by the FET Proactive Ini-
tiative on Global Computing. Our thanks go to Salem Derisavi of the Möbius
project for providing insights into the operation of PEPAk in Möbius. Thanks
also to Giuliana Franceschinis for her advice on coloured Petri nets. The au-
thors are grateful to the anonymous referees of the Tools conference for their
comments on the paper. An earlier version of this paper appeared as [24].

References

1. M. Ajmone Marsan, A. Bobbio, and S. Donatelli. Petri nets in performance anal-
ysis: An introduction. In Reisig, W. and Rozenberg, G., editors, Lectures on Petri
Nets I: Basic Models, volume 1491 of LNCS, pages 211–256. Springer-Verlag, 1998.

2. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

3. M. Bernardo and R. Gorrieri. A tutorial on EMPA: a theory of concurrent processes
with nondeterminism, priorities, probabilities and time. Theoretical Computer Sci-
ence, 202:1–54, 1998.

4. H. Hermanns. Interactive Markov Chains. PhD thesis, Universität Erlangen-
Nürnberg, 1999.

5. S. Donatelli, J. Hillston, and M. Ribaudo. A comparison of Performance Evaluation
Process Algebra and Generalized Stochastic Petri Nets. In Proc. 6th International
Workshop on Petri Nets and Performance Models, Durham, North Carolina, 1995.

6. S. Gilmore, J. Hillston, and L. Recalde. Elementary structural analysis for PEPA.
Technical Report ECS-LFCS-97-377, Laboratory for Foundations of Computer Sci-
ence, Department of Computer Science, The University of Edinburgh, 1997.

7. I. C. Rojas M. Compositional construction and analysis of Petri net systems. PhD
thesis, The University of Edinburgh, 1997.

8. J. Hillston, L. Recalde, M. Ribaudo, and M. Silva. A comparison of the expressive-
ness of SPA and bounded SPN models. In B. Haverkort and R. German, editors,
Proceedings of the 9th International Workshop on Petri Nets and Performance
Models, Aachen, Germany, September 2001. IEEE Computer Science Press.

9. C. Reinke. Haskell-Coloured Petri Nets. In Implementation of Functional Lan-
guages, 11th International Workshop, volume 1868 of LNCS, pages 165–180,
Lochem, The Netherlands, September 1999. Springer-Verlag.

10. M. Becker and H. Szczerbicka. PNiQ: Integration of queuing networks in gener-
alized stochastic petri nets. IEE Proceedings—Software, 146(1):27–33, February
1999. Special issue of the proceedings of the Fourteenth UK Performance Engi-
neering Workshop.

11. F. Bause. Queueing Petri nets—a formalism for the combined qualitative and
quantitative analysis of systems. In 5th International Workshop on Petri Nets and
Performance Models, pages 14–23, Toulouse, France, October 1993.

12. B.R. Haverkort, I.G. Niemegeers, and P Veldhuyzen van Zanten. DyQNtool—a
performability modelling tool based on the dynamic queueing network concept. In
G. Balbo and G. Serazzi, editors, Modelling Techniques and Tools for Computer
Performance Evaluation, pages 181–195. North-Holland, 1992.

13. R. Valk. Petri nets as token objects—an introduction to Elementary Object Nets.
In J. Desel and M. Silva, editors, Proceedings of the 19th International Confer-
ence on Application and Theory of Petri Nets, volume 1420 of Lecture Notes in
Computer Science, pages 1–25, Lisbon, Portugal, 1998. Springer-Verlag.

14. C. Priami. Stochastic π-calculus. In S. Gilmore and J. Hillston, editors, Proceedings
of the Third International Workshop on Process Algebras and Performance Mod-
elling, pages 578–589. Special Issue of The Computer Journal, 38(7), December
1995.

15. K.G. Larsen. Compositional theories based on an operational semantics of contexts.
In REX Workshop on Stepwise Refinement of Parallel Systems, volume 430 of
LNCS, pages 487–518. Springer-Verlag, May 1989.

16. G. Clark. Techniques for the Construction and Analysis of Algebraic Performance
Models. PhD thesis, The University of Edinburgh, 2000.

17. J.F. Groote. Transition system specifications with negative premises. Theoretical
Computer Science, 118(2):263–299, 1993.

18. S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to Support a Process
Algebra-based Approach to Performance Modelling. In Proceedings of the Seventh
International Conference on Modelling Techniques and Tools for Computer Per-
formance Evaluation, number 794 in Lecture Notes in Computer Science, pages
353–368, Vienna, May 1994. Springer-Verlag.

19. G. Clark, T. Courtney, D. Daly, D. Deavours, S. Derisavi, J. M. Doyle, W. H.
Sanders, and P. Webster. The Möbius modeling tool. In Proceedings of the 9th
International Workshop on Petri Nets and Performance Models, pages 241–250,
Aachen, Germany, September 2001.

20. R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard
ML: Revised 1996. The MIT Press, 1996.

21. G. Clark and W.H. Sanders. Implementing a stochastic process algebra within the
Möbius modeling framework. In L. de Alfaro and S. Gilmore, editors, Proceedings
of the first joint PAPM-PROBMIV Workshop, volume 2165 of Lecture Notes in
Computer Science, pages 200–215, Aachen, Germany, September 2001. Springer-
Verlag.

22. I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong. Freenet: A distributed anony-
mous information storage and retrieval system. In H. Federrath, editor, Design-
ing Privacy Enhancing Technologies: International Workshop on Design Issues in
Anonymity and Unobservability, volume 2009 of Lecture Notes in Computer Sci-
ence, pages 46–66, Berkeley, California, 2001. Springer-Verlag.

23. M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic model
checker. This volume, 2002.

24. S. Gilmore, J. Hillston, and M. Ribaudo. PEPA-coloured stochastic Petri nets. In
K. Djemame and M. Kara, editors, Proceedings of the Seventeenth UK Performance
Engineering Workshop, pages 155–166, University of Leeds, July 2001.

A Summary of the PEPA language

The PEPA language provides a small set of combinators. These allow language
terms to be constructed defining the behaviour of components, via the activities
they undertake and the interactions between them. The syntax may be formally
introduced by means of the grammar which was shown in Figure 1. In that gram-
mar S denotes a sequential component and P denotes a model component which
executes in parallel. C stands for a constant which denotes either a sequential
or a model component, as defined by a defining equation. C when subscripted
with an S stands for constants which denote sequential components. The compo-
nent combinators, together with their names and interpretations, are presented
informally below.

Prefix: The basic mechanism for describing the behaviour of a system is to give
a component a designated first action using the prefix combinator, denoted
by a full stop. For example, the component (α, r).S carries out activity (α, r),
which has action type α and an exponentially distributed duration with
parameter r, and it subsequently behaves as S. Sequences of actions can be
combined to build up a life cycle for a component.

Choice: The life cycle of a sequential component may be more complex than
any behaviour which can be expressed using the prefix combinator alone. The
choice combinator captures the possibility of competition between different
possible activities. The component P + Q represents a system which may
behave either as P or as Q. The activities of both P and Q are enabled. The
first activity to complete distinguishes one of them: the other is discarded.
The system will behave as the derivative resulting from the evolution of the
chosen component.

Constant: It is convenient to be able to assign names to patterns of behaviour
associated with components. Constants are components whose meaning is
given by a defining equation.

Hiding: The possibility to abstract away some aspects of a component’s be-
haviour is provided by the hiding operator, denoted by the division sign in
P/L. Here, the set L of visible action types identifies those activities which
are to be considered internal or private to the component. These activities

are not visible to an external observer, nor are they accessible to other com-
ponents for cooperation. Once an activity is hidden it only appears as the
unknown type τ ; the rate of the activity, however, remains unaffected.

Cooperation: Most systems are comprised of several components which in-
teract. In PEPA direct interaction, or cooperation, between components is
represented by the butterfly combinator. The set which is used as the sub-
script to the cooperation symbol determines those activities on which the
cooperands are forced to synchronise. Thus the cooperation combinator is
in fact an indexed family of combinators, one for each possible cooperation
set L (we write P ‖ Q as an abbreviation for P BC

L
Q when L is empty).

When cooperation is not imposed, namely for action types not in L, the
components proceed independently and concurrently with their enabled ac-
tivities. However if a component enables an activity whose action type is in
the cooperation set it will not be able to proceed with that activity until the
other component also enables an activity of that type. The two components
then proceed together to complete the shared activity. The rate of the shared
activity may be altered to reflect the work carried out by both components
to complete the activity.

In some cases, when an activity is known to be carried out in cooperation
with another component, a component may be passive with respect to that
activity. This means that the rate of the activity is left unspecified and
is determined upon cooperation, by the rate of the activity in the other
component. All passive actions must be synchronised in the final model.

Model components capture the structure of the system in terms of its static
components. The dynamic behaviour of the system is represented by the evolu-
tion of these components, either individually or in cooperation. The form of this
evolution is governed by a set of formal rules which give an operational seman-
tics of PEPA terms. The semantic rules, in the structured operational style, are
presented in Figure 7 without further comment; the interested reader is referred
to [2] for more details. The rules are read as follows: if the transition(s) above
the inference line can be inferred, then we can infer the transition below the
line. The notation rα(E) which is used in the third cooperation rule denotes the
apparent rate of α in E.

Thus, as in classical process algebra, the semantics of each term in PEPA
is given via a labelled multi-transition system—the multiplicities of arcs are
significant. In the transition system a state corresponds to each syntactic term
of the language, or derivative, and an arc represents the activity which causes
one derivative to evolve into another. The complete set of reachable states is
termed the derivative set of a model and these form the nodes of the derivation
graph formed by applying the semantic rules exhaustively.

The timing aspects of components’ behaviour are not represented in the
states of the derivation graph, but on each arc as the parameter of the negative
exponential distribution governing the duration of the corresponding activity.
The interpretation is as follows: when enabled an activity a = (α, r) will delay
for a period sampled from the negative exponential distribution which has pa-

Prefix

(α, r).E
(α,r)
−−−→ E

Cooperation

E
(α,r)
−−−→ E′

E BC
L

F
(α,r)
−−−→ E′ BC

L
F

(α /∈ L)
F

(α,r)
−−−→ F ′

E BC
L

F
(α,r)
−−−→ E BC

L
F ′

(α /∈ L)

E
(α,r1)
−−−→ E′ F

(α,r2)
−−−→ F ′

E BC
L

F
(α,R)
−−−→ E′ BC

L
F ′

(α ∈ L) where R =
r1

rE
α

r2

rF
α

min(rα(E), rα(F))

Choice

E
(α,r)
−−−→ E′

E + F
(α,r)
−−−→ E′

F
(α,r)
−−−→ F ′

E + F
(α,r)
−−−→ F ′

Hiding

E
(α,r)
−−−→ E′

E/L
(α,r)
−−−→ E′/L

(α /∈ L)
E

(α,r)
−−−→ E′

E/L
(τ,r)
−−−→ E′/L

(α ∈ L)

Constant

E
(α,r)−→ E′

A
(α,r)−→ E′

(A def= E)

Fig. 7. The operational semantics of PEPA

rameter r. If several activities are enabled concurrently, either in competition or
independently, we assume that a race condition exists between them. Thus the
activity whose delay before completion is the least will be the one to succeed.
The evolution of the model will determine whether the other activities have been
aborted or simply interrupted by the state change. In either case the memoryless
property of the negative exponential distribution eliminates the need to record
the previous execution time.

When two components carry out an activity in cooperation the rate of the
shared activity will reflect the working capacity of the slower component. We
assume that each component has a capacity for performing an activity type α,

which cannot be enhanced by working in cooperation (it still must carry out its
own work), unless the component is passive with respect to that activity type.
For a component P and an action type α, this capacity is termed the apparent
rate of α in P . It is the sum of the rates of the α type activities enabled in P .
The apparent rate of α in a cooperation between P and Q over α will be the
minimum of the apparent rate of α in P and the apparent rate of α in Q.

The derivation graph is the basis of the underlying Continuous Time Markov
Chain (CTMC) which is used to derive performance measures from a PEPA
model. The graph is systematically reduced to a form where it can be treated as
the state transition diagram of the underlying CTMC. Each derivative is then
a state in the CTMC. The transition rate between two derivatives P and Q in
the derivation graph is the rate at which the system changes from behaving as
component P to behaving as Q. It is denoted by q(P,Q) and is the sum of the
activity rates labelling arcs connecting node P to node Q. In order for the CTMC
to be ergodic its derivation graph must be strongly connected. Some necessary
conditions for ergodicity, at the syntactic level of a PEPA model, have been
defined [2]. These syntactic conditions are imposed by the grammar introduced
earlier.

A.1 Definition of PEPA nets equality on alphabets

The relation =a is used in the PEPA nets semantics. Its definition is straight-
forward but is included here for completeness.

P =a Q if alph P = alph Q

The alphabet of a PEPA nets component is the least set satisfying the following
equations.

alph (P BC
L

Q) = ((alph P) \ L) ∪ ((alph Q) \ L) ∪ ((alph P) ∩ L ∩ (alph Q))

alph (P/L) = (alph P) \ L

alph (P [C]) = alph P

alph I = alph S where I def= S

alph((α, r).S) = {α } ∪ alph S

alph(R + S) = alph R ∪ alph S

A.2 Availability of the modelling tools

The PEPA modelling tools, together with user documentation and papers and
example PEPA models are available from the PEPA Web page which is located
at http://www.dcs.ed.ac.uk/pepa. The PEPA Workbench for PEPA nets is
available for download from this page in versions for Linux, Solaris and Windows.

